WO2020080554A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2020080554A1
WO2020080554A1 PCT/JP2019/041330 JP2019041330W WO2020080554A1 WO 2020080554 A1 WO2020080554 A1 WO 2020080554A1 JP 2019041330 W JP2019041330 W JP 2019041330W WO 2020080554 A1 WO2020080554 A1 WO 2020080554A1
Authority
WO
WIPO (PCT)
Prior art keywords
width direction
plate width
less
steel sheet
hot
Prior art date
Application number
PCT/JP2019/041330
Other languages
English (en)
French (fr)
Inventor
洋志 首藤
章文 榊原
真輔 甲斐
林 宏太郎
宏志 海藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020510623A priority Critical patent/JP6773252B2/ja
Priority to EP19873490.7A priority patent/EP3868908A4/en
Priority to CN201980067798.2A priority patent/CN112840057B/zh
Priority to US17/285,428 priority patent/US11970758B2/en
Publication of WO2020080554A1 publication Critical patent/WO2020080554A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a hot rolled steel sheet. Specifically, the present invention relates to a hot-rolled steel sheet formed into various shapes by press working or the like, and particularly to a hot-rolled steel sheet having high strength and excellent ductility and stretch flangeability.
  • the present application claims priority based on Japanese Patent Application No. 2018-197937 filed in Japan on October 19, 2018, the contents of which are incorporated herein by reference.
  • Patent Document 1 high strength for automobiles, which is excellent in collision resistance and formability, in which residual austenite having an average crystal grain size of 5 ⁇ m or less is dispersed in ferrite having an average crystal grain size of 10 ⁇ m or less, is excellent.
  • a steel plate is disclosed.
  • austenite undergoes martensite transformation during processing and shows a large elongation due to transformation-induced plasticity, but the hole expansibility is impaired by the formation of hard martensite.
  • Patent Document 1 discloses that by refining ferrite and retained austenite, not only ductility but also hole expandability is improved.
  • Patent Document 2 discloses a high-strength steel sheet having a tensile strength of 980 MPa or more excellent in elongation and stretch-flangeability, in which a second phase composed of retained austenite and / or martensite is finely dispersed in crystal grains. There is.
  • Patent Documents 3 and 4 disclose a high-strength hot-rolled steel sheet having excellent ductility and stretch-flangeability, and a method for manufacturing the same.
  • the temperature is cooled to a temperature range of 720 ° C. or lower, and the material is allowed to stay in a temperature range of more than 500 ° C. and 720 ° C. or less for 1 to 20 seconds, and then 350 to Disclosed is a method for producing a high-strength hot-rolled steel sheet which has good ductility and stretch flangeability and is wound in a temperature range of 500 ° C.
  • Patent Document 4 bainite is mainly contained, and an appropriate amount of polygonal ferrite and retained austenite are included, and an average of grains surrounded by grain boundaries having a crystal orientation difference of 15 ° or more in a steel structure excluding retained austenite.
  • a high-strength hot-rolled steel sheet having a grain size of 15 ⁇ m or less and good ductility and stretch flangeability is disclosed.
  • Patent Document 5 contains 90% or more of grain-shaped tempered martensite in volume fraction, or 90% or more of grain-shaped tempered martensite and lower bainite in total volume fraction,
  • the average aspect ratio of the effective crystal grains of the tempered martensite and the lower bainite is 2 or less
  • the effective crystal grain size of the tempered martensite and the lower bainite is 10 ⁇ m or less
  • the tempered martensite and the lower portion are Bainite has a structure in which iron-based carbides are present in an amount of 1 ⁇ 10 6 (pieces / mm 2 ) or more, and has a zinc-plated layer or an alloyed zinc-plated layer on the surface.
  • An excellent hot rolled steel sheet is disclosed.
  • Japanese Patent Laid-Open No. 11-61326 Japanese Patent Laid-Open No. 2005-179703 Japanese Patent Laid-Open No. 2012-251200 Japanese Patent Laid-Open No. 2015-124410 Japanese Patent No. 6132017
  • the high-strength steel sheet for automobiles disclosed in Patent Document 1 is said to have improved ductility and hole expansibility by refining ferrite and retained austenite, but the obtained hole expansivity ratio is 1.5 at the maximum, which is sufficient. It is hard to say that it has press formability. Further, in order to increase the work hardening index and improve the collision resistance, it is necessary to use a soft ferrite phase as the main phase, and high tensile strength may not be obtained in some cases.
  • the high-strength steel sheet disclosed in Patent Document 2 contains a large amount of expensive elements such as Cu and Ni or has a long temperature at high temperature in order to refine the second phase to a nano size and disperse it in the crystal grains. It is necessary to perform solution treatment for a long time, which may significantly increase the manufacturing cost and reduce the productivity.
  • Patent Document 4 Although the high-strength hot-rolled steel sheet disclosed in Patent Document 4 has high strength and good ductility and stretch flangeability, it is necessary to control the non-uniformity of the structure in the sheet thickness direction, which is a mass production process. Therefore, the yield may be significantly reduced.
  • the hot-rolled steel sheet disclosed in Patent Document 5 has a winding temperature of 100 ° C. or more and less than 400 ° C., and is manufactured under the condition that the residence time in the temperature range where retained austenite is generated is not sufficiently secured, In some cases, ductility (TS-EL balance) is not excellent.
  • the present invention has been made in view of the above problems of the prior art, and an object thereof is to provide a hot-rolled steel sheet having high strength and excellent ductility and stretch flangeability. More preferably, the present invention has an object to provide a hot-rolled steel sheet having the above-mentioned various characteristics and having a small material variation in the sheet width direction. In addition, in the present invention, while satisfying the low temperature toughness which is a general characteristic required for a steel sheet applied to automobile parts and the like, hot rolling excellent in the above-mentioned various characteristics (strength, ductility and stretch-flangeability). The purpose is to provide a steel sheet.
  • the metal structure In order to obtain excellent maximum tensile strength (hereinafter sometimes referred to as strength or tensile strength), the metal structure is preferably hard, and in order to obtain excellent stretch flangeability, the metal structure is Are preferably homogeneous. Therefore, in order to combine high strength and excellent stretch flangeability in the hot-rolled steel sheet, bainite and tempered martensite, which are hard and homogeneous structures, are suitable, and are mainly composed of bainite and tempered martensite, It is important to have a metal structure with a small area fraction of ferrite, pearlite, and martensite.
  • the cooling rate is significantly different between the central portion in the plate width direction and the position on the end face side in the plate width direction, and there is a difference in the retention time after the martensite transformation is stopped.
  • the area fraction changes, which causes material variations in the plate width direction.
  • the material variation in the plate width direction means the balance between tensile strength and ductility (TS ⁇ EL) in the center part of the plate width direction, and the position on the end face side in the plate width direction (a predetermined distance from the center part to the end face side. Position) means the difference between the balance between tensile strength and ductility (TS ⁇ EL).
  • Residual austenite can improve ductility by transformation-induced plasticity (TRIP), but transforms to hard martensite by transformation-induced plasticity (TRIP) and reduces toughness.
  • TRIP transformation-induced plasticity
  • TRIP transformation-induced plasticity
  • the matrix phase is also martensite, it is not possible to obtain the minimum low temperature toughness required for steel sheets for underbody parts of automobiles.
  • the low temperature toughness is ensured by refining the average crystal grain size of the metal structure and precipitating an appropriate amount of iron-based carbides to reduce the amount of solid solution C in the matrix as bainite or tempered martensite. You can
  • the gist of the present invention made based on the above findings is as follows.
  • the hot-rolled steel sheet according to one aspect of the present invention has a chemical composition of mass%, C: 0.100 to 0.250%, Si: 0.05 to 3.00%, Mn: 1.00 to 4.00%, Nb: 0.005 to 0.050%, sol.
  • the balance consists of Fe and impurities,
  • the metal structure at a 1/4 depth of the plate thickness from the surface and at the center position in the plate width direction is the area% and the total of bainite and tempered martensite is 77.0 to 97.
  • the hot-rolled steel sheet according to (1) above has a plate width cross section parallel to the rolling direction, a quarter of the plate thickness from the surface and a center position in the plate width direction, and the plate from the surface.
  • C ⁇ C , C ⁇ D1 , C ⁇ D2 , C ⁇ W1, and C ⁇ W2 are C ⁇ C , C ⁇ D1 , C ⁇ W1 , and C ⁇ W2 , respectively, in terms of mass%, respectively, C ⁇ C / C ⁇ D1 , C ⁇ C / C ⁇ D2 , C ⁇ C / C ⁇ W1. and C ⁇ C / C ⁇ 2 each 0.8 or more, it may be less than 1.2.
  • the chemical composition is mass%, Ti: 0.005 to 0.300%, V: 0.005 to 0.500%, Cu: 0.01-2.00%, Cr: 0.01 to 2.00%, Mo: 0.010 to 1.000%, Ni: 0.02 to 2.00%, B: 0.0001 to 0.0100%, Ca: 0.0005 to 0.0200%, Mg: 0.0005 to 0.0200%, REM: 0.0005 to 0.1000%, and Bi: 0.0005 to 0.020% You may contain 1 type (s) or 2 or more types selected from the group which consists of.
  • the hot-rolled steel sheet having excellent strength, ductility, stretch-flangeability and low-temperature toughness. Furthermore, according to a preferred aspect of the present invention, it is possible to provide a hot-rolled steel sheet having the above-mentioned various characteristics and having a small material variation in the sheet width direction.
  • the hot-rolled steel sheet according to the above aspect of the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.
  • the chemical composition and metallographic structure of the hot-rolled steel sheet (hereinafter sometimes simply referred to as a steel sheet) according to the present embodiment will be specifically described below.
  • the present invention is not limited to the configuration disclosed in the present embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the numerical limit range described below includes the lower limit value and the upper limit value. Numerical values shown as “less than” or “above” do not fall within the numerical range.
  • % relating to the chemical composition of the steel sheet is mass% unless otherwise specified.
  • the hot-rolled steel sheet according to this embodiment has C: 0.100 to 0.250%, Si: 0.05 to 3.00%, Mn: 1.00 to 4.00%, and Nb in mass%. : 0.005 to 0.050%, sol. Al: 0.001 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less and O: 0.0100% or less, and the balance Fe and Consist of impurities.
  • Si 0.05 to 3.00%
  • Mn 1.00 to 4.00%
  • Nb in mass%.
  • Al 0.001 to 2.000%
  • P 0.100% or less
  • S 0.0300% or less
  • N 0.1000% or less
  • O 0.0100% or less
  • Fe and Consist of impurities Each element will be described in detail below.
  • C 0.100 to 0.250% C has the function of promoting the formation of bainite and the function of stabilizing the retained austenite. If the C content is less than 0.100%, it becomes difficult to obtain the desired bainite area fraction and residual austenite area fraction. If the desired bainite area fraction cannot be obtained, it may be difficult to obtain the desired bainite and tempered martensite area fraction. Therefore, the C content is 0.100% or more. The C content is preferably 0.120% or more and 0.150% or more. On the other hand, if the C content exceeds 0.250%, pearlite is preferentially generated and bainite and retained austenite are insufficiently generated, and a desired area fraction of bainite and retained austenite can be obtained. It will be difficult. Therefore, the C content is 0.250% or less. The C content is preferably 0.220% or less.
  • Si 0.05 to 3.00% Si has a function of delaying the precipitation of cementite. By this action, the amount of austenite remaining untransformed, that is, the area fraction of retained austenite can be increased, and the strength of the steel sheet can be increased by solid solution strengthening. Further, Si has a function of deteriorating the soundness of steel (suppressing the occurrence of defects such as blowholes in steel). If the Si content is less than 0.05%, the effect due to the above action cannot be obtained. Therefore, the Si content is set to 0.05% or more. The Si content is preferably 0.50% or more and 1.00% or more.
  • the Si content is 3.00% or less.
  • the Si content is preferably 2.70% or less and 2.50% or less.
  • Mn has a function of suppressing ferrite transformation and promoting the production of bainite. If the Mn content is less than 1.00%, the desired area fraction of bainite cannot be obtained. Therefore, the Mn content is 1.00% or more. The Mn content is preferably 1.50% or more, more preferably 1.80% or more. On the other hand, when the Mn content exceeds 4.00%, the completion of the bainite transformation is delayed, the carbon concentration to austenite is not promoted, the retained austenite is insufficiently formed, and the area ratio of the desired retained austenite is reduced. It is difficult to get the rate. Furthermore, it becomes difficult to increase the C concentration in the retained austenite. Therefore, the Mn content is set to 4.00% or less. The Mn content is preferably 3.70% or less and 3.50% or less.
  • Nb 0.005 to 0.050%
  • Nb is an important element.
  • Nb is usually contained in steel for the purpose of precipitation strengthening ferrite by carbide and for the purpose of refining the austenite grain size by controlled rolling.
  • the present inventors newly added that Nb has an effect of significantly increasing the time from the transformation retention of bainite and tempered martensite to the start of decomposition of austenite (transformation retention time). Found in.
  • the transformation dwell time is lengthened, it becomes difficult for austenite to decompose into cementite and martensite after the winding treatment, and even if the difference in cooling rate in the width direction of the hot-rolled steel sheet is large, the residual austenite area The rate can be kept constant.
  • the average cooling rate in the sheet width direction central portion of the hot rolled steel sheet having a relatively low cooling rate and the sheet width direction most end portion of the hot rolled steel sheet having a relatively high cooling rate is set to a predetermined value. If the content is controlled within the range, variations in materials can be reduced.
  • the Nb content is 0.005% or more.
  • the Nb content is preferably 0.010% or more and 0.015% or more.
  • the Nb content exceeds 0.050%, the effect of prolonging the transformation dwell time is saturated, austenite recrystallization during rolling is suppressed, and bainite or tempered martensite and retained austenite form a layer. Since it is generated, the stretch flangeability of the steel sheet is reduced. Therefore, the Nb content is 0.050% or less.
  • the Nb content is preferably 0.040% or less and 0.030% or less.
  • sol. Al 0.001 to 2.000% Similar to Si, Al has an action of deoxidizing the steel to make the steel sheet sound, and also has an action of suppressing the precipitation of cementite from the austenite, thereby promoting the generation of retained austenite. sol. If the Al content is less than 0.001%, the effect due to the above action cannot be obtained. Therefore, sol. The Al content is 0.001% or more. sol. The Al content is preferably 0.010% or more. On the other hand, sol. If the Al content exceeds 2.000%, the above effects are saturated and it is not economically preferable. The Al content is 2.000% or less. sol. The Al content is preferably 1.500% or less and 1.300% or less. In addition, sol. Al is an abbreviation for soluble Al.
  • P 0.100% or less
  • P is an element that is generally contained as an impurity, but is also an element that has the effect of increasing strength by solid solution strengthening. Therefore, although P may be positively contained, P is an element that easily segregates, and when the P content exceeds 0.100%, the formability and toughness significantly decrease due to the grain boundary segregation. Become. Therefore, the P content is limited to 0.100% or less.
  • the P content is preferably 0.030% or less.
  • the lower limit of the P content need not be specified in particular, but is preferably 0.001% from the viewpoint of refining cost.
  • S 0.0300% or less
  • S is an element contained as an impurity, and forms a sulfide-based inclusion in the steel to reduce the formability of the hot-rolled steel sheet. If the S content exceeds 0.0300%, the formability of the steel sheet is significantly reduced. Therefore, the S content is limited to 0.0300% or less.
  • the S content is preferably 0.0050% or less.
  • the lower limit of the S content need not be specified in particular, but is preferably 0.0001% from the viewpoint of refining cost.
  • N 0.1000% or less
  • N is an element contained in the steel as an impurity and has an action of reducing the formability of the steel sheet. If the N content exceeds 0.1000%, the formability of the steel sheet is significantly reduced. Therefore, the N content is 0.1000% or less.
  • the N content is preferably 0.0800% or less, more preferably 0.0700% or less.
  • the lower limit of the N content does not have to be specified in particular, but when one or more of Ti and V are contained to refine the metal structure as described later, precipitation of carbonitrides is promoted. Therefore, the N content is preferably 0.0010% or more, and more preferably 0.0020% or more.
  • O 0.0100% or less
  • O is formed in a large amount in steel to form a coarse oxide which becomes a starting point of fracture, causing brittle fracture and hydrogen-induced cracking. Therefore, the O content is limited to 0.0100% or less.
  • the O content is preferably 0.0080% or less and 0.0050% or less.
  • the O content may be 0.0005% or more and 0.0010% or more in order to disperse a large number of fine oxides during deoxidation of molten steel.
  • the balance of the chemical composition of the hot rolled steel sheet according to this embodiment is Fe and impurities.
  • the impurities means ore as a raw material, scrap, or those that are mixed from the manufacturing environment, etc., and are allowed as long as they do not adversely affect the hot rolled steel sheet according to the present embodiment. To do.
  • the hot-rolled steel sheet according to the present embodiment has Ti, V, Cu, Cr, Mo, Ni, B, Ca, Mg, REM, Bi, Zr, Co, Zn, W and Sn as optional elements in addition to the above elements. May be included.
  • the lower limit of the content when the above optional element is not contained is 0%.
  • the arbitrary element will be described in detail.
  • Ti and V precipitate in the steel as carbides or nitrides and have the effect of refining the metal structure by the pinning effect, so these elements may be included as necessary.
  • the Ti content is preferably 0.005% or more, or the V content is preferably 0.005% or more.
  • the Ti content is 0.300% or less and the V content is 0.500% or less.
  • Cu 0.01 to 2.00%
  • Cr 0.01 to 2.00%
  • Mo 0.010 to 1.000%
  • Ni 0.02 to 2.00%
  • B 0.0001 to 0.0100%
  • Cu, Cr, Mo, Ni and B all have the effect of enhancing the hardenability of the steel sheet.
  • Cr and Ni have a function of stabilizing the retained austenite
  • Cu and Mo have a function of precipitating a carbide in the steel to enhance the strength.
  • Ni has an effect of effectively suppressing grain boundary cracking of the slab due to Cu when Cu is contained. Therefore, these elements may be contained if necessary.
  • the Cu has the function of increasing the hardenability of the steel sheet and the function of increasing the strength of the steel sheet by precipitating as carbide in the steel at low temperature.
  • the Cu content is preferably 0.01% or more, and more preferably 0.05% or more.
  • the Cu content is 2.00% or less.
  • the Cu content is preferably 1.50% or less and 1.00% or less.
  • the Cr content is preferably 0.01% or more and 0.05% or more. However, if the Cr content exceeds 2.00%, the chemical conversion treatability of the steel sheet is significantly reduced. Therefore, the Cr content is 2.00% or less.
  • Mo has the function of enhancing the hardenability of the steel sheet and the function of precipitating carbides in the steel to enhance the strength.
  • the Mo content is preferably 0.010% or more and 0.020% or more.
  • the Mo content is set to 1.000% or less.
  • the Mo content is preferably 0.500% or less and 0.200% or less.
  • Ni has the effect of enhancing the hardenability of steel sheets. Further, Ni has an effect of effectively suppressing grain boundary cracking of the slab due to Cu when Cu is contained. In order to obtain the effect of the above action more reliably, the Ni content is preferably 0.02% or more. Since Ni is an expensive element, it is not economically preferable to add Ni in a large amount. Therefore, the Ni content is 2.00% or less.
  • B has the effect of enhancing the hardenability of the steel sheet.
  • the B content is preferably 0.0001% or more and 0.0002% or more.
  • the B content is set to 0.0100% or less.
  • the B content is preferably 0.0050% or less.
  • Ca 0.0005 to 0.0200%
  • Mg 0.0005 to 0.0200%
  • REM 0.0005 to 0.1000%
  • Bi 0.0005 to 0.020%
  • All of Ca, Mg and REM have an effect of enhancing the formability of the steel sheet by adjusting the shape of the inclusions to a preferable shape.
  • Bi has the effect of enhancing the formability of the steel sheet by refining the solidified structure. Therefore, these elements may be contained if necessary.
  • the content of any one or more of Ca, Mg, REM and Bi be 0.0005% or more.
  • the Ca content or the Mg content exceeds 0.0200%, or if the REM content exceeds 0.1000%, excessive inclusions are generated in the steel, which rather reduces the formability of the steel sheet. There are cases. Further, even if the Bi content exceeds 0.020%, the effect due to the above-mentioned action is saturated, which is not economically preferable. Therefore, the Ca content and the Mg content are 0.0200% or less, the REM content is 0.1000% or less, and the Bi content is 0.020% or less. The Bi content is preferably 0.010% or less.
  • REM refers to a total of 17 elements consisting of Sc, Y and lanthanoids, and the content of REM refers to the total content of these elements. In the case of lanthanoid, it is industrially added in the form of misch metal.
  • the metallographic structure of the hot rolled steel sheet according to the present embodiment will be described.
  • the metallographic structure at the 1/4 depth and the plate width direction central position from the surface is the area fraction (area%), Bainite and tempered martensite total 77.0-97.0%, ferrite 0-5.0%, pearlite 0-5.0%, retained austenite 3.0% or more, martensite 0-
  • tensile maximum strength of 980 MPa or more and high press formability (ductility and stretch flangeability) are obtained.
  • the reason for defining the metallographic structure at the plate width cross section parallel to the rolling direction at a 1 ⁇ 4 depth from the surface and the plate width direction central position is that the metallographic structure at this position is a steel plate.
  • the plate width cross section parallel to the rolling direction refers to a cross section that is parallel to the rolling direction, parallel to the plate thickness direction, and perpendicular to the plate width direction (so-called L cross section).
  • Bainite and tempered martensite are the most important metal structures in this embodiment.
  • Bainite is a set of lath-shaped crystal grains.
  • Bainite includes upper bainite, which is an aggregate of laths containing carbides between laths, and lower bainite, which internally contains iron-based carbides having a major axis of 5 nm or more.
  • the iron-based carbides precipitated in the lower bainite belong to a single variant, that is, a group of iron-based carbides stretched in the same direction.
  • Tempered martensite is a set of lath-shaped crystal grains, and internally contains iron-based carbides having a major axis of 5 nm or more.
  • the iron-based carbides in the tempered martensite belong to a plurality of variants, that is, a plurality of iron-based carbide groups that extend in different directions.
  • bainite and tempered martensite are hard and homogeneous metallographic structures, and are suitable for providing steel sheets with both high strength and excellent stretch flangeability. If the total area fraction of bainite and tempered martensite is less than 77.0%, the steel sheet cannot have both high strength and excellent stretch flangeability. Therefore, the total area fraction of bainite and tempered martensite is set to 77.0% or more.
  • the total area fraction of bainite and tempered martensite is preferably 85.0% or more, more preferably 90.0% or more. Since the hot-rolled steel sheet according to this embodiment contains 3.0% or more of retained austenite, the total area fraction of bainite and tempered martensite is 97.0% or less.
  • Perlite area fraction 0 to 5.0%
  • Perlite has a lamellar metallic structure in which cementite is deposited in layers between ferrites, and is a softer metallic structure compared to bainite. If the area fraction of pearlite exceeds 5.0%, the interface between pearlite and bainite or tempered martensite and the interface between pearlite and retained austenite, which tend to be the starting points for voids, increase, and the elongation of the steel sheet in particular increases. Flangeability deteriorates. Therefore, the area fraction of pearlite is 5.0% or less.
  • the area fraction of pearlite is preferably 4.0% or less, 3.0% or less, and 2.0% or less. In order to improve the stretch flangeability of the steel sheet, it is preferable to reduce the area fraction of pearlite as much as possible, and the lower limit thereof is 0%.
  • martensite is defined as a metallographic structure in which carbides having a diameter of 5 nm or more are not precipitated between laths and in laths. Martensite has a very hard structure and greatly contributes to the strength increase of the steel sheet. On the other hand, when the metal structure contains martensite, the interface between the martensite and the matrix bainite and tempered martensite serves as the origin of void generation, and the stretch flangeability of the steel sheet is particularly deteriorated. Furthermore, since martensite has a hard structure, it deteriorates the low temperature toughness of the steel sheet. Therefore, the area fraction of martensite is 10.0% or less.
  • the hot-rolled steel sheet according to the present embodiment contains a predetermined amount of bainite and tempered martensite, desired strength can be ensured even when martensite is not included. In order to obtain the desired stretch flangeability, it is preferable to reduce the area fraction of martensite as much as possible, and the lower limit is 0%.
  • a plate width cross section parallel to the rolling direction is corroded.
  • a solution prepared by dissolving 1 to 5 g of picric acid in 100 ml of ethanol was used as solution A, and 1 to 25 g of sodium thiosulfate and 1 to 5 g of citric acid were added to 100 ml of water.
  • the dissolved solution was used as solution B, and solution A and solution B were mixed at a ratio of 1: 1 to form a mixed solution, and nitric acid was further added at a ratio of 1.5 to 4% with respect to the total amount of this mixed solution.
  • the mixed solution is used as the pretreatment liquid. Further, a solution obtained by adding 10% of the above-mentioned pretreatment liquid to the total amount of the 2% Nital liquid and mixing them is a post-treatment liquid. A plate width cross section parallel to the rolling direction is immersed in the pretreatment liquid for 3 to 15 seconds, washed with alcohol and dried, then immersed in the posttreatment liquid for 3 to 20 seconds, washed with water, and then dried. , Corrodes the above plate width section. In addition, all% about a reagent are volume%, and a ratio is a volume ratio.
  • the metal structure is identified, the existing position is confirmed, and the area fraction is measured. Since it is difficult to distinguish between the lower bainite and the tempered martensite by the above-mentioned measuring method, it is not necessary to distinguish between them in the present embodiment. That is, the total area fraction of “bainite and tempered martensite” is obtained by measuring the area fractions of “upper bainite” and “lower bainite or tempered martensite”.
  • the upper bainite is an aggregate of laths and has a structure containing carbides between the laths
  • the lower bainite is a structure containing iron-based carbides having a major axis of 5 nm or more and extending in the same direction.
  • the tempered martensite is a set of lath-shaped crystal grains, and is a structure that internally contains iron-based carbides having a major axis of 5 nm or more and extending in different directions.
  • Retained austenite is a metal structure that exists as a face-centered cubic lattice even at room temperature. Retained austenite has the effect of increasing the ductility of the steel sheet by transformation-induced plasticity (TRIP). If the area fraction of retained austenite is less than 3.0%, the effect due to the above action cannot be obtained, and the ductility of the steel sheet deteriorates. Therefore, the area fraction of retained austenite is set to 3.0% or more.
  • the area fraction of retained austenite is preferably 5.0% or more, more preferably 7.0% or more, still more preferably 8.0% or more.
  • the upper limit of the area fraction of retained austenite does not need to be specified in particular, but the area fraction of retained austenite that can be ensured in the chemical composition of the hot-rolled steel sheet according to this embodiment is approximately 20.0%.
  • the upper limit of the area fraction may be 20.0%.
  • the area fraction of retained austenite can be measured by X-ray diffraction, EBSP (electron backscattering diffraction image, Electron Back Scattering Diffraction Pattern) analysis, magnetic measurement, etc., and the measured values may differ depending on the measurement method. .
  • the area fraction of retained austenite is measured by X-ray diffraction.
  • the area fraction of bainite, tempered martensite, ferrite, pearlite and martensite (area fraction other than retained austenite) and the area fraction of retained austenite are measured by different measurement methods.
  • the sum of the above two area fractions may not be 100.0%.
  • the above two area fractions are adjusted so that the total becomes 100.0%. For example, when the total of the area fraction other than the retained austenite and the area fraction of the retained austenite is 101.0%, in order to make the total of both 100.0%, the other than the retained austenite obtained by the measurement.
  • the value obtained by multiplying the area fraction of 100.0 / 101.0 by 100.0 / 101.0 is defined as the area fraction other than the retained austenite, and the area fraction of the retained austenite obtained by the measurement is multiplied by 100.0 / 101.0.
  • the value is defined as the area fraction of retained austenite.
  • Average crystal grain size of metal structure excluding retained austenite 7.0 ⁇ m or less Average of metal structure excluding retained austenite (main phase bainite and tempered martensite, ferrite, pearlite and martensite)
  • the average crystal grain size is 7.0 ⁇ m or less.
  • the lower limit of the average crystal grain size does not need to be particularly limited. The smaller the average crystal grain size is, the more preferable. However, since it may be practically difficult from the viewpoint of manufacturing equipment to set the average crystal grain size to less than 1.0 ⁇ m, the average crystal grain size may be 1.0 ⁇ m or more. .
  • the crystal grains are defined by using the EBSP-OIM (Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy) method.
  • EBSP-OIM Electro Back Scatter Diffraction Pattern-Orientation Image Microscopy
  • a highly inclined sample is irradiated with an electron beam in a scanning electron microscope (SEM)
  • the Kikuchi pattern formed by backscattering is photographed with a high-sensitivity camera, and the photographed image is processed by a computer.
  • the EBSP-OIM method is performed by using an apparatus combining a scanning electron microscope and an EBSP analyzer and OIM Analysis (registered trademark) manufactured by AMETEK.
  • the EBSP-OIM method can quantitatively analyze the fine structure and crystal orientation of the sample surface. Further, the analyzable area of the EBSP-OIM method is an area that can be observed by SEM. Although it depends on the resolution of the SEM, the EBSP-OIM method enables analysis with a minimum resolution of 20 nm. Since the threshold value of a large angle grain boundary generally recognized as a grain boundary is 15 °, in the present embodiment, a crystal grain having an orientation difference of 15 ° or more between adjacent crystal grains is defined as one crystal grain. The crystal grains are visualized by the image mapped by the above, and the average crystal grain size of the area average calculated by OIM Analysis is calculated.
  • the effective grain size of the crystal grains in at least 10 fields of view is measured, and the average of the effective grain sizes is taken as the average grain size.
  • the average crystal grain size of bainite and tempered martensite which are the main phases, and ferrite, pearlite and martensite. No distinction is made from the average grain size.
  • the average crystal grain size measured by the above measuring method is the average crystal grain size of bainite, tempered martensite, ferrite, pearlite, and martensite.
  • the effective crystal grain size of pearlite the effective crystal grain size of ferrite in pearlite is measured, not the effective crystal grain size of the pearlite block.
  • the C concentration in the retained austenite is preferably 2.0% by mass or less.
  • the C concentration in retained austenite is determined by X-ray diffraction. Specifically, an X-ray analysis using Cu-K ⁇ rays was carried out on the metal structure at a plate width cross section parallel to the rolling direction, at a depth of 1/4 of the plate thickness from the steel plate surface and at the center position in the plate width direction, to determine the retained austenite.
  • the lattice constant a (unit is Angstrom) is calculated from the reflection angles of the (200) plane, the (220) plane, and the (311) plane, and the C concentration (C ⁇ ) in the retained austenite is calculated according to the following equation (1).
  • the iron-based carbide in the present embodiment refers to one having a major axis length of less than 1 ⁇ m. That is, coarse carbides precipitated between cementite and bainite lath in pearlite having a major axis length of 1 ⁇ m or more are not included in iron-based carbides.
  • the present inventors investigated the relationship between the low temperature toughness of the hot rolled steel sheet and the number density of iron-based carbides, and found that the number density of iron-based carbides was 1.0 ⁇ 10 6 pieces / mm 2 or more It was revealed that low temperature toughness was obtained. Therefore, in the present embodiment, the number density of the iron-based carbides is 1.0 ⁇ in the metallographic structure at the plate width cross section parallel to the rolling direction, at a depth of 1 ⁇ 4 of the plate thickness from the steel plate surface and at the center position in the plate width direction. 10 6 pieces / mm 2 or more.
  • the number density of the iron-based carbide is preferably 5.0 ⁇ 10 6 pieces / mm 2 or more, more preferably 1.0 ⁇ 10 7 pieces / mm 2 or more.
  • the number density of iron-based carbide may be 1.0 ⁇ 10 10 particles / mm 2 or less. This is because if the number density of iron-based carbides exceeds 1.0 ⁇ 10 10 particles / mm 2 , carbon concentration in the retained austenite does not occur and the carbon concentration in the retained austenite may decrease.
  • the size of the iron-based carbide precipitated in the hot-rolled steel sheet according to this embodiment is as small as 300 nm or less, and most of the iron-based carbide precipitates in the lath of martensite and bainite, so it is estimated that the low temperature toughness of the steel sheet is not deteriorated. To be done.
  • the number density of iron-based carbides is measured by taking a sample with a plate width cross section parallel to the rolling direction as an observation surface, polishing the observation surface, and performing nital etching. It is performed by observing the range of the plate thickness 1/8 to 3/8 centered on the center position in the plate width direction with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope).
  • the number density of iron-based carbides is obtained by measuring the number density of iron-based carbides by observing in 10 or more visual fields at a magnification of 20000 times and calculating the average thereof.
  • the other end side in the plate width direction refers to a side opposite to one end side in the plate width direction.
  • the plate thickness of the hot rolled steel sheet according to the present embodiment is not particularly limited, but may be 1.2 to 8.0 mm. If the thickness of the hot-rolled steel sheet is less than 1.2 mm, it may be difficult to secure the rolling completion temperature and the rolling load may become excessive, which may make hot rolling difficult. Therefore, the thickness of the hot rolled steel sheet according to the present invention may be 1.2 mm or more. It is preferably 1.4 mm or more. On the other hand, if the plate thickness exceeds 8.0 mm, it may be difficult to make the metal structure fine, and it may be difficult to secure the metal structure described above. Therefore, the plate thickness may be 8.0 mm or less. It is preferably 6.0 mm or less.
  • the hot-rolled steel sheet according to the present embodiment having the above-described chemical composition and metallographic structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance or the like to be a surface-treated steel sheet.
  • the plated layer may be an electroplated layer or a hot-dip plated layer.
  • the electroplating layer include electrogalvanizing and electroplating Zn—Ni alloy.
  • the hot-dip galvanizing layer include hot-dip galvanizing, alloying hot-dip galvanizing, hot-dip aluminum coating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, hot-dip Zn-Al-Mg-Si alloy plating and the like.
  • the coating amount is not particularly limited and may be the same as the conventional one. Further, it is possible to further enhance the corrosion resistance by performing an appropriate chemical conversion treatment (for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid) after plating.
  • an appropriate chemical conversion treatment for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid
  • the hot-rolled steel sheet After performing hot rolling under predetermined conditions, it is cooled to a predetermined temperature range, and after winding, the sheet width direction most end portion and heat of the hot-rolled steel sheet are taken. It is important to control the cooling history of the central portion of the rolled steel sheet in the sheet width direction.
  • the following steps (1) to (7) are sequentially performed.
  • the temperature of the slab and the temperature of the steel sheet in the present embodiment refer to the surface temperature of the slab and the surface temperature of the steel sheet.
  • the slab is heated to a temperature T1 (° C) or higher represented by the following formula (2).
  • Hot rolling is performed in the temperature range of 850 to 1100 ° C. so as to reduce the total sheet thickness by 90% or more.
  • the hot rolling is completed at a temperature T2 (° C.) or higher represented by the following formula (3).
  • Cooling is started within 1.5 seconds after the completion of hot rolling, and is cooled to a temperature T3 (° C) or lower represented by the following formula (4) at an average cooling rate of 50 ° C / second or higher.
  • Cooling from the cooling stop temperature to the coiling temperature is performed at an average cooling rate of 10 ° C./sec or more.
  • Winding is performed at (T4-100) ° C. to (T4 + 50) ° C. with respect to the temperature T4 (° C.) represented by the following formula (5).
  • the lower limit of the residence time is Condition I (80 at 450 ° C.
  • Seconds or more 200 seconds or more at 400 ° C. or more and 1000 seconds or more at 350 ° C. or more
  • the upper limit of the residence time is Condition II (2000 seconds or less at 450 ° C. or more and 8000 at 400 ° C. or more). Within 3 seconds and at 350 ° C. or higher, all within 30000 seconds).
  • T1 (° C.) ⁇ 273.15 + 6770 / (2.25 ⁇ log ([Nb] ⁇ [C])) ...
  • T2 (° C.) 868-396 ⁇ [C] -68.1 ⁇ [Mn] + 24.6 ⁇ [Si] -36.1 ⁇ [Ni] -24.8 ⁇ [Cr] -20.7 ⁇ [Cu ] + 250 ⁇ [Al] ...
  • T3 (° C.) 770-270 ⁇ [C] ⁇ 90 ⁇ [Mn] ⁇ 37 ⁇ [Ni] ⁇ 70 ⁇ [Cr] ⁇ 83 ⁇ [Mo] ...
  • the temperature of the slab used for hot rolling may be a temperature at which NbC precipitated during casting can be solution-treated, and is set to T1 (° C) or higher represented by the above formula (2). From the viewpoint of suppressing scale loss, the slab heating temperature is preferably 1350 ° C or lower.
  • T1 (° C) or higher the slab to be subjected to hot rolling is a slab obtained by continuous casting or a slab obtained by slabbing and is in a high temperature state (T1 (° C) or higher), the slab is not heated and hot You may use for rolling.
  • hot rolling it is preferable to use a revers mill or a tandem mill as multi-pass rolling. Particularly, from the viewpoint of industrial productivity, it is more preferable to carry out hot rolling using a tandem mill at least in the final several stages.
  • Hot rolling completion temperature T2 (° C) or higher
  • the hot rolling completion temperature is T2 (° C) or higher.
  • Cooling after completion of hot rolling Cooling was started within 1.5 seconds and cooled to T3 (° C.) or less at an average cooling rate of 50 ° C./second or more. In order to suppress the growth of austenite crystal grains, cooling is performed within 1.5 seconds after completion of hot rolling to T3 (° C) or less at an average cooling rate of 50 ° C / second or more. By cooling to T3 (° C.) or less at an average cooling rate of 50 ° C./sec or more within 1.5 seconds after completion of hot rolling, formation of ferrite and pearlite is suppressed, and bainite and tempered martensite are suppressed. The area fraction can be increased.
  • the average cooling rate here means the temperature drop width of the steel sheet from the start of cooling (when the steel sheet is introduced into the cooling equipment) to the time when the cooling is completed (when the steel sheet is derived from the cooling equipment). It is the value divided by the time required to complete cooling. In the cooling after the completion of hot rolling, if the time until the start of cooling is more than 1.5 seconds, the average cooling rate is less than 50 ° C / second, or the cooling stop temperature is more than T3 (° C). Ferrite transformation and / or pearlite transformation inside the steel sheet become remarkable, and it becomes difficult to obtain a metal structure mainly composed of bainite and tempered martensite.
  • cooling is performed to T3 (° C) or less at an average cooling rate of 50 ° C / second or more.
  • the cooling stop temperature is preferably (T4-100) ° C. or higher.
  • the average cooling rate referred to here is a value obtained by dividing the temperature drop width of the steel sheet from the cooling stop temperature of cooling to the coiling temperature by the time required from the cooling stop to coiling.
  • the average cooling rate from the cooling stop temperature of the cooling to the winding temperature is 10 ° C./second or more.
  • the upper limit of the cooling rate is not specified, if the cooling rate is increased, the cooling equipment becomes large-scale and the equipment cost becomes high. Therefore, considering the equipment cost, 300 ° C./second or less is preferable.
  • Winding temperature (T4-100) ° C to (T4 + 50) ° C
  • the winding temperature is (T4-100) ° C to (T4 + 50) ° C. If the coiling temperature is lower than (T4-100) ° C, diffusion of carbon from bainite and tempered martensite into austenite does not proceed and austenite is not stabilized, so that the area fraction of retained austenite is 3.0% or more. Is difficult to obtain, and the ductility of the steel sheet is reduced. In addition, since the number density of iron-based carbides also decreases, the low temperature toughness of the steel sheet also deteriorates.
  • the winding temperature is (T4-100) ° C. to (T4 + 50) ° C.
  • Cooling after winding The lower limit of the residence time satisfies the following condition I in a predetermined temperature range at the end of the hot-rolled steel sheet in the width direction and the center of the hot-rolled steel sheet in the width direction, Cool so that the upper limit of the residence time satisfies the following condition II.
  • Condition I any one or more of 80 seconds or more at 450 ° C. or more, 200 seconds or more at 400 ° C. or more and 1000 seconds or more at 350 ° C. or more
  • Condition II 2000 seconds or less at 450 ° C. or more and 8000 seconds or more at 400 ° C. or more Further, in the cooling after winding all at 350 ° C.
  • the lower limit of the residence time in the predetermined temperature range at the end of the hot-rolled steel sheet in the width direction and the center of the hot-rolled steel sheet in the width direction is the condition I.
  • the condition I By cooling so as to satisfy, that is, by ensuring a residence time satisfying at least one of 80 seconds or more at 450 ° C. or more, 200 seconds or more at 400 ° C. or more and 1000 seconds or more at 350 ° C. or more, Promotes carbon diffusion from bainite and tempered martensite to austenite, increases area fraction of retained austenite, and decomposes retained austenite Can be easily suppressed.
  • the temperature of the end of the hot-rolled steel sheet in the sheet width direction is measured with a contact or non-contact thermometer.
  • the temperature of the central portion of the hot-rolled steel sheet in the width direction is measured by a thermocouple or calculated by heat transfer analysis. If the lower limit of the residence time does not satisfy Condition 1, that is, the residence time does not satisfy all of 80 seconds or more at 450 ° C. or more, 200 seconds or more at 400 ° C. or more and 1000 seconds or more at 350 ° C. or more, bainite and baking Carbon is not sufficiently diffused from reverted martensite into austenite, making it difficult to set the area fraction of retained austenite to 3.0% or more and further to set the C concentration in retained austenite to 0.5% by mass or more. And the ductility of the steel sheet decreases.
  • the upper limit of the residence time in the predetermined temperature range of the sheet width direction outermost portion of the hot rolled steel sheet and the sheet width direction central portion of the hot rolled steel sheet does not satisfy the condition II, that is, the residence time Is more than 2000 seconds above 450 ° C, more than 8000 seconds above 400 ° C, or more than 30,000 seconds above 350 ° C, austenite decomposes into iron-based carbides and tempered martensite. Therefore, the ductility of the steel sheet is reduced. Therefore, cooling is performed so that the upper limit of the residence time satisfies the condition II, that is, at 450 ° C. or higher and within 2000 seconds, 400 ° C.
  • the lower limit of the residence time is Condition I (80 ° C. or higher at 80 ° C.) in a predetermined temperature range at the end of the hot-rolled steel sheet in the width direction and the center of the hot-rolled steel sheet in the width direction. Seconds or more, 200 seconds or more at 400 ° C. or more and 1000 seconds or more at 350 ° C. or more), and the upper limit of the residence time is Condition II (2000 seconds or less at 450 ° C. or more and 8000 at 400 ° C. or more). Within 3 seconds and at 350 ° C. or higher, all within 30000 seconds). Cooling of the end of the hot-rolled steel sheet in the width direction and the center of the hot-rolled steel sheet in the width direction after winding may be controlled by a heat insulating cover, an edge mask, mist cooling or the like.
  • the hot-rolled steel sheets 1 to 37 Obtained manufacturing number.
  • the metal structure was observed by the above-described method, and the area fraction of each phase, the average crystal grain size, and the number density of iron-based carbides were determined. In addition, the manufacturing number.
  • the hot-rolled steel sheets Nos. 1 to 37 were subjected to X-ray diffraction by the above-mentioned method to determine the C concentration in the retained austenite. The obtained measurement results are shown in Tables 7-9.
  • ⁇ , ⁇ D1 , ⁇ D2 , ⁇ W1 and ⁇ W2 are plate width cross sections parallel to the rolling direction, and are 1/4 depth of the plate thickness from the surface and the center position in the plate width direction and the plate from the surface.
  • C ⁇ C , C ⁇ D1 , C ⁇ D2 , C ⁇ W1 and C ⁇ W2 in Table 9 are plate width cross sections parallel to the rolling direction, and are 1/4 depth of the plate thickness from the surface and the center position in the plate width direction, from the surface.
  • a position of 600 mm from the surface to 1/4 depth of the plate thickness and from the center position in the plate width direction to a position of 300 mm to the other end side in the plate width direction and from the surface to 1/4 depth of the plate thickness and from the center position in the plate width direction
  • Tensile strength property Among mechanical properties of hot-rolled steel sheet, tensile strength properties (tensile strength, total elongation) were evaluated according to JIS Z 2241: 2011.
  • the test piece was a JIS Z 2241: 2011 No. 5 test piece.
  • the tensile test pieces were sampled at a center position in the plate width direction, a position of 300 mm from the center position in the plate width direction to one end side in the plate width direction (position A in Table 10), and one end side in the plate width direction from the center position in the plate width direction.
  • the low temperature toughness of the hot rolled steel sheet was measured by the Charpy test.
  • the Charpy test was carried out according to JIS Z 2242: 2005, and the fracture surface transition temperature was measured. Since the hot-rolled steel sheet produced in this example had a thickness of less than 10.0 mm, the hot-rolled steel sheet having a thickness of 2.5 mm or more was ground to 2.5 mm by grinding the front and back sides of the hot-rolled steel sheet to a thickness of 2. For those less than 5 mm, the front and back of the hot rolled steel sheet were ground to 1.25 mm, and then a Charpy test was performed. When the ductility-brittleness transition temperature (vTrs) was ⁇ 50 ° C. or lower, it was determined as a hot-rolled steel sheet having excellent low temperature toughness and passed. The obtained measurement results are shown in Tables 10 and 11.
  • a hot rolled steel sheet having excellent strength, ductility, stretch flangeability and low temperature toughness can be provided. Moreover, according to a preferable aspect of the present invention, it is possible to provide a hot-rolled steel sheet having the above-mentioned characteristics and having a small material variation in the sheet width direction.
  • the hot-rolled steel sheet according to the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

この熱延鋼板は、所定の化学組成を有する。圧延方向に平行な板幅断面で、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織は、面積%で、ベイナイトおよび焼き戻しマルテンサイトを合計で77.0~97.0%、フェライトを0~5.0%、パーライトを0~5.0%、残留オーステナイトを3.0%以上、マルテンサイトを0~10.0%含有する。前記残留オーステナイトを除いた前記金属組織の平均結晶粒径は7.0μm以下である。前記残留オーステナイト中のC濃度は0.5質量%以上である。直径20nm以上の鉄系炭化物の個数密度は1.0×10個/mm以上である。

Description

熱延鋼板
 本発明は、熱延鋼板に関する。具体的には、プレス加工等により様々な形状に成形して利用される熱延鋼板、特に、高強度であり、且つ延性および伸びフランジ性に優れる熱延鋼板に関する。
 本願は、2018年10月19日に、日本に出願された特願2018-197937号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護の観点から、多くの分野において炭酸ガス排出量の削減が取り組まれている。自動車メーカーにおいても低燃費化を目的とした車体軽量化の技術開発が盛んに行われている。しかし、乗員の安全確保のために耐衝突特性の向上にも重点が置かれるため、車体軽量化は容易ではない。
 そこで、車体軽量化と耐衝突特性とを両立させるべく、高強度鋼板を用いて部材を薄肉化することが検討されている。このため、高い強度と優れた成形性とを兼備する鋼板が強く望まれており、これらの要求に応えるべく、幾つかの技術が従来から提案されている。なかでも、残留オーステナイトを含有する鋼板は、変態誘起塑性(TRIP)により優れた延性を示すことから、これまでにも多くの検討がなされている。
 例えば、特許文献1には、平均結晶粒径が10μm以下であるフェライト中に平均結晶粒径が5μm以下である残留オーステナイトを分散させた、耐衝突安全性および成形性に優れた自動車用高強度鋼板が開示されている。金属組織に残留オーステナイトを含む鋼板では、加工中にオーステナイトがマルテンサイト変態して、変態誘起塑性により大きな伸びを示すものの、硬質なマルテンサイトの生成により穴拡げ性が損なわれる。特許文献1には、フェライトおよび残留オーステナイトを微細化することにより、延性のみならず穴拡げ性も向上する、と開示されている。
 特許文献2には、結晶粒内に残留オーステナイトおよび/またはマルテンサイトからなる第二相を微細に分散させた、伸びおよび伸びフランジ性に優れた引張り強度が980MPa以上の高強度鋼板が開示されている。
 特許文献3および4には、延性および伸びフランジ性に優れた高張力熱延鋼板およびその製造方法が開示されている。特許文献3には、熱間圧延完了後1秒間以内に720℃以下の温度域まで冷却し、500℃超720℃以下の温度域に1~20秒間の滞在時間で滞在させた後、350~500℃の温度域で巻き取る、延性および伸びフランジ性が良好な高強度熱延鋼板の製造方法が開示されている。また、特許文献4には、ベイナイトを主体とし、適量のポリゴナルフェライトと残留オーステナイトとを有するとともに、残留オーステナイトを除く鋼組織において15°以上の結晶方位差を有する粒界で囲まれる粒の平均粒径が15μm以下である、延性および伸びフランジ性が良好な高強度熱延鋼板が開示されている。
 特許文献5には、粒形状の焼き戻しマルテンサイトを体積分率で90%以上、あるいは粒形状の、焼き戻しマルテンサイトと下部ベイナイトとの両方を体積分率の合計で90%以上含有し、前記焼き戻しマルテンサイトおよび前記下部ベイナイトの有効結晶粒の平均アスペクト比が2以下であり、前記焼き戻しマルテンサイトおよび下部ベイナイトの有効結晶粒径が10μm以下であって、前記焼き戻しマルテンサイトおよび下部ベイナイト中に鉄系炭化物が1×10(個/mm)以上存在する組織を有し、表面に、亜鉛めっき層あるいは合金化亜鉛めっき層を有することを特徴とする、強度および低温靭性に優れた熱延鋼板が開示されている。
日本国特開平11-61326号公報 日本国特開2005-179703号公報 日本国特開2012-251200号公報 日本国特開2015-124410号公報 日本国特許第6132017号公報
 自動車部品には様々な加工様式があるため、要求される成形性は適用される部材により異なるが、その中でも延性および伸びフランジ性は成形性の重要な指標として位置付けられている。自動車部品には、延性および伸びフランジ性を高いレベルで兼備することが望まれている。また、残留オーステナイトを含有する鋼板も延性および伸びフランジ性を高いレベルで兼備することが望まれているが、製造工程において精緻な温度制御が必要であり、実際に製造すると板幅方向の材質ばらつきが大きいという難点を有する。
 特許文献1に開示された自動車用高強度鋼板は、フェライトおよび残留オーステナイトの微細化により延性および穴拡げ性が向上するとされているものの、得られる穴拡げ比は最大で1.5であり十分なプレス成形性を備えるとは言い難い。また、加工硬化指数を高めて耐衝突安全性を改善するために、主相を軟質なフェライト相とする必要があり、高い引張強度が得られない場合がある。
 特許文献2に開示された高強度鋼板は、第二相をナノサイズにまで微細化して結晶粒内に分散させるために、CuおよびNi等の高価な元素を多量に含有させたり、高温で長時間の溶体化処理を行ったりする必要があり、著しく製造コストが上昇する場合および生産性が低下する場合がある。
 特許文献3に開示された高張力熱延鋼板の製造方法では、数100℃/s以上の冷却速度での急速冷却を700℃近傍の温度まで続けるため、量産工程において板温を容易に制御できない場合がある。
 特許文献4に開示された高張力熱延鋼板は、高強度であり、かつ延性および伸びフランジ性が良好であるものの、板厚方向の組織不均一性を制御することが必要であり、量産工程では歩留まりが顕著に低下する場合があると推測される。
 特許文献5に開示された熱延鋼板は、巻取り温度を100℃以上400℃未満とし、残留オーステナイトが生成される温度域での滞留時間が十分に確保されない条件で製造されているため、強度および延性(TS-ELバランス)に優れない場合がある。
 本発明は、従来技術の上記課題に鑑みてなされたものであり、高い強度を有するとともに、優れた延性および伸びフランジ性を有する熱延鋼板を提供することを目的とする。更に好ましくは、本発明は、上記の諸特性を有した上で、板幅方向の材質ばらつきが小さい熱延鋼板を提供することを目的とする。
 なお、本発明では、自動車部品等に適用される鋼板に要求される一般的な特性である低温靭性を満足した上で、上記の諸特性(強度、延性および伸びフランジ性)に優れた熱延鋼板を提供することを目的とする。
 本発明者らは、上述の課題に鑑み、熱延鋼板の化学組成および金属組織と機械特性との関係について鋭意研究を重ねた結果、以下の知見(a)~(g)を得て、本発明を完成した。
(a)優れた引張最大強度(以下、強度または引張強さと記載する場合がある)を得るためには、金属組織は硬質であることが好ましく、優れた伸びフランジ性を得るためには金属組織は均質であることが好ましい。したがって、熱延鋼板に高い強度と優れた伸びフランジ性とを兼備させるためには、硬質かつ均質な組織であるベイナイトおよび焼き戻しマルテンサイトが適しており、ベイナイトおよび焼き戻しマルテンサイトを主体とし、フェライト、パーライトおよびマルテンサイトの面積分率が少ない金属組織とすることが重要である。
(b)しかし、ベイナイトおよび焼き戻しマルテンサイトは延性に乏しい組織であるため、単にこれらを主体とする金属組織とするだけでは、優れた延性を確保することができない。
(c)熱延鋼板に優れた延性も兼備させるためには、変態誘起塑性(TRIP)により延性を高めることができる適量の残留オーステナイトを含有させることが効果的である。
(d)残留オーステナイトを室温で安定化させるためには、巻取中にベイナイトおよび焼き戻しマルテンサイトから拡散したCを、オーステナイト中に濃縮させることが効果的である。そのため、ベイナイトおよび焼き戻しマルテンサイトの変態が停留した後に、特定の温度域での滞留時間を確保することが効果的である。ただし、この滞留時間が長時間になり過ぎるとオーステナイトが分解し、残留オーステナイト量は減少するため、適切な滞留時間とすることが重要である。
(e)コイルを巻き取った際、板幅方向中央部と板幅方向の端面側の位置とでは冷却速度が大きく異なり、マルテンサイト変態の停留後の滞留時間に差が生じるため、残留オーステナイトの面積分率が変化して、板幅方向の材質ばらつきの原因となる。なお、板幅方向の材質ばらつきとは、板幅方向中央部における引張強さと延性とのバランス(TS×EL)と、板幅方向の端面側の位置(中央部から端面側に所定距離離れた位置)における引張強さと延性とのバランス(TS×EL)との差を意味する。
(f)Nbを含有させることにより、マルテンサイト変態が停留してからオーステナイトの分解が始まるまでの時間(変態停留時間)が大幅に長時間化するため、コイルを巻き取った際の熱延鋼板の板幅方向中央部と熱延鋼板の板幅方向最端部との冷却速度をある範囲に制御すれば、板幅方向中央位置と板幅方向の端面側の位置とにおける材質ばらつきを低減することができる。
(g)残留オーステナイトは、変態誘起塑性(TRIP)により延性を高めることができる反面、変態誘起塑性(TRIP)により硬質なマルテンサイトに変態して靭性を低下させる。母相もマルテンサイトの場合には自動車の足回り部品用鋼板に最低限必要な低温靭性を得ることができない。しかし、金属組織の平均結晶粒径を微細化し、また適量の鉄系炭化物を析出させてベイナイトまたは焼き戻しマルテンサイトとして母相中の固溶C量を低下させることで、低温靭性を確保することができる。
 上記知見に基づいてなされた本発明の要旨は、以下の通りである。
(1) 本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C:0.100~0.250%、
Si:0.05~3.00%、
Mn:1.00~4.00%、
Nb:0.005~0.050%、
sol.Al:0.001~2.000%、
P:0.100%以下、
S:0.0300%以下、
N:0.1000%以下、
O:0.0100%以下、
Ti:0~0.300%、
V:0~0.500%、
Cu:0~2.00%、
Cr:0~2.00%、
Mo:0~1.000%、
Ni:0~2.00%、
B:0~0.0100%、
Ca:0~0.0200%、
Mg:0~0.0200%、
REM:0~0.1000%、
Bi:0~0.020%、
Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、ならびに
Sn:0~0.050%を含有し、
 残部がFeおよび不純物からなり、
 圧延方向に平行な板幅断面で、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織が、面積%で、ベイナイトおよび焼き戻しマルテンサイトを合計で77.0~97.0%、フェライトを0~5.0%、パーライトを0~5.0%、残留オーステナイトを3.0%以上、マルテンサイトを0~10.0%含有し、前記残留オーステナイトを除いた前記金属組織の平均結晶粒径が7.0μm以下であり、前記残留オーステナイト中のC濃度が0.5質量%以上であり、直径20nm以上の鉄系炭化物の個数密度が1.0×10個/mm以上である。
(2) 上記(1)に記載の熱延鋼板は、前記圧延方向に平行な板幅断面で、前記表面から前記板厚の1/4深さ且つ板幅方向中央位置、前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の一端側に300mmの位置、前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記一端側に600mmの位置、前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の他端側に300mmの位置および前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記他端側に600mmの位置の金属組織における残留オーステナイトを面積%でそれぞれγ、γD1、γD2、γW1およびγW2としたとき、γ/γD1、γ/γD2、γ/γW1およびγ/γW2がそれぞれ0.8以上、1.2未満であり、
 前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置、前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記一端側に300mmの位置、前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記一端側に600mmの位置、前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記他端側に300mmの位置および前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記他端側に600mmの位置の前記金属組織における残留オーステナイト中のC濃度を質量%でそれぞれCγC、CγD1、CγD2、CγW1およびCγW2としたとき、CγC/CγD1、CγC/CγD2、CγC/CγW1およびCγC/CγW2がそれぞれ0.8以上、1.2未満であってもよい。
(3) 上記(1)または(2)に記載の熱延鋼板は、前記化学組成が、質量%で、
Ti:0.005~0.300%、
V:0.005~0.500%、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.010~1.000%、
Ni:0.02~2.00%、
B:0.0001~0.0100%、
Ca:0.0005~0.0200%、
Mg:0.0005~0.0200%、
REM:0.0005~0.1000%、および
Bi:0.0005~0.020%
からなる群から選択される1種または2種以上を含有してもよい。
 本発明に係る上記態様によれば、優れた強度、延性、伸びフランジ性および低温靭性を有する熱延鋼板を提供することができる。更に、本発明の好ましい態様によれば、上記の諸特性を有した上で、板幅方向の材質ばらつきが小さい熱延鋼板を提供することができる。
 本発明の上記態様に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。
 本実施形態に係る熱延鋼板(以下、単に鋼板と記載する場合がある)の化学組成および金属組織について、以下により具体的に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 以下に記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、鋼板の化学組成に関する%は特に指定しない限り質量%である。
1.化学組成
 本実施形態に係る熱延鋼板は、質量%で、C:0.100~0.250%、Si:0.05~3.00%、Mn:1.00~4.00%、Nb:0.005~0.050%、sol.Al:0.001~2.000%、P:0.100%以下、S:0.0300%以下、N:0.1000%以下およびO:0.0100%以下を含有し、残部がFeおよび不純物からなる。以下に各元素について詳細に説明する。
(1-1)C:0.100~0.250%
 Cは、ベイナイトの生成を促進する作用と残留オーステナイトを安定化する作用とを有する。C含有量が0.100%未満では、所望のベイナイト面積分率および残留オーステナイト面積分率を得ることが困難となる。所望のベイナイト面積分率を得ることができないと、所望のベイナイトおよび焼き戻しマルテンサイト面積分率を得ることが困難となる場合がある。したがって、C含有量は0.100%以上とする。C含有量は、好ましくは0.120%以上、0.150%以上である。一方、C含有量が0.250%超では、パーライトが優先的に生成してベイナイトおよび残留オーステナイトの生成が不十分となり、所望のベイナイトの面積分率および残留オーステナイトの面積分率を得ることが困難となる。したがって、C含有量は0.250%以下とする。C含有量は好ましくは0.220%以下である。
(1-2)Si:0.05~3.00%
 Siは、セメンタイトの析出を遅延させる作用を有する。この作用により、オーステナイトが未変態で残留する量、すなわち残留オーステナイトの面積分率を高めることができ、また固溶強化により鋼板の強度を高めることができる。また、Siは脱酸により鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する。Si含有量が0.05%未満では、上記作用による効果を得ることができない。したがって、Si含有量は0.05%以上とする。Si含有量は、好ましくは0.50%以上、1.00%以上である。しかし、Si含有量が3.00%超では、鋼板の表面性状および化成処理性、さらには延性および溶接性が著しく劣化するとともに、A変態点が著しく上昇する。これにより、安定して熱間圧延を行うことが困難になる。したがって、Si含有量は3.00%以下とする。Si含有量は、好ましくは2.70%以下、2.50%以下である。
(1-3)Mn:1.00~4.00%
 Mnは、フェライト変態を抑制してベイナイトの生成を促進する作用を有する。Mn含有量が1.00%未満では、所望のベイナイトの面積分率を得ることができない。したがって、Mn含有量は1.00%以上とする。Mn含有量は、好ましくは1.50%以上であり、より好ましくは1.80%以上である。一方、Mn含有量が4.00%超では、ベイナイト変態の完了が遅延することで、オーステナイトへの炭素濃化が促進されず、残留オーステナイトの生成が不十分となり、所望の残留オーステナイトの面積分率を得ることが困難となる。更に、残留オーステナイト中のC濃度を高めることが困難となる。したがって、Mn含有量は4.00%以下とする。Mn含有量は、好ましくは3.70%以下、3.50%以下である。
(1-4)Nb:0.005~0.050%
 本実施形態において、Nbは重要な元素である。Nbは通常、フェライトを炭化物により析出強化する目的および制御圧延によりオーステナイト粒径を微細化する目的で鋼中に含有させる。本発明者らはこれらの効果に加え、Nbは、ベイナイトおよび焼き戻しマルテンサイトの変態停留からオーステナイトの分解が始まるまでの時間(変態停留時間)を大幅に長時間化する効果を有することを新たに見出した。変態停留時間が長時間化されることで、巻取処理後にオーステナイトがセメンタイトおよびマルテンサイトに分解し難くなり、熱延鋼板の板幅方向の冷却速度の違いが大きくても、残留オーステナイトの面積分率を一定に保つことができる。すなわち、コイルを巻き取った際、冷却速度が比較的遅い熱延鋼板の板幅方向中央部と、冷却速度が比較的速い熱延鋼板の板幅方向最端部とにおける平均冷却速度を所定の範囲に制御すれば、材質ばらつきが低減できる。
 Nbによる変態停留時間の長時間化のメカニズムは明らかではないが、残留オーステナイトが分解してフェライトが生成する際、Nb炭化物が析出し、フェライトの更なる成長を遅らせることが要因と考えられる。上記効果は、Nb含有量が0.005%以上で発現するため、Nb含有量は0.005%以上とする。Nb含有量は、好ましくは、0.010%以上、0.015%以上である。一方、Nb含有量が0.050%超では、変態停留時間の長時間化の効果が飽和すると共に、圧延中のオーステナイト再結晶が抑制され、ベイナイトまたは焼き戻しマルテンサイトと残留オーステナイトとが層状に生成するため、鋼板の伸びフランジ性が低下する。したがって、Nb含有量は0.050%以下とする。Nb含有量は、好ましくは0.040%以下、0.030%以下である。
(1-5)sol.Al:0.001~2.000%
 Alは、Siと同様に、鋼を脱酸して鋼板を健全化する作用を有するとともに、オーステナイトからのセメンタイトの析出を抑制することで、残留オーステナイトの生成を促進する作用を有する。sol.Al含有量が0.001%未満では上記作用による効果を得ることができない。したがって、sol.Al含有量は、0.001%以上とする。sol.Al含有量は、好ましくは0.010%以上である。一方、sol.Al含有量が2.000%超では、上記効果が飽和するとともに経済的に好ましくないため、sol.Al含有量は2.000%以下とする。sol.Al含有量は、好ましくは1.500%以下、1.300%以下である。なお、sol.Alとは、soluble Alの略である。
(1-6)P:0.100%以下
 Pは、一般的に不純物として含有される元素であるが、固溶強化により強度を高める作用を有する元素でもある。したがって、Pを積極的に含有させてもよいが、Pは偏析し易い元素であり、P含有量が0.100%を超えると、粒界偏析に起因する成形性および靭性の低下が顕著となる。したがって、P含有量は、0.100%以下に制限する。P含有量は、好ましくは0.030%以下である。P含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.001%とすることが好ましい。
(1-7)S:0.0300%以下
 Sは、不純物として含有される元素であり、鋼中に硫化物系介在物を形成して熱延鋼板の成形性を低下させる。S含有量が0.0300%を超えると、鋼板の成形性が著しく低下する。したがって、S含有量は0.0300%以下に制限する。S含有量は、好ましくは0.0050%以下である。S含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0001%とすることが好ましい。
(1-8)N:0.1000%以下
 Nは、不純物として鋼中に含有される元素であり、鋼板の成形性を低下させる作用を有する。N含有量が0.1000%超では、鋼板の成形性が著しく低下する。したがって、N含有量は0.1000%以下とする。N含有量は、好ましくは0.0800%以下であり、さらに好ましくは0.0700%以下である。N含有量の下限は特に規定する必要はないが、後述するようにTiおよびVの1種または2種以上を含有させて金属組織の微細化を図る場合には、炭窒化物の析出を促進させるためにN含有量は0.0010%以上とすることが好ましく、0.0020%以上とすることがより好ましい。
(1-9)O:0.0100%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす。そのため、O含有量は0.0100%以下に制限する。O含有量は、0.0080%以下、0.0050%以下とすることが好ましい。溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.0005%以上、0.0010%以上としてもよい。
 本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物からなる。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるものであって、本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る熱延鋼板は、上記元素に加え、Ti、V、Cu、Cr、Mo、Ni、B、Ca、Mg、REM、Bi、Zr、Co、Zn、WおよびSnを任意元素として含有してもよい。上記任意元素を含有させない場合の含有量の下限は0%である。以下、上記任意元素について詳細に説明する。
(1-10)Ti:0.005~0.300%およびV:0.005~0.500%
 TiおよびVは、いずれも、鋼中に炭化物または窒化物として析出し、ピン止め効果によって金属組織を微細化する作用を有するため、これらの元素を必要に応じて含有させてもよい。上記作用による効果をより確実に得るためには、Ti含有量を0.005%以上とするか、あるいはV含有量を0.005%以上とすることが好ましい。しかし、これらの元素を過剰に含有させても、上記作用による効果が飽和して経済的に好ましくない。したがって、Ti含有量は0.300%以下とし、V含有量は0.500%以下とする。
(1-11)Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.010~1.000%、Ni:0.02~2.00%およびB:0.0001~0.0100%
 Cu、Cr、Mo、NiおよびBは、いずれも、鋼板の焼入性を高める作用を有する。また、CrおよびNiは残留オーステナイトを安定化させる作用を有し、CuおよびMoは鋼中に炭化物を析出して強度を高める作用を有する。さらに、Niは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。したがって、これらの元素を必要に応じて含有させてもよい。
 Cuは、鋼板の焼入れ性を高める作用および低温で鋼中に炭化物として析出して鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cu含有量は0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。しかし、Cu含有量が2.00%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は2.00%以下とする。Cu含有量は、好ましくは1.50%以下、1.00%以下である。
 上述したようにCrは、鋼板の焼入性を高める作用および残留オーステナイトを安定化させる作用を有する。上記作用による効果をより確実に得るためには、Cr含有量を0.01%以上、0.05%以上とすることが好ましい。しかし、Cr含有量が2.00%超では、鋼板の化成処理性が著しく低下する。したがって、Cr含有量は2.00%以下とする。
 上述したようにMoは、鋼板の焼入性を高める作用および鋼中に炭化物を析出して強度を高める作用を有する。上記作用による効果をより確実に得るためには、Mo含有量を0.010%以上、0.020%以上とすることが好ましい。しかし、Mo含有量を1.000%超としても上記作用による効果は飽和して経済的に好ましくない。したがって、Mo含有量は1.000%以下とする。Mo含有量は、好ましくは0.500%以下、0.200%以下である。
 上述したようにNiは、鋼板の焼入性を高める作用を有する。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果をより確実に得るためには、Ni含有量を0.02%以上とすることが好ましい。Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は2.00%以下とする。
 上述したようにBは、鋼板の焼入れ性を高める作用を有する。この作用による効果をより確実に得るためには、B含有量を0.0001%以上、0.0002%以上とすることが好ましい。しかし、B含有量が0.0100%超では、鋼板の成形性が著しく低下するため、B含有量は0.0100%以下とする。B含有量は、0.0050%以下とすることが好ましい。
(1-12)Ca:0.0005~0.0200%、Mg:0.0005~0.0200%、REM:0.0005~0.1000%およびBi:0.0005~0.020%
 Ca、MgおよびREMは、いずれも、介在物の形状を好ましい形状に調整することにより、鋼板の成形性を高める作用を有する。また、Biは、凝固組織を微細化することにより、鋼板の成形性を高める作用を有する。したがって、これらの元素を必要に応じて含有させてもよい。上記作用による効果をより確実に得るためには、Ca、Mg、REMおよびBiのいずれか1種以上を0.0005%以上とすることが好ましい。しかし、Ca含有量またはMg含有量が0.0200%を超えると、あるいはREM含有量が0.1000%を超えると、鋼中に介在物が過剰に生成され、却って鋼板の成形性を低下させる場合がある。また、Bi含有量を0.020%超としても、上記作用による効果は飽和してしまい、経済的に好ましくない。したがって、Ca含有量、Mg含有量を0.0200%以下、REM含有量を0.1000%以下、並びにBi含有量を0.020%以下とする。Bi含有量は、好ましくは0.010%以下である。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
(1-13)Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%およびSn:0~0.050%
 Zr、Co、ZnおよびWについて、本発明者らは、これらの元素を合計で1.00%以下含有させても、本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。そのため、Zr、Co、ZnおよびWのうち1種または2種以上を合計で1.00%以下含有させてもよい。
 また、本発明者らは、Snを少量含有させても本実施形態に係る熱延鋼板の効果は損なわれないことを確認しているが、熱間圧延時に疵が発生する場合があるため、Sn含有量は0.050%以下とする。
2.熱延鋼板の金属組織
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板では、圧延方向に平行な板幅断面において、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織が、面積分率(面積%)で、ベイナイトおよび焼き戻しマルテンサイトを合計で77.0~97.0%、フェライトを0~5.0%、パーライトを0~5.0%、残留オーステナイトを3.0%以上、マルテンサイトを0~10.0%含有することで、980MPa以上の引張最大強度と高いプレス成形性(延性および伸びフランジ性)とを得る。なお、本実施形態において、圧延方向に平行な板幅断面の、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織を規定する理由は、この位置における金属組織が、鋼板の代表的な金属組織を示すからである。ここで、圧延方向に平行な板幅断面とは、圧延方向に平行であり、板厚方向に平行であり、かつ板幅方向に垂直な断面(所謂、L断面)を指す。
(2-1)ベイナイトおよび焼き戻しマルテンサイトの合計の面積分率:77.0~97.0%
 ベイナイトおよび焼き戻しマルテンサイトは、本実施形態において最も重要な金属組織である。
 ベイナイトはラス状の結晶粒の集合である。ベイナイトには、ラス間に炭化物を含む、ラスの集合体である上部ベイナイトと、内部に長径5nm以上の鉄系炭化物を含む下部ベイナイトとがある。下部ベイナイトに析出する鉄系炭化物は、単一のバリアント、即ち、同一方向に伸張した鉄系炭化物群に属する。焼き戻しマルテンサイトは、ラス状の結晶粒の集合であり、内部に長径5nm以上の鉄系炭化物を含む。焼き戻しマルテンサイト内の鉄系炭化物は、複数のバリアント、即ち、異なる方向に伸長した複数の鉄系炭化物群に属する。
 上述したように、ベイナイトおよび焼き戻しマルテンサイトは、硬質かつ均質な金属組織であり、鋼板に高い強度と優れた伸びフランジ性とを兼備させるのに適した金属組織である。ベイナイトおよび焼き戻しマルテンサイトの合計の面積分率が77.0%未満では、高い強度と優れた伸びフランジ性とを鋼板に兼備させることができない。したがって、ベイナイトおよび焼き戻しマルテンサイトの合計の面積分率は77.0%以上とする。ベイナイトおよび焼き戻しマルテンサイトの合計の面積分率は、好ましくは85.0%以上、より好ましくは90.0%以上である。本実施形態に係る熱延鋼板は残留オーステナイトを3.0%以上含むため、ベイナイトおよび焼き戻しマルテンサイトの合計の面積分率は97.0%以下である。
(2-2)フェライトの面積分率:0~5.0%
 フェライトは塊状の結晶粒であって、内部に、ラス等の下部組織を含まない金属組織である。軟質なフェライトの面積分率が5.0%を超えると、ボイドの発生起点となり易いフェライトとベイナイトまたは焼き戻しマルテンサイトとの界面、およびフェライトと残留オーステナイトとの界面が増加することで、特に鋼板の伸びフランジ性が低下する。したがって、フェライトの面積分率は5.0%以下とする。フェライトの面積分率は、好ましくは4.0%以下、3.0%以下、2.0%未満である。鋼板の伸びフランジ性を向上させるために、フェライトの面積分率は可能な限り低減することが好ましく、その下限は0%とする。
(2-3)パーライトの面積分率:0~5.0%
 パーライトはフェライト同士の間にセメンタイトが層状に析出したラメラ状の金属組織であり、またベイナイトと比較すると軟質な金属組織である。パーライトの面積分率が5.0%を超えると、ボイドの発生起点となり易いパーライトとベイナイトまたは焼き戻しマルテンサイトとの界面、およびパーライトと残留オーステナイトとの界面が増加することで、特に鋼板の伸びフランジ性が低下する。したがって、パーライトの面積分率は5.0%以下とする。パーライトの面積分率は、好ましくは4.0%以下、3.0%以下、2.0%以下である。鋼板の伸びフランジ性を向上させるために、パーライトの面積分率は可能な限り低減することが好ましく、その下限は0%とする。
(2-4)マルテンサイトの面積分率:0~10.0%
 本実施形態において、マルテンサイトは直径5nm以上の炭化物がラス間とラス内に析出していない金属組織と定義する。マルテンサイトは非常に硬質な組織であり、鋼板の強度上昇に大きく寄与する。一方で、金属組織にマルテンサイトが含まれると、マルテンサイトと、母相であるベイナイトおよび焼き戻しマルテンサイトとの界面がボイドの発生起点となり、特に鋼板の伸びフランジ性が低下する。さらに、マルテンサイトは硬質組織であるため、鋼板の低温靭性を劣化させる。そのため、マルテンサイトの面積分率は10.0%以下とする。好ましくは、8%以下、6%以下、3%以下である。本実施形態に係る熱延鋼板は、所定量のベイナイトおよび焼き戻しマルテンサイトを含むため、マルテンサイトを含まない場合であっても所望の強度を確保することができる。所望の伸びフランジ性を得るため、マルテンサイトの面積分率は可能な限り低減することが好ましく、その下限は0%とする。
 以上のような本実施形態に係る熱延鋼板の金属組織を構成するベイナイト、焼き戻しマルテンサイト、フェライト、パーライトおよびマルテンサイトは、以下の方法によりこれらの金属組織の同定、存在位置の確認及び面積分率の測定を行う。
 まず、ナイタール試薬及び特開昭59-219473号公報に開示の試薬を用いて、圧延方向に平行な板幅断面を腐食する。板幅断面の腐食について、具体的には、100mlのエタノールに1~5gのピクリン酸を溶解した溶液をA液とし、100mlの水に1~25gのチオ硫酸ナトリウムおよび1~5gのクエン酸を溶解した溶液をB液とし、A液とB液とを1:1の割合で混合して混合液とし、この混合液の全量に対して1.5~4%の割合の硝酸を更に添加して混合した液を前処理液とする。また、2%ナイタール液に、2%ナイタール液の全量に対して10%の割合の上記前処理液を添加して混合した液を後処理液とする。圧延方向に平行な板幅断面を上記前処理液に3~15秒浸漬し、アルコールで洗浄して乾燥した後、上記後処理液に3~20秒浸漬した後、水洗し、乾燥することで、上記板幅断面を腐食する。なお、試薬についての%は全て体積%であり、割合は体積割合である。
 次に、鋼板表面から板厚の1/4深さ且つ板幅方向中央位置において、走査型電子顕微鏡を用いて倍率1000~100000倍で、40μm×30μmの領域を少なくとも3領域観察することによって、上記金属組織の同定、存在位置の確認、及び、面積分率の測定を行う。なお、上述の測定方法により下部ベイナイトと焼き戻しマルテンサイトとを区別することは困難であるため、本実施形態では両者を区別する必要はない。すなわち、「ベイナイトおよび焼き戻しマルテンサイト」の合計の面積分率は、「上部ベイナイト」および「下部ベイナイトまたは焼き戻しマルテンサイト」の面積分率を測定することで得る。なお、上述したように、上部ベイナイトは、ラスの集合体であり、ラス間に炭化物を含む組織であり、下部ベイナイトは、内部に長径5nm以上かつ同一方向に伸長した鉄系炭化物を含む組織であり、焼き戻しマルテンサイトは、ラス状の結晶粒の集合であり、内部に長径5nm以上かつ異なる方向に伸長した鉄系炭化物を含む組織である。
(2-5)残留オーステナイトの面積分率:3.0%以上
 残留オーステナイトは室温でも面心立方格子として存在する金属組織である。残留オーステナイトは、変態誘起塑性(TRIP)により鋼板の延性を高める作用を有する。残留オーステナイトの面積分率が3.0%未満では、上記作用による効果を得ることができず、鋼板の延性が劣化する。したがって、残留オーステナイトの面積分率は3.0%以上とする。残留オーステナイトの面積分率は、好ましくは5.0%以上、より好ましくは7.0%以上、さらに好ましくは8.0%以上である。残留オーステナイトの面積分率の上限は特に規定する必要はないが、本実施形態に係る熱延鋼板の化学組成において確保し得る残留オーステナイトの面積分率は概ね20.0%であるため、残留オーステナイトの面積分率の上限を20.0%としてもよい。
 残留オーステナイトの面積分率の測定方法には、X線回折、EBSP(電子後方散乱回折像、Electron Back Scattering Diffraction Pattern)解析、磁気測定による方法などがあり、測定方法によって測定値が異なる場合がある。本実施形態では、残留オーステナイトの面積分率はX線回折により測定する。
 本実施形態におけるX線回折による残留オーステナイト面積分率の測定では、まず、鋼板の板厚の1/4深さ位置における、圧延方向に平行な板幅断面において、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求め、強度平均法を用いて算出することで残留オーステナイトの面積分率を得る。
 なお、本実施形態では、ベイナイト、焼き戻しマルテンサイト、フェライト、パーライトおよびマルテンサイトの面積分率(残留オーステナイト以外の面積分率)と、残留オーステナイトの面積分率とを異なる測定方法で測定するため、上記2つの面積分率の合計が100.0%にならない場合がある。残留オーステナイト以外の面積分率と、残留オーステナイトの面積分率との合計が100.0%にならない場合は、合計が100.0%になるように上記2つの面積分率を調整する。例えば、残留オーステナイト以外の面積分率と、残留オーステナイトの面積分率との合計が101.0%である場合、両者の合計を100.0%とするために、測定により得られた残留オーステナイト以外の面積分率に100.0/101.0をかけた値を残留オーステナイト以外の面積分率と定義し、測定により得られた残留オーステナイトの面積分率に100.0/101.0をかけた値を残留オーステナイトの面積分率と定義する。
 残留オーステナイト以外の面積分率と、残留オーステナイトの面積分率との合計が95.0%未満である場合、または105.0%超である場合は、再度、面積分率の測定を行う。
(2-6)残留オーステナイトを除いた金属組織の平均結晶粒径:7.0μm以下
 残留オーステナイトを除いた金属組織(主相であるベイナイトおよび焼き戻しマルテンサイト、フェライト、パーライト並びにマルテンサイト)の平均結晶粒径(以下、単に平均結晶粒径と記載する場合がある)が微細化されることで、鋼板の低温靭性が向上する。平均結晶粒径が7.0μmを超えると、自動車の足回り部品用鋼板に必要とされる低温靭性の指標であるvTrs≦―50℃を満たすことができなくなる。そのため、平均結晶粒径を7.0μm以下とする。なお、平均結晶粒径の下限を特に限定する必要はない。平均結晶粒径は小さいほど好ましいが、平均結晶粒径を1.0μm未満とすることは製造設備の観点から現実的に困難な場合があるため、平均結晶粒径は1.0μm以上としてもよい。
 本実施形態では、結晶粒をEBSP-OIM(Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy)法を用いて定義する。EBSP-OIM法では、走査型電子顕微鏡(SEM)内で高傾斜した試料に電子線を照射し、後方散乱して形成された菊池パターンを高感度カメラで撮影し、撮影写真をコンピュータで画像処理する事により、照射点の結晶方位を短待間で測定することができる。EBSP-OIM法は、走査型電子顕微鏡とEBSP解析装置とを組み合わせた装置及びAMETEK社製のOIM Analysis(登録商標)を用いて行う。EBSP-OIM法では、試料表面の微細構造並びに結晶方位を定量的に解析できる。また、EBSP-OIM法の分析可能エリアは、SEMで観察できる領域である。SEMの分解能にもよるが、EBSP-OIM法によれば、最小20nmの分解能で分析できる。一般的に結晶粒界として認識されている大角粒界の閾値は15°であるため、本実施形態においては、隣接する結晶粒の方位差が15°以上のものを一つの結晶粒と定義してマッピングした画像により結晶粒を可視化し、OIM Analysisで計算される面積平均の平均結晶粒径を求める。
 圧延方向に平行な板幅断面における、鋼板表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織の平均結晶粒径の測定に当たっては、1200倍の倍率、40μm×30μmの領域で、少なくとも10視野における結晶粒の有効粒径粒径を測定し、有効結晶粒径の平均を平均結晶粒径とする。本測定方法では、主相以外の組織については面積分率が小さいため、影響が少ないと判断し、主相であるベイナイトおよび焼き戻しマルテンサイトの平均結晶粒径と、フェライト、パーライトおよびマルテンサイトの平均結晶粒径とを区別しない。すなわち、上述の測定方法により測定される平均結晶粒径は、ベイナイト、焼き戻しマルテンサイト、フェライト、パーライトおよびマルテンサイトの平均結晶粒径である。なお、パーライトの有効結晶粒径の測定においては、パーライトブロックの有効結晶粒径ではなく、パーライト中のフェライトの有効結晶粒径を測定する。
(2-7)残留オーステナイト中のC濃度:0.5質量%以上
 残留オーステナイト中のC濃度(炭素濃度)を0.5質量%以上とすることにより、残留オーステナイトが適度に安定化し、変形後期の高歪域において変態誘起塑性(TRIP)が多く生じるようになるため、鋼板の延性および伸びフランジ性を向上することができる。したがって、残留オーステナイト中のC濃度は0.5質量%以上とする。残留オーステナイト中のC濃度は、より好ましくは0.7質量%以上である。また、残留オーステナイト中のC濃度を2.0質量%以下とすることにより、残留オーステナイトの過度な安定化を抑制し、変態誘起塑性(TRIP)をより確実に発現させることができる。したがって、残留オーステナイト中のC濃度は2.0質量%以下とすることが好ましい。
 残留オーステナイト中のC濃度は、X線回折により求める。具体的には、圧延方向に平行な板幅断面における、鋼板表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織において、Cu-Kα線によるX線解析を行い、残留オーステナイトの(200)面、(220)面および(311)面の反射角から格子定数a(単位はオングストローム)を求め、次の式(1)に従い残留オーステナイト中のC濃度(Cγ)を算出する。
 Cγ=(a-3.572)/0.033・・・(1)
(2-8)直径20nm以上の鉄系炭化物の個数密度:1.0×10個/mm以上
 鋼中に直径20nm以上の鉄系炭化物を1.0×10個/mm以上含有させる理由は、母相の低温靭性を高め、優れた強度と低温靭性とのバランスを得るためである。
 鋼板の母相が焼き入れたままのマルテンサイトである場合には、強度は優れるものの低温靭性に乏しいため、低温靭性の改善が望まれる。そこで、所定数以上の鉄系炭化物を鋼中に析出させることで、主相の低温靭性を改善し、自動車の足回り部品用鋼板に求められる低温靭性(vTrs≦―50℃)を達成する。なお、本実施形態における鉄系炭化物とは、長軸の長さが1μm未満のものをいう。すなわち、長軸の長さが1μm以上であるパーライト中のセメンタイトやベイナイトラス間に析出した粗大炭化物は、鉄系炭化物に含めない。
 本発明者らが熱延鋼板の低温靭性と鉄系炭化物の個数密度との関係を調査したところ、鉄系炭化物の個数密度を1.0×10個/mm以上とすることで、優れた低温靭性が得られることが明らかとなった。そのため、本実施形態では、圧延方向に平行な板幅断面における、鋼板表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織において、鉄系炭化物の個数密度を1.0×10個/mm以上とする。鉄系炭化物の個数密度は、好ましくは5.0×10個/mm以上であり、より好ましくは1.0×10個/mm以上である。鉄系炭化物の個数密度は、1.0×1010個/mm以下としてもよい。鉄系炭化物の個数密度が1.0×1010個/mmを超えると残留オーステナイト中への炭素濃化が起こらず、残留オーステナイト中の炭素濃度が低下する場合があるためである。
 また、本実施形態に係る熱延鋼板に析出する鉄系炭化物のサイズは、300nm以下と小さく、ほとんどがマルテンサイト及びベイナイトのラス内に析出することから、鋼板の低温靭性を劣化させないものと推定される。
 鉄系炭化物の個数密度の測定は、圧延方向に平行な板幅断面を観察面として試料を採取し、観察面を研磨し、ナイタールエッチングし、鋼板表面から板厚の1/4深さ且つ板幅方向中央位置を中心とする板厚1/8~3/8の範囲を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察することで行う。倍率20000倍で10視野以上で観察を行い、鉄系炭化物の個数密度を測定し、その平均を算出することで鉄系炭化物の個数密度を得る。
(2-9)γ/γD1、γ/γD2、γ/γW1およびγ/γW2:0.8以上、1.2未満、並びにCγC/CγD1、CγC/CγD2、CγC/CγW1およびCγC/CγW2:0.8以上、1.2未満
 圧延方向に平行な板幅断面で、表面から板厚の1/4深さ且つ板幅方向中央位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に300mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に600mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に300mmの位置および表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に600mmの位置の金属組織における残留オーステナイトの面積分率をそれぞれγ、γD1、γD2、γW1およびγW2としたとき、γ/γD1、γ/γD2、γ/γW1およびγ/γW2がそれぞれ0.8以上、1.2未満であり、表面から板厚の1/4深さ且つ板幅方向中央位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に300mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に600mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に300mmの位置および表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に600mmの位置の金属組織における残留オーステナイト中のC濃度を質量%でそれぞれCγC、CγD1、CγD2、CγW1およびCγW2としたとき、CγC/CγD1、CγC/CγD2、CγC/CγW1およびCγC/CγW2がそれぞれ0.8以上、1.2未満である場合、板幅方向中央位置と板幅方向端面側の位置とにおける材質ばらつきをより低減することができる。γ/γD1、γ/γD2、γ/γW1およびγ/γW2の値が上述の条件を満たさない場合には、変態誘起塑性(TRIP)現象の発生頻度が板幅方向によって異なるため、強度と延性の積のばらつきが大きく、歩留まり低下の原因となる場合がある。さらに、CγC/CγD1、CγC/CγD2、CγC/CγW1およびCγC/CγW2の値が上述の条件を満たさない場合には、残留オーステナイトの安定度が板幅方向によって異なるため、強度と延性の積のばらつきが大きく、歩留まり低下の原因となる場合がある。なお、本実施形態において板幅方向の他端側とは、板幅方向の一端側の逆側を指す。
 圧延方向に平行な板幅断面における、表面から板厚の1/4深さ且つ板幅方向中央位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に300mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に600mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に300mmの位置および表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に600mmの位置の金属組織における残留オーステナイトの面積分率(γ、γD1、γD2、γW1およびγW2)、並びに上記それぞれの位置の金属組織における残留オーステナイト中の質量%でのC濃度(CγC、CγD1、CγD2、CγW1およびCγW2)は、それぞれの位置において、上述した残留オーステナイトの面積分率の測定方法および残留オーステナイト中のC濃度の測定方法により測定する。
3.板厚
 本実施形態に係る熱延鋼板の板厚は特に限定されないが、1.2~8.0mmとしてもよい。熱延鋼板の板厚が1.2mm未満では、圧延完了温度の確保が困難になるとともに圧延荷重が過大となって、熱間圧延が困難となる場合がある。したがって、本発明に係る熱延鋼板の板厚は1.2mm以上としてもよい。好ましくは1.4mm以上である。一方、板厚が8.0mm超では、金属組織の微細化が困難となり、上述した金属組織を確保することが困難となる場合がある。したがって、板厚は8.0mm以下としてもよい。好ましくは6.0mm以下である。
4.その他
(4-1)めっき層
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
5.製造条件
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板の好適な製造方法は、以下の通りである。
 本実施形態に係る熱延鋼板を得るためには、所定の条件で熱間圧延を行った後に所定の温度域まで冷却し、巻き取った後で熱延鋼板の板幅方向最端部および熱延鋼板の板幅方向中央部の冷却履歴を制御することが重要である。
 本実施形態に係る熱延鋼板の好適な製造方法では、以下の工程(1)~(7)を順次行う。なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。
(1)下記式(2)により表される温度T1(℃)以上にスラブを加熱する。
(2)850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行う。
(3)下記式(3)により表される温度T2(℃)以上で熱間圧延を完了する。
(4)熱間圧延完了後1.5秒以内に冷却を開始して、50℃/秒以上の平均冷却速度で下記式(4)により表される温度T3(℃)以下まで冷却する。
(5)冷却の冷却停止温度から巻取り温度までを10℃/秒以上の平均冷却速度で冷却する。
(6)下記式(5)により表される温度T4(℃)に対し、(T4-100)℃~(T4+50)℃で巻き取る。
(7)巻取り後の冷却において、熱延鋼板の板幅方向最端部および熱延鋼板の板幅方向中央部の所定の温度域で、滞留時間の下限が条件I(450℃以上で80秒以上、400℃以上で200秒以上および350℃以上で1000秒以上のいずれか一つ以上)を満足し、滞留時間の上限が条件II(450℃以上で2000秒以内かつ400℃以上で8000秒以内かつ350℃以上で30000秒以内の全て)を満足するように冷却する。
T1(℃)=-273.15+6770/(2.25-log([Nb]×[C]))…(2)
T2(℃)=868-396×[C]-68.1×[Mn]+24.6×[Si]-36.1×[Ni]-24.8×[Cr]-20.7×[Cu]+250×[Al]…(3)
T3(℃)=770-270×[C]-90×[Mn]-37×[Ni]-70×[Cr]-83×[Mo]…(4)
T4(℃)=591-474×[C]-33×[Mn]-17×[Ni]-17×[Cr]-21×[Mo]…(5)
 ただし、各式中の[元素記号]は各元素の鋼中の含有量(質量%)を示し、当該元素を含有しない場合は0を代入する。また、上記式(2)中のlogは底が10の常用対数を示す。
(5-1)スラブ、熱間圧延に供する際のスラブ温度、熱間圧延の態様
 熱間圧延に供するスラブは、連続鋳造により得られたスラブや鋳造・分塊により得られたスラブなどを用いることができ、必要によってはそれらに熱間加工または冷間加工を加えたものを用いることができる。
 熱間圧延に供するスラブの温度は、鋳造時に析出したNbCを溶体化できる温度とすればよく、上述の式(2)により表されるT1(℃)以上とする。スケールロスを抑制する観点からは、スラブ加熱温度は1350℃以下とすることが好ましい。なお、熱間圧延に供するスラブが連続鋳造により得られたスラブや分塊圧延により得られたスラブであって高温状態(T1(℃)以上)にある場合には、加熱せずにそのまま熱間圧延に供してもよい。
 熱間圧延は、多パス圧延としてレバースミルまたはタンデムミルを用いることが好ましい。特に工業的生産性の観点から、少なくとも最終の数段はタンデムミルを用いた熱間圧延とすることがより好ましい。
(5-2)熱間圧延の圧下率:850~1100℃の温度域で合計90%以上の板厚減
 850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことにより、主に再結晶オーステナイト粒の微細化が図られるとともに、未再結晶オーステナイト粒内へのひずみエネルギーの蓄積が促進され、主相となるベイナイトおよび焼き戻しマルテンサイトの平均結晶粒径が微細化する。したがって、850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行う。なお、850~1100℃の温度域の板厚減とは、この温度域の圧延における最初のパス前の入口板厚tとし、この温度域の圧延における最終パス後の出口板厚をtとしたとき、(t-t)/t×100(%)で表すことができる。
(5-3)熱間圧延完了温度:T2(℃)以上
 熱間圧延の完了温度はT2(℃)以上とする。熱間圧延の完了温度をT2(℃)以上とすることで、オーステナイト中のフェライト核生成サイト数の過剰な増大を抑制することができ、最終組織(製造後の熱延鋼板の金属組織)におけるフェライトの面積分率を5.0%以下に抑えることができる。
(5-4)熱間圧延完了後の冷却:1.5秒以内に冷却を開始して、50℃/秒以上の平均冷却速度でT3(℃)以下まで冷却
 熱間圧延により細粒化したオーステナイト結晶粒の成長を抑制するため、熱間圧延完了後1.5秒以内に、50℃/秒以上の平均冷却速度でT3(℃)以下まで冷却を行う。
 熱間圧延完了後1.5秒以内に、50℃/秒以上の平均冷却速度でT3(℃)以下まで冷却を行うことで、フェライトおよびパーライトの生成を抑制し、ベイナイトおよび焼き戻しマルテンサイトの面積分率を高めることができる。これにより、金属組織中の均一性が向上し、鋼板の強度および伸びフランジ性が向上する。なお、ここでいう平均冷却速度とは、冷却開始時(冷却設備への鋼板の導入時)から冷却完了時(冷却設備から鋼板の導出時)までの鋼板の温度降下幅を、冷却開始時から冷却完了時までの所要時間で除した値のことをいう。熱間圧延完了後の冷却において、冷却開始までの時間が1.5秒超であったり、平均冷却速度が50℃/秒未満であったり、冷却停止温度がT3(℃)超であったりすると、鋼板内部でのフェライト変態および/またはパーライト変態が顕著となり、ベイナイトおよび焼き戻しマルテンサイト主体の金属組織を得ることが困難となる。したがって、熱間圧延完了後1.5秒以内に、50℃/秒以上の平均冷却速度でT3(℃)以下まで冷却を行う。冷却速度の上限値は特に規定しないが、冷却速度を速くすると冷却設備が大掛かりとなり、設備コストが高くなる。このため、設備コストを考えると、300℃/秒以下が好ましい。また、冷却停止温度は(T4-100)℃以上とするとよい。
(5-5)冷却の冷却停止温度から巻取り温度までの平均冷却速度:10℃/秒以上
 パーライトの面積分率を5.0%以下に抑えるために、冷却の冷却停止温度から巻取り温度までの平均冷却速度を10℃/秒以上とする。これによりベイナイトおよび焼き戻しマルテンサイトの面積分率が増大し、鋼板の強度および伸びフランジ性のバランスを高めることができる。なお、ここでいう平均冷却速度とは、冷却の冷却停止温度から巻取り温度までの鋼板の温度降下幅を、冷却の停止時から巻取りまでの所要時間で除した値のことをいう。上記平均冷却速度が10℃/秒未満では、パーライトの面積分率が増大し、強度が低下するとともに延性が低下する。したがって、冷却の冷却停止温度から巻取り温度までの平均冷却速度は10℃/秒以上とする。冷却速度の上限値は特に規定しないが、冷却速度を速くすると冷却設備が大掛かりとなり、設備コストが高くなる。このため、設備コストを考えると、300℃/秒以下が好ましい。
(5-6)巻取り温度:(T4-100)℃~(T4+50)℃
 巻取り温度は(T4-100)℃~(T4+50)℃とする。巻取り温度を(T4-100)℃未満とするとベイナイトおよび焼き戻しマルテンサイトからオーステナイト中への炭素の拡散が進まず、オーステナイトが安定化しないため、面積分率で3.0%以上の残留オーステナイトを得ることが困難となり、鋼板の延性が低下する。加えて鉄系炭化物の個数密度も低下することから、鋼板の低温靭性も劣化する。また、巻取り温度が(T4+50)℃超の場合、ベイナイトおよび焼き戻しマルテンサイトから拡散された炭素が、鉄系炭化物として鋼中に過剰に析出してしまうため、オーステナイト中に炭素が十分濃化せず、残留オーステナイト中のC濃度を0.5質量%以上にすることが困難となる。したがって、巻取り温度は(T4-100)℃~(T4+50)℃とする。
(5-7)巻取り後の冷却:熱延鋼板の板幅方向最端部および熱延鋼板の板幅方向中央部の所定の温度域で、滞留時間の下限が下記条件Iを満足し、滞留時間の上限が下記条件IIを満足するように冷却する。
条件I:450℃以上で80秒以上、400℃以上で200秒以上および350℃以上で1000秒以上のいずれか一つ以上
条件II:450℃以上で2000秒以内かつ400℃以上で8000秒以内かつ350℃以上で30000秒以内の全て
 巻取り後の冷却において、熱延鋼板の板幅方向最端部および熱延鋼板の板幅方向中央部の所定の温度域における滞留時間の下限が条件Iを満足するように冷却することで、すなわち450℃以上で80秒以上、400℃以上で200秒以上および350℃以上で1000秒以上のいずれか一つ以上を満たす滞留時間を確保することで、ベイナイトおよび焼き戻しマルテンサイトからオーステナイトへの炭素の拡散を促進し、残留オーステナイトの面積分率を高め、かつ残留オーステナイトの分解を抑制し易くなる。なお、本実施形態において熱延鋼板の板幅方向最端部の温度は接触式または非接触式温度計で測定する。熱延鋼板の板幅方向中央部の温度は熱電対により測定するか、伝熱解析により計算する。滞留時間の下限が条件1を満足しないと、すなわち450℃以上で80秒以上、400℃以上で200秒以上および350℃以上で1000秒以上の全てを満足しない滞留時間であると、ベイナイトおよび焼き戻しマルテンサイトからオーステナイト中への炭素の拡散が十分に行われず、残留オーステナイトの面積分率を3.0%以上、更に残留オーステナイト中のC濃度を0.5質量%以上にすることが困難になり、鋼板の延性が低下する。
 一方、巻取り後の冷却において、熱延鋼板の板幅方向最端部および熱延鋼板の板幅方向中央部の所定の温度域における滞留時間の上限が条件IIを満足しないと、すなわち滞留時間が450℃以上で2000秒超、400℃以上で8000秒超、あるいは350℃以上で30000秒超のいずれか一つにでも該当すると、オーステナイトが鉄系炭化物と焼き戻しマルテンサイトとに分解してしまい、鋼板の延性が低下する。そのため、滞留時間の上限が条件IIを満足するように、すなわち450℃以上で2000秒以内かつ400℃以上で8000秒以内かつ350℃以上で30000秒以内の全てを満足するように冷却する。以上より、巻取り後の冷却は、熱延鋼板の板幅方向最端部および熱延鋼板の板幅方向中央部の所定の温度域で、滞留時間の下限が条件I(450℃以上で80秒以上、400℃以上で200秒以上および350℃以上で1000秒以上のいずれか一つ以上)を満足し、滞留時間の上限が条件II(450℃以上で2000秒以内かつ400℃以上で8000秒以内かつ350℃以上で30000秒以内の全て)を満足するように冷却する。巻取り後の熱延鋼板の板幅方向最端部および熱延鋼板の板幅方向中央部の冷却は、保温カバーやエッジマスク、ミスト冷却等によって制御するとよい。
 次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1および表2の鋼No.A~Zに示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表3~6に示す製造条件により、熱延鋼板を得た。
 なお、製造No.35は、巻取り後、表6に記載の冷延率で冷間圧延を施し、表6に記載の焼鈍保持温度および焼鈍保持時間で焼鈍を行った。更にその後、表6に記載の1次冷却速度で冷却停止温度まで冷却した後、表6に記載の冷却後保持時間で保持した。表5において、製造No.35については、熱間圧延して巻き取った後且つ表6の焼鈍を行う前の滞留時間を記載している。
 また、製造No.36および37は、熱間圧延後の冷却において、表4に示す滞留温度で一旦冷却を停止して、その滞留温度で表4に示す滞留時間だけ滞留させた後、再度冷却した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 得られた製造No.1~37の熱延鋼板に対し、上述の方法により金属組織の観察を行い、各相の面積分率、平均結晶粒径および鉄系炭化物の個数密度を求めた。また、製造No.1~37の熱延鋼板に対し、上述の方法によりX線回折を行い、残留オーステナイト中のC濃度を求めた。得られた測定結果を表7~表9に示す。
 なお、表8のγ、γD1、γD2、γW1およびγW2は、圧延方向に平行な板幅断面で、表面から板厚の1/4深さ且つ板幅方向中央位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に300mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に600mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に300mmの位置および表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に600mmの位置の金属組織における残留オーステナイトの面積分率である。
 また、表9のCγC、CγD1、CγD2、CγW1およびCγW2は、圧延方向に平行な板幅断面で、表面から板厚の1/4深さ且つ板幅方向中央位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に300mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の一端側に600mmの位置、表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に300mmの位置および表面から板厚の1/4深さ且つ板幅方向中央位置から板幅方向の他端側に600mmの位置の金属組織における残留オーステナイト中の質量%でのC濃度である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 熱延鋼板の特性の評価方法
 (1)引張強度特性
 熱延鋼板の機械的性質のうち引張強度特性(引張強さ、全伸び)は、JIS Z 2241:2011に準拠して評価した。試験片はJIS Z 2241:2011の5号試験片とした。引張試験片の採取位置は、板幅方向中央位置、板幅方向中央位置から板幅方向の一端側に300mmの位置(表10の位置A)、板幅方向中央位置から板幅方向の一端側に600mmの位置(表10の位置B)、板幅方向中央位置から板幅方向の他端側に300mmの位置(表10の位置C)および板幅方向中央位置から板幅方向の他端側に600mmの位置(表10の位置D)とし、圧延方向に垂直な方向を長手方向とした。
 板幅方向中央位置において、(引張強さTS(MPa))×(全伸びEL(%))≧19000を満たした場合、強度および延性に優れた熱延鋼板であるとして合格と判定した。また、板幅方向中央位置、板幅方向中央位置から板幅方向の一端側に300mmの位置(表10の位置A)、板幅方向中央位置から板幅方向の一端側に600mmの位置(表10の位置B)、板幅方向中央位置から板幅方向の他端側に300mmの位置(表10の位置C)および板幅方向中央位置から板幅方向の他端側に600mmの位置(表10の位置D)の(引張強さTS(MPa))×(全伸びEL(%))をそれぞれ、(TS×EL)、(TS×EL)D1、(TS×EL)D2、(TS×EL)W1、(TS×EL)W2としたとき、0.80≦{(TS×EL)/(TS×EL)D1}≦1.20、0.80≦{(TS×EL)/(TS×EL)D2}≦1.20、0.80≦{(TS×EL)/(TS×EL)W1}≦1.20、0.80≦{(TS×EL)/(TS×EL)W2}≦1.20を満たした場合、板幅方向のばらつきが小さい熱延鋼板であるとして合格と判定した。
 (2)穴広げ率
 熱延鋼板の穴広げ率は、日本鉄鋼連盟規格JFS T 1001-1996に記載の試験方法に準拠した穴広げ試験により評価した。試験片は引張試験片採取位置と同様の位置から採取し、円筒パンチで打ち抜き穴を設けた。(引張強さTS(MPa))×(穴広げ率λ(%))≧50000を満たした場合、強度および伸びフランジ性に優れた熱延鋼板であるとして合格と判定した。
(3)低温靱性
 熱延鋼板の低温靱性はシャルピー試験で測定した。シャルピー試験はJIS Z 2242:2005に準拠して実施し、破面遷移温度を測定した。本実施例で製造した熱延鋼板は板厚が10.0mm未満であったため、板厚が2.5mm以上のものは熱延鋼板の表裏を研削して2.5mmに、板厚が2.5mm未満のものは熱延鋼板の表裏を研削して1.25mmとした後、シャルピー試験を実施した。延性―脆性遷移温度(vTrs)が-50℃以下であった場合、低温靭性に優れる熱延鋼板であるとして合格と判定した。
 得られた測定結果を表10および11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表10および11から分かるように、本発明例である製造No.1、2および14~26では、優れた強度、延性、伸びフランジ性および低温靭性を有し、且つ板幅方向の材質ばらつきが小さい熱延鋼板が得られた。
 一方、化学組成、金属組織、残留オーステナイト中のC濃度、残留オーステナイトを除いた金属組織の平均結晶粒径および/または直径20nm以上の鉄系炭化物の個数密度が本発明で規定する範囲内でない製造No.3~13および27~37は、特性(引張強さTS、全伸びEL、穴広げ率γ、低温靭性(vTrs)、板幅方向の材質ばらつき)のうちいずれか一つ以上が劣った。
 本発明によれば、優れた強度、延性、伸びフランジ性および低温靭性を有する熱延鋼板を提供することができる。また、本発明の好ましい態様によれば、上記の特性を有した上で、板幅方向の材質ばらつきが小さい熱延鋼板を提供することができる。
 本発明に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。

Claims (3)

  1.  化学組成が、質量%で、
    C:0.100~0.250%、
    Si:0.05~3.00%、
    Mn:1.00~4.00%、
    Nb:0.005~0.050%、
    sol.Al:0.001~2.000%、
    P:0.100%以下、
    S:0.0300%以下、
    N:0.1000%以下、
    O:0.0100%以下、
    Ti:0~0.300%、
    V:0~0.500%、
    Cu:0~2.00%、
    Cr:0~2.00%、
    Mo:0~1.000%、
    Ni:0~2.00%、
    B:0~0.0100%、
    Ca:0~0.0200%、
    Mg:0~0.0200%、
    REM:0~0.1000%、
    Bi:0~0.020%、
    Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、ならびに
    Sn:0~0.050%を含有し、
     残部がFeおよび不純物からなり、
     圧延方向に平行な板幅断面で、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織が、面積%で、
     ベイナイトおよび焼き戻しマルテンサイトを合計で77.0~97.0%、
     フェライトを0~5.0%、
     パーライトを0~5.0%、
     残留オーステナイトを3.0%以上、
     マルテンサイトを0~10.0%含有し、
     前記残留オーステナイトを除いた前記金属組織の平均結晶粒径が7.0μm以下であり、
     前記残留オーステナイト中のC濃度が0.5質量%以上であり、
     直径20nm以上の鉄系炭化物の個数密度が1.0×10個/mm以上であることを特徴とする熱延鋼板。
  2.  前記圧延方向に平行な板幅断面で、
     前記表面から前記板厚の1/4深さ且つ板幅方向中央位置、
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の一端側に300mmの位置、
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記一端側に600mmの位置、
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の他端側に300mmの位置、および
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記他端側に600mmの位置
    の金属組織における残留オーステナイトを面積%でそれぞれγ、γD1、γD2、γW1およびγW2としたとき、γ/γD1、γ/γD2、γ/γW1およびγ/γW2がそれぞれ0.8以上、1.2未満であり、
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置、
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記一端側に300mmの位置、
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記一端側に600mmの位置、
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記他端側に300mmの位置、および
     前記表面から前記板厚の1/4深さ且つ前記板幅方向中央位置から板幅方向の前記他端側に600mmの位置
    の前記金属組織における残留オーステナイト中のC濃度を質量%でそれぞれCγC、CγD1、CγD2、CγW1およびCγW2としたとき、CγC/CγD1、CγC/CγD2、CγC/CγW1およびCγC/CγW2がそれぞれ0.8以上、1.2未満であることを特徴とする請求項1に記載の熱延鋼板。
  3.  前記化学組成が、質量%で、
    Ti:0.005~0.300%、
    V:0.005~0.500%、
    Cu:0.01~2.00%、
    Cr:0.01~2.00%、
    Mo:0.010~1.000%、
    Ni:0.02~2.00%、
    B:0.0001~0.0100%、
    Ca:0.0005~0.0200%、
    Mg:0.0005~0.0200%、
    REM:0.0005~0.1000%、および
    Bi:0.0005~0.020%
    からなる群から選択される1種または2種以上を含有することを特徴とする請求項1または2に記載の熱延鋼板。
PCT/JP2019/041330 2018-10-19 2019-10-21 熱延鋼板 WO2020080554A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020510623A JP6773252B2 (ja) 2018-10-19 2019-10-21 熱延鋼板
EP19873490.7A EP3868908A4 (en) 2018-10-19 2019-10-21 HOT ROLLED STEEL SHEET
CN201980067798.2A CN112840057B (zh) 2018-10-19 2019-10-21 热轧钢板
US17/285,428 US11970758B2 (en) 2018-10-19 2019-10-21 Hot-rolled steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-197937 2018-10-19
JP2018197937 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020080554A1 true WO2020080554A1 (ja) 2020-04-23

Family

ID=70283289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041330 WO2020080554A1 (ja) 2018-10-19 2019-10-21 熱延鋼板

Country Status (5)

Country Link
US (1) US11970758B2 (ja)
EP (1) EP3868908A4 (ja)
JP (1) JP6773252B2 (ja)
CN (1) CN112840057B (ja)
WO (1) WO2020080554A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063253A (ja) * 2019-10-11 2021-04-22 Jfeスチール株式会社 高強度熱延鋼板及びその製造方法
CN112831720A (zh) * 2020-12-30 2021-05-25 钢铁研究总院 一种440MPa级极地船体用钢及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219473A (ja) 1983-05-26 1984-12-10 Nippon Steel Corp カラ−エツチング液及びエツチング方法
JPS6132017B2 (ja) 1985-01-17 1986-07-24 Yoshida Seisakusho Kk
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2012251200A (ja) 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板の製造方法
WO2014185405A1 (ja) * 2013-05-14 2014-11-20 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2015124410A (ja) 2013-12-26 2015-07-06 新日鐵住金株式会社 熱延鋼板
WO2017130875A1 (ja) * 2016-01-27 2017-08-03 Jfeスチール株式会社 電縫鋼管用高強度熱延鋼板およびその製造方法
WO2018033960A1 (ja) * 2016-08-16 2018-02-22 新日鐵住金株式会社 熱間プレス成形部材
WO2018055695A1 (ja) * 2016-09-21 2018-03-29 新日鐵住金株式会社 鋼板
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
JP2018197937A (ja) 2017-05-23 2018-12-13 パナソニックIpマネジメント株式会社 自動販売機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2278841C (en) 1997-01-29 2007-05-01 Nippon Steel Corporation High strength steels having excellent formability and high impact energy absorption properties, and a method for producing the same
US10023929B2 (en) * 2013-05-21 2018-07-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
MX2016011083A (es) * 2014-02-27 2016-11-25 Jfe Steel Corp Lamina de acero laminada en caliente de alta resistencia y metodo para la fabricacion de la misma.
KR101957078B1 (ko) * 2015-02-20 2019-03-11 신닛테츠스미킨 카부시키카이샤 열연 강판
CN107429362B (zh) * 2015-04-01 2020-06-23 杰富意钢铁株式会社 热轧钢板及其制造方法
JP6610389B2 (ja) * 2015-04-01 2019-11-27 日本製鉄株式会社 熱延鋼板及びその製造方法
BR112017021206A2 (ja) * 2015-04-15 2018-07-03 Nippon Steel & Sumitomo Metal Corporation A hot-rolled steel product and a manufacturing method for the same
WO2017138384A1 (ja) * 2016-02-10 2017-08-17 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
BR112018012681A2 (ja) 2016-03-25 2018-12-04 Nippon Steel & Sumitomo Metal Corporation A high intensity steel plate and a high intensity galvanized steel sheet
MX2021004105A (es) * 2018-10-19 2021-06-08 Nippon Steel Corp Lamina de acero laminada en caliente y metodo para fabricar la misma.
JP6897882B2 (ja) * 2018-10-19 2021-07-07 日本製鉄株式会社 熱延鋼板およびその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219473A (ja) 1983-05-26 1984-12-10 Nippon Steel Corp カラ−エツチング液及びエツチング方法
JPS6132017B2 (ja) 1985-01-17 1986-07-24 Yoshida Seisakusho Kk
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2012251200A (ja) 2011-06-02 2012-12-20 Sumitomo Metal Ind Ltd 熱延鋼板の製造方法
WO2014185405A1 (ja) * 2013-05-14 2014-11-20 新日鐵住金株式会社 熱延鋼板およびその製造方法
JP2015124410A (ja) 2013-12-26 2015-07-06 新日鐵住金株式会社 熱延鋼板
WO2017130875A1 (ja) * 2016-01-27 2017-08-03 Jfeスチール株式会社 電縫鋼管用高強度熱延鋼板およびその製造方法
WO2018033960A1 (ja) * 2016-08-16 2018-02-22 新日鐵住金株式会社 熱間プレス成形部材
WO2018055695A1 (ja) * 2016-09-21 2018-03-29 新日鐵住金株式会社 鋼板
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
JP2018197937A (ja) 2017-05-23 2018-12-13 パナソニックIpマネジメント株式会社 自動販売機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3868908A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063253A (ja) * 2019-10-11 2021-04-22 Jfeスチール株式会社 高強度熱延鋼板及びその製造方法
JP7136061B2 (ja) 2019-10-11 2022-09-13 Jfeスチール株式会社 高強度熱延鋼板及びその製造方法
CN112831720A (zh) * 2020-12-30 2021-05-25 钢铁研究总院 一种440MPa级极地船体用钢及其制备方法

Also Published As

Publication number Publication date
CN112840057A (zh) 2021-05-25
JPWO2020080554A1 (ja) 2021-02-15
US20210381086A1 (en) 2021-12-09
JP6773252B2 (ja) 2020-10-21
CN112840057B (zh) 2022-08-30
US11970758B2 (en) 2024-04-30
EP3868908A4 (en) 2022-04-13
EP3868908A1 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
US8657969B2 (en) High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
US9410231B2 (en) Steel sheet and method of manufacturing steel sheet
JP6052472B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
KR101748510B1 (ko) 베이킹 경화성과 저온 인성이 우수한 인장 최대 강도 980㎫ 이상의 고강도 열연 강판
JP6241274B2 (ja) 熱延鋼板の製造方法
WO2019186989A1 (ja) 鋼板
US20130087252A1 (en) High-strength hot-rolled steel sheet having excellent formability and method for manufacturing the same
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
CN113383096B (zh) 热轧钢板
CN112840045B (zh) 热轧钢板及其制造方法
CN113330127B (zh) 热轧钢板
CN114502759A (zh) 热轧钢板
WO2013005670A1 (ja) 溶融めっき冷延鋼板およびその製造方法
KR20200106195A (ko) 고강도 강판 및 그 제조 방법
CN114630917A (zh) 热轧钢板及其制造方法
KR20200101980A (ko) 고강도 냉연강판, 고강도 도금강판 및 그것들의 제조방법
JP6773252B2 (ja) 熱延鋼板
JP7136335B2 (ja) 高強度鋼板及びその製造方法
JP7348573B2 (ja) 熱延鋼板
CN115244203B (zh) 热轧钢板
CN113227456A (zh) 被覆钢构件、被覆钢板及它们的制造方法
KR20240023431A (ko) 냉연 강판 및 그 제조 방법
KR20240065116A (ko) 열간 압연 강판
WO2023063347A1 (ja) 熱間圧延鋼板
WO2023032225A1 (ja) 熱延鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020510623

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019873490

Country of ref document: EP

Effective date: 20210519