WO2017126341A1 - 近接センサ - Google Patents

近接センサ Download PDF

Info

Publication number
WO2017126341A1
WO2017126341A1 PCT/JP2017/000291 JP2017000291W WO2017126341A1 WO 2017126341 A1 WO2017126341 A1 WO 2017126341A1 JP 2017000291 W JP2017000291 W JP 2017000291W WO 2017126341 A1 WO2017126341 A1 WO 2017126341A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
proximity sensor
detected object
distance
Prior art date
Application number
PCT/JP2017/000291
Other languages
English (en)
French (fr)
Inventor
昌之 小泉
南 和澄
春梅 黄
健次 本間
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP17741221.0A priority Critical patent/EP3407009A4/en
Priority to US15/751,156 priority patent/US10488226B2/en
Priority to CN201780002803.2A priority patent/CN107923732B/zh
Publication of WO2017126341A1 publication Critical patent/WO2017126341A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2208Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
    • G01D5/2225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable non-ferromagnetic conductive element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • H03K17/9525Proximity switches using a magnetic detector using inductive coils controlled by an oscillatory signal

Definitions

  • the present invention relates to a proximity sensor (also referred to as a proximity switch) that determines the approach (distance) of a metal object by the action of an alternating magnetic field, and more particularly to a proximity sensor that can detect not only the distance but also the direction (direction). .
  • a proximity sensor also referred to as a proximity switch
  • two detection coils (sometimes referred to as a reception coil or a search coil) are provided inside a metal casing, and the position of a non-magnetic metal, magnetic material, or the like is provided. Perform detection. Rather than calculating the difference with a differential circuit or the like after applying a rectangular wave voltage to the two detection coils and independently detecting the current flowing through each detection coil, the value of the current difference is detected directly. Thus, a proximity sensor with a good S / N ratio and high sensitivity can be realized.
  • each detection coil has the same magnetic characteristics and electrical characteristics, even if these characteristics change due to a temperature change, they change in the same way, so that variations due to the temperature change hardly occur.
  • the detection coil L1006 and the reference coil L1008 are accommodated in a cylindrical shape and an austenitic stainless steel case 1001a facing each other.
  • it can be obtained as a logical value whether or not the non-magnetic metal and the magnetic metal are close to each other within a predetermined distance. That is, the position detection in Patent Document 1 is only to obtain a one-dimensional distance at most.
  • a nonmagnetic metal body is used as the case 1.
  • a detection coil 3 is provided on the detection surface side, and an excitation coil 2 and a detection coil 4 are provided behind it.
  • the excitation coil 2 is driven at a low frequency, and the detection coils 3 and 4 are connected in series in a direction that cancels the induced voltages when the object is not approaching each other.
  • the voltage difference is detected by a differential amplifier circuit, and the magnetic metal is detected by increasing the differential amplification output based on the approach of the magnetic metal.
  • the non-contact detection device disclosed in Patent Document 3 is also provided with two detection coils L1 and L2.
  • the first detection coil L1 detects an object to be detected, but the second detection coil L2 is provided to compensate for external electromagnetic waves and is not affected by the object to be detected. That is, the two detection coils L1 and L2 do not detect the detected object.
  • JP 2012-185033 A Japanese Patent Application Laid-Open No. 07-029466 JP 2014-086954 A
  • an eddy current is generated in a metal detection object existing in the detection range by a magnetic field generated by a current flowing through the detection coil.
  • the proximity of the detected object can be detected by detecting the voltage generated in the detection coil by the eddy current magnetic field generated by this eddy current, in other words, the voltage of the detection coil due to reflection from the detected object. it can.
  • FIG. 12 is a schematic cross-sectional view for explaining the principle of detecting the position of the detected object W by one coil 11 in a conventional proximity sensor.
  • the voltage V1 of the coil 11 due to reflection from the detected object W is a scalar amount corresponding to the distance from the detected object W to the coil 11, and when this voltage V1 is constant, as shown in FIG.
  • a closed curve (for example, a slightly flat circular curve) L1 surrounding the coil 11 is obtained. Note that this curve L1 is actually a rotating curved surface with the central axis of the coil 11 as the rotation axis.
  • the voltage V1 of the coil 11 does not change. That is, even if the position of the detected object W is detected based only on this voltage V1, only the distance to the detected object W can be detected, and the azimuth cannot be detected.
  • an object of the present invention is to provide a proximity sensor that can detect not only the distance to a detected object but also the position including the direction.
  • the proximity sensor of the present invention obtains the reception result based on two or more coils arranged in a predetermined positional relationship and the reception results of a plurality of coils among the coils.
  • a distance calculation unit that calculates each distance information from the coil to the detected object, and a position estimation unit that estimates the position of the detected object based on the distance information and the positional relationship.
  • the distance calculation unit may calculate each distance information to the detected object based on reception results of two of them.
  • each of the coils is selectively excited with two or more different combinations
  • the distance calculation unit is configured to detect the object to be detected from a plurality of coils for each selective excitation of the coils.
  • the distance estimation unit may estimate the position of the detected object based on the positional relationship and the distance information calculated for each selective excitation. .
  • the coils may be arranged coaxially or may be arranged on the same plane. Alternatively, they may be coaxial and arranged on the same plane.
  • the proximity sensor having such a configuration, not only the distance to the object to be detected but also the position including the direction can be detected.
  • the proximity sensor of the present invention not only the distance to the detected object but also the position including the direction can be detected.
  • FIG. 1 is a schematic sectional drawing explaining the principle of the position detection of the to-be-detected object W by the coil part 10 of the proximity sensor 1 which concerns on one Embodiment of this invention.
  • (A)-(d) is a schematic sectional drawing which shows the positional relationship of each magnetic field and to-be-detected object W when the coil part 10 of the proximity sensor 1 is excited by two different patterns.
  • (A) to (c) are schematic sectional views showing respective magnetic fields when a coil portion 10A having three coils 11 to 13 is excited in three different patterns as a first modification of the coil portion 10.
  • FIG. is there. 3 is a schematic cross-sectional view showing a specific example of a core used in the coil unit 10.
  • (A), (b) is a schematic sectional drawing which shows the specific example of the core used for 10 A of coil parts, respectively.
  • (A), (b) is a schematic sectional drawing which shows the coil part 10B which is the 2nd modification of the coil part 10, and the coil part 10C which is a 3rd modification, respectively.
  • (A), (b) is a schematic sectional drawing which shows the specific excitation pattern of the coil part 10, respectively.
  • (A)-(c) is a schematic sectional drawing which shows the specific excitation pattern of the coil part 10B, respectively.
  • (A)-(g) is a schematic sectional drawing which shows the specific excitation pattern of 10 A of coil parts, respectively.
  • FIG. 1 is a schematic sectional drawing explaining the principle of the position detection of the to-be-detected object W by one detection coil in the conventional proximity sensor.
  • FIG. 1 is a schematic cross-sectional view illustrating the principle of position detection of an object W to be detected by the coil unit 10 of the proximity sensor 1 according to an embodiment of the present invention.
  • the proximity sensor 1 includes a coil portion 10 having a circular coil 11 and a circular coil 12 having a larger diameter arranged coaxially with the coil 11.
  • the coils 11 and 12 are shown in the same plane although the cross sections of the coils 11 and 12 are slightly shifted. However, the arrangement is not limited to the same plane.
  • the distance to the detected object W can be detected by the voltage V1 of the coil 11 due to reflection from the detected object W, the distance at which this voltage V1 becomes constant. Is a closed curve (for example, a slightly flat circular curve) L1 surrounding the coil 11. Further, the distance to the detected object W can also be detected by the voltage V2 of the coil 12 due to reflection from the detected object W, but when this voltage V2 becomes constant, a closed curve surrounding the coil 12 (for example, horizontally long) It becomes a curve L2 having a shape similar to a peanut. Note that not only the curve L1 but also the curve L2 is actually a rotating curved surface with the central axis of the coils 11 and 12 as the rotation axis.
  • the detected object W exists on the curve L1 and also on the curve L2, the detected object W exists on the intersection of the curves L1 and L2. That is, if the positional relationship between the coils 11 and 12 is known, not only the distance to the detected object W but also the position including the direction can be detected. However, the position in the three-dimensional space cannot be specified. In the figure, it can only be estimated that there are actually two intersections on the circumference that is coaxial with the coils 11 and 12 and passes through these intersections.
  • the position of the detected object W in the three-dimensional space can be specified as an intersection with the straight line.
  • the proximity sensor for example, outputs (detection operation) only to a metal object existing in the direction of the central axis of the coil, and the radius of the coil It is also possible not to perform output (detection operation) for metal objects present in the direction. That is, a metal object present in the direction of the central axis of the coil can be detected as an object to be detected, and a metal object present in the radial direction of the coil can be ignored as a sensor mounting jig or the like.
  • FIGS. 2A to 2D show respective magnetic fields and detected objects W when the coil unit 10 of the proximity sensor 1 is excited with two different patterns. It is a schematic sectional drawing which shows the positional relationship with these. In addition, the left end of each figure respond
  • An excitation pattern (also simply referred to as a pattern) is, for example, a combination of exciting coils, a combination of directions of exciting current (there is a clockwise current and a counterclockwise current in each coil), an exciting current
  • a combination of magnitudes (change the magnitude of the current of each coil in several steps) is not limited thereto.
  • the coils 11 and 12 of the coil unit 10 are excited one by one, and the voltages V1 and V2 of the coils 11 and 12 are obtained.
  • FIGS. 2 (a) to 2 (d) not only such an excitation pattern, but also when both the coils 11 and 12 are excited simultaneously (FIGS. 2 (a) and (c))
  • excitation spaces having different patterns may be formed, and the voltages V1 and V2 of the coils 11 and 12 may be obtained.
  • FIGS. 2A and 2C show excitation states in which the coil 11 and the coil 12 are excited with currents in opposite directions.
  • FIG. 2A upper right
  • FIG. 2C the magnitude of the magnetic field interlinking differs depending on the position of the detected object W, and therefore the voltage V1 generated in the coil 11 due to reflection. Is different between FIG. 2A and FIG. 2B.
  • FIG. 2 (a) and 2 (b) detect the detected object W in the direction of the central axis of the coil.
  • V1 increases in FIG. 2B compared to FIG. 2B in which only the coil 11 is excited.
  • 2 (c) and 2 (d) detect the detected object W in the radial direction of the coil.
  • FIG. 2C is compared with FIG. 2D, V1 is reduced in FIG. 2D compared to FIG. 2C in which only the coil 11 is excited. That is, it is possible to obtain information on the orientation of the detected object W by detecting a change in received voltage when the excitation pattern is changed.
  • the value of the voltage V2 at the coil 12 when the excitation pattern is changed is also used to increase the accuracy of position detection of the detected object W. That is, if the positional relationship between the coils 11 and 12 is known, the received signal 1 (voltage V1) and the coil 12 acquired from the coil 11 when the two coils (both coils 11 and 12) of the coil unit 10 are excited. Received signal 2 (voltage V2) acquired from the coil 11, received signal 3 (voltage V1) acquired from the coil 11 when only one coil (coil 11) is excited, and received signal 4 (voltage) acquired from the coil 12 Based on V2), the position information of the detected object W can be obtained with high accuracy by weighting the azimuth and position.
  • the excitation of the coils 11 and 12 and the acquisition of the received signal by each pattern may be performed simultaneously or may be performed in a time-sharing manner.
  • the reception signal of both the coils 11 and 12 may be always acquired, and the time for acquiring the reception signal may be limited.
  • FIGS. 3A to 3C show a coil section 10A having three coils 11 to 13 as a first modification of the coil section 10.
  • FIG. It is a schematic sectional drawing which shows each magnetic field at the time of exciting by three different patterns. Note that the left end of each figure corresponds to the position of the central axis X of the coils 11 to 13 (the central axis X itself is not shown in FIGS. 3B and 3C). Only half are shown.
  • the number of coils of the coil portion 10 of the proximity sensor 1 is not limited to two.
  • the diameter arranged coaxially with these coils May have a larger circular coil 13.
  • the innermost The excitation spaces of different patterns may be formed in the case of exciting only the coil 11 (FIG. 3C), and the voltages V1 to V3 of the coils 11 to 13 may be obtained. Even in this case, it is possible to obtain the position information of the detected object W in which the azimuth is weighted.
  • FIG. 4 is a schematic cross-sectional view showing a specific example of the core used in the coil unit 10.
  • FIGS. 5A and 5B are schematic cross-sectional views respectively showing specific examples of the core used in the coil portion 10A.
  • 6A and 6B are schematic cross-sectional views respectively showing a coil portion 10B that is a second modification of the coil portion 10 and a coil portion 10C that is a third modification.
  • a core 21 that enters between the inside of the coil 11 and between the coils 11 and 12 may be used for the coil portion 10 having the coils 11 and 12.
  • the core 21 may be used for the coil portion 10A having the coils 11 to 13, or as shown in FIG. 5 (b), the inside of the coil 11 and the coil 11 may be used. , 12 and a core 21A that enters between the coils 12 and 13 may be used.
  • a core 22 that falls inside the two coils 11 may be used.
  • a core 22 ⁇ / b> A that falls inside the three coils 11 may be used.
  • FIGS. 7A and 7B are schematic sectional views showing specific excitation patterns of the coil unit 10, respectively.
  • FIGS. 8A to 8C are schematic cross-sectional views respectively showing specific excitation patterns of the coil portion 10B.
  • FIGS. 9A to 9G are schematic cross-sectional views respectively showing specific excitation patterns of the coil portion 10A.
  • FIGS. 10A to 10G are schematic sectional views showing specific excitation patterns of the coil portion 10C.
  • a solid line indicates a coil that is excited, and a broken line indicates a coil that is not excited.
  • FIG. 11 is a block diagram showing a schematic configuration of a reception related part of the proximity sensor 1 including the coil unit 10.
  • the proximity sensor 1 includes coils 11 and 12 arranged in a predetermined positional relationship as reception-related portions, and first distance information from the voltage V1 of the coil 11 to the detected object W.
  • a first distance calculation unit 31 that calculates d1
  • a second distance calculation unit 32 that calculates second distance information d2 from the voltage V2 of the coil 12 to the detected object W
  • the positional relationship between the coils 11 and 12 and the first A position estimation unit 33 that estimates the position (distance and azimuth) of the detected object W based on the distance information d1 and the second distance information d2.
  • the proximity sensor 1 includes an excitation circuit for selectively exciting the coils 11 and 12. By this excitation circuit, the coils 11 and 12 are excited in different patterns.
  • first distance calculation unit 31 and the second distance calculation unit 32 do not necessarily have to be independent, and one distance calculation unit calculates both the first distance information d1 and the second distance information d2. Also good.
  • Such a distance calculation unit and the position estimation unit 33 may be combined into one.
  • the positional relationship between the coils 11 and 12 may be stored in the position estimation unit 33 in advance.
  • the position of the detected object W estimated by the position estimation unit 33 is the distance and direction to the detected object W, but as described with reference to FIG. 1, the position in the three-dimensional space can be specified. is not. Actually, it can only be estimated to be on the circumference coaxial with the coils 11 and 12.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

近接センサ(1)は、予め定められた位置関係に配置されたコイル(11、12)と、コイル(11、12)の受信結果(電圧V1、V2)に基づいてコイル(11、12)から被検出物体(W)までの第1距離情報(d1)、第2距離情報(d2)をそれぞれ算出する第1距離算出部(31)、第2距離算出部(32)と、第1距離情報(d1)および第2距離情報(d2)とコイル(11、12)の位置関係とに基づいて被検出物体(W)の位置(距離および方位)を推定する位置推定部(33)とを備えている。

Description

近接センサ
 本発明は、交流磁界の作用によって金属物体の接近(距離)を判別する近接センサ(近接スイッチともいう)に関し、特に、距離だけでなく方位(方向)も含めた位置を検出可能な近接センサに関する。
 従来、交流磁界の作用によって金属物体の接近(所定距離以内か否か)を判別する近接センサや近接スイッチなどが提案されている(例えば、特許文献1~3参照)。
 特許文献1に開示された近接センサでは、金属製の筐体の内部に2つの検出コイル(受信コイルやサーチコイルということもある)が設けられており、非磁性体金属や磁性体などの位置検出を行う。2つの検出コイルに矩形波電圧を印加して、各々の検出コイルに流れる電流を独立して検出してから差動回路等で差を演算するのではなく、直接電流の差の値を検出することにより、S/N比が良好であり高感度な近接センサを実現できる。また、各々の検出コイルは同じ磁気特性と電気特性を備えるため、温度変化でこれらの特性が変化したとしても夫々同じように変化するので、温度変化に起因するばらつきが生じ難い。
 例えば、特許文献1の図10~13に示された第三の実施形態では、円筒形状でオーステナイト系ステンレス製の筐体1001aの内部に、検出コイルL1006と参照コイルL1008とが対面状態で収納されており、非磁性体金属および磁性体金属がそれぞれ所定距離以内に近接したか否かを論理値として得ることができる。つまり、この特許文献1における位置検出とは、せいぜい1次元の距離を得ることに過ぎない。
 特許文献2に開示された近接スイッチでは、非磁性金属体をケース1として用いる。このケース1内には検知面側に検出コイル3、その背後に励振コイル2及び検出コイル4を設ける。励振コイル2を低周波で駆動し、物体が接近していないときの誘起電圧を互いに打ち消す方向に検出コイル3、4を直列接続する。そしてその電圧差を差動増幅回路によって検出して、磁性体金属の接近に基づく差動増幅出力の増加により磁性体金属を検出している。
 この特許文献2においても、せいぜい磁性体金属までの1次元の距離が得られるに過ぎない。
 特許文献3に開示された非接触検出装置でも、2つの検出コイルL1、L2が設けられている。第1検出コイルL1は被検出物体を検出するが、第2検出コイルL2は外来電磁波に対する補償を行うために設けられており、被検出物体による影響は受けない。つまり、2つの検出コイルL1、L2がともに被検出物体を検出するものではない。
特開2012-185033号公報 特開平07-029466号公報 特開2014-086954号公報
 例えば、検出コイルが励磁コイルも兼ねる近接センサでは、検出コイルに流れる電流で発生した磁界によって、検出範囲内に存在する金属の被検出物体に渦電流が発生する。この渦電流によって周囲に発生した渦電流磁界によって検出コイルに発生した電圧、換言すれば、被検出物体からの反射による検出コイルの電圧を検出することにより、被検出物体の近接を検出することができる。
 図12は、従来の近接センサにおける1つのコイル11による被検出物体Wの位置検出の原理を説明する概略断面図である。
 被検出物体Wからの反射によるコイル11の電圧V1は、被検出物体Wからコイル11までの距離に対応するスカラー量であり、この電圧V1が一定になる距離を結ぶと、図12に示すように、コイル11を囲む閉曲線(例えば、やや扁平な円形の曲線)L1になる。なお、この曲線L1は、実際にはコイル11の中心軸を回転軸とする回転曲面である。
 被検出物体Wが、例えばコイル11の正面方向であろうと側方であろうと、曲線L1上に存在する限り、コイル11の電圧V1は変わらない。つまり、この電圧V1だけに基づいて被検出物体Wの位置検出をしても、被検出物体Wまでの距離が検出できるだけであって、方位は検出できないのである。
 従来技術のこのような課題に鑑み、本発明の目的は、被検出物体までの距離だけでなく方位も含めた位置を検出可能な近接センサを提供することである。
 上記目的を達成するため、本発明の近接センサは、予め定められた位置関係に配置された2以上のコイルと、これら前記コイルのうち複数のコイルの受信結果に基づいて、前記受信結果を得たコイルから被検出物体までの各距離情報をそれぞれ算出する距離算出部と、前記各距離情報および前記位置関係に基づいて前記被検出物体の位置を推定する位置推定部とを備えることを特徴とする。
 例えば、3以上のコイルがある場合、距離算出部は、それらのうちの2つのコイルの受信結果に基づいて被検出物体までの各距離情報をそれぞれ算出してもよい。
 また、本発明の近接センサにおいて、前記各コイルは、2以上の異なる組み合わせで選択的に励磁され、前記距離算出部は、前記各コイルの選択的励磁毎に、複数のコイルから前記被検出物体までの前記各距離情報をそれぞれ算出し、前記位置推定部は、前記位置関係および前記選択的励磁毎に算出された前記各距離情報に基づいて前記被検出物体の前記位置を推定してもよい。
 前記各コイルは、同軸に配置されていてもよいし、同一平面上に配置されていてもよい。または、同軸で且つ同一平面上に配置されていてもよい。
 このような構成の近接センサによれば、被検出物体までの距離だけでなく方位も含めた位置が検出可能となる。
 本発明の近接センサによれば、被検出物体までの距離だけでなく方位も含めた位置が検出可能となる。
本発明の一実施形態に係る近接センサ1のコイル部10による被検出物体Wの位置検出の原理を説明する概略断面図である。 (a)~(d)は近接センサ1のコイル部10が異なる2通りのパターンで励磁された場合のそれぞれの磁界と被検出物体Wとの位置関係を示す概略断面図である。 (a)~(c)はコイル部10の第1変形例として、3つのコイル11~13を有するコイル部10Aが異なる3通りのパターンで励磁された場合のそれぞれの磁界を示す概略断面図である。 コイル部10に用いるコアの具体例を示す概略断面図である。 (a)、(b)はコイル部10Aに用いるコアの具体例をそれぞれ示す概略断面図である。 (a)、(b)はコイル部10の第2変形例であるコイル部10Bおよび第3変形例であるコイル部10Cをそれぞれ示す概略断面図である。 (a)、(b)はコイル部10の具体的な励磁パターンをそれぞれ示す概略断面図である。 (a)~(c)はコイル部10Bの具体的な励磁パターンをそれぞれ示す概略断面図である。 (a)~(g)はコイル部10Aの具体的な励磁パターンをそれぞれ示す概略断面図である。 (a)~(g)はコイル部10Cの具体的な励磁パターンをそれぞれ示す概略断面図である。 コイル部10を備える近接センサ1の受信関連部分の概略構成を示すブロック図である。 従来の近接センサにおける1つの検出コイルによる被検出物体Wの位置検出の原理を説明する概略断面図である。
 以下、本発明のいくつかの実施形態を、図面を参照して説明する。
 (1)近接センサ1による位置検出の原理
 図1は本発明の一実施形態に係る近接センサ1のコイル部10による被検出物体Wの位置検出の原理を説明する概略断面図である。
 この図1に示すように、近接センサ1は、円形のコイル11と、このコイル11と同軸に配置された直径がより大きな円形のコイル12とを有するコイル部10を備えている。なお、これらのコイル11、12は、配置面を少しずらしてそれぞれの断面を図示してあるが、実際には同一平面上に配置されている。ただし、同一平面上の配置に限るわけではない。
 図12を参照して説明した従来の近接センサと同様に、被検出物体Wからの反射によるコイル11の電圧V1によって被検出物体Wまでの距離が検出できるので、この電圧V1が一定になる距離を結ぶと、コイル11を囲む閉曲線(例えば、やや扁平な円形の曲線)L1になる。また、被検出物体Wからの反射によるコイル12の電圧V2によっても被検出物体Wまでの距離が検出できるが、この電圧V2が一定になる距離を結ぶと、コイル12を囲む閉曲線(例えば、横長ピーナッツに似た形状の曲線)L2になる。なお、曲線L1だけでなく曲線L2も、実際にはコイル11、12の中心軸を回転軸とする回転曲面である。
 被検出物体Wは曲線L1上に存在し、且つ曲線L2上にも存在するのであるから、被検出物体Wは曲線L1、L2の交点上に存在することになる。つまり、コイル11、12の位置関係が既知であれば、被検出物体Wまでの距離だけでなく方位も含めた位置を検出することができる。ただし、3次元空間での位置を特定できるわけではない。図中でも2つの交点が存在するように、実際にはコイル11、12と同軸でこれらの交点を通る円周上ということが推定できるだけである。
 しかし、例えば、被検出物体Wの移動方向が所定の直線上に制約されていれば、その直線との交点として被検出物体Wの3次元空間での位置を特定することも可能になる。
 方位も含めた位置や3次元空間での位置が特定できることで、近接センサとしては、例えば、コイルの中心軸の方向に存在する金属物体に対してのみ出力(検出動作)を行い、コイルの半径方向に存在する金属物体に対しては出力(検出動作)を行わないことも可能となる。つまり、コイルの中心軸の方向に存在する金属物体は被検出物体として検出し、コイルの半径方向に存在する金属物体はセンサの取り付け治具などとして無視することができる。これにより、近接センサの固定に金属製の取り付け治具を用いた場合と用いない場合とで、センサの出力(検出動作)が変化することを回避できる。そして、近接センサの取り付けの利便性を向上することができる。
 (2)近接センサ1のコイル部10の励磁パターン
 図2(a)~(d)は近接センサ1のコイル部10が異なる2通りのパターンで励磁された場合のそれぞれの磁界と被検出物体Wとの位置関係を示す概略断面図である。なお、それぞれの図の左端がコイル11、12の中心軸の位置に対応しており(中心軸自体の図示は省略)、コイル11、12の右半分のみを示している。また、励磁パターン(単にパターンともいう)とは、例えば、励磁するコイルの組み合わせ、励磁する電流の向きの組み合わせ(それぞれのコイルで右回りの電流と左回りの電流とがある)、励磁電流の大きさの組み合わせ(それぞれのコイルの電流の大きさを何段階かに変化させる)などのことであるが、これらに限らない。
 図1に示した近接センサ1による位置検出の原理では、最も単純に、コイル部10のコイル11、12を1つずつ励磁し、コイル11、12それぞれの電圧V1、V2を求めていた。このような励磁パターンに限らず、例えば、図2(a)~(d)に示すように、コイル11、12の両方を同時に励磁する場合(図2(a)、(c))と、内側のコイル11のみを励磁する場合(図2(b)、(d))とで異なるパターンの励磁空間を形成して、コイル11、12それぞれの電圧V1、V2を求めてもよい。
 図2(b)と図2(d)はコイル11のみを励磁する励磁状態を示している。図2(b)と図2(d)とを比較した場合、図中の被検出物体Wの位置は異なっているが、被検出物体Wに鎖交する磁界の大きさが同程度であるため、反射によってコイル11に生じる電圧V1は図2(b)の場合と図2(d)の場合で同程度となる。次に、図2(a)と図2(c)はコイル11とコイル12を互いに逆向きの電流で励磁する励磁状態を示している。図2(a)(右上)と図2(c)とを比較した場合、被検出物体Wの位置に応じて鎖交する磁界の大きさが異なっているため、反射によってコイル11に生じる電圧V1は図2(a)の場合と図2(b)の場合で異なる。
 図2(a)と図2(b)はコイルの中心軸方向の被検出物体Wを検出している。この図2(a)と図2(b)とを比較した場合、コイル11のみを励磁する図2(b)に比べ、図2(b)のほうがV1は増加する。また、図2(c)と図2(d)はコイルの半径方向の被検出物体Wを検出している。この図2(c)と図2(d)とを比較した場合は、コイル11のみを励磁する図2(c)に比べ、図2(d)のほうがV1は減少する。つまり、励磁パターンを変えた際の受信電圧の変化を検出することで、被検出物体Wの方位に関する情報を得られたということになる。
 ここではコイル11での電圧V1についてのみ説明したが、励磁パターンを変えた際のコイル12での電圧V2の値も用いることで被検出物体Wの位置検出の精度が高まる。つまり、コイル11、12の位置関係が既知であれば、コイル部10の2コイル(コイル11、12の両方)を励磁したときにコイル11から取得された受信信号1(電圧V1)およびコイル12から取得された受信信号2(電圧V2)と、1コイル(コイル11)のみを励磁したときにコイル11から取得された受信信号3(電圧V1)およびコイル12から取得された受信信号4(電圧V2)とに基づいて、方位や位置に重み付けを行うことで、被検出物体Wの位置情報を高精度に求めることができる。
 なお、近接センサ1の具体的構成としては、各パターンによるコイル11、12の励磁と受信信号の取得とは同時に行ってもよいし、時分割で行ってもよい。なお、コイル11、12のいずれかを励磁しない場合であっても、コイル11、12両方の受信信号を常に取得してもよいし、受信信号を取得する時間を限定してもよい。
 (3)コイル部10の第1変形例(コイル部10A)と励磁パターン
 図3(a)~(c)はコイル部10の第1変形例として、3つのコイル11~13を有するコイル部10Aが異なる3通りのパターンで励磁された場合のそれぞれの磁界を示す概略断面図である。なお、それぞれの図の左端がコイル11~13の中心軸Xの位置に対応しており(図3(b)、(c)では中心軸X自体の図示を省略)、コイル11~13の右半分のみを示している。
 近接センサ1のコイル部10のコイルは2つに限るわけではなく、例えば、図3(a)~(c)に示すように、コイル11、12に加えて、これらと同軸に配置された直径がより大きな円形のコイル13とを有してもよい。
 そして、例えば、コイル部10Aのコイル11~13のすべてを同時に励磁する場合(図3(a))と、内側2つのコイル11、12を励磁する場合(図3(b))と、最も内側のコイル11のみを励磁する場合(図3(c))とで異なるパターンの励磁空間を形成して、コイル11~13それぞれの電圧V1~V3を求めてもよい。このようにしても、方位に重み付けを行った被検出物体Wの位置情報を求めることができる。
 (4)コイル部10、10Aやコアの具体例やさらなる変形例
 図4はコイル部10に用いるコアの具体例を示す概略断面図である。図5(a)、(b)はコイル部10Aに用いるコアの具体例をそれぞれ示す概略断面図である。図6(a)、(b)はコイル部10の第2変形例であるコイル部10Bおよび第3変形例であるコイル部10Cをそれぞれ示す概略断面図である。
 コイル11、12を有するコイル部10には、図4に示すように、コイル11の内側とコイル11、12の間とに入るコア21を用いてもよい。
 また、コイル11~13を有するコイル部10Aには、図5(a)に示すように、コア21を用いてもよいし、図5(b)に示すように、コイル11の内側とコイル11、12の間とコイル12、13の間とに入るコア21Aを用いてもよい。
 コイル部10の第2変形例としては、図6(a)に示すように、2つのコイル11を中心軸方向に配置したコイル部10Bも考えられる。この場合、2つのコイル11の内側に入るコア22を用いてもよい。
 また、コイル部10の第3変形例として、図6(b)に示すように、3つのコイル11を中心軸方向に等間隔で配置したコイル部10Cも考えられる。この場合、3つのコイル11の内側に入るコア22Aを用いてもよい。
 (5)コイル部10~10Cの具体的な励磁パターン
 図7(a)、(b)はコイル部10の具体的な励磁パターンをそれぞれ示す概略断面図である。図8(a)~(c)はコイル部10Bの具体的な励磁パターンをそれぞれ示す概略断面図である。図9(a)~(g)はコイル部10Aの具体的な励磁パターンをそれぞれ示す概略断面図である。図10(a)~(g)はコイル部10Cの具体的な励磁パターンをそれぞれ示す概略断面図である。なお、これらの図中の実線が励磁するコイル、破線が励磁しないコイルをそれぞれ示している。
 コイル部10の具体的な励磁パターンとしては、図2を参照して既に説明したように、例えば、コイル11、12の両方を同時に励磁する場合(図7(a)参照)と、内側のコイル11のみを励磁する場合(図7(b)参照)とが考えられるが、他にも、外側のコイル12のみを励磁するパターンもあり得る。
 コイル部10Bの具体的な励磁パターンとしては、図8(a)~(c)に示す3通りのパターンが考えられる。
 コイル部10Aの具体的な励磁パターンとしては、例えば、図9(a)~(g)に示す7通りのパターンが考えられる。
 コイル部10Cの具体的な励磁パターンとしては、図10(a)~(g)に示す7通りのパターンが考えられる。
 (6)近接センサ1の受信関連部分の概略構成
 図11はコイル部10を備える近接センサ1の受信関連部分の概略構成を示すブロック図である。
 この図11に示すように、近接センサ1は、受信関連部分として、予め定められた位置関係に配置されたコイル11、12と、コイル11の電圧V1から被検出物体Wまでの第1距離情報d1を算出する第1距離算出部31と、コイル12の電圧V2から被検出物体Wまでの第2距離情報d2を算出する第2距離算出部32と、コイル11、12の位置関係と第1距離情報d1および第2距離情報d2とに基づいて被検出物体Wの位置(距離および方位)を推定する位置推定部33とを備えている。
 これらの他にも、近接センサ1は、コイル11、12を選択的に励磁する励磁回路なども備えている。この励磁回路によって、コイル11、12は異なるパターンで励磁される。
 また、第1距離算出部31と第2距離算出部32とは必ずしも独立している必要はなく、1つの距離算出部が第1距離情報d1および第2距離情報d2をともに算出するようにしてもよい。このような距離算出部と位置推定部33とを1つにまとめてもよい。コイル11、12の位置関係は、予め位置推定部33に記憶させておいてもよい。
 位置推定部33が推定する被検出物体Wの位置とは、被検出物体Wまでの距離および方位であるが、図1を参照して説明したように、3次元空間での位置を特定できるわけではない。実際には、コイル11、12と同軸の円周上ということが推定できるだけである。
 なお、本発明は、その主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の各実施形態や各実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文にはなんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
 この出願は、日本で2016年1月20日に出願された特願2016-008365号に基づく優先権を請求する。その内容はこれに言及することにより、本出願に組み込まれるものである。また、本明細書に引用された文献は、これに言及することにより、その全部が具体的に組み込まれるものである。
1   近接センサ
10、10A、10B、10C
    コイル部
11、12、13
    コイル
21、21A、22、22A
    コア
31  第1距離算出部
32  第2距離算出部
33  位置推定部

Claims (4)

  1.  予め定められた位置関係に配置された2以上のコイルと、
     これら前記コイルのうち複数のコイルの受信結果に基づいて、前記受信結果を得たコイルから被検出物体までの各距離情報をそれぞれ算出する距離算出部と、
     前記各距離情報および前記位置関係に基づいて前記被検出物体の位置を推定する位置推定部と
    を備えることを特徴とする近接センサ。
  2.  請求項1に記載の近接センサにおいて、
     前記各コイルは、2以上の異なる組み合わせで選択的に励磁され、
     前記距離算出部は、前記各コイルの選択的励磁毎に、複数のコイルから前記被検出物体までの前記各距離情報をそれぞれ算出し、
     前記位置推定部は、前記位置関係および前記選択的励磁毎に算出された前記各距離情報に基づいて前記被検出物体の前記位置を推定する
    ことを特徴とする近接センサ。
  3.  請求項1または2に記載の近接センサにおいて、
     前記各コイルは、同軸に配置されていることを特徴とする近接センサ。
  4.  請求項1~3のいずれか1項に記載の近接センサにおいて、
     前記各コイルは、同一平面上に配置されていることを特徴とする近接センサ。
PCT/JP2017/000291 2016-01-20 2017-01-06 近接センサ WO2017126341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17741221.0A EP3407009A4 (en) 2016-01-20 2017-01-06 PROXIMITY SENSOR
US15/751,156 US10488226B2 (en) 2016-01-20 2017-01-06 Proximity sensor
CN201780002803.2A CN107923732B (zh) 2016-01-20 2017-01-06 接近传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-008365 2016-01-20
JP2016008365A JP6458742B2 (ja) 2016-01-20 2016-01-20 近接センサ

Publications (1)

Publication Number Publication Date
WO2017126341A1 true WO2017126341A1 (ja) 2017-07-27

Family

ID=59361553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000291 WO2017126341A1 (ja) 2016-01-20 2017-01-06 近接センサ

Country Status (5)

Country Link
US (1) US10488226B2 (ja)
EP (1) EP3407009A4 (ja)
JP (1) JP6458742B2 (ja)
CN (1) CN107923732B (ja)
WO (1) WO2017126341A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076672A (ja) * 2018-11-08 2020-05-21 株式会社荏原製作所 渦電流検出装置及び研磨装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102538861B1 (ko) 2017-12-26 2023-06-01 가부시키가이샤 에바라 세이사꾸쇼 자성 소자 및 그것을 사용한 와전류식 센서
EP3654532B1 (en) * 2018-11-16 2022-05-18 Bently Nevada, LLC Proximity sensing system with component compatibility testing
DE102019209035A1 (de) 2019-06-21 2020-12-24 Infineon Technologies Ag Erfassen einer diskreten positionsbeziehung zwischen einem magnetfeldgeber und einer magnetfeldsensoranordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579805A (ja) * 1991-02-28 1993-03-30 Westinghouse Electric Corp <We> 放射エネルギーによる構造体の近接度の判定方法
JPH0729466A (ja) 1993-07-13 1995-01-31 Omron Corp 近接スイッチ
JP2003275164A (ja) * 1994-04-21 2003-09-30 Olympus Optical Co Ltd 挿入部位置検出装置
JP2008002202A (ja) * 2006-06-23 2008-01-10 Toa Harbor Works Co Ltd 地中位置検出装置
JP2012185033A (ja) 2011-03-04 2012-09-27 Makome Kenkyusho:Kk 近接センサ
JP2014086954A (ja) 2012-10-25 2014-05-12 Panasonic Corp 非接触検出装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053921Y2 (ja) * 1989-02-09 1993-01-29
JPH11304405A (ja) * 1998-04-22 1999-11-05 Mitsubishi Heavy Ind Ltd 位置検出装置及びそれを用いた位置検出方法
US6498478B2 (en) * 2000-08-14 2002-12-24 Radic Co., Ltd. Azimuth measuring method, azimuth measuring apparatus, position measuring method, and position measuring apparatus
EP1314964B1 (en) * 2001-06-29 2007-01-10 Matsushita Electric Works, Ltd. Position sensor
JP4387300B2 (ja) * 2002-06-26 2009-12-16 マイクロ−エプシロン・メステヒニク・ゲーエムベーハー・ウント・コンパニー・カー・ゲー センサコイルと距離測定センサ
DE10259223B3 (de) * 2002-11-20 2004-02-12 Mehnert, Walter, Dr. Positionsdetektor
WO2005042969A1 (de) * 2003-09-30 2005-05-12 Fev Motorentechnik Gmbh Sensoranordnung zur erfassung der bewegung eines durch einen aktuator hin und her bewegten stellgliedes
DE102004049753B3 (de) * 2004-10-08 2006-04-13 Siemens Ag Verfahren und Anordnung zum Bestimmen des Abstandes einer in Richtung der Abstandsbestimmung profilierten, leitfähigen Oberfläche von einer sich relativ zu der Oberfläche bewegenden Funktionsfläche
US7233396B1 (en) * 2006-04-17 2007-06-19 Alphasniffer Llc Polarization based interferometric detector
US7782046B2 (en) 2007-02-05 2010-08-24 General Electric Company Electromagnetic tracking method and system
JP2009109220A (ja) * 2007-10-26 2009-05-21 Aisan Ind Co Ltd 位置センサ
GB2472275A (en) * 2009-07-31 2011-02-02 Oxford Rf Sensors Ltd Proximity sensor
US8508242B2 (en) * 2010-01-25 2013-08-13 Ksr Technologies Co. Inductive position sensor
CN101788259B (zh) * 2010-03-04 2012-09-05 上海雷尼威尔测量技术有限公司 双丝差动型磁致伸缩位移传感器
EP2369291B1 (en) * 2010-03-10 2015-09-23 PolyResearch AG Sensor for height measurement
DE102012214199A1 (de) * 2012-08-09 2014-04-03 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zur Positionierung durch Triangulation
US9562758B2 (en) * 2013-04-15 2017-02-07 Stemco Kaiser Incorporated Distance measurement sensor based on magnetic signal triangulation
CN103673856A (zh) * 2013-12-20 2014-03-26 沈阳洪达信息科技有限公司 一种位置传感器
KR20160145664A (ko) * 2014-04-21 2016-12-20 누클레우스 사이언티픽, 인크. 리니어 액추에이터에서 유도성 위치 감지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579805A (ja) * 1991-02-28 1993-03-30 Westinghouse Electric Corp <We> 放射エネルギーによる構造体の近接度の判定方法
JPH0729466A (ja) 1993-07-13 1995-01-31 Omron Corp 近接スイッチ
JP2003275164A (ja) * 1994-04-21 2003-09-30 Olympus Optical Co Ltd 挿入部位置検出装置
JP2008002202A (ja) * 2006-06-23 2008-01-10 Toa Harbor Works Co Ltd 地中位置検出装置
JP2012185033A (ja) 2011-03-04 2012-09-27 Makome Kenkyusho:Kk 近接センサ
JP2014086954A (ja) 2012-10-25 2014-05-12 Panasonic Corp 非接触検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407009A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076672A (ja) * 2018-11-08 2020-05-21 株式会社荏原製作所 渦電流検出装置及び研磨装置
JP7179586B2 (ja) 2018-11-08 2022-11-29 株式会社荏原製作所 渦電流検出装置及び研磨装置
US11731233B2 (en) 2018-11-08 2023-08-22 Ebara Corporation Eddy current detection device and polishing apparatus

Also Published As

Publication number Publication date
CN107923732B (zh) 2020-02-07
US20180231398A1 (en) 2018-08-16
EP3407009A4 (en) 2019-08-07
US10488226B2 (en) 2019-11-26
JP6458742B2 (ja) 2019-01-30
JP2017129431A (ja) 2017-07-27
EP3407009A1 (en) 2018-11-28
CN107923732A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
US10816318B2 (en) Measuring an absolute angular position
WO2017126341A1 (ja) 近接センサ
CN110114637B (zh) 传感器装置
US10330498B2 (en) Sensor arrangement for the contactless sensing of angles of rotation on a rotating part
JP4529783B2 (ja) マグネト・インピーダンス・センサ素子
US20220244034A1 (en) Magnetic position sensor system, device, magnet and method
JP2010256171A (ja) 移動体システム
JP2003139562A (ja) 変位センサ
US6549003B2 (en) Position detector utilizing two magnetic field sensors and a scale
JP6559629B2 (ja) 外部浮遊磁場を補償する装置または磁場勾配が磁場センサに及ぼす影響を補償する装置
JP2007132710A (ja) 位置検出装置
CN112833772B (zh) 角度位置传感器、角度测量系统、方法及车辆
JP6008756B2 (ja) 電流センサおよび三相交流用電流センサ装置
US20180171941A1 (en) Sensor Device for Determining a Displacement of a Shaft
EP2309229A1 (en) Magnetic position sensor
WO2017126343A1 (ja) 近接センサ
JP4385340B2 (ja) ヘルムホルツ・コイルを用いた変位センサ
JP5964117B2 (ja) 回転検出装置
JP6893267B1 (ja) 磁気検出装置
US20230068057A1 (en) Coil Arrangement and Torque Sensor with Coil Arrangement
KR101114005B1 (ko) 복수 개의 코일을 이용하여 탐지능력을 향상시킨 탐지코일
JP2001336905A (ja) 磁気センサ
JP2002116242A (ja) 磁気検出装置
JP6041959B1 (ja) 磁気検出装置
JP2007108027A (ja) 電磁誘導式変位センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751156

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE