WO2017126401A1 - 高分子化合物およびそれを用いた有機光電変換素子 - Google Patents

高分子化合物およびそれを用いた有機光電変換素子 Download PDF

Info

Publication number
WO2017126401A1
WO2017126401A1 PCT/JP2017/000751 JP2017000751W WO2017126401A1 WO 2017126401 A1 WO2017126401 A1 WO 2017126401A1 JP 2017000751 W JP2017000751 W JP 2017000751W WO 2017126401 A1 WO2017126401 A1 WO 2017126401A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituent
formula
polymer compound
Prior art date
Application number
PCT/JP2017/000751
Other languages
English (en)
French (fr)
Inventor
貴史 荒木
健一郎 大家
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US16/071,307 priority Critical patent/US20210139643A1/en
Priority to JP2017562533A priority patent/JP6927887B2/ja
Publication of WO2017126401A1 publication Critical patent/WO2017126401A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polymer compound and an organic photoelectric conversion element using the same.
  • An organic photoelectric conversion element containing a polymer compound in an active layer has been attracting attention in recent years because it may be inexpensively produced only by a coating process.
  • a high molecular compound contained in the active layer which an organic photoelectric conversion element has a high molecular compound which consists of a structural unit represented by Formula (A) and a structural unit represented by Formula (B), and a formula (A)
  • a polymer compound comprising a structural unit represented by formula (C) and a structural unit represented by formula (C) Patent Document 1.
  • the organic photoelectric conversion element having an active layer containing the polymer compound has been required to further improve the value of the fill factor.
  • An object of the present invention is to provide a polymer compound capable of producing an organic photoelectric conversion element having a large fill factor value and the organic photoelectric conversion element.
  • X 1 and X 2 each independently represent a sulfur atom or an oxygen atom.
  • Y 1 and Y 2 each independently represents C— (R 5 ) or a nitrogen atom.
  • R 1 , R 2 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms which may have a substituent, or 3 to 3 carbon atoms which may have a substituent.
  • R represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group or a monovalent heterocyclic group
  • X 3 and X 4 each independently represent a sulfur atom or an oxygen atom.
  • Y 3 and Y 4 each independently represents C— (R 6 ) or a nitrogen atom.
  • R 3 , R 4 and R 6 are each independently a hydrogen atom, an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted carbon atom having 3 to 3 carbon atoms.
  • R represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group or a monovalent heterocyclic group
  • R 1 and R 3 are the same, and R 2 and R 4 are not the same.
  • R 1 , R 2 , R 3 and R 4 are optionally substituted alkyl groups having 1 to 30 carbon atoms, wherein R 1 and R 2 are the same, and R The polymer compound according to [1] or [2], wherein 3 and R 4 are the same.
  • a group represented by —C ( ⁇ O) —R having 2 to 30 carbon atoms R represents a hydrogen atom, an alkyl group, an
  • X a and X b each independently represent a sulfur atom or an O oxygen atom.
  • R represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or a monovalent heterocyclic group
  • the structural unit represented by the formula (IV) represents a structural unit different from the structural unit represented by the formula (I) and the structural unit represented by the formula (II) of the polymer compound.
  • a composition comprising the polymer compound according to any one of [1] to [8] and an electron accepting compound.
  • An organic photoelectric conversion device having a first electrode, a second electrode, and an active layer provided between the first electrode and the second electrode, wherein the active layer includes [1] to The organic photoelectric conversion element containing the high molecular compound in any one of [8].
  • An organic thin-film solar cell including the organic photoelectric conversion element according to [12].
  • An organic photosensor comprising the organic photoelectric conversion device according to [12].
  • High molecular compound means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1,000 to 1,000,000.
  • the structural unit contained in the polymer compound is 100 mol% in total.
  • the polymer compound may be any kind of copolymer, and may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer.
  • “Structural unit” means a unit of structure possessed by a polymer compound.
  • the “hydrogen atom” may be a light hydrogen atom or a deuterium atom.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “alkyl group” may be either linear or branched and may have a substituent.
  • the number of carbon atoms in the straight chain alkyl group does not include the number of carbon atoms of the substituent, and is usually 1 to 30, preferably 3 to 30, and more preferably 12 to 19.
  • the number of carbon atoms of the branched alkyl group does not include the number of carbon atoms of the substituent, and is usually 3 to 30, and more preferably 12 to 19.
  • alkyl group which may have a substituent examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, and an isoamyl group.
  • substituted alkyl groups include trifluoromethyl, pentafluoroethyl, perfluorobutyl, perfluorohexyl, perfluorooctyl, 3-phenylpropyl, 3- (4-methylphenyl) propyl, Examples include 3- (3,5-di-n-hexylphenyl) propyl group and 6-ethyloxyhexyl group.
  • the “cycloalkyl group” may have a substituent.
  • the number of carbon atoms of the cycloalkyl group does not include the number of carbon atoms of the substituent, and is usually 3 to 30, and preferably 12 to 19.
  • Examples of the cycloalkyl group which may have a substituent include an unsubstituted cycloalkyl group such as a cyclohexyl group, and a hydrogen atom in these groups is substituted with an alkyl group, an alkoxy group, an aryl group, a fluorine atom, or the like.
  • Group (substituted cycloalkyl group) examples include a methylcyclohexyl group and an ethylcyclohexyl group.
  • alkenyl group may be linear or branched and may have a substituent.
  • the number of carbon atoms of the straight-chain alkenyl group does not include the number of carbon atoms of the substituent, and is usually 2 to 30, and preferably 12 to 19.
  • the number of carbon atoms of the branched alkenyl group does not include the number of carbon atoms of the substituent, and is usually 3 to 30, preferably 12 to 19.
  • the “cycloalkenyl group” may have a substituent.
  • the number of carbon atoms of the cycloalkenyl group does not include the number of carbon atoms of the substituent, and is usually 3 to 30, and preferably 12 to 19.
  • Examples of the cycloalkenyl group which may have a substituent include an unsubstituted cycloalkenyl group such as a cyclohexenyl group, and a hydrogen atom in these groups is substituted with an alkyl group, an alkoxy group, an aryl group, a fluorine atom, or the like.
  • Group (substituted cycloalkenyl group) examples include a methylcyclohexenyl group and an ethylcyclohexenyl group.
  • alkynyl group may be linear or branched and may have a substituent.
  • the number of carbon atoms of the alkynyl group does not include the number of carbon atoms of the substituent, and is usually 2 to 30, preferably 12 to 19.
  • the number of carbon atoms of the branched alkynyl group does not include the number of carbon atoms of the substituent, and is usually from 4 to 30, and preferably from 12 to 19.
  • the “cycloalkynyl group” may have a substituent.
  • the number of carbon atoms of the cycloalkynyl group does not include the number of carbon atoms of the substituent, and is usually from 4 to 30, and preferably from 12 to 19.
  • Examples of the cycloalkynyl group which may have a substituent include an unsubstituted cycloalkynyl group such as a cyclohexynyl group, and a hydrogen atom in these groups is substituted with an alkyl group, an alkoxy group, an aryl group, a fluorine atom, or the like.
  • Group (substituted cycloalkynyl group) examples include a methylcyclohexylinyl group and an ethylcyclohexylinyl group.
  • the “alkoxy group” may be linear or branched and may have a substituent.
  • the number of carbon atoms of the straight-chain alkoxy group does not include the number of carbon atoms of the substituent, and is usually 1 to 30, and preferably 12 to 19.
  • the number of carbon atoms of the branched alkoxy group does not include the number of carbon atoms of the substituent, and is usually 3 to 30, preferably 12 to 19.
  • the “cycloalkoxy group” may have a substituent.
  • the number of carbon atoms of the cycloalkoxy group does not include the number of carbon atoms of the substituent, and is usually from 3 to 30, and preferably from 12 to 19.
  • Examples of the cycloalkoxy group which may have a substituent include a cyclohexyloxy group.
  • alkylthio group may be either linear or branched and may have a substituent.
  • the number of carbon atoms of the linear alkylthio group is usually 1 to 30, preferably 12 to 19, not including the carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkylthio group does not include the number of carbon atoms of the substituent, and is usually from 3 to 30, and preferably from 12 to 19.
  • the “cycloalkylthio group” may have a substituent.
  • the number of carbon atoms of the cycloalkylthio group does not include the number of carbon atoms of the substituent, and is usually 3 to 30, and preferably 12 to 19.
  • Examples of the cycloalkylthio group which may have a substituent include a cyclohexylthio group.
  • the number of carbon atoms of the group represented by —C ( ⁇ O) —R (R represents H (hydrogen atom), alkyl group, aryl group, alkoxy group, aryloxy group, monovalent heterocyclic group). Is usually 2-30, preferably 12-19.
  • Examples of the group represented by —C ( ⁇ O) —R include a methylcarbonyl group, an ethylcarbonyl group, a propylcarbonyl group, a butylcarbonyl group, a pentylcarbonyl group, a hexylcarbonyl group, a heptylcarbonyl group, an octylcarbonyl group, Nonylcarbonyl group, decylcarbonyl group, undecylcarbonyl group, dodecylcarbonyl group, tetradecylcarbonyl group, 2-ethylhexylcarbonyl group, 3,7-dimethyloctylcarbonyl group, 3-heptyldodecylcarbonyl group, methoxycarbonyl group, ethoxycarbonyl Group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, t-butoxycarbony
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the aryl group may have a substituent.
  • the number of carbon atoms of the aryl group does not include the number of carbon atoms of the substituent, and is usually 6 to 30, and preferably 6 to 10.
  • the “aryloxy group” may have a substituent.
  • the number of carbon atoms of the aryloxy group does not include the number of carbon atoms of the substituent, and is usually from 6 to 30, and preferably from 6 to 10.
  • Examples of the aryloxy group which may have a substituent include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and those groups having an alkyl group, an alkoxy group, a fluorine atom or the like as a substituent.
  • the “arylthio group” may have a substituent.
  • the number of carbon atoms of the arylthio group is usually 6-30, preferably 6-10, not including the carbon atoms of the substituent.
  • P-valent heterocyclic group (p represents an integer of 1 or more) is a p-group of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom.
  • this is an atomic group obtained by removing p hydrogen atoms from an aromatic heterocyclic compound directly bonded to carbon atoms or heteroatoms constituting the ring.
  • a “p-valent aromatic heterocyclic group” is preferable.
  • the p-valent heterocyclic group may have a substituent.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2-30, preferably 2-6, not including the carbon atoms of the substituent.
  • Examples of the monovalent heterocyclic group which may have a substituent include, for example, thienyl, pyrrolyl, furyl, pyridyl, piperidyl, quinolyl, isoquinolyl, pyrimidinyl, triazinyl and substituted These groups having an alkyl group, an alkoxy group or the like as the group can be mentioned.
  • the polymer compound of the present invention has at least two types of structural units, specifically, a structural unit represented by the formula (I) and a structural unit represented by the formula (II).
  • the polymer compound of the present invention is preferably a conjugated polymer compound.
  • X 1 and X 2 each independently represent S (sulfur atom) or O (oxygen atom).
  • Y 1 and Y 2 each independently represent C— (R 5 ) or N (nitrogen atom).
  • R 1 , R 2 and R 5 are each independently H (hydrogen atom), an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted carbon atom.
  • An optionally substituted cycloalkylthio group having 3 to 30 carbon atoms A group represented by —C ( ⁇ O) —R having 2 to 30 carbon atoms, wherein R is H (hydrogen atom), an alkyl
  • X 3 and X 4 each independently represent S (sulfur atom) or O (oxygen atom).
  • Y 3 and Y 4 each independently represent C— (R 6 ) or N (nitrogen atom).
  • R 3 , R 4 and R 6 are each independently H (hydrogen atom), an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted carbon atom.
  • An optionally substituted cycloalkylthio group having 3 to 30 carbon atoms A group represented by —C ( ⁇ O) —R having 2 to 30 carbon atoms, wherein R is H (hydrogen atom), an alkyl
  • R 1 and R 3 are the same, and R 2 and R 4 are not the same. That is, R 1 and R 3 are the same, R 2 and R 4 are not the same, R 1 and R 4 are the same, and R 2 and R 3 are the same None.
  • Examples of the structural unit represented by the formula (I) include structural units represented by the following formulas (101) to (116).
  • R 1 and R 2 have the same meaning as described above.
  • X 1 and X 2 are preferably S (sulfur atom), Y 1 and Y 2 are preferably C—H.
  • the structural unit represented by the formula (I) is a structural unit represented by the formula (101), the formula (102), the formula (105), and the formula (106) in the formulas (101) to (116).
  • the structural unit represented by formula (101) and formula (102) is more preferable, and the structural unit represented by formula (101) is more preferable.
  • Examples of the structural unit represented by the formula (I) include structural units represented by the following formulas (201) to (212).
  • formula (201) to formula (212) X 1 , X 2 , Y 1 and Y 2 represent the same meaning as described above.
  • R 1 and R 2 are preferably alkyl groups.
  • Examples of the structural unit represented by the formula (I) in which R 1 and R 2 are alkyl groups include structural units represented by the formulas (301) to (315).
  • R 1 and R 2 are preferably the same in formula (I).
  • the structural units represented by the formulas (301) to (315) are preferable.
  • the number of carbon atoms of R 1 and R 2 is preferably 3 to 30, more preferably 4 to 20, and particularly preferably 12 to 19.
  • formula (302) to formula (315) are preferable, formula (302) to (314) are more preferable, and formula (304) to formula ( 314) is more preferred.
  • Examples of the structural unit represented by the formula (II) include structural units represented by the following formulas (401) to (416).
  • R 3 and R 4 represent the same meaning as described above.
  • X 3 and X 4 are preferably S (sulfur atom), Y 3 and Y 4 are preferably C—H.
  • the structural unit represented by the formula (II) is a structural unit represented by the formula (401), the formula (402), the formula (405), and the formula (406) in the formulas (401) to (416).
  • the structural unit represented by formula (401) and formula (402) is more preferred, and the structural unit represented by formula (401) is more preferred.
  • Examples of the structural unit represented by the formula (II) include structural units represented by the following formulas (501) to (512).
  • formula (501) to formula (512) X 3 , X 4 , Y 3 and Y 4 represent the same meaning as described above.
  • R 3 and R 4 in the formula (II) are alkyl groups.
  • Examples of the structural unit represented by the formula (II) in which R 3 and R 4 are alkyl groups include structural units represented by the formulas (601) to (615).
  • R 3 and R 4 are preferably the same, and the formulas (601) to Among the structural units represented by (615), structural units represented by the formulas (601) to (611) are preferable.
  • the number of carbon atoms of R 3 and R 4 is preferably 3 to 30, more preferably 4 to 20, and particularly preferably 12 to 19.
  • the formulas (602) to (615) are preferable, the formulas (602) to (614) are more preferable, and the formulas (604) to (614) 614) is more preferred.
  • the structural unit represented by the formula (I) is a structural unit represented by the formula (201), and the structural unit represented by the formula (II) is represented by the formula (605).
  • the structural unit represented by formula (611) or the polymer compound represented by formula (611) or the structural unit represented by formula (I) is represented by formula (305), and the structural unit represented by formula (II) is represented by formula It is preferable that it is a high molecular compound which is a structural unit represented by (611), the structural unit represented by Formula (I) is a structural unit represented by Formula (201), and is represented by Formula (II). More preferably, the structural unit is a polymer compound that is a structural unit represented by the formula (605).
  • the polymer compound having the structural unit represented by the formula (I) and the structural unit represented by the formula (II) is a value of a curve factor of a photoelectric conversion element produced using the polymer compound of the present invention. From the viewpoint of enhancing the ratio, it is preferable to further have a structural unit represented by formula (III). It is preferable that the structural unit represented by Formula (I) and Formula (II) and the structural unit represented by Formula (III) form a conjugate. Conjugation in the present invention means that unsaturated bonds and single bonds exist alternately and show an interaction. Here, the unsaturated bond refers to a double bond or a triple bond.
  • Examples of the substituent that the arylene group represented by —Ar— may have include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a cycloalkynyl group, an alkoxy group, a cycloalkoxy group, and an alkylthio group.
  • aryl group an aryloxy group, an arylthio group, a monovalent heterocyclic group or a halogen atom.
  • the arylene group optionally having a substituent represented by —Ar— is, for example, a phenylene group; a group in which two or more phenylene groups such as biphenyl-diyl group and terphenyl-diyl group are bonded; naphthalene -Condensed ring compound groups such as a diyl group, anthracene-diyl group, fluorene-diyl group, dihydrophenanthrene-diyl group, phenanthrene-diyl group, pyrene-diyl group. Specific examples of these groups include groups represented by formulas (701) to (724). These groups may have a substituent.
  • Examples of the divalent heterocyclic group optionally having a substituent represented by —Ar— include furan, thiophene, pyrrole, pyrroline, pyrrolidine, oxazole, isoxazole, thiazole, isothiazole, imidazole, and imidazoline.
  • substituents examples include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an alkylthio group, a cycloalkylthio group, an aryl group, a monovalent heterocyclic group, and a halogen atom.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2-30, preferably 2-18, not including the carbon atoms of the substituent.
  • the divalent heterocyclic group represented by —Ar— is preferably a divalent aromatic heterocyclic group. Specific examples of the divalent heterocyclic group include groups represented by formulas (725) to (779).
  • the structural unit represented by the formula (III) is preferably a structural unit represented by the formula (III-1) to the formula (III-18).
  • R a , R b , R c and R d may each independently have H (hydrogen atom), an alkyl group having 1 to 30 carbon atoms which may have a substituent, or a substituent.
  • Xa and Xb each independently represent S (sulfur atom) or O (oxygen atom).
  • R a to R d are H (hydrogen atom), an alkyl group having 1 to 30 carbon atoms which may have a substituent, or an alkoxy having 1 to 30 carbon atoms which may have a substituent.
  • a group and a halogen atom are preferable, and H (hydrogen atom), an optionally substituted alkyl group having 1 to 30 carbon atoms and a fluorine atom are more preferable.
  • the structural unit represented by the formula (III) is represented by the formula (III-1), the formula (III-4), the formula (III-15), the formula (III-17), or the formula (III-18).
  • the structural unit represented by formula (III-1) and formula (III-15) is more preferable.
  • Specific examples of the structural units represented by formula (III-1), formula (III-4), formula (III-15), and formula (III-18) include formula (III-1-1) to formula ( III-1-10), formula (III-4-1) to formula (III-4-10), formula (III-15-1) to formula (III-15-5) and formula (III-18-1) ) To structural units represented by formula (III-18-6).
  • Examples of the polymer compound having the structural unit represented by the formula (I), the structural unit represented by the formula (II), and the structural unit represented by the formula (III) include the following formula (I-II- III-1) to polymer compounds represented by the formula (I-II-III-7).
  • the following formulas (I-II-III-1) to (I-II-III-7) do not specify block copolymer, random copolymer and alternating copolymer, but increase the value of the fill factor From the viewpoint, a random copolymer is preferable.
  • X 1 , X 2 , X 3 , X 4 , Y 1 , Y 2 , Y 3 , Y 4 , R 1 , R 2 , R 3 , R 4 , X a , X b , R a and R b are each Represents the same meaning as above.
  • a plurality of X a , X b , R a and R b present in each formula may be the same or different.
  • X 5 and X 6 each independently represent S (sulfur atom) or O (oxygen atom).
  • Y 5 and Y 6 each independently represent C— (R 5 ) or N (nitrogen atom).
  • R 5 represents the same meaning as described above.
  • n1, n2, and n3 represent mol% of the total number of each structural unit when the total number of all the structural units contained in the polymer compound is 100 mol%.
  • n1 is usually 1 to 99
  • n2 is usually 1 to 99.
  • n1 is usually 1 to 98
  • n2 is usually 1 to 98
  • n3 is usually 1 to 98.
  • the polymer compound of the present invention includes a structural unit represented by the formula (III), from the viewpoint of increasing the value of the fill factor, the structural unit represented by the formula (I) or the structure represented by the formula (II) It is preferable that the unit is a copolymer in which the structural unit represented by the formula (III) is alternately bonded. That is, the structural units represented by the formula (I) are not directly bonded to each other, the structural units represented by the formula (II) are not directly bonded to each other, and the structural units represented by the formula (I) And the structural unit represented by the formula (II) is not directly bonded, and the structural unit represented by the formula (III) is preferably a copolymer that is not directly bonded.
  • the alternately bonded copolymer is preferably a polymer compound represented by the formula (I-II-III-1) to the formula (I-II-III-5), and the formula (I-II- III-1) or a polymer compound represented by formula (I-II-III-3) is more preferable.
  • polymer compound having the structural unit represented by the formula (I), the structural unit represented by the formula (II), and the structural unit represented by the formula (III) include those represented by the formula (801) A polymer compound represented by Formula (810) (where n1, n2, and n3 have the same meaning as described above).
  • the high molecular compounds represented by the formulas (801) to (807) and (809) are preferable, and the formulas (801), (803), (805), (807), and ( 809) is more preferable, and a polymer compound represented by Formula (801) and Formula (805) is more preferable.
  • the polymer compound of the present invention may have a structural unit represented by the formula (IV) in addition to the structural unit represented by the formula (I) and the structural unit represented by the formula (II).
  • X 5 and X 6 each independently represent S (sulfur atom) or O (oxygen atom).
  • Y 5 and Y 6 each independently represent C— (R 9 ) or N (nitrogen atom).
  • R 7 , R 8 and R 9 are each independently H (hydrogen atom), an optionally substituted alkyl group having 1 to 30 carbon atoms, or an optionally substituted carbon atom.
  • An optionally substituted cycloalkylthio group having 3 to 30 carbon atoms A group represented by —C ( ⁇ O) —R having 2 to 30 carbon atoms, wherein R is H (hydrogen atom), an alkyl
  • the structural unit represented by the formula (IV) represents a structural unit different from the structural unit represented by the formula (I) and the structural unit represented by the formula (II) of the polymer compound.
  • Specific examples of the molecular compound include polymer compounds represented by formula (811) and formula (812) (n1, n2, and n3 have the same meaning as described above).
  • the polystyrene equivalent weight average molecular weight of the polymer compound of the present invention is preferably from 3,000 to 10,000,000, more preferably from 8,000 to 5,000,000, and even more preferably from 10,000 to 100,000. If the weight average molecular weight is less than 3000, defects may occur in film formation during device fabrication, and if it exceeds 10000000, solubility in a solvent and applicability during device fabrication may be degraded.
  • the weight average molecular weight in the present invention means a weight average molecular weight in terms of polystyrene calculated using a standard sample of polystyrene using gel permeation chromatography (GPC).
  • the polymer compound of the present invention When the polymer compound of the present invention is used in an element, it is desirable that the solubility of the polymer compound in a solvent is high from the viewpoint of ease of element fabrication.
  • the polymer compound of the present invention preferably has a solubility capable of producing a solution containing 0.01% by weight (wt)% or more of the polymer compound, and a solution containing 0.1% by weight or more is produced. It is more preferable that it has a solubility capable of forming a solution containing 0.2 wt% or more.
  • the number average molecular weight in terms of polystyrene of the polymer compound of the present invention is preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • the number average molecular weight in the present invention means a number average molecular weight in terms of polystyrene calculated using gel permeation chromatography (GPC) and using a standard polystyrene sample.
  • the total number of the structural units represented by the formula (I) and the formula (II) is preferably 1 to 99 mol%, and preferably 2.5 to 97.5 mol%, based on the total number of all structural units contained in the polymer compound. It is more preferable that When the polymer compound has a structural unit represented by formula (I), a structural unit represented by formula (II), and a structural unit represented by formula (III), it is represented by formula (I).
  • the total number of structural units represented, the total number of structural units represented by formula (II), and the total number of structural units represented by formula (III) are all the structural units included in the polymer compound, respectively. It is preferably 1 to 98 mol%, more preferably 2.5 to 95.0 mol%, based on the total number of the above.
  • the polymer compound has a structural unit represented by formula (I), a structural unit represented by formula (II), and a structural unit represented by formula (IV), it is represented by formula (I).
  • the total number of structural units represented, the total number of structural units represented by formula (II), and the total number of structural units represented by formula (IV) are the sum of all the structural units included in the polymer compound, respectively.
  • the polymer compound is a structural unit represented by the formula (I), a structural unit represented by the formula (II), a structural unit represented by the formula (III), and a structure represented by the formula (IV).
  • the total number of structural units represented by formula (I), the total number of structural units represented by formula (II), the total number of structural units represented by formula (III), and The total number of structural units represented by the formula (IV) is preferably 1 to 97 mol% with respect to the total number of all the structural units contained in the polymer compound, and is preferably 2.5 to 92.5%. More preferably, it is mol%.
  • the polymer compound has a structural unit represented by formula (I), a structural unit represented by formula (II), and a structural unit represented by formula (III) (represented by formula (IV)
  • the total number of is preferably from 30 to 100 mol%, more preferably from 50 to 100 mol%, more preferably 100 mol%, based on the total number of all structural units contained in the polymer compound. More preferably.
  • the polymer compound is a structural unit represented by the formula (I), a structural unit represented by the formula (II), a structural unit represented by the formula (III), and a structure represented by the formula (IV).
  • the structural unit represented by the formula (I), the structural unit represented by the formula (II), the structural unit represented by the formula (III), and the formula (IV) ) Is preferably 30 to 100 mol%, more preferably 50 to 100 mol%, based on the total number of all structural units contained in the polymer compound. More preferably, it is 100 mol%.
  • the structure represented by the formula the total number of structural units represented by (I) (N I) the total number of structural units represented by the formula (I) of (N I) and formula (II) The ratio (N I / (N I + N II )) to the total number of units (N II ) is usually from 0.01 to 0.99.
  • the ratio (N III / (N I + N II )) to the total number of units (N II ) is usually from 0 to 49.
  • the ratio (N III / (N I + N II )) is preferably 0.5 to 2.0.
  • the total number of structural units represented by formula (I) of the total number of structural units represented by formula ( IV ) (N IV ) (N I ) and the structure represented by formula (II) The ratio (N IV / (N I + N II )) to the total number of units (N II ) is usually 0 to 49.
  • the ratio (N IV / (N I + N II )) is preferably 0.01 to 0.5.
  • the polymer compound of the present invention can exhibit high electron and / or hole transport properties, when an organic thin film containing the polymer compound is used in an element, it is generated by absorption of electrons, holes, or light injected from the electrode. Can be transported. Taking advantage of these characteristics, the polymer compound of the present invention can be suitably used for various electronic devices such as organic photoelectric conversion devices, organic thin film transistors, and organic electroluminescence devices.
  • the polymer compound of the present invention may be produced by any method. For example, after synthesizing a monomer having a functional group suitable for the polymerization reaction to be used, the monomer is dissolved in an organic solvent, if necessary. , And can be synthesized by polymerization using a known aryl coupling reaction using a catalyst, a ligand and the like. The synthesis of the monomer can be performed with reference to methods disclosed in, for example, JP-A-2006-182920, JP-A-2006-335933, and JP-A-2014-031364.
  • a solvent is usually used.
  • the solvent may be selected in consideration of the polymerization reaction used, the solubility of the monomer and polymer, and the like. Specifically, tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, and N, N-dimethylformamide, organic solvents such as a mixed solvent in which two or more of these solvents are mixed, organic A solvent having two phases of a solvent phase and an aqueous phase is exemplified.
  • the lower limit of the reaction temperature of the aryl coupling reaction is preferably ⁇ 100 ° C., more preferably ⁇ 20 ° C., and further preferably 0 ° C. from the viewpoint of reactivity.
  • the upper limit of the reaction temperature is preferably 200 ° C., more preferably 150 ° C., and still more preferably 120 ° C., from the viewpoint of monomer and compound stability.
  • the polymer compound of the present invention can be obtained by adding the reaction solution after completion of the reaction to lower alcohol such as methanol, filtering the deposited precipitate, and drying the obtained filtrate.
  • the purity of the obtained polymer compound is low, it can be purified by recrystallization, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
  • the polymer compound of the present invention When the polymer compound of the present invention is used for the production of an organic photoelectric conversion element, if a polymerization active group remains at the terminal of the polymer compound, characteristics such as durability of the organic photoelectric conversion element may be deteriorated. It is preferable to protect the terminal of the polymer compound with a stable group.
  • Examples of the stable group for protecting the terminal include an alkyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkoxy group, an aryl group, an arylamino group, and a monovalent heterocyclic group.
  • Examples of the arylamino group include a phenylamino group and a diphenylamino group.
  • Examples of the monovalent heterocyclic group include thienyl group, pyrrolyl group, furyl group, pyridyl group, quinolyl group, and isoquinolyl group.
  • the polymerization active group remaining at the terminal of the polymer compound may be replaced with a hydrogen atom instead of a stable group.
  • the stable group for protecting the terminal is a group imparting electron donating properties such as an arylamino group.
  • the polymer compound is a conjugated polymer compound
  • the end of a group having a conjugated bond in which the conjugated structure of the main chain of the polymer compound and the conjugated structure of a stable group protecting the end are continuous is also protected. It can preferably be used as a stable group.
  • the group include an aryl group and a monovalent heterocyclic group having aromaticity.
  • Examples of polymerization by aryl coupling reaction include polymerization by Suzuki coupling reaction, polymerization by Stille coupling reaction, polymerization by Yamamoto coupling reaction, and polymerization by Kumada-Tamao coupling reaction.
  • a polymerization method by a Stille coupling reaction a polymerization method by a Suzuki coupling reaction, and a polymerization method by a Yamamoto coupling reaction are preferable.
  • the method for polymerizing by Yamamoto coupling reaction is preferably a method for polymerizing by Yamamoto coupling reaction using a nickel zero-valent complex.
  • the manufacturing method which has a process with which two or more types of compounds represented by these are made to react in presence of a palladium catalyst and a base is mentioned.
  • a polymer compound containing the structural unit represented by the formula (I), the structural unit represented by the formula (II), and the structural unit represented by the formula (III) can be obtained.
  • Table two or more compounds represented by the formula (902), the compound E 2 is a structural unit represented by the formula (I) in the formula (902), and, E 2 is the formula (II) A compound that is a structural unit.
  • E 1 is preferably a structural unit represented by formula (III-1) to formula (III-18).
  • the total number of moles of two or more compounds represented by the formula (902) used for the reaction is represented by the formula (901). It is preferable that it is excessive with respect to the total number of moles of one or more compounds represented by When the total number of moles of two or more compounds represented by the formula (902) used in the reaction is 1 mole, the total number of moles of the one or more compounds represented by the formula (901) is 0.6 to 0.00.
  • the amount is preferably 99 mol, more preferably 0.7 to 0.95 mol.
  • the boric acid ester residue represents a group obtained by removing a hydroxyl group from a boric acid diester.
  • Specific examples of the boric acid ester residue and the borate salt residue include groups represented by the following formulae.
  • Me represents a methyl group
  • Et represents an ethyl group
  • M + represents a metal ion.
  • the metal ion include alkali metal ions such as lithium, sodium, potassium and cesium.
  • the halogen atom represented by T 1 and T 2 is preferably a bromine atom or an iodine atom, and more preferably a bromine atom, from the viewpoint of ease of synthesis of the polymer compound.
  • the method for carrying out the Suzuki coupling reaction includes a method in which a reaction is carried out in the presence of a base using a palladium catalyst as a catalyst in an arbitrary solvent.
  • Examples of the palladium catalyst used in the Suzuki coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst.
  • dichlorobis (triphenylphosphine) palladium, palladium acetate and tris (dibenzylideneacetone) dipalladium are preferred.
  • the addition amount of the palladium catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 mol to 0.5 mol with respect to 1 mol of the compound represented by the formula (901). Yes, preferably 0.0003 mol to 0.1 mol.
  • a phosphorus compound such as triphenylphosphine, tri (o-tolyl) phosphine or tri (o-methoxyphenyl) phosphine should be added as a ligand.
  • the addition amount of the ligand is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol to 10 mol, relative to 1 mol of the palladium catalyst. Is a mole.
  • Examples of the base used for the Suzuki coupling reaction include inorganic bases, organic bases, inorganic salts and the like.
  • examples of the inorganic base include potassium carbonate, sodium carbonate, barium hydroxide and potassium phosphate.
  • Examples of the organic base include triethylamine and tributylamine.
  • An example of the inorganic salt is cesium fluoride.
  • the addition amount of the base is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, more preferably 1 mol with respect to 1 mol of the compound represented by the formula (901). ⁇ 10 moles.
  • the Suzuki coupling reaction is usually performed in a solvent.
  • the solvent include N, N-dimethylformamide, toluene, dimethoxyethane, tetrahydrofuran, methylene chloride, 1,4-dioxane, N, N-dimethylacetamide, N, N-dimethylformamide, and two or more of these solvents.
  • examples thereof include organic solvents such as mixed solvents and solvents having two phases of an organic solvent phase and an aqueous phase. From the viewpoint of solubility of the polymer compound used in the present invention, toluene or tetrahydrofuran is preferable.
  • the solvent used for the Suzuki coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • Examples of the solvent having two phases of an organic solvent phase and an aqueous phase include a solvent having two phases of an aqueous phase and an organic solvent phase, which is obtained by adding an aqueous solution containing the base to the organic solvent.
  • an aqueous solution containing a base is usually added to the reaction solution for reaction.
  • phase transfer catalysts such as a quaternary ammonium salt, as needed.
  • the temperature at which the Suzuki coupling reaction is carried out is usually about 40 to 160 ° C., although it depends on the solvent. From the viewpoint of increasing the molecular weight of the polymer compound, 60 to 120 ° C. is preferable. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
  • the reaction time may end when the target degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 0.5 to 30 hours is efficient and preferable.
  • the Suzuki coupling reaction is performed in a reaction system in which the palladium catalyst is not deactivated under an inert atmosphere.
  • it is performed in a system sufficiently substituted with argon gas, nitrogen gas or the like.
  • the inside of the polymerization vessel (reaction system) is sufficiently substituted with nitrogen gas, and in this polymerization vessel, the compound represented by the formula (901), the compound represented by the formula (902), a palladium catalyst, Dichlorobis (triphenylphosphine) palladium (II) is charged, the inside of the polymerization vessel is sufficiently replaced with nitrogen gas, a solvent previously bubbled with nitrogen gas, for example, toluene, and nitrogen gas is added to the resulting solution.
  • a basic aqueous solution bubbled with, for example, an aqueous sodium carbonate solution the mixture is heated and heated, and polymerized, for example, at a reflux temperature for 8 hours while maintaining an inert atmosphere.
  • E 3 represents a structural unit represented by the formula (III).
  • Q 3 and Q 4 are each independently a group represented by —SnR e 3 (R e is an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 3 to 50 carbon atoms, or 6 carbon atoms. Represents an aryl group of ⁇ 60).
  • a production method having a step of reacting one or more compounds represented by the formula (902) with two or more compounds represented by the formula (902) in the presence of a palladium catalyst.
  • E 3 is preferably a structural unit represented by formula (III-1) to formula (III-18).
  • alkyl group having 1 to 50 carbon atoms represented by Re examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group 2-methylbutyl group, 1-methylbutyl group, hexyl group, isohexyl group, 3-methylpentyl group, 21-methylpentyl group, 1-methylpentyl group, heptyl group, octyl group, isooctyl group, 2-ethylhexyl group, nonyl Group, decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group and the like.
  • Examples of the cycloalkyl group having 3 to 50 carbon atoms represented by Re include a cyclopentyl group, a cyclohexyl group and an adamantyl group.
  • Examples of the aryl group having 6 to 60 carbon atoms represented by Re include a phenyl group and a naphthyl group.
  • the group represented by —SnR e 3 is preferably —SnMe 3 , —SnEt 3 , —SnBu 3 and —SnPh 3 , and —SnMe 3 , —SnEt 3 and SnBu 3 (Me represents a methyl group, Et Is more preferably an ethyl group, Bu is a butyl group, and Ph is a phenyl group.
  • the halogen atom represented by T 1 and T 2 is preferably a bromine atom or an iodine atom from the viewpoint of ease of synthesis of the polymer compound.
  • a method of performing the Stille coupling reaction a method of reacting in an arbitrary solvent in the presence of a palladium catalyst as a catalyst may be mentioned.
  • Examples of the palladium catalyst used in the Stille coupling reaction include a Pd (0) catalyst and a Pd (II) catalyst.
  • Specific examples include palladium [tetrakis (triphenylphosphine)], palladium acetates, dichlorobis (triphenylphosphine) palladium, palladium acetate, tris (dibenzylideneacetone) dipalladium, and bis (dibenzylideneacetone) palladium.
  • Palladium [tetrakis (triphenylphosphine)] and tris (dibenzylideneacetone) dipalladium are preferable from the viewpoints of easy reaction (polymerization) operation and reaction (polymerization) rate.
  • the addition amount of the palladium catalyst used in the Stille coupling reaction is not particularly limited as long as it is an effective amount as a catalyst, but is usually 0.0001 per 1 mol of the compound represented by the formula (902). Mol to 0.5 mol, preferably 0.0003 to 0.2 mol.
  • a ligand and a cocatalyst can be used as necessary.
  • the ligand include phosphorus compounds such as triphenylphosphine, tri (o-tolyl) phosphine, tri (o-methoxyphenyl) phosphine and tris (2-furyl) phosphine, and triphenylarsine and triphenoxyarsine.
  • Examples include arsenic compounds.
  • the cocatalyst include copper iodide, copper bromide, copper chloride, and copper (I) 2-thenoylate.
  • the amount of the ligand or cocatalyst added is usually 0.5 mol to 100 mol, preferably 0.9 mol to 20 mol, relative to 1 mol of the palladium catalyst. More preferably, it is 1 mol to 10 mol.
  • the Stille coupling reaction is usually performed in a solvent.
  • Solvents include N, N-dimethylformamide, N, N-dimethylacetamide, toluene, dimethoxyethane and tetrahydrofuran, organic solvents such as a mixed solvent in which two or more of these solvents are mixed, and two phases of an organic solvent phase and an aqueous phase. And the like. From the viewpoint of solubility of the polymer compound used in the present invention, toluene and tetrahydrofuran are preferred.
  • the solvent used for the Stille coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • the temperature at which the Stille coupling reaction is performed depends on the solvent, but is usually about 50 to 160 ° C., and 60 to 120 ° C. is preferable from the viewpoint of increasing the molecular weight of the polymer compound. Alternatively, the temperature may be raised to near the boiling point of the solvent and refluxed.
  • the time for carrying out the reaction may be the end point when the desired degree of polymerization is reached, but is usually about 0.1 to 200 hours. About 1 to 30 hours is efficient and preferable.
  • the Stille coupling reaction is performed in a reaction system in which the Pd (palladium) catalyst is not deactivated under an inert atmosphere.
  • the Pd (palladium) catalyst is not deactivated under an inert atmosphere.
  • it is performed in a system sufficiently substituted with argon gas, nitrogen gas or the like.
  • a compound represented by the formula (903), a compound represented by the formula (902) Charge the palladium catalyst, replace the inside of the polymerization vessel sufficiently with nitrogen gas, add a solvent previously bubbled with nitrogen gas, for example, toluene, add ligand and promoter as necessary, and then heat
  • the temperature is raised, for example, polymerization is carried out while maintaining an inert atmosphere at the reflux temperature for 8 hours.
  • Polymerization by Yamamoto coupling reaction uses a catalyst and a reducing agent, monomers having a halogen atom, monomers having a sulfonate group such as a trifluoromethanesulfonate group, or monomers having a halogen atom and a monomer having a sulfonate group Is a polymerization.
  • Catalysts include nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel.
  • nickel zero-valent complexes such as bis (cyclooctadiene) nickel and ligands such as bipyridyl, [bis (diphenylphosphino) ethane] nickel dichloride, [bis (diphenylphosphino) propane] nickel.
  • Examples include a catalyst comprising a nickel complex other than a nickel zero-valent complex such as dichloride and a ligand such as triphenylphosphine, diphenylphosphinopropane, tri (cyclohexyl) phosphine, and tri (tert-butyl) phosphine as necessary. .
  • Solvents used for the Yamamoto coupling reaction include tetrahydrofuran, toluene, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and mixed solvents in which two or more of these solvents are mixed.
  • the organic solvent is preferable.
  • the solvent used for the Yamamoto coupling reaction is preferably deoxygenated before the reaction in order to suppress side reactions.
  • Examples of the reducing agent include zinc and magnesium.
  • Polymerization by the Yamamoto coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system.
  • Polymerization by Kumada-Tamao coupling reaction Polymerization by Kumada-Tamao coupling reaction is carried out by using a compound having a magnesium halide group using a nickel catalyst such as [bis (diphenylphosphino) ethane] nickel dichloride and [bis (diphenylphosphino) propane] nickel dichloride. Polymerization in which a compound having a halogen atom is reacted.
  • the magnesium halide group is a group represented by —MgX (X represents a halogen atom).
  • the polymerization by the Kumada-Tamao coupling reaction may be performed using a dehydrated solvent in the reaction, may be performed in an inert atmosphere, or may be performed by adding a dehydrating agent to the reaction system.
  • the organic photoelectric conversion element of the present invention has a first electrode, a second electrode, and an active layer provided between the first electrode and the second electrode and containing the polymer compound of the present invention. .
  • the organic photoelectric conversion element of the present invention is an organic photoelectric conversion element having a first electrode, a second electrode, and an active layer provided between the first electrode and the second electrode, One of the electrode and the second electrode is transparent or translucent, the active layer has an electron donating compound and an electron accepting compound, and the polymer compound of the present invention is included as the electron donating compound. It is preferable that The organic photoelectric conversion element may have components other than the electrode and the active layer, and may include, for example, a substrate, a hole transport layer, an electron transport layer, and the like.
  • Examples of the organic photoelectric conversion element of the present invention include an organic photoelectric conversion element in which a substrate, a first electrode, a hole transport layer, an active layer, and a second electrode are provided in this order, and a first electrode, a positive electrode, An organic photoelectric conversion element in which a hole transport layer, an active layer, an electron transport layer, and a second electrode are provided in this order can be given.
  • the organic photoelectric conversion element manufactured using the polymer compound of the present invention is usually formed on a substrate.
  • the substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed.
  • the material for the substrate include glass, plastic, polymer film, and silicon.
  • the opposite electrode that is, the electrode far from the substrate
  • the transparent or translucent electrode material examples include a conductive metal oxide film and a translucent metal thin film.
  • indium oxide, zinc oxide, tin oxide, and their composite materials such as indium tin oxide (ITO), indium zinc oxide, etc., conductive materials, NESA, gold, platinum, silver, Copper is used, and ITO, indium / zinc / oxide, and tin oxide are preferable.
  • the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
  • an organic transparent conductive film such as polyaniline and its derivatives, polythiophene and its derivatives may be used.
  • One electrode may not be transparent, and as the electrode material of the electrode, a metal, a conductive polymer, or the like can be used.
  • the electrode material include metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, etc.
  • one or more alloys selected from the group consisting of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin.
  • Examples include alloys with metals, graphite, graphite intercalation compounds, polyaniline and derivatives thereof, and polythiophene and derivatives thereof.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the hole transport layer has a function of an electronic block. By providing the hole transport layer, a photoelectric conversion element showing higher photoelectric conversion efficiency can be obtained.
  • the hole transport layer includes, for example, PEDOT (poly-3,4-ethylenedioxythiophene).
  • the active layer may contain the polymer compound of the present invention alone or in combination of two or more.
  • compounds other than the polymer compound of the present invention can be mixed and used as the electron donating compound and / or the electron accepting compound in the active layer.
  • the electron-donating compound and the electron-accepting compound are relatively determined from the energy levels of these compounds.
  • the electron-donating compound in addition to the polymer compound of the present invention, for example, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, oligothiophene and derivatives thereof, polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, Examples thereof include polysiloxane derivatives having an aromatic amine residue in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof.
  • the electron-accepting compound in addition to the polymer compound of the present invention, for example, carbon materials, metal oxides such as titanium oxide, oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof Derivatives, anthraquinones and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof Derivatives, polyfluorenes and derivatives thereof, phenanthroline derivatives such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (basocuproin), fullerene, fullerene Conductors and the like, preferably, titanium oxide, carbon nanotube
  • fullerene and fullerene derivatives include C 60 , C 70 , C 76 , C 78 , C 84 and derivatives thereof.
  • the fullerene derivative represents a compound in which at least a part of fullerene is modified.
  • fullerene derivative examples include compounds represented by the formulas (1001) to (1004).
  • R x , R y and R z each represents an optionally substituted alkyl group having 1 to 50 carbon atoms and an optionally substituted carbon.
  • Examples of the monovalent heterocyclic group represented by R x , R y and R z include a thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a quinolyl group, and an isoquinolyl group.
  • Examples of the group having an ester structure represented by R x , R y, and R z include a group represented by the formula (1005).
  • R v has an optionally substituted alkyl group having 1 to 50 carbon atoms, an optionally substituted cycloalkyl group having 3 to 50 carbon atoms, and a substituent. Or an aryl group having 6 to 60 carbon atoms or a monovalent heterocyclic group having 2 to 30 carbon atoms which may have a substituent.
  • C60 fullerene derivative examples include compounds represented by formula (1006) to formula (1012).
  • C70 fullerene derivative examples include compounds represented by formulas (1013) to (1015).
  • fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM). , [6,6] -Phenyl C71 butyric acid methyl ester, [6,6] Phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] thienyl- And C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).
  • the amount of the fullerene derivative is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the polymer compound of the present invention. More preferably, it is ⁇ 500 parts by weight.
  • the thickness of the active layer is usually 1 nm to 100 ⁇ m, preferably 2 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 20 nm to 200 nm.
  • the electron transport layer has a hole blocking function. By providing the electron transport layer, a photoelectric conversion element showing higher photoelectric conversion efficiency can be obtained.
  • the electron transport layer includes, for example, an alkali metal such as lithium fluoride, a halide of an alkaline earth metal, a metal oxide such as titanium oxide or zinc oxide, or polyethyleneimine ethoxylate.
  • composition containing the polymer compound of the present invention examples include a composition containing the polymer compound of the present invention and an electron accepting compound.
  • the composition may further contain a solvent.
  • the solvent include chlorobenzene, dichlorobenzene, chloronaphthalene, toluene, xylene, mesitylene, pseudocumene, tetramethylbenzene, tetrahydronaphthalene, indane, methylnaphthalene, diiodooctane, methyl benzoate, acetophenone, and propiophenone.
  • the total weight of the solvents contained in the composition is preferably 70% by weight or more based on the total weight of the composition.
  • the photoelectric conversion element of the present invention is activated by, for example, applying a composition comprising the polymer compound of the present invention and a solvent on the first electrode by a coating method, and forming a first electrode on a substrate. It can be manufactured by a manufacturing method including a step of forming a layer and a step of forming a second electrode on the active layer.
  • the photoelectric conversion element of the present invention includes, for example, a step of forming a first electrode on a substrate, a step of forming a hole transport layer on the first electrode, and a hole transport.
  • Manufactured by a production method comprising a step of applying a composition comprising the polymer compound of the present invention and a solvent on a layer by a coating method to form an active layer and a step of forming a second electrode on the active layer can do.
  • the first electrode is formed in a predetermined pattern shape on the substrate.
  • the substrate on which the first electrode is formed is prepared by obtaining a structure in which a thin film containing a conductive material is formed on the substrate and patterning the thin film containing the conductive material on the substrate.
  • the electrode may be prepared by obtaining a substrate with an electrode on which an electrode has been patterned in advance.
  • the step of forming the first electrode on the substrate can be performed.
  • a thin film is formed on the substrate by a vacuum deposition method, a sputtering method, an ion plating method, a plating method or the like using the material of the first electrode described above, and any suitable one is necessary. It can be formed by patterning the thin film by various methods.
  • a coating liquid containing the organic material (eg, the first electrode may be formed by a coating method using a solution, an emulsion (emulsion), a suspension (suspension)), a metal ink, a metal paste, a molten low melting point metal, or the like.
  • Examples of coating methods for forming the first electrode include spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, and spray.
  • Examples include coating methods, screen printing methods, flexographic printing methods, offset printing methods, ink jet printing methods, dispenser printing methods, nozzle coating methods, capillary coating methods, etc.
  • spin coating methods and flexographic printing methods Ink jet printing and dispenser printing are preferred.
  • Examples of the solvent of the coating solution used when forming the first electrode by a coating method include hydrocarbon solvents (eg, toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbesen, tert-butylbenzene, etc.), halogenated saturated hydrocarbon solvents (eg, carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, etc.), Halogenated unsaturated hydrocarbons (eg, chlorobenzene, dichlorobenzene, trichlorobenzene, etc.), ether solvents (eg, tetrahydrofuran,
  • coating method may contain 2 or more types of solvent, and may contain 2 or more types of solvent illustrated above.
  • the first electrode may be subjected to a surface treatment such as ozone UV treatment, corona treatment, or ultrasonic treatment.
  • the step of forming the hole transport layer is performed.
  • the formation method of a positive hole transport layer is not specifically limited, From a viewpoint of simplification of a manufacturing process, forming by a coating method is preferable.
  • the hole transport layer is a composition containing, for example, the material of the hole transport layer and a solvent (medium). It can be formed by applying the coating solution to the first electrode side of the support substrate on which the first electrode is formed.
  • the example of the method for applying the coating solution containing the material for the hole transport layer and the solvent already described is the same as the example and the preferred example of the coating method described in the above-described anode forming method.
  • Examples of the solvent contained in the coating liquid for forming the hole transport layer include water, alcohol, ketone, and hydrocarbon.
  • the alcohol include methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, butoxyethanol, methoxybutanol and the like.
  • Specific examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, 2-heptanone, cyclohexanone and the like.
  • Specific examples of hydrocarbons include n-pentane, cyclohexane, n-hexane, benzene, toluene, xylene, tetralin.
  • the solvent may contain two or more types, and may contain two or more types of solvents exemplified as described above.
  • the solvent is preferably 1 to 10,000 times by weight and more preferably 10 to 1000 times by weight with respect to the material of the hole injection layer.
  • the active layer may be manufactured by any method, and examples thereof include a coating method using a coating solution containing a polymer compound and a solvent, and a film forming method using a vacuum deposition method. Since the process can be simplified, it is preferably formed by a coating method. It is preferable to further perform a step of removing the solvent by applying a heat treatment, an air drying treatment, a decompression treatment, or the like to the coating film after applying the coating solution by a coating method.
  • the solvent contained in the coating solution used in the coating method is not particularly limited as long as it dissolves the polymer compound of the present invention.
  • the solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, Halogenated saturated hydrocarbon solvents such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, halogenated unsaturated hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene, tetrahydrofuran And ether solvents such
  • coating methods include slit coating, knife coating, spin coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating, and spray coating.
  • Method screen printing method, gravure printing method, flexographic printing method, offset printing method, inkjet coating method, dispenser printing method, nozzle coating method, capillary coating method and the like.
  • a slit coating method, a capillary coating method, a gravure coating method, a micro gravure coating method, a bar coating method, a knife coating method, a nozzle coating method, an ink jet coating method, and a spin coating method are preferable. From the viewpoint of film formability, the surface tension of the solvent at 25 ° C.
  • the value is preferably larger than 15 mN / m, more preferably larger than 15 mN / m and smaller than 100 mN / m, larger than 25 mN / m and larger than 60 mN / m. It is more preferable that the value is small.
  • the second electrode can be formed by a vacuum deposition method, a sputtering method, an ion plating method, a plating method, a coating method, or the like.
  • the organic photoelectric conversion element containing the polymer compound of the present invention in the active layer generates photovoltaic power between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode, and as an organic thin film solar cell It can be operated.
  • a plurality of organic thin film solar cells can be integrated to be used as an organic thin film solar cell module.
  • an organic photoelectric conversion element is used for indoor lighting such as sunlight or a fluorescent lamp obtained from a window and a photovoltaic power is generated between the electrodes, it can be used as a solar cell.
  • the photoelectric conversion element using the polymer compound of the present invention is considered to be very useful as a solar cell.
  • the device can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
  • the organic thin film solar cell can basically have the same module structure as a conventional solar cell module.
  • the solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side.
  • a module structure called a super straight type, a substrate type, or a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known.
  • the organic thin film solar cell produced using the polymer compound of the present invention can also be appropriately selected from these module structures depending on the purpose of use, the place of use and the environment.
  • a typical super straight type or substrate type module cells are arranged at regular intervals between support substrates that are transparent on one or both sides and treated with antireflection, and adjacent cells are connected by metal leads or flexible wiring.
  • the current collector electrode is connected to the outer edge portion, and the generated power is taken out to the outside.
  • plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
  • EVA ethylene vinyl acetate
  • the surface protective layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin.
  • the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and a sealing material is hermetically sealed between the support substrate and the frame.
  • a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
  • a solar cell using a flexible support such as a polymer film
  • cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
  • a module structure called “SCAF” described in Solar Energy Materials and Solar Cells, 48, p383-391 can also be used.
  • a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
  • the polymer compound of the present invention can also be used for organic thin film transistors.
  • the organic thin film transistor has a source electrode, a drain electrode, an organic semiconductor layer (active layer) that becomes a current path between the source electrode and the drain electrode, and a gate electrode that controls the amount of current passing through the current path.
  • Examples of the organic thin film transistor include an organic thin film transistor in which the organic semiconductor layer includes the polymer compound of the present invention. Examples of such an organic thin film transistor include a field effect type and an electrostatic induction type.
  • the organic thin film transistor can be used, for example, as a pixel driving element used for controlling a pixel of an electrophoretic display, a liquid crystal display, an organic electroluminescence display or the like, and controlling the uniformity of screen luminance and the screen rewriting speed.
  • the field effect organic thin film transistor includes a source electrode, a drain electrode, an organic semiconductor layer (active layer) that becomes a current path between the source electrode and the drain electrode, a gate electrode that controls an amount of current passing through the current path, It is preferable to include an insulating layer disposed between the organic semiconductor layer and the gate electrode.
  • the source electrode and the drain electrode are preferably provided in contact with the organic semiconductor layer (active layer), and the gate electrode is preferably provided with an insulating layer in contact with the organic semiconductor layer interposed therebetween.
  • the electrostatic induction organic thin film transistor includes a source electrode, a drain electrode, an organic semiconductor layer (active layer) that becomes a current path between the source electrode and the drain electrode, and a gate electrode that controls the amount of current passing through the current path.
  • the gate electrode is preferably provided in the organic semiconductor layer.
  • the source electrode, the drain electrode, and the gate electrode provided in the organic semiconductor layer are preferably provided in contact with the organic semiconductor layer.
  • the structure of the gate electrode may be a structure in which a current path flowing from the source electrode to the drain electrode is formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. An electrode is mentioned.
  • the polymer compound of the present invention can also be used for an organic electroluminescence device (organic EL device).
  • the organic EL element has a light emitting layer between a pair of electrodes, at least one of which is transparent or translucent.
  • the organic EL element may include a hole transport layer and an electron transport layer in addition to the light emitting layer.
  • the polymer compound of the present invention is contained in any one of the light emitting layer, the hole transport layer, and the electron transport layer.
  • the light emitting layer may contain a charge transport material (which means a generic term for an electron transport material and a hole transport material).
  • an organic EL element an element having an anode, a light emitting layer, and a cathode, and an anode, a light emitting layer, and an electron having an electron transport layer containing an electron transport material adjacent to the light emitting layer between the cathode and the light emitting layer.
  • an element having an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode an element having an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
  • the polymer compound of the present invention can also be used for the production of an OFET sensor.
  • the OFET sensor of the present invention uses an organic field effect transistor as a signal conversion element that outputs an input signal to an electric signal, and has a sensitive function in the structure of any one of a metal, an insulating film, and an organic semiconductor layer. Or a selectivity function is added.
  • Examples of the OFET sensor of the present invention include a biosensor, a gas sensor, an ion sensor, and a humidity sensor.
  • the biosensor includes a substrate and an organic thin film transistor provided on the substrate.
  • the organic thin film transistor includes an organic semiconductor layer, a source region and a drain region provided in contact with the organic semiconductor, a channel region in the organic semiconductor layer provided between the source region and the drain region, and an electric field in the channel region. And a gate insulating film provided between the channel region and the gate electrode.
  • the organic thin film transistor has a probe (sensitive region) that specifically interacts with the target substance in the channel region and / or the gate insulating film, and the characteristics of the probe change when the concentration of the target substance changes. Therefore, it functions as a biosensor.
  • Examples of a method for detecting a target substance in a test sample include a biosensor in which a biomolecule such as a nucleic acid or protein, or an artificially synthesized functional group is immobilized on the surface of a solid phase carrier as a probe.
  • This method uses specific affinity of biomolecules such as complementary nucleic acid chain interaction, antigen-antibody reaction interaction, enzyme-substrate reaction interaction, receptor-ligand interaction, and so on.
  • the substance is captured on the surface of the solid support. Therefore, a substance having specific affinity for the target substance is selected as a probe.
  • the probe is fixed on the surface of the solid phase carrier by a method corresponding to the type of probe and the type of solid phase carrier.
  • the probe can be synthesized on the surface of the solid phase carrier (for example, a method of synthesizing the probe by nucleic acid extension reaction).
  • the probe-target substance complex is formed on the surface of the solid phase carrier by bringing the surface of the solid phase carrier on which the probe is immobilized into contact with the test sample and culturing under an appropriate condition.
  • the channel region of the organic thin film transistor and / or the gate insulating film itself may function as a probe.
  • the gas sensor includes a substrate and an organic thin film transistor provided on the substrate.
  • An organic thin film transistor includes an organic semiconductor layer, a source region and a drain region provided in contact with the organic semiconductor, a channel region in the semiconductor layer provided between the source region and the drain region, and an electric field applied to the channel region. It has an applicable gate electrode, and a gate insulating film provided between the channel region and the gate electrode.
  • the channel region and / or the gate insulating film functions as a gas sensitive part.
  • the detection gas is adsorbed and desorbed from the gas sensitive part, the gas sensitive part changes in characteristics (conductivity, dielectric constant, etc.), thereby functioning as a gas sensor.
  • Examples of the gas to be detected include an electron accepting gas and an electron donating gas.
  • Examples of the electron-accepting gas include halogen gases such as F 2 and Cl 2 ; nitrogen oxide gases; sulfur oxide gases; organic acid gases such as acetic acid.
  • Examples of the electron donating gas include ammonia gas; amine gases such as aniline; carbon monoxide gas; hydrogen gas.
  • the polymer compound of the present invention can also be used for production of a pressure sensor.
  • the pressure sensor of the present invention includes a substrate and an organic thin film transistor provided on the substrate.
  • the organic thin film transistor includes an organic semiconductor layer, a source region and a drain region provided in contact with the organic semiconductor, a channel region in the organic semiconductor layer provided between the source region and the drain region, and an electric field in the channel region. And a gate insulating film provided between the channel region and the gate electrode.
  • the channel region and / or the gate insulating film functions as a pressure sensitive part. When the pressure-sensitive part senses pressure, the pressure-sensitive part changes in characteristics, thereby functioning as a pressure-sensitive sensor.
  • the gate insulating film functions as a pressure-sensitive portion
  • the organic material is excellent in flexibility and stretchability with respect to the inorganic material. Therefore, the gate insulating film preferably contains an organic material.
  • the organic thin film transistor may further include an alignment layer in order to further increase the crystallinity of the organic semiconductor contained in the channel region. Examples of the alignment layer include a monomolecular film formed on the gate insulating film using a silane coupling agent such as hexamethyldisilazane.
  • the polymer compound of the present invention can also be used for the production of a conductivity modulation type sensor.
  • the conductivity modulation type sensor of the present invention uses a conductivity measuring element as a signal conversion element that outputs an input signal to an electric signal, and is a film containing the composition or polymer compound of the present invention, or the present invention.
  • the membrane coating containing the composition of the invention or the polymer compound is provided with a sensitivity function or a selectivity function for the input of the sensor object.
  • the conductivity modulation type sensor of the present invention detects an input of a sensor object as a change in conductivity of the composition or polymer compound of the present invention. Examples of the conductivity modulation type sensor of the present invention include a biosensor, a gas sensor, an ion sensor, and a humidity sensor.
  • the polymer compound of the present invention is an organic field effect type as an amplification circuit for amplifying output signals from various sensors such as biosensors, gas sensors, ion sensors, humidity sensors, and pressure sensors formed separately. It can also be used for manufacturing an amplifier circuit including a transistor.
  • the polymer compound of the present invention can also be used for the production of a sensor array including a plurality of various sensors such as biosensors, gas sensors, ion sensors, humidity sensors, and pressure sensors.
  • the polymer compound of the present invention includes a plurality of various sensors such as biosensors, gas sensors, ion sensors, humidity sensors, and pressure sensors formed separately, and for amplifying output signals from each sensor individually.
  • sensors such as biosensors, gas sensors, ion sensors, humidity sensors, and pressure sensors formed separately, and for amplifying output signals from each sensor individually.
  • an amplifier circuit it can also be used for manufacture of a sensor array with an amplifier circuit including an organic field effect transistor.
  • the organic photoelectric conversion element of the present invention can be operated as an organic photosensor by irradiating light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, so that a photocurrent flows. Furthermore, the organic photosensor is used as a light receiving unit, a drive circuit unit that detects an output due to a signal current generated by the organic photosensor and reads the signal charge, and a wiring that connects the organic photosensor and the drive circuit are provided. It can be used as an organic image sensor.
  • the organic light sensor can be used with a color filter on the light incident surface side to provide color selectivity of light to be detected, or light absorption with high selectivity for each of the three primary colors of light.
  • the driving circuit is an IC chip formed of a transistor using single crystal silicon, or a thin film transistor using a compound semiconductor such as polycrystalline silicon, amorphous silicon, or cadmium selenide, and a conjugated organic compound semiconductor such as pentacene. What is constructed can be used.
  • the organic image sensor has a lower manufacturing cost than an existing image sensor using a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) as a photographing element for a scanner, digital camera, digital video, etc. Advantages such as a small installation area can be expected.
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • organic photosensors having various photosensitivity characteristics can be used due to the diversity of conjugated compounds
  • an organic image sensor having performance according to the application can be provided.
  • the organic optical sensor containing the polymer compound of the present invention can be applied to vein authentication, fingerprint authentication, pulse oximeter, motion sensor, and X-ray image panel.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound are determined by gel permeation chromatography (GPC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp). Asked. The polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.5% by weight, and 30 ⁇ L of the resulting solution was injected into GPC. Tetrahydrofuran was used as the mobile phase of GPC, and flowed at a flow rate of 0.6 mL / min.
  • GPC gel permeation chromatography
  • TSKgel SuperHM-H manufactured by Tosoh
  • TSKgel SuperH2000 manufactured by Tosoh
  • a differential refractive index detector manufactured by Shimadzu Corporation, trade name: RID-10A was used as the detector.
  • Example 1 Synthesis of polymer compound P1 After making the inside of the 200 mL separable flask equipped with a reflux tube into a nitrogen atmosphere, 666 mg (0.950 mmol) of Compound 1, 44.9 mg (0.050 mmol) of Compound 2, 388 mg (1.00 mmol) of Compound 3, 23.2 mg (0.0800 ml) of tert-butylphosphonium tetrafluoroborate ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 322 mg of polymer P1.
  • this polymer is referred to as polymer compound P1.
  • Example 2 Synthesis of polymer compound P2 After making the inside of the 200 mL separable flask equipped with a reflux tube into a nitrogen atmosphere, 746 mg (0.950 mmol) of Compound 4, 44.9 mg (0.050 mmol) of Compound 2, 388 mg (1.00 mmol) of Compound 3, 23.2 mg (0.0800 ml) of tert-butylphosphonium tetrafluoroborate ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried to obtain 467 mg of purified polymer P2.
  • this polymer is referred to as polymer compound P2.
  • Example 3 Synthesis of polymer compound P3 After making the inside of the 200 mL separable flask equipped with a reflux tube into a nitrogen atmosphere, 706 mg (0.900 mmol) of compound 4, 89.7 mg (0.100 mmol) of compound 2, 388 mg (1.00 mmol) of compound 3, 23.2 mg (0.0800 ml) of tert-butylphosphonium tetrafluoroborate ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 385 mg of polymer P3.
  • this polymer is referred to as polymer compound P3.
  • Example 4 Synthesis of polymer compound P4 Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was changed to a nitrogen atmosphere, and then Compound 1 was 350 mg (0.500 mmol), Compound 4 was 392 mg (0.500 mmol), and Compound 5 was 392 mg (1.00 mmol). Then, 23.2 mg (0.0800 ml) of tri-tert-butylphosphonium tetrafluoroborate ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution. did.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 397 mg of polymer P4.
  • this polymer is referred to as polymer compound P4.
  • Example 5 Synthesis of polymer compound P5 Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was made into a nitrogen atmosphere, then 210 mg (0.300 mmol) of compound 1, 549 mg (0.700 mmol) of compound 4, and 392 mg (1.00 mmol) of compound 5 Then, 23.2 mg (0.0800 ml) of tri-tert-butylphosphonium tetrafluoroborate ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution. did.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 428 mg of polymer P5.
  • this polymer is referred to as polymer compound P5.
  • Example 6 Synthesis of polymer compound P6 Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was filled with a nitrogen atmosphere, and then Compound 1 (631 mg, 0.900 mmol), Compound 2 (89.7 mg, 0.100 mmol), and Compound 5 (392 mg, 1. 00 mmol), 23.2 mg (0.0800 ml) of tri-tert-butylphosphonium tetrafluoroborate ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran, and 25.0 ml of chlorobenzene, uniformly. It was set as the solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 468 mg of polymer P6.
  • this polymer is referred to as polymer compound P6.
  • Example 7 Synthesis of polymer compound P7 Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was made into a nitrogen atmosphere, then Compound 4 (746 mg, 0.950 mmol), Compound 2 (44.9 mg, 0.050 mmol), and Compound 5 (392 mg) (1. 00 mmol), 23.2 mg (0.0800 ml) of tri-tert-butylphosphonium tetrafluoroborate ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran, and 25.0 ml of chlorobenzene, uniformly. It was set as the solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 584 mg of polymer P7.
  • this polymer is referred to as polymer compound P7.
  • Example 8 (Synthesis of polymer compound P8) Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was made into a nitrogen atmosphere, then Compound 1 was 315 mg (0.450 mmol), Compound 4 was 353 mg (0.450 mmol), and Compound 2 was 89.7 mg (0. 100 mmol), 392 mg (1.00 mmol) of compound 5, 23.2 mg (0.0800 ml) of tri-tert-butylphosphonium tetrafluoroborate ([P (t-Bu) 3 H] BF 4 ), 25. 0 ml and 25.0 mL of chlorobenzene were added to obtain a uniform solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 287 mg of polymer P8.
  • this polymer is referred to as polymer compound P8.
  • Synthesis example 1 (Synthesis of polymer compound PI) Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was filled with a nitrogen atmosphere, then 785 mg (1.00 mmol) of compound 4, 388 mg (1.00 mmol) of compound 3, tri-tert-butylphosphonium tetrafluoroborate 23.2 mg (0.0800 ml) of ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 405 mg of polymer PI.
  • this polymer is referred to as polymer compound PI.
  • Synthesis example 2 (Synthesis of polymer compound PII) Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was filled with a nitrogen atmosphere. 23.2 mg (0.0800 ml) of ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 419 mg of polymer PII.
  • this polymer is referred to as polymer compound PII.
  • Synthesis example 3 (Synthesis of polymer compound PIII) Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was filled with a nitrogen atmosphere, then 897 mg (1.00 mmol) of compound 2, 388 mg (1.00 mmol) of compound 3, tri-tert-butylphosphonium tetrafluoroborate 23.2 mg (0.0800 ml) of ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 453 mg of polymer PIII.
  • this polymer is referred to as polymer compound PIII.
  • Synthesis example 4 (Synthesis of polymer compound PIV) Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was filled with a nitrogen atmosphere. 23.2 mg (0.0800 ml) of ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution.
  • the obtained organic layer was washed once with 38 mL of an acetic acid aqueous solution and twice with 38 mL of water, and the obtained solution was poured into acetone to precipitate a polymer, followed by filtration.
  • the resulting solid was dissolved in 115 mL of ortho-dichlorobenzene and passed through an alumina / silica gel column.
  • the obtained solution was poured into methanol to precipitate a polymer, and then filtered.
  • the obtained solid was dried and purified to obtain 700 mg of polymer PIV.
  • this polymer is referred to as a polymer compound PIV.
  • Synthesis example 5 (Synthesis of polymer compound PV) Under a nitrogen atmosphere, the inside of a 200 mL separable flask equipped with a reflux tube was filled with a nitrogen atmosphere. 23.2 mg (0.0800 ml) of ([P (t-Bu) 3 H] BF 4 ), 25.0 ml of tetrahydrofuran and 25.0 ml of chlorobenzene were added to obtain a homogeneous solution.
  • Example 9 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, PEDOT-PSS (AI4083) (manufactured by Hereaus, product name: CLEVIOS P VP AI4083) as a hole transport material is applied onto the ITO film by spin coating, and heated at 120 ° C. for 10 minutes in an air atmosphere. As a result, a hole transport layer having a thickness of about 40 nm was produced.
  • PEDOT-PSS AI4083
  • polymer compound P1 as a p-type semiconductor material and C60-PCBM phenyl 61-butyric acid methyl ester: manufactured by Frontier Carbon Co., Ltd., product name: nanom spectra E100, hereinafter C60-PCBM) as a fullerene derivative as an n-type semiconductor material The same product is used))
  • C60-PCBM phenyl 61-butyric acid methyl ester: manufactured by Frontier Carbon Co., Ltd., product name: nanom spectra E100, hereinafter C60-PCBM
  • a composition comprising P1, C60PCBM and ortho-dichlorobenzene was prepared.
  • the total weight of the polymer compound P1 and C60-PCBM was 1.5% by weight with respect to the weight of the composition.
  • the composition was applied onto the hole transport layer by spin coating to produce an active layer containing the polymer compound P1.
  • the thickness was about 100 nm.
  • calcium was vapor-deposited with a thickness of 4 nm on the active layer with a vacuum vapor deposition machine, and then silver was vapor-deposited with a thickness of 450 nm to produce an organic photoelectric conversion element.
  • the shape of the organic photoelectric conversion element was a 2 mm ⁇ 2 mm square.
  • Example 10 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion element was produced in the same manner as in Example 9 except that the polymer compound P2 was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.670.
  • Example 11 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion device was produced in the same manner as in Example 9 except that the polymer compound P3 was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.670.
  • Comparative Example 1 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion device was produced in the same manner as in Example 9 except that the polymer compound PI was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.610.
  • Comparative Example 2 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion device was produced in the same manner as in Example 9 except that the polymer compound PII was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.520.
  • Comparative Example 3 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion device was produced in the same manner as in Example 9 except that the polymer compound PIII was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.450.
  • the organic photoelectric conversion elements of Examples 9 to 11 had higher values of the curve factor than the organic photoelectric conversion elements of Comparative Examples 1 to 3. The results are summarized in Table 1 below.
  • Example 12 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion device was produced in the same manner as in Example 9 except that the polymer compound P4 was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.710.
  • Example 13 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion element was produced in the same manner as in Example 9 except that the polymer compound P5 was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.705.
  • Example 14 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion element was produced in the same manner as in Example 9 except that the polymer compound P6 was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.690.
  • Example 15 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion device was produced in the same manner as in Example 9 except that the polymer compound P7 was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.700.
  • Example 16 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion element was produced in the same manner as in Example 9 except that the polymer compound P8 was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.690.
  • Comparative Example 4 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion element was produced in the same manner as in Example 9 except that the polymer compound PIV was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.525.
  • Comparative Example 5 (Production and evaluation of solvent-containing composition and organic photoelectric conversion device) An organic photoelectric conversion device was produced in the same manner as in Example 9 except that the polymer compound PV was used instead of the polymer compound P1, and the value of the fill factor was determined. The value of the fill factor was 0.600.
  • the organic photoelectric conversion elements of Examples 12 to 16 had higher curve factor values than the organic photoelectric conversion elements of Comparative Examples 4 and 5. The results are summarized in Table 2 below.
  • Example 17 (Production of composition containing solvent and organic photoelectric conversion device) Implemented except for using C70-PCBM (Phenyl 71-butyric acid methyl ester: American Dice Source, product name: ADS71BFA, hereinafter the same product is used for C70-PCBM) instead of n-type semiconductor material C60-PCBM
  • C70-PCBM Phenyl 71-butyric acid methyl ester: American Dice Source, product name: ADS71BFA, hereinafter the same product is used for C70-PCBM
  • An organic photoelectric conversion element is produced in the same manner as in Example 9.
  • Example 19 (Production of composition containing solvent and organic photoelectric conversion device)
  • the organic compound P1 and C60-PCBM were dissolved in the same manner as in Example 9 except that tetrahydronaphthalene (tetralin) was used instead of ortho-dichlorobenzene and dissolved by heating and stirring at 120 ° C. for 15 hours.
  • a photoelectric conversion element is manufactured.
  • Example 20 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 19 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 21 (Production of composition containing solvent and organic photoelectric conversion device)
  • an organic photoelectric conversion element is produced in the same manner as in Example 19 except that a mixture of C60-PCBM and C60-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 22 (Production of composition containing solvent and organic photoelectric conversion device) The same as Example 9 except that Solvay AQ1300 was used instead of AI4083 which is a hole transport material, was applied onto the ITO film by spin coating, and was heated and dried at 200 ° C. for 10 minutes in the air. Thus, an organic photoelectric conversion element was produced.
  • Example 23 (Production of composition containing solvent and organic photoelectric conversion device)
  • an organic photoelectric conversion element is manufactured in the same manner except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 24 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 22 except that a mixture of C60-PCBM and C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 25 (Production of composition containing solvent and organic photoelectric conversion device) Except that tetrahydronaphthalene (tetralin) was used in place of ortho-dichlorobenzene as the solvent for dissolving the polymer compounds P1 and C60-PCBM and dissolved by heating and stirring at 120 ° C. for 15 hours, the same as in Example 22. An organic photoelectric conversion element was produced.
  • tetrahydronaphthalene tetralin
  • Example 26 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element was produced in the same manner as in Example 25 except that C70-PCBM was used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 27 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion device was produced in the same manner as in Example 25 except that a mixture of C60-PCBM and C70-PCBM was used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 28 (Production of composition containing solvent and organic photoelectric conversion device) A glass substrate provided with an ITO film with a thickness of 150 nm by a sputtering method was subjected to surface treatment by ozone UV treatment. Next, an isopropanol dispersion of zinc oxide (ZnO) (TAYCA, ZnO 20 wt% product) is applied onto the ITO film by spin coating as an electron transport layer, and heated at 140 ° C. for 10 minutes in an air atmosphere. Thus, a film having a thickness of about 40 nm was produced.
  • ZnO zinc oxide
  • polymer compound P1 as the p-type semiconductor material and C60-PCBM as the n-type semiconductor material are weighed so that the ratio of the weight of C60-PCBM to the weight of the polymer compound P1 is 2, and ortho is used as the ink solvent.
  • dichlorobenzene the mixture was heated and stirred at 50 ° C. for 15 hours to produce an ink.
  • the total weight of the polymer compound P1 and the C60-PCBM was 1.5% by weight with respect to the weight of the ink.
  • the ink was applied onto ZnO by spin coating to produce an organic film containing the polymer compound P1. The film thickness was about 100 nm.
  • AI4083 as a hole transporting material was applied onto the active layer by spin coating, and heated at 70 ° C. for 2 minutes in the atmosphere to produce a film having a thickness of about 40 nm. Subsequently, silver was vapor-deposited by thickness 450nm and the organic photoelectric conversion element was produced.
  • Example 29 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 28 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 30 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 28 except that a mixture of C60-PCBM and C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 31 (Production of composition containing solvent and organic photoelectric conversion device)
  • the organic compound P1 and C60-PCBM were dissolved in the same manner as in Example 28 except that tetrahydronaphthalene (tetralin) was used instead of ortho-dichlorobenzene and dissolved by heating and stirring at 120 ° C. for 15 hours.
  • a photoelectric conversion element is manufactured.
  • Example 32 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 31 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 33 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 31 except that a mixture of C60-PCBM and C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 34 (Production of composition containing solvent and organic photoelectric conversion device) The same as Example 28, except that AQ1300 manufactured by Solvay Co. was used instead of AI4083 which is a hole transport material, was coated on the active layer by spin coating, and was heated and dried in the atmosphere at 200 ° C. for 10 minutes. Thus, an organic photoelectric conversion element was produced.
  • Example 35 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is manufactured in the same manner as in Example 34 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 36 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion device is produced in the same manner as in Example 34 except that a mixture of C60-PCBM and C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 37 (Production of composition containing solvent and organic photoelectric conversion device) Except that tetrahydronaphthalene (tetralin) was used in place of ortho-dichlorobenzene as the solvent for dissolving the polymer compounds P1 and C60-PCBM and dissolved by heating and stirring at 120 ° C. for 15 hours, the same as in Example 34. An organic photoelectric conversion element was produced.
  • tetrahydronaphthalene tetralin
  • Example 38 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 37 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 39 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 37 except that a mixture of C60-PCBM and C60-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 40 (Production of composition containing solvent and organic photoelectric conversion device) A solution obtained by diluting polyethyleneimine ethoxylate (PEIE) (manufactured by Aldrich, product name: polyethyleneimine / 80% ethoxylated solution, weight average molecular weight to 70,000) 50 times with deionized water instead of zinc oxide as an electron transport material. was coated on the ITO electrode by spin coating (rotation speed 4000 rpm, 30 seconds) to produce an organic photoelectric conversion device in the same manner as in Example 28.
  • PEIE polyethyleneimine ethoxylate
  • Example 41 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 40 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 42 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion device is produced in the same manner as in Example 40 except that a mixture of C60-PCBM and C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 43 (Production of composition containing solvent and organic photoelectric conversion device)
  • the organic compound P1 and C60-PCBM were dissolved in the same manner as in Example 40 except that tetrahydronaphthalene (tetralin) was used instead of ortho-dichlorobenzene and dissolved by heating and stirring at 120 ° C. for 15 hours.
  • a photoelectric conversion element is manufactured.
  • Example 44 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 43 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 45 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion device is produced in the same manner as in Example 43 except that a mixture of C60-PCBM and C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 46 (Production of composition containing solvent and organic photoelectric conversion device) The same as Example 40 except that Solvay AQ1300 was used instead of AI4083 which is a hole transport material, and it was coated on the active layer by spin coating, and was heated and dried at 200 ° C. for 10 minutes in the atmosphere. Thus, an organic photoelectric conversion element was produced.
  • Example 47 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 47 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 48 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion device is produced in the same manner as in Example 46 except that a mixture of C60-PCBM and C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 49 (Production of composition containing solvent and organic photoelectric conversion device) The organic solvent was dissolved in the same manner as in Example 49 except that tetrahydronaphthalene (tetralin) was used instead of ortho-dichlorobenzene as the solvent for dissolving the polymer compound P1 and C60-PCBM, and the mixture was dissolved by heating and stirring at 120 ° C. for 15 hours. A photoelectric conversion element is manufactured.
  • tetrahydronaphthalene tetralin
  • ortho-dichlorobenzene ortho-dichlorobenzene
  • Example 50 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 49 except that C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 51 (Production of composition containing solvent and organic photoelectric conversion device) An organic photoelectric conversion element is produced in the same manner as in Example 49 except that a mixture of C60-PCBM and C70-PCBM is used instead of C60-PCBM which is an n-type semiconductor material.
  • Example 52 (Use of organic photoelectric conversion elements as organic thin-film solar cells) If the organic photoelectric conversion element produced in Example 9 is irradiated with constant light using a fluorescent lamp indoors, it can be used as an organic thin film solar cell.
  • Example 53 (Use of organic photoelectric conversion elements as organic light sensors) Using the organic photoelectric conversion element produced in Example 9, the output from the signal current generated is detected by irradiating light from a light source (sunlight, LED, fluorescent lamp) with a voltage applied between the electrodes. Can be used as an organic light sensor.
  • a light source unsunlight, LED, fluorescent lamp

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Light Receiving Elements (AREA)

Abstract

曲線因子の値が大きな有機光電変換素子を製造することが可能な高分子化合物及び当該有機光電変換素子を提供することを課題とする。 本発明は、式(I)で表される構成単位と式(II)で表される構成単位とを有する高分子化合物を提供する。 また、第1の電極と、第2の電極と、第1の電極及び第2の電極の間に設けられる活性層とを有する有機光電変換素子であって、活性層が前記高分子化合物を含む有機光電変換素子を提供する。

Description

高分子化合物およびそれを用いた有機光電変換素子
 本発明は、高分子化合物およびそれを用いた有機光電変換素子に関する。
 高分子化合物を活性層に含む有機光電変換素子は、塗布プロセスのみで安価に製造できる可能性があり、近年注目されている。有機光電変換素子が有する活性層に含まれる高分子化合物としては、式(A)で表される構成単位および式(B)で表される構成単位からなる高分子化合物並びに式(A)で表される構成単位および式(C)で表される構成単位からなる高分子化合物が報告されている(特許文献1)。
Figure JPOXMLDOC01-appb-C000006
特開2014-031364号公報
 前記高分子化合物を含む活性層を有する有機光電変換素子は、曲線因子(フィルファクター)の値のさらなる向上が求められていた。
 本発明は、曲線因子の値が大きな有機光電変換素子を製造することが可能な高分子化合物および当該有機光電変換素子を提供することを目的とする。
 本発明は、下記[1]~[14]を提供する。
[1]
 式(I)で表される構成単位と式(II)で表される構成単位とを有する高分子化合物。
Figure JPOXMLDOC01-appb-I000007
〔式(I)中、
 XおよびXは、それぞれ独立に、硫黄原子または酸素原子を表す。
 YおよびYは、それぞれ独立に、C-(R)または窒素原子を表す。
 R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基または1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
Figure JPOXMLDOC01-appb-I000008
〔式(II)中、
 XおよびXは、それぞれ独立に、硫黄原子または酸素原子を表す。
 YおよびYは、それぞれ独立に、C-(R)または窒素原子を表す。
 R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基または1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
ただし、RとRとが同一であり、かつRとRとが同一であることはない。
[2]X、X、XおよびXがいずれも硫黄原子であり、Y、Y、YおよびYがいずれもC-Hである、[1]記載の高分子化合物。
[3]R、R、RおよびRが置換基を有していてもよい炭素原子数1~30のアルキル基であって、RとRとが同一であり、かつRとRとが同一である、[1]または[2]記載の高分子化合物。
[4]R、R、RおよびRが、それぞれ独立に、置換基を有していてもよい炭素原子数12~19のアルキル基である、[1]~[3]のいずれか一項記載の高分子化合物。
[5]さらに式(III)で表される構成単位を有する、[1]~[4]のいずれか一項記載の高分子化合物。

Figure JPOXMLDOC01-appb-I000009
〔式(III)中、
 ―Ar―で表される基は、置換基を有していてもよい炭素原子数6~60のアリーレン基または置換基を有していてもよい2価の複素環基を表す。
 ただし、式(III)で表される構成単位は、式(I)および式(II)で表される構成単位とは異なる。〕
[6]前記式(III)で表される構成単位が、式(III-1)~式(III-18)のいずれかの式で表される構成単位である、[5]記載の高分子化合物。

Figure JPOXMLDOC01-appb-I000010
〔各式中、
 R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。
 XおよびXは、それぞれ独立に、硫黄原子またはO酸素原子を表す。〕
[7]前記式(III)で表される構成単位が、前記式(III-1)または式(III-15)で表される構成単位である、[5]または[6]記載の高分子化合物。
[8]さらに式(IV)で表される構成単位を有する、[1]~[7]のいずれか記載の高分子化合物。
Figure JPOXMLDOC01-appb-I000011
〔式(IV)中、
 XおよびXは、それぞれ独立に、硫黄原子または酸素原子を表す。
 YおよびYは、それぞれ独立に、C-(R)または窒素原子を表す。
 R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
ただし、式(IV)で表される構成単位は、高分子化合物が有する式(I)で表される構成単位および式(II)で表される構成単位とは異なる構成単位を表す。
[9][1]~[8]のいずれか記載の高分子化合物と電子受容性化合物とを含む組成物。
[10]前記電子受容性化合物がフラーレン誘導体である、[9]記載の組成物。
[11]さらに溶媒を含む、[9]または[10]記載の組成物。
[12]第1の電極と、第2の電極と、第1の電極および第2の電極の間に設けられる活性層とを有する有機光電変換素子であって、前記活性層が[1]~[8]のいずれか記載の高分子化合物を含む有機光電変換素子。
[13][12]記載の有機光電変換素子を含む有機薄膜太陽電池。
[14][12]記載の有機光電変換素子を含む有機光センサー。
 以下、本発明を詳細に説明する。
<共通する用語の説明>
 以下、本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が、1000以上100000000以下の重合体を意味する。高分子化合物に含まれる構成単位は、合計100モル%である。高分子化合物は、いかなる種類の共重合体であってもよく、ブロック共重合体、ランダム共重合体、交互共重合体およびグラフト共重合体のいずれであってもよい。
 「構成単位」とは、高分子化合物が有する構造の単位を意味する。
 「水素原子」は、軽水素原子であっても重水素原子であってもよい。
 「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子またはヨウ素原子を意味する。
 「アルキル基」は、直鎖または分岐のいずれでもよく、置換基を有していてもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含まないで、通常1~30であり、好ましくは3~30であり、より好ましくは12~19である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、より好ましくは12~19である。
 置換基を有していてもよいアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、2-エチルブチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、3-n-プロピルヘプチル基、アダマンチル基、n-デシル基、3,7-ジメチルオクチル基、3-ヘプチルドデシル基、2-エチルオクチル基、2-n-ヘキシル-デシル基、n-ドデシル基、テトラデシル基、ヘキサデシル墓、オクタデシル基、エイコシル基等の非置換アルキル基、これらの基における水素原子が、アルコキシ基、アリール基、フッ素原子等で置換された基(置換アルキル基)が挙げられる。置換アルキル基の例としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-n-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
 「シクロアルキル基」は、置換基を有していてもよい。シクロアルキル基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは12~19である。
 置換基を有していてもよいシクロアルキル基の例としては、シクロヘキシル基等の非置換シクロアルキル基、これらの基における水素原子が、アルキル基、アルコキシ基、アリール基、フッ素原子等で置換された基(置換シクロアルキル基)が挙げられる。置換シクロアルキル基の例としては、メチルシクロヘキシル基、エチルシクロヘキシル基が挙げられる。
 「アルケニル基」は、直鎖または分岐のいずれでもよく、置換基を有していてもよい。
直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含まないで、通常2~30であり、好ましくは12~19である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは12~19である。
 置換基を有していてもよいアルケニル基の例としては、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基および7-オクテニル基が挙げられる。
 「シクロアルケニル基」は、置換基を有していてもよい。シクロアルケニル基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは12~19である。
 置換基を有していてもよいシクロアルケニル基の例としては、シクロヘキセニル基等の非置換シクロアルケニル基、これらの基における水素原子が、アルキル基、アルコキシ基、アリール基、フッ素原子等で置換された基(置換シクロアルケニル基)が挙げられる。置換シクロアルケニル基の例としては、メチルシクロヘキセニル基、エチルシクロヘキセニル基が挙げられる。
 「アルキニル基」は、直鎖または分岐のいずれでもよく、置換基を有していてもよい。
アルキニル基の炭素原子数は、置換基の炭素原子数を含まないで、通常2~30であり、好ましくは12~19である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子数を含まないで、通常4~30であり、好ましくは12~19である。
 置換基を有していてもよいアルキニル基の例としては、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基および5-ヘキシニル基が挙げられる。
 「シクロアルキニル基」は、置換基を有していてもよい。シクロアルキニル基の炭素原子数は、置換基の炭素原子数を含まないで、通常4~30であり、好ましくは12~19である。
 置換基を有していてもよいシクロアルキニル基の例としては、シクロヘキシニル基等の非置換シクロアルキニル基、これらの基における水素原子が、アルキル基、アルコキシ基、アリール基、フッ素原子等で置換された基(置換シクロアルキニル基)が挙げられる。置換シクロアルキニル基の例としては、メチルシクロヘキシニル基、エチルシクロヘキシニル基が挙げられる。
 「アルコキシ基」は、直鎖または分岐のいずれでもよく、置換基を有していていもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含まないで、通常1~30であり、好ましくは12~19である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは12~19である。
 置換基を有していてもよいアルコキシ基の例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、2-エチルヘキシルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、3,7-ジメチルオクチルオキシ基、3-ヘプチルドデシルオキシ基、ラウリルオキシ基が挙げられる。
 「シクロアルコキシ基」は、置換基を有していてもよい。シクロアルコキシ基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは12~19である。
 置換基を有していてもよいシクロアルコキシ基の例としては、シクロヘキシルオキシ基が挙げられる。
 「アルキルチオ基」は、直鎖または分岐のいずれでもよく、置換基を有していてもよい。直鎖のアルキルチオ基の炭素原子数は、置換基の炭素原子数を含まないで、通常1~30であり、好ましくは12~19である。分岐のアルキルチオ基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは12~19である。
 置換基を有していてもよいアルキルチオ基の例としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、tert-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2-エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7-ジメチルオクチルチオ基、3-ヘプチルドデシルチオ基、ラウリルチオ基およびトリフルオロメチルチオ基が挙げられる。
 「シクロアルキルチオ基」は置換基を有していてもよい。シクロアルキルチオ基の炭素原子数は、置換基の炭素原子数を含まないで、通常3~30であり、好ましくは12~19である。
 置換基を有していてもよいシクロアルキルチオ基の例としては、シクロヘキシルチオ基が挙げられる。
 -C(=O)-Rで表される基(Rは、H(水素原子)、アルキル基、アリール基、アルコキシ基、アリールオキシ基、1価の複素環基を表す。)の炭素原子数は、通常2~30であり、好ましくは12~19である。
 -C(=O)-Rで表される基の例としては、メチルカルボニル基、エチルカルボニル基、プロピルカルボニル基、ブチルカルボニル基、ペンチルカルボニル基、ヘキシルカルボニル基、ヘプチルカルボニル基、オクチルカルボニル基、ノニルカルボニル基、デシルカルボニル基、ウンデシルカルボニル基、ドデシルカルボニル基、テトラデシルカルボニル基、2-エチルヘキシルカルボニル基、3,7-ジメチルオクチルカルボニル基、3-ヘプチルドデシルカルボニル基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、t-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、シクロヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、ノニルオキシカルボニル基、デシルオキシカルボニル基、ドデシルオキシカルボニル基、テトラデシルオキシカルボニル基、2-エチルヘキシルオキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、3-ヘプチルドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェニルカルボニル基、ペンタフルオロフェニルカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基は置換基を有していてもよい。アリール基の炭素原子数は、置換基の炭素原子数を含まないで、通常6~30であり、好ましくは6~10である。
 置換基を有していてもよいアリール基の例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基および置換基としてアルキル基、アルコキシ基、アリール基、フッ素原子等を有するこれらの基が挙げられる。
 「アリールオキシ基」は置換基を有していていもよい。アリールオキシ基の炭素原子数は、置換基の炭素原子数を含まないで、通常6~30であり、好ましくは6~10である。
 置換基を有していてもよいアリールオキシ基の例としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基および置換基としてアルキル基、アルコキシ基、フッ素原子等を有するこれらの基が挙げられる。
 「アリールチオ基」は置換基を有していてもよい。アリールチオ基の炭素原子数は、置換基の炭素原子数を含まないで、通常6~30であり、好ましくは6~10である。
置換基を有していてもよいアリールチオ基の例としては、フェニルチオ基、C1~C12アルキルオキシフェニルチオ基(C1~C12は、炭素原子数1~12であることを示す。以下も同様である。)、C1~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基およびペンタフルオロフェニルチオ基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。p価の複素環基は、置換基を有していてもよい。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含まないで、通常2~30であり、好ましくは2~6である。
 置換基を有していてもよい1価の複素環基の例としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジル基、キノリル基、イソキノリル基、ピリミジニル基、トリアジニル基および置換基としてアルキル基、アルコキシ基等を有するこれらの基が挙げられる。
<高分子化合物>
 本発明の高分子化合物は、少なくとも2種の構成単位、具体的には、式(I)で表される構成単位と式(II)で表される構成単位とを有する。本発明の高分子化合物は、共役高分子化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
〔式(I)中、
 XおよびXは、それぞれ独立に、S(硫黄原子)またはO(酸素原子)を表す。
 YおよびYは、それぞれ独立に、C-(R)またはN(窒素原子)を表す。
 R、RおよびRは、それぞれ独立に、H(水素原子)、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、H(水素原子)、アルキル基、アリール基、アルコキシ基、アリールオキシ基または1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
Figure JPOXMLDOC01-appb-C000013
〔式(II)中、
 XおよびXは、それぞれ独立に、S(硫黄原子)またはO(酸素原子)を表す。
 YおよびYは、それぞれ独立に、C-(R)またはN(窒素原子)を表す。
 R、RおよびRは、それぞれ独立に、H(水素原子)、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、H(水素原子)、アルキル基、アリール基、アルコキシ基、アリールオキシ基または1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
 ただし、RとRとが同一であり、かつRとRとが同一であることはない。すなわち、RとRとが同一であり、かつRとRとが同一であることはなく、また、RとRとが同一であり、かつRとRとが同一であることはない。
 式(I)で表される構成単位としては、例えば、下記式(101)~式(116)で表される構成単位が挙げられる。式(101)~式(116)中、RおよびRは前述と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-I000015

Figure JPOXMLDOC01-appb-I000016

Figure JPOXMLDOC01-appb-I000017
 本発明の高分子化合物を用いて製造される光電変換素子の曲線因子の値を高める観点から、式(I)中、XおよびXは、S(硫黄原子)であることが好ましく、YおよびYは、C-Hであることが好ましい。式(I)で表される構成単位は、式(101)~式(116)中、式(101)、式(102)、式(105)および式(106)で表される構成単位であることが好ましく、式(101)および式(102)で表される構成単位がより好ましく、式(101)で表される構成単位がさらに好ましい。
 式(I)で表される構成単位としては、例えば、下記式(201)~式(212)で表される構成単位が挙げられる。式(201)~式(212)中、X、X、YおよびYは前述と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020
 本発明の高分子化合物を用いて製造される光電変換素子の曲線因子の値を高める観点から、式(I)中、RおよびRはアルキル基であることが好ましい。RおよびRがアルキル基である式(I)で表される構成単位としては、例えば、式(301)~式(315)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024

Figure JPOXMLDOC01-appb-I000025
 本発明の高分子化合物を用いて製造される光電変換素子の曲線因子の値を高める観点から、式(I)中、RおよびRは同一であることが好ましい。式(301)~式(315)で表される構成単位の中では、式(301)~式(311)で表される構成単位が好ましい。
 さらにRおよびRの炭素原子数は3~30が好ましく、4~20がより好ましく、12~19が特に好ましい。式(301)~式(315)で表される構成単位の中では、式(302)~式(315)が好ましく、式(302)~(314)がより好ましく、式(304)~式(314)がさらに好ましい。
 式(II)で表される構成単位としては、例えば、下記式(401)~式(416)で表される構成単位が挙げられる。式(401)~式(416)中、RおよびRは前述と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029
 本発明の高分子化合物を用いて製造される光電変換素子の曲線因子の値を高める観点から、式(II)中、XおよびXは、S(硫黄原子)であることが好ましく、YおよびYは、C-Hであることが好ましい。式(II)で表される構成単位は、式(401)~式(416)中、式(401)、式(402)、式(405)および式(406)で表される構成単位であることが好ましく、式(401)および式(402)で表される構成単位がより好ましく、式(401)で表される構成単位がさらに好ましい。
 式(II)で表される構成単位としては、例えば、下記式(501)~式(512)で表される構成単位が挙げられる。式(501)~式(512)中、X、X、YおよびYは前述と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-I000031

Figure JPOXMLDOC01-appb-I000032
 本発明の高分子化合物を用いて製造される光電変換素子の曲線因子の値を高める観点から、式(II)中、RおよびRはアルキル基であることが好ましい。RおよびRがアルキル基である式(II)で表される構成単位としては、例えば、式(601)~式(615)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-I000034

Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037
 本発明の高分子化合物を用いて製造される光電変換素子の曲線因子の値を高める観点から、式(II)中、RおよびRは同一であることが好ましく、式(601)~式(615)で表される構成単位の中では、式(601)~式(611)で表される構成単位が好ましい。
 さらにRおよびRの炭素原子数は3~30が好ましく、4~20がより好ましく、12~19が特に好ましい。式(601)~式(615)で表される構成単位の中では、式(602)~式(615)が好ましく、式(602)~(614)がより好ましく、式(604)~式(614)がさらに好ましい。
 本発明の高分子化合物は、式(I)で表される構成単位が式(201)で表される構成単位であり、式(II)で表される構成単位が式(605)で表される構成単位もしくは式(611)で表される構成単位である高分子化合物または式(I)で表される構成単位が式(305)であり、式(II)で表される構成単位が式(611)で表される構成単位である高分子化合物であることが好ましく、式(I)で表される構成単位が式(201)で表される構成単位であり、式(II)で表される構成単位が式(605)で表される構成単位である高分子化合物であることがより好ましい。
 式(I)で表される構成単位と、式(II)で表される構成単位とを有する高分子化合物は、本発明の高分子化合物を用いて製造される光電変換素子の曲線因子の値を高める観点から、さらに式(III)で表される構成単位を有することが好ましい。式(I)および式(II)で表される構成単位と、式(III)で表される構成単位とは、共役を形成することが好ましい。本発明における共役とは、不飽和結合と単結合とが交互に存在し、相互作用を示すことを指す。ここで不飽和結合とは二重結合や三重結合を指す。
Figure JPOXMLDOC01-appb-C000038
〔式(III)中、
 ―Ar―で表される基は、置換基を有していてもよい炭素原子数6~60のアリーレン基または置換基を有していてもよい2価の複素環基を表す。
 ただし、式(III)で表される構成単位は、式(I)および式(II)で表される構成単位とは異なる。〕
 ―Ar―で表されるアリーレン基が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基、アルコキシ基、シクロアルコキシ基、アルキルチオ基、シクロアルキルチオ基、-C(=O)-Rで表される基(Rは、H(水素原子)、アルキル基、アリール基、アルコキシ基、アリールオキシ基、1価の複素環基を表す。)、アリール基、アリールオキシ基、アリールチオ基、1価の複素環基またはハロゲン原子が挙げられる。
 ―Ar―で表される置換基を有していてもよいアリーレン基は、例えば、フェニレン基;ビフェニル-ジイル基、ターフェニル-ジイル基等のフェニレン基が2個以上結合している基;ナフタレン-ジイル基、アントラセン-ジイル基、フルオレン-ジイル基、ジヒドロフェナントレン-ジイル基、フェナントレン-ジイル基、ピレン-ジイル基等の縮合環化合物基が挙げられる。これらの基の具体例としては、式(701)~式(724)で表される基が挙げられる。これらの基は、置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-I000040

Figure JPOXMLDOC01-appb-I000041

Figure JPOXMLDOC01-appb-I000042

Figure JPOXMLDOC01-appb-I000043

Figure JPOXMLDOC01-appb-I000044
 ―Ar―で表される置換基を有していてもよい2価の複素環基としては、例えば、フラン、チオフェン、ピロール、ピロリン、ピロリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、イミダゾリン、イミダゾリジン、ピラゾール、ピラゾリン、プラゾリジン、フラザン、トリアゾール、チアジアゾール、オキサジアゾール、テトラゾール、ピラン、ピリジン、ピペリジン、チオピラン、ピリダジン、ピリミジン、ピラジン、ピペラジン、モルホリン、トリアジン、ベンゾフラン、イソベンゾフラン、ベンゾチオフェン、インドール、イソインドール、インドリジン、インドリン、イソインドリン、クロメン、クロマン、イソクロマン、ベンゾピラン、キノリン、イソキノリン、キノリジン、ベンゾイミダゾール、ベンゾチアゾール、インダゾール、ナフチリジン、キノキサリン、キナゾリン、キナゾリジン、シンノリン、フタラジン、プリン、プテリジン、カルバゾール、キサンテン、フェナントリジン、アクリジン、β-カルボリン、ペリミジン、フェナントロリン、チアントレン、フェノキサチイン、フェノキサジン、フェノチアジン、フェナジンなどの複素環式化合物から水素原子を2個除いた基、置換基を有するこれらの基、および、2以上のこれらの基が結合または縮環することにより形成される2価の基が挙げられる。置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アルキルチオ基、シクロアルキルチオ基、アリール基、1価の複素環基またはハロゲン原子が挙げられる。
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含まないで、通常2~30であり、好ましくは2~18である。
 ―Ar―で表される2価の複素環基としては、2価の芳香族複素環基が好ましい。
 2価の複素環基の具体例としては、式(725)~式(779)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000045

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047

Figure JPOXMLDOC01-appb-I000048

Figure JPOXMLDOC01-appb-I000049

Figure JPOXMLDOC01-appb-I000050

Figure JPOXMLDOC01-appb-I000051

Figure JPOXMLDOC01-appb-I000052

Figure JPOXMLDOC01-appb-I000053
 曲線因子の値を高める観点から、式(III)で表される構成単位は、式(III-1)~式(III-18)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000054
〔各式中、
 R、R、RおよびRは、それぞれ独立に、H(水素原子)、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、H(水素原子)、アルキル基、アリール基、アルコキシ基、アリールオキシ基、1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。
 XおよびXは、それぞれ独立に、S(硫黄原子)またはO(酸素原子)を表す。〕
 R~Rとしては、H(水素原子)、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していていもよい炭素原子数1~30のアルコキシ基およびハロゲン原子が好ましく、H(水素原子)、置換基を有していてもよい炭素原子数1~30のアルキル基およびフッ素原子であることがより好ましい。
 式(III)で表される構成単位としては、式(III-1)、式(III-4)、式(III-15)、式(III-17)および式(III-18)で表される構成単位が好ましく、式(III-1)および式(III-15)で表される構成単位がより好ましい。式(III-1)、式(III-4)、式(III-15)および式(III-18)で表される構成単位の具体例としては、式(III-1-1)~式(III-1-10)、式(III-4-1)~式(III-4-10)、式(III-15-1)~式(III-15-5)および式(III-18-1)~式(III-18-6)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000055

Figure JPOXMLDOC01-appb-I000056

Figure JPOXMLDOC01-appb-I000057

Figure JPOXMLDOC01-appb-I000058

Figure JPOXMLDOC01-appb-I000059

Figure JPOXMLDOC01-appb-I000060

Figure JPOXMLDOC01-appb-I000061
 式(I)で表される構成単位と、式(II)で表される構成単位と、式(III)で表される構成単位とを有する高分子化合物としては、下記式(I-II-III-1)~式(I-II-III-7)で表される高分子化合物が挙げられる。下記式(I-II-III-1)~式(I-II-III-7)はブロック共重合、ランダム共重合体および交互共重合体を特定するものではないが、曲線因子の値を高める観点から、ランダム共重合体であることが好ましい。
Figure JPOXMLDOC01-appb-C000062

Figure JPOXMLDOC01-appb-I000063

Figure JPOXMLDOC01-appb-I000064

Figure JPOXMLDOC01-appb-I000065

Figure JPOXMLDOC01-appb-I000066


〔各式中、
 X、X、X、X、Y、Y、Y、Y、R、R、R、R、X、X、RおよびRは、それぞれ前記と同じ意味を表す。各式中に複数存在するX、X、RおよびRは、各々、同一でもあっても異なっていてもよい。
 XおよびXは、それぞれ独立に、S(硫黄原子)またはO(酸素原子)を表す。
 YおよびYは、それぞれ独立に、C-(R)またはN(窒素原子)を表す。
 Rは、前記と同じ意味を表す。
 n1、n2およびn3は、高分子化合物に含まれる全ての構成単位の合計数を100モル%としたときの、各構成単位の合計数のモル%を表す。式(I-II-III-1)~式(I-II-III-5)で表される高分子化合物におけるn1は通常1~99、n2は通常1~99を表す。式(I-II-III-6)および式(I-II-III-7)で表される高分子化合物におけるn1は通常1~98、n2は通常1~98、n3は通常1~98を表す。〕
 本発明の高分子化合物が式(III)で表される構成単位を含む場合、曲線因子の値を高める観点から、式(I)で表される構成単位または式(II)で表される構成単位と、式(III)で表される構成単位とが、交互に結合した共重合体であることが好ましい。すなわち、式(I)で表される構成単位同士が直接結合することがなく、式(II)で表される構成単位同士が直接結合することがなく、式(I)で表される構成単位と式(II)で表される構成単位が直接結合することがなく、かつ、式(III)で表される構成単位同士が直接結合することがない共重合体であることが好ましい。
 交互に結合した共重合体としては、式(I-II-III-1)~式(I-II-III-5)で表される高分子化合物であることが好ましく、式(I-II-III-1)または式(I-II-III-3)で表される高分子化合物であることがより好ましい。
 式(I)で表される構成単位と、式(II)で表される構成単位と、式(III)で表される構成単位とを有する高分子化合物の具体例としては、式(801)~式(810)(n1、n2およびn3は前述と同じ意味を表す)で表される高分子化合物が挙げられる。これらの中でも、式(801)~式(807)および式(809)で表される高分子化合物が好ましく、式(801)、式(803)、式(805)、式(807)および式(809)で表される高分子化合物であることがより好ましく、式(801)および式(805)で表される高分子化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000067

Figure JPOXMLDOC01-appb-I000068

Figure JPOXMLDOC01-appb-I000069

Figure JPOXMLDOC01-appb-I000070

Figure JPOXMLDOC01-appb-I000071

Figure JPOXMLDOC01-appb-I000072

Figure JPOXMLDOC01-appb-I000073
 本発明の高分子化合物は、式(I)で表される構成単位および式(II)で表される構成単位の他に、式(IV)で表される構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-I000074
〔式(IV)中、
 XおよびXは、それぞれ独立に、S(硫黄原子)またはO(酸素原子)を表す。
 YおよびYは、それぞれ独立に、C-(R)またはN(窒素原子)を表す。
 R、RおよびRは、それぞれ独立に、H(水素原子)、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、H(水素原子)、アルキル基、アリール基、アルコキシ基、アリールオキシ基または1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
 ただし、式(IV)で表される構成単位は、高分子化合物が有する式(I)で表される構成単位および式(II)で表される構成単位とは異なる構成単位を表す。
 式(I)で表される構成単位と、式(II)で表される構成単位と、式(III)で表される構成単位と、式(IV)で表される構成単位とを有する高分子化合物の具体例としては、式(811)および式(812)(n1、n2およびn3は前述と同じ意味を表す)で表される高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-I000076
 本発明の高分子化合物のポリスチレン換算の重量平均分子量は、3000~10000000が好ましく、8000~5000000がより好ましく、10000~100000がさらに好ましい。重量平均分子量が3000より小さいと素子作製時の膜形成に欠陥が生じることがあり、10000000より大きいと溶媒への溶解性や素子作製時の塗布性が低下することがある。
 本発明における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレンの標準試料を用いて算出したポリスチレン換算の重量平均分子量を意味する。
 本発明の高分子化合物を素子に用いる場合、素子作製の容易性の観点からは、高分子化合物の溶媒への溶解度が高いことが望ましい。具体的には、本発明の高分子化合物が、該高分子化合物を0.01重量(wt)%以上含む溶液を作製し得る溶解性を有することが好ましく、0.1wt%以上含む溶液を作製し得る溶解性を有することがより好ましく、0.2wt%以上含む溶液を作製し得る溶解性を有することがさらに好ましい。
 本発明の高分子化合物のポリスチレン換算の数平均分子量は、好ましくは1×10~1×10である。ポリスチレン換算の数平均分子量が1×10以上である場合には、強靭な薄膜が得られやすくなる。一方、1×10以下である場合には、溶解性が高く、薄膜の作製が容易である。
 本発明における数平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレンの標準試料を用いて算出したポリスチレン換算の数平均分子量を意味する。
 高分子化合物が、式(I)で表される構成単位と、式(II)で表される構成単位とを有する場合、式(I)で表される構成単位の合計数、および、式(II)で表される構成単位の合計数は、それぞれ高分子化合物に含まれる全ての構成単位の合計数に対して1~99モル%であることが好ましく、2.5~97.5モル%であることがより好ましい。
 高分子化合物が、式(I)で表される構成単位と、式(II)で表される構成単位と、式(III)で表される構成単位とを有する場合、式(I)で表される構成単位の合計数、式(II)で表される構成単位の合計数、および、式(III)で表される構成単位の合計数は、それぞれ高分子化合物に含まれる全ての構成単位の合計数に対して1~98モル%であることが好ましく、2.5~95.0モル%であることがより好ましい。
 高分子化合物が、式(I)で表される構成単位と、式(II)で表される構成単位と、式(IV)で表される構成単位とを有する場合、式(I)で表される構成単位の合計数、式(II)で表される構成単位の合計数および式(IV)で表される構成単位の合計数は、それぞれ高分子化合物に含まれる全ての構成単位の合計数に対して1~98モル%であることが好ましく、2.5~95.0モル%であることがより好ましい。
 高分子化合物が、式(I)で表される構成単位と、式(II)で表される構成単位と、式(III)で表される構成単位と、式(IV)で表される構成単位とを有する場合、式(I)で表される構成単位の合計数、式(II)で表される構成単位の合計数、式(III)で表される構成単位の合計数、および、式(IV)で表される構成単位の合計数は、それぞれ高分子化合物に含まれる全ての構成単位の合計数に対して1~97モル%であることが好ましく、2.5~92.5モル%であることがより好ましい。
 高分子化合物が、式(I)で表される構成単位と、式(II)で表される構成単位と、式(III)で表される構成単位とを有する場合(式(IV)で表される構成単位は含まない。)、高分子化合物が有する、式(I)で表される構成単位、式(II)で表される構成単位、および、式(III)で表される構成単位の合計数は、高分子化合物に含まれる全ての構成単位の合計数に対して、30~100モル%であることが好ましく、50~100モル%であることがより好ましく、100モル%であることがさらに好ましい。
 高分子化合物が、式(I)で表される構成単位と、式(II)で表される構成単位と、式(III)で表される構成単位と、式(IV)で表される構成単位とを有する場合、高分子化合物が有する、式(I)で表される構成単位、式(II)で表される構成単位、式(III)で表される構成単位、および、式(IV)で表される構成単位の合計数は、高分子化合物に含まれる全ての構成単位の合計数に対して30~100モル%であることが好ましく、50~100モル%であることがより好ましく、100モル%であることがさらに好ましい。
 高分子化合物における、式(I)で表される構成単位の合計数(N)の式(I)で表される構成単位の合計数(N)および式(II)で表される構成単位の合計数(NII)に対する比率(N/(N+NII))は、通常0.01~0.99である。
 高分子化合物における、式(III)で表される構成単位の合計数(NIII)の式(I)で表される構成単位の合計数(N)および式(II)で表される構成単位の合計数(NII)に対する比率(NIII/(N+NII))は、通常0~49である。式(III)で表される構成単位を含む場合、上記比率(NIII/(N+NII))は、0.5~2.0であることが好ましい。
 高分子化合物における、式(IV)で表される構成単位の合計数(NIV)の式(I)で表される構成単位の合計数(N)および式(II)で表される構成単位の合計数(NII)に対する比率(NIV/(N+NII))は、通常0~49である。式(IV)で表される構成単位を含む場合、上記比率(NIV/(N+NII))は、0.01~0.5であることが好ましい。
 本発明の高分子化合物は、高い電子および/またはホール輸送性を発揮し得るため、該高分子化合物を含む有機薄膜を素子に用いた場合、電極から注入された電子やホールまたは光吸収によって発生した電荷を輸送することができる。これらの特性を活かして、本発明の高分子化合物は、有機光電変換素子、有機薄膜トランジスタ、有機エレクトロルミネッセンス素子等の種々の電子素子に好適に用いることができる。
<高分子化合物の製造方法>
 本発明の高分子化合物は、如何なる方法で製造してもよいが、例えば、用いる重合反応に適した官能基を有するモノマーを合成した後に、必要に応じて該モノマーを有機溶媒に溶解し、塩基、触媒、配位子等を用いた公知のアリールカップリング反応を用いて重合することにより合成することができる。前記モノマーの合成は、例えば、特開2006-182920号公報、特開2006-335933号公報、特開2014-031364号公報に示された方法を参考にして行うことができる。
 アリールカップリング反応による重合では、通常、溶媒が用いられる。該溶媒は、用いる重合反応、モノマーおよびポリマーの溶解性等を考慮して選択すればよい。具体的には、テトラヒドロフラン、トルエン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、およびN,N-ジメチルホルムアミド、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒、有機溶媒相と水相の二相を有する溶媒が挙げられる。
 前記アリールカップリング反応の反応温度の下限は、反応性の観点からは、好ましくは-100℃であり、より好ましくは-20℃であり、さらに好ましくは0℃である。反応温度の上限は、モノマーおよび化合物の安定性の観点からは、好ましくは200℃であり、より好ましくは150℃であり、さらに好ましくは120℃である。
 前記アリールカップリング反応による重合において、反応終了後の反応溶液からの本発明の高分子化合物を取り出す方法としては、公知の方法が挙げられる。例えば、メタノール等の低級アルコールに反応終了後の反応溶液を加え、析出した沈殿をろ過し、得られたろ物を乾燥することにより、本発明の高分子化合物を得ることができる。得られた高分子化合物の純度が低い場合は、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等により精製することができる。
 本発明の高分子化合物を有機光電変換素子の製造に用いる場合、高分子化合物の末端に重合活性基が残っていると、有機光電変換素子の耐久性等の特性が低下することがあるため、高分子化合物の末端を安定な基で保護することが好ましい。
 末端を保護する安定な基としては、アルキル基、アルコキシ基、フルオロアルキル基、フルオロアルコキシ基、アリール基、アリールアミノ基および1価の複素環基等が挙げられる。アリールアミノ基としては、フェニルアミノ基、ジフェニルアミノ基等が挙げられる。1価の複素環基としては、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基およびイソキノリル基等が挙げられる。また、高分子化合物の末端に残っている重合活性基を、安定な基に代えて、水素原子で置換してもよい。ホール輸送性を高める観点からは、末端を保護する安定な基がアリールアミノ基などの電子供与性を付与する基であることが好ましい。高分子化合物が共役高分子化合物である場合、高分子化合物の主鎖の共役構造と末端を保護する安定な基の共役構造とが連続するような共役結合を有している基も末端を保護する安定な基として好ましく用いることができる。該基としては、例えば、アリール基、芳香族性を有する1価の複素環基が挙げられる。
 アリールカップリング反応による重合は、例えば、Suzukiカップリング反応による重合、Stilleカップリング反応による重合、Yamamotoカップリング反応による重合、Kumada-Tamaoカップリング反応による重合が挙げられる。
 前記アリールカップリング反応による重合の中でも、反応性の観点からは、Stilleカップリング反応により重合する方法、Suzukiカップリング反応により重合する方法、Yamamotoカップリング反応により重合する方法が好ましい。Yamamotoカップリング反応による重合する方法は、ニッケルゼロ価錯体を用いたYamamotoカップリング反応による重合する方法であることが好ましい。
(Suzukiカップリング反応による重合)
 Suzukiカップリング反応を用いる方法としては、例えば、式(901):
   Q-E-Q   (901)
〔式中、
 Eは、式(III)で表される構成単位を表す。
 QおよびQは、同一または相異なり、ホウ酸残基(-B(OH))、ホウ酸エステル残基またはボレート塩残基を表す。〕
で表される1種類以上の化合物と、式(902):
   T-E-T   (902)
〔式中、
 E2は、式(I)、式(II)または式(III)で表される構成単位を表す。
 TおよびTは、それぞれ独立に、ハロゲン原子を表す。〕
で表される2種類以上の化合物とを、パラジウム触媒および塩基の存在下で反応させる工程を有する製造方法が挙げられる。前記製造方法により、式(I)で表される構成単位、式(II)で表される構成単位および式(III)で表される構成単位を含む高分子化合物を得ることができる。ただし、式(902)で表される2種類以上の化合物は、式(902)においてEが式(I)で表される構成単位である化合物、および、Eが式(II)で表される構成単位である化合物を含む。Eは、式(III-1)~式(III-18)で表される構成単位であることが好ましい。
 式(901)で表される化合物と式(902)で表される化合物とを反応させる場合、反応に用いる式(902)で表わされる2種類以上の化合物のモル数の合計が、式(901)で表わされる1種類以上の化合物のモル数の合計に対して、過剰であることが好ましい。反応に用いる式(902)で表わされる2種類以上の化合物のモル数の合計を1モルとすると、式(901)で表わされる1種類以上の化合物のモル数の合計が0.6~0.99モルであることが好ましく、0.7~0.95モルであることがさらに好ましい。
 ホウ酸エステル残基は、ホウ酸ジエステルから水酸基を除いた基を表す。ホウ酸エステル残基およびボレート塩残基の具体例としては、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000077
〔式中、Meはメチル基を表し、Etはエチル基を表し、Mは金属イオンを表す。〕
 金属イオンとしては、リチウム、ナトリウム、カリウムおよびセシウム等のアルカリ金属イオンが挙げられる。
 式(902)における、TおよびTで表されるハロゲン原子は、高分子化合物の合成の容易さからは、臭素原子またはヨウ素原子であることが好ましく、臭素原子であることがより好ましい。
 具体的には、Suzukiカップリング反応を行う方法としては、任意の溶媒中において、触媒としてパラジウム触媒を用い、塩基の存在下で反応させる方法が挙げられる。
 Suzukiカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられ、具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウムおよびビス(ジベンジリデンアセトン)パラジウムが挙げられる。反応(重合)操作の容易さ、反応(重合)速度の観点からは、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテートおよびトリス(ジベンジリデンアセトン)ジパラジウムが好ましい。パラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(901)で表される化合物1モルに対して、通常、0.0001モル~0.5モルであり、好ましくは0.0003モル~0.1モルである。
 Suzukiカップリング反応に使用するパラジウム触媒としてパラジウムアセテート類を用いる場合は、トリフェニルホスフィン、トリ(o-トリル)ホスフィンまたはトリ(o-メトキシフェニル)ホスフィン等のリン化合物を配位子として添加することができる。この場合、配位子の添加量は、パラジウム触媒1モルに対して、通常、0.5モル~100モルであり、好ましくは0.9モル~20モルであり、さらに好ましくは1モル~10モルである。
 Suzukiカップリング反応に使用する塩基としては、無機塩基、有機塩基、無機塩等が挙げられる。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、水酸化バリウムおよびリン酸カリウムが挙げられる。有機塩基としては、例えば、トリエチルアミンおよびトリブチルアミンが挙げられる。無機塩としては、例えば、フッ化セシウムが挙げられる。塩基の添加量は、式(901)で表される化合物1モルに対して、通常、0.5モル~100モルであり、好ましくは0.9モル~20モルであり、さらに好ましくは1モル~10モルである。
 Suzukiカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N-ジメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフラン、塩化メチレン、1,4-ジオキサン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、および、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒ならびに有機溶媒相と水相の二相を有する溶媒が例示される。本発明に用いられる高分子化合物の溶解性の観点からは、トルエンまたはテトラヒドロフランが好ましい。Suzukiカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。有機溶媒相と水相の二相を有する溶媒としては、前記塩基を含む水溶液を前記有機溶媒に加えることによって得られる、水相と有機溶媒相の二相を有する溶媒が挙げられる。塩基として無機塩を用いる場合は、無機塩の溶解性の観点から、通常、塩基を含む水溶液を反応液に加えて反応させる。なお、二相系で反応させる場合は、必要に応じて、第4級アンモニウム塩などの相間移動触媒を加えてもよい。
 Suzukiカップリング反応を行う温度は、前記溶媒にもよるが、通常、40~160℃程度である。高分子化合物の高分子量化の観点からは、60~120℃が好ましい。
また、溶媒の沸点近くまで昇温し、還流させてもよい。
 反応時間は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間~200時間程度である。0.5時間~30時間程度が効率的で好ましい。
 Suzukiカップリング反応は、不活性雰囲気下、パラジウム触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分置換された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、この重合容器に、式(901)で表される化合物、式(902)で表される化合物、パラジウム触媒、例えば、ジクロロビス(トリフェニルホスフィン)パラジウム(II)を仕込み、再度、重合容器内を窒素ガスで十分置換し、あらかじめ窒素ガスでバブリングした溶媒、例えば、トルエンを加えた後、得られた溶液に、窒素ガスでバブリングした塩基性の水溶液、例えば、炭酸ナトリウム水溶液を滴下した後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。
(Stilleカップリング反応による重合)
 Stilleカップリング反応を用いる方法としては、例えば、式(903):
   Q-E-Q   (903)
〔式中、
 Eは、式(III)で表される構成単位を表す。
 QおよびQは、それぞれ独立に、-SnR で表される基(Rは、炭素原子数1~50のアルキル基、炭素原子数3~50のシクロアルキル基または炭素原子数6~60のアリール基を表す)を表す。〕
で表される1種類以上の化合物と、前記式(902)で表される2種類以上の化合物とを、パラジウム触媒の存在下で反応させる工程を有する製造方法が挙げられる。Eとしては、式(III-1)~式(III-18)で表される構成単位であることが好ましい。
 Rで表される炭素原子数1~50のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、ヘキシル基、イソヘキシル基、3-メチルペンチル基、2一メチルペンチル基、1-メチルペンチル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基等が挙げられる。
 Rで表される炭素原子数3~50のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基およびアダマンチル基等が挙げられる。
 Rで表される炭素原子数6~60のアリール基としてはフェニル基およびナフチル基などが挙げられる。
 -SnR で表される基は、-SnMe、-SnEt、-SnBuおよび-SnPhであることが好ましく、-SnMe、-SnEtおよびSnBu(Meはメチル基を、Etはエチル基を、Buはブチル基を、Phはフェニル基を表す。)であることがより好ましい。
 式(902)における、TおよびTで表されるハロゲン原子としては、高分子化合物の合成の容易さからは、臭素原子、ヨウ素原子であることが好ましい。
 具体的には、Stilleカップリング反応を行う方法としては、任意の溶媒中において、触媒としてパラジウム触媒存在下で反応させる方法が挙げられる。
 Stilleカップリング反応に使用するパラジウム触媒としては、例えば、Pd(0)触媒、Pd(II)触媒が挙げられる。具体的には、パラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類、ジクロロビス(トリフェニルホスフィン)パラジウム、パラジウムアセテート、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウムが挙げられる。反応(重合)操作の容易さ、反応(重合)速度の観点からは、パラジウム[テトラキス(トリフェニルホスフィン)]、トリス(ジベンジリデンアセトン)ジパラジウムが好ましい。Stilleカップリング反応に使用するパラジウム触媒の添加量は、特に限定されず、触媒としての有効量であればよいが、式(902)で表される化合物1モルに対して、通常、0.0001モル~0.5モル、好ましくは0.0003モル~0.2モルである。
 Stilleカップリング反応において、必要に応じて配位子や助触媒を用いることもできる。配位子としては、例えば、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(o-メトキシフェニル)ホスフィンおよびトリス(2-フリル)ホスフィン等のリン化合物やトリフェニルアルシンおよびトリフェノキシアルシン等の砒素化合物が挙げられる。助触媒としてはヨウ化銅、臭化銅、塩化銅および2-テノイル酸銅(I)などが挙げられる。配位子または助触媒を用いる場合、配位子または助触媒の添加量は、パラジウム触媒1モルに対して、通常、0.5モル~100モルであり、好ましくは0.9モル~20モル、さらに好ましくは1モル~10モルである。
 Stilleカップリング反応は、通常、溶媒中で行われる。溶媒としては、N,N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、トルエン、ジメトキシエタンおよびテトラヒドロフランおよびこれらの溶媒を2種以上混合した混合溶媒等有機溶媒並びに有機溶媒相と水相の二相を有する溶媒等が挙げられる。本発明に用いられる高分子化合物の溶解性の観点からは、トルエン、テトラヒドロフランが好ましい。Stilleカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。
 Stilleカップリング反応を行う温度は、前記溶媒にもよるが、通常、50~160℃程度であり、高分子化合物の高分子量化の観点からは、60~120℃が好ましい。
また、溶媒の沸点近くまで昇温し、還流させてもよい。
 前記反応を行う時間(反応時間)は、目的の重合度に達したときを終点としてもよいが、通常、0.1時間~200時間程度である。1時間~30時間程度が効率的で好ましい。
 Stilleカップリング反応は、不活性雰囲気下、Pd(パラジウム)触媒が失活しない反応系で行う。例えば、アルゴンガスや窒素ガス等で、十分置換された系で行う。具体的には、重合容器(反応系)内を窒素ガスで十分置換し、脱気した後、この重合容器に、式(903)で表される化合物、式(902)で表される化合物、パラジウム触媒を仕込み、再度、重合容器内を窒素ガスで十分置換し、あらかじめ窒素ガスでバブリングした溶媒、例えば、トルエンを加えた後、必要に応じて配位子や助触媒を加え、その後、加熱、昇温し、例えば、還流温度で8時間、不活性雰囲気を保持しながら重合する。
(Yamamotoカップリング反応による重合)
 Yamamotoカップリング反応による重合は、触媒と還元剤とを用い、ハロゲン原子を有するモノマー同士、トリフルオロメタンスルホネート基等のスルホネート基を有するモノマー同士、または、ハロゲン原子を有するモノマーとスルホネート基を有するモノマーとを反応させる重合である。
 触媒としては、ビス(シクロオクタジエン)ニッケル等のニッケルゼロ価錯体とビピリジル等の配位子からなる触媒、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケルゼロ価錯体以外のニッケル錯体と、必要に応じ、トリフェニルホスフィン、ジフェニルホスフィノプロパン、トリ(シクロヘキシル)ホスフィンおよびトリ(tert-ブチル)ホスフィン等の配位子からなる触媒が挙げられる。
 Yamamotoカップリング反応に用いる溶媒は、テトラヒドロフラン、トルエン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、および、これらの溶媒を2種以上混合した混合溶媒等の有機溶媒が好ましい。Yamamotoカップリング反応に用いる溶媒は、副反応を抑制するために、反応前に脱酸素処理を行うことが好ましい。
 還元剤としては、例えば、亜鉛、マグネシウムが挙げられる。
 Yamamotoカップリング反応による重合は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
 Yamamotoカップリング反応による重合の詳細は、例えば、マクロモルキュルズ(Macromolecules),1992年,第25巻,p.1214-1223に記載されている。
(Kumada-Tamaoカップリング反応による重合)
 Kumada-Tamaoカップリング反応による重合は、[ビス(ジフェニルホスフィノ)エタン]ニッケルジクロライド、および、[ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド等のニッケル触媒を用い、ハロゲン化マグネシウム基を有する化合物とハロゲン原子を有する化合物とを反応させる重合するである。ハロゲン化マグネシウム基とは、-MgXで表される基である(Xはハロゲン原子を表す)。
 Kumada-Tamaoカップリング反応による重合は、脱水した溶媒を反応に用いてもよく、不活性雰囲気下で反応を行ってもよく、脱水剤を反応系中に添加して行ってもよい。
<有機光電変換素子>
 本発明の有機光電変換素子は、第1の電極と、第2の電極と、第1の電極および第2の電極の間に設けられた、本発明の高分子化合物を含む活性層とを有する。
 本発明の有機光電変換素子は、第1の電極と、第2の電極と、第1の電極および第2の電極の間に設けられる活性層とを有する有機光電変換素子であって、第1の電極および第2の電極のいずれか一方が透明または半透明であり、活性層が電子供与性化合物と電子受容性化合物とを有し、かつ電子供与性化合物として本発明の高分子化合物を含んでいることが好ましい。
 有機光電変換素子は、電極、活性層以外の構成要素を有していてもよく、例えば、基板、正孔輸送層、電子輸送層等を有していてもよい。
 本発明の有機光電変換素子としては、例えば、基板、第1の電極、正孔輸送層、活性層および第2の電極がこの順で設けられた有機光電変換素子並びに、第1の電極、正孔輸送層、活性層、電子輸送層および第2の電極がこの順で設けられた有機光電変換素子が挙げられる。
(基板)
 本発明の高分子化合物を用いて製造される有機光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコンが挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明または半透明であることが好ましい。
(第1の電極および第2の電極)
 透明または半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料、NESA、金、白金、銀、銅が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。
 電極材料として、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体等の有機の透明導電膜を用いてもよい。
 一方の電極は透明でなくてもよく、該電極の電極材料としては、金属、導電性高分子等を用いることができる。電極材料の具体例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、およびそれらのうち2つ以上の合金、または、1種以上の前記金属と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステンおよび錫からなる群から選ばれる1種以上の金属との合金、グラファイト、グラファイト層間化合物、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体が挙げられる。合金としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。
 (正孔輸送層)
 正孔輸送層は、電子ブロックの機能を有する。正孔輸送層を設けることで、より高い光電変換効率を示す光電変換素子を得ることができる。正孔輸送層は、例えば、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)などを含む。
 (活性層)
 活性層は、本発明の高分子化合物を一種単独で含んでいても二種以上を組み合わせて含んでいてもよい。活性層のホール輸送性を高めるため、電子供与性化合物および/または電子受容性化合物として、本発明の高分子化合物以外の化合物を活性層中に混合して用いることもできる。なお、電子供与性化合物、電子受容性化合物は、これらの化合物のエネルギー準位のエネルギーレベルから相対的に決定される。
 電子供与性化合物としては、本発明の高分子化合物のほか、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェンおよびその誘導体、ポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖または主鎖に芳香族アミン残基を有するポリシロキサン誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体が挙げられる。
 電子受容性化合物としては、本発明の高分子化合物のほか、例えば、炭素材料、酸化チタン等の金属酸化物、オキサジアゾール誘導体、アントラキノジメタンおよびその誘導体、ベンゾキノンおよびその誘導体、ナフトキノンおよびその誘導体、アントラキノンおよびその誘導体、テトラシアノアントラキノジメタンおよびその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンおよびその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリンおよびその誘導体の金属錯体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、ポリフルオレンおよびその誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(バソクプロイン)等のフェナントロリン誘導体、フラーレン、フラーレン誘導体が挙げられ、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、さらに好ましくはフラーレン、フラーレン誘導体である。
 フラーレン、フラーレン誘導体としてはC60、C70、C76、C78、C84およびその誘導体が挙げられる。フラーレン誘導体は、フラーレンの少なくとも一部が修飾された化合物を表す。
 フラーレン誘導体としては、例えば、式(1001)~式(1004)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000078
〔式(1001)~(1004)中、R、RおよびRは、置換基を有していてもよい炭素原子数1~50のアルキル基、置換基を有していてもよい炭素原子数3~50のシクロアルキル基、置換基を有していてもよい炭素原子数6~60のアリール基、置換基を有していてもよい炭素原子数2~30の1価の複素環基または炭素原子数2~30のエステル構造を有する基である。〕
 R、RおよびRで表される1価の複素環基としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、キノリル基およびイソキノリル基が挙げられる。
 R、RおよびRで表されるエステル構造を有する基は、例えば、式(1005)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000079
〔式中、
 mは、1~6の整数を表す。
 nは、0~6の整数を表す。
 Rは、置換基を有していてもよい炭素原子数1~50のアルキル基、置換基を有していてもよい炭素原子数3~50のシクロアルキル基、置換基を有していてもよい炭素原子数6~60アリール基または置換基を有していてもよい炭素原子数2~30の1価複素環基を表す。〕
 C60フラーレンの誘導体の具体例としては、式(1006)~式(1012)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000080

Figure JPOXMLDOC01-appb-I000081

Figure JPOXMLDOC01-appb-I000082
 C70フラーレンの誘導体の具体例としては、式(1013)~式(1015)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000083
(1013)    (1014)     (1015)
 また、フラーレン誘導体の例としては、[6,6]フェニル-C61酪酸メチルエステル(C60PCBM、[6,6]-Phenyl C61 butyric acid methyl ester)、[6,6]フェニル-C71酪酸メチルエステル(C70PCBM、[6,6]-Phenyl C71 butyric acid methyl ester)、[6,6]フェニル-C85酪酸メチルエステル(C84PCBM、[6,6]-Phenyl C85 butyric acid methyl ester)、[6,6]チエニル-C61酪酸メチルエステル([6,6]-Thienyl C61 butyric acid methyl ester)が挙げられる。
 活性層中に本発明の高分子化合物とフラーレン誘導体とが含まれる場合、フラーレン誘導体の量は、本発明の高分子化合物100重量部に対して、10~1000重量部であることが好ましく、20~500重量部であることがより好ましい。
 活性層の厚さは、通常、1nm~100μmであり、好ましくは2nm~1000nmであり、より好ましくは5nm~500nmであり、さらに好ましくは20nm~200nmである。
 (電子輸送層)
 電子輸送層は、正孔ブロック機能を有する。電子輸送層を設けることで、より高い光電変換効率を示す光電変換素子を得ることができる。電子輸送層は、例えば、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化チタンまたは酸化亜鉛等の金属酸化物、もしくはポリエチレンイミンエトキシレートなどを含む。
<高分子化合物を含む組成物>
 本発明の高分子化合物を含む組成物としては、本発明の高分子化合物と、電子受容性化合物とを含む組成物が挙げられる。組成物は、さらに溶媒を含んでいてもよい。溶媒としては、例えば、クロロベンゼン、ジクロロベンゼン、クロロナフタレン、トルエン、キシレン、メシチレン、プソイドクメン、テトラメチルベンゼン、テトラヒドロナフタレン、インダン、メチルナフタレン、ジヨードオクタン、安息香酸メチル、アセトフェノン、プロピオフェノンが挙げられる。組成物に含まれる溶媒の重量の合計が、組成物の全重量に対して70重量%以上であることが好ましい。
<有機光電変換素子の製造方法>
 本発明の光電変換素子は、例えば、基板上に第1の電極を形成する工程と、第1の電極上に本発明の高分子化合物と溶媒とを含む組成物を塗布法により塗布して活性層を形成する工程と、活性層上に第2の電極を形成する工程とを含む製造方法によって製造することができる。
 正孔輸送層を設ける場合、本発明の光電変換素子は、例えば、基板上に第1の電極を形成する工程と、第1の電極上に正孔輸送層を形成する工程と、正孔輸送層上に本発明の高分子化合物と溶媒とを含む組成物を塗布法により塗布して活性層を形成する工程と、活性層上に第2の電極を形成する工程とを含む製造方法によって製造することができる。
(第1の電極を形成する工程)
 第1の電極は、基板上において所定のパターン形状に形成される。第1の電極が形成された基板は、基板に導電性材料を含む薄膜が形成された構造体を市場にて入手して基板上において導電性材料を含む薄膜をパターン形成することにより用意してもよく、電極が予めパターン形成された電極付き基板を入手することにより用意してもよい。
 もちろん、本工程においては基板のみを用意し、基板に第1の電極を形成する工程を実施することができる。
 この場合、第1の電極は、既に説明した第1の電極の材料を用いて真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等によって前記基板に薄膜を形成し、必要ならば任意好適な方法により薄膜をパターニングすることで形成することができる。
 第1の電極の材料としてポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体等の有機物、導電性物質のナノ構造体(例、ナノ粒子、ナノワイヤ、ナノチューブ)を用いる場合には、前記有機物を含む塗布液(例、溶液、エマルション(乳濁液)、サスペンション(懸濁液))、金属インク、金属ペーストまたは溶融状態の低融点金属等を用いて、塗布法によって第1の電極を形成してもよい。
 第1の電極を形成するための塗布法の例としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を挙げることができ、これらの中でもスピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。
 第1の電極を塗布法により形成する際に用いる塗布液の溶媒としては、例えば、炭化水素溶媒(例、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベゼン、tert-ブチルベンゼン等)、ハロゲン化飽和炭化水素溶媒(例、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等)、ハロゲン化不飽和炭化水素(例、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等)、エーテル溶媒(例、テトラヒドロフラン、テトラヒドロピラン等)、水、アルコール等が挙げられる。アルコールの具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノール等が挙げられる。また陽極を塗布法により形成する際に用いられる塗布液は、2種類以上の溶媒を含んでいてもよく、上記で例示した溶媒を2種類以上含んでいてもよい。
 第1の電極には、オゾンUV処理、コロナ処理、超音波処理等の表面処理が施されていてもよい。
 (正孔輸送層を形成する工程)
 正孔輸送層を設ける上記の一実施形態によれば、正孔輸送層を形成する工程が実施される。正孔輸送層の形成方法は特に限定されないが、製造工程の簡易化の観点からは塗布法によって形成することが好ましい。塗布法を用いて正孔注入層を第1の電極に接合するように形成する場合、正孔輸送層は、例えば上記の正孔輸送層の材料と溶媒(媒体)とを含む組成物である塗布液を第1の電極が形成された支持基板の第1の電極側に塗布することにより形成することができる。
 既に説明した正孔輸送層の材料と溶媒とを含む塗布液を塗布する方法の例は、上記の陽極の形成方法において説明された塗布法の例および好ましい例と同様である
 正孔輸送層を形成するための塗布液に含まれる溶媒としては、水、アルコール、ケトン、炭化水素等が挙げられる。アルコールの具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブトキシエタノール、メトキシブタノール等が挙げられる。ケトンの具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン、シクロヘキサノン等が挙げられ、炭化水素の具体例としては、n-ペンタン、シクロヘキサン、n-ヘキサン、ベンゼン、トルエン、キシレン、テトラリン、クロロベンゼン、オルトジクロロベンゼン等が挙げられる。溶媒は、2種類以上を含んでいてもよく、上記のとおり例示された溶媒を2種類以上含んでいてもよい。前記溶媒は、前記正孔注入層の材料に対し、1重量倍以上10000重量倍以下であることが好ましく、10重量倍以上1000重量倍以下であることがより好ましい。
(活性層を形成する工程)
 前記活性層の製造方法は、如何なる方法で製造してもよく、例えば、高分子化合物と溶媒とを含む塗布液を用いた塗布法や、真空蒸着法による成膜方法が挙げられる。
 工程をより簡便にすることができるので塗布法によって形成することが好ましい。塗布法による塗布液の塗布後、塗膜に対して加熱処理、風乾処理、減圧処理等することによって溶媒を除く工程をさらに行うことが好ましい。
 塗布法に用いられる塗布液に含まれる溶媒は、本発明の高分子化合物を溶解させるものであれば特に限定されない。該溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン等の不飽和炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒、テトラヒドロフラン、テトラヒドロピラン等のエーテル溶媒が挙げられる。本発明の高分子化合物は、通常、前記溶媒に0.1重量%以上溶解させることができる。
 塗布法の例としては、スリットコート法、ナイフコート法、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法、オフセット印刷法、インクジェットコート法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等が挙げられる。スリットコート法、キャピラリーコート法、グラビアコート法、マイクログラビアコート法、バーコート法、ナイフコート法、ノズルコート法、インクジェットコート法、スピンコート法が好ましい。
 成膜性の観点からは、25℃における溶媒の表面張力が15mN/mより大きいことが好ましく、15mN/mより大きく100mN/mよりも小さいことがより好ましく、25mN/mより大きく60mN/mよりも小さいことがさらに好ましい。
 (第2の電極を形成する工程)
 第2の電極は、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法等によって、形成することができる。
 <有機光電変換素子の用途>
 本発明の高分子化合物を活性層に含む有機光電変換素子は、透明または半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。この有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
 また、有機光電変換素子を窓から得られる太陽光や蛍光灯などの室内照明を用い電極間に光起電力を生じさせれば、太陽電池としても使用可能である。本発明の高分子化合物を用いた光電変換素子は、太陽電池として非常に有用と考えられる。
 また、電極間に電圧を印加した状態、あるいは無印加の状態で、透明または半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。有機光センサーを複数集積することにより有機イメージセンサーとして用いることもできる。
 (太陽電池モジュール)
 有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプまたはポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の高分子化合物を用いて製造される有機薄膜太陽電池も使用目的や使用場所および環境により、適宜これらのモジュール構造を選択できる。
 代表的なスーパーストレートタイプあるいはサブストレートタイプのモジュールは、片側または両側が透明で反射防止処理を施された支持基板の間に一定間隔にセルが配置され、隣り合うセル同士が金属リードまたはフレキシブル配線等によって接続され、外縁部に集電電極が配置されており、発生した電力を外部に取り出される構造となっている。基板とセルの間には、セルの保護や集電効率向上のため、目的に応じエチレンビニルアセテート(EVA)等様々な種類のプラスチック材料をフィルムまたは充填樹脂の形で用いてもよい。
 また、外部からの衝撃が少ないところなど表面を硬い素材で覆う必要のない場所において使用する場合には、表面保護層を透明プラスチックフィルムで構成し、または上記充填樹脂を硬化させることによって保護機能を付与し、片側の支持基板をなくすことが可能である。支持基板の周囲は、内部の密封およびモジュールの剛性を確保するため金属製のフレームでサンドイッチ状に固定し、支持基板とフレームの間は封止材料で密封シールする。また、セルそのものや支持基板、充填材料および封止材料に可撓性の素材を用いれば、曲面の上に太陽電池を構成することもできる。ポリマーフィルム等のフレキシブル支持体を用いた太陽電池の場合、ロール状の支持体を送り出しながら順次セルを形成し、所望のサイズに切断した後、周縁部をフレキシブルで防湿性のある素材でシールすることにより電池本体を作製できる。また、Solar Energy Materials and Solar Cells, 48,p383-391記載の「SCAF」とよばれるモジュール構造とすることもできる。更に、フレキシブル支持体を用いた太陽電池は曲面ガラス等に接着固定して使用することもできる。
 <有機薄膜トランジスタ>
 本発明の高分子化合物は、有機薄膜トランジスタにも用いることができる。有機薄膜トランジスタとしては、ソース電極と、ドレイン電極と、ソース電極およびドレイン電極の電極間の電流経路となる有機半導体層(活性層)と、この電流経路を通る電流量を制御するゲート電極とを有する有機薄膜トランジスタであって、有機半導体層が本発明の高分子化合物を含む有機薄膜トランジスタが挙げられる。このような有機薄膜トランジスタとしては、電界効果型、静電誘導型等が挙げられる。有機薄膜トランジスタは、例えば電気泳動ディスプレイ、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ等の画素の制御や、画面輝度の均一性や画面書き換え速度を制御のために用いられる画素駆動素子等として用いることができる。
 電界効果型有機薄膜トランジスタは、ソース電極と、ドレイン電極と、ソース電極およびドレイン電極の間の電流経路となる有機半導体層(活性層)と、この電流経路を通る電流量を制御するゲート電極と、有機半導体層とゲート電極との間に配置される絶縁層とを備えることが好ましい。
 特に、ソース電極およびドレイン電極が、有機半導体層(活性層)に接して設けられており、さらに有機半導体層に接した絶縁層を挟んでゲート電極が設けられていることが好ましい。
 静電誘導型有機薄膜トランジスタは、ソース電極と、ドレイン電極と、ソース電極およびドレイン電極の間の電流経路となる有機半導体層(活性層)と、電流経路を通る電流量を制御するゲート電極とを有し、ゲート電極が有機半導体層中に設けられていることが好ましい。特に、ソース電極、ドレイン電極および有機半導体層中に設けられたゲート電極が、有機半導体層に接して設けられていることが好ましい。ここで、ゲート電極の構造としては、ソース電極からドレイン電極へ流れる電流経路が形成され、且つゲート電極に印加した電圧で電流経路を流れる電流量が制御できる構造であればよく、例えば、くし形電極が挙げられる。
<有機エレクトロルミネッセンス素子>
 本発明の高分子化合物は、有機エレクトロルミネッセンス素子(有機EL素子)に用いることもできる。有機EL素子は、少なくとも一方が透明または半透明である一対の電極間に発光層を有する。有機EL素子は、発光層の他にも、正孔輸送層、電子輸送層を含んでいてもよい。該発光層、正孔輸送層、電子輸送層のいずれかの層中に本発明の高分子化合物が含まれる。発光層中には、本発明の高分子化合物の他にも、電荷輸送材料(電子輸送材料と正孔輸送材料の総称を意味する)を含んでいてもよい。有機EL素子としては、陽極と発光層と陰極とを有する素子、さらに陰極と発光層の間に、該発光層に隣接して電子輸送材料を含有する電子輸送層を有する陽極と発光層と電子輸送層と陰極とを有する素子、さらに陽極と発光層の間に、該発光層に隣接して正孔輸送材料を含む正孔輸送層を有する陽極と正孔輸送層と発光層と陰極とを有する素子、陽極と正孔輸送層と発光層と電子輸送層と陰極とを有する素子等が挙げられる。
<OFETセンサー>
 本発明の高分子化合物は、OFETセンサーの製造に用いることもできる。本発明のOFETセンサーは、入力信号を電気信号に出力する信号変換素子として有機電界効果型トランジスタを用いたものであり、金属、絶縁膜および有機半導体層のいずれかの構造中に、感応性機能または選択性機能を付与したものである。本発明のOFETセンサーとしては、例えば、バイオセンサー、ガスセンサー、イオンセンサー、湿度センサーが挙げられる。
 バイオセンサーは、基板と基板上に設けられた有機薄膜トランジスタとを備える。有機薄膜トランジスタは、有機半導体層と、有機半導体に接触して設けられたソース領域およびドレイン領域と、ソース領域とドレイン領域との間に設けられた有機半導体層内のチャネル領域と、チャネル領域に電界を印加可能なゲート電極と、チャネル領域とゲート電極との間に設けられたゲート絶縁膜とを有する。そして、有機薄膜トランジスタは、チャネル領域および/またはゲート絶縁膜に、標的物質と特異的に相互作用するプローブ(感応性領域)を有し、標的物質が濃度変化した際に、プローブの特性変化が生じることにより、バイオセンサーとして機能する。
 被検試料中の標的物質を検出する手法としては、例えば、核酸、タンパク質等の生体分子、または、人工的に合成した官能基を、プローブとして固相担体表面に固定したバイオセンサーが挙げられる。
 この方法では、相補核酸鎖の相互作用、抗原-抗体反応の相互作用、酵素-基質反応の相互作用、受容体-リガンドの相互作用等の生体分子の特異的な親和性を利用して、標的物質を固相担体表面に捕捉する。そのため、標的物質に対して特異的な親和性を有する物質が、プローブとして選択される。
 プローブは、プローブの種類や固相担体の種類に応じた方法により、固相担体表面に固定される。また、固相担体表面上でプローブを合成(例えば、核酸伸長反応によりプローブを合成する方法)することもできる。いずれの場合も、プローブが固定された固相担体表面と被検試料とを接触させ、適当な条件下で培養することにより、固相担体表面上でプローブ-標的物質複合体が形成される。有機薄膜トランジスタが有するチャネル領域および/またはゲート絶縁膜自体が、プローブとして機能してもよい。
 ガスセンサーは、基板と基板上に設けられた有機薄膜トランジスタとを備える。有機薄膜トランジスタは、有機半導体層と、有機半導体に接触して設けられたソース領域およびドレイン領域と、ソース領域とドレイン領域との間に設けられた半導体層内のチャネル領域と、チャネル領域に電界を印加可能なゲート電極と、チャネル領域とゲート電極との間に設けられたゲート絶縁膜とを有する。そして、有機薄膜トランジスタは、チャネル領域および/またはゲート絶縁膜が、ガス感応部として機能する。ガス感応部に検知ガスが吸着脱離した際に、ガス感応部の特性変化(導電率、誘電率等)が生じることにより、ガスセンサーとして機能する。
 検知するガスとしては、例えば、電子受容性ガス、電子供与性ガスが挙げられる。電子受容性ガスとしては、例えば、F、Cl等のハロゲンガス;窒素酸化物ガス;硫黄酸化物ガス;酢酸等の有機酸ガスが挙げられる。電子供与性ガスとしては、例えば、アンモニアガス;アニリン等のアミン類ガス;一酸化炭素ガス;水素ガスが挙げられる。
 本発明の高分子化合物は、圧力センサーの製造に用いることもできる。本発明の圧力センサーは、基板と基板上に設けられた有機薄膜トランジスタとを備える。有機薄膜トランジスタは、有機半導体層と、有機半導体に接触して設けられたソース領域およびドレイン領域と、ソース領域とドレイン領域との間に設けられた有機半導体層内のチャネル領域と、チャネル領域に電界を印加可能なゲート電極と、チャネル領域とゲート電極との間に設けられたゲート絶縁膜とを有する。そして、有機薄膜トランジスタは、チャネル領域および/またはゲート絶縁膜が、感圧部として機能する。感圧部が感圧した際に、感圧部の特性変化が生じることにより、感圧センサーとして機能する。
 ゲート絶縁膜が感圧部として機能する場合、有機材料は無機材料に対して柔軟性、伸縮性が優れるため、ゲート絶縁膜は有機材料を含有することが好ましい。
 チャネル領域が感圧部として機能する場合、チャネル領域に含有される有機半導体の結晶性をより高めるため、有機薄膜トランジスタは更に配向層を有していてもよい。配向層としては、例えば、ヘキサメチルジシラザン等のシランカップリング剤を用いてゲート絶縁膜上に形成された単分子膜が挙げられる。
 また、本発明の高分子化合物は、電導度変調型センサーの製造に用いることもできる。
本発明の電導度変調型センサーは、入力信号を電気信号に出力する信号変換素子として電導度計測素子を用いたものであり、本発明の組成物もしくは高分子化合物を含有する膜、または、本発明の組成物もしくは高分子化合物を含有する膜の被覆に、センサー対象の入力に対する感応性機能または選択性機能を付与したものである。本発明の電導度変調型センサーは、センサー対象の入力を、本発明の組成物または高分子化合物の電導度の変化として検出するものである。本発明の電導度変調型センサーとしては、例えば、バイオセンサー、ガスセンサー、イオンセンサー、湿度センサーが挙げられる。
 また、本発明の高分子化合物は、別個に形成されたバイオセンサー、ガスセンサー、イオンセンサー、湿度センサー、圧力センサー等の各種センサーからの出力信号を増幅するための増幅回路として、有機電界効果型トランジスタを含む、増幅回路の製造に用いることもできる。
 また、本発明の高分子化合物は、バイオセンサー、ガスセンサー、イオンセンサー、湿度センサー、圧力センサー等の各種センサーを複数含むセンサーアレイの製造に用いることもできる。
 また、本発明の高分子化合物は、別個に形成されたバイオセンサー、ガスセンサー、イオンセンサー、湿度センサー、圧力センサー等の各種センサーを複数含み、各センサーからの出力信号を個別に増幅するための増幅回路として、有機電界効果型トランジスタを含む、増幅回路付きセンサーアレイの製造に用いることもできる。
<有機光センサー>
 本発明の有機光電変換素子は、電極間に電圧を印加した状態で、透明または半透明の電極から光を照射することにより、光電流が流れ、有機光センサーとして動作させることができる。さらに、前記有機光センサーを受光部とし、前記有機光センサーが生成する信号電流による出力を検知し、その信号電荷を読み出す駆動回路部と、前記有機光センサーと前記駆動回路とを結ぶ配線を備える、有機イメージセンサーとして用いることができる。前記有機光センサーは、検出する光の色選択性を持たせるため、光入射面側にカラーフィルターを具備させて用いることができ、あるいは光の3原色の各々に対して選択性の強い光吸収特性を有する複数種の有機光センサーを用いることもできる。前記駆動回路は、単結晶シリコンを用いたトランジスタで形成されたICチップ、または多結晶シリコン、アモルファスシリコン、セレン化カドミウムなどの化合物半導体、およびペンタセンなどの共役系有機化合物半導体などを用いた薄膜トランジスタで構成されるものを用いることができる。前記有機イメージセンサーは、スキャナ、デジタルカメラ、デジタルビデオなどの撮影素子として、電荷結合素子(CCD)や相補性金属酸化膜半導体(CMOS)を用いた既存のイメージセンサーに比べ、製造コストが安い、設置面積が小さいなどの利点が期待できる。また、共役系化合物の多様性より、様々な光感度特性をもつ有機光センサーを用いることができるため、用途に応じた性能をもつ有機イメージセンサーを提供することができる。例えば、本発明の高分子化合物を含む有機光センサーは、静脈認証、指紋認証、パルスオキシメーター、モーションセンサー、X線イメージパネルへの応用が可能である。
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
(数平均分子量および重量平均分子量の測定)
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)およびポリスチレン換算の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)(島津製作所製、商品名:LC-10Avp)により求めた。測定する高分子化合物を約0.5重量%の濃度でテトラヒドロフランに溶解させ、得られた溶液をGPCに30μL注入した。GPCの移動相としてテトラヒドロフランを用い、0.6mL/分の流速で流した。カラムとして、TSKgel SuperHM-H(東ソー製)2本とTSKgel SuperH2000(東ソー製)1本を直列に繋げて用いた。検出器には示差屈折率検出器(島津製作所製、商品名:RID-10A)を用いた。
実施例1
(高分子化合物P1の合成)
Figure JPOXMLDOC01-appb-I000084
 還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物1を666mg (0.950mmol)、化合物2を44.9mg(0.050mmol)、化合物3を388mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体P1を322mg得た。以下、この重合体を高分子化合物P1と呼称する。GPCで測定した高分子化合物P1の分子量(ポリスチレン換算)はMn.=34,000、Mw.=245,000であった。
実施例2
(高分子化合物P2の合成)
Figure JPOXMLDOC01-appb-I000085
 還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物4を746mg (0.950mmol)、化合物2を44.9mg (0.050mmol)、化合物3を388mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥することで精製された重合体P2を467mg得た。以下、この重合体を高分子化合物P2と呼称する。GPCで測定した高分子化合物P2の分子量(ポリスチレン換算)はMn.=88,000、Mw.=496,000であった。
実施例3
(高分子化合物P3の合成)
Figure JPOXMLDOC01-appb-I000086
 還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物4を706mg (0.900mmol)、化合物2を89.7mg (0.100mmol)、化合物3を388mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体P3を385mg得た。以下、この重合体を高分子化合物P3と呼称する。GPCで測定した高分子化合物P3の分子量(ポリスチレン換算)はMn.=73,000、Mw.=545,000であった。
実施例4
(高分子化合物P4の合成)
Figure JPOXMLDOC01-appb-I000087
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物1を350mg (0.500mmol)、化合物4を392mg (0.500mmol)、化合物5を392mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体P4を397mg得た。以下、この重合体を高分子化合物P4と呼称する。GPCで測定した高分子化合物P4の分子量(ポリスチレン換算)はMn.=71,000、Mw.=350,000であった。
実施例5
(高分子化合物P5の合成)
Figure JPOXMLDOC01-appb-I000088
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物1を210mg (0.300mmol)、化合物4を549mg (0.700mmol)、化合物5を392mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体P5を428mg得た。以下、この重合体を高分子化合物P5と呼称する。GPCで測定した高分子化合物P5の分子量(ポリスチレン換算)はMn.=109,000、Mw.=670,000であった。
実施例6
(高分子化合物P6の合成)
Figure JPOXMLDOC01-appb-I000089
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物1を631mg (0.900mmol)、化合物2を89.7mg (0.100mmol)、化合物5を392mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体P6を468mg得た。以下、この重合体を高分子化合物P6と呼称する。GPCで測定した高分子化合物P6の分子量(ポリスチレン換算)はMn.=65,000、Mw.=336,000であった。
実施例7
(高分子化合物P7の合成)
Figure JPOXMLDOC01-appb-I000090
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物4を746mg (0.950mmol)、化合物2を44.9mg (0.050mmol)、化合物5を392mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体P7を584mg得た。以下、この重合体を高分子化合物P7と呼称する。GPCで測定した高分子化合物P7の分子量(ポリスチレン換算)はMn.=107,000、Mw.=663,000であった。
実施例8
(高分子化合物P8の合成)
Figure JPOXMLDOC01-appb-I000091
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物1を315mg (0.450mmol)、化合物4を353mg (0.450mmol)、化合物2を89.7mg (0.100mmol)、化合物5を392mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体P8を287mg得た。以下、この重合体を高分子化合物P8と呼称する。GPCで測定した高分子化合物P8の分子量(ポリスチレン換算)はMn.=60,000、Mw.=456,000であった。
合成例1
(高分子化合物PIの合成)
Figure JPOXMLDOC01-appb-I000092
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物4を785mg (1.00mmol)、化合物3を388mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した後、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った。その後、そこに、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体PIを405mg得た。以下この重合体を高分子化合物PIと呼称する。GCPで測定した高分子化合物PIの分子量(ポリスチレン換算)はMn.=40,000、Mw.=126,000であった。
合成例2
(高分子化合物PIIの合成)
Figure JPOXMLDOC01-appb-I000093
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物1を706mg (1.00mmol)、化合物3を388mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した後、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った。その後、そこに、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体PIIを419mg得た。以下、この重合体を高分子化合物PIIと呼称する。GPCで測定した高分子化合物PIIの分子量(ポリスチレン換算)はMn.=38,000、Mw.=203,000であった。
合成例3
(高分子化合物PIIIの合成)
Figure JPOXMLDOC01-appb-I000094
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物2を897mg (1.00mmol)、化合物3を388mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、ろ過した。得られた固体を乾燥させて精製することにより、重合体PIIIを453mg得た。以下、この重合体を高分子化合物PIIIと呼称する。
GPCで測定した高分子化合物PIIIの分子量(ポリスチレン換算)はMn.=36,000、Mw.=106,000であった。
合成例4
(高分子化合物PIVの合成)
Figure JPOXMLDOC01-appb-I000095
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物4を785mg (1.00mmol)、化合物5を392mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。得られた有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、をろ過した。得られた固体を乾燥させて精製することにより、重合体PIVを700mg得た。以下、この重合体を高分子化合物PIVと呼称する。GPCで測定した高分子化合物PIVの分子量(ポリスチレン換算)はMn.=64,000、Mw.=202,000であった。
合成例5
(高分子化合物PVの合成)
 窒素雰囲気下、還流管を取り付けた200mLセパラブルフラスコ内を窒素雰囲気とした後、化合物1を706mg (1.00mmol)、化合物5を392mg (1.00mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボレート([P(t-Bu)H]BF)を23.2mg (0.0800mml)、テトラヒドロフランを25.0ml、クロロベンゼンを25.0mL入れ、均一溶液とした。30分の窒素ガスバブリング後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pd(dba))を18.3mg (0.0200mmol)、KPO水溶液を3.30mL加え、得られた溶液を70℃まで昇温し、70℃で30分間加熱攪拌した。その後、そこに、オルト-ジクロロベンゼンを25.0mL、水を38.0mL加え反応を停止させた。さらに70℃で10分間加熱攪拌を行った後、水層を除去した。有機層を酢酸水溶液38mLで1回、水38mLで2回洗浄し、得られた溶液をアセトンに注いでポリマーを析出させた後、ろ過した。得られた固体をオルト-ジクロロベンゼン 115mLに溶解させ、アルミナ/シリカゲルカラムに通した。得られた溶液をメタノールに注いでポリマーを析出させた後、をろ過した。得られた固体を乾燥させて精製することにより、重合体PVを428mg得た。以下、この重合体を高分子化合物PVと呼称する。GPCで測定した高分子化合物PVの分子量(ポリスチレン換算)はMn.=91,000、Mw.=421,000であった。
実施例9
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 スパッタ法により150nmの厚みでITO膜を付けたガラス基板を、オゾンUV処理して表面処理を行った。次に、正孔輸送材料としてPEDOT-PSS(AI4083)(Hereaus社製、製品名:CLEVIOS P VP AI 4083)をスピンコートによりITO膜上に塗布し、大気雰囲気下において、120℃で10分間加熱することにより、厚さ約40nmの正孔輸送層を作製した。次に、p型半導体材料として高分子化合物P1およびn型半導体材料としてフラーレン誘導体であるC60-PCBM(フェニル61-酪酸メチルエステル:フロンティアカーボン社製、製品名:nanom spectra E100、以下C60-PCBMは同一製品を使用))を、高分子化合物P1の重量に対するC60PCBMの重量の比が2となるように秤量し、溶媒としてオルト-ジクロロベンゼンを用い、50℃で15時間加熱攪拌し、高分子化合物P1、C60PCBMおよびオルト-ジクロロベンゼンを含む組成物を製造した。組成物の重量に対して、高分子化合物P1の重量とC60-PCBMの重量の合計は1.5重量%であった。該組成物をスピンコートにより正孔輸送層上に塗布し、高分子化合物P1を含む活性層を作製した。厚さは約100nmであった。その後、活性層上に真空蒸着機によりカルシウムを厚さ4nmで蒸着し、次いで銀を厚さ450nmで蒸着し、有機光電変換素子を作製した。有機光電変換素子の形状は、2mm×2mmの正方形であった。得られた有機光電変換素子の有機薄膜太陽電池としての性能を評価するために、ソーラシミュレーター(分光計器製、商品名OTENTO-SUNII:AM1.5Gフィルター、放射照度100mW/cm)を用いて一定の光を照射し、曲線因子(フィルファクター)の値を求めた。曲線因子の値は0.690であった。
実施例10
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物P2を用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.670であった。
実施例11
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物P3を用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.670であった。
比較例1
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物PIを用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.610であった。
比較例2
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物PIIを用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.520であった。
比較例3
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物PIIIを用いた以外、実施例9とは同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.450であった。
 実施例9~11の有機光電変換素子は、比較例1~3の有機光電変換素子と比較して、曲線因子の値が高かった。値をまとめた結果を下表1に示す。
Figure JPOXMLDOC01-appb-T000097
実施例12
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物P4を用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.710であった。
実施例13
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物P5を用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.705であった。
実施例14
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物P6を用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.690であった。
実施例15
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物P7を用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.700であった。
実施例16
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物P8を用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.690であった。
比較例4
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物PIVを用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.525であった。
比較例5
(溶媒を含む組成物および有機光電変換素子の作製、評価)
 高分子化合物P1の代わりに高分子化合物PVを用いた以外は、実施例9と同様にして有機光電変換素子を作製し、曲線因子の値を求めた。曲線因子の値は0.600であった。
 実施例12~16の有機光電変換素子は、比較例4および5の有機光電変換素子と比較して、曲線因子の値が高かった。値をまとめた結果を下表2に示す。
Figure JPOXMLDOC01-appb-T000098
実施例17
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBM(フェニル71-酪酸メチルエステル:アメリカンダイソース社製、製品名:ADS71BFA、以下C70-PCBMは同一製品を使用)を用いる以外は、実施例9と同様にして有機光電変換素子を作製する。
実施例18
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物(C60-PCBM:C70-PCBM=80:20、フロンティアカーボン社製、E124、Lot.13A0093―A、以下C60-PCBMとC70-PCBMの混合物は同一ロットを使用)を用いる以外は、実施例9と同様にして有機光電変換素子を作製する。
実施例19
(溶媒を含む組成物および有機光電変換素子の作製)
 高分子化合物P1とC60-PCBMを溶解させる溶媒をオルト-ジクロロベンゼンの代わりにテトラヒドロナフタレン(テトラリン)を用い、120℃で15時間加熱攪拌して溶解させる以外は、実施例9と同様にして有機光電変換素子を作製する。
実施例20
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例19と同様にして有機光電変換素子を作製する。
実施例21
(溶媒を含む組成物および有機光電変換素子の作製)
 実施例19において、n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC60-PCBMの混合物を用いる以外は、実施例19と同様にして有機光電変換素子を作製する。
実施例22
(溶媒を含む組成物および有機光電変換素子の作製)
 正孔輸送材料であるAI4083の代わりにソルベイ社製AQ1300を用い、スピンコートによりITO膜上に塗布し、大気中200℃で10分間加熱乾燥することにより製膜した以外は、実施例9と同様にして有機光電変換素子を作製した。
実施例23
(溶媒を含む組成物および有機光電変換素子の作製)
 実施例22において、n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は同様にして有機光電変換素子を作製する。
実施例24
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いる以外は、実施例22と同様にして有機光電変換素子を作製する。
実施例25
(溶媒を含む組成物および有機光電変換素子の作製)
 高分子化合物P1とC60-PCBMを溶解させる溶媒をオルト-ジクロロベンゼンの代わりにテトラヒドロナフタレン(テトラリン)を用い、120℃で15時間加熱攪拌して溶解させた以外は、実施例22と同様にして有機光電変換素子を作製した。
実施例26
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いた以外は、実施例25と同様にして有機光電変換素子を作製した。
実施例27
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いた以外は、実施例25と同様にして有機光電変換素子を作製した。
実施例28
(溶媒を含む組成物および有機光電変換素子の作製)
 スパッタ法により150nmの厚みでITO膜を付けたガラス基板を、オゾンUV処理して表面処理を行った。次に、電子輸送層として酸化亜鉛(ZnO)のイソプロパノール分散液(TAYCA社製、ZnO 20wt%品)をスピンコートによりITO膜上に塗布し、大気雰囲気下において、140℃で10分間加熱することにより、膜厚約40nmの膜を作製した。
 次に、p型半導体材料として高分子化合物P1およびn型半導体材料としてC60-PCBMを、高分子化合物P1の重量に対するC60-PCBMの重量の比が2となるように秤量し、インク溶媒としてオルト-ジクロロベンゼンを用い、50℃で15時間加熱攪拌し、インクを製造した。インクの重量に対して、高分子化合物P1の重量とC60-PCBMの重量の合計は1.5重量%であった。該インクをスピンコートによりZnO上に塗布し、高分子化合物P1を含む有機膜を作製した。膜厚は約100nmであった。その後、正孔輸送材料としてAI4083をスピンコートにより活性層上に塗布し、大気中70℃で2分間加熱することにより、膜厚約40nmの膜を作製した。次いで銀を厚さ450nmで蒸着し、有機光電変換素子を作製した。
実施例29
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例28と同様にして有機光電変換素子を作製する。
実施例30
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いる以外は、実施例28と同様にして有機光電変換素子を作製する。
実施例31
(溶媒を含む組成物および有機光電変換素子の作製)
 高分子化合物P1とC60-PCBMを溶解させる溶媒をオルト-ジクロロベンゼンの代わりにテトラヒドロナフタレン(テトラリン)を用い、120℃で15時間加熱攪拌して溶解させる以外は、実施例28と同様にして有機光電変換素子を作製する。
実施例32
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例31と同様にして有機光電変換素子を作製する。
実施例33
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いる以外は、実施例31と同様にして有機光電変換素子を作製する。
実施例34
(溶媒を含む組成物および有機光電変換素子の作製)
 正孔輸送材料であるAI4083の代わりにソルベイ社製AQ1300を用い、スピンコートにより活性層上に塗布し、大気中200℃で10分間加熱乾燥することにより製膜する以外は、実施例28と同様にして有機光電変換素子を作製した。
実施例35
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例34と同様にして有機光電変換素子を作製する。
実施例36
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いる以外は、実施例34と同様にして有機光電変換素子を作製する。
実施例37
(溶媒を含む組成物および有機光電変換素子の作製)
 高分子化合物P1とC60-PCBMを溶解させる溶媒をオルト-ジクロロベンゼンの代わりにテトラヒドロナフタレン(テトラリン)を用い、120℃で15時間加熱攪拌して溶解させた以外は、実施例34と同様にして有機光電変換素子を作製した。
実施例38
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例37と同様にして有機光電変換素子を作製する。
実施例39
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC60-PCBMの混合物を用いる以外は、実施例37と同様にして有機光電変換素子を作製する。
実施例40
(溶媒を含む組成物および有機光電変換素子の作製)
 電子輸送材料として酸化亜鉛の代わりにポリエチレンイミンエトキシレート(PEIE)(アルドリッチ社製、製品名:ポリエチレンイミン・80%エトキシ化溶液、重量平均分子量~70000)を脱イオン水で50倍に希釈した溶液を、スピンコート(回転数4000rpm、30秒)により前記ITO電極上に塗布した以外は、実施例28と同様にして有機光電変換素子を作製する。
実施例41
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例40と同様にして有機光電変換素子を作製する。
実施例42
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いる以外は、実施例40と同様にして有機光電変換素子を作製する。
実施例43
(溶媒を含む組成物および有機光電変換素子の作製)
 高分子化合物P1とC60-PCBMを溶解させる溶媒をオルト-ジクロロベンゼンの代わりにテトラヒドロナフタレン(テトラリン)を用い、120℃で15時間加熱攪拌して溶解させる以外は、実施例40と同様にして有機光電変換素子を作製する。
実施例44
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例43と同様にして有機光電変換素子を作製する。
実施例45
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いる以外は、実施例43と同様にして有機光電変換素子を作製する。
実施例46
(溶媒を含む組成物および有機光電変換素子の作製)
 正孔輸送材料であるAI4083の代わりにソルベイ社製AQ1300を用い、スピンコートにより活性層上に塗布し、大気中200℃で10分間加熱乾燥することにより製膜した以外は、実施例40と同様にして有機光電変換素子を作製した。
実施例47
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例47と同様にして有機光電変換素子を作製する。
実施例48
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いる以外は、実施例46と同様にして有機光電変換素子を作製する。
実施例49
(溶媒を含む組成物および有機光電変換素子の作製)
 高分子化合物P1とC60-PCBMを溶解させる溶媒をオルト-ジクロロベンゼンの代わりにテトラヒドロナフタレン(テトラリン)を用い、120℃で15時間加熱攪拌して溶解させる以外は、実施例49と同様にして有機光電変換素子を作製する。
実施例50
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC70-PCBMを用いる以外は、実施例49と同様にして有機光電変換素子を作製する。
実施例51
(溶媒を含む組成物および有機光電変換素子の作製)
 n型半導体材料であるC60-PCBMの代わりにC60-PCBMとC70-PCBMの混合物を用いる以外は、実施例49と同様にして有機光電変換素子を作製する。
実施例52
(有機薄膜太陽電池としての有機光電変換素子の使用)
 実施例9で作製した有機光電変換素子に、室内において蛍光灯を用いて一定の光を照射すれば、有機薄膜太陽電池として用いることができる。
実施例53
(有機光センサーとしての有機光電変換素子の使用)
 実施例9で作製した有機光電変換素子を用いて、電極間に電圧を印加した状態で、光源(太陽光、LED、蛍光灯)から光を照射することにより、生成する信号電流による出力を検知する有機光センサーとして使用することができる。
 本発明によれば、曲線因子の値が大きな有機光電変換素子を製造することが可能な高分子化合物および当該有機光電変換素子を提供することができる。

Claims (14)

  1.  式(I)で表される構成単位と式(II)で表される構成単位とを有する高分子化合物。
    Figure JPOXMLDOC01-appb-I000001
    〔式(I)中、
     XおよびXは、それぞれ独立に、硫黄原子または酸素原子を表す。
     YおよびYは、それぞれ独立に、C-(R)または窒素原子を表す。
     R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基または1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
    Figure JPOXMLDOC01-appb-I000002
    〔式(II)中、
     XおよびXは、それぞれ独立に、硫黄原子または酸素原子を表す。
     YおよびYは、それぞれ独立に、C-(R)または窒素原子を表す。
     R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基または1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
    ただし、RとRとが同一であり、かつRとRとが同一であることはない。
  2.  X、X、XおよびXがいずれも硫黄原子であり、Y、Y、YおよびYがいずれもC-Hである、請求項1記載の高分子化合物。
  3.  R、R、RおよびRが置換基を有していてもよい炭素原子数1~30のアルキル基であって、RとRとが同一であり、かつRとRとが同一である、請求項1または2記載の高分子化合物。
  4.  R、R、RおよびRが、それぞれ独立に、置換基を有していてもよい炭素原子数12~19のアルキル基である、請求項1~3のいずれか一項記載の高分子化合物。
  5.  さらに式(III)で表される構成単位を有する、請求項1~4のいずれか一項記載の高分子化合物。

    Figure JPOXMLDOC01-appb-I000003
    〔式(III)中、
     ―Ar―で表される基は、置換基を有していてもよい炭素原子数6~60のアリーレン基または置換基を有していてもよい2価の複素環基を表す。
     ただし、式(III)で表される構成単位は、式(I)および式(II)で表される構成単位とは異なる。〕
  6.  前記式(III)で表される構成単位が、式(III-1)~式(III-18)のいずれかの式で表される構成単位である、請求項5記載の高分子化合物。

    Figure JPOXMLDOC01-appb-I000004
    〔各式中、
     R、R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。
     XおよびXは、それぞれ独立に、硫黄原子または酸素原子を表す。〕
  7.  前記式(III)で表される構成単位が、前記式(III-1)または式(III-15)で表される構成単位である、請求項5または6記載の高分子化合物。
  8.  さらに式(IV)で表される構成単位を有する、請求項1~7のいずれか一項記載の高分子化合物。
    Figure JPOXMLDOC01-appb-I000005
    〔式(IV)中、
     XおよびXは、それぞれ独立に、硫黄原子または酸素原子を表す。
     YおよびYは、それぞれ独立に、C-(R)または窒素原子を表す。
     R、RおよびRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素原子数1~30のアルキル基、置換基を有していてもよい炭素原子数3~30のシクロアルキル基、置換基を有していてもよい炭素原子数2~30のアルケニル基、置換基を有していてもよい炭素原子数3~30のシクロアルケニル基、置換基を有していてもよい炭素原子数2~30のアルキニル基、置換基を有していてもよい炭素原子数4~30のシクロアルキニル基、置換基を有していてもよい炭素原子数1~30のアルコキシ基、置換基を有していてもよい炭素原子数3~30のシクロアルコキシ基、置換基を有していてもよい炭素原子数1~30のアルキルチオ基、置換基を有していてもよい炭素原子数3~30のシクロアルキルチオ基、炭素原子数2~30の-C(=O)-Rで表される基(Rは、水素原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、1価の複素環基を表す。)、置換基を有していてもよい炭素原子数6~30のアリール基、置換基を有していていもよい炭素原子数6~30アリールオキシ基、置換基を有していてもよい炭素原子数6~30のアリールチオ基、置換基を有していてもよい炭素原子数2~30の1価の複素環基またはハロゲン原子を表す。〕
    ただし、式(IV)で表される構成単位は、高分子化合物が有する式(I)で表される構成単位および式(II)で表される構成単位とは異なる構成単位を表す。
  9.  請求項1~8のいずれか一項記載の高分子化合物と電子受容性化合物とを含む組成物。
  10.  前記電子受容性化合物がフラーレン誘導体である、請求項9記載の組成物。
  11.  さらに溶媒を含む、請求項9または10記載の組成物。
  12.  第1の電極と、第2の電極と、第1の電極および第2の電極の間に設けられる活性層とを有する有機光電変換素子であって、前記活性層が請求項1~8のいずれか一項記載の高分子化合物を含む有機光電変換素子。
  13.  請求項12記載の有機光電変換素子を含む有機薄膜太陽電池。
  14.  請求項12記載の有機光電変換素子を含む有機光センサー。
PCT/JP2017/000751 2016-01-21 2017-01-12 高分子化合物およびそれを用いた有機光電変換素子 WO2017126401A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/071,307 US20210139643A1 (en) 2016-01-21 2017-01-12 Polymer compound and organic photoelectric conversion element using same
JP2017562533A JP6927887B2 (ja) 2016-01-21 2017-01-12 高分子化合物およびそれを用いた有機光電変換素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016009484 2016-01-21
JP2016-009484 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017126401A1 true WO2017126401A1 (ja) 2017-07-27

Family

ID=59362067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000751 WO2017126401A1 (ja) 2016-01-21 2017-01-12 高分子化合物およびそれを用いた有機光電変換素子

Country Status (3)

Country Link
US (1) US20210139643A1 (ja)
JP (1) JP6927887B2 (ja)
WO (1) WO2017126401A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021848A (ja) * 2018-08-01 2020-02-06 住友化学株式会社 光検出素子
US20210305523A1 (en) * 2018-08-01 2021-09-30 Sumitomo Chemical Company, Limited Light detecting element
WO2021200316A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 光検出素子、それを含むセンサ及び生体認証装置、並びに組成物及びインク
WO2021200315A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 光検出素子
WO2021200317A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 光検出素子
WO2022124222A1 (ja) * 2020-12-08 2022-06-16 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子
WO2022124223A1 (ja) * 2020-12-08 2022-06-16 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子
JP2022091095A (ja) * 2020-12-08 2022-06-20 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183549A1 (ja) * 2012-06-04 2013-12-12 住友化学株式会社 組成物及びそれを用いた電子素子
JP2014019781A (ja) * 2012-07-18 2014-02-03 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた有機光電変換素子
JP2014028912A (ja) * 2012-07-03 2014-02-13 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた有機光電変換素子
JP2014031364A (ja) * 2012-03-16 2014-02-20 Sumitomo Chemical Co Ltd 化合物、該化合物の製造方法および該化合物を重合して得られる高分子化合物、並びに該高分子化合物を含む有機薄膜および有機半導体素子
JP2015174900A (ja) * 2014-03-14 2015-10-05 住友化学株式会社 化合物及びそれを用いた有機光電変換素子
WO2016180988A1 (en) * 2015-05-14 2016-11-17 Eni S.P.A. Indacen-4-one derivatives, process for their preparation and polymers containing them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031364A (ja) * 2012-03-16 2014-02-20 Sumitomo Chemical Co Ltd 化合物、該化合物の製造方法および該化合物を重合して得られる高分子化合物、並びに該高分子化合物を含む有機薄膜および有機半導体素子
WO2013183549A1 (ja) * 2012-06-04 2013-12-12 住友化学株式会社 組成物及びそれを用いた電子素子
JP2014028912A (ja) * 2012-07-03 2014-02-13 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた有機光電変換素子
JP2014019781A (ja) * 2012-07-18 2014-02-03 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた有機光電変換素子
JP2015174900A (ja) * 2014-03-14 2015-10-05 住友化学株式会社 化合物及びそれを用いた有機光電変換素子
WO2016180988A1 (en) * 2015-05-14 2016-11-17 Eni S.P.A. Indacen-4-one derivatives, process for their preparation and polymers containing them

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080131B2 (ja) 2018-08-01 2022-06-03 住友化学株式会社 光検出素子
WO2020026976A1 (ja) * 2018-08-01 2020-02-06 住友化学株式会社 光検出素子
US20210305523A1 (en) * 2018-08-01 2021-09-30 Sumitomo Chemical Company, Limited Light detecting element
US11877459B2 (en) 2018-08-01 2024-01-16 Sumitomo Chemical Company, Limited Light detecting element
JP2020021848A (ja) * 2018-08-01 2020-02-06 住友化学株式会社 光検出素子
US20230209844A1 (en) * 2020-03-31 2023-06-29 Sumitomo Chemical Company, Limited Photodetector element, sensor and biometric authentication device including same, composition, and ink
WO2021200315A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 光検出素子
JP2021163848A (ja) * 2020-03-31 2021-10-11 住友化学株式会社 光検出素子
JP2021163844A (ja) * 2020-03-31 2021-10-11 住友化学株式会社 光検出素子、それを含むセンサ及び生体認証装置、並びに組成物及びインク
WO2021200317A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 光検出素子
EP4131442A4 (en) * 2020-03-31 2024-05-01 Sumitomo Chemical Co PHOTODETECTOR ELEMENT, SENSOR AND BIOMETRIC DEVICE COMPRISING THE SAME, COMPOSITION AND INK
EP4131440A4 (en) * 2020-03-31 2024-04-24 Sumitomo Chemical Co PHOTODETECTOR ELEMENT
WO2021200316A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 光検出素子、それを含むセンサ及び生体認証装置、並びに組成物及びインク
JP7321962B2 (ja) 2020-03-31 2023-08-07 住友化学株式会社 光検出素子
US20230171973A1 (en) * 2020-03-31 2023-06-01 Sumitomo Chemical Company, Limited Photodetector element
JP2021163869A (ja) * 2020-03-31 2021-10-11 住友化学株式会社 光検出素子
JP7257440B2 (ja) 2020-12-08 2023-04-13 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子
JP2022091095A (ja) * 2020-12-08 2022-06-20 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子
WO2022124223A1 (ja) * 2020-12-08 2022-06-16 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子
WO2022124222A1 (ja) * 2020-12-08 2022-06-16 住友化学株式会社 組成物、膜、有機光電変換素子、及び光検出素子

Also Published As

Publication number Publication date
JPWO2017126401A1 (ja) 2018-11-15
JP6927887B2 (ja) 2021-09-01
US20210139643A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP6927887B2 (ja) 高分子化合物およびそれを用いた有機光電変換素子
JP5999095B2 (ja) 高分子化合物及び電子素子
US9209404B2 (en) Macromolecular compound
US9006714B2 (en) Photovoltaic device
US9290510B2 (en) Polymeric compound and electronic element
US8772763B2 (en) Photovoltaic cell
TWI518106B (zh) 具有碳簇構造之高分子化合物及使用該化合物之有機裝置
JP6247581B2 (ja) 高分子化合物およびそれを用いた電子素子
WO2011052728A1 (ja) 化合物及びそれを用いた素子
WO2011052725A1 (ja) 高分子化合物
WO2016013461A1 (ja) 高分子化合物およびそれを用いた有機半導体素子
WO2012147564A1 (ja) 高分子化合物及びそれを用いた電子素子
JP6571534B2 (ja) 化合物および電子素子
WO2011052726A1 (ja) 組成物及び電子素子
JP2012036358A (ja) 高分子化合物及びそれを用いた電子素子
JP6470560B2 (ja) 組成物およびそれを用いた有機半導体素子
JP2014189721A (ja) 高分子化合物
JP6373567B2 (ja) 化合物およびそれを用いた電子素子
WO2011052727A1 (ja) 化合物及びそれを用いた素子
JP2013185047A (ja) 化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562533

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741281

Country of ref document: EP

Kind code of ref document: A1