WO2017130767A1 - 熱延鋼帯の製造設備列および熱延鋼帯の製造方法 - Google Patents

熱延鋼帯の製造設備列および熱延鋼帯の製造方法 Download PDF

Info

Publication number
WO2017130767A1
WO2017130767A1 PCT/JP2017/001192 JP2017001192W WO2017130767A1 WO 2017130767 A1 WO2017130767 A1 WO 2017130767A1 JP 2017001192 W JP2017001192 W JP 2017001192W WO 2017130767 A1 WO2017130767 A1 WO 2017130767A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
cooling device
rolling
rolled
rolling mill
Prior art date
Application number
PCT/JP2017/001192
Other languages
English (en)
French (fr)
Inventor
上岡 悟史
雄太 田村
園美 白崎
由佳子 片山
亨 松本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP17743998.1A priority Critical patent/EP3409390B1/en
Priority to US16/072,968 priority patent/US11020780B2/en
Priority to KR1020187021493A priority patent/KR102103367B1/ko
Priority to CN201780008181.4A priority patent/CN108602102B/zh
Publication of WO2017130767A1 publication Critical patent/WO2017130767A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • B21B1/34Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Definitions

  • the present invention relates to a hot rolling steel strip manufacturing facility row and a hot rolling steel strip manufacturing method that perform controlled rolling in the manufacture of a thick hot rolled steel strip that has a thickness of 12 mm or more and that requires high toughness. Is.
  • FIG. 1 shows a general hot rolling process.
  • a material to be rolled (slab) heated to about 1200 ° C. by a continuous heating furnace 1 is first forged in a sheet width direction by a sizing press 2. Then, the sheet width is adjusted, and then the material to be rolled is rolled by the rough rolling mill group 3 to form a sheet bar 10 having a thickness of 30 to 50 mm, and then the sheet bar 10 is continuously rolled for 6 to 7 stands.
  • the steel sheet is rolled to 1.2 to 25 mm by a finish rolling mill group 6 to form a hot-rolled steel strip, and then cooled by a run-out table 7 and wound by a coiler 8.
  • the structural steel plate has a thickness of 8 to 25 mm, has a very thick dimension in the hot-rolled steel strip, and particularly has a thickness of 12 mm or more in the line pipe material.
  • CR controlled rolling
  • Controlled rolling has been practiced for a long time mainly in the manufacturing process of thick steel sheets. By rolling in a low temperature range where the growth rate of steel crystal grains is slow, the crystal structure is refined and the toughness is improved.
  • the temperature at which controlled rolling is started varies depending on the additive elements such as Nb and V, but is approximately 950 ° C. or less, and at least 60% reduction is performed from the controlled rolling start thickness to the product thickness.
  • the controlled rolling start thickness is about 30 mm
  • the controlled rolling start thickness is about 63 mm.
  • the final thickness is 25 mm
  • rough rolling is performed so that the sheet bar has a thickness of 63 mm before the end of rough rolling, and then the center temperature of the sheet bar is 950 ° C. or lower.
  • a method is adopted in which the sheet bar is allowed to stand by air cooling in front of the finish rolling mill group 6 until it becomes, and then the finish rolling mill group 6 performs rolling. At this time, since it takes about 200 to 300 seconds to wait for the sheet bar in front of the finish rolling mill group 6, the next material cannot be rolled during this time, and the rolling efficiency is greatly reduced.
  • JP 2011-143459 A Japanese Patent No. 4720250 JP-A-4-274814 Japanese Patent No. 4946516
  • a cooling device of about 15 to 300 ° C./second is installed on the entry side or the exit side of a reversible roughing mill, and cooling is performed between passes of the rolling pass of the roughing mill.
  • the target controlled rolling start temperature is reached by the start of controlled rolling.
  • this technique has a problem that when the cooling rate is high and the plate thickness is large, the temperature difference between the surface and the center of the steel material becomes large, and the surface layer of the sheet bar may be lower than the phase transformation temperature during water cooling. . In this case, only the surface layer of the sheet bar may undergo ferrite transformation and may not satisfy a predetermined mechanical test value.
  • Patent Document 2 relates to a method for simultaneously rolling a plurality of rolled materials, and after rolling is completed to a thickness before controlled rolling, the rolled material is temporarily moved on a transport table far from the rolling mill. This is a technique for minimizing the idling time of the rolling mill by allowing the next material to be rolled during that time.
  • this technique has a problem that although the efficiency improvement effect is large when the waiting time by air cooling until the start of controlled rolling and the rolling time are substantially the same, the rolling efficiency does not increase so much when they are greatly different.
  • Patent Document 3 discloses a lifting device having a cantilevered fork-like arm that lifts a steel plate that has been rolled before controlled rolling to a height that allows the next material to be rolled to pass through and holds it in a standby state. . This is a very useful technique when the thickness of the sheet bar is sufficiently thick and matches the rolling time of the sheet bar through which the waiting time of the waiting sheet bar passes.
  • the weight of the slab is 20-30 tons larger than that of the thick steel plate, and the length of the seat bar is extremely long, for example, exceeding 20 m, so a large lifting device is required. become.
  • Patent Document 4 discloses that in order to reinforce the weak point of the above-mentioned document, in addition to the lifting device of Patent Document 3, water cooling devices are installed before and after the rolling mill. However, in this document as well as Patent Document 3, if rolling is performed on sheet bars of various sizes and temperature conditions, the idle time of the hot rolling mill is reduced and the rolling efficiency is improved. It is not shown whether it can.
  • the object of the present invention is to efficiently reduce the time required to start controlled rolling while preventing the surface layer of the sheet bar from falling below the phase transformation temperature during cooling performed prior to controlled rolling. It is in proposing the manufacturing equipment row
  • the production equipment row of the hot-rolled steel strip of the present invention that advantageously solves the above problems comprises a rough rolling machine comprising a plurality of rough rolling mills that hot-roll a material to be rolled to a predetermined temperature to obtain a finish rolling start plate thickness.
  • a hot rolling steel strip manufacturing facility line comprising a rolling mill group and a finish rolling mill group composed of a plurality of finish rolling mills that control-roll the material to be rolled to a finish plate thickness, At least one of the plurality of rough rolling mills is a reversible rolling mill;
  • a slow cooling device that slowly cools the material to be rolled at a water density of less than 1000 L / min ⁇ m 2 , and the rolled material after the slow cooling at a water density of 1000 L / min ⁇ m 2 or more
  • One of the rapid cooling devices for rapidly cooling the material is provided, and the other of the slow cooling device and the rapid cooling device is provided downstream of the reversible rolling mill.
  • the rough rolling mill disposed at least on the most downstream side among the plurality of rough rolling mills is a reversible rolling mill.
  • the slow cooling device is disposed upstream of the reversible rolling mill and the rapid cooling device is disposed downstream.
  • the material to be rolled is slowly cooled by the slow cooling device when the plate thickness is 80 mm or more, and is rapidly cooled when the plate thickness is less than 80 mm. It is preferred to be cooled rapidly by the apparatus.
  • the cooling time by the slow cooling device and the rapid cooling device is set so that the surface temperature during cooling of the material to be rolled is 600 ° C. or more. It is preferred that
  • board thickness of the finishing rolling mill of the last stage is 12 mm or more among the plurality of finishing rolling mills.
  • the method for producing a hot-rolled steel strip of the present invention that advantageously solves the above-mentioned problem is to hot-roll the material to be rolled heated to a predetermined temperature with a plurality of rough rolling mills to a finish rolling start plate thickness
  • a method for producing a hot-rolled steel strip in which a material to be rolled is controlled and rolled to a finished sheet thickness by a plurality of finish rolling mills, At least one of the plurality of rough rolling mills is a reversible rolling mill; Upstream of the reversible rolling mill, rapidly cooling the material to be rolled by the slow cooling device and 1000L / min ⁇ m 2 or more water density to slow cool the material to be rolled at a water flow rate of less than 1000L / min ⁇ m 2 One of the rapid cooling devices is disposed, and the other of the slow cooling device and the rapid cooling device is disposed downstream of the reversible rolling mill, After the material to be rolled is slowly cooled at a water density of less than 1000
  • a roughing mill disposed at least on the most downstream side of the plurality of roughing mills is a reversible rolling mill.
  • the slow cooling device upstream of the reversible rolling mill and the rapid cooling device downstream.
  • the material to be rolled is slowly cooled by the slow cooling device when the plate thickness is 80 mm or more, and the rapid cooling is performed when the plate thickness is less than 80 mm. It is preferable to perform rapid cooling by the apparatus.
  • the material to be rolled is cooled so that the surface temperature during the cooling of the material to be rolled cooled by the slow cooling device and the rapid cooling device is 600 ° C. or higher. It is preferable to do.
  • board thickness of the finishing rolling mill of the last stage is made into 12 mm or more among the plurality of finishing rolling mills.
  • the material to be rolled is less than 1000 L / min ⁇ m 2 by a slow cooling device. And slowly cooling the material to be rolled after slow cooling at a water density of 1000 L / min ⁇ m 2 or more by a rapid cooling device on the downstream side or upstream side of the reversible rolling mill.
  • the cooling rate is relatively low, but the cooling of the surface layer of the sheet bar does not fall below the phase transformation temperature even if it is cooled for a relatively long time.
  • the cooling rate can be increased to cool to the desired controlled rolling start temperature in a short time.
  • a hot-rolled steel strip can be efficiently manufactured while reducing the time required to start controlled rolling.
  • a graph showing the relationship between the cooling water density and the limit temperature drop of the cross-sectional average when the sheet bar is cooled until the surface temperature of the sheet bar reaches 600 ° C. for sheet bars having various plate thicknesses with an initial surface temperature of 1000 ° C. is there. It is a graph which shows the relationship between a cooling water amount density and the cooling rate of the cross-sectional average of a sheet bar about the sheet bar of various board thickness whose initial surface temperature is 1000 degreeC. It is a block diagram which shows typically other embodiment of the manufacturing equipment row
  • FIG. 1 is a configuration diagram schematically showing a general hot-rolled steel strip production facility row together with a rolling pass.
  • a material to be rolled (slab) having a thickness of, for example, 260 mm is heated to 1170 ° C. in a continuous heating furnace 1, and thereafter, rough rolling mill group 3
  • the sheet bar 10 is a sheet-like material to be rolled having a predetermined thickness.
  • the sizing press 2 installed on the exit side of the continuous heating furnace 1 is crushed down to a predetermined size in the width direction,
  • the edger 4 installed at a position close to the rolling mill is similarly rolled down in the width direction.
  • the sheet bar 10 is finish-rolled to a predetermined thickness (for example, 20 mm) with a finish rolling mill group 6 to form a hot-rolled steel strip, After being cooled to a predetermined temperature by the runout table 7, it is wound up by a coiler 8.
  • a predetermined thickness for example, 20 mm
  • the rough rolling mill group 3 includes two rough rolling mills 31 and 32, and the reverse rolling mill 31 capable of reverse rolling is provided on the upstream side (heating furnace side) of the rough rolling mill group 3.
  • a nonreciprocal rolling mill 32 capable of rolling only in the conveyance direction to the downstream side is disposed on the downstream side.
  • the sheet bar 10 rolled to a predetermined controlled rolling start thickness is subjected to oscillation standby between the rough rolling mill group 3 and the finish rolling mill group 6 until the sheet bar 10 is lowered to a predetermined controlled rolling start temperature.
  • the surface temperature of the sheet bar 10 is measured by the radiation thermometer 33, and after confirming that the surface temperature of the sheet bar 10 has been lowered to a predetermined controlled rolling start temperature, the sheet bar 10 is fed to the finish rolling mill group 6 and controlled. Rolling is performed. At this time, since the temperature is lowered by about 150 to 250 ° C. by air cooling, it is necessary to wait for about 60 to 300 seconds. During this time, the finish rolling mill group 6 cannot perform rolling, leading to a reduction in rolling efficiency.
  • the thickness of the seat bar 10 at this time is 50 mm, for example, the length of the seat bar 10 is as long as about 50 m. Therefore, as disclosed in the prior art documents 3 and 4, the lifting device for lifting the seat bar, etc. It is not realistic to introduce this mechanism.
  • the rapid cooling device 41 having a water density of 1000 L / min ⁇ m 2 or more is disposed on the upstream side or the downstream side of the reversible rolling mill 31 of the rough rolling mill group 3, and the reversible rolling mill.
  • a slow cooling device 42 having a water density of less than 1000 L / min ⁇ m 2 on the downstream side or the upstream side of 31 a configuration in which cooling and rolling are simultaneously performed in the rough rolling mill group 3 is adopted.
  • the temperature of the sheet bar 10 can be adjusted to be equal to the control rolling start temperature, and the control rolling temperature waiting time can be greatly shortened.
  • FIG. 2 shows a hot-rolled steel according to the present invention in which one embodiment of the method for producing a hot-rolled steel strip according to the present invention, in which a rapid cooling device 41 and a slow cooling device 42 are added to the production equipment row shown in FIG.
  • a rapid cooling device 41 is disposed on the downstream side of the reversible rolling mill 31, and a slow cooling device 42 is disposed on the upstream side.
  • a rapid cooling device 41 is disposed on the downstream side of the reversible rolling mill 31, and a slow cooling device 42 is disposed on the upstream side.
  • a slow cooling device 42 is disposed on the upstream side.
  • the slow cooling device 42 stops water discharge, and the rapid cooling device 41 installed on the downstream side of the reversible rolling mill 31 is operated to perform reversible rolling.
  • the rapid cooling device 41 installed on the downstream side of the reversible rolling mill 31 is operated to perform reversible rolling.
  • Passing cooling of the seat bar 10 is performed.
  • the rapid cooling device 41 and the slow cooling device 42 are selectively used according to the thickness of the sheet bar 10 that is repeatedly rolled by the reversible rolling mill 31.
  • the reason is as follows.
  • FIG. 3 shows the temperature history of the surface when the sheet bar 10 having a plate thickness of 40 mm is cooled at various cooling water density.
  • the time region in which the temperature suddenly decreases indicates that water cooling has been performed, and the time region in which the temperature has increased through the lower limit temperature has been stopped and allowed to cool (air cooling). Is shown. From this figure, it can be seen that the cooling rate of the surface (temperature temperature gradient) increases as the water density of the cooling water increases.
  • the temperature of the outermost layer of the sheet bar 10 during water cooling is preferably maintained at 600 ° C. or higher.
  • the water cooling is stopped when the surface temperature of the seat bar 10 reaches the lower limit temperature of 600 ° C.
  • FIG. 4 shows the average cross-sectional temperature of the sheet bar 10 at that time. Similarly, the time region where the temperature rapidly decreases in the figure indicates that water cooling was performed.
  • the cooling water quantity density is high, the time gradient of the cross-sectional average temperature of the sheet bar 10, that is, the cooling rate becomes steep, but the cooling water is used from the viewpoint of maintaining the surface temperature at 600 ° C. or higher and preventing cracks from ferrite grain boundaries. Therefore, the higher the cooling water quantity density, the higher the temperature at the end of cooling. Therefore, it can be seen that the smaller the cooling water density, the slower the cooling rate, but the larger the temperature drop that can be cooled at one time.
  • FIG. 5 shows the relationship between the cooling water density and the average temperature drop of the cross-section when the surface temperature is 600 ° C. for sheet bars 10 having various plate thicknesses with an initial surface temperature of 1000 ° C. .
  • the surface temperature is kept at 600 ° C. or higher, so that the cooling temperature drop by one water cooling decreases as the plate thickness increases and the cooling water density increases. Become.
  • the temperature that can be lowered by one cooling due to the restriction of the surface temperature of 600 ° C. is referred to as a critical temperature drop amount.
  • FIG. 6 shows the relationship between the water density of the cooling water and the cross-sectional average of the cooling rate of the sheet bar 10 for the sheet bar 10 having various plate thicknesses with an initial surface temperature of 1000 ° C.
  • the cooling rate is faster as the water density of the cooling water is larger. For this reason, considering the above constraints, when cooling below the limit temperature drop, the temperature can be lowered in a shorter time by increasing the water density of the cooling water. Is advantageous.
  • a slab having a thickness of about 220 to 260 mm is rolled to about 45 mm in about 10 passes. Since the sheet thickness tends to be large and the critical temperature drop amount tends to be small at the beginning of rolling, slow cooling with a large critical temperature drop amount is advantageous in terms of the lower limit temperature of the surface per pass. Under the condition that the plate thickness is reduced in the later stage of rolling, the amount of critical temperature drop can be increased. Therefore, rapid cooling in which water is cooled in a short time by increasing the cooling rate is more advantageous.
  • the limit temperature drop amount is larger when the sheet thickness is smaller, when a plurality of rough rolling mills are provided, the upstream side and the downstream side of the most downstream reversible rolling mill 31 corresponding to the smallest sheet thickness. It is preferred to carry out the cooling in
  • the critical temperature drop amount becomes large at the low water amount density at the boundary of the cooling water amount density of 1000 L / min ⁇ m 2 . Therefore, from the viewpoint of preventing ferrite cracks on the surface of the sheet bar 10, when the plate thickness is 80 mm or more, a large limit temperature drop can be ensured by setting the water density of the cooling water to less than 1000 L / min ⁇ m 2 .
  • cooling to a predetermined temperature (controlled rolling start temperature) desirable for controlled rolling is dispersed in a plurality of passes, and cooling is performed at about 20 to 30 ° C. in one pass.
  • the slow cooling device 42 having a water density of less than 1000 L / min ⁇ m 2
  • the ferrite on the surface of the sheet bar 10 is cooled by cooling with the rapid cooling device 41 having a water density of 1000 L / min ⁇ m 2 or more. Efficient cooling can be performed while preventing cracks, and the rolling time can be shortened.
  • the amount of cooling water in the slow cooling device 42 is preferably 200 L / min ⁇ m 2 or more.
  • the rapid cooling device 41 as the cooling water amount density is increased, the amount of temperature drop due to water cooling per pass is reduced, but the cooling rate is increased. For this reason, in the range where the limit cooling capacity per pass does not change so much, the equipment cost increases with the increase in the amount of cooling water, so the water density of the cooling water is preferably 6000 L / min ⁇ m 2 or less.
  • the cooling devices 41 and 42 may be of any type such as group jet cooling composed of a plurality of circular tube nozzles, pipe laminar, mist cooling, spray cooling, etc.
  • the rapid cooling device 41 since the rapid cooling device 41 has a large amount of cooling water, it is a sheet. As a result, thick stagnant water is likely to be generated on the bar 10, and the cooling water into which the stagnant water is jetted may interfere with the collision with the steel plate surface. As a result, stable cooling may not be obtained. Therefore, it is preferable to use a group jet cooling device having a plurality of circular tube nozzles (the nozzle cross section may be elliptical or polygonal) having a high penetrating force for the liquid film as the rapid cooling device 41.
  • the slow cooling device 42 is not particularly limited, and a pipe laminar method or a spray method generally used in a cooling device for a hot-rolled steel strip can be used.
  • the cooling method by the cooling devices 41 and 42 includes a stop type cooling method in which the seat bar 10 is cooled while being stopped or oscillated, and a passing type in which the sheet bar 10 is cooled while being passed through the cooling devices 41 and 42. There is a cooling system.
  • the equipment length of the cooling devices 41 and 42 is required to be equal to or longer than the length of the seat bar 10, and the cooling devices 41 and 42 are enlarged. Therefore, by adopting a passing-type cooling method, the cooling devices 41 and 42 can be reduced in size, and can be disposed in the immediate vicinity of the reversible rolling mill 31.
  • the rolling steel strip production facility line of the present embodiment may include a rolling pass schedule creation device 51 and a cooling pass schedule creation device 52.
  • the rolling pass schedule creation device 51 is configured by a personal computer or the like, and each roughening is performed so that the number of passes is reduced as much as possible within the restriction of the rolling amount of each rolling pass from the input slab thickness, controlled rolling start thickness, and the like.
  • a pass schedule such as the amount of reduction and the number of passes in the rolling mills 31 and 32 is calculated and created.
  • the cooling pass schedule creation device 52 is configured by a personal computer or the like, and based on the thickness of the sheet bar 10 after each rolling pass calculated by the rolling pass schedule creation device 51, the sheet bar 10 for each cooling pass.
  • the sheet thickness is 80 mm or more
  • the slow cooling by the slow cooling device 42 is assigned
  • the thickness of the seat bar 10 is less than 80 mm
  • the rapid cooling by the rapid cooling device 41 is assigned, and cooling at a predetermined plate thickness obtained by a prior experiment or the like is assigned.
  • the number of cooling passes and the cooling time are calculated from the relationship between the water density and the temperature drop, and the relationship between the surface temperature of the seat bar 10 and the cooling time at a predetermined cooling water density obtained by a prior experiment or the like.
  • the cooling path schedule creation device 52 calculates the cooling time and the plate passing speed by the slow cooling device 42 and the rapid cooling device 41 so that the surface temperature during cooling of the seat bar 10 does not fall below 600 ° C.
  • the cooling pass schedule created by the cooling pass schedule creation device 52 may be fed back to the rolling pass schedule creation device 52.
  • the rolling pass schedule creation device 51 may add a rolling pass with a reduction amount of zero, and perform water cooling after this rolling pass.
  • the rolling pass schedule and the cooling pass schedule created in this way are output to the rough rolling mills 31 and 32 and the cooling devices 41 and 42, and each of the devices 31, 32, 41, and 42 performs rolling and cooling according to the schedule. carry out.
  • the rough rolling mill group 3 has been described as including one reversible rolling mill 31 and a non-reversible rolling mill 32.
  • the rough rolling mill group 3 includes a plurality of reversible rolling mills 31. You may do it.
  • FIG. 7 shows a hot rolling steel strip manufacturing facility row and a hot rolling steel strip manufacturing method using the same according to another embodiment of the present invention.
  • the rough rolling mill group 3 includes three reversible rolling mills 31.
  • a slow cooling device 42 is disposed on the upstream side of the reversible rolling mill 31 on the most downstream side in the rolling direction, and a rapid cooling device 41 is disposed on the downstream side.
  • the lower part of the figure also shows the water cooling timing during the rolling process.
  • rolling is started from the most upstream reversible rolling mill 31 on the left side in the figure, and each reversible rolling mill 31 performs three-pass rolling.
  • the most upstream reversible rolling mill 31 and the central reversible rolling mill 31 perform rolling according to a rolling schedule having a sheet thickness of 80 mm or more of the sheet bar 10
  • the most downstream reversible rolling mill 31 is the sheet bar 10. It is comprised so that rolling may be performed with a rolling schedule with a plate thickness of less than 80 mm.
  • the target rolling material (rolled material) was steel, and as shown in Table 1 below, the product thickness was 15 mm and 22 mm, and the controlled rolling reduction was 65%. That is, the controlled rolling start thickness is 43 mm and 63 mm.
  • the controlled rolling start temperature was 880 ° C.
  • Comparative Examples 1 and 2 using the line shown in FIG. 1, the rolling material is heated to 1170 ° C. in the continuous heating furnace 1, and then to the controlled rolling start thickness described in Table 1 in the rough rolling mill group 3.
  • the sheet bar 10 was rolled, and the surface temperature of the sheet bar 10 was confirmed to be 880 ° C. ⁇ 5 ° C. with the radiation thermometer 33, and then rolled by the finish rolling mill group 6.
  • the sheet bar 10 is allowed to oscillate until the predetermined controlled rolling start temperature is reached between the rough rolling mill group 3 and the finish rolling mill group 6. .
  • Example 1 in the rough rolling process, a slow cooling device 42 is disposed upstream of the reversible rolling mill 31 of the rough rolling mill group 3 and a rapid cooling device 41 is disposed downstream. Water cooling was performed.
  • Example 2 rolling and water cooling were performed according to the pass schedule described in Table 2 below, and in Example 2, rolling and cooling were performed according to the pass schedule shown in Table 3 below.
  • Example 2 rolling was performed according to the pass schedule of Table 2 for Comparative Example 1 and according to the pass schedule of Table 3 for Comparative Example 2, but water cooling was not performed.
  • the rapid cooling device 41 is a group jet cooling device in which a large number of circular pipe nozzles having a hole diameter of 5 mm are arranged at a pitch of 60 mm in the transport direction (rolling direction) and the width direction, and the cooling water density is 2500 L / min ⁇ m 2 . did.
  • the slow cooling device 42 a hairpin type pipe laminar cooling device arranged on the upper surface side of the seat bar 10 and a spray cooling device arranged on the lower surface side of the seat bar 10 are used, and the cooling water density is 800L / It was set to min ⁇ m 2 . Further, the rolling speed and the cooling device passing speed were controlled so that the surface temperature of the sheet bar 10 during cooling was 600 ° C. or higher.
  • Example 1 is an example of a product thickness of 15 mm.
  • the waiting time before the finish rolling mill group 6 was about 10 seconds, and the total of the waiting time and the rough rolling time was 462 seconds. Note that the waiting time of 10 seconds is the time required to confirm the temperature with the radiation thermometer 33 in front of the finishing rolling mill group 6, and no substantial waiting time has occurred.
  • Comparative Example 1 in which rolling was performed according to the same rolling pass schedule as in Example 1 but the cooling devices 41 and 42 proposed in the present invention were not used, the temperature of the sheet bar 10 when it reached the finish rolling mill group 6 was 948 ° C., which was 68 ° C. higher than the target 880 ° C., and was waited for 95 seconds (air cooling) in front of the finish rolling mill group 6 until the target temperature was reached.
  • the total of the waiting time and rough rolling time was 516 seconds, which was 54 seconds longer than Example 1.
  • Example 2 is an example of a product thickness of 22 mm.
  • the standby time in front of the finish rolling mill group 6 was about 10 seconds as in Example 1, and the total of the standby time and the rough rolling time was 456 seconds, which was almost the same rolling time as in Example 1.
  • the waiting time of 10 seconds is the time required to confirm the temperature with the radiation thermometer 33 in front of the finishing rolling mill group 6, and no substantial waiting time has occurred.
  • Rolling was performed according to the same rolling pass schedule as in Example 2, but in Comparative Example 2 in which the cooling devices 41 and 42 proposed in the present invention were not used, the temperature of the sheet bar 10 when it reached the finish rolling mill group 6 was 989 ° C., which was 109 ° C. higher than the target 880 ° C., and was kept waiting (air cooling) for 221 seconds in front of the finish rolling mill group 6 until the target temperature was reached.
  • the total of the waiting time and the rough rolling time was 576 seconds, which was 120 seconds longer than Example 2.
  • the rapid cooling device 41 and the slow cooling device 42 are installed in the rough rolling mill group 3, and the rapid cooling and the slow cooling are properly used according to the thickness of the sheet bar 10, so that they are extracted from the heating furnace and finished. It was confirmed that the time until the rolling was started was shortened by 54 seconds for a material having a product thickness of 15 mm and 120 seconds for a material having a product thickness of 22 mm.
  • the cooling by the rapid cooling device 41 and the slow cooling device 42 may not be performed in relation to all odd-numbered or even-numbered rolling passes of the reversible rolling mill 31, and the amount of temperature drop due to water cooling is large.
  • the temperature when the rolling mill arrives is lower than the scheduled start temperature of finish rolling, water cooling of an arbitrary pass may not be performed.
  • the slow cooling device 42 and the rapid cooling device 41 are arranged on the upstream side and the downstream side of the most downstream reversible rolling mill 31 as viewed in the rolling direction is shown.
  • the quick cooling device 41 can be arranged on the upstream side
  • the slow cooling device 42 can be arranged on the downstream side.
  • the present invention while preventing the surface layer of the sheet bar from falling below the phase transformation temperature during cooling prior to controlled rolling, the time required to start controlled rolling is reduced and the hot-rolled steel strip is efficiently formed. Can be manufactured.

Abstract

熱延鋼帯の製造設備列は、所定温度に加熱された被圧延材10を熱間圧延して仕上げ圧延開始板厚にする複数の粗圧延機31,32からなる粗圧延機群3と、該被圧延材10を仕上げ板厚まで制御圧延する複数の仕上げ圧延機からなる仕上げ圧延機群6とを備え、複数の粗圧延機のうちの少なくとも1つが可逆式圧延機31である。熱延鋼帯の製造設備列は、可逆式圧延機31の上流側に、1000L/min・m未満の水量密度で被圧延材を緩冷却する緩冷却装置42および1000L/min・m以上の水量密度で緩冷却後の被圧延材10を急冷却する急冷却装置41のうちの一方を備えるとともに、可逆式圧延機31の下流側に、前記緩冷却装置42および急冷却装置41のうちの他方を備える。

Description

熱延鋼帯の製造設備列および熱延鋼帯の製造方法
 本発明は、特に12mm以上の厚みを持ち、且つ高靭性が要求される厚肉熱延鋼帯の製造において制御圧延を実施する熱延鋼帯の製造設備列および熱延鋼帯の製造方法に関するものである。
 図1には一般的な熱延工程が示されており、この圧延工程では、まず連続加熱炉1により1200℃程度まで加熱された被圧延材(スラブ)をサイジングプレス2により板幅方向に鍛造することで板幅を調整し、次いでこの被圧延材を粗圧延機群3により圧延して厚み30~50mmのシートバー10とし、続いてこのシートバー10を連続圧延可能な6~7スタンドの仕上げ圧延機群6により1.2~25mmまで圧延して熱延鋼帯とし、次いでランアウトテーブル7により冷却してコイラー8で巻き取る。
 ところで従来、熱延鋼帯はプレス加工で使われることが多いため、成形性など加工性が重視されていたが、近年ではラインパイプなどに代表される構造用鋼板で使用されるようになり、強度や靭性も要求されることが多くなった。構造用鋼板はその厚みが8~25mmであり、熱延鋼帯の中では極めて厚い寸法を持ち、特にラインパイプ素材では12mm以上の厚みを有している。強度や靱性を高めるためには熱延鋼帯の製造工程において制御圧延(Controlled-Rolling ;CR)を実施することが有用である。制御圧延とは、主に厚鋼板の製造プロセスにおいて古くから実施されているものであり、鋼の結晶粒の成長速度が遅い低温度域で圧延することで、結晶組織を微細化し靭性を向上させる技術である。
 一般に、制御圧延を開始する温度は、NbやVなどの添加元素により異なるものの、おおよそ950℃以下であり、制御圧延開始厚みから製品厚みになるまで少なくとも60%程度の圧下を実施する。例えば、圧下率60%で制御圧延を実施する場合、熱延鋼板の最終厚みを12mmとすると制御圧延開始厚みは約30mmであり、最終厚みを25mmとすると制御圧延開始厚みは約63mmとなる。最終厚みを25mmとした場合、一般的な熱延鋼板の製法では、まず粗圧延終了までにシートバーの板厚みが63mmとなるよう粗圧延を行い、次いでシートバーの中心温度が950℃以下となるまで仕上げ圧延機群6の前でシートバーを空冷待機させ、その後仕上げ圧延機群6で圧延する手法がとられる。この際に、仕上げ圧延機群6の前でシートバーを待機させる時間は200~300秒程度必要であるため、この間に次材を圧延することが出来ず圧延能率が大きく低下する。熱延鋼帯の製造ラインに関して、上記の課題を解決するための先行文献は少ないが、厚鋼板の製造ラインでは数多く検討されており、例えば以下のような技術が開示されている。
特開2011-143459号公報 特許4720250号公報 特開平4-274814号公報 特許4946516号公報
 特許文献1に記載の技術は、可逆式の粗圧延機の入側若しくは出側に15~300℃/秒程度の冷却装置を設置し、粗圧延機の圧延パスのパス間で冷却を実施することにより、つまり制御圧延開始厚みよりも板厚みが厚い段階で上記冷却装置により被圧延材の冷却を実施することにより、制御圧延開始までに目標の制御圧延開始温度にする技術である。しかしこの技術は、冷却速度が高く且つ板厚みが大きい場合は、鋼材の表面と中心の温度差が大きくなり、水冷中にシートバーの表層が相変態温度を下回る可能性があるという問題がある。この場合、シートバーの表層のみがフェライト変態する可能性があり、所定の機械試験値を満たさない可能性がある。
 特許文献2に記載の技術は、複数の被圧延材を同時に圧延する手法に関するものであり、制御圧延前の厚みまで圧延が完了した後に、被圧延材を一旦圧延機から遠方の搬送テーブル上で待機させておき、その間に次材の圧延を実施することで、圧延機のアイドリング時間を極小化する技術である。しかし本技術は、制御圧延開始までの空冷による待機時間と圧延時間がほぼ一致しているときには能率向上効果が大きいものの、大きく異なる場合は圧延能率があまり上がらないという問題がある。
 特許文献3には、制御圧延前の圧延が完了した鋼板を、次の被圧延材が通過できる高さに持ち上げて待機状態に保持する片持ちフォーク状のアームを有する昇降装置が開示されている。シートバーの厚みが十分厚く、且つ待機させるシートバーの待機時間が通過させるシートバーの圧延時間と一致している時には非常に有用な技術である。一方、熱延鋼帯では、厚鋼板と比較してスラブの重量が20~30トンと大きく、またシートバーの長さが例えば20mを超えるなど極めて長くなることから、大規模な昇降装置が必要になる。また、昇降装置のアームとシートバーが長時間接するため、その接触部の温度が低くなるという問題もある。さらに、待機装置を用いて次材を追い越して圧延を行うことができることが示唆されているが、冷却待ちを要する制御圧延材が含まれている場合に、どのように圧延を行えば、熱間圧延機の空き時間を低減して、圧延能率を向上させることができるかについては示されていない。
 特許文献4には、上記文献の弱点を補強するために、特許文献3の昇降装置に加えて、圧延機の前後に水冷装置を設置することが開示されている。しかし本文献にも、特許文献3と同様、様々なサイズおよび温度条件のシートバーに対してどのように圧延を行えば、熱間圧延機の空き時間を低減して、圧延能率を向上させることができるかについては示されていない。
 それ故本発明の課題は、制御圧延に先立って行う冷却中にシートバーの表層が相変態温度を下回ることを防止しつつ、制御圧延開始までに要する時間を低減して能率よく熱延鋼帯を製造することができる熱延鋼帯の製造設備列および熱延鋼帯の製造方法を提案することにある。
 前記課題を有利に解決する本発明の熱延鋼帯の製造設備列は、所定温度に加熱された被圧延材を熱間圧延して仕上げ圧延開始板厚にする複数の粗圧延機からなる粗圧延機群と、該被圧延材を仕上げ板厚まで制御圧延する複数の仕上げ圧延機からなる仕上げ圧延機群とを備える熱延鋼帯の製造設備列であって、
 前記複数の粗圧延機のうちの少なくとも1つが可逆式圧延機であり、
 前記可逆式圧延機の上流側に、1000L/min・m未満の水量密度で被圧延材を緩冷却する緩冷却装置および1000L/min・m以上の水量密度で前記緩冷却後の被圧延材を急冷却する急冷却装置のうちの一方を備えるとともに、前記可逆式圧延機の下流側に、前記緩冷却装置および前記急冷却装置のうちの他方を備えることを特徴とするものである。
 なお、本発明の熱延鋼帯の製造設備列にあっては、前記複数の粗圧延機のうち少なくとも最下流に配置された粗圧延機が可逆式圧延機であることが好ましい。
 また、本発明の熱延鋼帯の製造設備列にあっては、前記可逆式圧延機の上流側に前記緩冷却装置が、下流側に前記急冷却装置がそれぞれ配置されていることが好ましい。
 さらに、本発明の熱延鋼帯の製造設備列にあっては、前記被圧延材は、その板厚みが80mm以上では前記緩冷却装置により緩冷却され、その板厚みが80mm未満では前記急冷却装置により急冷却されることが好ましい。
 さらに、本発明の熱延鋼帯の製造設備列にあっては、前記緩冷却装置および前記急冷却装置による冷却時間は、被圧延材の冷却中の表面温度が600℃以上となるようそれぞれ設定されることが好ましい。
 そして、本発明の熱延鋼帯の製造設備列にあっては、前記複数の仕上げ圧延機のうち最終段の仕上げ圧延機の出側板厚は12mm以上であることが好ましい。
 また、前記課題を有利に解決する本発明の熱延鋼帯の製造方法は、所定温度に加熱された被圧延材を複数の粗圧延機により熱間圧延して仕上げ圧延開始板厚にし、該被圧延材を複数の仕上げ圧延機により仕上げ板厚まで制御圧延する熱延鋼帯の製造方法であって、
 前記複数の粗圧延機のうちの少なくとも1つが可逆式圧延機であり、
 前記可逆式圧延機の上流側に、1000L/min・m未満の水量密度で被圧延材を緩冷却する緩冷却装置および1000L/min・m以上の水量密度で被圧延材を急冷却する急冷却装置のうちの一方が配置されるとともに、前記可逆式圧延機の下流側に前記緩冷却装置および前記急冷却装置のうちの他方が配置されており、
 被圧延材を前記緩冷却装置により1000L/min・m未満の水量密度で緩冷却した後に、該被圧延材を前記急冷却装置により1000L/min・m以上の水量密度で急冷却することを特徴とするものである。
 なお、本発明の熱延鋼帯の製造方法にあっては、前記複数の粗圧延機のうち少なくとも最下流に配置された粗圧延機が可逆式圧延機であることが好ましい。
 また、本発明の熱延鋼帯の製造方法にあっては、前記可逆式圧延機の上流側に前記緩冷却装置を、下流側に前記急冷却装置をそれぞれ配置することが好ましい。
 さらに、本発明の熱延鋼帯の製造方法にあっては、前記被圧延材を、その板厚みが80mm以上では前記緩冷却装置により緩冷却を行い、その板厚みが80mm未満では前記急冷却装置により急冷却を行うことが好ましい。
 さらに、本発明の熱延鋼帯の製造方法にあっては、前記緩冷却装置および前記急冷却装置で冷却する被圧延材の冷却中の表面温度が600℃以上となるよう被圧延材を冷却することが好ましい。
 そして、本発明の熱延鋼帯の製造方法にあっては、前記複数の仕上げ圧延機のうち最終段の仕上げ圧延機の出側板厚を12mm以上とすることが好ましい。
 本発明の熱延鋼帯の製造設備列および熱延鋼帯の製造方法においては、可逆式圧延機の上流側または下流側において、まず被圧延材を緩冷却装置により1000L/min・m未満の水量密度で緩冷却し、その後、可逆式圧延機の下流側または上流側において、緩冷却後の被圧延材を急冷却装置により1000L/min・m以上の水量密度で急冷却する構成としたことにより、板厚みが比較的大きい圧延初期において、冷却速度は比較的小さいが比較的長い時間冷却してもシートバーの表層の温度が相変態温度を下回ることのない緩冷却装置による緩冷却を行うことで、シートバー表層の相変態を防止しつつ大きな温度降下量を確保することができる。一方、板厚みが比較的小さい圧延後期では、シートバーの中心と表層とで温度差が小さくシートバーの表層の温度が相変態温度を下回り難いため、急冷却装置による急冷却を行うことで、冷却速度を高めて短時間で所期の制御圧延開始温度にまで冷却することができる。
 したがって、本発明の熱延鋼帯の製造設備列および熱延鋼帯の製造方法によれば、制御圧延に先立って行う冷却中にシートバーの表層が相変態温度を下回ることを防止しつつ、制御圧延開始までに要する時間を低減して能率よく熱延鋼帯を製造することができる。
一般的な熱延鋼帯の製造設備列を圧延パスとともに模式的に示す構成図である。 本発明の熱延鋼帯の製造方法の一実施形態を実施する、本発明の熱延鋼帯の製造設備列の一実施形態を圧延パスおよび冷却タイミングとともに模式的に示す構成図である。 板厚み40mmのシートバーを様々な冷却水量密度で冷却したときのシートバー表面の温度履歴を示すグラフである。 板厚み40mmのシートバーを様々な冷却水量密度で冷却したときのシートバーの断面平均温度を示すグラフである。 初期の表面温度が1000℃の様々な板厚のシートバーについて、冷却水量密度とシートバーの表面温度が600℃となるまで冷却したときの断面平均の限界温度降下量との関係を示すグラフである。 初期の表面温度が1000℃の様々な板厚のシートバーについて、冷却水量密度とシートバーの断面平均の冷却速度との関係を示すグラフである。 本発明の熱延鋼帯の製造方法の他の実施形態を実施する、本発明の熱延鋼帯の製造設備列の他の実施形態を圧延パスおよび冷却タイミングとともに模式的に示す構成図である。
 以下、一般的な熱延鋼帯の製造設備列および製造方法を説明した後、この発明の実施の形態を図面に基づき詳細に説明する。図1は、一般的な熱延鋼帯の製造設備列を圧延パスとともに模式的に示す構成図である。
 まず、一般的な熱延鋼帯の製造では、図1に示すように、連続加熱炉1で例えば板厚み260mmの被圧延材(スラブ)を1170℃に加熱し、その後、粗圧延機群3により所定の厚みのシート状の被圧延材であるシートバー10とする。この際に、シートバー10の板幅を調整するために、連続加熱炉1の出側に設置されているサイジングプレス2で、所定のサイズまで幅方向に圧下した後に、粗圧延機群3の圧延機に近接した位置に設置されているエッジャー4で同じく幅方向に圧下する。次いで、クロップシャー5によりシートバー10の先端および尾端を切断した後に、そのシートバー10を仕上げ圧延機群6で所定の厚み(例えば20mm)まで仕上げ圧延して熱延鋼帯とし、その後、ランアウトテーブル7にて所定の温度まで冷却した後に、コイラー8で巻き取る。
 図示例では粗圧延機群3は2機の粗圧延機31,32から構成されており、粗圧延機群3のうち上流側(加熱炉側)には、リバース圧延可能な可逆式圧延機31、下流側には下流側への搬送方向のみの圧延が可能な非可逆式圧延機32が配置されている。この粗圧延機群3により、例えば、可逆式圧延機31で5~11パス程度圧延した後に、非可逆式圧延機32で1パスのみ圧延をする。
 従来、所定の制御圧延開始厚みまで圧延されたシートバー10は、所定の制御圧延開始温度に下がるまで粗圧延機群3と仕上げ圧延機群6の間でオシレーション待機される。シートバー10の表面温度は放射温度計33で測定し、シートバー10の表面温度が所定の制御圧延開始温度にまで下がったことを確認した後、シートバー10を仕上げ圧延機群6に送り制御圧延を実施する。この際、空冷により150~250℃程度温度を低下させるため、60~300秒程度待機させる必要がある。この間、仕上げ圧延機群6では圧延を行うことができないため圧延能率の低下につながる。また、このときのシートバー10の厚みを例えば50mmとすると、シートバー10の長さは50m程度と極めて長いため、上記先行文献3や4に開示されるような、シートバーを持ち上げる昇降装置等の機構を導入するのは現実的ではない。
 そこで、本発明の実施形態では粗圧延機群3の可逆式圧延機31の上流側または下流側に水量密度1000L/min・m以上の急冷却装置41を配置するとともに、この可逆式圧延機31の下流側または上流側に水量密度1000L/min・m未満の緩冷却装置42を配置することで、粗圧延機群3内で冷却と圧延を同時に実施する構成を採用している。これにより、粗圧延機群3で圧延が完了した時点でシートバー10の温度を制御圧延開始温度と等しくなるように調整することができ、制御圧延温度待ち時間を大幅に短縮することができる。
 これらの冷却装置の具体的な配置例とこれを用いた圧延方法を以下に説明する。図2は、図1に示した製造設備列に急冷却装置41および緩冷却装置42を付加した、本発明の熱延鋼帯の製造方法の一実施形態を実施する、本発明の熱延鋼帯の製造装置の一実施形態を模式的に示す構成図である。
 本実施形態では、図2に示すように、可逆式圧延機31の下流側に急冷却装置41が、上流側に緩冷却装置42がそれぞれ配置されている。そして、圧延初期では、可逆式圧延機31の任意の圧延パスに関連して、たとえば、図2の下段に圧延パスと冷却タイミングを示すように可逆式圧延機31による第1回目の圧延前と可逆式圧延機31による偶数回目の圧延パス間(偶数回目の圧延後および奇数回目の圧延前)において、緩冷却装置42によるシートバー10の通過冷却を実施する。シートバー10が所定の薄さとなったところで(圧延後期)、緩冷却装置42の放水を停止するとともに、可逆式圧延機31の下流側に設置された急冷却装置41を作動させ、可逆式圧延機31の任意の圧延パスに関連して、たとえば、可逆式圧延機31における第1回目の圧延後および第2回目の圧延前と非可逆式圧延機32への移送時に、急冷却装置41によるシートバー10の通過冷却を実施する。
 本実施形態では、可逆式圧延機31で繰り返し圧延されていくシートバー10の厚みに応じて急冷却装置41と緩冷却装置42を使い分けているがその理由は次の通りである。図3に一例として板厚み40mmのシートバー10を様々な冷却水量密度で冷却したときの表面の温度履歴を示す。図中、急激に温度が低下している時間領域は水冷を実施したことを示しており、下限温度を経て温度が上昇している時間領域は水冷を停止し放冷(空冷)を実施したことを示している。この図から冷却水の水量密度が多くなるに連れて表面の冷却速度(温度の時間勾配)は早くなることが分かる。一方、シートバー10の温度が600℃を下回ると、相変態が起こりオーステナイト組織からフェライト組織に変化する。このような状態で制御圧延を行った場合、表面延性が低下しフェライト粒界からの割れが発生するリスクがある。そのため、水冷中のシートバー10の最表層の温度は600℃以上に保持することが好ましい。図3に示す例ではそのような観点から、シートバー10の表面温度が下限温度の600℃となったところで水冷を停止している。図4は、そのときのシートバー10の断面平均温度を示す。同じく図中の急激に温度が低下している時間領域は水冷を実施したことを示す。冷却水の水量密度が高いとシートバー10の断面平均温度の時間勾配、つまり冷却速度は急峻になるものの、表面温度を600℃以上に保持しフェライト粒界からの割れを防止する観点から冷却水の供給を途中で停止しているため、冷却水の水量密度が高いほど冷却終了時の温度も高くなる。そのため、冷却水の水量密度を小さくするほど、冷却速度は遅いものの、1回で冷却可能な温度降下量を大きくすることができることが分かる。
 図5には初期の表面温度が1000℃の様々な板厚のシートバー10について、冷却水量密度と表面温度が600℃となるまで冷却をしたときの断面平均の温度降下量との関係を示す。先に説明したように、表面温度を600℃以上に保持するという制約条件があることで、板厚みが大きくなるほど、また冷却水の水量密度が大きくなるほど1回の水冷による冷却温度降下量は小さくなる。以後、表面温度600℃の制約から1回の冷却で降下させることができる温度を限界温度降下量と呼ぶ。
 図6には初期の表面温度が1000℃の様々な板厚のシートバー10について、冷却水の水量密度とシートバー10の冷却速度の断面平均との関係を示す。冷却水の水量密度が大きいほど冷却速度は速い。そのため、先の制約を併せて考えると、限界温度降下量以下の冷却を実施する場合は、冷却水の水量密度を高くするほうが短い時間で温度を降下させることが出来るため、圧延時間の短縮には有利となる。
 ここで実際の圧延工程を考えると、220~260mm程度の厚みを持つスラブを45mm程度まで10パス前後で圧延する。圧延初期では板厚みが大きく限界温度降下量が小さくなる傾向にあるため、1パスあたりの表面の下限温度の点から限界温度降下量が大きい緩冷却が有利である。圧延後期の板厚みが小さくなった条件では、限界温度降下量を大きくとることができるので、冷却速度を高めて短い時間で水冷する急冷却のほうが有利になる。また、板厚みが小さいほうが限界温度降下量が大きいことから、複数の粗圧延機が設けられている場合は、最も小さい板厚みに対応した最下流の可逆式圧延機31の上流側および下流側において冷却を実施するのが好適である。
 また、図5から分かるように、板厚みが比較的大きい80mmおよび120mmの場合では、冷却水の水量密度が1000L/min・mを境に、低水量密度では限界温度降下量が大きくなる。そのため、シートバー10の表面のフェライト割れを防止する観点から、板厚み80mm以上では冷却水の水量密度を1000L/min・m未満とすることで大きな限界温度降下量を確保することができる。
 そこで、本発明の実施形態では制御圧延に望ましい所定温度(制御圧延開始温度)までの冷却を複数パスに分散させ、1パスで20~30℃程度の冷却を実施する。その際、上記原理に鑑み、板厚みが比較的大きい、特に板厚みが80mm以上である圧延初期には、水量密度が1000L/min・m未満である緩冷却装置42で冷却を実施し、板厚みが比較的小さい、特に板厚みが80mm未満となる圧延後期には、水量密度が1000L/min・m以上の急冷却装置41で冷却を実施することで、シートバー10の表面のフェライト割れを防止しつつ効率的な冷却を行うことができ、圧延時間を短縮することが可能となる。
 なお、緩冷却装置42では、冷却水の水量密度を下げるほど1パスあたりの水冷による温度降下量は大きくなるが、冷却速度は遅くなるため、能率を向上させる効果が小さくなる。そこで、緩冷却装置42の冷却水量は200L/min・m以上とするのが好ましい。一方、急冷却装置41では、冷却水量密度を大きくするほど1パスあたりの水冷による温度降下量は小さくなるが、冷却速度は速くなる。そのため、1パスあたりの限界冷却能力があまり変わらない範囲では、冷却水量増大に伴う設備コストの上昇もあるため、冷却水の水量密度を6000L/min・m以下とするのが好ましい。
 各冷却装置41,42は、複数の円管ノズルから構成される群噴流冷却、パイプラミナー、ミスト冷却、スプレー冷却などいかなる形式のものでもかまわないが、急冷却装置41では冷却水量が多いためシートバー10上に厚い滞留水が発生し易く、当該滞留水が噴射された冷却水の、鋼板表面への衝突を阻害する結果、安定した冷却が得られない可能性がある。そこで、急冷却装置41には、液膜に対する貫通力の高い、円管ノズル(ノズル断面が楕円形や多角形のものでもよい。)を複数有する群噴流冷却装置を用いることが好ましい。群噴流冷却装置の各ノズル噴出口から噴射される噴流は、スプレー状でも膜状でもなく鋼帯表面に衝突するまで連続して直進し、その断面形状はほぼ円形に保たれる。一方、緩冷却装置42では特に制限はなく、一般的に熱延鋼帯の冷却装置で使われているパイプラミナー方式やスプレー方式を用いることができる。
 次に冷却装置41,42の好ましい配置について説明すると、急冷却装置41および緩冷却装置42と可逆式圧延機31とは互いに近いほど、冷却装置41,42と可逆式圧延機31間でシートバー10の搬送に要する時間を短くすることができるため、急冷却装置41および緩冷却装置42は、可逆式圧延機31に対して可能な限り近い位置に配置するのが圧延能率の観点から好ましい。また、冷却装置41,42による冷却方式には、シートバー10を停止またはオシレーションさせた状態で冷却する停止型冷却方式と、シートバー10を冷却装置41,42に通過させながら冷却する通過型冷却方式とがある。停止型冷却方式では、冷却装置41,42の設備長がシートバー10の長さ以上必要であり冷却装置41,42が大型化する。そこで、通過型冷却方式を採用することで、冷却装置41,42を小型化することができ、可逆式圧延機31の直近に配置することができる。
 また、本実施形態の圧延鋼帯の製造設備列は、図2に示すように、圧延パススケジュール作成装置51および冷却パススケジュール作成装置52を備えていてよい。圧延パススケジュール作成装置51は、パーソナルコンピュータ等によって構成され、入力されたスラブの厚みおよび制御圧延開始厚み等から、各圧延パスの圧下量の制限内でそのパス数ができる限り少なくなるよう各粗圧延機31,32における圧下量およびパス数等のパススケジュールを算出し作成する。
 冷却パススケジュール作成装置52は、パーソナルコンピュータ等によって構成され、上記圧延パススケジュール作成装置51により算出された各圧延パス後のシートバー10の厚み等に基づき、各冷却パスに対して、シートバー10の厚みが80mm以上では緩冷却装置42による緩冷却を、シートバー10の厚みが80mm未満では急冷却装置41による急冷却をそれぞれ割り当てるとともに、あらかじめの実験等により得られた所定の板厚みにおける冷却水量密度と温度降下量との関係、およびあらかじめの実験等により得られた所定の冷却水量密度におけるシートバー10の表面温度と冷却時間との関係から、冷却パス数や冷却時間を算出する。この際、冷却パススケジュール作成装置52は、シートバー10の冷却中の表面温度が600℃を下回らないよう緩冷却装置42および急冷却装置41による冷却時間や通板速度をそれぞれ算出する。なお、冷却パススケジュール作成装置52により作成された冷却パススケジュールは圧延パススケジュール作成装置52にフィードバックされるようにしてもよく、算出された冷却パス数に対して圧延パス数が不足する場合には、圧延パススケジュール作成装置51が圧下量ゼロの圧延パスを付加し、この圧延パス後に水冷を実施するようにしてもよい。このようにして作成された圧延パススケジュールおよび冷却パススケジュールは、各粗圧延機31,32および冷却装置41,42に出力され、各装置31,32,41,42は当該スケジュールに従い圧延および冷却を実施する。
 ところで、上記実施態様では、粗圧延機群3は各1機の可逆式圧延機31および非可逆式圧延機32からなると説明したが、粗圧延機群3は複数の可逆式圧延機31を有していてもよい。図7は、本発明に従う他の実施形態の熱延鋼帯の製造設備列およびこれを用いた熱延鋼帯の製造方法を示している。この図に示す実施形態では、粗圧延機群3は3機の可逆式圧延機31からなる。圧延方向でみて最下流側の可逆式圧延機31の上流側に緩冷却装置42が、下流側に急冷却装置41がそれぞれ配置されている。図の下段には圧延工程中の水冷タイミングも記載されている。本製造設備列においては、図中の左側にある最上流の可逆式圧延機31から圧延を開始し、各可逆式圧延機31でそれぞれ3パス圧延を実施する。この場合、最上流の可逆式圧延機31および中央の可逆式圧延機31は、シートバー10の板厚み80mm以上の圧延スケジュールに従い圧延を行い、最下流の可逆式圧延機31は、シートバー10の板厚み80mm未満の圧延スケジュールで圧延を行うよう構成される。この際、中央の可逆式圧延機31に関連して、たとえば、図に示すように第1回目の圧延後および第2回目の圧延前と最下流の可逆式圧延機31への移送時に、緩冷却装置42により通過冷却を行うことができる。その後、最下流の可逆式圧延機31に関連して、たとえば、第1回目の圧延後および第2回目の圧延前と次工程への移送時に、急冷却装置41により通過冷却を行うことができる。このように、中央の可逆式圧延機31の圧延パスに関連して緩冷却を行う場合、緩冷却装置42は当該中央の可逆式圧延機31に近接して配置するのが好ましい。緩冷却に際しての、中央の可逆式圧延機31から緩冷却装置42までのシートバー10の移動距離を小さくすることができ、圧延時間を短縮できるからである。
 次に、本発明の実施例について説明する。対象とした圧延素材(被圧延材)は鋼材であり、下記表1に示すように製品厚みは15mm、22mmとし、制御圧延圧下率は65%とした。つまり、制御圧延開始厚みは43mmおよび63mmとなる。また、制御圧延開始温度は、880℃とした。比較例1および2では、図1に示すラインを用いて、圧延素材を連続加熱炉1で1170℃まで加熱し、その後、粗圧延機群3で表1に記載されている制御圧延開始厚みまで圧延してシートバー10とし、放射温度計33でシートバー10の表面温度が880℃±5℃となったことを確認した後に仕上げ圧延機群6により圧延を実施した。目標の制御圧延開始温度よりもシートバー10の温度が高い場合は、粗圧延機群3と仕上げ圧延機群6の間でシートバー10を所定の制御圧延開始温度となるまでオシレーション待機させた。
Figure JPOXMLDOC01-appb-T000001
 実施例1および2では、図2に示すように粗圧延機群3の可逆式圧延機31の上流側に緩冷却装置42を、下流側に急冷却装置41をそれぞれ配置して粗圧延工程において水冷を実施した。実施例1では、下記表2に記載のパススケジュールに従い圧延および水冷を実施し、実施例2では下記表3のパススケジュールに従い圧延および冷却を実施した。同様に、比較例1については表2のパススケジュールに従い、比較例2については表3のパススケジュールに従いそれぞれ圧延を実施したが、水冷は行っていない。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 急冷却装置41には、穴径5mmの円管ノズルを搬送方向(圧延方向)および幅方向に60mmピッチで多数配置した群噴流冷却装置を用い、その冷却水量密度は2500L/min・mとした。緩冷却装置42には、シートバー10の上面側に配置されたヘアピン型のパイプラミナー冷却装置と、シートバー10の下面側に配置されたスプレー冷却装置とを用い、その冷却水量密度は800L/min・mとした。また、冷却時のシートバー10の表面温度が600℃以上となるよう圧延速度および冷却装置通過速度を制御した。
 上記条件下で、実施例1,2および比較例1,2の圧延素材について実際に圧延した結果を下記表4に示す。実施例1は、製品厚み15mmの例である。仕上げ圧延機群6前の待機時間は約10秒であり、待機時間と粗圧延時間の合計は462秒であった。なお、10秒の待機時間は、仕上げ圧延機群6の前で放射温度計33により温度を確認するのに要した時間であり、実質的な待機時間は発生していない。実施例1と同じ圧延パススケジュールに従い圧延を行ったが本発明で提案した冷却装置41,42を使用していない比較例1では、仕上げ圧延機群6に到達したした時のシートバー10の温度は948℃であり、目標の880℃よりも68℃高かったため、目標温度となるまで仕上げ圧延機群6の前で95秒待機(空冷)させた。待機時間と粗圧延時間の合計は516秒となり、実施例1よりも54秒長くなった。
Figure JPOXMLDOC01-appb-T000004
 実施例2は、製品厚み22mmの例である。実施例1と同じく仕上げ圧延機群6前での待機時間は10秒程度であり、待機時間と粗圧延時間の合計は456秒となり、実施例1とほぼ同じ圧延時間となった。なお、10秒の待機時間は、仕上げ圧延機群6の前で放射温度計33により温度を確認するのに要した時間であり、実質的な待機時間は発生していない。
 実施例2と同じ圧延パススケジュールに従い圧延を行ったが、本発明で提案した冷却装置41,42を使用していない比較例2では、仕上げ圧延機群6に到達した時のシートバー10の温度は989℃であり、目標の880℃よりも109℃高かったため、目標温度となるまで仕上げ圧延機群6の前で221秒待機(空冷)させた。待機時間と粗圧延時間の合計は576秒となり、実施例2よりも120秒長くなった。
 上記試験の結果、粗圧延機群3内に急冷却装置41および緩冷却装置42を設置しシートバー10の厚みに応じて急冷却および緩冷却を使い分けることで、加熱炉から抽出してから仕上げ圧延を開始するまでの時間は、製品厚み15mmの素材では54秒短縮され、製品厚み22mmの素材では120秒短縮されることが確認された。
 以上図示例に基づき本発明を説明したが、本発明はこれに限定されず、特許請求の範囲の記載範囲内で適宜変更、追加することができる。例えば、急冷却装置41および緩冷却装置42による冷却は、可逆式圧延機31の奇数回目または偶数回目の全ての圧延パスに関連して行わなくてもよく、水冷による温度降下量が大きく、仕上げ圧延機到達時の温度が仕上げ圧延の予定開始温度よりも下回る場合は、任意のパスの水冷を実施しなくてもよい。また、上記説明では、圧延方向でみて最下流の可逆式圧延機31の上流側に緩冷却装置42、下流側に急冷却装置41をそれぞれ配置した例を示したが、可逆式圧延機31の上流側に急冷却装置41を配置するとともに下流側に緩冷却装置42を配置することもできる。
 かくして本発明によれば、制御圧延に先立って行う冷却中にシートバーの表層が相変態温度を下回ることを防止しつつ、制御圧延開始までに要する時間を低減して能率よく熱延鋼帯を製造することができる。
 1 連続加熱炉
 2 サイジングプレス
 3 粗圧延機群
 4 エッジャー
 5 クロップシャー
 6 仕上げ圧延機群
 7 ランアウトテーブル
 8 コイラー
 10 シートバー
 31 可逆式圧延機
 32 非可逆式圧延機
 33 放射温度計
 41 急冷却装置
 42 緩冷却装置
 51 圧延パススケジュール作成装置
 52 冷却パススケジュール作成装置

Claims (12)

  1.  所定温度に加熱された被圧延材を熱間圧延して仕上げ圧延開始板厚にする複数の粗圧延機からなる粗圧延機群と、該被圧延材を仕上げ板厚まで制御圧延する複数の仕上げ圧延機からなる仕上げ圧延機群とを備える熱延鋼帯の製造設備列であって、
     前記複数の粗圧延機のうちの少なくとも1つが可逆式圧延機であり、
     前記可逆式圧延機の上流側に、1000L/min・m未満の水量密度で被圧延材を緩冷却する緩冷却装置および1000L/min・m以上の水量密度で前記緩冷却後の被圧延材を急冷却する急冷却装置のうちの一方を備えるとともに、前記可逆式圧延機の下流側に、前記緩冷却装置および前記急冷却装置のうちの他方を備えることを特徴とする熱延鋼帯の製造設備列。
  2.  前記複数の粗圧延機のうち少なくとも最下流に配置された粗圧延機が可逆式圧延機である、請求項1に記載の熱延鋼帯の製造設備列。
  3.  前記可逆式圧延機の上流側に前記緩冷却装置が、下流側に前記急冷却装置がそれぞれ配置されている、請求項1または2に記載の熱延鋼帯の製造設備列。
  4.  前記被圧延材は、その板厚みが80mm以上では前記緩冷却装置により緩冷却され、その板厚みが80mm未満では前記急冷却装置により急冷却される、請求項1~3のいずれか一項に記載の熱延鋼帯の製造設備列。
  5.  前記緩冷却装置および前記急冷却装置による冷却時間は、被圧延材の冷却中の表面温度が600℃以上となるようそれぞれ設定される、請求項1~4のいずれか一項に記載の熱延鋼帯の製造設備列。
  6.  前記複数の仕上げ圧延機のうち最終段の仕上げ圧延機の出側板厚は12mm以上である、請求項1~5のいずれか一項に記載の熱延鋼帯の製造設備列。
  7.  所定温度に加熱された被圧延材を複数の粗圧延機により熱間圧延して仕上げ圧延開始板厚にし、該被圧延材を複数の仕上げ圧延機により仕上げ板厚まで制御圧延する熱延鋼帯の製造方法であって、
     前記複数の粗圧延機のうちの少なくとも1つが可逆式圧延機であり、
     前記可逆式圧延機の上流側に、1000L/min・m未満の水量密度で被圧延材を緩冷却する緩冷却装置および1000L/min・m以上の水量密度で被圧延材を急冷却する急冷却装置のうちの一方が配置されるとともに、前記可逆式圧延機の下流側に前記緩冷却装置および前記急冷却装置のうちの他方が配置されており、
     被圧延材を前記緩冷却装置により1000L/min・m未満の水量密度で緩冷却した後に、該被圧延材を前記急冷却装置により1000L/min・m以上の水量密度で急冷却することを特徴とする熱延鋼帯の製造方法。
  8.  前記複数の粗圧延機のうち少なくとも最下流に配置された粗圧延機が可逆式圧延機である、請求項7に記載の熱延鋼帯の製造方法。
  9.  前記可逆式圧延機の上流側に前記緩冷却装置を、下流側に前記急冷却装置をそれぞれ配置する、請求項7または8に記載の熱延鋼帯の製造方法。
  10.  前記被圧延材を、その板厚みが80mm以上では前記緩冷却装置により緩冷却を行い、その板厚みが80mm未満では前記急冷却装置により急冷却を行う、請求項7~9のいずれか一項に記載の熱延鋼帯の製造方法。
  11.  前記緩冷却装置および前記急冷却装置で冷却する被圧延材の冷却中の表面温度が600℃以上となるよう被圧延材を冷却する、請求項7~10のいずれか一項に記載の熱延鋼帯の製造方法。
  12.  前記複数の仕上げ圧延機のうち最終段の仕上げ圧延機の出側板厚を12mm以上とする、請求項7~11のいずれか一項に記載の熱延鋼帯の製造方法。
PCT/JP2017/001192 2016-01-27 2017-01-16 熱延鋼帯の製造設備列および熱延鋼帯の製造方法 WO2017130767A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17743998.1A EP3409390B1 (en) 2016-01-27 2017-01-16 Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip
US16/072,968 US11020780B2 (en) 2016-01-27 2017-01-16 Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip
KR1020187021493A KR102103367B1 (ko) 2016-01-27 2017-01-16 열연 강대의 제조 설비열 및 열연 강대의 제조 방법
CN201780008181.4A CN108602102B (zh) 2016-01-27 2017-01-16 热轧钢带的制造设备列和热轧钢带的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-013537 2016-01-27
JP2016013537A JP6233614B2 (ja) 2016-01-27 2016-01-27 熱延鋼帯の製造設備列および熱延鋼帯の製造方法

Publications (1)

Publication Number Publication Date
WO2017130767A1 true WO2017130767A1 (ja) 2017-08-03

Family

ID=59397984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001192 WO2017130767A1 (ja) 2016-01-27 2017-01-16 熱延鋼帯の製造設備列および熱延鋼帯の製造方法

Country Status (6)

Country Link
US (1) US11020780B2 (ja)
EP (1) EP3409390B1 (ja)
JP (1) JP6233614B2 (ja)
KR (1) KR102103367B1 (ja)
CN (1) CN108602102B (ja)
WO (1) WO2017130767A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112705569B (zh) * 2020-12-09 2022-09-23 一重集团大连工程技术有限公司 超短距离布置的炉卷轧机生产线及轧制工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108483A1 (ja) * 2007-03-05 2008-09-12 Jfe Steel Corporation 強度および靭性の均質性に優れた薄肉厚鋼板、その製造方法、およびその製造設備
JP2008246579A (ja) * 2007-03-05 2008-10-16 Jfe Steel Kk 厚鋼板の製造方法および製造設備
JP2015217411A (ja) * 2014-05-16 2015-12-07 Jfeスチール株式会社 厚鋼板の製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4720250Y1 (ja) 1968-11-25 1972-07-07
JPS4946516B1 (ja) 1970-12-24 1974-12-10
JPS5332328B2 (ja) 1972-09-12 1978-09-07
JP2500266B2 (ja) 1991-02-27 1996-05-29 川崎製鉄株式会社 熱間連続圧延ラインにおける冷却時間待ち圧延材の待機装置
JP3307771B2 (ja) * 1993-08-23 2002-07-24 ハンス‐ユルゲン、ガイドール 熱間圧延鋼板のデスケーリング手段
US5540074A (en) * 1994-12-07 1996-07-30 Ipsco Enterprises Inc. Unitary assembly of peripheral devices for use with steckel mill
US5810951A (en) * 1995-06-07 1998-09-22 Ipsco Enterprises Inc. Steckel mill/on-line accelerated cooling combination
US5755128A (en) * 1995-08-31 1998-05-26 Tippins Incorporated Method and apparatus for isothermally rolling strip product
EP0761326B1 (de) * 1995-09-06 2000-02-09 Sms Schloemann-Siemag Aktiengesellschaft Warmbandproduktionsanlage für das Walzen von dünnem Walzband
BR9714411A (pt) * 1996-12-19 2000-04-18 Hoogovens Staal Bv Progresso e dispositivo para a produção de uma tira ou lâmina de aço
IT1290743B1 (it) * 1997-04-10 1998-12-10 Danieli Off Mecc Procedimento di laminazione per prodotti piani con spessori sottili e relativa linea di laminazione
JP2000317501A (ja) * 1999-05-07 2000-11-21 Sumitomo Metal Ind Ltd 熱間圧延設備および熱間圧延方法
JP3642024B2 (ja) * 2000-12-15 2005-04-27 Jfeスチール株式会社 熱延鋼帯の熱間圧延設備および圧延方法
DE10110324A1 (de) * 2001-03-03 2002-09-05 Sms Demag Ag Verfahren zum Entzundern von Bändern
JP4604564B2 (ja) * 2003-06-13 2011-01-05 Jfeスチール株式会社 厚鋼板の制御冷却方法及び装置
JP4720250B2 (ja) 2005-03-31 2011-07-13 Jfeスチール株式会社 鋼材の制御圧延方法
CN100438997C (zh) 2005-05-20 2008-12-03 中冶东方工程技术有限公司 紧凑型中宽带钢生产工艺
CN1883835A (zh) * 2005-06-20 2006-12-27 中冶东方工程技术有限公司 常规板坯连铸连轧板卷的生产方法
EP1935522B1 (en) 2005-08-30 2015-11-18 JFE Steel Corporation Reversing rolling mill with cooling facility and corresponding method of cooling a steel plate or sheet
DE102006047718A1 (de) * 2006-10-09 2008-04-17 Siemens Ag Verfahren zur Nachverfolgung des physikalischen Zustands eines Warmblechs oder Warmbands im Rahmen der Steuerung einer Grobblechwalzstraße zur Bearbeitung eines Warmblechs oder Warmbands
DE102006048427B3 (de) * 2006-10-12 2008-05-21 Siemens Ag Walzanlage, nachgerüstete Walzanlage, Walzwerk oder Walzstraße, Verfahren zum Ansteuern einer Walzanlage und Verwendung eines ersten Gerüsts einer Walzanlage
JP5058652B2 (ja) * 2007-03-29 2012-10-24 新日本製鐵株式会社 母材および溶接熱影響部の低温靭性に優れた厚鋼板の製造方法
JP4907587B2 (ja) * 2008-03-31 2012-03-28 新日本製鐵株式会社 鋼板冷却設備及び鋼板冷却方法
JP4924579B2 (ja) 2008-09-08 2012-04-25 Jfeスチール株式会社 熱延鋼帯の冷却装置と、その冷却方法
JP4678069B1 (ja) * 2009-03-30 2011-04-27 Jfeスチール株式会社 熱延鋼板の冷却装置
WO2011048671A1 (ja) * 2009-10-21 2011-04-28 東芝三菱電機産業システム株式会社 制御設定装置及び制御設定方法
JP2011143459A (ja) 2010-01-15 2011-07-28 Jfe Steel Corp 厚鋼板の製造方法
IT1405344B1 (it) * 2010-06-14 2014-01-03 Danieli Off Mecc Linea di laminazione e relativo procedimento
IT1405453B1 (it) * 2010-06-14 2014-01-10 Danieli Off Mecc Procedimento di laminazione per prodotti piani e relativa linea di laminazione

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108483A1 (ja) * 2007-03-05 2008-09-12 Jfe Steel Corporation 強度および靭性の均質性に優れた薄肉厚鋼板、その製造方法、およびその製造設備
JP2008246579A (ja) * 2007-03-05 2008-10-16 Jfe Steel Kk 厚鋼板の製造方法および製造設備
JP2015217411A (ja) * 2014-05-16 2015-12-07 Jfeスチール株式会社 厚鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3409390A4 *

Also Published As

Publication number Publication date
EP3409390B1 (en) 2020-04-22
EP3409390A4 (en) 2019-01-23
EP3409390A1 (en) 2018-12-05
US20190039106A1 (en) 2019-02-07
KR102103367B1 (ko) 2020-04-22
KR20180097724A (ko) 2018-08-31
JP6233614B2 (ja) 2017-11-22
CN108602102A (zh) 2018-09-28
CN108602102B (zh) 2019-11-01
JP2017131922A (ja) 2017-08-03
US11020780B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
CN109226257B (zh) 一种板炉卷轧机轧制板材的方法及其生产线
JP2022107666A (ja) 金属帯材および板材のマルチモード製造のためのプラントおよび方法
EP3498389B1 (en) Device and method for cooling hot-rolled steel sheet
WO2017130765A1 (ja) 熱延鋼帯の製造設備列および熱延鋼帯の製造方法
JP6233614B2 (ja) 熱延鋼帯の製造設備列および熱延鋼帯の製造方法
JP6137109B2 (ja) 熱延鋼板の粗圧延方法
JP5609407B2 (ja) 熱延鋼板の製造方法および製造設備
JP2001334306A (ja) 熱延鋼帯の製造方法
JP6447836B2 (ja) 熱延鋼帯の製造方法および熱延鋼帯の製造設備
JP2003211205A (ja) 熱延鋼帯の製造設備及び熱延鋼帯の製造方法
JP2006021246A (ja) 高強度熱延鋼板製造設備。
JP2003154403A (ja) 熱間圧延ライン及び熱間圧延方法
JP5609703B2 (ja) 熱延鋼板の製造方法
JP2005296973A (ja) 熱延鋼板の製造方法とその装置
JP5673370B2 (ja) 熱延鋼板の冷却方法
JP6172110B2 (ja) 熱延鋼板の圧延方法
RU2736468C1 (ru) Способ производства рулонного проката из низколегированной стали
JP2002011502A (ja) 熱延鋼板の製造方法および製造装置
JP4677702B2 (ja) 熱間圧延方法
KR20010021377A (ko) 열간 압연 설비 및 압연 방법
JP2006130540A (ja) 熱延ロングコイルの製造方法
JP2006320946A (ja) 熱間圧延ラインの仕上圧延機における圧延方法
JP2006281221A (ja) U形鋼矢板の反り防止方法
JPH04251602A (ja) 熱間圧延方法
JP2003112203A (ja) 熱間圧延方法及び熱間圧延ライン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187021493

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021493

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017743998

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017743998

Country of ref document: EP

Effective date: 20180827