WO2017130875A1 - 電縫鋼管用高強度熱延鋼板およびその製造方法 - Google Patents

電縫鋼管用高強度熱延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2017130875A1
WO2017130875A1 PCT/JP2017/002041 JP2017002041W WO2017130875A1 WO 2017130875 A1 WO2017130875 A1 WO 2017130875A1 JP 2017002041 W JP2017002041 W JP 2017002041W WO 2017130875 A1 WO2017130875 A1 WO 2017130875A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
phase
temperature
hot
rolled steel
Prior art date
Application number
PCT/JP2017/002041
Other languages
English (en)
French (fr)
Inventor
博士 中田
元彦 占部
修司 川村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017526717A priority Critical patent/JP6237961B1/ja
Priority to KR1020187020980A priority patent/KR20180095917A/ko
Priority to MX2018009160A priority patent/MX2018009160A/es
Priority to CN201780007932.0A priority patent/CN108495945B/zh
Priority to EP17744105.2A priority patent/EP3409803B1/en
Priority to CA3007073A priority patent/CA3007073C/en
Priority to US16/071,557 priority patent/US11214847B2/en
Publication of WO2017130875A1 publication Critical patent/WO2017130875A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength hot-rolled steel sheet for ERW steel pipe and a manufacturing method thereof.
  • the present invention particularly relates to a high-strength hot-rolled steel sheet for electric resistance welded steel pipes excellent in workability, which is suitable for a coil tube which is a long length electric resistance welded steel pipe, and a manufacturing method thereof.
  • the present invention relates to a high-strength hot-rolled steel sheet for a sewn steel pipe and a method for producing the same.
  • Patent Document 1 describes a method for manufacturing a high-strength electric resistance welded steel pipe.
  • C 0.09 to 0.18%, Si: 0.25 to 0.45%, Mn: 0.70 to 1.00%, Cu: 0.20 to 0.40%, Ni: 0.05 to 0.20%, Cr : 0.50 to 0.80%, Mo: 0.10 to 0.40%, S: 0.0020% or less of steel was hot rolled at a rolling end temperature of Ar 3 to 950 ° C and wound at 400 to 600 ° C.
  • heat treatment is performed at over 750 ° C and below 950 ° C to obtain a high-strength ERW pipe.
  • Patent Document 1 The technique described in Patent Document 1 is characterized in that the ERW steel pipe is wound into a coil shape during cooling immediately after the heat treatment, and as a result, a high-strength ERW steel pipe excellent in corrosion resistance and ductility can be obtained. Yes.
  • Patent Document 2 by weight, C: 0.001% or more and less than 0.030%, Si: 0.60% or less, Mn: 1.00 to 3.00%, Nb: 0.005 to 0.20%, B: 0.0003 to 0.0050%, Al: After heating a steel material with a composition containing 0.100% or less to a temperature of Ac 3 to 1350 ° C, rolling is finished in the austenite non-recrystallization temperature range of 800 ° C or higher, and then a temperature of 500 ° C or higher and lower than 800 ° C. A method for producing a bainite steel material in which a precipitation treatment is performed by reheating and holding in the zone is described. According to the technique described in Patent Document 2, a thick steel plate is obtained which has a bainite single-phase structure at any cooling rate and has very little material variation in the thickness direction, which is used in production on an industrial scale.
  • Patent Document 3 includes, by weight, C: 0.03-0.15%, Si: 0.01-1%, Mn: 0.5-2%, Cu: 0.05-0.5%, Ni: 0.05-0.5%, A composition containing one or more selected from Cr: 0.05 to 0.5%, Mo: 0.05 to 0.5%, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, Ti: 0.005 to 0.1%
  • the steel is heated to 1000-1200 ° C and hot-rolled, and the hot-rolled steel plate is cooled at an average temperature of 5 ° C / s or more from a temperature range of Ar 3 to Ar 3 -80 ° C.
  • Patent Document 4 in mass%, C: 0.2 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less, S: 0.01% or less, Cr: 0.1 to 1.2 %, Mo: 0.1-1%, Al: 0.005-0.1%, B: 0.0001-0.01%, Nb: 0.005-0.5%, N: 0.005% or less, O: 0.01% or less, Ni: 0.1% or less, Ti: Number of TiN with a diameter of 5 ⁇ m or less, including 0-0.03% and 0.00008 / N% or less, V: 0-0.5%, W: 0-1%, Zr: 0-0.1%, Ca: 0-0.01% Describes a steel pipe excellent in sulfide stress cracking resistance having a yield strength of 758 MPa or more, having 10 or less per 1 mm 2 in cross section.
  • JP-A-8-3641 Japanese Patent Laid-Open No. 8-144019 Japanese Patent Laid-Open No. 11-343542 Japanese Patent Laid-Open No. 2001-131698
  • the technique described in Patent Document 2 has a problem that the amount of C is limited to a low value and there is a limit to the strength to be obtained.
  • the technique described in Patent Document 3 has a problem that after completion of hot rolling, it is necessary to cool to Ar 3 point or lower at which ferrite transformation proceeds, and then cool down, and productivity is significantly reduced.
  • the technique described in Patent Document 4 requires a treatment to be heated to a high temperature of 900 ° C. or higher as a quenching treatment, resulting in poor energy efficiency during production, and deterioration of surface properties due to oxidation during heat treatment.
  • the present invention solves such problems of the prior art, and is suitable for a coiled tube that is a long ERW steel pipe, has little variation in mechanical properties (material) in the plate surface, is high in strength, and has excellent ductility.
  • An object is to provide a high-strength hot-rolled steel sheet and a method for producing the same.
  • the thickness of the hot rolled steel sheet is preferably 2 to 8 mm.
  • “high strength” here refers to a case where the tensile strength TS is 900 MPa or more.
  • Excellent ductility refers to the case where the elongation El is 16% or more.
  • “there is little variation in mechanical properties (material) in the plate surface” means that the variation in yield strength YS in the plate surface is 70 MPa or less.
  • the present inventors diligently studied various factors affecting the strength and ductility of a hot-rolled steel sheet.
  • the structure after hot rolling has a bainite phase as the main phase, and the martensite phase and residual austenite phase as the second phase in a total volume ratio of 4% or more. It was found that by using a dispersed structure, it was possible to ensure high strength of tensile strength TS: 900 MPa or more and excellent ductility of elongation El: 16% or more.
  • specimens for structure observation and tensile specimens (gauge length: 50 mm) specified in ASTM A370 are collected so that the tensile direction is perpendicular to the rolling direction. investigated.
  • the tensile test was performed in accordance with the provisions of ASTM A370.
  • the specimen for structure observation is polished and corroded with a nital liquid so that the cross section in the rolling direction of the obtained hot-rolled steel sheet becomes the observation surface, and the structure is examined using a scanning electron microscope (magnification: 2000 times). Observed and imaged. The obtained tissue photograph was subjected to image analysis to determine the tissue identification and the tissue fraction. The structural fraction of the retained austenite phase was measured using an X-ray diffraction method.
  • all the hot-rolled steel plates were the same in that they had a structure having a bainite phase as a main phase and a martensite phase and a retained austenite phase as a second phase.
  • FIG. 2 shows that El: 16% or more can be secured by setting the total amount of martensite phase and retained austenite phase to 4% or more.
  • the composition in addition to the above-mentioned composition, by mass%, Ti: 0.03% or less, Zr: 0.04% or less, Ta: 0.05% or less, B: 0.0010% or less Or it is set as the composition containing 2 or more types, The high intensity
  • the composition in addition to the above-mentioned composition, the composition further contains one or two kinds selected from Ca: 0.005% or less and REM: 0.005% or less by mass% A high-strength hot-rolled steel sheet for ERW steel pipes.
  • a high-strength hot-rolled steel sheet for electric-resistance-welded steel pipes which has a structure in which the average grain size of the bainite phase is 1 to 10 ⁇ m.
  • the composition in addition to the above-mentioned composition, by mass%, Ti: 0.03% or less, Zr: 0.04% or less, Ta: 0.05% or less, B: 0.0010% or less Or it is set as the composition containing 2 or more types, The manufacturing method of the high intensity
  • the composition in addition to the above composition, the composition further contains one or two kinds selected from Ca: 0.005% or less and REM: 0.005% or less by mass%. A method for producing a high-strength hot-rolled steel sheet for ERW steel pipes.
  • a high-strength hot-rolled steel sheet for ERW steel pipes having high tensile strength TS: 900 MPa or higher, elongation El: 16% or higher, and excellent ductility can be stably produced with less material variation. It can be manufactured and has a remarkable industrial effect.
  • the hot-rolled steel sheet according to the present invention has a small variation in the material in the plate surface, and for the production of long steel pipes with stable characteristics, for coil tubes that are long steel pipes used in deep oil wells and gas wells.
  • C 0.10 to 0.18%
  • C is an element that contributes to increasing the strength of the steel sheet.
  • the C content is 0.10%. It is necessary to do it above.
  • the content of C exceeds 0.18%, ductility is lowered and workability is lowered. Therefore, the C content is limited to the range of 0.10 to 0.18%.
  • Si 0.1-0.5%
  • Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution. In order to obtain such an effect, the Si content needs to be 0.1% or more. On the other hand, if the Si content exceeds 0.5%, the electric resistance weldability decreases. Therefore, the Si content is limited to the range of 0.1 to 0.5%.
  • the Si content is preferably 0.2% or more, and more preferably 0.3% or more.
  • Mn 0.8-2.0%
  • Mn is an element that contributes to an increase in strength through the improvement of hardenability and contributes effectively to the formation of a structure having a bainite phase as a main phase. Such an effect becomes remarkable when the content of Mn is 0.8% or more.
  • Mn content is limited to the range of 0.8 to 2.0%.
  • the Mn content is preferably 1.0 to 2.0%, more preferably 1.4 to 2.0%.
  • P 0.001 to 0.020%
  • P is an element that increases the strength of the steel sheet and contributes to the improvement of corrosion resistance. In order to obtain such an effect, 0.001% or more of P is contained in the present invention. On the other hand, when P is contained in a large amount exceeding 0.020%, it segregates at grain boundaries and the like, and ductility and toughness are lowered. Therefore, in the present invention, the P content is limited to the range of 0.001 to 0.020%. Preferably, the P content is 0.001 to 0.016%, more preferably 0.003 to 0.015%.
  • S 0.005% or less S is present in steel as sulfide inclusions such as MnS, which adversely affects ductility and toughness. Therefore, it is desirable to reduce S as much as possible. In the present invention, up to 0.005% can contain S. For this reason, the S content is limited to 0.005% or less. In addition, excessive reduction of S leads to an increase in refining cost, so the S content is preferably 0.0001% or more, and more preferably 0.0003% or more.
  • Al 0.001 to 0.1%
  • Al is an element that acts as a powerful deoxidizer. In order to obtain such an effect, the Al content needs to be 0.001% or more. On the other hand, if the Al content exceeds 0.1%, oxide inclusions increase, cleanliness decreases, and ductility and toughness decrease. Therefore, the Al content is limited to the range of 0.001 to 0.1%. Note that the Al content is preferably 0.010 to 0.1%, more preferably 0.015 to 0.08%, and still more preferably 0.020 to 0.07%.
  • Cr 0.4-1.0% Cr is an element that contributes to increasing the strength of the steel sheet, improves the corrosion resistance, and further promotes the two-phase separation of the structure. In order to obtain such an effect, the Cr content needs to be 0.4% or more. On the other hand, if the Cr content exceeds 1.0%, the electric resistance weldability decreases. Therefore, the Cr content is limited to the range of 0.4 to 1.0%. The Cr content is preferably 0.4 to 0.9%, more preferably 0.5 to 0.9%.
  • Cu 0.1-0.5%
  • Cu is an element that contributes to increasing the strength of the steel sheet and has an effect of improving corrosion resistance. In order to obtain such an effect, the Cu content needs to be 0.1% or more. On the other hand, when the Cu content exceeds 0.5%, the hot workability is lowered. Therefore, the Cu content is limited to the range of 0.1 to 0.5%.
  • the Cu content is preferably 0.2 to 0.5%, more preferably 0.2 to 0.4%.
  • Ni 0.01-0.4%
  • Ni is an element that contributes to an increase in steel sheet strength and toughness.
  • the Ni content needs to be 0.01% or more.
  • the Ni content is limited to the range of 0.01 to 0.4%.
  • the Ni content is preferably 0.05 to 0.3%, more preferably 0.10 to 0.3%.
  • Nb 0.01-0.07%
  • Nb is an element that contributes to an increase in steel sheet strength through precipitation strengthening.
  • Nb is an element that contributes to the expansion of the austenite non-recrystallization temperature range, facilitates rolling in the non-recrystallization temperature range, and increases the strength and toughness of the steel sheet through refinement of the steel sheet structure. Contribute.
  • the Nb content needs to be 0.01% or more.
  • the Nb content exceeds 0.07%, ductility and weld zone toughness are reduced. For this reason, the Nb content is limited to the range of 0.01 to 0.07%.
  • the Nb content is preferably 0.01 to 0.06%, more preferably 0.01 to 0.05%.
  • N 0.008% or less N is present in the steel as an impurity, but in particular, it lowers the toughness of the welded portion and causes slab cracking during casting. In the present invention, up to 0.008% can contain N. For these reasons, the N content is limited to 0.008% or less. The N content is preferably 0.006% or less.
  • Mo 0.5% or less and / or V: 0.1% or less Mo and V are elements that contribute to an increase in the strength of the steel sheet. In the present invention, either Mo or V, or both Mo and V are contained.
  • Mo is an element that contributes to increasing the strength of the steel sheet by improving the hardenability and making the structure mainly composed of a bainite phase and containing a predetermined amount of martensite phase and residual austenite phase.
  • Mo also has the effect
  • the Mo content exceeds 0.5%, a large amount of martensite phase or residual austenite phase is generated, and the toughness is lowered.
  • the Mo content is limited to a range of 0.5% or less.
  • the Mo content is preferably 0.05 to 0.4%.
  • V is an element that contributes to an increase in the strength of the steel sheet through improvement of hardenability and precipitation strengthening.
  • V like Mo, also has the effect of suppressing softening when subjected to heat treatment such as annealing after pipe forming. In order to acquire such an effect, when V is contained, it is preferable to contain V 0.003% or more.
  • V when V is contained in excess of 0.1%, the toughness of the base material and the welded portion is lowered. For this reason, when V is contained, the V content is limited to a range of 0.1% or less.
  • the V content is preferably 0.01 to 0.08%.
  • Moeq Mo + 0.36Cr + 0.77Mn + 0.07Ni (1) (Here, Mo, Cr, Mn, Ni: content (% by mass) of each element, elements not contained are 0) Moeq as defined in the above is contained so as to satisfy 1.4 to 2.2.
  • Moeq is a parameter that affects the formation of the second phase in the steel sheet structure, and needs to be adjusted to 1.4 or more in order to secure a predetermined amount of martensite phase.
  • Moeq exceeds 2.2, toughness is reduced. For this reason, Mo, Cr, Mn, and Ni were adjusted to satisfy Moeq of 1.4 to 2.2.
  • Mo and V are within the above ranges, and the following formula (2) 0.05 ⁇ Mo + V ⁇ 0.5 (2) (Here, Mo and V are the contents (mass%) of each element, and elements not contained are 0.) Is contained so as to satisfy.
  • (Mo + V) is less than 0.05 and the expression (2) is not satisfied, the effect of suppressing softening during heat treatment is reduced.
  • (Mo + V) exceeds 0.5 and the expression (2) is not satisfied, the toughness of the base material and the welded portion is lowered. For this reason, Mo and V were adjusted so as to satisfy the expression (2) within the above-described range.
  • (Mo + V) is preferably 0.05 to 0.4.
  • the above-mentioned components are basic components, but in addition to the basic composition, the selected elements are selected from Ti: 0.03% or less, Zr: 0.04% or less, Ta: 0.05% or less, B: 0.0010% or less.
  • the selected elements are selected from Ti: 0.03% or less, Zr: 0.04% or less, Ta: 0.05% or less, B: 0.0010% or less.
  • One or two or more selected from the above, and / or one or two selected from Ca: 0.005% or less and REM: 0.005% or less can be selected as necessary.
  • Ti, Zr, Ta, and B all increase in steel plate strength It is an element which contributes to 1 and can select and contain 1 type (s) or 2 or more types as needed. Ti, Zr, Ta, and B form fine nitrides, suppress the coarsening of crystal grains, contribute to the improvement of toughness through refinement of the structure, and increase in steel strength through precipitation strengthening. It is an element. Further, B contributes to an increase in steel sheet strength through improvement of hardenability.
  • Ca 0.005% or less
  • REM One or two selected from 0.005% or less
  • Both Ca and REM are elements that have the effect of controlling the form of sulfide inclusions.
  • one or two can be contained.
  • Ca when Ca is contained in a large amount exceeding 0.005% and REM: 0.005%, the amount of inclusions increases and ductility is reduced. For this reason, when it contains 1 type or 2 types chosen from Ca and REM, it is preferable to limit to Ca: 0.005% or less and REM: 0.005% or less, respectively.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • the hot-rolled steel sheet of the present invention has the above-described composition, and a bainite phase having a volume ratio of 80% or more is a main phase, and a martensite phase and a residual austenite phase are combined as a second phase, and the volume ratio is 4 to 20%. And has a structure in which the average crystal grain size of the bainite phase is 1 to 10 ⁇ m.
  • Main phase Bainitic phase with a volume fraction of 80% or more
  • the “main phase” herein refers to a phase occupying 80% or more with a volume fraction.
  • Second phase A total of 4 to 20% martensite phase and residual austenite phase in the volume ratio.
  • the main phase is the bainite phase
  • the second phase is a total martensite phase of 4% or more in volume ratio.
  • disperse the residual austenite phase Thereby, it can be set as the hot-rolled steel plate which has high strength of TS: 900MPa or more and desired ductility. If the total of the dispersed martensite phase and residual austenite phase is less than 4%, the desired high strength cannot be secured. On the other hand, when the sum of the martensite phase and the retained austenite phase exceeds 20% by volume, desired excellent ductility cannot be ensured.
  • the residual austenite phase includes 0%.
  • the residual austenite phase is an unstable phase and easily changes in quality by processing or heat treatment. For this reason, when the retained austenite phase increases, the variation in strength and ductility increases.
  • the residual austenite phase is preferably limited to 8% or less by volume, and more preferably limited to 4% or less.
  • Average crystal grain size of bainite phase 1-10 ⁇ m
  • the average crystal grain size of the bainite phase is 1 to 10 ⁇ m in order to ensure the desired ductility. If the average crystal grain size of the bainite phase is less than 1 ⁇ m, the weld heat-affected zone softens due to the coarsening of the structure, resulting in an extreme strength difference with the base material and causing buckling. On the other hand, when the average crystal grain size of the bainite phase exceeds 10 ⁇ m and becomes coarse, the yield strength decreases. Therefore, the average crystal grain size of the bainite phase is limited to the range of 1 to 10 ⁇ m.
  • the average crystal grain size of the bainite phase was obtained by imaging the structure revealed using the nital corrosion solution using a scanning electron microscope and calculating the equivalent circle diameter from the crystal grain boundary image by image analysis.
  • the calculated equivalent circle diameter is obtained by arithmetic averaging.
  • the hot-rolled steel sheet of the present invention has the above-described composition, and even if the cooling conditions after hot rolling are somewhat changed, the above-described structure can be stably secured at various locations within the plate surface. Variation in the material inside is suppressed.
  • the steel material having the above composition is subjected to a heating process and a hot rolling process to obtain a hot-rolled steel sheet.
  • the manufacturing method of the steel material need not be particularly limited. Any of the usual methods for producing steel materials can be applied.
  • the molten steel having the above composition is melted by a conventional melting method such as a converter, an electric furnace, a vacuum melting furnace, and a slab or the like by a conventional casting method such as a continuous casting method. It can be exemplified as a slab (steel material). It should be noted that there is no problem even if it is a steel piece by the ingot-bundling rolling method.
  • the obtained steel material is subjected to a heating process of heating to a heating temperature of 1150 to 1270 ° C.
  • the heating temperature is less than 1150 ° C, precipitates such as carbides precipitated during casting cannot be sufficiently dissolved, and desired high strength and desired ductility cannot be ensured.
  • the crystal grains become coarse and the toughness decreases.
  • oxidation and the like become intense, and the yield is significantly reduced. For this reason, the heating temperature of the steel material is limited to the range of 1150 to 1270 ° C.
  • the heated steel material is subjected to a hot rolling process to obtain a hot-rolled steel sheet having a predetermined size.
  • the rolling end temperature is in the range of 810 to 930 ° C
  • the hot rolling with the cumulative reduction in the temperature range of 930 ° C or less is 20 to 65%
  • the cooling is performed to a cooling stop temperature in a temperature range of 420 to 600 ° C. at an average cooling rate of s, and wound in a coil shape at a winding temperature in a temperature range of 400 to 600 ° C.
  • the above temperature is the temperature at the surface position of the steel material.
  • Hot rolling end temperature 810 ⁇ 930 °C
  • the hot rolling is rolling consisting of rough rolling and finish rolling.
  • the rolling conditions of the rough rolling are not particularly limited as long as the steel material can be a sheet bar having a predetermined size.
  • finish rolling temperature of finish rolling is less than 810 ° C, the deformation resistance becomes too large and the rolling efficiency is lowered.
  • finish temperature of finish rolling exceeds 930 ° C.
  • the austenite is not sufficiently reduced in the non-recrystallization temperature range, and the desired structure cannot be refined.
  • the rolling end temperature of hot rolling is limited to the range of 810 to 930 ° C. Note that the temperature variation in the sheet bar is corrected by using a sheet bar heater, a bar heater, etc., and the rolling end temperature is 50 ° C. or less in the temperature fluctuation range in the plate surface of the hot-rolled steel plate (in the plate surface).
  • the difference between the maximum temperature and the minimum temperature of rolling end temperature is adjusted to within 50 °C.
  • the uniformity of a material can be ensured with the whole steel plate, and a material dispersion
  • the use of a coil box that winds and stores the sheet bar once and stores it again, and that the sheet bar is heated in a heating furnace is permitted before finish rolling.
  • limiting the cooling water of a steel plate edge part is also one means.
  • Cumulative rolling reduction in the temperature range below 930 ° C during hot rolling 20-65%
  • dislocations are introduced and the structure can be refined.
  • the cumulative rolling reduction is less than 20%, the desired structure refinement cannot be achieved.
  • the cumulative rolling reduction exceeds 65%, Nb carbide precipitates during rolling and deformation resistance increases, and Nb carbide coarsens and precipitates finely during the bainite transformation that occurs near the cooling end temperature. Nb carbide is reduced and strength is reduced. Therefore, the cumulative rolling reduction in the temperature range of 930 ° C. or lower is limited to a range of 20 to 65%.
  • the cumulative rolling reduction is more preferably in the range of 30-60%.
  • Average cooling rate after hot rolling 10 ⁇ 70 °C / s
  • the average cooling rate is less than 10 ° C / s
  • precipitation of coarse polygonal ferrite and pearlite starts, so the desired structure is formed with the bainite phase as the main phase and the second phase as the martensite phase and residual austenite phase. become unable.
  • the average cooling rate exceeds 70 ° C./s, the amount of martensite phase generated increases, and it becomes impossible to secure a desired structure mainly composed of the bainite phase. It becomes difficult to secure the properties, and it becomes impossible to suppress material variations.
  • the average cooling rate after completion of hot rolling is limited to the range of 10 to 70 ° C./s.
  • the average cooling rate after the hot rolling is more preferably 20 to 70 ° C./s.
  • the average cooling rate is a value obtained by calculating an average cooling rate from the rolling end temperature to the cooling stop temperature based on the temperature at the surface position of the steel material.
  • Cooling stop temperature 420-600 °C
  • the cooling stop temperature is less than 420 ° C.
  • martensite is remarkably generated, and a structure having a desired bainite phase as a main phase cannot be realized.
  • the cooling stop temperature is higher than 600 ° C.
  • coarse polygonal ferrite is generated, and the desired high strength cannot be achieved.
  • the cooling stop temperature is limited to a temperature in the range of 420 to 600 ° C.
  • the cooling stop temperature is preferably 420 to 580 ° C.
  • the coil is wound in a coil shape at a coiling temperature of 400 to 600 ° C.
  • the coiling temperature is 80 ° C. or less in the temperature fluctuation range in the plate surface of the hot-rolled steel sheet (the difference between the maximum temperature and the minimum temperature of the coiling temperature in the plate surface of the hot-rolled steel plate is 80 ° C or less), and it is easy to ensure the uniformity of the material, and the variation of the material can be suppressed.
  • the hot-rolled steel sheet manufactured by the manufacturing method as described above is formed into a substantially cylindrical shape in the cold, and is then electro-welded to form an electric-welded steel pipe, or further, the ends of the electric-welded steel pipe are welded to each other. And are wound into a coil shape as a long ERW steel pipe to form a coil tube.
  • a coil tube such as for automobiles, piping, and machine structures
  • the molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (slab: 250 mm thick) by a continuous casting method to obtain a steel material.
  • the obtained steel material was heated to the heating temperature shown in Table 2, and then hot rolled steel sheet having the thickness shown in Table 2 was obtained under rough rolling and finish rolling conditions shown in Table 2.
  • finish rolling cooling was started, and cooling was performed at the average cooling rate shown in Table 2 to the cooling stop temperature shown in Table 2, and wound into a coil at the winding temperature shown in Table 2.
  • the sheet bar after rough rolling was heated using an edge heater.
  • the temperature in the plate surface after finishing rolling is measured over the entire length using a radiation thermometer installed in the line, and the difference between the maximum temperature and the minimum temperature and the variation in finishing rolling temperature are investigated. Table 2 Indicated. Further, the variation in the coiling temperature was measured in the same manner.
  • the tissue was revealed, and the tissue was observed and imaged with an optical microscope (magnification: 1000 times) or a scanning electron microscope (magnification: 2000 times).
  • the obtained tissue photograph was subjected to image analysis to calculate tissue identification and tissue fraction.
  • the average crystal grain size of the bainite phase was obtained by imaging the structure revealed using the nital corrosion solution using a scanning electron microscope and calculating the equivalent circle diameter from the crystal grain boundary image by image analysis.
  • the calculated equivalent circle diameter was obtained by arithmetic averaging.
  • the structural fraction of retained austenite was determined by X-ray diffraction using another sample.
  • the main phase is a bainite phase having a volume ratio of 80% or more, the total of the martensite phase and the residual austenite phase is 4% or more, and the average crystal grain size of the bainite phase is 10 ⁇ m or less. It has a desired structure, tensile strength TS: high strength of 900MPa or more, elongation El: high ductility of 16% or more, and less variation in yield strength YS in the plate surface ( ⁇ YS: 70MPa or less), a hot-rolled steel sheet with excellent material uniformity and less material variation.
  • the present invention is a hot-rolled steel sheet having a yield strength of YS: 550 to 850 MPa and a high toughness of vE- 20 : 20 J or more, and less variation in strength TS, ductility El, and toughness vE- 20 in the plate surface. It has become.
  • the desired structure cannot be obtained, the tensile strength TS: less than 900 MPa, the elongation El: less than 16%, or the yield strength YS in the plate surface
  • the variation is large ( ⁇ YS: more than 70 MPa), and the desired high strength, the desired high ductility, and the desired material uniformity cannot be combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

板面内の材質ばらつきが少なく、高強度でかつ延性に優れた、電縫鋼管用高強度熱延鋼板およびその製造方法を提供する。 質量%で、C:0.10~0.18%、Si:0.1~0.5%、Mn:0.8~2.0%、P:0.001~0.020%、S:0.005%以下、Al:0.001~0.1%、Cr:0.4~1.0%、Cu:0.1~0.5%、Ni:0.01~0.4%、Nb:0.01~0.07%、N:0.008%以下を含有し、さらにMo:0.5%以下および/またはV:0.1%以下を含み、Moeq=Mo+0.36Cr+0.77Mn+0.07Niで定義されるMoeqが1.4~2.2、かつMo、Vが0.05≦Mo+V≦0.5を満足するように含有する組成と、体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織とを有する電縫鋼管用高強度熱延鋼板。

Description

電縫鋼管用高強度熱延鋼板およびその製造方法
 本発明は、電縫鋼管用高強度熱延鋼板およびその製造方法に関する。本発明は、特に、長尺電縫鋼管であるコイルチューブ用として好適な、加工性に優れた電縫鋼管用高強度熱延鋼板およびその製造方法に関し、材質均一性に優れ材質ばらつきが少ない電縫鋼管用高強度熱延鋼板およびその製造方法に関する。
 天然ガス、石油等の化石燃料は、地中の主としてそれらを透過させない地層の隙間やその下部に存在している。このような化石燃料を取り出すためには、井戸を掘削する必要がある。しかし、最近では、化石燃料の存在箇所は、深層で、しかもその存在量も小規模となりつつあり、深い井戸を多数、掘削することが必要となっている。このようなことから、深い井戸内に掘削ツールを多数回、出し入れするために、長尺にして使用できる高強度鋼管を必要としている。鋼管を長尺にするため、従来では、長さ10~20m程度の鋼管をねじ等で接続しながら、井戸内に繰り出すという方法が用いられてきた。
 しかし、最近では、上記した用途には、連続した鋼管をコイル状にスプールに巻き取ったコイルチューブが用いられるようになっている。このコイルチューブを用いることにより、掘削ツールの井戸内への繰り出し能率が、従来に比べて飛躍的に向上することが知られている。このようなことから、コイルチューブ用として好適な、高強度熱延鋼板が要望されている。
 このような要望に対し、例えば特許文献1には、高張力電縫鋼管の製造方法が記載されている。特許文献1に記載された技術では、重量%で、C:0.09~0.18%、Si:0.25~0.45%、Mn:0.70~1.00%、Cu:0.20~0.40%、Ni:0.05~0.20%、Cr:0.50~0.80%、Mo:0.10~0.40%、S:0.0020%以下を含む組成の鋼を、圧延終了温度Ar3~950℃で熱間圧延し、400~600℃で巻取り、得られた帯鋼から電縫造管した後、750℃超950℃未満で熱処理を行い、高張力電縫鋼管を得るとしている。特許文献1に記載された技術では、熱処理後直ちに電縫鋼管を冷却途中でコイル状に巻取りことを特徴とし、これにより、耐腐食性および延性に優れた高張力電縫鋼管が得られるとしている。
 また、特許文献2には、重量%で、C:0.001%以上0.030%未満、Si:0.60%以下、Mn:1.00~3.00%、Nb:0.005~0.20%、B:0.0003~0.0050%、Al:0.100%以下を含む組成の鋼素材を、Ac3~1350℃の温度に加熱後、800℃以上のオーステナイト未再結晶温度域にて圧延を終了し、その後、さらに500℃以上800℃未満の温度域に再加熱して保持する析出処理を行う、ベイナイト鋼材の製造方法が記載されている。特許文献2に記載された技術では、工業的規模の生産で用いられる、いずれの冷却速度においてもベイナイト単相組織となり、厚み方向での材質ばらつきが極めて少ない厚鋼板が得られるとしている。
 また、特許文献3には、重量%で、C:0.03~0.15%、Si:0.01~1%、Mn:0.5~2%を含み、さらにCu:0.05~0.5%、Ni:0.05~0.5%、Cr:0.05~0.5%、Mo:0.05~0.5%、Nb:0.005~0.1%、V:0.005~0.1%、Ti:0.005~0.1%のうちから選ばれた1種または2種以上を含有する組成を有する鋼を、1000~1200℃に加熱し、熱間圧延を行う工程と、熱間圧延された鋼板をAr3~Ar3-80℃の温度域から、5℃/s以上の鋼板平均冷却速度で冷却し、500℃以下の温度域で冷却を停止し、その後冷間成形により鋼管となす工程を備え、金属組織が面積分率で2~15%の島状マルテンサイトを含有する耐座屈特性に優れた鋼管の製造方法が記載されている。特許文献3に記載された技術では、硬質な島状マルテンサイトと、フェライトまたはベイナイトの比較的軟質な組織からなる混合組織として、耐座屈特性を向上させるとしている。
 また、特許文献4には、質量%で、C:0.2~0.35%、Si:0.05~0.5%、Mn:0.1~1%、P:0.025%以下、S:0.01%以下、Cr:0.1~1.2%、Mo:0.1~1%、Al:0.005~0.1%、B:0.0001~0.01%、Nb:0.005~0.5%、N:0.005%以下、O:0.01%以下、Ni:0.1%以下、Ti:0~0.03%で、かつ0.00008/N%以下、V:0~0.5%、W:0~1%、Zr:0~0.1%、Ca:0~0.01%を含み、直径5μm以下のTiNの数が断面1mmあたり10個以下である、降伏強度が758MPa以上の耐硫化物応力割れ性に優れた鋼管が記載されている。特許文献4に記載された技術では、直径5μm以下のTiNの析出量が耐硫化物応力割れ性に大きく影響するとして、中炭素系の組成とし、TiNの析出量を調整し、造管後、焼入れ焼戻処理を施して、製造するとしている。
特開平8-3641号公報 特開平8-144019号公報 特開平11-343542号公報 特開2001-131698号公報
 しかしながら、特許文献1に記載された技術では、素材鋼板の強度が低く、鋼管での高強度を確保するために、750℃以上という高温での後熱処理を必要としている。そのため、エネルギー効率が悪く、また熱処理中の酸化により表面性状が低下するという問題がある。
 また、特許文献2に記載された技術では、C量を低く制限しており、得られる強度に限界があるという問題がある。また、特許文献3に記載された技術では、熱間圧延終了後、フェライト変態が進行するAr3点以下の温度まで、待機したのち冷却する必要があり、生産性が著しく低下するという問題がある。また、特許文献4に記載された技術では、焼入れ処理として、900℃以上の高温に加熱する処理を必要としており、製造時のエネルギー効率が悪く、また熱処理中の酸化により表面性状が低下することに加えて、使用中に表面の酸化物が剥離して、配管等の流れを阻害するという問題が発生する。
 本発明は、かかる従来技術の問題を解決し、長尺電縫鋼管であるコイルチューブ用として好適な、板面内の機械的特性(材質)ばらつきが少なく、高強度でかつ延性に優れた、高強度熱延鋼板およびその製造方法を提供することを目的とする。なお、コイルチューブ用としては、熱延鋼板の板厚は2~8mmとすることが好ましい。また、ここでいう「高強度」とは、引張強さTS:900MPa以上である場合をいう。また「延性に優れた」とは、伸びEl:16%以上である場合をいうものとする。また、「板面内の機械的特性(材質)ばらつきが少ない」とは、板面内の降伏強さYSのばらつきが70MPa以下である場合をいうものとする。
 本発明者らは、上記した目的を達成するために、熱延鋼板の強度と延性に及ぼす各種要因について、鋭意検討した。その結果、C:0.10%以上としたうえで、熱間圧延後の組織を、ベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を、合計で体積率で、4%以上分散させた組織とすることにより、引張強さTS:900MPa以上の高強度と伸びEl:16%以上の優れた延性を確保できることを見出した。さらに、このような組織構成および組織分率とすることにより、板面内(コイル)の長手方向および幅方向で(コイル全体で)材質ばらつきが少ない鋼板が得られることも知見した。またさらに、マルテンサイト相と残留オーステナイト相の合計が体積率で、4%以上となる組織を得るためには、次式
    Moeq=Mo+0.36Cr+0.77Mn+0.07Ni       ‥‥(1)
    (ここで、Mo、Cr、Mn、Ni:各元素の含有量(質量%))
で定義されるMoeqが1.4~2.2を満足する組成とする必要があることも新規に知見した。
 先ず、本発明の基礎となった実験結果について説明する。
 質量%で、0.07~0.20%C-0.27~0.48%Si-1.44~1.98%Mn-0.025~0.040%Al-0.28~1.01%Cr-0.02~0.25%Ni-0~0.48%Mo-0.02~0.05%Nb-0~0.07%V-残部Feからなる組成の鋼素材に、加熱温度:1170~1250℃に加熱したのち、未再結晶温度域での累積圧下率を33~60%とし、圧延終了温度:820~890℃とする熱間圧延を施し、圧延終了後、平均冷却速度:38~68℃/sで冷却停止温度:430~630℃まで冷却し、コイル状に巻取温度:410~610℃で巻き取り、板厚:3~6mmの熱延鋼板とした。
 得られた熱延鋼板から、組織観察用試験片と、引張方向が圧延方向と直角となるようにASTM A370に規定の引張試験片(ゲージ長さ:50mm)を採取し、組織観察と引張特性を調査した。なお、引張試験は、ASTM A370の規定に準拠して行った。
 また、得られた熱延鋼板の圧延方向断面が観察面となるように、組織観察用試験片を研磨し、ナイタール液で腐食し、走査型電子顕微鏡(倍率:2000倍)を用いて組織を観察し、撮像した。得られた組織写真について画像解析を用いて、組織の同定と組織分率を求めた。また、残留オーステナイト相の組織分率はX線回折法を用いて測定した。なお、いずれの熱延鋼板も、ベイナイト相を主相として、マルテンサイト相と残留オーステナイト相を第二相とする組織である点では同じであった。
 得られた結果を、マルテンサイト相と残留オーステナイト相の合計量(体積率)とMoeqの関係で図1に示す。図1から、Moeqは第二相の組織分率とよい関係を示し、マルテンサイト相と残留オーステナイト相の合計量を4%以上とするためには、Moeqを1.4以上とする必要があることがわかる。
 また、伸びElとマルテンサイト相と残留オーステナイト相の合計量との関係を図2に示す。図2から、マルテンサイト相と残留オーステナイト相の合計量を4%以上とすることによりEl:16%以上を確保できることがわかる。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次の通りである。
(1)質量%で、C:0.10~0.18%、Si:0.1~0.5%、Mn:0.8~2.0%、P:0.001~0.020%、S:0.005%以下、Al:0.001~0.1%、Cr:0.4~1.0%、Cu:0.1~0.5%、Ni:0.01~0.4%、Nb:0.01~0.07%、N:0.008%以下を含有し、さらにMo:0.5%以下および/またはV:0.1%以下を含み、次(1)式
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni     ‥‥(1)
(ここで、Mo、Cr、Mn、Ni:各元素の含有量(質量%)であり、含有しない元素は0とする。)
で定義されるMoeqが1.4~2.2を満足するように、かつMo、Vが次(2)式
0.05 ≦ Mo+V ≦ 0.5         ‥‥(2)
(ここで、Mo、V:各元素の含有量(質量%)であり、含有しない元素は0とする。)
を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織と、を有することを特徴とする、電縫鋼管用高強度熱延鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする電縫鋼管用高強度熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする電縫鋼管用高強度熱延鋼板。
(4)鋼素材に、加熱工程と、熱間圧延工程と、を施して熱延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.10~0.18%、Si:0.1~0.5%、Mn:0.8~2.0%、P:0.001~0.020%、S:0.005%以下、Al:0.001~0.1%、Cr:0.4~1.0%、Cu:0.1~0.5%、Ni:0.01~0.4%、Nb:0.01~0.07%、N:0.008%以下を含有し、さらにMo:0.5%以下および/またはV:0.1%以下を含み、次(1)式
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni       ‥‥(1)
(ここで、Mo、Cr、Mn、Ni:各元素の含有量(質量%)であり、含有しない元素は0とする。)
で定義されるMoeqが1.4~2.2を満足するように、かつMo、Vが次(2)式
0.05 ≦ Mo+V ≦ 0.5         ‥‥(2)
(ここで、Mo、V:各元素の含有量(質量%)であり、含有しない元素は0とする。)
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記加熱工程が、前記鋼素材を加熱温度:1150~1270℃に加熱する工程であり、前記熱間圧延工程を、圧延終了温度が810~930℃の範囲の温度で、930℃以下の温度域における累積圧下率が20~65%である熱間圧延を施したのち、10~70℃/sの平均冷却速度で420~600℃の温度域の冷却停止温度まで冷却し、400~600℃の温度域の巻取温度でコイル状に巻き取る工程とし、かつ、前記熱間圧延工程における前記圧延終了温度の板面内での温度変動幅を50℃以下とし、前記巻取温度の板面内での温度変動幅を80℃以下とすることを特徴とする、体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織を有する、電縫鋼管用高強度熱延鋼板の製造方法。
(5)(4)において、前記組成に加えてさらに、質量%で、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする電縫鋼管用高強度熱延鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする電縫鋼管用高強度熱延鋼板の製造方法。
 本発明によれば、引張強さTS:900MPa以上の高強度を有し、伸びEl:16%以上を示し延性に優れた電縫鋼管用高強度熱延鋼板を、材質ばらつきが少なく安定して製造でき、産業上格段の効果を奏する。また、本発明による熱延鋼板は、板面内の材質ばらつきが少なく、深度が深い油井やガス井で使用する長尺鋼管であるコイルチューブ用として、安定した特性を有する長尺鋼管の製造に好適であり、また本発明によれば、鋼管自体の寿命を飛躍的に向上させることが期待できるという効果もある。
第二相の組織分率とMoeqとの関係を示すグラフである。 第二相の組織分率と伸びとの関係を示すグラフである。
 まず、本発明熱延鋼板の組成限定理由について説明する。以下、とくに断らない限り質量%は単に%で記す。
 C:0.10~0.18%
 Cは、鋼板の強度増加に寄与する元素である。鋼板の強度を増加するとともに、さらに、組織を、ベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を含む組織とするために、本発明では、Cの含有量を0.10%以上とする必要がある。一方、Cの含有量が0.18%を超えると延性が低下し、加工性が低下する。このため、Cの含有量は0.10~0.18%の範囲に限定した。
 Si:0.1~0.5%
 Siは、脱酸剤として作用するとともに、固溶して強度増加に寄与する元素である。このような効果を得るためには、Siの含有量を0.1%以上とする必要がある。一方、Siの含有量が0.5%を超えると、電縫溶接性が低下する。このため、Siの含有量は0.1~0.5%の範囲に限定した。Siの含有量は、0.2%以上が好ましく、0.3%以上がより好ましい。
 Mn:0.8~2.0%
 Mnは、焼入れ性の向上を介して強度増加に寄与する元素であり、かつベイナイト相を主相とする組織の形成に有効に寄与する。このような効果は、Mnの含有量を0.8%以上とすることで顕著となる。一方、Mnを2.0%を超えて多量に含有すると、電縫溶接部の靭性が低下する。このため、Mnの含有量は0.8~2.0%の範囲に限定した。なお、好ましくはMnの含有量は1.0~2.0%であり、より好ましくは1.4~2.0%である。
 P:0.001~0.020%
 Pは、鋼板強度を増加させるとともに、耐食性の向上にも寄与する元素である。このような効果を得るために、本発明ではPを0.001%以上含有させる。一方、Pを0.020%を超えて多量に含有すると、粒界等に偏析し、延性、靭性を低下させる。このため、本発明では、Pの含有量は0.001~0.020%の範囲に限定した。なお、好ましくはPの含有量は0.001~0.016%であり、より好ましくは0.003~0.015%である。
 S:0.005%以下
 Sは、鋼中では主としてMnS等の硫化物系介在物として存在し、延性、靭性に悪影響を及ぼすため、できるだけ低減することが望ましい。本発明においては0.005%まではSの含有を許容できる。このため、Sの含有量は0.005%以下に限定した。なお、過剰なSの低減は、精錬コストの高騰を招くため、Sの含有量は0.0001%以上とすることが好ましく、0.0003%以上とすることがより好ましい。
 Al:0.001~0.1%
 Alは、強力な脱酸剤として作用する元素である。このような効果を得るためにはAlの含有量を0.001%以上とすることが必要となる。一方、Alの含有量が0.1%を超えると、酸化物系介在物が増加し清浄度が低下し、延性、靭性が低下する。このため、Alの含有量は0.001~0.1%の範囲に限定した。なお、Alの含有量は、好ましくは0.010~0.1%であり、より好ましくは0.015~0.08%であり、さらに好ましくは0.020~0.07%である。
 Cr:0.4~1.0%
 Crは、鋼板の強度増加に寄与するとともに、耐食性を向上させ、さらには組織の二相分離を促進する作用を有する元素である。このような効果を得るためにはCrの含有量を0.4%以上とする必要がある。一方、Crの含有量が1.0%を超えると、電縫溶接性が低下する。このため、Crの含有量は0.4~1.0%の範囲に限定した。Crの含有量は、好ましくは0.4~0.9%であり、より好ましくは0.5~0.9%である。
 Cu:0.1~0.5%
 Cuは、鋼板の強度増加に寄与するとともに、耐食性を向上させる作用を有する元素である。このような効果を得るためには、Cuの含有量を0.1%以上とする必要がある。一方、Cuの含有量が0.5%を超えると、熱間加工性を低下させる。このため、Cuの含有量は0.1~0.5%の範囲に限定した。Cuの含有量は、好ましくは0.2~0.5%であり、より好ましくは0.2~0.4%である。
 Ni:0.01~0.4%
 Niは、鋼板強度の増加と靭性の向上に寄与する元素であり、本発明ではNiの含有量を0.01%以上とする必要がある。一方、Niの含有量が0.4%を超えると、材料コストの高騰を招く。このため、Niの含有量は0.01~0.4%の範囲に限定した。なお、Niの含有量は、好ましくは0.05~0.3%であり、より好ましくは0.10~0.3%である。
 Nb:0.01~0.07%
 Nbは、析出強化を介して鋼板強度の増加に寄与する元素である。また、Nbは、オーステナイトの未再結晶温度域の拡大に寄与する元素であり、未再結晶温度域での圧延を容易にし、鋼板組織の微細化を介して鋼板強度の増加、靭性の向上に寄与する。このような効果を得るためには、Nbの含有量を0.01%以上とする必要がある。一方、Nbの含有量が0.07%を超えると、延性の低下、溶接部靭性の低下を招く。このようなことから、Nbの含有量は0.01~0.07%の範囲に限定した。なお、Nbの含有量は、好ましくは0.01~0.06%、さらに好ましくは0.01~0.05%である。
 N:0.008%以下
 Nは、不純物として鋼中に存在するが、とくに溶接部の靭性を低下させるとともに、鋳造時のスラブ割れを招くため、本発明ではできるだけ低減することが望ましい。本発明においては、0.008%まではNの含有を許容できる。このようなことから、Nの含有量は0.008%以下に限定した。なお、Nの含有量は、好ましくは0.006%以下である。
 Mo:0.5%以下および/またはV:0.1%以下
 Mo、Vは、いずれも鋼板の強度増加に寄与する元素である。本発明では、Mo、Vのいずれか、あるいはMoおよびVの両方を含有する。
 Moは、焼入れ性の向上を介して、組織をベイナイト相主体で、マルテンサイト相と残留オーステナイト相を所定量含む組織として、鋼板の強度増加に寄与する元素である。なお、Moは、造管後の焼鈍等の熱処理を施された場合には、軟化を抑制するという作用も有する。このような効果を得るためにMoを含有する場合には、Moを0.05%以上含有することが好ましい。一方、Moを0.5%を超えて含有すると、マルテンサイト相または残留オーステナイト相が多量に生成し、靭性が低下する。このようなことから、Moを含有する場合には、Moの含有量は0.5%以下の範囲に限定した。なお、Moの含有量は、好ましくは0.05~0.4%である。
 Vは、焼入れ性の向上、および析出強化を介して、鋼板の強度増加に寄与する元素である。なお、Vは、Moと同様に、造管後の焼鈍等の熱処理を施された場合には軟化を抑制するという作用も有する。このような効果を得るためにVを含有する場合には、Vを0.003%以上含有することが好ましい。一方、Vを0.1%を超えて含有すると、母材および溶接部の靭性が低下する。このようなことからVを含有する場合には、Vの含有量は0.1%以下の範囲に限定した。なお、Vの含有量は、好ましくは0.01~0.08%である。
 本発明では、上記した成分を上記した範囲内で、かつ次(1)式
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni       ‥‥(1)
(ここで、Mo、Cr、Mn、Ni:各元素の含有量(質量%)であり、含有しない元素は0とする。)
で定義されるMoeqが1.4~2.2を満足するように含有する。
 Moeqは、図1に示すように鋼板組織における第二相の形成に影響するパラメータであり、所定量のマルテンサイト相を確保するために、1.4以上に調整する必要がある。一方、Moeqが2.2を超えて大きくなると、靭性の低下を招く。このようなことから、Mo、Cr、Mn、NiをMoeqが1.4~2.2を満足するように調整することとした。
 またさらに、本発明では、Mo、Vを上記した範囲でかつ、次(2)式
0.05 ≦ Mo+V ≦ 0.5         ‥‥(2)
(ここで、Mo、V:各元素の含有量(質量%)であり、含有しない元素は0とする。)
を満足するように含有する。(Mo+V)が0.05未満となり(2)式を満足しない場合には、熱処理時の軟化を抑制する効果が小さくなる。また、(Mo+V)が0.5超えとなり(2)式を満足しない場合には、母材および溶接部の靭性が低下する。このため、Mo、Vは、上記した範囲内でかつ(2)式を満足するように調整することとした。なお、好ましくは(Mo+V):0.05~0.4である。
 上記した成分が基本の成分であるが、基本の組成に加えてさらに、選択元素として、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種、を必要に応じて選択して含有できる。
 Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上
 Ti、Zr、Ta、Bはいずれも、鋼板強度の増加に寄与する元素であり、必要に応じて1種または2種以上選択して含有できる。Ti、Zr、Ta、Bは、微細な窒化物を形成し、結晶粒の粗大化を抑制し、組織の微細化を介して靭性の向上、および析出強化を介して鋼板強度の増加に寄与する元素である。また、Bは、焼入れ性の向上を介して鋼板強度の増加に寄与する。このような効果を得るためにはTi:0.005%以上、Zr:0.01%以上、Ta:0.01%以上、B:0.0002%以上、それぞれ含有することが望ましい。一方、Ti:0.03%、Zr:0.04%、Ta:0.05%、B:0.0010%をそれぞれ超える含有は、粗大な析出物が増加し、靭性、延性の低下を招く。なお、B:0.0010%を超えて含有すると焼入性の向上が著しくなり、靭性、延性が低下する。このため、Ti、Zr、Ta、Bのうちから選ばれた1種または2種以上の元素を含有する場合には、それぞれ、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下に限定することが好ましい。
 Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種
 Ca、REMはいずれも、硫化物系介在物の形態を制御する作用を有する元素であり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、Ca:0.0005%以上、REM:0.0005%以上をそれぞれ含有することが望ましい。一方、Ca:0.005%、REM:0.005%をそれぞれ超えて多量に含有すると、介在物量が増加し、延性の低下を招く。このため、Ca、REMのうちから選ばれた1種または2種を含有する場合には、それぞれCa:0.005%以下、REM:0.005%以下に限定することが好ましい。
 上記した成分以外の残部は、Feおよび不可避的不純物からなる。
 つぎに、本発明熱延鋼板の組織限定理由について説明する。
 本発明熱延鋼板は、上記した組成を有し、体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織を有する。
 主相:体積率で80%以上のベイナイト相
 ここでいう「主相」とは、体積率で80%以上を占める相を指す。主相をベイナイト相とすることにより、高強度でかつ、伸びEl:16%以上の優れた延性を有する熱延鋼板とすることができる。主相がマルテンサイト相では所望の高強度を確保することはできるが、延性が不足する。また、ベイナイト相が体積率で80%未満では、所望の高強度を確保できないか、あるいは所望の高強度と高延性を兼備することができなくなる。このため、体積率で80%以上のベイナイト相を主相とした。
 第二相:合計で、体積率で4~20%のマルテンサイト相と残留オーステナイト相
 主相をベイナイト相としたうえで、第二相として、合計で、体積率で4%以上のマルテンサイト相と残留オーステナイト相を分散させる。これにより、TS:900MPa以上の高強度と所望の延性とを兼備した熱延鋼板とすることができる。分散するマルテンサイト相と残留オーステナイト相の合計が4%未満では、所望の高強度を確保できなくなる。一方、マルテンサイト相と残留オーステナイト相の合計が体積率で20%を超えて多くなると、所望の優れた延性を確保できなくなる。なお、残留オーステナイト相は0%である場合を含む。
 なお、強度および延性のばらつきを抑制するためには、残留オーステナイトよりマルテンサイト相を多く分散させることが好ましい。残留オーステナイト相は不安定な相で、加工や熱処理により容易に変質する。このため、残留オーステナイト相が多くなると、強度および延性のばらつきが増大する。なお、残留オーステナイト相は体積率で8%以下に限定することが好ましく、4%以下に限定することがより好ましい。
 ベイナイト相の平均結晶粒径:1~10μm
 本発明熱延鋼板では、所望の延性を確保するために、ベイナイト相の平均結晶粒径を1~10μmとする。ベイナイト相の平均結晶粒径が1μm未満では、溶接熱影響部で組織粗大化により軟化し、母材との極端な強度差が生じ座屈の原因となる。一方、ベイナイト相の平均結晶粒径が10μmを超えて粗大となると、降伏強さが低下する。このため、ベイナイト相の平均結晶粒径を1~10μmの範囲に限定した。なお、ベイナイト相の平均結晶粒径は、ナイタール腐食液を用いて現出させた組織を、走査型電子顕微鏡を用いて撮像し、画像解析による結晶粒界画像から円相当径を算出し、得られた円相当径を算術平均して求める。
 本発明熱延鋼板は、上記した組成とすることにより、多少、熱間圧延後の冷却条件が変化しても、上記した組織を板面内の各所で安定的に確保でき、鋼板の板面内の材質ばらつきが抑制される。
 つぎに、本発明熱延鋼板の好ましい製造方法について説明する。
 本発明では、上記した組成の鋼素材に、加熱工程と、熱間圧延工程と、を施して熱延鋼板とする。
 鋼素材の製造方法は、とくに限定する必要はない。常用の鋼素材の製造方法がいずれも適用できる。なお、好ましい鋼素材の製造方法としては、上記した組成の溶鋼を転炉、電気炉、真空溶解炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋳片(鋼素材)とすることが例示できる。なお、造塊-分塊圧延法で鋼片としてもなんら問題はない。
 得られた鋼素材にまず、加熱温度:1150~1270℃に加熱する加熱工程を施す。
 加熱温度が1150℃未満では、鋳造時に析出した炭化物等の析出物を十分に溶解することができず、所望の高強度、所望の延性を確保できなくなる。一方、1270℃を超える高温では、結晶粒が粗大化し、靭性が低下する。また、酸化等が激しくなり、歩留りの低下が著しくなる。このようなことから、鋼素材の加熱温度は1150~1270℃の範囲に限定する。
 加熱された鋼素材は、熱間圧延工程を施され、所定寸法の熱延鋼板とされる。
 熱間圧延工程は、圧延終了温度が810~930℃の範囲の温度で、930℃以下の温度域における累積圧下率が20~65%である熱間圧延を施したのち、10~70℃/sの平均冷却速度で420~600℃の温度域の冷却停止温度まで冷却し、400~600℃の温度域の巻取温度でコイル状に巻き取る工程とする。なお、上記した温度は、鋼材の表面位置での温度とする。
 熱間圧延の圧延終了温度:810~930℃
 熱間圧延は、粗圧延および仕上圧延からなる圧延とする。粗圧延の圧延条件は、鋼素材を所定寸法のシートバーとすることができればよく、とくに限定する必要がない。
 仕上圧延の圧延終了温度が、810℃未満では、変形抵抗が大きくなりすぎて圧延能率が低下する。一方、仕上圧延の圧延終了温度が、930℃を超えて高温となると、オーステナイトの未再結晶温度域での圧下が不足し、所望の組織の微細化が達成できない。このようなことから、熱間圧延の圧延終了温度は810~930℃の範囲に限定する。なお、シートバーヒーター、バーヒーター等を使用して、シートバー内の温度ばらつきを補正して、圧延終了温度が、熱延鋼板の板面内の温度変動幅で50℃以下(板面内の圧延終了温度の最高温度と最低温度との差が50℃以内)に調整する。これにより、材質の均一性を鋼板全体で確保することができ材質ばらつきを抑制できる。なお、シートバーを一旦巻き取って収納し再び圧延に供するコイルボックスの使用や、シートバーを加熱炉で加熱することは、仕上圧延前であれば許容される。なお、鋼板エッジ部の温度降下を抑制するために、鋼板端部の冷却水を制限することも一つの手段である。
 熱間圧延の930℃以下の温度域における累積圧下率:20~65%
 930℃以下の、オーステナイトの未再結晶温度域での圧延を施すことにより、転位が導入され、組織の微細化が図れる。しかし、累積圧下率が20%未満では、所望の組織の微細化が達成できない。一方、累積圧下率が65%を超えて多くなると、圧延中にNb炭化物が析出し変形抵抗が増大するとともに、Nb炭化物が粗大化し、冷却終了温度近傍で生じるベイナイト変態の際に微細に析出するNb炭化物が低減し、強度が低下する。このため、930℃以下の温度域における累積圧下率は20~65%の範囲に限定する。前記累積圧下率は30~60%の範囲がより好ましい。
 熱間圧延終了後の平均冷却速度:10~70℃/s
 熱間圧延終了後、直ちに冷却を開始する。平均冷却速度が10℃/s未満では、粗大なポリゴナルフェライトおよびパーライトの析出が開始するため、ベイナイト相を主相とし、第二相がマルテンサイト相と残留オーステナイト相からなる所望の組織を形成できなくなる。一方、70℃/sを超える平均冷却速度では、マルテンサイト相の生成量が多くなりベイナイト相を主相とする所望の組織を確保できなくなり、板面内の組織の均一性、ひいては材質の均一性を確保できにくくなり材質ばらつきを抑制できなくなる。このため、熱間圧延終了後の平均冷却速度は10~70℃/sの範囲内に限定する。なお、熱間圧延終了後の平均冷却速度は、より好ましくは20~70℃/sである。なお、平均冷却速度は、圧延終了温度から冷却停止温度までの平均の冷却速度を、鋼材の表面位置での温度をもとに計算して得られた値である。
 冷却停止温度:420~600℃
 冷却停止温度が420℃未満では、マルテンサイトの生成が著しくなり、所望のベイナイト相を主相とする組織を実現できなくなる。一方、冷却停止温度が600℃を超える高温では、粗大なポリゴナルフェライトが生成し、所望の高強度を達成できなくなる。このため、冷却停止温度は420~600℃の範囲の温度に限定する。なお、冷却停止温度は、好ましくは420~580℃である。
 冷却停止後、400~600℃の温度域の巻取温度でコイル状に巻き取る。上記した冷却条件であれば、巻取温度が、熱延鋼板の板面内の温度変動幅で80℃以下(熱延鋼板の板面内の巻取温度の最高温度と最低温度との差が80℃以内)とすることができ、材質の均一性を確保しやすくなり材質のばらつきを抑制できる。
 上記したような製造方法で製造された熱延鋼板は、冷間で略円筒状に成形されたのち、電縫溶接されて電縫鋼管とされ、あるいはさらに電縫鋼管の端部同士を溶接等で接合し、長尺電縫鋼管としてコイル状に巻き取られ、コイルチューブとすることが好ましい。なお、コイルチューブ以外の、自動車用、配管用、機械構造用などの用途に使用しても、なんら問題はない。
 以下、さらに本発明について、実施例に基づき説明する。
 表1に示す組成の溶鋼を、転炉で溶製し、連続鋳造法で鋳片(スラブ:肉厚250mm)とし、鋼素材とした。得られた鋼素材を、表2に示す加熱温度に加熱したのち、粗圧延と表2に示す仕上圧延条件で、表2に示す板厚の熱延鋼板とした。熱間圧延(仕上圧延)終了後、直ちに冷却を開始し、表2に示す平均冷却速度で、表2に示す冷却停止温度まで冷却し、表2に示す巻取温度でコイル状に巻き取った。なお、一部では、粗圧延後のシートバーには、エッジヒータを用いて、加熱を施した。仕上圧延終了後の板面内の温度を、ラインに設置した放射温度計を用い、全長に亘り測定し、最高温度と最低温度との差、仕上圧延終了温度のばらつきを調査し、表2に示した。また、巻取温度のばらつきについても同様に測定した。
 得られた熱延鋼板の圧延方向の先端より20mの位置でコイルエッジから1/8幅位置1/8W(測定位置1)、および圧延方向の尾端より20mの位置でコイル幅方向中央位置1/2W(測定位置2)の合計2箇所から、試験片を採取し、組織観察、引張試験、衝撃試験を実施した。試験方法は次の通りとした。
(1)組織観察
 得られた試験片から組織観察用試験片を採取し、圧延方向に垂直な断面(C断面)が観察面となるように、研磨し、ナイタール腐食液またはレペラ腐食液で腐食し、組織を現出させ、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(倍率:2000倍)で組織を観察し、撮像した。得られた組織写真について画像解析により、組織の同定および組織分率を算出した。なお、ベイナイト相の平均結晶粒径は、ナイタール腐食液を用いて現出させた組織を、走査型電子顕微鏡を用いて撮像し、画像解析による結晶粒界画像から円相当径を算出し、得られた円相当径を算術平均して求めた。なお、残留オーステナイトの組織分率は、別の試料を用いて、X線回折法により求めた。
(2)引張試験
 得られた試験片から、引張方向が圧延方向と直角方向となるように、引張試験片(ゲージ長さ:50mm)を採取し、ASTM A370の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS、伸びEl)を測定した。また、前記測定位置1のYSと前記測定位置2のYSとの差(ΔYS)から板面内の降伏強さYSのばらつきを評価した。
(3)衝撃試験
 得られた試験片から、長さ方向が圧延方向と直角方向となるようにVノッチ試験片を採取し、ASTM A370の規定に準拠して、シャルピー衝撃試験を実施し、試験温度:-20℃での吸収エネルギーvE-20(J)を求めた。なお、試験片は各3本とし、得られた3本の吸収エネルギーvE-20(J)の算術平均を求め、その値を当該鋼板の吸収エネルギーvE-20(J)とした。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、体積率で80%以上のベイナイト相を主相とし、マルテンサイト相と残留オーステナイト相の合計が4%以上となり、ベイナイト相の平均結晶粒径が10μm以下と微細組織となる所望の組織を有し、引張強さTS:900MPa以上の高強度と、伸びEl:16%以上の高延性とを有し、さらに板面内の降伏強さYSのばらつきが少なく(ΔYS:70MPa以下)、材質均一性に優れ材質ばらつきが少ない熱延鋼板となっている。さらに、本発明例は、YS:550~850MPaの降伏強さと、vE-20:20J以上の高靭性を備え、板面内の強度TS、延性El、靭性vE-20のばらつきも少ない熱延鋼板となっている。一方、本発明の範囲を外れる比較例は、所望の組織が得られず、引張強さTS:900MPa未満であるか、伸びEl:16%未満であるか、板面内の降伏強さYSのばらつきが大きいか(ΔYS:70MPa超)、して、所望の高強度と所望の高延性、所望の材質均一性とを兼ね備えることができていない。

Claims (6)

  1.  質量%で、
     C :0.10~0.18%、        Si:0.1~0.5%、
     Mn:0.8~2.0%、         P :0.001~0.020%、
     S :0.005%以下、         Al:0.001~0.1%、
     Cr:0.4~1.0%、         Cu:0.1~0.5%、
     Ni:0.01~0.4%、         Nb:0.01~0.07%、
     N :0.008%以下を含有し、
    さらにMo:0.5%以下および/またはV:0.1%以下を含み、下記(1)式で定義されるMoeqが1.4~2.2を満足するように、かつMo、Vが下記(2)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、
    体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織と、を有することを特徴とする、電縫鋼管用高強度熱延鋼板。
                     記
        Moeq=Mo+0.36Cr+0.77Mn+0.07Ni   ‥‥(1)
        0.05 ≦ Mo+V ≦ 0.5           ‥‥(2)
        ここで、上記(1)式および(2)式における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。
  2.  前記組成に加えてさらに、質量%で、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の電縫鋼管用高強度熱延鋼板。
  3.  前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1または2に記載の電縫鋼管用高強度熱延鋼板。
  4.  鋼素材に、加熱工程と、熱間圧延工程と、を施して熱延鋼板とするにあたり、
    前記鋼素材を、質量%で、
     C :0.10~0.18%、        Si:0.1~0.5%、
     Mn:0.8~2.0%、         P :0.001~0.020%、
     S :0.005%以下、         Al:0.001~0.1%、
     Cr:0.4~1.0%、         Cu:0.1~0.5%、
     Ni:0.01~0.4%、         Nb:0.01~0.07%、
     N :0.008%以下を含有し、
    さらにMo:0.5%以下および/またはV:0.1%以下を含み、下記(1)式で定義されるMoeqが1.4~2.2を満足するように、かつMo、Vが下記(2)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
    前記加熱工程が、前記鋼素材を加熱温度:1150~1270℃に加熱する工程であり、
    前記熱間圧延工程を、圧延終了温度が810~930℃の範囲の温度で、930℃以下の温度域における累積圧下率が20~65%である熱間圧延を施したのち、10~70℃/sの平均冷却速度で420~600℃の温度域の冷却停止温度まで冷却し、400~600℃の温度域の巻取温度でコイル状に巻き取る工程とし、かつ、前記熱間圧延工程における前記圧延終了温度の板面内での温度変動幅を50℃以下とし、前記巻取温度の板面内での温度変動幅を80℃以下とすることを特徴とする、
    体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織を有する、電縫鋼管用高強度熱延鋼板の製造方法。
                     記
        Moeq=Mo+0.36Cr+0.77Mn+0.07Ni   ‥‥(1)
        0.05 ≦ Mo+V ≦ 0.5           ‥‥(2)
        ここで、上記(1)式および(2)式における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。
  5.  前記組成に加えてさらに、質量%で、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4に記載の電縫鋼管用高強度熱延鋼板の製造方法。
  6.  前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項4または5に記載の電縫鋼管用高強度熱延鋼板の製造方法。
PCT/JP2017/002041 2016-01-27 2017-01-23 電縫鋼管用高強度熱延鋼板およびその製造方法 WO2017130875A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017526717A JP6237961B1 (ja) 2016-01-27 2017-01-23 電縫鋼管用高強度熱延鋼板およびその製造方法
KR1020187020980A KR20180095917A (ko) 2016-01-27 2017-01-23 전봉 강관용 고강도 열연 강판 및 그 제조 방법
MX2018009160A MX2018009160A (es) 2016-01-27 2017-01-23 Lamina de acero laminada en caliente de alta resistencia para tubo de acero soldado con resistencia electrica y metodo de fabricacion de la misma.
CN201780007932.0A CN108495945B (zh) 2016-01-27 2017-01-23 电阻焊钢管用高强度热轧钢板及其制造方法
EP17744105.2A EP3409803B1 (en) 2016-01-27 2017-01-23 High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor
CA3007073A CA3007073C (en) 2016-01-27 2017-01-23 High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor
US16/071,557 US11214847B2 (en) 2016-01-27 2017-01-23 High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-012891 2016-01-27
JP2016012891 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130875A1 true WO2017130875A1 (ja) 2017-08-03

Family

ID=59397841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002041 WO2017130875A1 (ja) 2016-01-27 2017-01-23 電縫鋼管用高強度熱延鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US11214847B2 (ja)
EP (1) EP3409803B1 (ja)
JP (1) JP6237961B1 (ja)
KR (1) KR20180095917A (ja)
CN (1) CN108495945B (ja)
CA (1) CA3007073C (ja)
MX (1) MX2018009160A (ja)
WO (1) WO2017130875A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146458A1 (ja) * 2018-01-29 2019-08-01 Jfeスチール株式会社 コイルドチュービング用熱延鋼板およびその製造方法
WO2020080554A1 (ja) * 2018-10-19 2020-04-23 日本製鉄株式会社 熱延鋼板
JP6690788B1 (ja) * 2019-03-29 2020-04-28 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
JP6690787B1 (ja) * 2019-03-29 2020-04-28 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
WO2020090478A1 (ja) * 2018-10-31 2020-05-07 日本製鉄株式会社 鋼材、及び、鋼材の製造方法
JP2020537716A (ja) * 2017-10-27 2020-12-24 バオシャン アイアン アンド スティール カンパニー リミテッド 低降伏比・超高強度コイルドチュービング用鋼及びその製造方法
WO2021100534A1 (ja) * 2019-11-20 2021-05-27 Jfeスチール株式会社 電縫鋼管用熱延鋼板およびその製造方法、電縫鋼管およびその製造方法、ラインパイプ、建築構造物

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6544497B1 (ja) * 2018-10-12 2019-07-17 日本製鉄株式会社 トーションビーム用電縫鋼管
KR102175575B1 (ko) * 2018-11-26 2020-11-09 주식회사 포스코 연신율이 우수한 고강도 열연강판 및 그 제조방법
CN110318008B (zh) * 2019-06-20 2022-01-14 江阴兴澄特种钢铁有限公司 一种大厚度抗层状撕裂屈服强度960MPa级高强钢板及其生产方法
KR102200225B1 (ko) * 2019-09-03 2021-01-07 주식회사 포스코 극저온 횡팽창이 우수한 압력용기용 강판 및 그 제조 방법
US20220373108A1 (en) * 2019-10-31 2022-11-24 Jfe Steel Corporation Electric resistance welded steel pipe, method for producing the same, line pipe, and building structure
WO2024170670A1 (de) * 2023-02-17 2024-08-22 Thyssenkrupp Steel Europe Ag Hochfester stahl mit verbesserter resistenz gegen wasserstoffversprödung
WO2024149909A1 (de) * 2023-02-17 2024-07-18 Thyssenkrupp Steel Europe Ag Hochfester stahl mit verbesserter resistenz gegen wasserstoffversprödung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150188A (ja) * 1997-08-05 1999-02-23 Sumitomo Metal Ind Ltd 高温sr特性に優れた高強度ライザー鋼管用鋼板
JP2009270142A (ja) * 2008-05-02 2009-11-19 Nippon Steel Corp 疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板とその製造方法
WO2013108861A1 (ja) * 2012-01-18 2013-07-25 Jfeスチール株式会社 コイルドチュービング用鋼帯およびその製造方法
WO2014041802A1 (ja) * 2012-09-13 2014-03-20 Jfeスチール株式会社 熱延鋼板およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491339B2 (ja) 1994-06-17 2004-01-26 住友金属工業株式会社 高張力電縫鋼管の製造方法
JP3520619B2 (ja) 1994-09-20 2004-04-19 Jfeスチール株式会社 材質ばらつきの少ないベイナイト鋼材およびその製造方法
ATE330040T1 (de) * 1997-07-28 2006-07-15 Exxonmobil Upstream Res Co Ultrahochfeste, schweissbare stähle mit ausgezeichneter ultra-tief-temperatur zähigkeit
JP3470632B2 (ja) 1998-03-30 2003-11-25 Jfeスチール株式会社 耐座屈特性に優れたラインパイプ用鋼管及びその製造方法
JP4367588B2 (ja) 1999-10-28 2009-11-18 住友金属工業株式会社 耐硫化物応力割れ性に優れた鋼管
JP5776398B2 (ja) * 2011-02-24 2015-09-09 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
WO2013011791A1 (ja) * 2011-07-20 2013-01-24 Jfeスチール株式会社 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
CN103857819B (zh) * 2011-10-04 2016-01-13 杰富意钢铁株式会社 高强度钢板及其制造方法
KR20150110749A (ko) * 2013-03-19 2015-10-02 제이에프이 스틸 가부시키가이샤 780 MPa 이상의 인장 강도를 갖는 고강도 열연 강판
KR101910444B1 (ko) 2014-02-27 2018-10-22 제이에프이 스틸 가부시키가이샤 고강도 열연 강판 및 그의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150188A (ja) * 1997-08-05 1999-02-23 Sumitomo Metal Ind Ltd 高温sr特性に優れた高強度ライザー鋼管用鋼板
JP2009270142A (ja) * 2008-05-02 2009-11-19 Nippon Steel Corp 疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板とその製造方法
WO2013108861A1 (ja) * 2012-01-18 2013-07-25 Jfeスチール株式会社 コイルドチュービング用鋼帯およびその製造方法
WO2014041802A1 (ja) * 2012-09-13 2014-03-20 Jfeスチール株式会社 熱延鋼板およびその製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537716A (ja) * 2017-10-27 2020-12-24 バオシャン アイアン アンド スティール カンパニー リミテッド 低降伏比・超高強度コイルドチュービング用鋼及びその製造方法
JP7134230B2 (ja) 2017-10-27 2022-09-09 バオシャン アイアン アンド スティール カンパニー リミテッド 低降伏比・超高強度コイルドチュービング用鋼及びその製造方法
US11396680B2 (en) 2017-10-27 2022-07-26 Baoshan Iron & Steel Co., Ltd. Steel for coiled tubing with low yield ratio and ultra-high strength and preparation method thereof
RU2744590C1 (ru) * 2017-10-27 2021-03-11 Баошань Айрон Энд Стил Ко., Лтд. Сталь для гибкой насосно-компрессорной трубы, характеризующаяся маленьким соотношением между пределом текучести при растяжении и пределом прочности при растяжении и сверхвысокой прочностью, и способ ее получения
KR20200099600A (ko) * 2018-01-29 2020-08-24 제이에프이 스틸 가부시키가이샤 코일드 튜빙용 열연 강판 및 그 제조 방법
RU2753344C1 (ru) * 2018-01-29 2021-08-13 ДжФЕ СТИЛ КОРПОРЕЙШН Горячекатаная листовая сталь для гибкой насосно-компрессорной трубы малого диаметра и способ ее изготовления
WO2019146458A1 (ja) * 2018-01-29 2019-08-01 Jfeスチール株式会社 コイルドチュービング用熱延鋼板およびその製造方法
KR102456737B1 (ko) * 2018-01-29 2022-10-19 제이에프이 스틸 가부시키가이샤 코일드 튜빙용 열연 강판 및 그 제조 방법
JP2019131835A (ja) * 2018-01-29 2019-08-08 Jfeスチール株式会社 コイルドチュービング用熱延鋼板およびその製造方法
EP3722449A4 (en) * 2018-01-29 2020-10-14 JFE Steel Corporation HOT ROLLED STEEL SHEET FOR SPIRAL TUBE AND PROCESS FOR THE MANUFACTURE OF THE SAME
US11401594B2 (en) 2018-01-29 2022-08-02 Jfe Steel Corporation Hot-rolled steel sheet for coiled tubing and method for manufacturing the same
JPWO2020080554A1 (ja) * 2018-10-19 2021-02-15 日本製鉄株式会社 熱延鋼板
WO2020080554A1 (ja) * 2018-10-19 2020-04-23 日本製鉄株式会社 熱延鋼板
EP3868908A4 (en) * 2018-10-19 2022-04-13 Nippon Steel Corporation HOT ROLLED STEEL SHEET
JP7088305B2 (ja) 2018-10-31 2022-06-21 日本製鉄株式会社 鋼材、及び、鋼材の製造方法
JPWO2020090478A1 (ja) * 2018-10-31 2021-09-02 日本製鉄株式会社 鋼材、及び、鋼材の製造方法
WO2020090478A1 (ja) * 2018-10-31 2020-05-07 日本製鉄株式会社 鋼材、及び、鋼材の製造方法
KR20210130219A (ko) * 2019-03-29 2021-10-29 제이에프이 스틸 가부시키가이샤 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝
KR20210132698A (ko) * 2019-03-29 2021-11-04 제이에프이 스틸 가부시키가이샤 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝
JP6690788B1 (ja) * 2019-03-29 2020-04-28 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
JP6690787B1 (ja) * 2019-03-29 2020-04-28 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
WO2020202334A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
WO2020202333A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 電縫鋼管およびその製造方法、並びに鋼管杭
KR102551615B1 (ko) 2019-03-29 2023-07-05 제이에프이 스틸 가부시키가이샤 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝
KR102555312B1 (ko) 2019-03-29 2023-07-12 제이에프이 스틸 가부시키가이샤 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝
JPWO2021100534A1 (ja) * 2019-11-20 2021-12-02 Jfeスチール株式会社 電縫鋼管用熱延鋼板およびその製造方法、電縫鋼管およびその製造方法、ラインパイプ、建築構造物
WO2021100534A1 (ja) * 2019-11-20 2021-05-27 Jfeスチール株式会社 電縫鋼管用熱延鋼板およびその製造方法、電縫鋼管およびその製造方法、ラインパイプ、建築構造物

Also Published As

Publication number Publication date
CA3007073C (en) 2020-08-25
CN108495945A (zh) 2018-09-04
MX2018009160A (es) 2018-11-29
JP6237961B1 (ja) 2017-11-29
US11214847B2 (en) 2022-01-04
US20190062862A1 (en) 2019-02-28
CA3007073A1 (en) 2017-08-03
CN108495945B (zh) 2020-07-17
EP3409803A1 (en) 2018-12-05
JPWO2017130875A1 (ja) 2018-02-01
KR20180095917A (ko) 2018-08-28
EP3409803B1 (en) 2020-09-16
EP3409803A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6237961B1 (ja) 電縫鋼管用高強度熱延鋼板およびその製造方法
JP5679114B2 (ja) 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法
JP5011773B2 (ja) 低温靭性に優れた低降伏比電縫鋼管の製造方法
JP5644982B1 (ja) 電縫溶接鋼管
JP5834534B2 (ja) 高一様伸び特性を備えた高強度低降伏比鋼、その製造方法、および高強度低降伏比溶接鋼管
CN110462080B (zh) 耐酸性管线管用高强度钢板及其制造方法和使用耐酸性管线管用高强度钢板的高强度钢管
JP5481976B2 (ja) 高強度溶接鋼管用高張力熱延鋼板およびその製造方法
KR20110110278A (ko) 내 hic 성이 우수한 후육 고장력 열연강판 및 그 제조 방법
WO2013099192A1 (ja) 高張力熱延鋼板及びその製造方法
WO2018235244A1 (ja) ラインパイプ用アズロール電縫鋼管及び熱延鋼板
JP5768603B2 (ja) 高一様伸び特性を備え、かつ溶接部低温靱性に優れた高強度溶接鋼管、およびその製造方法
WO2012060405A1 (ja) 高強度鋼板及びその製造方法
WO2016185741A1 (ja) 高強度電縫鋼管、高強度電縫鋼管用の鋼板の製造方法、及び高強度電縫鋼管の製造方法
JP6217234B2 (ja) 厚鋼板およびその製造方法
JP2006299414A (ja) 低温靭性に優れた低降伏比電縫鋼管の製造方法
JP6128042B2 (ja) 低降伏比高強度スパイラル鋼管杭およびその製造方法
JP5509654B2 (ja) 耐pwht特性および一様伸び特性に優れた高強度鋼板並びにその製造方法
JP5477089B2 (ja) 高強度高靭性鋼の製造方法
JP6197767B2 (ja) 低降伏比高強度スパイラル鋼管杭およびその製造方法
JP2017214618A (ja) 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法
JP2013112872A (ja) 耐歪時効性に優れた高靱性低降伏比高強度鋼板
KR102002717B1 (ko) 고강도 강 및 그 제조 방법, 그리고 강관 및 그 제조 방법
JP5842473B2 (ja) 高一様伸び特性を備えかつ溶接部靱性に優れた高強度溶接鋼管、およびその製造方法
JP6123734B2 (ja) 鋼管杭向け低降伏比高強度電縫鋼管およびその製造方法
CN115135786A (zh) 油井管用不锈钢无缝钢管及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017526717

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3007073

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20187020980

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020980

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009160

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744105

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744105

Country of ref document: EP

Effective date: 20180827