WO2017130875A1 - 電縫鋼管用高強度熱延鋼板およびその製造方法 - Google Patents
電縫鋼管用高強度熱延鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2017130875A1 WO2017130875A1 PCT/JP2017/002041 JP2017002041W WO2017130875A1 WO 2017130875 A1 WO2017130875 A1 WO 2017130875A1 JP 2017002041 W JP2017002041 W JP 2017002041W WO 2017130875 A1 WO2017130875 A1 WO 2017130875A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- phase
- temperature
- hot
- rolled steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-strength hot-rolled steel sheet for ERW steel pipe and a manufacturing method thereof.
- the present invention particularly relates to a high-strength hot-rolled steel sheet for electric resistance welded steel pipes excellent in workability, which is suitable for a coil tube which is a long length electric resistance welded steel pipe, and a manufacturing method thereof.
- the present invention relates to a high-strength hot-rolled steel sheet for a sewn steel pipe and a method for producing the same.
- Patent Document 1 describes a method for manufacturing a high-strength electric resistance welded steel pipe.
- C 0.09 to 0.18%, Si: 0.25 to 0.45%, Mn: 0.70 to 1.00%, Cu: 0.20 to 0.40%, Ni: 0.05 to 0.20%, Cr : 0.50 to 0.80%, Mo: 0.10 to 0.40%, S: 0.0020% or less of steel was hot rolled at a rolling end temperature of Ar 3 to 950 ° C and wound at 400 to 600 ° C.
- heat treatment is performed at over 750 ° C and below 950 ° C to obtain a high-strength ERW pipe.
- Patent Document 1 The technique described in Patent Document 1 is characterized in that the ERW steel pipe is wound into a coil shape during cooling immediately after the heat treatment, and as a result, a high-strength ERW steel pipe excellent in corrosion resistance and ductility can be obtained. Yes.
- Patent Document 2 by weight, C: 0.001% or more and less than 0.030%, Si: 0.60% or less, Mn: 1.00 to 3.00%, Nb: 0.005 to 0.20%, B: 0.0003 to 0.0050%, Al: After heating a steel material with a composition containing 0.100% or less to a temperature of Ac 3 to 1350 ° C, rolling is finished in the austenite non-recrystallization temperature range of 800 ° C or higher, and then a temperature of 500 ° C or higher and lower than 800 ° C. A method for producing a bainite steel material in which a precipitation treatment is performed by reheating and holding in the zone is described. According to the technique described in Patent Document 2, a thick steel plate is obtained which has a bainite single-phase structure at any cooling rate and has very little material variation in the thickness direction, which is used in production on an industrial scale.
- Patent Document 3 includes, by weight, C: 0.03-0.15%, Si: 0.01-1%, Mn: 0.5-2%, Cu: 0.05-0.5%, Ni: 0.05-0.5%, A composition containing one or more selected from Cr: 0.05 to 0.5%, Mo: 0.05 to 0.5%, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, Ti: 0.005 to 0.1%
- the steel is heated to 1000-1200 ° C and hot-rolled, and the hot-rolled steel plate is cooled at an average temperature of 5 ° C / s or more from a temperature range of Ar 3 to Ar 3 -80 ° C.
- Patent Document 4 in mass%, C: 0.2 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less, S: 0.01% or less, Cr: 0.1 to 1.2 %, Mo: 0.1-1%, Al: 0.005-0.1%, B: 0.0001-0.01%, Nb: 0.005-0.5%, N: 0.005% or less, O: 0.01% or less, Ni: 0.1% or less, Ti: Number of TiN with a diameter of 5 ⁇ m or less, including 0-0.03% and 0.00008 / N% or less, V: 0-0.5%, W: 0-1%, Zr: 0-0.1%, Ca: 0-0.01% Describes a steel pipe excellent in sulfide stress cracking resistance having a yield strength of 758 MPa or more, having 10 or less per 1 mm 2 in cross section.
- JP-A-8-3641 Japanese Patent Laid-Open No. 8-144019 Japanese Patent Laid-Open No. 11-343542 Japanese Patent Laid-Open No. 2001-131698
- the technique described in Patent Document 2 has a problem that the amount of C is limited to a low value and there is a limit to the strength to be obtained.
- the technique described in Patent Document 3 has a problem that after completion of hot rolling, it is necessary to cool to Ar 3 point or lower at which ferrite transformation proceeds, and then cool down, and productivity is significantly reduced.
- the technique described in Patent Document 4 requires a treatment to be heated to a high temperature of 900 ° C. or higher as a quenching treatment, resulting in poor energy efficiency during production, and deterioration of surface properties due to oxidation during heat treatment.
- the present invention solves such problems of the prior art, and is suitable for a coiled tube that is a long ERW steel pipe, has little variation in mechanical properties (material) in the plate surface, is high in strength, and has excellent ductility.
- An object is to provide a high-strength hot-rolled steel sheet and a method for producing the same.
- the thickness of the hot rolled steel sheet is preferably 2 to 8 mm.
- “high strength” here refers to a case where the tensile strength TS is 900 MPa or more.
- Excellent ductility refers to the case where the elongation El is 16% or more.
- “there is little variation in mechanical properties (material) in the plate surface” means that the variation in yield strength YS in the plate surface is 70 MPa or less.
- the present inventors diligently studied various factors affecting the strength and ductility of a hot-rolled steel sheet.
- the structure after hot rolling has a bainite phase as the main phase, and the martensite phase and residual austenite phase as the second phase in a total volume ratio of 4% or more. It was found that by using a dispersed structure, it was possible to ensure high strength of tensile strength TS: 900 MPa or more and excellent ductility of elongation El: 16% or more.
- specimens for structure observation and tensile specimens (gauge length: 50 mm) specified in ASTM A370 are collected so that the tensile direction is perpendicular to the rolling direction. investigated.
- the tensile test was performed in accordance with the provisions of ASTM A370.
- the specimen for structure observation is polished and corroded with a nital liquid so that the cross section in the rolling direction of the obtained hot-rolled steel sheet becomes the observation surface, and the structure is examined using a scanning electron microscope (magnification: 2000 times). Observed and imaged. The obtained tissue photograph was subjected to image analysis to determine the tissue identification and the tissue fraction. The structural fraction of the retained austenite phase was measured using an X-ray diffraction method.
- all the hot-rolled steel plates were the same in that they had a structure having a bainite phase as a main phase and a martensite phase and a retained austenite phase as a second phase.
- FIG. 2 shows that El: 16% or more can be secured by setting the total amount of martensite phase and retained austenite phase to 4% or more.
- the composition in addition to the above-mentioned composition, by mass%, Ti: 0.03% or less, Zr: 0.04% or less, Ta: 0.05% or less, B: 0.0010% or less Or it is set as the composition containing 2 or more types, The high intensity
- the composition in addition to the above-mentioned composition, the composition further contains one or two kinds selected from Ca: 0.005% or less and REM: 0.005% or less by mass% A high-strength hot-rolled steel sheet for ERW steel pipes.
- a high-strength hot-rolled steel sheet for electric-resistance-welded steel pipes which has a structure in which the average grain size of the bainite phase is 1 to 10 ⁇ m.
- the composition in addition to the above-mentioned composition, by mass%, Ti: 0.03% or less, Zr: 0.04% or less, Ta: 0.05% or less, B: 0.0010% or less Or it is set as the composition containing 2 or more types, The manufacturing method of the high intensity
- the composition in addition to the above composition, the composition further contains one or two kinds selected from Ca: 0.005% or less and REM: 0.005% or less by mass%. A method for producing a high-strength hot-rolled steel sheet for ERW steel pipes.
- a high-strength hot-rolled steel sheet for ERW steel pipes having high tensile strength TS: 900 MPa or higher, elongation El: 16% or higher, and excellent ductility can be stably produced with less material variation. It can be manufactured and has a remarkable industrial effect.
- the hot-rolled steel sheet according to the present invention has a small variation in the material in the plate surface, and for the production of long steel pipes with stable characteristics, for coil tubes that are long steel pipes used in deep oil wells and gas wells.
- C 0.10 to 0.18%
- C is an element that contributes to increasing the strength of the steel sheet.
- the C content is 0.10%. It is necessary to do it above.
- the content of C exceeds 0.18%, ductility is lowered and workability is lowered. Therefore, the C content is limited to the range of 0.10 to 0.18%.
- Si 0.1-0.5%
- Si is an element that acts as a deoxidizer and contributes to an increase in strength by solid solution. In order to obtain such an effect, the Si content needs to be 0.1% or more. On the other hand, if the Si content exceeds 0.5%, the electric resistance weldability decreases. Therefore, the Si content is limited to the range of 0.1 to 0.5%.
- the Si content is preferably 0.2% or more, and more preferably 0.3% or more.
- Mn 0.8-2.0%
- Mn is an element that contributes to an increase in strength through the improvement of hardenability and contributes effectively to the formation of a structure having a bainite phase as a main phase. Such an effect becomes remarkable when the content of Mn is 0.8% or more.
- Mn content is limited to the range of 0.8 to 2.0%.
- the Mn content is preferably 1.0 to 2.0%, more preferably 1.4 to 2.0%.
- P 0.001 to 0.020%
- P is an element that increases the strength of the steel sheet and contributes to the improvement of corrosion resistance. In order to obtain such an effect, 0.001% or more of P is contained in the present invention. On the other hand, when P is contained in a large amount exceeding 0.020%, it segregates at grain boundaries and the like, and ductility and toughness are lowered. Therefore, in the present invention, the P content is limited to the range of 0.001 to 0.020%. Preferably, the P content is 0.001 to 0.016%, more preferably 0.003 to 0.015%.
- S 0.005% or less S is present in steel as sulfide inclusions such as MnS, which adversely affects ductility and toughness. Therefore, it is desirable to reduce S as much as possible. In the present invention, up to 0.005% can contain S. For this reason, the S content is limited to 0.005% or less. In addition, excessive reduction of S leads to an increase in refining cost, so the S content is preferably 0.0001% or more, and more preferably 0.0003% or more.
- Al 0.001 to 0.1%
- Al is an element that acts as a powerful deoxidizer. In order to obtain such an effect, the Al content needs to be 0.001% or more. On the other hand, if the Al content exceeds 0.1%, oxide inclusions increase, cleanliness decreases, and ductility and toughness decrease. Therefore, the Al content is limited to the range of 0.001 to 0.1%. Note that the Al content is preferably 0.010 to 0.1%, more preferably 0.015 to 0.08%, and still more preferably 0.020 to 0.07%.
- Cr 0.4-1.0% Cr is an element that contributes to increasing the strength of the steel sheet, improves the corrosion resistance, and further promotes the two-phase separation of the structure. In order to obtain such an effect, the Cr content needs to be 0.4% or more. On the other hand, if the Cr content exceeds 1.0%, the electric resistance weldability decreases. Therefore, the Cr content is limited to the range of 0.4 to 1.0%. The Cr content is preferably 0.4 to 0.9%, more preferably 0.5 to 0.9%.
- Cu 0.1-0.5%
- Cu is an element that contributes to increasing the strength of the steel sheet and has an effect of improving corrosion resistance. In order to obtain such an effect, the Cu content needs to be 0.1% or more. On the other hand, when the Cu content exceeds 0.5%, the hot workability is lowered. Therefore, the Cu content is limited to the range of 0.1 to 0.5%.
- the Cu content is preferably 0.2 to 0.5%, more preferably 0.2 to 0.4%.
- Ni 0.01-0.4%
- Ni is an element that contributes to an increase in steel sheet strength and toughness.
- the Ni content needs to be 0.01% or more.
- the Ni content is limited to the range of 0.01 to 0.4%.
- the Ni content is preferably 0.05 to 0.3%, more preferably 0.10 to 0.3%.
- Nb 0.01-0.07%
- Nb is an element that contributes to an increase in steel sheet strength through precipitation strengthening.
- Nb is an element that contributes to the expansion of the austenite non-recrystallization temperature range, facilitates rolling in the non-recrystallization temperature range, and increases the strength and toughness of the steel sheet through refinement of the steel sheet structure. Contribute.
- the Nb content needs to be 0.01% or more.
- the Nb content exceeds 0.07%, ductility and weld zone toughness are reduced. For this reason, the Nb content is limited to the range of 0.01 to 0.07%.
- the Nb content is preferably 0.01 to 0.06%, more preferably 0.01 to 0.05%.
- N 0.008% or less N is present in the steel as an impurity, but in particular, it lowers the toughness of the welded portion and causes slab cracking during casting. In the present invention, up to 0.008% can contain N. For these reasons, the N content is limited to 0.008% or less. The N content is preferably 0.006% or less.
- Mo 0.5% or less and / or V: 0.1% or less Mo and V are elements that contribute to an increase in the strength of the steel sheet. In the present invention, either Mo or V, or both Mo and V are contained.
- Mo is an element that contributes to increasing the strength of the steel sheet by improving the hardenability and making the structure mainly composed of a bainite phase and containing a predetermined amount of martensite phase and residual austenite phase.
- Mo also has the effect
- the Mo content exceeds 0.5%, a large amount of martensite phase or residual austenite phase is generated, and the toughness is lowered.
- the Mo content is limited to a range of 0.5% or less.
- the Mo content is preferably 0.05 to 0.4%.
- V is an element that contributes to an increase in the strength of the steel sheet through improvement of hardenability and precipitation strengthening.
- V like Mo, also has the effect of suppressing softening when subjected to heat treatment such as annealing after pipe forming. In order to acquire such an effect, when V is contained, it is preferable to contain V 0.003% or more.
- V when V is contained in excess of 0.1%, the toughness of the base material and the welded portion is lowered. For this reason, when V is contained, the V content is limited to a range of 0.1% or less.
- the V content is preferably 0.01 to 0.08%.
- Moeq Mo + 0.36Cr + 0.77Mn + 0.07Ni (1) (Here, Mo, Cr, Mn, Ni: content (% by mass) of each element, elements not contained are 0) Moeq as defined in the above is contained so as to satisfy 1.4 to 2.2.
- Moeq is a parameter that affects the formation of the second phase in the steel sheet structure, and needs to be adjusted to 1.4 or more in order to secure a predetermined amount of martensite phase.
- Moeq exceeds 2.2, toughness is reduced. For this reason, Mo, Cr, Mn, and Ni were adjusted to satisfy Moeq of 1.4 to 2.2.
- Mo and V are within the above ranges, and the following formula (2) 0.05 ⁇ Mo + V ⁇ 0.5 (2) (Here, Mo and V are the contents (mass%) of each element, and elements not contained are 0.) Is contained so as to satisfy.
- (Mo + V) is less than 0.05 and the expression (2) is not satisfied, the effect of suppressing softening during heat treatment is reduced.
- (Mo + V) exceeds 0.5 and the expression (2) is not satisfied, the toughness of the base material and the welded portion is lowered. For this reason, Mo and V were adjusted so as to satisfy the expression (2) within the above-described range.
- (Mo + V) is preferably 0.05 to 0.4.
- the above-mentioned components are basic components, but in addition to the basic composition, the selected elements are selected from Ti: 0.03% or less, Zr: 0.04% or less, Ta: 0.05% or less, B: 0.0010% or less.
- the selected elements are selected from Ti: 0.03% or less, Zr: 0.04% or less, Ta: 0.05% or less, B: 0.0010% or less.
- One or two or more selected from the above, and / or one or two selected from Ca: 0.005% or less and REM: 0.005% or less can be selected as necessary.
- Ti, Zr, Ta, and B all increase in steel plate strength It is an element which contributes to 1 and can select and contain 1 type (s) or 2 or more types as needed. Ti, Zr, Ta, and B form fine nitrides, suppress the coarsening of crystal grains, contribute to the improvement of toughness through refinement of the structure, and increase in steel strength through precipitation strengthening. It is an element. Further, B contributes to an increase in steel sheet strength through improvement of hardenability.
- Ca 0.005% or less
- REM One or two selected from 0.005% or less
- Both Ca and REM are elements that have the effect of controlling the form of sulfide inclusions.
- one or two can be contained.
- Ca when Ca is contained in a large amount exceeding 0.005% and REM: 0.005%, the amount of inclusions increases and ductility is reduced. For this reason, when it contains 1 type or 2 types chosen from Ca and REM, it is preferable to limit to Ca: 0.005% or less and REM: 0.005% or less, respectively.
- the balance other than the above components is composed of Fe and inevitable impurities.
- the hot-rolled steel sheet of the present invention has the above-described composition, and a bainite phase having a volume ratio of 80% or more is a main phase, and a martensite phase and a residual austenite phase are combined as a second phase, and the volume ratio is 4 to 20%. And has a structure in which the average crystal grain size of the bainite phase is 1 to 10 ⁇ m.
- Main phase Bainitic phase with a volume fraction of 80% or more
- the “main phase” herein refers to a phase occupying 80% or more with a volume fraction.
- Second phase A total of 4 to 20% martensite phase and residual austenite phase in the volume ratio.
- the main phase is the bainite phase
- the second phase is a total martensite phase of 4% or more in volume ratio.
- disperse the residual austenite phase Thereby, it can be set as the hot-rolled steel plate which has high strength of TS: 900MPa or more and desired ductility. If the total of the dispersed martensite phase and residual austenite phase is less than 4%, the desired high strength cannot be secured. On the other hand, when the sum of the martensite phase and the retained austenite phase exceeds 20% by volume, desired excellent ductility cannot be ensured.
- the residual austenite phase includes 0%.
- the residual austenite phase is an unstable phase and easily changes in quality by processing or heat treatment. For this reason, when the retained austenite phase increases, the variation in strength and ductility increases.
- the residual austenite phase is preferably limited to 8% or less by volume, and more preferably limited to 4% or less.
- Average crystal grain size of bainite phase 1-10 ⁇ m
- the average crystal grain size of the bainite phase is 1 to 10 ⁇ m in order to ensure the desired ductility. If the average crystal grain size of the bainite phase is less than 1 ⁇ m, the weld heat-affected zone softens due to the coarsening of the structure, resulting in an extreme strength difference with the base material and causing buckling. On the other hand, when the average crystal grain size of the bainite phase exceeds 10 ⁇ m and becomes coarse, the yield strength decreases. Therefore, the average crystal grain size of the bainite phase is limited to the range of 1 to 10 ⁇ m.
- the average crystal grain size of the bainite phase was obtained by imaging the structure revealed using the nital corrosion solution using a scanning electron microscope and calculating the equivalent circle diameter from the crystal grain boundary image by image analysis.
- the calculated equivalent circle diameter is obtained by arithmetic averaging.
- the hot-rolled steel sheet of the present invention has the above-described composition, and even if the cooling conditions after hot rolling are somewhat changed, the above-described structure can be stably secured at various locations within the plate surface. Variation in the material inside is suppressed.
- the steel material having the above composition is subjected to a heating process and a hot rolling process to obtain a hot-rolled steel sheet.
- the manufacturing method of the steel material need not be particularly limited. Any of the usual methods for producing steel materials can be applied.
- the molten steel having the above composition is melted by a conventional melting method such as a converter, an electric furnace, a vacuum melting furnace, and a slab or the like by a conventional casting method such as a continuous casting method. It can be exemplified as a slab (steel material). It should be noted that there is no problem even if it is a steel piece by the ingot-bundling rolling method.
- the obtained steel material is subjected to a heating process of heating to a heating temperature of 1150 to 1270 ° C.
- the heating temperature is less than 1150 ° C, precipitates such as carbides precipitated during casting cannot be sufficiently dissolved, and desired high strength and desired ductility cannot be ensured.
- the crystal grains become coarse and the toughness decreases.
- oxidation and the like become intense, and the yield is significantly reduced. For this reason, the heating temperature of the steel material is limited to the range of 1150 to 1270 ° C.
- the heated steel material is subjected to a hot rolling process to obtain a hot-rolled steel sheet having a predetermined size.
- the rolling end temperature is in the range of 810 to 930 ° C
- the hot rolling with the cumulative reduction in the temperature range of 930 ° C or less is 20 to 65%
- the cooling is performed to a cooling stop temperature in a temperature range of 420 to 600 ° C. at an average cooling rate of s, and wound in a coil shape at a winding temperature in a temperature range of 400 to 600 ° C.
- the above temperature is the temperature at the surface position of the steel material.
- Hot rolling end temperature 810 ⁇ 930 °C
- the hot rolling is rolling consisting of rough rolling and finish rolling.
- the rolling conditions of the rough rolling are not particularly limited as long as the steel material can be a sheet bar having a predetermined size.
- finish rolling temperature of finish rolling is less than 810 ° C, the deformation resistance becomes too large and the rolling efficiency is lowered.
- finish temperature of finish rolling exceeds 930 ° C.
- the austenite is not sufficiently reduced in the non-recrystallization temperature range, and the desired structure cannot be refined.
- the rolling end temperature of hot rolling is limited to the range of 810 to 930 ° C. Note that the temperature variation in the sheet bar is corrected by using a sheet bar heater, a bar heater, etc., and the rolling end temperature is 50 ° C. or less in the temperature fluctuation range in the plate surface of the hot-rolled steel plate (in the plate surface).
- the difference between the maximum temperature and the minimum temperature of rolling end temperature is adjusted to within 50 °C.
- the uniformity of a material can be ensured with the whole steel plate, and a material dispersion
- the use of a coil box that winds and stores the sheet bar once and stores it again, and that the sheet bar is heated in a heating furnace is permitted before finish rolling.
- limiting the cooling water of a steel plate edge part is also one means.
- Cumulative rolling reduction in the temperature range below 930 ° C during hot rolling 20-65%
- dislocations are introduced and the structure can be refined.
- the cumulative rolling reduction is less than 20%, the desired structure refinement cannot be achieved.
- the cumulative rolling reduction exceeds 65%, Nb carbide precipitates during rolling and deformation resistance increases, and Nb carbide coarsens and precipitates finely during the bainite transformation that occurs near the cooling end temperature. Nb carbide is reduced and strength is reduced. Therefore, the cumulative rolling reduction in the temperature range of 930 ° C. or lower is limited to a range of 20 to 65%.
- the cumulative rolling reduction is more preferably in the range of 30-60%.
- Average cooling rate after hot rolling 10 ⁇ 70 °C / s
- the average cooling rate is less than 10 ° C / s
- precipitation of coarse polygonal ferrite and pearlite starts, so the desired structure is formed with the bainite phase as the main phase and the second phase as the martensite phase and residual austenite phase. become unable.
- the average cooling rate exceeds 70 ° C./s, the amount of martensite phase generated increases, and it becomes impossible to secure a desired structure mainly composed of the bainite phase. It becomes difficult to secure the properties, and it becomes impossible to suppress material variations.
- the average cooling rate after completion of hot rolling is limited to the range of 10 to 70 ° C./s.
- the average cooling rate after the hot rolling is more preferably 20 to 70 ° C./s.
- the average cooling rate is a value obtained by calculating an average cooling rate from the rolling end temperature to the cooling stop temperature based on the temperature at the surface position of the steel material.
- Cooling stop temperature 420-600 °C
- the cooling stop temperature is less than 420 ° C.
- martensite is remarkably generated, and a structure having a desired bainite phase as a main phase cannot be realized.
- the cooling stop temperature is higher than 600 ° C.
- coarse polygonal ferrite is generated, and the desired high strength cannot be achieved.
- the cooling stop temperature is limited to a temperature in the range of 420 to 600 ° C.
- the cooling stop temperature is preferably 420 to 580 ° C.
- the coil is wound in a coil shape at a coiling temperature of 400 to 600 ° C.
- the coiling temperature is 80 ° C. or less in the temperature fluctuation range in the plate surface of the hot-rolled steel sheet (the difference between the maximum temperature and the minimum temperature of the coiling temperature in the plate surface of the hot-rolled steel plate is 80 ° C or less), and it is easy to ensure the uniformity of the material, and the variation of the material can be suppressed.
- the hot-rolled steel sheet manufactured by the manufacturing method as described above is formed into a substantially cylindrical shape in the cold, and is then electro-welded to form an electric-welded steel pipe, or further, the ends of the electric-welded steel pipe are welded to each other. And are wound into a coil shape as a long ERW steel pipe to form a coil tube.
- a coil tube such as for automobiles, piping, and machine structures
- the molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (slab: 250 mm thick) by a continuous casting method to obtain a steel material.
- the obtained steel material was heated to the heating temperature shown in Table 2, and then hot rolled steel sheet having the thickness shown in Table 2 was obtained under rough rolling and finish rolling conditions shown in Table 2.
- finish rolling cooling was started, and cooling was performed at the average cooling rate shown in Table 2 to the cooling stop temperature shown in Table 2, and wound into a coil at the winding temperature shown in Table 2.
- the sheet bar after rough rolling was heated using an edge heater.
- the temperature in the plate surface after finishing rolling is measured over the entire length using a radiation thermometer installed in the line, and the difference between the maximum temperature and the minimum temperature and the variation in finishing rolling temperature are investigated. Table 2 Indicated. Further, the variation in the coiling temperature was measured in the same manner.
- the tissue was revealed, and the tissue was observed and imaged with an optical microscope (magnification: 1000 times) or a scanning electron microscope (magnification: 2000 times).
- the obtained tissue photograph was subjected to image analysis to calculate tissue identification and tissue fraction.
- the average crystal grain size of the bainite phase was obtained by imaging the structure revealed using the nital corrosion solution using a scanning electron microscope and calculating the equivalent circle diameter from the crystal grain boundary image by image analysis.
- the calculated equivalent circle diameter was obtained by arithmetic averaging.
- the structural fraction of retained austenite was determined by X-ray diffraction using another sample.
- the main phase is a bainite phase having a volume ratio of 80% or more, the total of the martensite phase and the residual austenite phase is 4% or more, and the average crystal grain size of the bainite phase is 10 ⁇ m or less. It has a desired structure, tensile strength TS: high strength of 900MPa or more, elongation El: high ductility of 16% or more, and less variation in yield strength YS in the plate surface ( ⁇ YS: 70MPa or less), a hot-rolled steel sheet with excellent material uniformity and less material variation.
- the present invention is a hot-rolled steel sheet having a yield strength of YS: 550 to 850 MPa and a high toughness of vE- 20 : 20 J or more, and less variation in strength TS, ductility El, and toughness vE- 20 in the plate surface. It has become.
- the desired structure cannot be obtained, the tensile strength TS: less than 900 MPa, the elongation El: less than 16%, or the yield strength YS in the plate surface
- the variation is large ( ⁇ YS: more than 70 MPa), and the desired high strength, the desired high ductility, and the desired material uniformity cannot be combined.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
(ここで、Mo、Cr、Mn、Ni:各元素の含有量(質量%))
で定義されるMoeqが1.4~2.2を満足する組成とする必要があることも新規に知見した。
(1)質量%で、C:0.10~0.18%、Si:0.1~0.5%、Mn:0.8~2.0%、P:0.001~0.020%、S:0.005%以下、Al:0.001~0.1%、Cr:0.4~1.0%、Cu:0.1~0.5%、Ni:0.01~0.4%、Nb:0.01~0.07%、N:0.008%以下を含有し、さらにMo:0.5%以下および/またはV:0.1%以下を含み、次(1)式
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
(ここで、Mo、Cr、Mn、Ni:各元素の含有量(質量%)であり、含有しない元素は0とする。)
で定義されるMoeqが1.4~2.2を満足するように、かつMo、Vが次(2)式
0.05 ≦ Mo+V ≦ 0.5 ‥‥(2)
(ここで、Mo、V:各元素の含有量(質量%)であり、含有しない元素は0とする。)
を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織と、を有することを特徴とする、電縫鋼管用高強度熱延鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする電縫鋼管用高強度熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする電縫鋼管用高強度熱延鋼板。
(4)鋼素材に、加熱工程と、熱間圧延工程と、を施して熱延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.10~0.18%、Si:0.1~0.5%、Mn:0.8~2.0%、P:0.001~0.020%、S:0.005%以下、Al:0.001~0.1%、Cr:0.4~1.0%、Cu:0.1~0.5%、Ni:0.01~0.4%、Nb:0.01~0.07%、N:0.008%以下を含有し、さらにMo:0.5%以下および/またはV:0.1%以下を含み、次(1)式
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
(ここで、Mo、Cr、Mn、Ni:各元素の含有量(質量%)であり、含有しない元素は0とする。)
で定義されるMoeqが1.4~2.2を満足するように、かつMo、Vが次(2)式
0.05 ≦ Mo+V ≦ 0.5 ‥‥(2)
(ここで、Mo、V:各元素の含有量(質量%)であり、含有しない元素は0とする。)
を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記加熱工程が、前記鋼素材を加熱温度:1150~1270℃に加熱する工程であり、前記熱間圧延工程を、圧延終了温度が810~930℃の範囲の温度で、930℃以下の温度域における累積圧下率が20~65%である熱間圧延を施したのち、10~70℃/sの平均冷却速度で420~600℃の温度域の冷却停止温度まで冷却し、400~600℃の温度域の巻取温度でコイル状に巻き取る工程とし、かつ、前記熱間圧延工程における前記圧延終了温度の板面内での温度変動幅を50℃以下とし、前記巻取温度の板面内での温度変動幅を80℃以下とすることを特徴とする、体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織を有する、電縫鋼管用高強度熱延鋼板の製造方法。
(5)(4)において、前記組成に加えてさらに、質量%で、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする電縫鋼管用高強度熱延鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする電縫鋼管用高強度熱延鋼板の製造方法。
Cは、鋼板の強度増加に寄与する元素である。鋼板の強度を増加するとともに、さらに、組織を、ベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を含む組織とするために、本発明では、Cの含有量を0.10%以上とする必要がある。一方、Cの含有量が0.18%を超えると延性が低下し、加工性が低下する。このため、Cの含有量は0.10~0.18%の範囲に限定した。
Siは、脱酸剤として作用するとともに、固溶して強度増加に寄与する元素である。このような効果を得るためには、Siの含有量を0.1%以上とする必要がある。一方、Siの含有量が0.5%を超えると、電縫溶接性が低下する。このため、Siの含有量は0.1~0.5%の範囲に限定した。Siの含有量は、0.2%以上が好ましく、0.3%以上がより好ましい。
Mnは、焼入れ性の向上を介して強度増加に寄与する元素であり、かつベイナイト相を主相とする組織の形成に有効に寄与する。このような効果は、Mnの含有量を0.8%以上とすることで顕著となる。一方、Mnを2.0%を超えて多量に含有すると、電縫溶接部の靭性が低下する。このため、Mnの含有量は0.8~2.0%の範囲に限定した。なお、好ましくはMnの含有量は1.0~2.0%であり、より好ましくは1.4~2.0%である。
Pは、鋼板強度を増加させるとともに、耐食性の向上にも寄与する元素である。このような効果を得るために、本発明ではPを0.001%以上含有させる。一方、Pを0.020%を超えて多量に含有すると、粒界等に偏析し、延性、靭性を低下させる。このため、本発明では、Pの含有量は0.001~0.020%の範囲に限定した。なお、好ましくはPの含有量は0.001~0.016%であり、より好ましくは0.003~0.015%である。
Sは、鋼中では主としてMnS等の硫化物系介在物として存在し、延性、靭性に悪影響を及ぼすため、できるだけ低減することが望ましい。本発明においては0.005%まではSの含有を許容できる。このため、Sの含有量は0.005%以下に限定した。なお、過剰なSの低減は、精錬コストの高騰を招くため、Sの含有量は0.0001%以上とすることが好ましく、0.0003%以上とすることがより好ましい。
Alは、強力な脱酸剤として作用する元素である。このような効果を得るためにはAlの含有量を0.001%以上とすることが必要となる。一方、Alの含有量が0.1%を超えると、酸化物系介在物が増加し清浄度が低下し、延性、靭性が低下する。このため、Alの含有量は0.001~0.1%の範囲に限定した。なお、Alの含有量は、好ましくは0.010~0.1%であり、より好ましくは0.015~0.08%であり、さらに好ましくは0.020~0.07%である。
Crは、鋼板の強度増加に寄与するとともに、耐食性を向上させ、さらには組織の二相分離を促進する作用を有する元素である。このような効果を得るためにはCrの含有量を0.4%以上とする必要がある。一方、Crの含有量が1.0%を超えると、電縫溶接性が低下する。このため、Crの含有量は0.4~1.0%の範囲に限定した。Crの含有量は、好ましくは0.4~0.9%であり、より好ましくは0.5~0.9%である。
Cuは、鋼板の強度増加に寄与するとともに、耐食性を向上させる作用を有する元素である。このような効果を得るためには、Cuの含有量を0.1%以上とする必要がある。一方、Cuの含有量が0.5%を超えると、熱間加工性を低下させる。このため、Cuの含有量は0.1~0.5%の範囲に限定した。Cuの含有量は、好ましくは0.2~0.5%であり、より好ましくは0.2~0.4%である。
Niは、鋼板強度の増加と靭性の向上に寄与する元素であり、本発明ではNiの含有量を0.01%以上とする必要がある。一方、Niの含有量が0.4%を超えると、材料コストの高騰を招く。このため、Niの含有量は0.01~0.4%の範囲に限定した。なお、Niの含有量は、好ましくは0.05~0.3%であり、より好ましくは0.10~0.3%である。
Nbは、析出強化を介して鋼板強度の増加に寄与する元素である。また、Nbは、オーステナイトの未再結晶温度域の拡大に寄与する元素であり、未再結晶温度域での圧延を容易にし、鋼板組織の微細化を介して鋼板強度の増加、靭性の向上に寄与する。このような効果を得るためには、Nbの含有量を0.01%以上とする必要がある。一方、Nbの含有量が0.07%を超えると、延性の低下、溶接部靭性の低下を招く。このようなことから、Nbの含有量は0.01~0.07%の範囲に限定した。なお、Nbの含有量は、好ましくは0.01~0.06%、さらに好ましくは0.01~0.05%である。
Nは、不純物として鋼中に存在するが、とくに溶接部の靭性を低下させるとともに、鋳造時のスラブ割れを招くため、本発明ではできるだけ低減することが望ましい。本発明においては、0.008%まではNの含有を許容できる。このようなことから、Nの含有量は0.008%以下に限定した。なお、Nの含有量は、好ましくは0.006%以下である。
Mo、Vは、いずれも鋼板の強度増加に寄与する元素である。本発明では、Mo、Vのいずれか、あるいはMoおよびVの両方を含有する。
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
(ここで、Mo、Cr、Mn、Ni:各元素の含有量(質量%)であり、含有しない元素は0とする。)
で定義されるMoeqが1.4~2.2を満足するように含有する。
0.05 ≦ Mo+V ≦ 0.5 ‥‥(2)
(ここで、Mo、V:各元素の含有量(質量%)であり、含有しない元素は0とする。)
を満足するように含有する。(Mo+V)が0.05未満となり(2)式を満足しない場合には、熱処理時の軟化を抑制する効果が小さくなる。また、(Mo+V)が0.5超えとなり(2)式を満足しない場合には、母材および溶接部の靭性が低下する。このため、Mo、Vは、上記した範囲内でかつ(2)式を満足するように調整することとした。なお、好ましくは(Mo+V):0.05~0.4である。
Ti、Zr、Ta、Bはいずれも、鋼板強度の増加に寄与する元素であり、必要に応じて1種または2種以上選択して含有できる。Ti、Zr、Ta、Bは、微細な窒化物を形成し、結晶粒の粗大化を抑制し、組織の微細化を介して靭性の向上、および析出強化を介して鋼板強度の増加に寄与する元素である。また、Bは、焼入れ性の向上を介して鋼板強度の増加に寄与する。このような効果を得るためにはTi:0.005%以上、Zr:0.01%以上、Ta:0.01%以上、B:0.0002%以上、それぞれ含有することが望ましい。一方、Ti:0.03%、Zr:0.04%、Ta:0.05%、B:0.0010%をそれぞれ超える含有は、粗大な析出物が増加し、靭性、延性の低下を招く。なお、B:0.0010%を超えて含有すると焼入性の向上が著しくなり、靭性、延性が低下する。このため、Ti、Zr、Ta、Bのうちから選ばれた1種または2種以上の元素を含有する場合には、それぞれ、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下に限定することが好ましい。
Ca、REMはいずれも、硫化物系介在物の形態を制御する作用を有する元素であり、必要に応じて選択して1種または2種を含有できる。このような効果を得るためには、Ca:0.0005%以上、REM:0.0005%以上をそれぞれ含有することが望ましい。一方、Ca:0.005%、REM:0.005%をそれぞれ超えて多量に含有すると、介在物量が増加し、延性の低下を招く。このため、Ca、REMのうちから選ばれた1種または2種を含有する場合には、それぞれCa:0.005%以下、REM:0.005%以下に限定することが好ましい。
ここでいう「主相」とは、体積率で80%以上を占める相を指す。主相をベイナイト相とすることにより、高強度でかつ、伸びEl:16%以上の優れた延性を有する熱延鋼板とすることができる。主相がマルテンサイト相では所望の高強度を確保することはできるが、延性が不足する。また、ベイナイト相が体積率で80%未満では、所望の高強度を確保できないか、あるいは所望の高強度と高延性を兼備することができなくなる。このため、体積率で80%以上のベイナイト相を主相とした。
主相をベイナイト相としたうえで、第二相として、合計で、体積率で4%以上のマルテンサイト相と残留オーステナイト相を分散させる。これにより、TS:900MPa以上の高強度と所望の延性とを兼備した熱延鋼板とすることができる。分散するマルテンサイト相と残留オーステナイト相の合計が4%未満では、所望の高強度を確保できなくなる。一方、マルテンサイト相と残留オーステナイト相の合計が体積率で20%を超えて多くなると、所望の優れた延性を確保できなくなる。なお、残留オーステナイト相は0%である場合を含む。
本発明熱延鋼板では、所望の延性を確保するために、ベイナイト相の平均結晶粒径を1~10μmとする。ベイナイト相の平均結晶粒径が1μm未満では、溶接熱影響部で組織粗大化により軟化し、母材との極端な強度差が生じ座屈の原因となる。一方、ベイナイト相の平均結晶粒径が10μmを超えて粗大となると、降伏強さが低下する。このため、ベイナイト相の平均結晶粒径を1~10μmの範囲に限定した。なお、ベイナイト相の平均結晶粒径は、ナイタール腐食液を用いて現出させた組織を、走査型電子顕微鏡を用いて撮像し、画像解析による結晶粒界画像から円相当径を算出し、得られた円相当径を算術平均して求める。
熱間圧延は、粗圧延および仕上圧延からなる圧延とする。粗圧延の圧延条件は、鋼素材を所定寸法のシートバーとすることができればよく、とくに限定する必要がない。
930℃以下の、オーステナイトの未再結晶温度域での圧延を施すことにより、転位が導入され、組織の微細化が図れる。しかし、累積圧下率が20%未満では、所望の組織の微細化が達成できない。一方、累積圧下率が65%を超えて多くなると、圧延中にNb炭化物が析出し変形抵抗が増大するとともに、Nb炭化物が粗大化し、冷却終了温度近傍で生じるベイナイト変態の際に微細に析出するNb炭化物が低減し、強度が低下する。このため、930℃以下の温度域における累積圧下率は20~65%の範囲に限定する。前記累積圧下率は30~60%の範囲がより好ましい。
熱間圧延終了後、直ちに冷却を開始する。平均冷却速度が10℃/s未満では、粗大なポリゴナルフェライトおよびパーライトの析出が開始するため、ベイナイト相を主相とし、第二相がマルテンサイト相と残留オーステナイト相からなる所望の組織を形成できなくなる。一方、70℃/sを超える平均冷却速度では、マルテンサイト相の生成量が多くなりベイナイト相を主相とする所望の組織を確保できなくなり、板面内の組織の均一性、ひいては材質の均一性を確保できにくくなり材質ばらつきを抑制できなくなる。このため、熱間圧延終了後の平均冷却速度は10~70℃/sの範囲内に限定する。なお、熱間圧延終了後の平均冷却速度は、より好ましくは20~70℃/sである。なお、平均冷却速度は、圧延終了温度から冷却停止温度までの平均の冷却速度を、鋼材の表面位置での温度をもとに計算して得られた値である。
冷却停止温度が420℃未満では、マルテンサイトの生成が著しくなり、所望のベイナイト相を主相とする組織を実現できなくなる。一方、冷却停止温度が600℃を超える高温では、粗大なポリゴナルフェライトが生成し、所望の高強度を達成できなくなる。このため、冷却停止温度は420~600℃の範囲の温度に限定する。なお、冷却停止温度は、好ましくは420~580℃である。
(1)組織観察
得られた試験片から組織観察用試験片を採取し、圧延方向に垂直な断面(C断面)が観察面となるように、研磨し、ナイタール腐食液またはレペラ腐食液で腐食し、組織を現出させ、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(倍率:2000倍)で組織を観察し、撮像した。得られた組織写真について画像解析により、組織の同定および組織分率を算出した。なお、ベイナイト相の平均結晶粒径は、ナイタール腐食液を用いて現出させた組織を、走査型電子顕微鏡を用いて撮像し、画像解析による結晶粒界画像から円相当径を算出し、得られた円相当径を算術平均して求めた。なお、残留オーステナイトの組織分率は、別の試料を用いて、X線回折法により求めた。
(2)引張試験
得られた試験片から、引張方向が圧延方向と直角方向となるように、引張試験片(ゲージ長さ:50mm)を採取し、ASTM A370の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS、伸びEl)を測定した。また、前記測定位置1のYSと前記測定位置2のYSとの差(ΔYS)から板面内の降伏強さYSのばらつきを評価した。
(3)衝撃試験
得られた試験片から、長さ方向が圧延方向と直角方向となるようにVノッチ試験片を採取し、ASTM A370の規定に準拠して、シャルピー衝撃試験を実施し、試験温度:-20℃での吸収エネルギーvE-20(J)を求めた。なお、試験片は各3本とし、得られた3本の吸収エネルギーvE-20(J)の算術平均を求め、その値を当該鋼板の吸収エネルギーvE-20(J)とした。
Claims (6)
- 質量%で、
C :0.10~0.18%、 Si:0.1~0.5%、
Mn:0.8~2.0%、 P :0.001~0.020%、
S :0.005%以下、 Al:0.001~0.1%、
Cr:0.4~1.0%、 Cu:0.1~0.5%、
Ni:0.01~0.4%、 Nb:0.01~0.07%、
N :0.008%以下を含有し、
さらにMo:0.5%以下および/またはV:0.1%以下を含み、下記(1)式で定義されるMoeqが1.4~2.2を満足するように、かつMo、Vが下記(2)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成と、
体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織と、を有することを特徴とする、電縫鋼管用高強度熱延鋼板。
記
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
0.05 ≦ Mo+V ≦ 0.5 ‥‥(2)
ここで、上記(1)式および(2)式における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。 - 前記組成に加えてさらに、質量%で、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1に記載の電縫鋼管用高強度熱延鋼板。
- 前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項1または2に記載の電縫鋼管用高強度熱延鋼板。
- 鋼素材に、加熱工程と、熱間圧延工程と、を施して熱延鋼板とするにあたり、
前記鋼素材を、質量%で、
C :0.10~0.18%、 Si:0.1~0.5%、
Mn:0.8~2.0%、 P :0.001~0.020%、
S :0.005%以下、 Al:0.001~0.1%、
Cr:0.4~1.0%、 Cu:0.1~0.5%、
Ni:0.01~0.4%、 Nb:0.01~0.07%、
N :0.008%以下を含有し、
さらにMo:0.5%以下および/またはV:0.1%以下を含み、下記(1)式で定義されるMoeqが1.4~2.2を満足するように、かつMo、Vが下記(2)式を満足するように含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記加熱工程が、前記鋼素材を加熱温度:1150~1270℃に加熱する工程であり、
前記熱間圧延工程を、圧延終了温度が810~930℃の範囲の温度で、930℃以下の温度域における累積圧下率が20~65%である熱間圧延を施したのち、10~70℃/sの平均冷却速度で420~600℃の温度域の冷却停止温度まで冷却し、400~600℃の温度域の巻取温度でコイル状に巻き取る工程とし、かつ、前記熱間圧延工程における前記圧延終了温度の板面内での温度変動幅を50℃以下とし、前記巻取温度の板面内での温度変動幅を80℃以下とすることを特徴とする、
体積率で80%以上のベイナイト相を主相とし、第二相としてマルテンサイト相と残留オーステナイト相を合計で、体積率で4~20%含有し、ベイナイト相の平均結晶粒径が1~10μmである組織を有する、電縫鋼管用高強度熱延鋼板の製造方法。
記
Moeq=Mo+0.36Cr+0.77Mn+0.07Ni ‥‥(1)
0.05 ≦ Mo+V ≦ 0.5 ‥‥(2)
ここで、上記(1)式および(2)式における各元素記号は各元素の含有量(質量%)を表し、含有しない元素は0とする。 - 前記組成に加えてさらに、質量%で、Ti:0.03%以下、Zr:0.04%以下、Ta:0.05%以下、B:0.0010%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4に記載の電縫鋼管用高強度熱延鋼板の製造方法。
- 前記組成に加えてさらに、質量%で、Ca:0.005%以下、REM:0.005%以下のうちから選ばれた1種または2種を含有する組成とすることを特徴とする請求項4または5に記載の電縫鋼管用高強度熱延鋼板の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017526717A JP6237961B1 (ja) | 2016-01-27 | 2017-01-23 | 電縫鋼管用高強度熱延鋼板およびその製造方法 |
KR1020187020980A KR20180095917A (ko) | 2016-01-27 | 2017-01-23 | 전봉 강관용 고강도 열연 강판 및 그 제조 방법 |
MX2018009160A MX2018009160A (es) | 2016-01-27 | 2017-01-23 | Lamina de acero laminada en caliente de alta resistencia para tubo de acero soldado con resistencia electrica y metodo de fabricacion de la misma. |
CN201780007932.0A CN108495945B (zh) | 2016-01-27 | 2017-01-23 | 电阻焊钢管用高强度热轧钢板及其制造方法 |
EP17744105.2A EP3409803B1 (en) | 2016-01-27 | 2017-01-23 | High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor |
CA3007073A CA3007073C (en) | 2016-01-27 | 2017-01-23 | High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor |
US16/071,557 US11214847B2 (en) | 2016-01-27 | 2017-01-23 | High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-012891 | 2016-01-27 | ||
JP2016012891 | 2016-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017130875A1 true WO2017130875A1 (ja) | 2017-08-03 |
Family
ID=59397841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002041 WO2017130875A1 (ja) | 2016-01-27 | 2017-01-23 | 電縫鋼管用高強度熱延鋼板およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11214847B2 (ja) |
EP (1) | EP3409803B1 (ja) |
JP (1) | JP6237961B1 (ja) |
KR (1) | KR20180095917A (ja) |
CN (1) | CN108495945B (ja) |
CA (1) | CA3007073C (ja) |
MX (1) | MX2018009160A (ja) |
WO (1) | WO2017130875A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146458A1 (ja) * | 2018-01-29 | 2019-08-01 | Jfeスチール株式会社 | コイルドチュービング用熱延鋼板およびその製造方法 |
WO2020080554A1 (ja) * | 2018-10-19 | 2020-04-23 | 日本製鉄株式会社 | 熱延鋼板 |
JP6690788B1 (ja) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
JP6690787B1 (ja) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
WO2020090478A1 (ja) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | 鋼材、及び、鋼材の製造方法 |
JP2020537716A (ja) * | 2017-10-27 | 2020-12-24 | バオシャン アイアン アンド スティール カンパニー リミテッド | 低降伏比・超高強度コイルドチュービング用鋼及びその製造方法 |
WO2021100534A1 (ja) * | 2019-11-20 | 2021-05-27 | Jfeスチール株式会社 | 電縫鋼管用熱延鋼板およびその製造方法、電縫鋼管およびその製造方法、ラインパイプ、建築構造物 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6544497B1 (ja) * | 2018-10-12 | 2019-07-17 | 日本製鉄株式会社 | トーションビーム用電縫鋼管 |
KR102175575B1 (ko) * | 2018-11-26 | 2020-11-09 | 주식회사 포스코 | 연신율이 우수한 고강도 열연강판 및 그 제조방법 |
CN110318008B (zh) * | 2019-06-20 | 2022-01-14 | 江阴兴澄特种钢铁有限公司 | 一种大厚度抗层状撕裂屈服强度960MPa级高强钢板及其生产方法 |
KR102200225B1 (ko) * | 2019-09-03 | 2021-01-07 | 주식회사 포스코 | 극저온 횡팽창이 우수한 압력용기용 강판 및 그 제조 방법 |
US20220373108A1 (en) * | 2019-10-31 | 2022-11-24 | Jfe Steel Corporation | Electric resistance welded steel pipe, method for producing the same, line pipe, and building structure |
WO2024170670A1 (de) * | 2023-02-17 | 2024-08-22 | Thyssenkrupp Steel Europe Ag | Hochfester stahl mit verbesserter resistenz gegen wasserstoffversprödung |
WO2024149909A1 (de) * | 2023-02-17 | 2024-07-18 | Thyssenkrupp Steel Europe Ag | Hochfester stahl mit verbesserter resistenz gegen wasserstoffversprödung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1150188A (ja) * | 1997-08-05 | 1999-02-23 | Sumitomo Metal Ind Ltd | 高温sr特性に優れた高強度ライザー鋼管用鋼板 |
JP2009270142A (ja) * | 2008-05-02 | 2009-11-19 | Nippon Steel Corp | 疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板とその製造方法 |
WO2013108861A1 (ja) * | 2012-01-18 | 2013-07-25 | Jfeスチール株式会社 | コイルドチュービング用鋼帯およびその製造方法 |
WO2014041802A1 (ja) * | 2012-09-13 | 2014-03-20 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3491339B2 (ja) | 1994-06-17 | 2004-01-26 | 住友金属工業株式会社 | 高張力電縫鋼管の製造方法 |
JP3520619B2 (ja) | 1994-09-20 | 2004-04-19 | Jfeスチール株式会社 | 材質ばらつきの少ないベイナイト鋼材およびその製造方法 |
ATE330040T1 (de) * | 1997-07-28 | 2006-07-15 | Exxonmobil Upstream Res Co | Ultrahochfeste, schweissbare stähle mit ausgezeichneter ultra-tief-temperatur zähigkeit |
JP3470632B2 (ja) | 1998-03-30 | 2003-11-25 | Jfeスチール株式会社 | 耐座屈特性に優れたラインパイプ用鋼管及びその製造方法 |
JP4367588B2 (ja) | 1999-10-28 | 2009-11-18 | 住友金属工業株式会社 | 耐硫化物応力割れ性に優れた鋼管 |
JP5776398B2 (ja) * | 2011-02-24 | 2015-09-09 | Jfeスチール株式会社 | 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法 |
WO2013011791A1 (ja) * | 2011-07-20 | 2013-01-24 | Jfeスチール株式会社 | 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法 |
CN103857819B (zh) * | 2011-10-04 | 2016-01-13 | 杰富意钢铁株式会社 | 高强度钢板及其制造方法 |
KR20150110749A (ko) * | 2013-03-19 | 2015-10-02 | 제이에프이 스틸 가부시키가이샤 | 780 MPa 이상의 인장 강도를 갖는 고강도 열연 강판 |
KR101910444B1 (ko) | 2014-02-27 | 2018-10-22 | 제이에프이 스틸 가부시키가이샤 | 고강도 열연 강판 및 그의 제조 방법 |
-
2017
- 2017-01-23 US US16/071,557 patent/US11214847B2/en active Active
- 2017-01-23 CA CA3007073A patent/CA3007073C/en active Active
- 2017-01-23 EP EP17744105.2A patent/EP3409803B1/en active Active
- 2017-01-23 CN CN201780007932.0A patent/CN108495945B/zh active Active
- 2017-01-23 WO PCT/JP2017/002041 patent/WO2017130875A1/ja active Application Filing
- 2017-01-23 KR KR1020187020980A patent/KR20180095917A/ko not_active Application Discontinuation
- 2017-01-23 MX MX2018009160A patent/MX2018009160A/es unknown
- 2017-01-23 JP JP2017526717A patent/JP6237961B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1150188A (ja) * | 1997-08-05 | 1999-02-23 | Sumitomo Metal Ind Ltd | 高温sr特性に優れた高強度ライザー鋼管用鋼板 |
JP2009270142A (ja) * | 2008-05-02 | 2009-11-19 | Nippon Steel Corp | 疲労特性と曲げ成形性に優れた機械構造鋼管用熱延鋼板とその製造方法 |
WO2013108861A1 (ja) * | 2012-01-18 | 2013-07-25 | Jfeスチール株式会社 | コイルドチュービング用鋼帯およびその製造方法 |
WO2014041802A1 (ja) * | 2012-09-13 | 2014-03-20 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020537716A (ja) * | 2017-10-27 | 2020-12-24 | バオシャン アイアン アンド スティール カンパニー リミテッド | 低降伏比・超高強度コイルドチュービング用鋼及びその製造方法 |
JP7134230B2 (ja) | 2017-10-27 | 2022-09-09 | バオシャン アイアン アンド スティール カンパニー リミテッド | 低降伏比・超高強度コイルドチュービング用鋼及びその製造方法 |
US11396680B2 (en) | 2017-10-27 | 2022-07-26 | Baoshan Iron & Steel Co., Ltd. | Steel for coiled tubing with low yield ratio and ultra-high strength and preparation method thereof |
RU2744590C1 (ru) * | 2017-10-27 | 2021-03-11 | Баошань Айрон Энд Стил Ко., Лтд. | Сталь для гибкой насосно-компрессорной трубы, характеризующаяся маленьким соотношением между пределом текучести при растяжении и пределом прочности при растяжении и сверхвысокой прочностью, и способ ее получения |
KR20200099600A (ko) * | 2018-01-29 | 2020-08-24 | 제이에프이 스틸 가부시키가이샤 | 코일드 튜빙용 열연 강판 및 그 제조 방법 |
RU2753344C1 (ru) * | 2018-01-29 | 2021-08-13 | ДжФЕ СТИЛ КОРПОРЕЙШН | Горячекатаная листовая сталь для гибкой насосно-компрессорной трубы малого диаметра и способ ее изготовления |
WO2019146458A1 (ja) * | 2018-01-29 | 2019-08-01 | Jfeスチール株式会社 | コイルドチュービング用熱延鋼板およびその製造方法 |
KR102456737B1 (ko) * | 2018-01-29 | 2022-10-19 | 제이에프이 스틸 가부시키가이샤 | 코일드 튜빙용 열연 강판 및 그 제조 방법 |
JP2019131835A (ja) * | 2018-01-29 | 2019-08-08 | Jfeスチール株式会社 | コイルドチュービング用熱延鋼板およびその製造方法 |
EP3722449A4 (en) * | 2018-01-29 | 2020-10-14 | JFE Steel Corporation | HOT ROLLED STEEL SHEET FOR SPIRAL TUBE AND PROCESS FOR THE MANUFACTURE OF THE SAME |
US11401594B2 (en) | 2018-01-29 | 2022-08-02 | Jfe Steel Corporation | Hot-rolled steel sheet for coiled tubing and method for manufacturing the same |
JPWO2020080554A1 (ja) * | 2018-10-19 | 2021-02-15 | 日本製鉄株式会社 | 熱延鋼板 |
WO2020080554A1 (ja) * | 2018-10-19 | 2020-04-23 | 日本製鉄株式会社 | 熱延鋼板 |
EP3868908A4 (en) * | 2018-10-19 | 2022-04-13 | Nippon Steel Corporation | HOT ROLLED STEEL SHEET |
JP7088305B2 (ja) | 2018-10-31 | 2022-06-21 | 日本製鉄株式会社 | 鋼材、及び、鋼材の製造方法 |
JPWO2020090478A1 (ja) * | 2018-10-31 | 2021-09-02 | 日本製鉄株式会社 | 鋼材、及び、鋼材の製造方法 |
WO2020090478A1 (ja) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | 鋼材、及び、鋼材の製造方法 |
KR20210130219A (ko) * | 2019-03-29 | 2021-10-29 | 제이에프이 스틸 가부시키가이샤 | 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝 |
KR20210132698A (ko) * | 2019-03-29 | 2021-11-04 | 제이에프이 스틸 가부시키가이샤 | 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝 |
JP6690788B1 (ja) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
JP6690787B1 (ja) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
WO2020202334A1 (ja) * | 2019-03-29 | 2020-10-08 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
WO2020202333A1 (ja) * | 2019-03-29 | 2020-10-08 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
KR102551615B1 (ko) | 2019-03-29 | 2023-07-05 | 제이에프이 스틸 가부시키가이샤 | 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝 |
KR102555312B1 (ko) | 2019-03-29 | 2023-07-12 | 제이에프이 스틸 가부시키가이샤 | 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝 |
JPWO2021100534A1 (ja) * | 2019-11-20 | 2021-12-02 | Jfeスチール株式会社 | 電縫鋼管用熱延鋼板およびその製造方法、電縫鋼管およびその製造方法、ラインパイプ、建築構造物 |
WO2021100534A1 (ja) * | 2019-11-20 | 2021-05-27 | Jfeスチール株式会社 | 電縫鋼管用熱延鋼板およびその製造方法、電縫鋼管およびその製造方法、ラインパイプ、建築構造物 |
Also Published As
Publication number | Publication date |
---|---|
CA3007073C (en) | 2020-08-25 |
CN108495945A (zh) | 2018-09-04 |
MX2018009160A (es) | 2018-11-29 |
JP6237961B1 (ja) | 2017-11-29 |
US11214847B2 (en) | 2022-01-04 |
US20190062862A1 (en) | 2019-02-28 |
CA3007073A1 (en) | 2017-08-03 |
CN108495945B (zh) | 2020-07-17 |
EP3409803A1 (en) | 2018-12-05 |
JPWO2017130875A1 (ja) | 2018-02-01 |
KR20180095917A (ko) | 2018-08-28 |
EP3409803B1 (en) | 2020-09-16 |
EP3409803A4 (en) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6237961B1 (ja) | 電縫鋼管用高強度熱延鋼板およびその製造方法 | |
JP5679114B2 (ja) | 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法 | |
JP5011773B2 (ja) | 低温靭性に優れた低降伏比電縫鋼管の製造方法 | |
JP5644982B1 (ja) | 電縫溶接鋼管 | |
JP5834534B2 (ja) | 高一様伸び特性を備えた高強度低降伏比鋼、その製造方法、および高強度低降伏比溶接鋼管 | |
CN110462080B (zh) | 耐酸性管线管用高强度钢板及其制造方法和使用耐酸性管线管用高强度钢板的高强度钢管 | |
JP5481976B2 (ja) | 高強度溶接鋼管用高張力熱延鋼板およびその製造方法 | |
KR20110110278A (ko) | 내 hic 성이 우수한 후육 고장력 열연강판 및 그 제조 방법 | |
WO2013099192A1 (ja) | 高張力熱延鋼板及びその製造方法 | |
WO2018235244A1 (ja) | ラインパイプ用アズロール電縫鋼管及び熱延鋼板 | |
JP5768603B2 (ja) | 高一様伸び特性を備え、かつ溶接部低温靱性に優れた高強度溶接鋼管、およびその製造方法 | |
WO2012060405A1 (ja) | 高強度鋼板及びその製造方法 | |
WO2016185741A1 (ja) | 高強度電縫鋼管、高強度電縫鋼管用の鋼板の製造方法、及び高強度電縫鋼管の製造方法 | |
JP6217234B2 (ja) | 厚鋼板およびその製造方法 | |
JP2006299414A (ja) | 低温靭性に優れた低降伏比電縫鋼管の製造方法 | |
JP6128042B2 (ja) | 低降伏比高強度スパイラル鋼管杭およびその製造方法 | |
JP5509654B2 (ja) | 耐pwht特性および一様伸び特性に優れた高強度鋼板並びにその製造方法 | |
JP5477089B2 (ja) | 高強度高靭性鋼の製造方法 | |
JP6197767B2 (ja) | 低降伏比高強度スパイラル鋼管杭およびその製造方法 | |
JP2017214618A (ja) | 低温靭性に優れた低降伏比高強度熱延鋼板の製造方法 | |
JP2013112872A (ja) | 耐歪時効性に優れた高靱性低降伏比高強度鋼板 | |
KR102002717B1 (ko) | 고강도 강 및 그 제조 방법, 그리고 강관 및 그 제조 방법 | |
JP5842473B2 (ja) | 高一様伸び特性を備えかつ溶接部靱性に優れた高強度溶接鋼管、およびその製造方法 | |
JP6123734B2 (ja) | 鋼管杭向け低降伏比高強度電縫鋼管およびその製造方法 | |
CN115135786A (zh) | 油井管用不锈钢无缝钢管及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017526717 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17744105 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3007073 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20187020980 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187020980 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/009160 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017744105 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017744105 Country of ref document: EP Effective date: 20180827 |