WO2017130706A1 - 電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法 - Google Patents

電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法 Download PDF

Info

Publication number
WO2017130706A1
WO2017130706A1 PCT/JP2017/000712 JP2017000712W WO2017130706A1 WO 2017130706 A1 WO2017130706 A1 WO 2017130706A1 JP 2017000712 W JP2017000712 W JP 2017000712W WO 2017130706 A1 WO2017130706 A1 WO 2017130706A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
power supply
supply device
electrode terminal
opening window
Prior art date
Application number
PCT/JP2017/000712
Other languages
English (en)
French (fr)
Inventor
岡田 渉
晋志 大田
哲也 椎崎
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2017563786A priority Critical patent/JP6910965B2/ja
Priority to CN201780008691.1A priority patent/CN108604658B/zh
Priority to US16/071,426 priority patent/US11289773B2/en
Publication of WO2017130706A1 publication Critical patent/WO2017130706A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/323Bonding taking account of the properties of the material involved involving parts made of dissimilar metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power supply device, a vehicle using the same, a bus bar, and a battery cell electrical connection method using the bus bar. For example, when a plurality of battery cells are connected in series or in parallel via a bus bar, a laser is applied to an electrode terminal.
  • the present invention relates to a power supply device that connects a bus bar by welding.
  • the power supply device can increase the output voltage by connecting a plurality of battery cells in series, and can increase the charge / discharge current by connecting them in parallel.
  • a high-current, high-power power supply device used for the power supply of a motor that runs an automobile has a plurality of battery cells connected in series to increase the output voltage.
  • the power supply device used for this application has a plurality of battery cells connected by a metal plate bus bar. The bus bar is connected by laser welding to the electrode terminals of the battery cells constituting the power supply device.
  • connection structure a through-hole is provided in the bus bar, the electrode terminal of the battery cell is inserted therein, the laser beam is irradiated to the boundary between the inserted electrode terminal and the bus bar, and both the electrode terminal and the bus bar are bounded. Molten and connected.
  • the power supply device described in Patent Literature 1 includes a battery cell having an electrode terminal on which a cylindrical protrusion is formed, and a bus bar that electrically connects adjacent battery cells.
  • the bus bar has an opening window through which a protrusion formed on the electrode terminal is inserted, and a thin region is formed so as to surround the opening window.
  • the bus bar is biased toward the electrode terminal, whereby the bus bar and the electrode terminal are brought into close contact with each other.
  • the thin region of the bus bar is scanned with the laser beam along the cylindrical protrusion, so that both the bus bar and the electrode terminal can be melted and the bus bar and the electrode terminal can be joined.
  • the welding strength is remarkably lowered. Therefore, in welding, a configuration in which the bus bar is pressed with a jig is used to urge the bus bar toward the electrode terminal. .
  • the present invention has been made in view of such a background, and one object of the present invention is to provide a power supply device capable of ensuring the strength of connection while maintaining downsizing of the bus bar, a vehicle using the power source device, and a bus bar. Another object is to provide a method for manufacturing a power supply device.
  • a power supply device includes a battery cell stack including a pair of battery cells stacked adjacent to each other, and a bus bar that electrically connects the pair of battery cells. Each of the pair of battery cells has an electrode terminal on one surface of the battery cell stack.
  • the power supply device further includes a joint that joins the electrode terminal of one battery cell and the bus bar.
  • the joint includes an elliptical joint that joins the electrode terminal and the bus bar in an elliptical shape.
  • the bus bar can be reliably biased toward the electrode terminal, and the bonding strength between the bus bar and the electrode terminal can be ensured without impairing the adhesion between the electrode terminal and the bus bar.
  • a power supply device includes a battery cell stack including a pair of battery cells stacked adjacent to each other, and a bus bar that electrically connects the pair of battery cells.
  • Each of the pair of battery cells has an electrode terminal on one surface of the battery cell stack.
  • the electrode terminal includes a terminal block having a joint surface.
  • the bus bar is disposed so as to overlap the joint surface.
  • the bus bar also has an opening window that exposes a part of the joint surface of the terminal block.
  • the power supply device further includes a joining portion that joins the electrode terminal of one of the battery cells and the bus bar.
  • the joint portion includes a plurality of parallel straight joint portions that join the electrode terminals and the bus bar in a straight line shape. An opening window is located between the plurality of linear joints.
  • the bus bar and the electrode terminal can be joined by a plurality of straight joints, the size of the opening window in the direction perpendicular to the straight joints can be reduced. Space for arranging a jig for pressing the bus bar above and below in the vertical direction can be secured. Therefore, the bus bar can be reliably biased toward the electrode terminal, and the bonding strength between the bus bar and the electrode terminal can be ensured without impairing the adhesion between the electrode terminal and the bus bar.
  • a bus bar according to an aspect of the present invention is a bus bar for connecting electrode terminals of battery cells, and at least a part thereof is provided with a thin region that is partially thinner than other regions, and An opening window that is partially opened is formed in the thin region, the thin region is formed in an elliptical shape that is long in the stacking direction of the battery cells, and the opening window is in a direction along the long side of the elliptical shape. The shape is extended.
  • the upper and lower thin regions on the long side of the thin region having an elliptical shape can be secured as a joining region for laser welding or the like, and the joining strength between the bus bar and the electrode terminal can be ensured.
  • a battery cell electrical connection method is an electrical connection method in which a pair of battery cells having electrode terminals is electrically connected, and the pair of battery cells are arranged adjacent to each other so that the electrode terminals are close to each other.
  • Preparing a bus bar having a step, a long hole-shaped opening window, a thin-walled region surrounding the opening window and partially thinner than other regions, and an electrode terminal of the battery cell in the opening window Inserting a part and positioning the bus bar, placing the bus bar on the electrode terminal so that the thin region overlaps the electrode terminal, and using the jig that presses the bus bar, the bus bar faces the electrode terminal.
  • the bus bar can be reliably biased toward the electrode terminal, and the bonding strength between the bus bar and the electrode terminal can be ensured without impairing the adhesion between the electrode terminal and the bus bar.
  • a battery cell electrical connection method is a power supply device in which a plurality of battery cells having positive and negative electrode terminals on one surface are stacked, and the electrode terminals of adjacent battery cells are connected to each other by a bus bar.
  • a bus bar is placed on the electrode terminals of the adjacent battery cells, and from other areas of the bus bar.
  • An opening window that is partially opened by extending in a direction along the long side of the elliptical shape in a thin-walled region that is partially thinned and is formed in an elliptical shape that is long in the stacking direction of the battery cells.
  • FIG. 7 It is a perspective view of the power supply device concerning one Example of this invention. It is a schematic perspective view which shows the connection structure of the battery cell and bus bar of the power supply device shown in FIG. It is a disassembled perspective view which shows the connection structure of the battery cell and bus bar shown in FIG. It is a perspective view which shows the bus bar of FIG. It is a disassembled perspective view which shows the connection state with the electrode terminal by the bus-bar of a comparative example. It is an enlarged plan view which shows an example of the 1st connection part of a bus bar. It is a top view which shows the battery cell laminated body of a comparative example. It is a perspective view which shows a mode that the bus bar of FIG. 7 is pressed with a jig
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.
  • the power supply device of the present invention is a power supply that is mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle and supplies power to a traveling motor, a power supply that stores generated power of natural energy such as solar power generation or wind power generation, or midnight power It is used for various applications such as a power source for storing electricity, and particularly as a power source suitable for high power and large current applications.
  • FIG. 1 shows a prismatic battery as an example of the battery cell 1.
  • a battery such as a lithium ion secondary battery can be used.
  • the power supply device of the present invention does not specify the battery cell as a square battery, nor does it specify a lithium ion secondary battery.
  • a non-aqueous electrolyte secondary battery other than a lithium ion secondary battery, a nickel water battery cell, or the like can be used. (Square battery)
  • the square battery has positive and negative electrode terminals 2 fixed to a sealing plate 12 with an insulating material 11 as shown in FIGS. 2 and 3, the insulating separator 18 and the plurality of bus bars 40 stacked between the plurality of battery cells 1 are arranged at fixed positions so that the connection state between the battery cell 1 and the bus bar 40 can be easily understood.
  • omitted the bus-bar holder 20 (it shows in FIG. 1. Details are mentioned later) is shown.
  • the positive and negative electrode terminals 2 include a terminal block having a bonding surface 2B and a protruding portion 2A protruding from the bonding surface 2B.
  • the joining surface 2 ⁇ / b> B has a planar shape parallel to the surface of the sealing plate 12.
  • a projecting portion 2A is provided at the center of the joint surface 2B.
  • the protruding portion 2A has a cylindrical shape.
  • the projecting portion is not necessarily a columnar shape, and can be a polygonal column shape or an elliptical column shape (not shown).
  • the plurality of battery cells 1 to be stacked are fixed at fixed positions by fixed parts 13 to form a rectangular battery block 16.
  • the fixed component 13 includes a pair of end plates 14 disposed on both end surfaces of the stacked battery cells 1, and ends connected to the end plates 14 to fix the stacked battery cells 1 in a pressurized state. And a fastening member 15 to be made.
  • the battery block 16 is formed by laminating the sealing plate 12 so as to be in the same plane in FIG. 1 and 2 has positive and negative electrode terminals 2 disposed on the upper surface of a battery block 16.
  • the battery cells 1 are stacked in a state where the positive and negative electrode terminals 2 at both ends of the sealing plate 12 are reversed from side to side.
  • the battery block 16 has adjacent electrode terminals 2 connected to each other on both sides of the battery block 16 by a metal plate bus bar 40 to connect the battery cells 1 in series.
  • the both ends of the bus bar 40 are connected to the positive and negative electrode terminals 2, and the battery cells 1 are connected in series or in parallel.
  • the power supply device can increase the output voltage and the output current by connecting the battery cells 1 in series to increase the output voltage and connecting the battery cells 1 in series and in parallel.
  • the bus bar 40 has a positioning portion so that it can be guided onto the electrode terminal 2.
  • the bus bar 40 in FIGS. 2 and 3 is provided with opening windows 62 at both ends as an example of a positioning portion, and the electrode terminals 2 of the battery cells 1 disposed adjacent to the opening windows 62 are projected. Guides the part 2A.
  • the protruding portion 2 ⁇ / b> A is inserted through the opening window 62 as a through hole.
  • the opening window 62 has an inner diameter that can guide the protruding portion 2 ⁇ / b> A of the electrode terminal 2.
  • the positioning part of a bus bar does not necessarily need to be a through-hole, and any shape can be used as long as the bus bar can be positioned using the protruding part 2A of the electrode terminal 2.
  • the positioning portion can be a notch formed by notching a part of the bus bar.
  • the bus bar 40 is arranged at a fixed position by the bus bar holder 20 shown in FIG. 1, and guides the protruding portion 2 ⁇ / b> A of the electrode terminal 2 to the opening window 62.
  • the bus bar holder 20 is formed of an insulating material such as plastic and places the bus bar 40 at a fixed position.
  • the bus bar holder 20 is connected to the battery block 16 and places the bus bar 40 at a fixed position.
  • the bus bar holder 20 is connected to the insulating separator 18 stacked between the square batteries and arranged at a fixed position, or connected to the square battery and connected to the fixed position of the battery block 16.
  • the 1 includes a frame-shaped holder main body 20A in which a plurality of bus bars 40 are arranged at fixed positions, and a cover plate 20B that closes an upper opening of the holder main body 20A.
  • the holder body 20 ⁇ / b> A is disposed on the upper surface of the battery block 16 with the plurality of bus bars 40 disposed at fixed positions, and the opening window 62 of each bus bar 40 is disposed on the protruding portion 2 ⁇ / b> A of the electrode terminal 2. Further, in this state, laser light is irradiated from the upper opening of the holder main body 20 ⁇ / b> A, and the bus bar 40 is welded to the electrode terminal 2. After all the bus bars 40 are welded to the electrode terminals 2, the upper opening of the holder body 20A is closed with the cover plate 20B. (Bus bar 40)
  • the bus bar 40 includes a first connecting portion 41, a second connecting portion 51, and a connecting portion 49 that connects them. These members are integrally formed by bending a metal plate or the like. Moreover, it is comprised with the member excellent in electroconductivity. Preferably, it is made of aluminum or copper.
  • the 1st connection part 41 is connected to the electrode terminal 2 (left side in FIG. 3) of one battery cell.
  • the 2nd connection part 51 is connected to the electrode terminal 2 (The right side in FIG. 3) of the other battery cell.
  • the 1st connection part 41 and the 2nd connection part 51 are adjoined substantially parallel. Thereby, the adjacent electrode terminals 2 of the battery cell assembly laminated
  • the connecting portion 49 includes a first bent portion 43, a first intermediate portion 45, a second bent portion 53, a second intermediate portion 55, and a third bent portion 47.
  • the first connection part 41 and the first intermediate part 45 are connected via a first bent part 43.
  • the second connecting portion 51 and the second intermediate portion 55 are connected via the second bent portion 53.
  • the first intermediate part 45 and the second intermediate part 55 are connected via a third bent part 47.
  • the first bent portion 43 is bent in the first connection bent region 42 from the first connection portion 41, and is further bent in the first intermediate bent region 44 between the first bent portion 43 and the first intermediate portion 45. It is tuned.
  • the first connection bent region 42 between the first bent portion 43 and the first connection portion 41 and the first intermediate bent region 44 between the first bent portion 43 and the first intermediate portion 45 are substantially the same.
  • the first connecting portion 41, the first bent portion 43, and the first intermediate portion 45 are formed in a step shape by being bent at a right angle.
  • first connecting portion 41, the first bent portion 43, and the first intermediate portion 45 are configured by bending a single metal plate, and only the first connecting portion 41 is fixed to the battery cell, Even if the distance between the first connection part 41 and the first intermediate part 45 is relatively changed, the first bending part 45 is not fixed and floated with respect to the battery cell.
  • the first connection bent region 42 and the first intermediate bent region 44 of the portion 43 can be bent and deformed to be absorbed.
  • the second bent portion 53 is also bent at the second connecting bent region 52 from the second connecting portion 51, and further between the second intermediate portion 55 and the second intermediate bent region 54. It is bent.
  • the second connection bent region 52 between the second bent portion 53 and the second connection portion 51 and the second intermediate bent region 54 between the second bent portion 53 and the second intermediate portion 55 are substantially the same.
  • the second connecting portion 51, the second bent portion 53, and the second intermediate portion 55 are formed in a step shape by being bent at a right angle.
  • the second connecting portion 51, the second bent portion 53, and the second intermediate portion 55 are also formed of a single metal plate, and the second connecting portion 51 side is fixed to the battery cell.
  • first intermediate part 45 and the second intermediate part 55 are connected via a third bent part 47.
  • first intermediate portion 45 and the third bent portion 47 are connected via the third intermediate bent region 46
  • the second intermediate portion 55 and the third bent portion 47 are connected to the fourth intermediate bent portion.
  • Each is connected via a music area 56.
  • the third bent portion 47 is also preferably configured by bending the same member as the first intermediate portion 45 and the second intermediate portion 55, for example, a metal plate.
  • the third bent portion 47 is formed in a U shape in a vertical sectional view, and this portion is deformed so that the distance between the first intermediate portion 45 and the second intermediate portion 55 is relatively. Even if it changes, this can be absorbed.
  • the vertical cross-sectional shape of a 3rd bending part is not limited to U shape, For example, you may comprise in the reverse chevron.
  • first intermediate portion 45 and the first connection portion 41, and the second intermediate portion 55 and the second connection portion 51 are configured substantially in parallel. Further, the first intermediate part 45 and the second intermediate part 55 are configured substantially in parallel, preferably on substantially the same plane.
  • the 1st intermediate part 45 is made into a substantially rectangular shape in planar view, and the 1st connection bending area
  • region 46 are provided in the adjacent edge
  • the second intermediate portion 55 is also substantially rectangular, and the second connection bent region 52 and the fourth intermediate bent region 56 are provided on adjacent sides so as to be substantially perpendicular. As a result, as shown in FIG.
  • connection part 49 comprised by the 1st bending part 43, the 1st intermediate part 45, the 2nd bending part 53, the 2nd intermediate part 55, and the 3rd bending part 47 is 1st.
  • the first connection portion 41 and the second connection portion 51 are compared with the configuration in which the electrode terminals 502 are directly connected by the flat bus bar 540 as illustrated in the exploded perspective view of FIG. 5. Due to the relative displacement, it is possible to avoid a problem that a load is applied to the welded portion between the electrode terminal 2 and the bus bar 40 and the welded portion is broken, broken or peeled off.
  • the connecting portion 49 that connects the first connecting portion 41 and the second connecting portion 51 is provided with a buffer mechanism that can be deformed in the XYZ directions, thereby absorbing the tolerance of the battery cells during manufacturing and assembly. it can. Even when the power supply device is used, even if the relative position between the first connection portion 41 and the second connection portion 51 is shifted due to expansion due to charging / discharging of the battery cells or external force such as impact or vibration, the power supply device is connected. By absorbing with the buffer mechanism of the portion 49, it is possible to avoid a situation in which a load is directly applied to the first connection portion 41 or the second connection portion 51 to cause breakage, breakage or separation, and reliability of connection between battery cells Can be increased.
  • the intermediate portion can also be used as a detection terminal for intermediate potential.
  • an intermediate potential is detected in order to accurately manage the state of the battery.
  • an intermediate potential detection terminal is connected to detect the intermediate potential.
  • the intermediate part which has an impact-absorbing mechanism can be used also as a member for connecting such an intermediate potential detection terminal. (Notch for terminal connection)
  • a notch for terminal connection is formed in the second intermediate portion 55 that is one intermediate portion.
  • the second intermediate portion 55 is formed to have a larger area than the first intermediate portion 45, and a notch for terminal connection is easily formed in a part thereof.
  • the notch for connecting the terminal is a connection hole 58 opened in the second intermediate portion 55.
  • the connection hole 58 is circular in the example of FIG.
  • the circular connection hole 58 has an advantage that the intermediate potential detection terminal can be easily fixed by screwing or the like, and the contact area with the terminal can be widened to reduce the contact resistance.
  • the present invention is not limited to this configuration, and the notch for connecting terminals may be rectangular, long holes, ellipses, or the like. Moreover, it can also be set as a recessed part etc. not only in opening. (Thin area 61)
  • such a bus bar 40 is provided with a welding region for laser welding with the electrode terminal 2 of the battery cell, that is, a joining region.
  • the first connection portion 41 and the second connection portion 51 are each provided with a thin region 61 that is partially thinner than the other regions.
  • an opening window 62 that is partially opened is formed in a part of the thin region 61.
  • laser welding is performed, laser light is irradiated from the upper surface to the thin region 61 arranged so as to be in close contact with the joint surface 2B of the electrode terminal 2, and the thin region 61 is penetrated to join the joint surface 2B. Is melted and welded together.
  • the protruding portion 2 ⁇ / b> A of the electrode terminal 2 is exposed from the opening window 62 and is used as a guide for relative positioning of the bus bar 40 and the electrode terminal 2.
  • the welding position which irradiates a laser beam can utilize also as positioning for controlling the welding position which irradiates a laser beam.
  • the protruding portion 2A of the electrode terminal 2 exposed from the opening window 62 is detected by image processing, and the scanning position of the laser beam is controlled using this position as a reference. Thereby, a junction is formed between the bus bar 40 and the terminal block of the electrode terminal 2.
  • the opening window 62 is formed in a rectangular shape extending along the stacking direction of the battery cells.
  • the rectangular opening window 62 can be formed to have a width larger than the outer diameter of the protruding portion 2A of the electrode terminal 2, but preferably the width of the rectangular opening window 62 is set to the protruding portion 2A of the electrode terminal 2.
  • the opening window 62 is formed in a size that allows the protrusion 2A to be inserted by making the width of the substantially center in the longitudinal direction of the opening window 62 wider.
  • an arc-shaped wide region 63 along the circular outer shape of the protruding portion 2 ⁇ / b> A is formed at the center of a rectangular opening window 62 that is long in the horizontal direction.
  • the thin region 61 is formed in an elliptical shape that is long in the stacking direction of the battery cells. As a result, it is possible to achieve both downsizing of the bus bar and ensuring the strength of laser welding. This will be described based on the comparative example shown in FIGS.
  • the thin region 761 of the comparative example is formed in a circular shape.
  • each bus bar 740 is arranged on the electrode terminal 702 of the battery cell 701
  • the bus bar 740 is pressed from the upper surface using the jig JG, and further, the laser beam is scanned as shown in the sectional view of FIG. 740 and the electrode terminal 702 are welded.
  • the weldable area becomes narrow due to the arrangement space of the jig and the insulating wall, which hinders improving the welding strength of the bus bar. Become.
  • the thin region 61 is not circular, but is an ellipse in which the battery cells 1 are stacked in the stacking direction, in the drawing, lengthened in the horizontal direction and conversely shortened in the vertical direction. It is formed into a shape. Furthermore, the pressing region of the jig JG ′ that presses the bus bar 40 during welding is excluded in the left and right direction, that is, in the stacking direction of the battery cells 1, and only the vertical direction sandwiching the thin region 61 (see the perspective view of FIG. 11). As a result, the space in which the jig has been placed can be used for welding, and the joint strength can be increased accordingly.
  • the thin region 61 is roughly divided into two in the vertical direction, that is, the short side direction of the elliptical shape.
  • the position where the opening window 62 is provided in the thin region 61 is an elliptical short-side direction, in other words, a direction intersecting the stacking direction of the battery cells 1 (vertical direction in the figure).
  • the center of the thin region 61 in FIG. preferably, as shown in the modified example of FIG. 6, it is preferable that the opening window 62 be provided eccentric in the direction away from the first connection bending region 42 in the short side direction.
  • the bus bar 40 absorbs the relative displacement between the first connection portion 41 and the second connection portion 51 due to the deformation of the connecting portion 49.
  • the first connection portion 43 is continuous with the first bending portion 43 through the first connection bending region 42.
  • the displacement is attempted to be absorbed in the first connection bending region 42 or the like. .
  • bending occurs in the first connection bending region 42.
  • Such bending of the first connection bent region 42 acts in a direction in which the first connection portion 41 is peeled from the bonding surface 2B of the electrode terminal 2.
  • the thin region 61 which is the bonding region of the first connection portion 41 tends to be more stressed on the side closer to the first connection bending region 42. Therefore, in order to weld more strongly the site where such stress is likely to act, the opening window 62 is set to be welded in a wide area on the side close to the first connection bent region 42 in the thin region 61. It is decentered in a direction away from the one connection bent region 42.
  • the upper and lower thin regions on the long side of the elliptical shape of the thin region are wider on the side closer to the first connection bent region 42 than on the far side, and laser welding is continuously performed over a wide area.
  • it is easy to exert stronger bonding strength, and it is possible to avoid peeling or breakage at this portion, thereby contributing to improvement in the reliability of laser welding.
  • the elliptical shape of the thin region 61 is provided with a linear region on the first connection bent region 42 side.
  • stress acts in the direction in which the first connection portion 41 is peeled off as described above.
  • stress concentrates on the point CP closest to the first connection bent region 42.
  • FIG. 6 FIG. 12 and the like, by making the side close to the first connection bent region 42 linear, stress can be received by a line instead of a point, and resistance can be increased. This can contribute to improving reliability.
  • the elliptical shape of the thin region 61 is a track shape in which the long side is linear.
  • an elliptical shape in which only the side close to the first connection bent region 42 is linear may be used.
  • a shape close to a chamfered rectangle may be used.
  • Such a shape is also used in the present specification to include an elliptical shape.
  • the joint is not necessarily limited to an elliptical shape.
  • the bus bar can be prevented from being broken when a large force is applied to the bus bar. Therefore, for example, as in other embodiments illustrated in FIGS. 13 and 16, the laser light may be scanned so as to form a plurality of linear joints extending along the major axis direction of the thin region 61. Good.
  • the range in which the linear joint on the side close to the first connection bending region 42 is formable is the first connection folding region. It is preferable to configure so as to be wider than the range in which the linear joint portion on the side far from the curved region 42 is formed.
  • the elliptical joint portion is formed in an elliptical shape in which the connecting portion 49 side (side closer to the first connection bending region 42) is the minor axis direction, or the linear joint portion is formed on the connecting portion 49 side.
  • joint strength can be raised with respect to the stress which acts in the direction which peels the 1st connection part 41.
  • the bus bar can be formed of an inexpensive metal plate.
  • clad materials have been used for bus bars used in laser welding from the viewpoint of reliability of bonding strength.
  • high-capacity lithium ion secondary batteries have become widespread as battery cells. In such lithium ion secondary batteries, those using aluminum for the positive electrode and copper for the negative electrode are common.
  • one lithium ion secondary battery When connecting such lithium ion secondary batteries in series with a bus bar, one lithium ion secondary battery can be connected to an aluminum positive electrode, and the other lithium ion secondary battery can be connected to a copper negative electrode.
  • the amount of metal material differs between the positive electrode side and the negative electrode side.
  • a clad material in which a copper plate and an aluminum plate are connected to the bus bar by a special rolling process is used. By using this clad material as a bus bar, the positive electrode is made of aluminum and the negative electrode is made of copper.
  • the bus bar made of the clad material is expensive.
  • the jig JG ′ as described above and not placing the jig in the stacking direction of the battery cells as shown in FIG. Increasing and enlarging the area of laser welding ensures the bonding strength.
  • the bus bar is made of inexpensive aluminum, but may be made of copper.
  • the surface of the electrode terminal may be plated if necessary.
  • a copper electrode terminal on the negative electrode side which is used for bonding between different metals, is to be bonded to an aluminum bus bar, a local battery is formed due to a potential difference, galvanic corrosion (dissimilar metal contact corrosion) occurs, and strength decreases. Or the electrical resistance may deteriorate. Therefore, the corrosion prevention effect can be enhanced by applying nickel plating to the surface of the negative electrode terminal made of copper.
  • a method of laser welding the bus bar 40 to the electrode terminal 2 will be described as a method for manufacturing the power supply device.
  • a battery cell laminate in which a plurality of battery cells 1 each having positive and negative electrode terminals 2 on one surface are laminated is prepared.
  • the bus bar 40 is positioned and arranged with respect to the electrode terminals 2 on the electrode terminals 2 of the adjacent battery cells 1. Further, the thin bar area is scanned with laser light, and the bus bar 40 and the electrode terminal 2 are welded and joined. (Laser welding pattern LP)
  • FIG. 6 an example of a scanning pattern for irradiating the elliptical thin region 61 shown in FIG. 6 with laser light, that is, a laser welding pattern LP is shown in the plan view of FIG.
  • the laser beam is scanned in an elliptical shape so as to surround the periphery of the opening window 62 several times.
  • the elliptical junction part which joins the terminal block of the electrode terminal 2 and the bus bar 40 in an elliptical shape is formed.
  • the upper wide region can be scanned so as to reciprocate in the horizontal direction, thereby efficiently scanning the laser beam. It becomes possible.
  • the order of scanning the laser beam first, the periphery of the opening window 62 is spirally scanned from the inside to the outside, and after scanning in an annular shape with a predetermined width, the horizontal direction is directly above the opening window 62.
  • the linear reciprocating scanning is performed, and when the end of the reciprocating movement is reached, the reciprocating scanning is repeated by moving from the bottom to the top. Alternatively, it may be scanned in a zigzag pattern instead of the movement at the edge.
  • the laser beam is scanned also on the left and right sides of the opening window 62, that is, between the opening window 62 and the thin region 61 in the stacking direction of the battery cells 1, thereby securing a bonding area for laser welding.
  • the bonding area is increased to increase the bonding strength.
  • the present invention is not limited to this configuration, and can be configured to weld only the upper and lower sides of the opening window without laser welding the side surface of the opening window.
  • the laser beam scanning to such a part can be omitted, the work process can be simplified and the tact time can be shortened.
  • FIGS. 16 and 17 Such an example is shown in FIGS. 16 and 17 as modified examples.
  • laser welding is performed by reciprocating the laser beam in the horizontal direction above and below the opening window 62.
  • such a scanning pattern is also effective in a shape in which the thin region 61 is closer to a rectangular shape than a circular shape.
  • the laser beam may be scanned in a spiral shape above and below the opening window 62, and laser welding may be performed so as to fill these regions.
  • the thin region is a region for laser welding with the electrode terminal, but it is not necessary to weld the entire thin region, and a part of the thin region may not be welded. It is sufficient if the necessary area of the thin region can be laser welded according to the scanning speed and scanning accuracy of the laser beam, the required connection strength, and the like, and such an aspect is also within the scope of the present invention.
  • the above power supply apparatus can be used as a vehicle-mounted power supply.
  • a vehicle equipped with a power supply device an electric vehicle such as a hybrid vehicle or a plug-in hybrid vehicle that runs with both an engine and a motor, or an electric vehicle that runs only with a motor can be used, and it is used as a power source for these vehicles. . (Power supply for hybrid vehicles)
  • FIG. 18 shows an example in which a power supply device is mounted on a hybrid vehicle that travels with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes an engine 96 and a travel motor 93 that travel the vehicle HV, a power supply device 100 that supplies power to the motor 93, and a generator that charges a battery of the power supply device 100.
  • the power supply apparatus 100 is connected to a motor 93 and a generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels by both the motor 93 and the engine 96 while charging / discharging the battery of the power supply device 100.
  • the motor 93 is driven to drive the vehicle when the engine efficiency is low, for example, during acceleration or low-speed driving.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by the engine 96 or is driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100. (
  • FIG. 19 shows an example in which a power supply device is mounted on an electric vehicle that runs only with a motor.
  • a vehicle EV equipped with the power supply device shown in this figure includes a traveling motor 93 for traveling the vehicle EV, a power supply device 100 that supplies power to the motor 93, and a generator 94 that charges a battery of the power supply device 100.
  • the motor 93 is driven by power supplied from the power supply device 100.
  • the generator 94 is driven by energy when regeneratively braking the vehicle EV and charges the battery of the power supply device 100.
  • a power supply device according to the present invention, a vehicle using the power supply device, a bus bar, and a method for manufacturing the power supply device are disclosed in a plug-in hybrid electric vehicle, a hybrid electric vehicle, an electric vehicle, and the like that can switch between an EV traveling mode and an HEV traveling mode. It can be suitably used as a power supply device. Also, a backup power supply device that can be mounted on a rack of a computer server, a backup power supply device for a wireless base station such as a mobile phone, a power storage device for home use and a factory, a power supply for a street light, etc. Also, it can be used as appropriate for applications such as a backup power source such as a traffic light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

バスバーの小型化を維持しつつ、接続の強度を確保できるようにするために、正負の電極端子を一面に備える電池セルを、複数枚積層した電池セル積層体と、隣接する電池セルの電極端子同士をそれぞれ接続する複数のバスバー(40)とを備える電源装置であって、各バスバー(40)は、少なくとも一部に、他の領域よりも部分的に肉厚を薄くした薄肉領域(61)を設けており、かつ薄肉領域(61)に、部分的に開口された開口窓(62)を形成しており、薄肉領域(61)を、電池セルの積層方向に長い楕円形状に形成しており、開口窓(62)を、楕円形状の長辺に沿う方向に延長させている。上記構成により、楕円形状とした薄肉領域(61)の長辺側の上下の薄肉領域(61)を、レーザ溶接等のための接合領域として確保でき、バスバー(40)と電極端子との接合強度を担保できる。

Description

電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法
 本発明は、電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法に関し、例えば複数の電池セルをバスバーを介して直列や並列に接続する際、電極端子にレーザ溶接でバスバーを接続している電源装置等に関する。
 電源装置は、複数の電池セルを直列に接続して出力電圧を高く、また並列に接続して充放電の電流を大きくできる。たとえば、自動車を走行させるモータの電源に使用される大電流、大出力用の電源装置は、複数の電池セルを直列に接続して出力電圧を高くしている。この用途に使用される電源装置は、複数の電池セルを金属板のバスバーで接続している。バスバーは、電源装置を構成する電池セルの電極端子にレーザ溶接して接続される。この接続構造は、バスバーに貫通孔を設けて、ここに電池セルの電極端子を挿入し、挿入された電極端子とバスバーとの境界にレーザ光を照射し、電極端子とバスバーの両方を境界で溶融して接続している。
 このような構成の一例として下記の特許文献1に記載された電源装置が知られている。特許文献1に記載された電源装置は、円柱状の突起が形成された電極端子を有する電池セルと、隣接する電池セルを電気接続するバスバーと、を備えている。バスバーは、電極端子に形成されている突起が挿通される開口窓を有しており、開口窓を囲うように薄肉領域が形成されている。バスバーは、電極端子に向けて付勢されることで、バスバーと電極端子とが密着する。この状態で、バスバーの薄肉領域を円柱状の突起に沿ってレーザ光を走査させることで、バスバーと電極端子の両方を溶融し、バスバーと電極端子とを接合できるようになっている。電極端子とバスバーの密着性が悪いと、溶接強度が著しく低下するため、溶接の際には、バスバーを電極端子に向けて付勢するために、バスバーを治具で押圧する構成が採用される。
特開2015-99759号公報
発明が解決しようとする課題及び発明の効果
 近年、様々な用途で電源装置を使用されることが増えている。特に高電圧の出力が求められる電源装置では、多数の電池セルを直列に接続することになる。このような場合には、絶縁距離を確保するために、隣接するバスバーの間に絶縁性の樹脂で形成される壁を設ける場合がある。
 しかしながら、特許文献1の電源装置において、隣接するバスバーの間に絶縁性の樹脂で形成される壁を設けた場合、バスバーを押圧するための治具の大きさも制限されることになる。そのため、バスバーを電極端子に向けて確実に付勢させることができなくなるおそれがある。一方で、治具のスペースを確保するために、溶接する範囲を小さくすると、バスバーの溶接強度が低下することになる。
 本発明はこのような背景に鑑みてなされたものであり、その目的の一は、バスバーの小型化を維持しつつ、接続の強度を確保できるようにした電源装置及びこれを用いた車両、バスバー並びに電源装置の製造方法を提供することにある。
 本発明のある態様の電源装置は、隣接して積層される一対の電池セルを含む電池セル積層体と、一対の電池セルを電気接続するバスバーと、を備えている。一対の電池セルはそれぞれ、電極端子を電池セル積層体の一面に有している。この電源装置は、さらに、一方の電池セルの電極端子とバスバーとを接合する接合部を備えている。接合部は、電極端子とバスバーとを楕円形状に接合する楕円接合部を含んでいる。
 上記構成により、電極端子とバスバーとを楕円形状に接合することで、楕円の短径方向の上下にバスバーを押圧する治具を配置するためのスペースを確保することができる。そのため、確実にバスバーを電極端子に向けて付勢することができ、電極端子とバスバーの密着性を損なうことなく、バスバーと電極端子との接合強度を担保できる。
 本発明の他の態様の電源装置は、隣接して積層される一対の電池セルを含む電池セル積層体と、一対の電池セルを電気接続するバスバーとを備えている。一対の電池セルは、それぞれ電極端子を電池セル積層体の一面に有している。電極端子は、接合面を有する端子台を含んでいる。バスバーは、接合面に重なるように配置される。また、バスバーは端子台の接合面の一部を露出させる開口窓を有している。この電源装置は、さらに、一対の電池セルのうちの一方の電池セルの電極端子とバスバーとを接合する接合部を備えている。接合部は、電極端子とバスバーとを直線形状に接合する互いに平行な複数の直線接合部を含んでいる。複数の直線接合部の間に開口窓が位置している。
 上記構成によると、複数の直線接合部によってバスバーと電極端子を接合することができるので、直線接合部に対して垂直な方向の開口窓の寸法を小さくすることができ、直線接合部に対して垂直な方向の上下にバスバーを押圧する治具を配置するためのスペースを確保することができる。そのため、確実にバスバーを電極端子に向けて付勢することができ、電極端子とバスバーの密着性を損なうことなく、バスバーと電極端子との接合強度を担保できる。
 本発明のある態様のバスバーは、電池セルの電極端子を接続するためのバスバーであって、少なくとも一部に、他の領域よりも部分的に肉厚を薄くした薄肉領域を設けており、かつ薄肉領域に、部分的に開口された開口窓を形成しており、薄肉領域を、電池セルの積層方向に長い楕円形状に形成しており、開口窓を、楕円形状の長辺に沿う方向に延長させた形状としている。
 上記構成により、楕円形状とした薄肉領域の長辺側の上下の薄肉領域を、レーザ溶接等のための接合領域として確保でき、バスバーと電極端子との接合強度を担保できる。
 本発明のある態様の電池セルの電気接続方法は、電極端子を有する一対の電池セルを電気接続する電気接続方法において、それぞれの電極端子が近接する姿勢で一対の電池セルを隣接して配置する工程と、長孔形状の開口窓と、開口窓を囲い、他の領域よりも部分的に肉厚を薄い薄肉領域と、を有するバスバーを準備する工程と、開口窓に電池セルの電極端子の一部を挿通し、バスバーを位置決めする工程と、薄肉領域が電極端子に重なるように、バスバーを電極端子に載置する工程と、バスバーを押圧する治具を用いてバスバーを電極端子に向けて付勢する工程と、薄肉領域において、楕円状にレーザ光を走査させて、バスバーと電極端子を溶接して接合する工程と、を備えている。
 上記構成により、電極端子とバスバーとを楕円形状に接合することで、楕円の短径方向の上下にバスバーを押圧する治具を配置するためのスペースを確保することができる。そのため、確実にバスバーを電極端子に向けて付勢することができ、電極端子とバスバーの密着性を損なうことなく、バスバーと電極端子との接合強度を担保できる。
 本発明のある態様の電池セルの電気接続方法は、正負の電極端子を一面に備える電池セルを、複数枚積層した状態で、隣接する前記電池セルの電極端子同士をバスバーで接続する電源装置の製造方法であって、正負の電極端子を一面に備える電池セルを、複数枚積層した状態で、隣接する前記電池セルの電極端子同士の上に、バスバーを置くと共に、前記バスバーの他の領域よりも部分的に肉厚を薄くし、かつ前記電池セルの積層方向に長い楕円形状に形成された薄肉領域に、前記楕円形状の長辺に沿う方向に延長させて部分的に開口された開口窓から露出する前記電極端子に対して位置決めして配置する工程と、前記薄肉領域において、少なくとも楕円形状の長辺側の上下の薄肉領域に、レーザ光を走査させて、前記バスバーと電極端子とを溶接して接合する工程とを含むことができる。
 これにより、楕円形状とした薄肉領域の長辺側の上下の薄肉領域を、レーザ溶接等のための接合領域として確保でき、バスバーと電極端子との接合強度を担保できる。
本発明の一実施例にかかる電源装置の斜視図である。 図1に示す電源装置の電池セルとバスバーの連結構造を示す概略斜視図である。 図2に示す電池セルとバスバーの連結構造を示す分解斜視図である。 図3のバスバーを示す斜視図である。 比較例のバスバーによる電極端子との接続状態を示す分解斜視図である。 バスバーの第一接続部の一例を示す拡大平面図である。 比較例の電池セル積層体を示す平面図である。 図7のバスバーを治具で押圧する様子を示す斜視図である。 図8の治具でバスバーを押圧した状態を示す断面図である。 図7のバスバーを治具で押圧する領域を示す拡大平面図である。 図6のバスバーを治具で押圧する様子を示す斜視図である。 変形例に係るバスバーの第一接続部を示す拡大平面図である。 他の変形例に係るバスバーの第一接続部を示す拡大平面図である。 図6のバスバーに対するレーザ溶接パターンの一例を示す拡大平面図である。 図12のバスバーに対するレーザ溶接パターンの一例を示す拡大平面図である。 レーザ溶接パターンの他の例を示す拡大平面図である。 レーザ溶接パターンのさらに他の例を示す拡大平面図である。 エンジンとモータで走行するハイブリッド車に電源装置を搭載する例を示すブロック図である。 モータのみで走行する電気自動車に電源装置を搭載する例を示すブロック図である。
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに特定されない。また、本明細書は特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。さらに以下の説明において、同一の名称、符号については同一若しくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
 本発明の電源装置は、ハイブリッド車や電気自動車等の電動車両に搭載されて走行モータに電力を供給する電源、太陽光発電や風力発電等の自然エネルギーの発電電力を蓄電する電源、あるいは深夜電力を蓄電する電源等、種々の用途に使用され、とくに大電力、大電流の用途に好適な電源として使用される。
 図1に示す電源装置は、複数の電池セル1を絶縁セパレータ18を挟んで互いに絶縁して積層状態に固定している。図1には、電池セル1の一例として角形電池が図示されている。また、電池セル1としては、リチウムイオン二次電池等の電池を用いることができる。ただし、本発明の電源装置は、電池セルを角形電池には特定せず、またリチウムイオン二次電池にも特定しない。電池セルには、たとえばリチウムイオン二次電池以外の非水系電解液二次電池やニッケル水電池セル等も使用できる。
(角形電池)
 角形電池は、図2と図3に示すように、絶縁材11を介して封口板12に正負の電極端子2を固定している。なお、図2及び図3は、電池セル1とバスバー40の接続状態をわかりやすくするために、複数の電池セル1の間に積層される絶縁セパレータ18と複数のバスバー40を定位置に配置するバスバーホルダ20(図1に示す。詳細は後述する。)を省略した図を示している。正負の電極端子2は、接合面2Bを有する端子台と、接合面2Bから突出する突出部2Aと、を有している。接合面2Bは、封口板12の表面と平行な平面状としている。また、この接合面2Bの中央部に突出部2Aを設けている。図3に示す電極端子2は、突出部2Aを円柱状としている。ただ、突出部は、必ずしも円柱状とする必要はなく、図示しないが、多角柱状又は楕円柱状とすることもできる。
 積層される複数の電池セル1は、固定部品13で定位置に固定されて直方体の電池ブロック16としている。固定部品13は、積層している電池セル1の両端面に配置される一対のエンドプレート14と、このエンドプレート14に、端部を連結して積層状態の電池セル1を加圧状態に固定する締結部材15とからなる。
 電池ブロック16は、電池セル1の電極端子2を設けている面、図2等においては封口板12を同一平面となるように積層している。図1と図2の電源装置は、電池ブロック16の上面に正負の電極端子2を配設している。電池ブロック16は、封口板12の両端部にある正負の電極端子2が左右逆となる状態で電池セル1を積層している。電池ブロック16は、図3に示すように、電池ブロック16の両側において、隣接する電極端子2を金属板のバスバー40で連結して、電池セル1を直列に接続している。
 バスバー40は、その両端部を正負の電極端子2に接続して、電池セル1を直列に、あるいは並列に接続する。電源装置は、電池セル1を直列に接続して出力電圧を高くし、電池セル1を直列と並列に接続して、出力電圧と出力電流を大きくできる。
 バスバー40は、電極端子2の上に案内することができるように位置決め部を有している。図2と図3のバスバー40は、位置決め部の一例として両端部に開口窓62を設けており、各々の開口窓62に、隣接して配設している電池セル1の電極端子2の突出部2Aを案内している。図2と図3のバスバー40は、開口窓62を貫通孔として、ここに突出部2Aを挿入している。開口窓62は、電極端子2の突出部2Aを案内できる内径としている。なお、バスバーの位置決め部は、必ずしも貫通孔でなくてもよく、電極端子2の突出部2Aを利用してバスバーの位置決めを行うことができる形状であればよい。図示はしないが、例えば、位置決め部をバスバーの一部を切り欠いて形成される切り欠き部とすることもできる。
(バスバーホルダ20)
 バスバー40は、図1に示すバスバーホルダ20で定位置に配置されて、電極端子2の突出部2Aを開口窓62に案内する。バスバーホルダ20は、プラスチック等の絶縁材で成形されて、バスバー40を定位置に配置する。バスバーホルダ20は、電池ブロック16に連結されて、バスバー40を定位置に配置する。バスバーホルダ20は、角形電池の間に積層している絶縁セパレータ18に連結されて定位置に配置され、あるいは角形電池に連結されて、電池ブロック16の定位置に連結される。図1に示すバスバーホルダ20は、複数のバスバー40を定位置に配置する枠形状のホルダ本体20Aとホルダ本体20Aの上方開口部を閉塞するカバープレート20Bとを備えている。ホルダ本体20Aは、複数のバスバー40が定位置に配置された状態で電池ブロック16の上面に配置されて、各バスバー40の開口窓62が電極端子2の突出部2Aに配置される。さらに、この状態で、ホルダ本体20Aの上方開口部からレーザ光が照射されて、バスバー40が電極端子2に溶着される。全てのバスバー40が電極端子2に溶着された後、ホルダ本体20Aの上方開口部をカバープレート20Bで閉塞する。
(バスバー40)
 バスバー40の斜視図を図4に示す。このバスバー40は、第一接続部41と、第二接続部51と、これらを連結する連結部49を備えている。これらの部材は、金属板を折曲する等して一体に成形される。また、導電性に優れた部材で構成される。好ましくはアルミニウム製や、銅製等とする。
 第一接続部41は、一方の電池セルの電極端子2(図3においては左側)に接続される。また第二接続部51は、他方の電池セルの電極端子2(図3においてはその右側)に接続される。第一接続部41と第二接続部51は、ほぼ平行に隣接される。これにより、封口板がほぼ同一面となるように積層された電池セル集合体の、隣接する電極端子2同士を接続できる。また、図3、4に図示するように、開口窓62を第一接続部41及び第二接続部51に形成することができる。
(連結部49)
 また、第一接続部41と第二接続部51は、連結部49を介して接続されている。連結部49は、第一折曲部43と、第一中間部45と、第二折曲部53と、第二中間部55と、第三折曲部47を備えている。第一接続部41と第一中間部45は、第一折曲部43を介して接続されている。また第二接続部51と第二中間部55は、第二折曲部53を介して接続されている。さらに第一中間部45と第二中間部55とは、第三折曲部47を介して接続されている。
(第一折曲部43)
 ここで第一折曲部43は、第一接続部41から第一接続折曲領域42で折曲されており、さらに第一中間部45との間も、第一中間折曲領域44で折曲されている。好ましくは、第一折曲部43と第一接続部41との第一接続折曲領域42も、第一折曲部43と第一中間部45との第一中間折曲領域44も、ほぼ直角に折曲させて、第一接続部41と第一折曲部43と第一中間部45とを階段状に構成する。これらの第一接続部41と第一折曲部43と第一中間部45とを一枚の金属板を折曲して構成し、かつ第一接続部41のみを電池セルに固定する一方、第一中間部45は固定せずに電池セルに対して浮かした状態とすることで、第一接続部41と第一中間部45との距離が相対的に変化しても、第一折曲部43の第一接続折曲領域42と第一中間折曲領域44が折曲して変形することで、これを吸収することができる。
(第二折曲部53)
 同様に、第二折曲部53も、第二接続部51から第二接続折曲領域52で折曲されており、さらに第二中間部55との間も、第二中間折曲領域54で折曲されている。好ましくは、第二折曲部53と第二接続部51との第二接続折曲領域52も、第二折曲部53と第二中間部55との第二中間折曲領域54も、ほぼ直角に折曲させて、第二接続部51と第二折曲部53と第二中間部55とを階段状に構成する。これらの第二接続部51と第二折曲部53と第二中間部55も一枚の金属板で構成し、かつ第二接続部51側を電池セルに固定し、第二中間部55を電池セルに対して固定しないことで、第二接続部51と第二中間部55との相対的な距離の変化を第二折曲部53の第二接続折曲領域52と第二中間折曲領域54で吸収することができる。
(第三折曲部47)
 さらに第一中間部45と第二中間部55との間は、第三折曲部47を介して接続されている。具体的には第一中間部45と第三折曲部47とは、第三中間折曲領域46を介して、また第二中間部55と第三折曲部47とは、第四中間折曲領域56を介して、それぞれ接続されている。第三折曲部47も、好ましくは第一中間部45と第二中間部55と同じ部材、例えば金属板を折曲して構成されている。さらに第三折曲部47は、垂直断面視においてU字状に形成されており、この部分が変形することで、第一中間部45と第二中間部55との間の距離が相対的に変化しても、これを吸収することができる。なお、第三折曲部の垂直断面形状はU字状に限定されず、例えば逆の山形に構成してもよい。
 ここで、第一中間部45と第一接続部41、第二中間部55と第二接続部51を、それぞれほぼ並行に構成する。また第一中間部45と第二中間部55を、それぞれほぼ並行に、好ましくはほぼ同一平面上に構成する。そして、第一中間部45を平面視においてほぼ矩形状として、第一接続折曲領域42と、第三中間折曲領域46とを、ほぼ直角となるように、隣接する辺に設ける。同様に第二中間部55もほぼ矩形状として、第二接続折曲領域52と、第四中間折曲領域56とを、ほぼ直角となるように、隣接する辺に設ける。この結果、図4に示すように、第一接続部41と第二接続部51との距離が、X軸方向に相対的に変化しても、第三折曲部47が変形することで、これを吸収できる。またY軸方向への相対的な変化は、第一折曲部43、第二折曲部53が変形することでこれを吸収できる。さらにZ軸方向への相対的な変化も、これら第一折曲部43、第二折曲部53が変形することでこれを吸収できる。このように、第一折曲部43と、第一中間部45と、第二折曲部53と、第二中間部55と、第三折曲部47で構成される連結部49は、第一接続部41と第二接続部51の相対的な距離が、XYZ方向のいずれに変化しても、これを吸収することができる。この結果、図5の分解斜視図に示すような電極端子502同士を平板状のバスバー540で直接接続する構成に比べ、図4の構成では、第一接続部41と第二接続部51との相対的な変位によって、電極端子2とバスバー40との溶接部分に負荷がかかって溶接部位が破損、破断、剥離するといった問題を回避することができる。
 以上のように、第一接続部41と第二接続部51を連結する連結部49に、XYZ方向に変形可能な緩衝機構を持たせることで、製造時や組立時における電池セルの公差を吸収できる。また電源装置の使用時においても、電池セルの充放電による膨張や、衝撃や振動等の外力により、第一接続部41と第二接続部51の相対位置にずれが生じても、これを連結部49の緩衝機構でもって吸収することで、第一接続部41や第二接続部51に直接負荷が印加されて破損や破断、剥離が生じる事態を回避でき、電池セル同士の接続の信頼性を高めることができる。
 また、中間部を、中間電位の検出端子として利用することもできる。特にリチウムイオン二次電池を電池セルとして用いる場合等、電池の状態を正確に管理するために中間電位の検出が行われており、このため中間電位を検出するための中間電位検出用端子を接続する必要がある。このため、衝撃吸収機構を有する中間部を、このような中間電位検出用端子を接続するための部材に兼用できる。
(端子接続用の切り欠き)
 図4の例では、一方の中間部である第二中間部55に、端子接続用の切り欠きを形成している。この例では、第二中間部55を第一中間部45よりも面積を大きく形成しており、その一部に端子接続用の切り欠きを形成し易くしている。また端子接続用の切り欠きは、第二中間部55に開口された接続穴58としている。接続穴58は、図4の例では円形としている。円形の接続穴58は、中間電位検出用端子をねじ止め等で固定し易く、また端子との接触面積を広くして接触抵抗を低減できる等利点がある。ただ、この構成に限らず、端子接続用の切り欠きを矩形状や長穴、楕円等としてもよい。また、開口に限らず、凹部等とすることもできる。
(薄肉領域61)
 また、このようなバスバー40は、電池セルの電極端子2とレーザ溶接するための溶接領域、すなわち接合領域を設けている。具体的には、接合領域の一態様として、第一接続部41と第二接続部51にそれぞれ、他の領域よりも部分的に肉厚を薄くした薄肉領域61を設けている。一例として、第一接続部41の薄肉領域61を示すバスバーの拡大平面図を図6に示す。
(開口窓62)
 また薄肉領域61の一部に、部分的に開口された開口窓62を形成している。レーザ溶接する際は、電極端子2の接合面2Bの上に密着させるように重ねて配置された薄肉領域61に対して、上面からレーザ光を照射し、薄肉領域61を貫通させて接合面2Bと一緒に溶かし、溶接させている。この際、バスバー40と電極端子2とを正確に位置決めする必要がある。そこで、図6の拡大平面図に示すように開口窓62から電極端子2の突出部2Aを表出させて、これをバスバー40と電極端子2との相対的な位置決め用のガイドとして利用する。また、レーザ光を照射させる溶接位置を制御するための位置決めとしても利用できる。例えば、開口窓62から表出させた電極端子2の突出部2Aを、画像処理によって検出して、この位置を基準としてレーザ光の走査位置を制御する。これにより、バスバー40と電極端子2の端子台との間に接合部が形成される。
 開口窓62は、電池セルの積層方向に沿って延長された矩形状に形成されている。矩形状の開口窓62は、電極端子2の突出部2Aの外径よりも大きい幅に形成することもできるが、好ましくは、矩形状の開口窓62の幅を、電極端子2の突出部2Aよりも狭くしつつ、開口窓62の長手方向の略中央を幅広にして、突出部2Aを挿入できる大きさに形成する。このようにすることで、開口窓62の幅狭部分に突出部2Aが誤挿入されることを防止しながら、突出部2Aの両側の開口窓62から端子台の接合面2Bを露出させることができる。開口窓62から露出される接合面2Bは、バスバーの高さ検出に利用される。また、開口窓62の面積を小さく抑えることができ、その分だけレーザ溶接可能な薄肉領域61の面積を確保し、接続強度を向上させることができる。図6の例では、横方向に長い長方形状の開口窓62の中央に、突出部2Aの円形状の外形に沿った円弧状の幅広領域63を形成している。
(薄肉領域61の形状)
 薄肉領域61は、電池セルの積層方向に長い楕円形状に形成している。これによって、バスバーの小型化とレーザ溶接の強度確保を両立することができる。この様子を、図7~図10に図示する比較例に基づいて説明する。比較例の薄肉領域761は、円形状に形成されている。この構成のバスバー740を用いて、図7の平面図に示すような複数枚の電池セル701を積層した電池セル積層体で電極端子702と溶接する際、図8の斜視図に示すように、各バスバー740を電池セル701の電極端子702上に配置した状態で、治具JGを用いてバスバー740を上面から押圧して、さらに図9の断面図に示すようにレーザ光を走査させてバスバー740と電極端子702を溶接する。しかしながら、この構成では、図10の拡大平面図に示すように、円形状のレーザ溶接パターンLPの周囲に、治具JGで押圧する押圧領域PAを設ける必要があり、この分だけバスバー740の面積を大きくしなければならず、小型化の妨げとなる。バスバーのサイズを大きくすることなく、上述したレーザ溶接を行おうとすれば、治具や絶縁壁の配置スペースの関係上、溶接可能な面積が狭くなり、バスバーの溶接強度を向上させることの妨げとなる。
 そこで本実施の形態においては、図6の平面図に示すように、薄肉領域61を円形でなく、電池セル1の積層方向、図において横方向に長くして、逆に縦方向に短くした楕円形状に形成している。さらに、溶接時にバスバー40を押圧する治具JG’の押圧領域を、左右すなわち電池セル1の積層方向においては排除し、薄肉領域61を挟む上下方向のみとした(図11の斜視図参照)。これにより、治具を配置していたスペースを、溶接に利用できるようになり、その分だけ接合強度を増すことが可能となる。また、比較的大きな寸法の治具を用いることができ、確実にバスバーを電極端子に向けて付勢することが可能となる。この結果、バスバーの左右方向を広く確保する必要をなくし、バスバーの小型化にも寄与できる。
(開口窓62の偏心配置)
 薄肉領域61に開口窓62を設けたことで、薄肉領域61を上下方向、すなわち楕円形状の短辺方向に概ね二分したことになる。ここで、開口窓62を薄肉領域61に設ける位置は、図12の平面図に示す例では、楕円形状の短辺方向、いいかえると電池セル1の積層方向と交差する方向(図において上下方向)における薄肉領域61のほぼ中央としている。ただ、好ましくは、図6の変形例に示すように、開口窓62を、短辺方向において、第一接続折曲領域42から遠ざかる方向に偏心させて設けることが好ましい。このようにすることで、レーザ光を走査させるレーザ溶接パターンLPの面積を、第一接続折曲領域42側でより広く確保することができる。上述の通り、バスバー40は連結部49の変形でもって、第一接続部41と第二接続部51との相対的な位置ずれを吸収している。第一接続部41に着目すると、第一接続折曲領域42を介して第一折曲部43と連続されている。ここで、隣接する電池セル1間で相対的な位置ずれが生じ、電極端子2の位置が変位すると、第一接続折曲領域42で折曲される等して、変位分を吸収しようとする。いいかえると、第一接続折曲領域42で折曲が生じる。このような第一接続折曲領域42の折曲は、第一接続部41が電極端子2の接合面2Bから剥離される方向に働く。いいかえると、第一接続部41の接合領域である薄肉領域61は、第一接続折曲領域42に近い側に、より応力が作用する傾向にあるということができる。そこで、このような応力が作用しやすい部位をより強固に溶接するよう、薄肉領域61の内、第一接続折曲領域42に近い側で広い面積にて溶接されるよう、開口窓62を第一接続折曲領域42から遠ざける方向に偏心させている。この結果、肉薄領域の楕円形状の長辺側の上下の肉薄領域は、第一接続折曲領域42と近い側の方が、遠い側よりも広くなり、広い面積で連続的にレーザ溶接が行われて、より強い接合強度を発揮し易くなり、この部分での剥離や破断等を回避でき、レーザ溶接の信頼性の向上に寄与しうる。
 また、上記の観点から薄肉領域61の楕円形状は、第一接続折曲領域42側に、直線状の領域を設けることが好ましい。図10に示す比較例の円形の薄肉領域761の場合、上述のように第一接続部41を剥離する方向に応力が働く。この場合、第一接続折曲領域42と最も近い点CPに応力が集中することとなる。一点に応力が集中すると、破断等の可能性が高くなる。そこで、図6、図12等に示すように、第一接続折曲領域42と近い側を直線状とすることで、応力を点でなく線で受けることができ、耐性を高めることが可能となって信頼性向上に寄与しうる。このような観点から、薄肉領域61の楕円形状は、長辺側を直線状としたトラック形状とすることが好ましい。あるいは、図13の変形例に示すように、第一接続折曲領域42に近い側のみを直線状とした楕円形状としてもよい。あるいはまた、後述する図17等に示すように、面取りした長方形に近い形状等としてもよい。このような形状も、本明細書においては楕円形状に含める意味で使用する。また、応力集中の観点では、必ずしも接合部を楕円形状に限る必要はない。剥離する方向に対して直交する向きに直線状の接合部が形成されていれば、バスバーに大きな力が加わった際にバスバーの破断を防止することができる。従って、例えば図13、図16等に図示する他の実施形態のように、薄肉領域61の長径方向に沿って延在する複数の直線状接合部を形成するようにレーザ光を走査させてもよい。なお、上述のとおり、第一接続折曲領域42に近い側に応力が集中するため、第一接続折曲領域42に近い側の直線状接合部が形成性される範囲は、第一接続折曲領域42に遠い側の直線状接合部が形成される範囲よりも広くなるように構成することが好ましい。
 以上の通り、連結部49側(第一接続折曲領域42に近い側)が短径方向となる楕円状に楕円接合部を形成する、あるいは、連結部49側に直線状接合部を形成することで、第一接続部41を剥離する方向に働く応力に対して、接合強度を高めることができる。接合強度を向上できることで、バスバーを安価な金属板で構成することが可能となる。従来よりレーザ溶接に用いるバスバーには、接合強度の信頼性の観点からクラッド材が用いられてきた。近年、電池セルとして、高容量のリチウムイオン二次電池が普及しているところ、このようなリチウムイオン二次電池においては、正極にアルミニウム、負極に銅を使用するものが一般的である。このようなリチウムイオン二次電池同士をバスバーで直列に接続する場合、一方のリチウムイオン二次電池ではアルミニウム製の正極を、他方のリチウムイオン二次電池では銅製の負極を、それぞれ接続することが必要となって、正極側と負極側で金属材量が異なることになる。しかしながら、レーザ溶接でこのような異種金属同士を接合する際、金属間化合物が生成され、接続部分の機械強度が脆くなるという問題があった。これを回避するため、バスバーに銅板とアルミニウム板を特殊な圧延加工で接続したクラッド材を用いることが行われている。このクラッド材をバスバーとして用いることで、正極はアルミニウム同士、負極は銅同士となるため、金属間化合物の生成を回避でき、信頼性の高いレーザ溶接が得られる。しかしながら、クラッド材のバスバーは高価になるという課題があった。これに対して、上述の通り治具JG’を工夫して、図11に示すように電池セルの積層方向には治具を配置しないようにすることで、その分だけ溶接可能な薄肉領域を増やし、レーザ溶接の面積を大きくすることで接合強度を確保している。この結果、クラッド材を使用せずとも、一の金属板のみで構成したバスバーを利用可能として、コストの大幅な削減が可能となる。この例では、バスバーを安価なアルミニウム製としているが、銅製とすることもできる。
 さらに、必要に応じて電極端子の表面にめっきを施してもよい。特に、異種金属間接合となる負極側の銅製の電極端子を、アルミニウム製のバスバーと接合しようとすると、電位差によって局部電池が形成され、ガルバニック腐食(異種金属接触腐食)が生じ、強度が低下したり、電気抵抗が劣化する可能性があった。そこで、銅製の負極側電極端子の表面にニッケルめっきを施すことで、腐食防止効果を高めることができる。
 さらに、ニッケルめっきにより、レーザ溶接を行い易くできる利点も得られる。銅製の電極端子は、光沢があるためレーザ光を照射すると表面で反射されて加熱、溶融が進み難いという問題がある。これに対してニッケルめっきを表面に施すことで、ニッケルと銅との融点の差により、ニッケルが先に溶融されることで、銅が溶融され易くなる。この結果、銅表面の光沢が失われて、レーザ光が反射されずに吸収される成分が多くなり、溶融が促進される結果、レーザ溶接をスムーズに進行させることが可能となる。
(電源装置の製造方法)
 ここで、電源装置の製造方法として、バスバー40を電極端子2にレーザ溶接する方法について説明する。まず、正負の電極端子2を一面に備える電池セル1を、複数枚積層した電池セル積層体を用意する。そして、隣接する電池セル1の電極端子2同士の上に、バスバー40を、電極端子2に対して位置決めして配置する。さらに、肉薄領域にレーザ光を走査させて、バスバー40と電極端子2とを溶接して接合する。
(レーザ溶接パターンLP)
 次に、図6に示した楕円形状の薄肉領域61に対して、レーザ光を照射する走査パターン、すなわちレーザ溶接パターンLPの例を、図14の平面図に示す。この図において太線で示すように、開口窓62を薄肉領域61のほぼ中央に形成した例においては、レーザ光を開口窓62の周囲を幾重にも囲むように楕円状に走査させる。これにより、電極端子2の端子台とバスバー40とを楕円形状に接合する楕円接合部が形成される。
 また、図12の平面図に示すように、第一接続折曲領域42側を広く確保するように開口窓62を下側に偏心させた構成においては、図15の拡大平面図に示すように、開口窓62の周囲でレーザ光を回転させるように円弧状に走査させることに加えて、上側の広い領域は、横方向に往復させるように走査させて、効率良くレーザ光を走査させることが可能となる。レーザ光を走査させる順序としては、最初に開口窓62の周囲を内側から外側に向かって渦巻き状に走査させ、所定の幅の環状に走査し終えた後、そのまま開口窓62の上側で水平方向に直線状の往復走査を行い、往復移動の端縁に至ると下から上に向かって移動させて、往復走査を繰り返す。あるいは、端縁での移動に代えて、ジグザグ状に走査してもよい。
 以上の例では、開口窓62の左右、すなわち電池セル1の積層方向における開口窓62と薄肉領域61との間にもレーザ光を走査させて、レーザ溶接される接合面積を確保している。この構成により、接合面積を増やして接合強度を高めている。ただ、本発明はこの構成に限らず、開口窓の側面をレーザ溶接しないで、開口窓の上下のみを溶接するよう構成することもできる。特に、バスバーを一層小型化した結果、開口窓の側面に、薄肉領域61が殆どないような場合や、レーザ光の走査精度等の関係から、正確なレーザ光の走査制御が困難な場合等には、このような部位へのレーザ光走査を省略して、作業工程を簡略化しタクトタイムの短縮を図ることもできる。このような例を、変形例として図16、図17に示す。図17の例では、開口窓62の上下で、レーザ光を水平方向に往復走査させてレーザ溶接を行っている。特に、薄肉領域61が円形よりも矩形状に近いような形状においては、このような走査パターンも有効である。あるいは、図17に示すように、開口窓62の上下で渦巻き状にレーザ光を走査させて、これらの領域を埋めるようにレーザ溶接してもよい。
 なお、上述の通り薄肉領域は電極端子とレーザ溶接するための領域であるが、薄肉領域のすべてを溶接する必要はなく、薄肉領域の一部を溶接しない状態としてもよい。レーザ光の走査速度や走査精度、要求される接続強度等に応じて、薄肉領域の必要な面積をレーザ溶接できれば足り、このような態様も本願発明の範囲内とする。
 以上の電源装置は、車載用の電源として利用できる。電源装置を搭載する車両としては、エンジンとモータの両方で走行するハイブリッド車やプラグインハイブリッド車、あるいはモータのみで走行する電気自動車等の電動車両が利用でき、これらの車両の電源として使用される。
(ハイブリッド車用電源装置)
 図18に、エンジンとモータの両方で走行するハイブリッド車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両HVを走行させるエンジン96及び走行用のモータ93と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
(電気自動車用電源装置)
 また図19に、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両EVを走行させる走行用のモータ93と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
 本発明に係る電源装置及びこれを用いた車両、バスバー並びに電源装置の製造方法は、EV走行モードとHEV走行モードとを切り替え可能なプラグイン式ハイブリッド電気自動車やハイブリッド式電気自動車、電気自動車等の電源装置として好適に利用できる。またコンピュータサーバのラックに搭載可能なバックアップ電源装置、携帯電話等の無線基地局用のバックアップ電源装置、家庭内用、工場用の蓄電用電源、街路灯の電源等、太陽電池と組み合わせた蓄電装置、信号機等のバックアップ電源用等の用途にも適宜利用できる。
 1…電池セル2…電極端子2A…突出部2B…接合面11…絶縁材12…封口板13…固定部品14…エンドプレート15…締結部材16…電池ブロック18…絶縁セパレータ20…バスバーホルダ20A…ホルダ本体20B…カバープレート40…バスバー41…第一接続部42…第一接続折曲領域43…第一折曲部44…第一中間折曲領域45…第一中間部46…第三中間折曲領域47…第三折曲部48…切り欠き凹部49…連結部51…第二接続部52…第二接続折曲領域53…第二折曲部54…第二中間折曲領域55…第二中間部56…第四中間折曲領域58…接続穴61…薄肉領域62…開口窓63…幅広領域93…モータ94…発電機95…DC/ACインバータ96…エンジン100…電源装置501、701…電池セル502、702…電極端子514…エンドプレート515…バインドバー518…絶縁セパレータ720…バスバーホルダ540、740…バスバー761…薄肉領域599…電池積層体LP…レーザ溶接パターンPA…押圧領域JG、JG’…治具HV…ハイブリッド車EV…電気自動車

Claims (14)

  1.  隣接して積層される一対の電池セルを含む電池セル積層体であって、それぞれの電池セルが電極端子を該電池セル積層体の一面に有している、該電池セル積層体と、
     前記一対の電池セルを電気接続するバスバーと、
     前記一対の電池セルのうちの一方の電池セルの電極端子と前記バスバーとを接合する接合部であって、前記電極端子と前記バスバーとを楕円形状に接合する楕円接合部を含んでいる、該接合部と、
     を備える電源装置。
  2.  請求項1に記載の電源装置において、
     前記バスバーに接合される電極端子は、接合面を有する端子台を含んでおり、
     前記バスバーは、前記接合面に重なるように配置されており、
     前記接合部は、前記端子台と前記バスバーの間に位置している電源装置。
  3.  請求項2に記載の電源装置において、
     前記バスバーは、前記端子台の接合面の一部を露出する開口窓を有している電源装置。
  4.  請求項3に記載の電源装置において、
     前記バスバーは、他の領域よりも部分的に肉厚を薄くした薄肉領域を含んでおり、前記薄肉領域が前記開口窓を囲う楕円形状に形成される電源装置。
  5.  請求項1~4のいずれかに記載の電源装置において、
     前記バスバーは、前記接合部によって前記電極端子と接合される領域を有する接続部と、前記接続部に連結される連結部と、含んでおり、
     前記楕円接合部は、前記連結部側が短径方向となる楕円形状である電源装置。
  6.  請求項5に記載の電源装置において、
     前記接合部は、さらに、前記電極端子と前記バスバーとを直線状に接合する直線接合部を含んでおり、前記直線接合部は、前記開口窓に対して連結部側に設けられてなる電源装置。
  7.  請求項5又は6に記載の電源装置において、
     前記連結部は、平面視においてU字状に形成されてなる折曲部を含んでいる電源装置。
  8.  隣接して積層される一対の電池セルを含む電池セル積層体であって、それぞれの電池セルが電極端子を該電池セル積層体の一面に有しており、かつ、前記電極端子が接合面を有する端子台を含んでいる、該電池セル積層体と、
     前記一対の電池セルを電気接続するバスバーであって、前記接合面に重なるように配置されており、かつ、前記端子台の接合面の一部を露出する開口窓を有している、該バスバーと、
     前記一対の電池セルのうちの一方の電池セルの電極端子と前記バスバーとを接合する接合部であって、前記電極端子と前記バスバーとを直線形状に接合する複数の直線接合部を含んでおり、前記複数の直線接合部の間に前記開口窓が位置している、該接合部と、
     を備える電源装置。
  9.  請求項8に記載の電源装置において、
     前記バスバーは、他の領域よりも部分的に肉厚を薄くした薄肉領域を含んでおり、前記薄肉領域が前記開口窓を囲う楕円形状に形成される電源装置。
  10.  請求項8又は9のいずれかに記載の電源装置において、
     前記バスバーは、前記接合部によって前記電極端子と接合される領域を有する接続部と、前記接続部に連結される連結部と、含んでおり、
     前記複数の直線接合部は、前記開口窓に対して前記連結部側に位置する直線接合部と、反対側に位置する直線接合部とを含んでおり、
     前記連結部側に位置する直線接合部が形成される範囲は、前記反対側に位置する直線接合部が形成される範囲よりも広い電源装置。
  11.  請求項10に記載の電源装置において、
     前記連結部は、平面視においてU字状に形成されてなる折曲部を含んでいる電源装置。
  12.  請求項1~11に記載の電源装置を備える車両。
  13.  電池セルの電極端子を接続するためのバスバーであって、
     少なくとも一部に、他の領域よりも部分的に肉厚を薄くした薄肉領域を設けており、
     かつ前記薄肉領域に、部分的に開口された開口窓を形成しており、
     前記薄肉領域を、前記電池セルの積層方向に長い楕円形状に形成しており、
     前記開口窓を、前記楕円形状の長辺に沿う方向に延長させてなるバスバー。
  14.  電極端子を有する一対の電池セルを電気接続する電気接続方法において、
     それぞれの電極端子が近接する姿勢で前記一対の電池を隣接して配置する工程と、
     長孔形状の開口窓と、前記開口窓を囲い、他の領域よりも部分的に肉厚を薄い薄肉領域と、を有するバスバーを準備する工程と、
     前記開口窓に前記電池セルの電極端子の一部を挿通し、前記バスバーを位置決めする工程と、
     前記薄肉領域が前記電極端子に重なるように、前記バスバーを前記電極端子に載置する工程と、
     前記バスバーを押圧する治具を用いて、前記バスバーを前記電極端子に向けて付勢する工程と、
     前記薄肉領域において、楕円状にレーザ光を走査させて、前記バスバーと前記電極端子を溶接して接合する工程と、を含む電池セルの電気接続方法。
PCT/JP2017/000712 2016-01-29 2017-01-12 電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法 WO2017130706A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017563786A JP6910965B2 (ja) 2016-01-29 2017-01-12 電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法
CN201780008691.1A CN108604658B (zh) 2016-01-29 2017-01-12 电源装置、车辆、汇流条以及电池单元的电连接方法
US16/071,426 US11289773B2 (en) 2016-01-29 2017-01-12 Power supply device, vehicle using same, bus bar, and electrical connection method for battery cell using same bus bar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016616 2016-01-29
JP2016-016616 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130706A1 true WO2017130706A1 (ja) 2017-08-03

Family

ID=59398170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000712 WO2017130706A1 (ja) 2016-01-29 2017-01-12 電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法

Country Status (4)

Country Link
US (1) US11289773B2 (ja)
JP (1) JP6910965B2 (ja)
CN (2) CN113972446A (ja)
WO (1) WO2017130706A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108504869A (zh) * 2018-06-04 2018-09-07 襄阳远锐资源工程技术有限公司 一种用于铅酸蓄电池的汇流排的精细拆解装置
JP2019087434A (ja) * 2017-11-08 2019-06-06 株式会社オートネットワーク技術研究所 バスバーモジュール及びバスバー
WO2019124107A1 (ja) * 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 バスバー及び電池積層体
JP2019160727A (ja) * 2018-03-16 2019-09-19 株式会社Gsユアサ 蓄電装置
WO2019234834A1 (ja) * 2018-06-05 2019-12-12 株式会社 東芝 接続構造及び組電池
WO2020026964A1 (ja) * 2018-07-31 2020-02-06 三洋電機株式会社 電源装置及びこれを備える車両並びに緩衝体
WO2020105502A1 (ja) * 2018-11-20 2020-05-28 パナソニックIpマネジメント株式会社 蓄電モジュール
JP2021502900A (ja) * 2018-06-29 2021-02-04 エルジー・ケム・リミテッド 電極リードをバスバーに密着させる自動加圧ジグ装置
CN112913071A (zh) * 2018-09-19 2021-06-04 帝威尼梅吉克股份公司 含外覆或外包材料接触板的电池模块
WO2022207872A1 (en) * 2021-03-31 2022-10-06 Jaguar Land Rover Limited Methods for welding components of battery modules
WO2023013210A1 (ja) * 2021-08-05 2023-02-09 株式会社村田製作所 電池パック、電池パックの製造方法、電動車両及び電動工具
JP2023023709A (ja) * 2021-08-06 2023-02-16 矢崎総業株式会社 バスバ
JP7486273B2 (ja) 2021-09-07 2024-05-17 プライムアースEvエナジー株式会社 電池モジュール

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095609B2 (ja) * 2019-01-24 2022-07-05 株式会社デンソー 電力変換器とその製造方法
JP2022169375A (ja) * 2021-04-27 2022-11-09 トヨタ自動車株式会社 組電池とその製造方法
US11471975B1 (en) * 2021-06-03 2022-10-18 Corelase Oy Spiral laser welding methods for joining metal
DE102022204275A1 (de) 2022-05-02 2023-06-07 Vitesco Technologies Germany Gmbh Stromtragende Leistungselektronikanbindungsvorrichtung und Verfahren zum Herstellen einer derartigen Leistungselektronikanbindungsvorrichtung
US20230387554A1 (en) * 2022-05-31 2023-11-30 Apple Inc. Battery pack bus systems
DE202022103901U1 (de) * 2022-06-10 2023-09-28 Diehl Advanced Mobility GmbH Zellverbinder für einen Energiespeicher sowie Energiespeicher
DE202022103900U1 (de) * 2022-06-10 2023-09-28 Diehl Advanced Mobility GmbH Zellverbinder für ein Zellkontaktierungssystem sowie Energiespeicher
WO2024000071A1 (en) * 2022-06-28 2024-01-04 Litens Automotive Partnership Cell biasing methods for a battery
JP2024060681A (ja) * 2022-10-20 2024-05-07 プライムプラネットエナジー&ソリューションズ株式会社 電池モジュールおよびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087735A (ja) * 2007-09-28 2009-04-23 Toshiba Corp 端子間接続装置
JP2013145739A (ja) * 2011-12-16 2013-07-25 Lithium Energy Japan:Kk 蓄電装置、該蓄電装置の製造方法及び該蓄電装置に用いられるバスバー
WO2014050329A1 (ja) * 2012-09-27 2014-04-03 株式会社Gsユアサ 蓄電装置及び溶接方法
JP2015095402A (ja) * 2013-11-13 2015-05-18 株式会社豊田自動織機 接続構造及び蓄電モジュール

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696809A (ja) 1992-09-14 1994-04-08 Matsushita Electric Works Ltd 蓄電池間接続用短絡金具
JP2009231145A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 二次電池
CN102171858A (zh) * 2008-11-07 2011-08-31 三菱重工业株式会社 二次电池用汇流条和二次电池模块
US8785029B2 (en) * 2010-12-28 2014-07-22 Neomax Materials Co., Ltd. Connection plate for battery terminals and method for manufacturing connection plate for battery terminals
JP5965396B2 (ja) 2011-06-02 2016-08-03 株式会社日立金属ネオマテリアル 電池用負極端子および電池用負極端子の製造方法
CN103165837B (zh) * 2011-12-16 2017-12-22 株式会社杰士汤浅国际 蓄电装置及其制造方法以及该蓄电装置中使用的汇流条
US9553294B2 (en) 2011-12-16 2017-01-24 Gs Yuasa International Ltd. Electric storage device, manufacturing method of electric storage device, and bus bar used for electric storage device
WO2014064888A1 (ja) * 2012-10-26 2014-05-01 三洋電機株式会社 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法
JP6034881B2 (ja) * 2013-01-04 2016-11-30 日立オートモティブシステムズ株式会社 組電池
KR20150031093A (ko) * 2013-09-13 2015-03-23 삼성에스디아이 주식회사 이차전지모듈
JP2015099759A (ja) 2013-11-20 2015-05-28 株式会社東芝 組電池用バスバーおよび組電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087735A (ja) * 2007-09-28 2009-04-23 Toshiba Corp 端子間接続装置
JP2013145739A (ja) * 2011-12-16 2013-07-25 Lithium Energy Japan:Kk 蓄電装置、該蓄電装置の製造方法及び該蓄電装置に用いられるバスバー
WO2014050329A1 (ja) * 2012-09-27 2014-04-03 株式会社Gsユアサ 蓄電装置及び溶接方法
JP2015095402A (ja) * 2013-11-13 2015-05-18 株式会社豊田自動織機 接続構造及び蓄電モジュール

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087434A (ja) * 2017-11-08 2019-06-06 株式会社オートネットワーク技術研究所 バスバーモジュール及びバスバー
JP7087348B2 (ja) 2017-11-08 2022-06-21 株式会社オートネットワーク技術研究所 バスバーモジュール及びバスバー
CN111033808B (zh) * 2017-12-19 2023-04-14 松下知识产权经营株式会社 电池层叠体
WO2019124107A1 (ja) * 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 バスバー及び電池積層体
JP7186366B2 (ja) 2017-12-19 2022-12-09 パナソニックIpマネジメント株式会社 電池積層体
CN111033808A (zh) * 2017-12-19 2020-04-17 松下知识产权经营株式会社 汇流条以及电池层叠体
US11677114B2 (en) 2017-12-19 2023-06-13 Panasonic Intellectual Property Management Co., Ltd. Busbar and battery laminate
JPWO2019124107A1 (ja) * 2017-12-19 2020-10-22 パナソニックIpマネジメント株式会社 バスバー及び電池積層体
JP2019160727A (ja) * 2018-03-16 2019-09-19 株式会社Gsユアサ 蓄電装置
JP7205068B2 (ja) 2018-03-16 2023-01-17 株式会社Gsユアサ 蓄電装置
CN108504869A (zh) * 2018-06-04 2018-09-07 襄阳远锐资源工程技术有限公司 一种用于铅酸蓄电池的汇流排的精细拆解装置
CN108504869B (zh) * 2018-06-04 2023-12-26 襄阳远锐资源工程技术有限公司 一种用于铅酸蓄电池的汇流排的精细拆解装置
WO2019234834A1 (ja) * 2018-06-05 2019-12-12 株式会社 東芝 接続構造及び組電池
JP7049549B2 (ja) 2018-06-29 2022-04-07 エルジー エナジー ソリューション リミテッド 電極リードをバスバーに密着させる自動加圧ジグ装置
JP2021502900A (ja) * 2018-06-29 2021-02-04 エルジー・ケム・リミテッド 電極リードをバスバーに密着させる自動加圧ジグ装置
JPWO2020026964A1 (ja) * 2018-07-31 2021-08-05 三洋電機株式会社 電源装置及びこれを備える車両並びに緩衝体
WO2020026964A1 (ja) * 2018-07-31 2020-02-06 三洋電機株式会社 電源装置及びこれを備える車両並びに緩衝体
JP7276894B2 (ja) 2018-07-31 2023-05-18 三洋電機株式会社 電源装置及びこれを備える車両並びに緩衝体
CN112913071A (zh) * 2018-09-19 2021-06-04 帝威尼梅吉克股份公司 含外覆或外包材料接触板的电池模块
JPWO2020105502A1 (ja) * 2018-11-20 2021-10-07 パナソニックIpマネジメント株式会社 蓄電モジュール
WO2020105502A1 (ja) * 2018-11-20 2020-05-28 パナソニックIpマネジメント株式会社 蓄電モジュール
JP7407424B2 (ja) 2018-11-20 2024-01-04 パナソニックIpマネジメント株式会社 蓄電モジュール
US11990646B2 (en) 2018-11-20 2024-05-21 Panasonic Intellectual Property Management Co., Ltd. Power storage module
WO2022207872A1 (en) * 2021-03-31 2022-10-06 Jaguar Land Rover Limited Methods for welding components of battery modules
WO2023013210A1 (ja) * 2021-08-05 2023-02-09 株式会社村田製作所 電池パック、電池パックの製造方法、電動車両及び電動工具
JP2023023709A (ja) * 2021-08-06 2023-02-16 矢崎総業株式会社 バスバ
JP7486273B2 (ja) 2021-09-07 2024-05-17 プライムアースEvエナジー株式会社 電池モジュール

Also Published As

Publication number Publication date
CN113972446A (zh) 2022-01-25
CN108604658B (zh) 2021-08-24
US20210210821A1 (en) 2021-07-08
JPWO2017130706A1 (ja) 2018-11-22
US11289773B2 (en) 2022-03-29
JP6910965B2 (ja) 2021-07-28
CN108604658A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2017130706A1 (ja) 電源装置及びこれを用いた車両、バスバー並びにこのバスバーを用いた電池セルの電気接続方法
JP6907131B2 (ja) 電源装置及びこれを用いる車両並びにバスバー
JP6239523B2 (ja) 電源装置及び電源装置を備える電動車両並びに蓄電装置、電源装置の製造方法
JP6847834B2 (ja) 電源装置及び電池セル用のバスバー
JP4829587B2 (ja) 電気デバイス集合体及びその製造方法
US20090223940A1 (en) Different metallic thin plates welding method, bimetallic thin plates jointing element, electric device, and electric device assembly
EP3159953A1 (en) Battery pack tab welding method
KR102094210B1 (ko) 레이저 용접된 전극 탭과 전극리드를 구비한 전지셀
JP5157027B2 (ja) 電池
JP7414808B2 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置、電源装置用締結部材、電源装置用締結部材の製造方法、電源装置の製造方法
JP7348270B2 (ja) 電源装置と電源装置を備える電動車両及び蓄電装置
CN113646956A (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置、电源装置用紧固构件、电源装置的制造方法、电源装置用紧固构件的制造方法
CN113632305A (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置、电源装置用紧固构件、电源装置的制造方法、电源装置用紧固构件的制造方法
KR101301138B1 (ko) 전극단자의 레이저 용접 장치 및 용접 방법
WO2024058235A1 (ja) 蓄電装置
US20230015845A1 (en) Terminal component and method for manufacturing the same
JP7478136B2 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置、電源装置の製造方法
JP2022043692A (ja) 蓄電素子
CN115635180A (zh) 焊头、端子部件以及二次电池
CN117296199A (zh) 电池单元及其制造方法
JP2020149896A (ja) 蓄電素子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743937

Country of ref document: EP

Kind code of ref document: A1