WO2017138384A1 - 高強度亜鉛めっき鋼板及びその製造方法 - Google Patents

高強度亜鉛めっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2017138384A1
WO2017138384A1 PCT/JP2017/003151 JP2017003151W WO2017138384A1 WO 2017138384 A1 WO2017138384 A1 WO 2017138384A1 JP 2017003151 W JP2017003151 W JP 2017003151W WO 2017138384 A1 WO2017138384 A1 WO 2017138384A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
area ratio
carbide
martensite
bainite
Prior art date
Application number
PCT/JP2017/003151
Other languages
English (en)
French (fr)
Inventor
長谷川 寛
船川 義正
裕美 吉冨
克利 ▲高▼島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2018009736A priority Critical patent/MX2018009736A/es
Priority to EP17750109.5A priority patent/EP3415653B1/en
Priority to KR1020187022668A priority patent/KR102098215B1/ko
Priority to US16/076,098 priority patent/US20200165708A1/en
Priority to CN201780011007.5A priority patent/CN108603269B/zh
Priority to JP2017528232A priority patent/JP6264507B2/ja
Publication of WO2017138384A1 publication Critical patent/WO2017138384A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is suitable for use in automobile parts, and has bendability, spot weld resistance cracking, stretch flangeability, and axial crushing stability (no cracking or tearing occurs during axial crushing, and it is stably collapsed into a bellows shape.
  • the present invention relates to a high-strength galvanized steel sheet and a method for producing the same.
  • Patent Document 1 discloses a technique related to an alloyed hot-dip galvanized steel sheet excellent in bendability and stretch flangeability. However, Patent Document 1 does not take into account spot weld cracking and axial crush stability due to galvanization, and there is room for improvement.
  • Patent Document 2 discloses a technique for improving axial crush stability by making ferrite grains fine. However, in Patent Document 2, there is room for improvement because the stretch flangeability is not considered. Moreover, there is no knowledge in the galvanized steel sheet, and spot weld cracking due to galvanization is not considered.
  • the objective provides the high-strength galvanized steel plate which has the outstanding bendability, spot-weld cracking resistance, stretch flangeability, and axial crush stability, and its manufacturing method. There is.
  • the present inventors have found that the above-mentioned problems can be solved by using a high-strength hot-dip galvanized steel sheet including a galvanized layer formed on the steel sheet.
  • the present invention has been made based on such findings, and more specifically, the present invention provides the following.
  • the component composition further includes, by mass%, Ni: 0.005 to 2.0%, Cu: 0.005 to 2.0%, B: 0.0001 to 0.0050%, Ca: 0 0001 to 0.0050%, REM: 0.0001 to 0.0050%, Sn: 0.01 to 0.50%, Sb: 0.0010 to 0.10%.
  • the high-strength galvanized steel sheet according to [1] which is characterized.
  • the cold-rolled sheet thus prepared is heated under the conditions that the heating rate in the temperature range of 600 to 720 ° C. is 3.0 ° C./s or less and the heating temperature is 780 to 950 ° C., and the average cooling rate of 450 to 720 ° C. is 10 Cooling to 150-400 ° C. at °C / s or higher, and the residence time in the temperature range of 780-950 ° C. is 30 s or longer in the heating and cooling, and the heating temperature after cooling is higher than 150 ° C.
  • An annealing process in which a residence time in a temperature range of 600 ° C. or less is reheated under a condition of 1000 s or less, or after the cooling, a residence time in a temperature range of over 150 ° C. and 400 ° C. or less is retained in a condition of 1000 s or less, and the annealing process Zinc plating on the later annealing plate Alms, then heated to 460 ⁇ 600 ° C. plating alloying process, the method of producing a high strength galvanized steel sheet characterized by having a zinc plating step of cooling to 50 ° C. or less.
  • a high-strength galvanized steel sheet having excellent bendability, spot weld crack resistance, stretch flangeability, and axial crush stability can be obtained.
  • the high-strength galvanized steel sheet of the present invention is suitable as a material for automobile parts.
  • the high-strength galvanized steel sheet of the present invention has a steel sheet and a galvanized layer.
  • a steel plate will be described.
  • the steel sheet has a specific component composition and a specific steel structure. It demonstrates in order of a component composition and steel structure.
  • the component composition of the steel sheet is mass%, C: 0.08 to 0.15%, Si: 0.1 to 1.0%, Mn: 2.0 to 3.0%, P: 0.100% or less (Excluding 0%), S: 0.02% or less (excluding 0%), Al: 0.01 to 1.0%, N: 0.010% or less, and Cr: 0.005 to 2 0.0%, Ti: 0.005 to 0.20%, Nb: 0.005 to 0.20%, Mo: 0.005 to 2.0%, V: 0.005 to 2.0% One or more of the above are included, Cr + Ti + Nb + Mo + V ⁇ Si is satisfied, and the balance is Fe and inevitable impurities.
  • the above component composition is, in mass%, Ni: 0.005 to 2.0%, Cu: 0.005 to 2.0%, B: 0.0001 to 0.0050%, Ca: 0.0001 to One or more selected from 0.0050%, REM: 0.0001 to 0.0050%, Sn: 0.01 to 0.50%, Sb: 0.0010 to 0.10% may be included.
  • % Representing the content of a component means “mass%”.
  • C 0.08 to 0.15%
  • C is an effective element that contributes to increasing the area ratio of martensite and retained austenite, increasing strength, and improving axial crush stability. If the C content is less than 0.08%, such an effect cannot be obtained sufficiently. On the other hand, when the C content exceeds 0.15%, bending property deterioration and spot welded portion cracking are caused. Therefore, the C content is 0.08 to 0.15%.
  • the lower limit is preferably 0.09% or more.
  • the upper limit is preferably 0.13% or less.
  • Si 0.1 to 1.0%
  • Si is an effective element that suppresses the formation of carbides and promotes the concentration of C to austenite to generate retained austenite and contributes to improved axial crush stability.
  • the Si content needs to be 0.1% or more.
  • the Si content is set to 0.1 to 1.0%.
  • the lower limit is preferably 0.15% or more. More preferably, it is more than 0.3%.
  • the upper limit is preferably 0.7% or less.
  • Mn 2.0 to 3.0%
  • Mn is an element effective for obtaining tempered martensite and retained austenite by suppressing the formation of bainite containing no ferrite or carbide. If the Mn content is 2.0% or less, such an effect cannot be obtained sufficiently. On the other hand, if the Mn content exceeds 3.0%, spot weld cracks are caused. Therefore, the Mn content is set to 2.0 to 3.0%.
  • the lower limit is preferably 2.3% or more.
  • the upper limit is preferably 2.8% or less.
  • P 0.100% or less (excluding 0%) Since P reduces hole expansibility, it is desirable to reduce the content as much as possible. In the present invention, the P content is acceptable up to 0.100%.
  • the lower limit is not particularly defined, but if the P content is less than 0.001%, the production efficiency is lowered, so the P content is preferably 0.001% or more.
  • S 0.02% or less (excluding 0%) Since S reduces hole expansibility, the content is preferably reduced as much as possible. In the present invention, the S content is acceptable up to 0.02%. The lower limit is not particularly defined, but if it is less than 0.0002%, the production efficiency is lowered, so the S content is preferably 0.0002% or more.
  • Al acts as a deoxidizer and is preferably added in the deoxidation step. In order to obtain such an effect, the Al content needs to be 0.01% or more. On the other hand, if the Al content exceeds 1.0%, a large amount of ferrite and bainite containing no carbide are not preferable for the present invention. Therefore, the Al content is set to 0.01 to 1.0%.
  • the lower limit is preferably 0.02% or more.
  • the upper limit is preferably 0.50% or less.
  • N 0.010% or less If contained in excess, it causes spot weld cracking and deterioration of bendability, so it is made 0.010% or less.
  • the lower limit is preferably 0.0010% or more.
  • the upper limit is preferably 0.0060% or less.
  • Cr 0.005 to 2.0%
  • Ti 0.005 to 0.20%
  • Nb 0.005 to 0.20%
  • Mo 0.005 to 2.0%
  • V 0.005 to At least one selected from 2.0% Cr, Nb, Ti, Mo, and V is an important component that contributes to improving the axial crush stability by reducing the amount of C in the retained austenite by forming carbides.
  • the content of Cr, Nb, Ti, Mo, V is less than the above lower limit, the axial crush stability is lowered.
  • the content of Cr, Nb, Ti, Mo, V exceeds the upper limit, C in the retained austenite is excessively decreased and the hole expansion rate is decreased.
  • the content of each of at least one selected from Cr, Nb, Ti, Mo, V is Cr: 0.005 to 2.0%, Nb: 0.005 to 0.20%, Ti: 0.005 To 0.20%, Mo: 0.005 to 2.0%, V: 0.005 to 2.0%.
  • the preferable content of the lower limit Cr is 0.10% or more, Nb is 0.01% or more, Ti is 0.01% or more, Mo is 0.05% or more, and V is 0.03% or more.
  • any one content should just exist in the said range. This is because the effects of the present invention are not impaired when the other content is less than the lower limit. Components below the lower limit are treated as being included as inevitable impurities.
  • the total amount of the carbide forming elements Cr, Ti, Nb, Mo, and V is set to Si or more with respect to the content of Si that is a carbide suppressing element, the amount of C in the retained austenite can be reduced and desired Axial collapse stability can be obtained. Therefore, the total content of Cr, Ti, Nb, Mo, and V is set to be equal to or greater than the Si content.
  • the balance is Fe and inevitable impurities, but one or more of the following elements can be appropriately contained as necessary.
  • the above component composition is further comprised of Ni: 0.005 to 2.0%, Cu: 0.005 to 2.0%, B: 0.0001 to 0.0050%, Ca: 0.0001 to One or more selected from 0.0050%, REM: 0.0001 to 0.0050%, Sn: 0.01 to 0.50%, Sb: 0.0010 to 0.10% can be contained.
  • Ni, Cu, and B are effective elements that generate martensite and contribute to high strength. In order to acquire this effect, it is effective to make these contents more than the said minimum. If the contents of Ni, Cu and B exceed the above upper limits, spot weld cracking and axial crushing stability will be deteriorated.
  • About preferable content of a minimum Ni is 0.050% or more, Cu is 0.050% or more, B is 0.0005% or more.
  • Ca and REM are effective elements that contribute to the improvement of hole expansibility by controlling the form of inclusions. In order to obtain this effect, it is effective to set the content of these elements to the above lower limit or more. If the content of Ca and REM exceeds 0.0050%, the amount of inclusions may increase and the hole expandability may deteriorate. About preferable content of a minimum, Ca is 0.0005% or more, REM is 0.0005% or more. About preferable content of an upper limit, Ca is 0.0030% or less, REM is 0.0030% or less.
  • Sn and Sb are elements that are effective in suppressing the reduction in strength of steel by suppressing decarburization, denitrification, deboronation, and the like. Sn and Sb are also effective in suppressing spot weld cracking. In order to obtain these effects, it is effective to set the content of these elements to the above lower limit or more. When the contents of Sn and Sb exceed the above upper limits, the hole expandability may be deteriorated. About preferable content of a minimum, both Sn and Sb are 0.0050% or more. Sn is 0.10% or less with respect to the preferable upper limit content. Sb is 0.05% or less.
  • impurity elements such as Zr, Mg, La, and Ce may be included as inevitable impurities up to 0.002% in total.
  • the steel structure is 25% or less (including 0%) of bainite containing no ferrite and carbide, and 70% to 97% of bainite containing tempered martensite and carbide.
  • the total area ratio of austenite is 3 to 20%
  • the residual austenite is 1 to 5% in area ratio
  • the total area ratio of bainite, martensite, and residual austenite does not contain ferrite and carbide is 3 to 30%.
  • the amount of C in the retained austenite is 0.10 to 0.50%
  • the average crystal grain size of bainite containing carbide and the average crystal grain size of tempered martensite is 5 to 20 ⁇ m.
  • tempered bainite is also included in bainite.
  • Total of bainite not containing ferrite and carbides 25% or less (including 0%) Ferrite and bainite containing no carbide are not preferable from the viewpoints of both strength and stretch flangeability and stability of axial crushing.
  • the total area ratio is allowed up to 25%. Therefore, the total area ratio of ferrite and bainite containing no carbide is 25% or less, preferably 15% or less.
  • the area ratio a value measured by the measurement method described in the examples is adopted.
  • the bainite without carbides is corroded with 3% nital after polishing the plate thickness cross section parallel to the rolling direction, and the 1/4 position from the surface to the plate thickness direction is 1500 times magnification with SEM (scanning electron microscope).
  • SEM scanning electron microscope
  • carbide is a portion having a characteristic of white spots or lines, and can be distinguished from island martensite and residual austenite that are not spots or lines.
  • the case where the minor axis length is 100 nm or less is defined as a dot shape or a line shape.
  • carbonized_material may have an island-like martensite, and an island-like martensite is a white or light gray part in image data.
  • examples of the carbide include iron-based carbides such as cementite, Ti-based carbides, Nb-based carbides, and the like.
  • Total bainite containing tempered martensite and carbide 70-97% Tempered martensite and bainite containing carbide are both important from the viewpoint of both strength and stretch flangeability. If the total of these area ratios is less than 70%, the desired TS (tensile strength) or hole expansion ratio cannot be achieved. On the other hand, when the total area ratio exceeds 97%, retained austenite and martensite are reduced, and the axial crush stability is lowered. Therefore, the total area ratio of bainite containing tempered martensite and carbide is 70 to 97%.
  • the lower limit is preferably 75% or more, more preferably 80% or more.
  • the upper limit is preferably 95% or less, more preferably 93% or less.
  • As the area ratio a value measured by the measurement method described in the examples is adopted.
  • the bainite containing carbide is a 3% nital corroded after polishing a plate thickness section parallel to the rolling direction, and a 1/4 position from the surface to the plate thickness direction with a scanning electron microscope (SEM) at a magnification of 1500 times. This refers to the case where carbides can be confirmed in the image data obtained by photographing.
  • Total martensite and retained austenite 3-20%
  • the total area ratio of martensite meaning martensite as quenched, including autotempered martensite
  • retained austenite is less than 3%
  • the lower limit is preferably 5% or more
  • the upper limit is preferably 15% or less.
  • the retained austenite is retained austenite having the following C content of 0.10 to 0.50%.
  • Residual austenite 1-5%
  • a small amount of retained austenite is important from the viewpoint of axial crush stability.
  • the mechanism is not necessarily clear, it is presumed that the strain propagation is promoted by the unstable retained austenite immediately martensite in the deformation stress concentration part at the time of axial collapse. If the unstable retained austenite is less than 1%, such an effect cannot be obtained. On the other hand, if it exceeds 5%, the bendability and stretch flangeability deteriorate. Therefore, the area ratio of retained austenite is 1 to 5%. As the area ratio, a value measured by the measurement method described in the examples is adopted.
  • C content in retained austenite 0.10 to 0.50% If the amount of C in the retained austenite exceeds 0.50%, the retained austenite becomes too stable, and the axial crush stability is lowered. On the other hand, if it is less than 0.10%, the hole expansion rate decreases. Therefore, the amount of C in the retained austenite is 0.10 to 0.50%.
  • the lower limit is preferably 0.2% or more.
  • the upper limit is preferably 0.45% or less.
  • As the amount of C a value measured by the measuring method described in Examples is adopted.
  • Total of bainite, martensite and retained austenite without ferrite and carbide 3-30%
  • the total area ratio is 3 to 30%. There is a need. If it is less than 3%, a desired amount of martensite and retained austenite cannot be obtained, and the axial crush stability is lowered. On the other hand, if it exceeds 30%, the bendability and the hole expansion rate are lowered. Therefore, the total area ratio of ferrite, bainite not containing carbide, martensite, and retained austenite is 3 to 30%.
  • the lower limit is preferably 4% or more, more preferably 5% or more.
  • the upper limit is preferably 15% or less, more preferably 12% or less.
  • Average grain size of tempered martensite and carbide containing bainite 5 to 20 ⁇ m
  • the average crystal grain size of any one of the bainite containing tempered martensite and carbide is less than 5 ⁇ m, the retained austenite at the grain boundary increases, and the bendability and the hole expansion rate decrease.
  • the average crystal grain size of tempered martensite and bainite containing carbide is set to 5 to 20 ⁇ m.
  • the lower limit is preferably 6 ⁇ m or more.
  • the upper limit is preferably 16 ⁇ m or less.
  • the value acquired by measuring by the method as described in an Example is employ
  • tissue in the present invention, up to 10% by area ratio may include other structures as long as the effect of the present invention is not impaired. That is, 90% or more is preferably the above phase.
  • the galvanized layer has an Fe content of 6% by mass or more. Spot welding crack resistance can be improved by being 6 mass% or more.
  • the upper limit is not particularly limited, but the Fe content is preferably 15% by mass or less from the viewpoint of powdering properties.
  • the manufacturing method of the high-strength galvanized steel sheet of the present invention includes an annealing process and a galvanizing process.
  • An annealing process refers to a hot-rolled sheet produced by subjecting steel having the above composition to hot rolling and pickling, or a cold-rolled sheet produced by subjecting the hot-rolled sheet to cold rolling at a rolling reduction of 20% or more.
  • the heating rate in the temperature range of 600 to 720 ° C. is 3.0 ° C./s or less, the heating temperature is 780 to 950 ° C., and the average cooling rate of 450 to 720 ° C. is 150 to 150 ° C. or more.
  • the residence time in the temperature range of 780 to 950 ° C. is 30 seconds or more, and the heating temperature after cooling is in the temperature range of 150 ° C. to 600 ° C. and 150 ° C. to 600 ° C. It is a step of reheating under a condition where the residence time is 1000 s or less, or retaining under a condition where the residence time in the temperature range of 150 ° C. to 400 ° C. is 1000 s or less after the cooling.
  • the manufacturing method of a hot-rolled sheet is not specifically limited.
  • the slab used for producing the hot-rolled sheet is preferably produced by a continuous casting method in order to prevent macro segregation, but can also be produced by an ingot-making method or a thin slab casting method.
  • To hot-roll the slab the slab may be cooled to room temperature and then re-heated for hot rolling, or the slab may be charged in a heating furnace without being cooled to room temperature. Can also be done. Alternatively, an energy saving process in which hot rolling is performed immediately after performing a slight heat retention can also be applied.
  • the heating temperature of the slab is preferably 1300 ° C. or lower.
  • the slab heating temperature is the temperature of the slab surface.
  • finish rolling may increase anisotropy and reduce workability after cold rolling and annealing, it is preferably performed at a finishing temperature equal to or higher than the Ar 3 transformation point.
  • the steel sheet after winding is subjected to heat treatment and cold rolling with a rolling reduction of 20% or more as necessary after removing the scale by pickling.
  • Cold rolling reduction 20% or more
  • the rolling reduction of cold rolling is 20% or more, preferably 30% or more.
  • the upper limit is not particularly specified, but if it exceeds 90%, the rolling shape becomes worse, so 90% or less is preferable.
  • the heating rate in the temperature range of 600 to 720 ° C. is set to 3.0 ° C./s or less.
  • the lower limit is not particularly specified, but is preferably 0.1 ° C./s or more from the viewpoint of production efficiency and the like.
  • the heating rate outside the above temperature range is not particularly limited. Usually, it is in the range of 0.5 to 3.0 ° C./s.
  • a heating rate means an average heating rate.
  • Heating temperature 780-950 ° C
  • the heating temperature is 780 to 950 ° C., preferably 780 to 900 ° C.
  • Average cooling rate in the temperature range of 450 to 720 ° C . 10 ° C./s or more If the average cooling rate in the temperature range of 450 to 720 ° C. is less than 10 ° C./s, a large amount of bainite containing no ferrite or carbide is generated and desired. Steel structure cannot be obtained. Therefore, the average cooling rate at 450 to 720 ° C. is 10 ° C./s or more, preferably 15 ° C./s or more.
  • the upper limit is not particularly defined, but from the viewpoint of operation, if it exceeds 100 ° C./s, the temperature variation tends to increase, and therefore it is preferably 100 ° C./s or less.
  • the average cooling rate outside the above temperature range is not particularly limited. Usually, it is in the range of 15 to 40 ° C./s.
  • Cooling stop temperature 150-400 ° C If the cooling stop temperature is less than 150 ° C., the amount of retained austenite produced decreases and a desired steel structure cannot be obtained. On the other hand, when the cooling stop temperature exceeds 400 ° C., the amount of martensite and retained austenite generated increases, and a desired steel structure cannot be obtained. Therefore, the cooling stop temperature is 150 to 400 ° C., preferably 150 to 350 ° C. In the present invention, the cooling stop holding does not particularly affect the final characteristics and may be performed as necessary.
  • Residence time in the temperature range of 780 to 950 ° C . 30 s or more
  • the residence time in the temperature range of 780 to 950 ° C. is less than 30 s, resulting in insufficient austenite generation, and the amount of ferrite produced The desired steel structure cannot be obtained. Therefore, the residence time in the temperature range of 780 to 950 ° C. is set to 30 seconds or more.
  • the upper limit is not particularly defined, but 1000 s or less is preferable from the viewpoint of production efficiency and the like.
  • Reheating temperature Over 150 ° C. and 600 ° C. or less
  • austenite is decomposed into pearlite or the like, so that a desired amount of retained austenite cannot be obtained.
  • strength becomes low.
  • the lower limit is set to more than 150 ° C. Therefore, the reheating temperature is more than 150 ° C. and less than 600 ° C., preferably more than 150 ° C. and less than 500 ° C.
  • Residence time in a temperature range of more than 150 ° C. and 600 ° C. or less: 1000 s or less
  • the residence time exceeds 1000 s, austenite decomposes into pearlite or the like, and a desired amount of retained austenite cannot be obtained. Therefore, the residence time is 1000 s or less, preferably 500 s or less. From the viewpoint of operational stability, the residence time is preferably 5 seconds or longer.
  • the galvanizing process performed after the annealing process is a process in which the annealed plate is galvanized, then heated to 460 to 600 ° C., subjected to a plating alloying treatment, and cooled to 50 ° C. or lower.
  • a plating alloying treatment for example, in mass%, Fe: 5.0-20.0%, Al: 0.001% -1.0%, Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co,
  • a plating layer containing 0 to 30% in total of one or more selected from Ca, Cu, Li, Ti, Be, Bi, and REM is formed on the surface of the annealed plate with the balance being Zn and inevitable impurities.
  • the plating process may be performed by hot dip galvanization, and the conditions may be set as appropriate.
  • Plating alloying treatment temperature 460-600 ° C
  • the alloying treatment temperature of the alloying treatment performed after the galvanizing treatment is less than 460 ° C.
  • alloying becomes insufficient and spot weld cracking occurs.
  • the alloying temperature exceeds 600 ° C., austenite decomposes into pearlite or the like, and a desired amount of retained austenite cannot be obtained. Therefore, the alloying temperature is 460 to 600 ° C., preferably 470 to 580 ° C.
  • the alloying time is not particularly specified, but is usually in the range of 1 to 120 s.
  • Cooling stop temperature 50 ° C. or lower After the alloying treatment, the temperature is cooled to 50 ° C. or lower. By cooling to 50 ° C. or lower, austenite partially becomes retained austenite and partly martensite, and the structure of the present invention is obtained.
  • Annealing was performed in the laboratory under the conditions shown in Table 2 using a heat treatment and plating apparatus, and galvannealed steel sheets 1 to 31 were produced.
  • the zinc plating treatment is performed by dipping in a plating bath at 460 ° C. to form a plating with an adhesion amount of 35 to 45 g / m 2 , and the alloying treatment is held at 450 to 650 ° C. for 30 s after the plating is formed, and 50 ° C. It was performed by the method of cooling to the following.
  • the resulting galvannealed steel sheet was subjected to temper rolling with an elongation of 0.3%, and then the structure was observed according to the following test method, tensile properties, bendability, hole expansibility, spot welding resistance The crackability and axial crush stability were evaluated.
  • Microstructure observation Ferrite, carbide-free bainite, martensite, tempered martensite, carbide-containing bainite area ratio is the ratio of the area of each structure to the observed area, these area ratios after annealing
  • a sample was cut out from the steel plate, the cross section of the plate thickness parallel to the rolling direction was polished, corroded with 3% nital, and the 1/4 position of the plate thickness was photographed at 3 times with a scanning electron microscope (SEM) at a magnification of 1500 times.
  • SEM scanning electron microscope
  • the area ratio of each tissue is obtained from the obtained image data using Image-Pro manufactured by Media Cybernetics, and the average area ratio of the visual field is defined as the area ratio of each tissue.
  • ferrite is black
  • martensite and residual austenite is white or light gray
  • bainite is black or dark gray containing oriented carbide and / or island martensite (because grain boundaries between bainite can be confirmed)
  • a bainite containing no carbide and a bainite containing no carbide can be distinguished
  • island martensite is distinguished as white or light gray in the image data as shown in FIG.
  • the area ratio of bainite is the area ratio of the black or dark gray portion excluding the white or light gray portion in the bainite.
  • the area ratio of martensite was determined by subtracting the area ratio of residual austenite described later (the volume ratio is regarded as the area ratio) from the area ratio of the white or light gray structure.
  • the martensite may be autotempered martensite containing carbide or tempered martensite. It should be noted that martensite containing carbide is different from bainite because the carbide orientation is not uniform. Island-like martensite is also martensite having any of the above characteristics. In the present invention, a white portion that is not dotted or linear is distinguished as the martensite or retained austenite. Perlite can be distinguished as a black and white layered structure. Further, the crystal grain size of bainite containing tempered martensite and carbide was measured by a cutting method for an image in which the area ratio was measured, and the average value was taken as the average crystal grain size of the structure. The number of lines used in the cutting method was 10 in the vertical direction and 10 in the horizontal direction, and the images were drawn so as to be equally divided into 11. In the present invention, packet boundaries and block boundaries are not included in the grain boundaries.
  • the volume ratio of retained austenite is fcc iron (austenite) using an K-ray of Mo with an X-ray diffractometer on the surface of the annealed steel plate after grinding to 1/4 of the plate thickness and further polishing by 0.1 mm by chemical polishing. Integral reflection intensity of (200) plane, (220) plane, (311) plane, and (200) plane, (211) plane, (220) plane of bcc iron (ferrite) was measured. The volume ratio was determined from the intensity ratio of the integrated reflection intensity from each surface of the fcc iron to the integrated reflection intensity from, and this was defined as the area ratio of residual austenite.
  • the lattice constant of retained austenite is calculated by the equation (1) from the diffraction peak shift amount of the (220) plane using the Co K ⁇ ray with an X-ray diffractometer, and further the amount of C in the retained austenite from the equation (2). Is calculated.
  • a 0.3578 + 0.0033 [C] +0.000095 [Mn] +0.00006 [Cr] +0.0022 [N] +0.00056 [Al] +0.00015 [Cu] +0.00031 [Mo] (2)
  • a is the lattice constant (nm) of the retained austenite phase
  • is a value (rad) obtained by dividing the diffraction peak angle of the (220) plane by 2
  • [M] is the mass% of the element M in the retained austenite phase. is there.
  • the mass% of the element M other than C in the retained austenite phase is the mass% of the entire steel.
  • Fe content The content of Fe in the galvanized layer is determined by measuring the amount of Fe in the dissolved hydrochloric acid using ICP analysis after dissolving the plated layer with hydrochloric acid containing an inhibitor. did.
  • Tensile test JIS No. 5 tensile test piece (JIS Z2201) was sampled from the annealed sheet in the direction perpendicular to the rolling direction, and the tensile test was conducted in accordance with the provisions of JIS Z 2241 with a strain rate of 10 ⁇ 3 / s. Asked. In the present invention, 980 MPa or more was regarded as acceptable.
  • Bending test A strip-shaped test piece having a width of 30 mm and a length of 100 mm with the direction parallel to the rolling direction as the bending test axis direction was collected from the annealed plate and subjected to a bending test.
  • the stroke speed is 10 mm / s
  • the indentation load is 10 ton
  • the pressing holding time is 5 seconds
  • the bending radius is 3.5 mm when the plate thickness is 1.4 mm
  • 7.5 mm when the plate thickness is 3.0 mm.
  • a 90 ° V bending test was performed. The ridge line part of the bending apex was observed with a 10-fold magnifier, and the case where no crack of 0.5 mm or more was observed was determined as “excellent”.
  • Axial Crushing Stability A test piece having a width of 120 mm and a length of 78 mm and a test piece having a width of 120 mm and a length of 150 mm were collected from the annealed plate with the direction perpendicular to the rolling direction as the width direction.
  • the bending radius is 4 mm when the plate thickness is 1.4 mm, and 8 mm when the plate thickness is 3.0 mm.
  • the axial crushing part shown in FIG. 2 was produced by bending and spot welding.
  • the ground plate was joined by TIG welding to produce a crush test specimen.
  • the impactor was collided at a constant velocity of 10 m / s from the top of FIG. After crushing, the specimen was crushed in a bellows shape, and no crack or tear was observed.
  • Hole expansion test A test piece of 150 mm x 150 mm was collected and subjected to a hole expansion test three times using a 60 ° conical punch in accordance with JFST 1001 (Japan Iron and Steel Federation Standard, 2008). ) And the stretch flangeability was evaluated. A hole expansion rate of 40% or more was considered good.
  • TS is a galvanized steel sheet having a TS of 980 MPa or more and excellent bendability, spot weld crack resistance, stretch flangeability and axial crush stability.
  • the comparative example which is outside the scope of the present invention does not provide the desired strength, does not obtain the bendability, does not obtain the spot weld crack resistance, or does not obtain the stretch flangeability. Or axial crush stability is not obtained.
  • a galvanized steel sheet having a TS of 980 MPa or more and excellent bendability, spot weld crack resistance, stretch flangeability, and axial crush stability can be obtained.
  • the high-strength galvanized steel sheet of the present invention is used for automobile parts, it can greatly contribute to improvement of automobile collision safety and fuel consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

優れた曲げ性、耐スポット溶接部割れ性、伸びフランジ性および軸圧壊安定性を有する高強度亜鉛めっき鋼板及びその製造方法を提供する。 特定の成分組成と、フェライトと炭化物を含まないベイナイトを面積率の合計で25%以下(0%を含む)、焼戻しマルテンサイトと炭化物を含むベイナイトを面積率の合計で70~97%、マルテンサイトと残留オーステナイトを面積率の合計で3~20%、残留オーステナイトを面積率で1~5%含み、フェライトと炭化物を含まないベイナイトとマルテンサイトと残留オーステナイトの面積率の合計が3~30%、残留オーステナイト中のC量が0.10~0.50%、炭化物を含むベイナイトの平均結晶粒径および焼戻しマルテンサイトの平均結晶粒径が5~20μmである鋼組織と、を有する鋼板と、特定の亜鉛めっき層と、を備える高強度亜鉛めっき鋼板とする。

Description

高強度亜鉛めっき鋼板及びその製造方法
 本発明は、自動車用部品用に好適に用いられる、曲げ性、耐スポット溶接部割れ、伸びフランジ性および軸圧壊安定性(軸圧壊時に割れや裂けを生じず、安定して蛇腹状に圧壊される性質を意味する)に優れた高強度亜鉛めっき鋼板及びその製造方法に関するものである。
 自動車の衝突安全性改善と燃費向上さらには防錆の観点から、自動車用部品に用いられる鋼板の高防錆高強度化が求められている。しかしながら、材料の強化は一般に加工性の低下を招くため、強度と防錆に加え、加工性にも優れた鋼板の開発が必要とされている。加えて、加工後には部品としてのパフォーマンスにも優れることが要求されている。例えば、クラッシュボックス等の部品では曲げ加工部や打抜き端面を有するため、加工性の観点からは曲げ性および伸びフランジ性に優れることが要求される。さらに部品組み付けやパフォーマンスの観点からは、スポット溶接部が健全であることや軸圧壊特性が安定していることが要求される。そこで、これら特性を総合的に満たすことが要望されている。特許文献1では曲げ性および伸びフランジ性に優れた合金化溶融亜鉛めっき鋼板に関する技術が開示されている。しかしながら、特許文献1では亜鉛めっきに起因したスポット溶接部割れや軸圧壊安定性について考慮されておらず、改善の余地がある。
 特許文献2ではフェライト粒を微細にすることで軸圧壊安定性を向上させる技術が開示されている。しかしながら、特許文献2では伸びフランジ性が考慮されておらず改善の余地がある。また、亜鉛めっき鋼板における知見がなく、亜鉛めっきに起因したスポット溶接部割れも考慮されていない。
 このように、強度、曲げ性、耐スポット溶接部割れ、伸びフランジ性および軸圧壊安定性を総合的に満足する鋼板は存在しない。
特開2015-193907号公報 特開2009-138222号公報
 本発明は上記課題を解決するものであり、その目的は、優れた曲げ性、耐スポット溶接部割れ性、伸びフランジ性および軸圧壊安定性を有する高強度亜鉛めっき鋼板およびその製造方法を提供することにある。
 本発明者らは、上記した課題を達成するため、鋭意研究を重ねた。その結果、質量%で、C:0.08~0.15%、Si:0.1~1.0%、Mn:2.0~3.0%、P:0.100%以下(0%は除く)、S:0.02%以下(0%は除く)、Al:0.01~1.0%、N:0.010%以下を含み、かつCr:0.005~2.0%、Ti:0.005~0.20%、Nb:0.005~0.20%、Mo:0.005~2.0%、V:0.005~2.0%、から選ばれる1種以上を含み、Cr+Ti+Nb+Mo+V≧Siを満たし、残部がFeおよび不可避的不純物からなる成分組成と、フェライトと炭化物を含まないベイナイトを面積率の合計で25%以下(0%を含む)、焼戻しマルテンサイトと炭化物を含むベイナイトを面積率の合計で70~97%、マルテンサイトと残留オーステナイトを面積率の合計で3~20%、残留オーステナイトを面積率で1~5%含み、前記フェライトと前記炭化物を含まないベイナイトと前記マルテンサイトと前記残留オーステナイトの面積率の合計が3~30%、残留オーステナイト中のC量が0.10~0.50%、炭化物を含むベイナイトの平均結晶粒径および焼戻しマルテンサイトの平均結晶粒径が5~20μmである鋼組織と、を有する鋼板と、鋼板上に形成された亜鉛めっき層と、を備える高強度溶融亜鉛めっき鋼板とすることで、上記課題を解決できることを見出した。
 本発明は、このような知見に基づきなされたもので、より具体的には、本発明は以下のものを提供する。
 [1]質量%で、C:0.08~0.15%、Si:0.1~1.0%、Mn:2.0~3.0%、P:0.100%以下(0%は除く)、S:0.02%以下(0%は除く)、Al:0.01~1.0%、N:0.010%以下を含み、かつCr:0.005~2.0%、Ti:0.005~0.20%、Nb:0.005~0.20%、Mo:0.005~2.0%、V:0.005~2.0%、から選ばれる1種以上を含み、Cr+Ti+Nb+Mo+V≧Siを満たし、残部がFeおよび不可避的不純物からなる成分組成と、フェライトと炭化物を含まないベイナイトを面積率の合計で25%以下(0%を含む)、焼戻しマルテンサイトと炭化物を含むベイナイトを面積率の合計で70~97%、マルテンサイトと残留オーステナイトを面積率の合計で3~20%、残留オーステナイトを面積率で1~5%含み、前記フェライトと前記炭化物を含まないベイナイトと前記マルテンサイトと前記残留オーステナイトの面積率の合計が3~30%、残留オーステナイト中のC量が0.10~0.50%、炭化物を含むベイナイトの平均結晶粒径および焼戻しマルテンサイトの平均結晶粒径が5~20μmである鋼組織と、を有する鋼板と、前記鋼板上に形成され、Fe含有量が6質量%以上である亜鉛めっき層と、を備えることを特徴とする高強度亜鉛めっき鋼板。
 [2]前記成分組成は、さらに、質量%で、Ni:0.005~2.0%、Cu:0.005~2.0%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sn:0.01~0.50%、Sb:0.0010~0.10%から選ばれる1種以上を含むことを特徴とする[1]に記載の高強度亜鉛めっき鋼板。
 [3][1]または[2]に記載の成分組成を有する鋼に熱間圧延および酸洗を施し作製した熱延板、又は該熱延板に20%以上の圧下率で冷間圧延を施し作製した冷延板を、600~720℃の温度域における加熱速度が3.0℃/s以下、加熱温度が780~950℃の条件で加熱し、450~720℃の平均冷却速度が10℃/s以上で150~400℃まで冷却し、前記加熱及び冷却において780~950℃の温度域の滞留時間が30s以上であり、前記冷却後加熱温度が150℃超600℃以下、150℃超600℃以下の温度域の滞留時間が1000s以下の条件で再加熱するか又は前記冷却後150℃超400℃以下の温度域の滞留時間が1000s以下の条件で滞留させる焼鈍工程と、前記焼鈍工程後の焼鈍板に亜鉛めっきを施し、次いで460~600℃に加熱してめっき合金化処理を施し、50℃以下まで冷却する亜鉛めっき工程と、を有することを特徴とする高強度亜鉛めっき鋼板の製造方法。
 本発明によれば、優れた曲げ性、耐スポット溶接部割れ性、伸びフランジ性および軸圧壊安定性を有する高強度亜鉛めっき鋼板を得ることができる。本発明の高強度亜鉛めっき鋼板は、自動車部品用素材として好適である。
炭化物を含むベイナイト(a)と炭化物を含まないベイナイト(b)を説明するための図である。 軸圧壊安定性の評価で用いた軸圧壊部品を、模式的に示す図である。 軸圧壊安定性の評価で用いた圧壊試験体の作製方法を、模式的に示す図である。 スポット溶接部割れの評価方法を模式的に示す図である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 本発明の高強度亜鉛めっき鋼板は、鋼板と亜鉛めっき層とを有する。先ず、鋼板について説明する。鋼板は特定の成分組成と特定の鋼組織とを有する。成分組成、鋼組織の順で説明する。
 鋼板の成分組成は、質量%で、C:0.08~0.15%、Si:0.1~1.0%、Mn:2.0~3.0%、P:0.100%以下(0%は除く)、S:0.02%以下(0%は除く)、Al:0.01~1.0%、N:0.010%以下を含み、かつCr:0.005~2.0%、Ti:0.005~0.20%、Nb:0.005~0.20%、Mo:0.005~2.0%、V:0.005~2.0%、から選ばれる1種以上を含み、Cr+Ti+Nb+Mo+V≧Siを満たし、残部がFeおよび不可避的不純物からなる。
 上記成分組成は、さらに、質量%で、Ni:0.005~2.0%、Cu:0.005~2.0%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sn:0.01~0.50%、Sb:0.0010~0.10%から選ばれる1種以上を含んでもよい。以下、各成分について説明する。成分の含有量を表す「%」は「質量%」を意味する。
 C:0.08~0.15%
 Cは、マルテンサイトや残留オーステナイトの面積率を高めたり、強度を高めたり、軸圧壊安定性を高めたりするのに寄与する有効な元素である。C含有量が0.08%未満ではこのような効果が十分得られない。一方、C含有量が0.15%を超えると曲げ性の劣化やスポット溶接部割れを招く。したがって、C含有量は0.08~0.15%とする。下限について好ましくは0.09%以上である。上限について好ましくは0.13%以下である。
 Si:0.1~1.0%
 Siは、炭化物の生成を抑制してオーステナイトへのC濃化を促進することで残留オーステナイトを生成し、軸圧壊安定性向上に寄与する有効な元素である。こうした効果を得るにはSi含有量を0.1%以上にすることが必要である。一方、Si含有量が1.0%を超えると、残留オーステナイトが過度に安定化して、軸圧壊安定性が低下する。したがって、Si含有量は0.1~1.0%とする。下限について好ましくは0.15%以上である。より好ましくは0.3%超である。上限について好ましくは0.7%以下である。
 Mn:2.0~3.0%
 Mnは、フェライトや炭化物を含まないベイナイトの生成を抑制して焼戻しマルテンサイトや残留オーステナイトを得るのに有効な元素である。Mn含有量が2.0%以下ではこうした効果が十分得られない。一方、Mn含有量が3.0%を超えるとスポット溶接部割れを招く。したがって、Mn含有量は2.0~3.0%とする。下限について好ましくは2.3%以上である。上限について好ましくは2.8%以下である。
 P:0.100%以下(0%は除く)
 Pは、穴拡げ性を低下させるため、その含有量は極力低減することが望ましい。本発明では、P含有量が0.100%まで許容できる。下限は特に規定しないが、P含有量が0.001%未満では生産能率の低下を招くため、P含有量は0.001%以上が好ましい。
 S:0.02%以下(0%は除く)
 Sは、穴拡げ性を低下させるため、その含有量は極力低減することが好ましい。本発明ではS含有量が0.02%まで許容できる。下限は特に規定しないが、0.0002%未満では生産能率の低下を招くため、S含有量は0.0002%以上が好ましい。
 Al:0.01~1.0%
 Alは、脱酸剤として作用し、脱酸工程で添加することが好ましい。こうした効果を得るには、Al含有量を0.01%以上にする必要がある。一方、Al含有量が1.0%を超えると、本発明にとって好ましくないフェライトや、炭化物を含まないベイナイトが多量に生成する。したがって、Al含有量は0.01~1.0%とする。下限について好ましくは0.02%以上である。上限について好ましくは0.50%以下である。
 N:0.010%以下
 過剰に含有するとスポット溶接割れや曲げ性の劣化を招くため0.010%以下とする。下限について好ましくは0.0010%以上である。上限について好ましくは0.0060%以下である。
 Cr:0.005~2.0%、Ti:0.005~0.20%、Nb:0.005~0.20%、Mo:0.005~2.0%、V:0.005~2.0%から選ばれる少なくとも1種
 Cr、Nb、Ti、Mo、Vは、炭化物を形成することで残留オーステナイト中のC量を低め、軸圧壊安定性向上に寄与する重要な成分である。Cr、Nb、Ti、Mo、Vの含有量がそれぞれ上記下限未満の場合、軸圧壊安定性が低下する。一方、Cr、Nb、Ti、Mo、Vの含有量がそれぞれ上限を超えると残留オーステナイト中のCが過度に低下して穴拡げ率が低下する。したがって、Cr、Nb、Ti、Mo、Vから選ばれる少なくとも1種のそれぞれの含有量はCr:0.005~2.0%、Nb:0.005~0.20%、Ti:0.005~0.20%、Mo:0.005~2.0%、V:0.005~2.0%とする。下限の好ましい含有量について、Crは0.10%以上、Nbは0.01%以上、Tiは0.01%以上、Moは0.05%以上、Vは0.03%以上である。上限の好ましい含有量について、Crは0.80%以下、Nbは0.05%以下、Tiは0.05%以下、Moは0.50%以下、Vは0.50%以下である。
 なお、Cr、Nb、Ti、Mo、Vから2種以上を含む場合、いずれか1種の含有量が上記範囲にあればよい。その他の含有量が上記下限値未満の場合には本発明の効果を害さないためである。下限値未満の成分は不可避的不純物として含まれるものとして扱う。
 Cr+Ti+Nb+Mo+V≧Si
 炭化物抑制元素であるSiの含有量に対し、炭化物形成元素のCr、Ti、Nb、Mo、Vを合計でSi以上の含有量とすることで、残留オーステナイト中のC量を低めて、所望の軸圧壊安定性を得ることができる。したがって、Cr、Ti、Nb、Mo、Vの含有量の合計はSiの含有量以上とする。
 残部はFeおよび不可避的不純物であるが、必要に応じて以下の元素の1種以上を適宜含有させることができる。
 上記の通り、上記成分組成は、さらに、Ni:0.005~2.0%、Cu:0.005~2.0%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sn:0.01~0.50%、Sb:0.0010~0.10%から選ばれる1種以上を含有することができる。
 Ni、Cu、Bはマルテンサイトを生成させ、高強度化に寄与する有効な元素である。この効果を得るためにはこれらの含有量を上記下限以上にすることが有効である。Ni、Cu、Bの含有量がそれぞれ上記上限を超えるとスポット溶接部割れや軸圧壊安定性の劣化を招く。下限の好ましい含有量について、Niは0.050%以上、Cuは0.050%以上、Bは0.0005%以上である。上限の好ましい含有量について、Niは0.5%以下、Cuは0.5%以下、Bは0.0040%以下である。
 Ca、REMは、介在物の形態制御により穴拡げ性の向上に寄与する有効な元素である。この効果を得るためには、これらの元素の含有量を上記下限以上にすることが有効である。Ca、REMの含有量が0.0050%を超えると、介在物量が増加して穴拡げ性が劣化する場合がある。下限の好ましい含有量について、Caは0.0005%以上、REMは0.0005%以上である。上限の好ましい含有量について、Caは0.0030%以下、REMは0.0030%以下である。
 Sn、Sbは脱炭や脱窒、脱硼等を抑制して、鋼の強度低下抑制に有効な元素である。また、Sn、Sbはスポット溶接部割れ抑制にも有効である。これらの効果を得るためには、これらの元素の含有量を上記下限以上にすることが有効である。Sn、Sbの含有量がそれぞれの上記上限を超えると穴拡げ性が低下する場合がある。下限の好ましい含有量について、Sn、Sbともに0.0050%以上である。上限の好ましい含有量についてSnは0.10%以下。Sbは0.05%以下である。
 なお、Ni、Cu、B、Ca、REM、Sn、Sbの含有量が上記下限値未満の場合は、本発明の効果を害さないため許容できる。下限値未満の場合これらの成分は不可避的不純物として含まれるものとする。
 また、本発明では、Zr、Mg、La、Ce等の不純物元素を合計で0.002%まで不可避的不純物として含んでも構わない。
 続いて、鋼組織について説明する。鋼組織は、フェライトと炭化物を含まないベイナイトを面積率の合計で25%以下(0%を含む)、焼戻しマルテンサイトと炭化物を含むベイナイトを面積率の合計で70~97%、マルテンサイトと残留オーステナイトを面積率の合計で3~20%、残留オーステナイトを面積率で1~5%含み、前記フェライトと前記炭化物を含まないベイナイトと前記マルテンサイトと前記残留オーステナイトの面積率の合計が3~30%、残留オーステナイト中のC量が0.10~0.50%、炭化物を含むベイナイトの平均結晶粒径および焼戻しマルテンサイトの平均結晶粒径が5~20μmである。なお、焼戻しベイナイトもベイナイトに含まれるとする。
 フェライトと炭化物を含まないベイナイトの合計:25%以下(0%を含む)
 フェライトや、炭化物を含まないベイナイトは、強度と伸びフランジ性両立の観点および軸圧壊安定性の観点から好ましくない。本発明では面積率の合計で25%まで許容される。したがって、フェライトと、炭化物を含まないベイナイトとの面積率の合計は25%以下、好ましくは15%以下とする。上記面積率は、実施例に記載の測定方法で測定した値を採用する。
 炭化物を有しないベイナイトとは、圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、表面から板厚方向に1/4位置をSEM(走査型電子顕微鏡)で1500倍の倍率で撮影し、得られた画像データにおいて、炭化物を確認できない場合を指す。図1に示す通り、画像データにおいて、炭化物は白色の点状あるいは線状という特徴を有する部分であり、点状あるいは線状ではない島状マルテンサイトや残留オーステナイトと区別できる。なお、本発明では短軸長が100nm以下の場合を点状あるいは線状とした。また、炭化物を有さないベイナイトは島状マルテンサイトを有してもよく、島状マルテンサイトは画像データにおいて白または明灰色の部分である。ここで、炭化物とはセメンタイトなどの鉄系の炭化物、Ti系の炭化物、Nb系の炭化物等が例示できる。
 焼戻しマルテンサイトと炭化物を含むベイナイトの合計:70~97%
 焼戻しマルテンサイト、および炭化物を含むベイナイトは、いずれも強度と伸びフランジ性両立の観点から重要である。これらの面積率の合計が70%未満では、所望のTS(引張強度)あるいは穴拡げ率が達成できない。一方、面積率の合計が97%を超えると残留オーステナイトやマルテンサイトが減少して、軸圧壊安定性が低下する。したがって、焼戻しマルテンサイトと炭化物を含むベイナイトの面積率の合計は70~97%とする。下限について好ましくは75%以上、より好ましくは80%以上である。上限について好ましくは95%以下、より好ましくは93%以下である。上記面積率は、実施例に記載の測定方法で測定した値を採用する。
 炭化物を有するベイナイトとは、圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、表面から板厚方向に1/4位置をSEM(走査型電子顕微鏡)で1500倍の倍率で撮影し、得られた画像データにおいて、炭化物を確認できる場合を指す。なお、上記面積率は実施例に記載の方法で測定した値を採用する。
 マルテンサイトと残留オーステナイトの合計:3~20%
 マルテンサイト(焼入れままマルテンサイトを意味する。ただし、オートテンパードマルテンサイトも含むとする。)と残留オーステナイトの面積率の合計が3%未満では軸圧壊安定性が低下する。一方、20%を超えると穴拡げ率が低下する。したがって、マルテンサイトと残留オーステナイトの面積率の合計は3~20%とする。下限について好ましくは5%以上である。上限について好ましくは15%以下である。上記面積率は、実施例に記載の測定方法で測定した値を採用する。なお、ここで、残留オーステナイトとは、下記のC量が0.10~0.50%の残留オーステナイトである。
 残留オーステナイト:1~5%
 本発明において微量の残留オーステナイトは軸圧壊安定性の観点から重要である。その機構は必ずしも明らかではないが、軸圧壊時に変形応力集中部で不安定残留オーステナイトが直ちにマルテンサイト化することでひずみ伝播が助長されるためと推測される。不安定残留オーステナイトが1%未満ではこのような効果は得られない。一方、5%を超えると曲げ性や伸びフランジ性が低下する。したがって、残留オーステナイトの面積率は1~5%とする。上記面積率は、実施例に記載の測定方法で測定した値を採用する。
 残留オーステナイト中のC量:0.10~0.50%
 残留オーステナイト中のC量が0.50%を超えると残留オーステナイトが安定し過ぎて、軸圧壊安定性が低下する。一方、0.10%未満では穴拡げ率が低下する。したがって残留オーステナイト中のC量は0.10~0.50%とする。下限について好ましくは0.2%以上である。上限について好ましくは0.45%以下とする。上記C量は、実施例に記載の測定方法で測定した値を採用する。
 フェライトと炭化物を含まないベイナイトとマルテンサイトと残留オーステナイトの合計:3~30%
 曲げ性、軸圧壊安定性および伸びフランジ性両立の観点から、フェライトと、炭化物を含まないベイナイトと、マルテンサイトと、残留オーステナイトとが共存する場合、その面積率の合計を3~30%とする必要がある。3%未満では、所望量のマルテンサイトと残留オーステナイトが得られず、軸圧壊安定性が低下する。一方、30%を超えると曲げ性および穴拡げ率が低下する。したがって、フェライトと、炭化物を含まないベイナイトと、マルテンサイトと、残留オーステナイトとの面積率の合計は3~30%とする。下限について好ましくは4%以上、より好ましくは5%以上である。上限について好ましくは15%以下、より好ましくは12%以下である。
 焼戻しマルテンサイト、炭化物を含むベイナイトの平均結晶粒径:5~20μm
 焼戻しマルテンサイトおよび炭化物を含むベイナイトのうちいずれかの平均結晶粒径が5μm未満になると、粒界の残留オーステナイトが増加して、曲げ性や穴拡げ率が低下する。一方、いずれかの平均粒子径が20μmを超えると曲げ性や軸圧壊安定性が低下する。したがって、焼戻しマルテンサイトと炭化物を含むベイナイトの平均結晶粒径はそれぞれ5~20μmとする。下限について好ましくは6μm以上である。上限について好ましくは16μm以下である。なお、平均結晶粒径は実施例に記載の方法で測定して得た値を採用する。
 なお、その他の組織としてパーライト等があるが、本発明では面積率で10%までは、本発明の効果を害さない範囲で、その他の組織を含んでも構わない。つまり、90%以上を上記の相とすることが好ましい。
 続いて、亜鉛めっき層について説明する。亜鉛めっき層はFe含有量が6質量%以上である。6質量%以上であることで、耐スポット溶接割れ性を改善できる。上限は特に限定されないがパウダリング性の観点からはFe含有量は15質量%以下が好ましい。
 <高強度亜鉛めっき鋼板の製造方法>
 本発明の高強度亜鉛めっき鋼板の製造方法は、焼鈍工程と、亜鉛めっき工程と、を有する。
 焼鈍工程とは、上記成分組成を有する鋼に熱間圧延および酸洗を施し作製した熱延板、又は該熱延板に20%以上の圧下率で冷間圧延を施し作製した冷延板を、600~720℃の温度域における加熱速度が3.0℃/s以下、加熱温度が780~950℃の条件で加熱し、450~720℃の平均冷却速度が10℃/s以上で150~400℃まで冷却し、上記加熱及び冷却において780~950℃の温度域の滞留時間が30s以上であり、上記冷却後加熱温度が150℃超600℃以下、150℃超600℃以下の温度域の滞留時間が1000s以下の条件で再加熱するか又は前記冷却後150℃超400℃以下の温度域の滞留時間が1000s以下の条件で滞留させる工程である。
 先ず、本発明の製造方法で用いる熱延板について説明する。熱延板の製造方法は特に限定されない。熱延板の製造に用いるスラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法により製造することもできる。スラブを熱間圧延するには、スラブをいったん室温まで冷却し、その後再加熱して熱間圧延を行ってもよいし、スラブを室温まで冷却せずに加熱炉に装入して熱間圧延を行うこともできる。あるいはわずかの保熱を行った後に直ちに熱間圧延する省エネルギープロセスも適用できる。スラブを加熱する場合は、炭化物を溶解させたり、圧延荷重の増大を防止したりするため、スラブ加熱温度を1100℃以上にすることが好ましい。また、スケールロスの増大を防止するため、スラブの加熱温度は1300℃以下とすることが好ましい。なお、スラブ加熱温度はスラブ表面の温度である。スラブを熱間圧延する際は、粗圧延後の粗バーを加熱することもできる。また、粗バー同士を接合し、仕上げ圧延を連続的に行う、いわゆる連続圧延プロセスを適用できる。仕上げ圧延は、異方性を増大させ、冷間圧延・焼鈍後の加工性を低下させる場合があるので、Ar変態点以上の仕上げ温度で行うことが好ましい。また、圧延荷重の低減や形状・材質の均一化のために、仕上げ圧延の全パスあるいは一部のパスで摩擦係数が0.10~0.25となる潤滑圧延を行うことが好ましい。
 巻取り後の鋼板は、スケールを酸洗などにより除去した後、熱処理、圧下率が20%以上の冷間圧延が必要に応じて施される。
 冷間圧延の圧下率:20%以上
 冷間圧延の圧下率が20%未満では焼鈍時に粗粒が生成して、上記鋼組織が得られない。したがって、冷間圧延の圧下率は20%以上、好ましくは30%以上とする。上限は特に規定しないが、90%を超えると圧延形状が悪くなるため、90%以下が好ましい。
 600~720℃の温度域における加熱速度:3.0℃/s以下
 600~720℃の温度域における加熱速度が3.0℃/sを超えると、細粒化して本発明の鋼組織が得られない。したがって、600~720℃の温度域における加熱速度は3.0℃/s以下とする。下限は特に規定しないが、生産能率等の観点からは0.1℃/s以上が好ましい。なお、上記温度範囲外での加熱速度は特に限定されない。通常、0.5~3.0℃/sの範囲である。また、加熱速度は平均加熱速度を意味する。
 加熱温度:780~950℃
 加熱温度(焼鈍温度)が780℃未満ではフェライトが過剰に生成して、所望の鋼組織が得られない。一方、加熱温度が950℃を超えるとオーステナイトが粗大化して、所望の鋼組織が得られない。したがって、加熱温度は780~950℃、好ましくは780~900℃とする。
 450~720℃の温度域における平均冷却速度:10℃/s以上
 450~720℃の温度域における平均冷却速度が10℃/s未満ではフェライトや炭化物を含まないベイナイトが多量に生成して、所望の鋼組織が得られない。したがって、450~720℃の平均冷却速度は10℃/s以上、好ましくは15℃/s以上とする。上限は特に規定しないが、操業の観点からは100℃/sを超えると温度バラツキが大きくなりやすいため、100℃/s以下が好ましい。なお、上記温度範囲外での平均冷却速度は特に限定されない。通常、15~40℃/sの範囲である。
 冷却停止温度:150~400℃
 冷却停止温度が150℃未満では、残留オーステナイトの生成量が低下して、所望の鋼組織が得られない。一方、冷却停止温度が400℃を超えるとマルテンサイトや残留オーステナイトの生成量が増大して、所望の鋼組織が得られない。したがって、冷却停止温度は150~400℃、好ましくは150~350℃とする。なお、本発明において冷却停止保持は最終的な特性に特に影響しないため、必要に応じて行ってもよい。
 780~950℃の温度域での滞留時間:30s以上
 上記の加熱及び冷却における780~950℃の温度域での滞留時間が、30s未満ではオーステナイトの生成が不十分になり、フェライトの生成量が増大して、所望の鋼組織が得られない。したがって、780~950℃の温度域での滞留時間は30s以上とする。上限は特に規定しないが、生産能率等の観点からは1000s以下が好ましい。
 再加熱温度:150℃超600℃以下
 再加熱温度が600℃を超えると、オーステナイトがパーライト等に分解するため、所望量の残留オーステナイトが得られない。また、焼戻しマルテンサイトや炭化物を含むベイナイトが軟化して、強度が低くなる。一方、冷却停止温度未満には加熱できないため下限を150℃超とする。したがって、再加熱温度は150℃超600℃以下、このましくは150℃超500℃以下とする。
 150℃超600℃以下の温度域の滞留時間:1000s以下
 上記滞留時間が1000sを超えるとオーステナイトがパーライト等に分解して、所望量の残留オーステナイトが得られない。したがって、上記滞留時間は1000s以下、好ましくは500s以下とする。また、操業安定性の観点からは上記滞留時間は5s以上が好ましい。
 なお、上記再加熱のかわりに、冷却後、該冷却後150℃超400℃以下の温度域の滞留時間が1000s以下の条件で滞留させてもよい。
 上記焼鈍工程後に行う亜鉛めっき工程は、焼鈍板に亜鉛めっきを施し、次いで460~600℃に加熱してめっき合金化処理を施し、50℃以下まで冷却する工程である。例えば、質量%で、Fe:5.0~20.0%、Al:0.001%~1.0%を含有し、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、BiおよびREMから選択する1種または2種以上を合計0~30%を含有し、残部がZn及び不可避不純物からなるめっき層を、焼鈍板の表面に形成する。めっき処理の方法は溶融亜鉛めっきを採用すればよく、条件も適宜設定すればよい。
 めっき合金化処理温度:460~600℃
 亜鉛めっき処理後に行う合金化処理の合金化処理温度が460℃未満では合金化が不十分となりスポット溶接部割れが発生する。一方、合金化温度が600℃を超えると、オーステナイトがパーライト等に分解して、所望量の残留オーステナイトが得られない。したがって、合金化処理温度は460~600℃、好ましくは470~580℃とする。合金化時間は特に規定しないが、通常、1~120sの範囲である。
 冷却停止温度:50℃以下
 上記合金化処理後、50℃以下まで冷却する。50℃以下まで冷却することでオーステナイトは一部は残留オーステナイト、一部はマルテンサイトとなって、本発明の組織が得られる。
 表1に示す成分組成の鋼を実験室の真空溶解炉により溶製し、圧延して鋼スラブとした(表1中、Nは不可避的不純物である)。これらの鋼スラブを1200℃に加熱後粗圧延、仕上げ圧延して、厚さ3.0mmの熱延板とした。熱延の仕上げ圧延温度は900℃、巻取り温度は500℃とした。次いで、熱延板を酸洗後、一部は1.4mmまで冷間圧延して冷延板(圧下率は表2に示した)とした。得られた熱延板および冷延板を焼鈍に供した。焼鈍は実験室にて熱処理およびめっき処理装置を用いて表2に示す条件で行い、合金化溶融亜鉛めっき鋼板1~31を作製した。亜鉛めっき処理は460℃のめっき浴中に浸漬し、付着量35~45g/mのめっきを形成させる方法で行い、合金化処理は、めっき形成後450~650℃で30s保持し、50℃以下まで冷却する方法で行った。得られた合金化溶融亜鉛めっき鋼板に伸長率0.3%の調質圧延を施した後、以下の試験方法にしたがい、組織観察を行い、引張特性、曲げ性、穴拡げ性、耐スポット溶接割れ性、軸圧壊安定性を評価した。
 組織観察
 フェライト、炭化物を含まないベイナイト、マルテンサイト、焼戻しマルテンサイト、炭化物を含むベイナイトの面積率とは、観察面積に占める各組織の面積の割合のことであり、これらの面積率は、焼鈍後の鋼板よりサンプルを切り出し、圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、板厚1/4位置をSEM(走査型電子顕微鏡)で1500倍の倍率でそれぞれ3視野撮影し、得られた画像データからMediaCybernetics社製のImage-Proを用いて各組織の面積率を求め、視野の平均面積率を各組織の面積率とする。画像データにおいて、フェライトは黒、マルテンサイトおよび残留オーステナイトは白または明灰色、ベイナイトは方位の揃った炭化物または島状マルテンサイトあるいはその両方を含む黒または暗灰色(ベイナイト間の粒界を確認できるため炭化物を含まないベイナイトと炭化物を含まないベイナイトとを区別できる。なお、島状マルテンサイトとは図1に示す通り、画像データにおいて白色または明灰色の部分である。)として区別される。なお、本発明においてベイナイトの面積率は上記ベイナイト中の白または明灰色の部分を除いた黒または暗灰色の部分の面積率である。マルテンサイトの面積率は該白または明灰色組織の面積率から後述する残留オーステナイトの面積率(体積率を面積率とみなす)を差し引くことで求めた。なお、本発明において、マルテンサイトは炭化物を含むオートテンパードマルテンサイトや焼戻しマルテンサイトであっても構わない。なお炭化物を含むマルテンサイトは、炭化物方位は揃っておらずベイナイトとは異なる。島状マルテンサイトも上記のいずれかの特徴を持つマルテンサイトである。また、本発明において点状または線状でない白色部は上記マルテンサイトあるいは残留オーステナイトとして区別した。また、パーライトは黒色と白色の層状組織として区別できる。また、焼戻しマルテンサイトおよび炭化物を含むベイナイトの結晶粒径は面積率を測定した画像について、切断法により測定し、その平均値を該組織の平均結晶粒径とした。切断法で用いた線の数は縦方向に10本、横方向に10本とし、画像をそれぞれ11に等分割するように引いた。なお、本発明においてはパケット境界やブロック境界は粒界に含まない。
 残留オーステナイトの体積率は焼鈍後の鋼板を板厚の1/4まで研削後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でMoのKα線を用い、fcc鉄(オーステナイト)の(200)面、(220)面、(311)面と、bcc鉄(フェライト)の(200)面、(211)面、(220)面の積分反射強度を測定し、bcc鉄の各面からの積分反射強度に対するfcc鉄の各面からの積分反射強度の強度比から体積率を求め、これを残留オーステナイトの面積率とした。
 また、残留オーステナイトの格子定数をX線回折装置でCoのKα線を用い、(220)面の回折ピークシフト量から(1)式により算出し、さらに(2)式より残留オーステナイト中のC量を算出する。
Figure JPOXMLDOC01-appb-M000001
a=0.3578+0.0033[C]+0.000095[Mn]+0.00006[Cr]+0.0022[N]+0.00056[Al]+0.00015[Cu]+0.00031[Mo]   (2)
ここで、aは残留オーステナイト相の格子定数(nm)、θは(220)面の回折ピーク角度を2で除した値(rad)、[M]は残留オーステナイト相中の元素Mの質量%である。本発明では残留オーステナイト相中のC以外の元素Mの質量%は鋼全体に占める質量%とした。
 Fe量
 亜鉛めっき層中のFe含有量は、めっき層をインヒビターを含んだ塩酸によって溶解させた後、溶解した塩酸中のFe量をICP分析を用いて測定し、めっき層中のFe含有量とした。
 引張試験
 焼鈍板より圧延方向に対して直角方向にJIS5号引張試験片(JIS Z2201)を採取し、歪速度が10-3/sとするJIS Z 2241の規定に準拠した引張試験を行い、TSを求めた。なお、本発明では980MPa以上を合格とした。
 曲げ試験
 焼鈍板より圧延方向に対して平行方向を曲げ試験軸方向とする、幅が30mm、長さが100mmの短冊形の試験片を採取し、曲げ試験を行った。ストローク速度が10mm/s、押込み荷重が10ton、押付け保持時間5秒とし、曲げ半径は板厚が1.4mmのものは3.5mm、板厚が3.0mmのものは7.5mmの条件で90°V曲げ試験を行った。曲げ頂点の稜線部を10倍の拡大鏡で観察し、0.5mm以上の亀裂が認められないものを「優」として判定した。
 軸圧壊安定性
 焼鈍板より圧延方向と直角方向を幅方向とする、幅が120mm、長さが78mmの試験片と幅が120mm、長さが150mmの試験片を採取した。曲げ半径は板厚が1.4mmのものは4mm、板厚が3.0mmのものは8mmである。曲げ加工およびスポット溶接により図2に示す軸圧壊部品を作製した。
 その後、図3に示すように地板とTIG溶接により接合して、圧壊試験体を作製した。圧壊試験は、図3の上方からインパクターを衝突速度10m/sで等速衝突させ、80mm圧壊した。圧壊後試験体が蛇腹状に潰れ、割れや裂けが認められない場合を「優」として判定した。
 スポット溶接部割れ
 焼鈍板より圧延方向に対して平行方向に幅が50mm、長さが150mmの試験片を2枚採取した。図4に示すように2枚の試験片を重ね合わせてクランプし、下電極(固定)と鋼板とのクリアランスを2mm、加圧力を3.5kNとした。溶接ナゲット径は板厚が1.4mmのものは5.9mm、板厚が3.0mmのものは8.7mmである。一段の一定電流条件で上電極を押し付けてスポット溶接した。溶接後半切して、板厚断面を光学顕微鏡で観察し、0.2mm以上の亀裂が認められないものを耐スポット溶接割れ性良好とした。
 穴拡げ試験
 150mm×150mmの試験片を採取し、JFST 1001(日本鉄鋼連盟規格、2008年)に準拠して60゜円錐ポンチを用いて穴拡げ試験を3回行って平均の穴拡げ率(%)を求め、伸びフランジ性を評価した。穴拡げ率が40%以上を良好とした。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 発明例では、いずれもTSが980MPa以上で、優れた曲げ性、耐スポット溶接割れ性、伸びフランジ性および軸圧壊安定性を有する亜鉛めっき鋼板である。一方、本発明の範囲を外れる比較例は所望の強度が得られていないか、曲げ性が得られていないか、耐スポット溶接割れ性が得られていないか、伸びフランジ性が得られていないか、軸圧壊安定性が得られていない。
産業上利用の可能性
 本発明によれば、TSが980MPa以上で、優れた曲げ性、耐スポット溶接割れ性、伸びフランジ性および軸圧壊安定性を有する亜鉛めっき鋼板を得ることができる。本発明の高強度亜鉛めっき鋼板を自動車部品用途に使用すると、自動車の衝突安全性改善と燃費向上に大きく寄与することができる。
 1  スポット溶接部
 2  地板
 3  TIG溶接部
 4  電極
 

Claims (3)

  1.  質量%で、
    C:0.08~0.15%、
    Si:0.1~1.0%、
    Mn:2.0~3.0%、
    P:0.100%以下(0%は除く)、
    S:0.02%以下(0%は除く)、
    Al:0.01~1.0%、
    N:0.010%以下を含み、
    かつCr:0.005~2.0%、
    Ti:0.005~0.20%、
    Nb:0.005~0.20%、
    Mo:0.005~2.0%、
    V:0.005~2.0%、から選ばれる1種以上を含み、
    Cr+Ti+Nb+Mo+V≧Siを満たし、残部がFeおよび不可避的不純物からなる成分組成と、
     フェライトと炭化物を含まないベイナイトを面積率の合計で25%以下(0%を含む)、焼戻しマルテンサイトと炭化物を含むベイナイトを面積率の合計で70~97%、マルテンサイトと残留オーステナイトを面積率の合計で3~20%、残留オーステナイトを面積率で1~5%含み、前記フェライトと前記炭化物を含まないベイナイトと前記マルテンサイトと前記残留オーステナイトの面積率の合計が3~30%、残留オーステナイト中のC量が0.10~0.50%、炭化物を含むベイナイトの平均結晶粒径および焼戻しマルテンサイトの平均結晶粒径が5~20μmである鋼組織と、を有する鋼板と、
     前記鋼板上に形成され、Fe含有量が6質量%以上である亜鉛めっき層と、を備えることを特徴とする高強度亜鉛めっき鋼板。
  2.  前記成分組成は、さらに、質量%で、
    Ni:0.005~2.0%、
    Cu:0.005~2.0%、
    B:0.0001~0.0050%、
    Ca:0.0001~0.0050%、
    REM:0.0001~0.0050%、
    Sn:0.01~0.50%、
    Sb:0.0010~0.10%から選ばれる1種以上を含むことを特徴とする請求項1に記載の高強度亜鉛めっき鋼板。
  3.  請求項1または2に記載の成分組成を有する鋼に熱間圧延および酸洗を施し作製した熱延板、又は該熱延板に20%以上の圧下率で冷間圧延を施し作製した冷延板を、600~720℃の温度域における加熱速度が3.0℃/s以下、加熱温度が780~950℃の条件で加熱し、450~720℃の平均冷却速度が10℃/s以上で150~400℃まで冷却し、前記加熱及び冷却において780~950℃の温度域の滞留時間が30s以上であり、前記冷却後加熱温度が150℃超600℃以下、150℃超600℃以下の温度域の滞留時間が1000s以下の条件で再加熱するか又は前記冷却後150℃超400℃以下の温度域の滞留時間が1000s以下の条件で滞留させる焼鈍工程と、
     前記焼鈍工程後の焼鈍板に亜鉛めっきを施し、次いで460~600℃に加熱してめっき合金化処理を施し、50℃以下まで冷却する亜鉛めっき工程と、を有することを特徴とする高強度亜鉛めっき鋼板の製造方法。
PCT/JP2017/003151 2016-02-10 2017-01-30 高強度亜鉛めっき鋼板及びその製造方法 WO2017138384A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2018009736A MX2018009736A (es) 2016-02-10 2017-01-30 Lamina de acero galvanizada de alta resistencia y metodo para la produccion de la misma.
EP17750109.5A EP3415653B1 (en) 2016-02-10 2017-01-30 High-strength galvanized steel sheet and method for producing same
KR1020187022668A KR102098215B1 (ko) 2016-02-10 2017-01-30 고강도 아연 도금 강판 및 그의 제조 방법
US16/076,098 US20200165708A1 (en) 2016-02-10 2017-01-30 High-strength galvanized steel sheet and method of producing the same
CN201780011007.5A CN108603269B (zh) 2016-02-10 2017-01-30 高强度镀锌钢板及其制造方法
JP2017528232A JP6264507B2 (ja) 2016-02-10 2017-01-30 高強度亜鉛めっき鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016023403 2016-02-10
JP2016-023403 2016-02-10

Publications (1)

Publication Number Publication Date
WO2017138384A1 true WO2017138384A1 (ja) 2017-08-17

Family

ID=59563943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003151 WO2017138384A1 (ja) 2016-02-10 2017-01-30 高強度亜鉛めっき鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US20200165708A1 (ja)
EP (1) EP3415653B1 (ja)
JP (1) JP6264507B2 (ja)
KR (1) KR102098215B1 (ja)
CN (1) CN108603269B (ja)
MX (1) MX2018009736A (ja)
WO (1) WO2017138384A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159771A1 (ja) * 2018-02-19 2019-08-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2020026593A1 (ja) * 2018-07-31 2020-02-06 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
US20210381086A1 (en) * 2018-10-19 2021-12-09 Nippon Steel Corporation Hot-rolled steel sheet
JP2022540210A (ja) * 2019-07-29 2022-09-14 ポスコ 高強度鋼板及びこの製造方法
JP2022540208A (ja) * 2019-07-29 2022-09-14 ポスコ 高強度鋼板及びこの製造方法
WO2023095866A1 (ja) * 2021-11-26 2023-06-01 日本製鉄株式会社 熱延鋼板

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021004375A (es) * 2018-10-17 2021-06-04 Jfe Steel Corp Lamina de acero y metodo para la produccion de la misma.
KR102525728B1 (ko) * 2018-10-31 2023-04-26 제이에프이 스틸 가부시키가이샤 고강도 부재, 고강도 부재의 제조 방법 및 고강도 부재용 강판의 제조 방법
SE542893C2 (en) * 2018-11-30 2020-08-18 Voestalpine Stahl Gmbh A resistance spot welded joint comprising a zinc coated ahss steel sheet
EP3904552B1 (en) 2018-12-26 2023-11-01 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing same
CN113227430B (zh) * 2018-12-26 2022-09-23 杰富意钢铁株式会社 高强度热浸镀锌钢板及其制造方法
US20220186334A1 (en) * 2019-02-25 2022-06-16 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
MX2021011964A (es) * 2019-04-11 2021-11-03 Nippon Steel Corp Lamina de acero y metodo para fabricar la misma.
EP4067524A4 (en) * 2020-01-31 2023-01-11 JFE Steel Corporation STEEL SHEET, ELEMENT AND METHOD OF MAKING THE SAME
EP4074847B1 (en) * 2020-02-13 2024-06-12 JFE Steel Corporation High-strength steel sheet and method for producing same
EP4079882A4 (en) * 2020-02-28 2023-05-24 JFE Steel Corporation STEEL SHEET, ELEMENT AND METHODS RESPECTIVELY FOR THE PRODUCTION OF SAID STEEL SHEET AND SAID ELEMENT
WO2021182389A1 (ja) * 2020-03-11 2021-09-16 日本製鉄株式会社 熱延鋼板
JP7031801B1 (ja) * 2020-06-30 2022-03-08 Jfeスチール株式会社 亜鉛めっき鋼板、部材及びそれらの製造方法
US11976341B2 (en) 2020-06-30 2024-05-07 Jfe Steel Corporation Steel sheet, member, and method for producing them
KR102468043B1 (ko) * 2020-11-17 2022-11-17 주식회사 포스코 표면품질 및 크랙 저항성이 우수한 초고강도 아연도금강판 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090003700A (ko) * 2007-07-03 2009-01-12 현대하이스코 주식회사 가공성이 우수한 용융도금강판 및 그 제조방법
JP2012219342A (ja) * 2011-04-11 2012-11-12 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2014051683A (ja) * 2012-08-07 2014-03-20 Nippon Steel & Sumitomo Metal 冷延鋼板およびその製造方法
JP2015117403A (ja) * 2013-12-18 2015-06-25 Jfeスチール株式会社 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2015185975A1 (en) * 2014-06-06 2015-12-10 Arcelormittal High strength multiphase steel, production method and use

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282175A (ja) * 1999-04-02 2000-10-10 Kawasaki Steel Corp 加工性に優れた超高強度熱延鋼板およびその製造方法
JP2009138222A (ja) 2007-12-05 2009-06-25 Honda Motor Co Ltd 高強度鋼板およびそれを用いた車両用強度部材
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4893844B2 (ja) * 2010-04-16 2012-03-07 Jfeスチール株式会社 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5434960B2 (ja) * 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
KR20150029736A (ko) * 2012-07-31 2015-03-18 제이에프이 스틸 가부시키가이샤 성형성 및 형상 동결성이 우수한 고강도 용융 아연 도금 강판, 그리고 그의 제조 방법
JP5821912B2 (ja) * 2013-08-09 2015-11-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
WO2015088523A1 (en) * 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
JP5858032B2 (ja) * 2013-12-18 2016-02-10 Jfeスチール株式会社 高強度鋼板およびその製造方法
JP2015193907A (ja) 2014-03-28 2015-11-05 株式会社神戸製鋼所 加工性、および耐遅れ破壊特性に優れた高強度合金化溶融亜鉛めっき鋼板、並びにその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090003700A (ko) * 2007-07-03 2009-01-12 현대하이스코 주식회사 가공성이 우수한 용융도금강판 및 그 제조방법
JP2012219342A (ja) * 2011-04-11 2012-11-12 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2014051683A (ja) * 2012-08-07 2014-03-20 Nippon Steel & Sumitomo Metal 冷延鋼板およびその製造方法
JP2015117403A (ja) * 2013-12-18 2015-06-25 Jfeスチール株式会社 耐衝撃性および曲げ加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2015185975A1 (en) * 2014-06-06 2015-12-10 Arcelormittal High strength multiphase steel, production method and use

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466350B2 (en) 2018-02-19 2022-10-11 Jfe Steel Corporation High-strength steel sheet and production method therefor
JP6614397B1 (ja) * 2018-02-19 2019-12-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR20200106195A (ko) * 2018-02-19 2020-09-11 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
WO2019159771A1 (ja) * 2018-02-19 2019-08-22 Jfeスチール株式会社 高強度鋼板およびその製造方法
KR102375340B1 (ko) 2018-02-19 2022-03-16 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
WO2020026593A1 (ja) * 2018-07-31 2020-02-06 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
JPWO2020026593A1 (ja) * 2018-07-31 2020-08-06 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
CN112534077A (zh) * 2018-07-31 2021-03-19 杰富意钢铁株式会社 高强度热轧钢板及其制造方法
US20210381086A1 (en) * 2018-10-19 2021-12-09 Nippon Steel Corporation Hot-rolled steel sheet
US11970758B2 (en) * 2018-10-19 2024-04-30 Nippon Steel Corporation Hot-rolled steel sheet
JP2022540208A (ja) * 2019-07-29 2022-09-14 ポスコ 高強度鋼板及びこの製造方法
JP2022540210A (ja) * 2019-07-29 2022-09-14 ポスコ 高強度鋼板及びこの製造方法
JP7440605B2 (ja) 2019-07-29 2024-02-28 ポスコ カンパニー リミテッド 高強度鋼板及びこの製造方法
WO2023095866A1 (ja) * 2021-11-26 2023-06-01 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
US20200165708A1 (en) 2020-05-28
KR102098215B1 (ko) 2020-04-07
JPWO2017138384A1 (ja) 2018-02-15
CN108603269B (zh) 2020-10-02
JP6264507B2 (ja) 2018-01-24
EP3415653A4 (en) 2019-01-16
CN108603269A (zh) 2018-09-28
MX2018009736A (es) 2019-01-24
KR20180095710A (ko) 2018-08-27
EP3415653B1 (en) 2020-03-04
EP3415653A1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6264507B2 (ja) 高強度亜鉛めっき鋼板及びその製造方法
KR102252841B1 (ko) 고강도 아연 도금 강판 및 그 제조 방법
US10745775B2 (en) Galvannealed steel sheet and method for producing the same
JP6354921B1 (ja) 鋼板およびその製造方法
KR102400445B1 (ko) 고강도 아연 도금 강판, 고강도 부재 및 그들의 제조 방법
WO2019116531A1 (ja) 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
KR102402864B1 (ko) 고강도 아연 도금 강판 및 그의 제조 방법
JP6562180B1 (ja) 高強度鋼板およびその製造方法
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
WO2010146796A1 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
KR102375340B1 (ko) 고강도 강판 및 그 제조 방법
KR102544884B1 (ko) 고강도 용융 아연 도금 강판 및 그의 제조 방법
JP6787535B1 (ja) 高強度鋼板およびその製造方法
JP7276618B2 (ja) 高強度冷延鋼板およびその製造方法
KR20190028488A (ko) 고강도 강판 및 그 제조 방법
CN115715332A (zh) 镀锌钢板、构件和它们的制造方法
JP6409916B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法
JP7044196B2 (ja) 鋼板の製造方法及び部材の製造方法
JP7044197B2 (ja) 鋼板の製造方法及び部材の製造方法
KR102398709B1 (ko) 고강도 강판 및 그 제조 방법
JP7028379B1 (ja) 鋼板、部材及びそれらの製造方法
KR20220144404A (ko) 강판, 부재 및 그들의 제조 방법
JP2022034013A (ja) 鋼板、部材及びそれらの製造方法
JP2022024998A (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017528232

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187022668

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022668

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/009736

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750109

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750109

Country of ref document: EP

Effective date: 20180910