WO2017126081A1 - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
WO2017126081A1
WO2017126081A1 PCT/JP2016/051704 JP2016051704W WO2017126081A1 WO 2017126081 A1 WO2017126081 A1 WO 2017126081A1 JP 2016051704 W JP2016051704 W JP 2016051704W WO 2017126081 A1 WO2017126081 A1 WO 2017126081A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode electrolyte
negative electrode
positive electrode
flow battery
redox flow
Prior art date
Application number
PCT/JP2016/051704
Other languages
English (en)
French (fr)
Inventor
昌 山内
蛍子 藤本
洋成 出口
Original Assignee
日新電機 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機 株式会社 filed Critical 日新電機 株式会社
Priority to PCT/JP2016/051704 priority Critical patent/WO2017126081A1/ja
Publication of WO2017126081A1 publication Critical patent/WO2017126081A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery.
  • a redox flow battery uses a strongly acidic electrolyte.
  • a strongly acidic electrolytic solution an electrolytic solution containing a vanadium redox substance has been put into practical use. Since the metal redox ions in the strongly acidic electrolyte are stably dissolved even at a relatively high concentration, the energy density of the battery can be increased.
  • the ion-conducting carriers are H + ions or OH ⁇ ions. Since both the mobility of H + ions and the mobility of OH ⁇ ions are relatively high, the strongly acidic electrolyte has high conductivity. This increases the battery efficiency as a result of the reduced battery resistance.
  • the redox flow battery of Patent Document 1 includes an electrolytic solution having a pH in the range of 2 or more and 8 or less, and a diaphragm based on an ethylene-vinyl alcohol copolymer.
  • An object of the present invention is to provide a redox flow battery having a diaphragm suitable for use of an electrolytic solution having a pH in the range of 2 or more and 8 or less.
  • a redox flow battery in which a positive electrode electrolyte and a negative electrode electrolyte having a pH in a range of 2 or more and 8 or less are used, A diaphragm is provided between the negative electrode electrolyte, and the diaphragm is a graft copolymer obtained by graft copolymerizing styrene sulfonate with a non-porous substrate made of an ethylene-vinyl alcohol copolymer and is crosslinked by a dialdehyde.
  • a redox flow battery having the above structure is provided.
  • the graft ratio of the diaphragm is preferably in the range of 15% to 25%.
  • a gel fraction of the diaphragm is preferably 80% or more.
  • the redox flow battery includes a charge / discharge cell 11, a first tank 23 that stores a positive electrode electrolyte 22, and a second tank 33 that stores a negative electrode electrolyte 32.
  • the charge / discharge cell 11 includes a diaphragm 12 between the positive electrode electrolyte 22 and the negative electrode electrolyte 32.
  • the inside of the charge / discharge cell 11 is partitioned into the positive electrode side cell 21 and the negative electrode side cell 31 by the diaphragm 12.
  • a positive electrode 21a and a positive electrode current collector plate 21b are arranged in contact with each other.
  • a negative electrode 31 a and a negative electrode current collector 31 b are arranged in contact with each other.
  • the positive electrode 21a and the negative electrode 31a are made of, for example, carbon felt.
  • the positive electrode side current collector plate 21b and the negative electrode side current collector plate 31b are made of, for example, a glassy carbon plate.
  • the positive electrode side current collector plate 21 b and the negative electrode side current collector plate 31 b are electrically connected to the charge / discharge device 10.
  • the redox flow battery is provided with a temperature adjusting device for adjusting the temperature around the charge / discharge cell 11 as necessary.
  • a first tank 23 is connected to the positive electrode side cell 21 via a first supply pipe 24 and a first recovery pipe 25.
  • the first supply pipe 24 is equipped with a first pump 26.
  • the positive electrolyte solution 22 in the first tank 23 is supplied to the positive electrode side cell 21 through the first supply pipe 24.
  • the positive electrode electrolyte 22 in the positive electrode side cell 21 is recovered to the first tank 23 through the first recovery pipe 25.
  • the positive electrode electrolyte 22 circulates between the first tank 23 and the positive electrode side cell 21.
  • the second tank 33 is connected to the negative electrode side cell 31 via a second supply pipe 34 and a second recovery pipe 35.
  • the second supply pipe 34 is equipped with a second pump 36.
  • the negative electrolyte solution 32 in the second tank 33 is supplied to the negative electrode side cell 31 through the second supply pipe 34.
  • the negative electrode electrolyte 32 in the negative electrode side cell 31 is recovered in the second tank 33 through the second recovery pipe 35.
  • the negative electrode electrolyte 32 circulates between the second tank 33 and the negative electrode side cell 31.
  • the first gas pipe 13a is connected to the first tank 23 and the second tank 33.
  • the first gas pipe 13 a supplies the inert gas supplied from the inert gas generator into the positive electrode electrolyte 22 in the first tank 23 and the negative electrode electrolyte 32 in the second tank 33. Thereby, the contact with the positive electrode electrolyte solution 22 and the negative electrode electrolyte solution 32, and oxygen in air
  • the oxygen concentration in the gas phase in the first tank 23 and the second tank 33 is kept substantially constant by adjusting the supply amount of the inert gas.
  • nitrogen gas is used as the inert gas.
  • the inert gas examples include carbon dioxide gas, argon gas, and helium gas in addition to nitrogen gas.
  • the inert gas supplied to the first tank 23 and the second tank 33 is exhausted through the exhaust pipe 14.
  • a water seal portion 15 that seals the front end opening of the exhaust pipe 14 is provided at the distal end of the exhaust pipe 14 on the discharge side. The water seal 15 prevents the air from flowing back into the exhaust pipe 14 and keeps the pressure in the first tank 23 and the second tank 33 constant.
  • the redox flow battery may include a case 41 that reduces the oxygen concentration around the charge / discharge cell 11.
  • the case 41 is configured to surround the charge / discharge cell 11, the first tank 23, and the second tank 33, for example.
  • the case 41 is connected to the second gas pipe 13b.
  • the second gas pipe 13 b supplies the inert gas supplied from the inert gas generator to the periphery of the charge / discharge cell 11. Thereby, the contact with the charging / discharging cell 11 and oxygen in air
  • the oxygen concentration in the case 41 is kept substantially constant by adjusting the supply amount of the inert gas.
  • an oxidation reaction is performed in the positive electrode electrolyte 22 in contact with the positive electrode 21a, and a reduction reaction is performed in the negative electrode electrolyte 32 in contact with the negative electrode 31a. That is, the positive electrode 21a emits electrons and the negative electrode 31a receives electrons.
  • the positive collector plate 21b supplies the electrons discharged from the positive electrode 21a to the charging / discharging device 10.
  • the negative electrode current collector 31b supplies the electrons received from the charge / discharge device 10 to the negative electrode 31a.
  • a reduction reaction is performed in the positive electrode electrolyte 22 in contact with the positive electrode 21a, and an oxidation reaction is performed in the negative electrode electrolyte 32 in contact with the negative electrode 31a. That is, the positive electrode 21a receives electrons and the negative electrode 31a emits electrons. At this time, the positive collector plate 21b supplies the electrons received from the charge / discharge device 10 to the positive electrode 21a.
  • the diaphragm 12 (ion exchange membrane) suppresses permeation of the active material between the positive electrode side cell 21 and the negative electrode side cell 31.
  • the diaphragm 12 transmits the cation in the positive electrode side cell 21 to the negative electrode side cell 31 during charging, and transmits the cation in the negative electrode side cell 31 to the positive electrode side cell 21 during discharging.
  • the diaphragm 12 is a graft copolymer obtained by graft copolymerizing styrene sulfonate with a non-porous substrate made of an ethylene-vinyl alcohol copolymer and has a crosslinked structure crosslinked with dialdehyde.
  • the sulfonate structure of the graft chain contributes to the exchange of cations.
  • the non-porous substrate made of ethylene-vinyl alcohol copolymer can be selected from commercially available films or sheets.
  • the film or sheet may be a stretched film or a stretched sheet, or may be an unstretched film or a nonstretched sheet.
  • the thickness of the non-porous substrate is preferably 15 ⁇ m or more and 50 ⁇ m or less.
  • the specific gravity of the non-porous substrate that is, the specific gravity of the ethylene-vinyl alcohol copolymer is preferably 1.17 or more and 1.23 or less. This specific gravity is measured in accordance with JIS Z8807: 2012. Specifically, the specific gravity can be measured using a specific gravity bottle.
  • the ethylene content of the ethylene-vinyl alcohol copolymer is preferably 20 mol% or more, for example, from the viewpoint that the strength as the diaphragm 12 is easily secured.
  • the ethylene content of the ethylene-vinyl alcohol copolymer is preferably 50 mol% or less from the viewpoint of hydrophilicity.
  • the non-porous substrate may contain an additive such as a plasticizer, for example.
  • a graft chain having a sulfonate structure is introduced into the ethylene-vinyl alcohol copolymer by graft copolymerization of styrene sulfonate.
  • styrene sulfonate an alkali metal salt is preferable, and a sodium salt or a potassium salt is more preferable.
  • the graft ratio of the graft copolymer is preferably 15% or more and 25% or less.
  • the graft ratio is calculated by substituting into the following formula (1), where W0 is the mass of the non-porous substrate and W1 is the mass of the graft copolymer.
  • Dialdehyde is a cross-linking agent that chemically cross-links the graft copolymer. More specifically, the diaphragm 12 is cross-linked by a dialdehyde with the hydroxyl group of the ethylene-vinyl alcohol copolymer, which is the main chain of the graft polymer, serving as a cross-linking point.
  • a dialdehyde for example, a dialdehyde having 2 to 8 carbon atoms is preferable.
  • dialdehyde examples include glyoxal, malondialdehyde, succindialdehyde, glutardialdehyde, maleindialdehyde, and phthaldialdehyde.
  • One kind or two or more kinds of dialdehydes can be used.
  • the gel fraction of the diaphragm 12 is preferably 80% or more.
  • the gel fraction is assigned to the following formula (2) where W2 is the mass of the ion exchange membrane and W3 is the dry mass of the insoluble portion after the ion exchange membrane is immersed in a 50 wt% aqueous solution of 2-propanol. Is calculated.
  • the conditions for immersing the ion exchange membrane in the aqueous solution are 80 ° C. and 1 hour.
  • the electric resistance (membrane resistance) of the ion exchange membrane is preferably 10 ⁇ / cm 2 or less, for example.
  • the electrical resistance of the ion exchange membrane can be measured by immersing the ion exchange membrane in a 3% by weight aqueous solution of sodium chloride for 30 minutes or more, sandwiching it with an electrode, and passing an electric current.
  • the method for producing an ion exchange membrane includes a polymerization step and a crosslinking step.
  • the polymerization step is a step of obtaining a graft copolymer obtained by graft copolymerizing styrene sulfonate with the non-porous substrate.
  • a graft chain is introduced into the radical active site generated on the non-porous substrate using styrene sulfonate.
  • the radical active site can be generated by, for example, radical polymerization initiator, ionizing radiation irradiation, ultraviolet irradiation, ultrasonic irradiation, plasma irradiation, or the like.
  • the method using ionizing radiation irradiation has the advantage that the manufacturing process is simple, safe and has a low environmental impact.
  • ionizing radiation examples include ⁇ rays, ⁇ rays, ⁇ rays, electron rays, X rays and the like.
  • ionizing radiations for example, ⁇ rays emitted from cobalt 60, electron beams emitted from an electron beam accelerator, X-rays, and the like are preferable from the viewpoint of easy industrial use.
  • Irradiation with ionizing radiation is preferably performed in an inert gas atmosphere such as nitrogen gas, neon gas, or argon gas from the viewpoint of suppressing the reaction between radical active sites and oxygen.
  • the absorbed dose of ionizing radiation is, for example, in the range of 1 to 300 kGy.
  • the graft ratio can be changed by adjusting the absorbed dose of ionizing radiation.
  • a solution containing styrene sulfonate is brought into contact with the non-porous substrate where radical active sites are generated.
  • the radical polymerization reaction can be promoted by shaking or heating the non-porous substrate immersed in the solution containing styrene sulfonate.
  • the solvent of the solution containing styrene sulfonate for example, a hydrophilic solvent such as water, alcohol such as methanol and ethanol, and hydrophilic ketone such as acetone can be used.
  • a mixed solvent obtained by mixing plural kinds of hydrophilic solvents may be used.
  • the solvent to be used preferably contains water as the main component, more preferably water, from the viewpoints of cost reduction of the production process, reduction of environmental burden, and improvement of process safety.
  • water for example, ion exchange water, pure water, ultrapure water, or the like can be used.
  • the graft ratio can be changed by adjusting the concentration of styrene sulfonate in the solution containing styrene sulfonate.
  • concentration of styrene sulfonate in the solution containing styrene sulfonate is, for example, in the range of 3% by mass to 35% by mass, and more preferably 5% by mass to 30% by mass.
  • concentration of styrene sulfonate is 3% by mass or more, it is easy to increase the graft ratio.
  • the concentration of styrene sulfonate is 35% by mass or less, the formation of a homopolymer of styrene sulfonate is suppressed.
  • the time for which the solution containing the styrene sulfonate is brought into contact with the non-porous substrate in which the radical active site is generated is, for example, in the range of 30 minutes to 48 hours.
  • the contact between the non-porous base material where radical active sites are generated and the solution containing styrene sulfonate should be performed in an inert gas atmosphere such as nitrogen gas, neon gas, argon gas, etc., as in the case of irradiation with ionizing radiation. Is preferred.
  • the graft copolymer obtained in the polymerization step is washed by a washing step as necessary.
  • the cleaning liquid in the cleaning process for example, water or acid can be used.
  • a crosslinking process is a process of obtaining an ion exchange membrane (diaphragm 12) by introduce
  • the cross-linking reaction is performed by bringing the solution containing the dialdehyde into contact with the graft copolymer.
  • the degree of crosslinking (gel fraction) can be changed by adjusting the concentration of dialdehyde in the solution containing dialdehyde.
  • concentration of the dialdehyde in the solution containing a dialdehyde is 0.2 mass% or more and 30 mass% or less, for example.
  • concentration of the dialdehyde concentration is 0.2% by mass or more, it is easy to increase the degree of crosslinking.
  • concentration of the dialdehyde is 30% by mass or less, it becomes easy to reduce unreacted dialdehyde.
  • the solution containing dialdehyde may contain, for example, a salt such as sodium chloride.
  • the time for contacting the solution containing the dialdehyde and the graft copolymer is, for example, in the range of 30 minutes to 48 hours.
  • the pH of the positive electrode electrolyte 22 and the pH of the negative electrode electrolyte 32 are in the range of 2 or more and 8 or less.
  • As the positive electrode electrolyte 22 and the negative electrode electrolyte 32 an aqueous solution containing an active material capable of performing a redox reaction within the above pH range is used.
  • the pH of the positive electrode electrolyte 22 and the pH of the negative electrode electrolyte 32 are 2 or more, corrosion resistance is easily ensured.
  • the pH of the positive electrode electrolyte 22 and the pH of the negative electrode electrolyte 32 are 8 or less, for example, the solubility of the active material is easily ensured.
  • the active material examples include a redox pair of iron redox material, a redox material of titanium, a redox material of chromium, a redox material of manganese, and a redox material of copper.
  • the “redox substance” described in the present application refers to a metal ion, a metal complex ion, or a metal generated by a metal redox reaction.
  • the active material is preferably contained in the electrolytic solution as a metal complex in order to suppress precipitation within the above pH range.
  • the chelating agent for forming the metal complex is capable of forming a complex with the active material, and examples thereof include amines, citric acid, lactic acid, aminocarboxylic chelating agents, and polyethyleneimine.
  • the cathode electrolyte 22 contains an iron redox material and an acid.
  • the acid is citric acid or lactic acid.
  • iron functions as an active material. For example, oxidation from iron (II) to iron (III) occurs during charging, and reduction from iron (III) to iron (II) occurs during discharging. Is presumed to occur.
  • the positive electrode electrolyte 22 contains the acid described above, so that a practical electromotive force can be easily obtained.
  • the concentration of the iron redox substance (iron ions) in the positive electrode electrolyte 22 is preferably 0.2 mol / L or more, more preferably 0.3 mol / L or more, from the viewpoint of increasing the energy density. More preferably 0.4 mol / L or more.
  • the concentration of the iron redox substance (iron ions) in the positive electrode electrolyte 22 is preferably 1.0 mol / L or less.
  • the molar ratio of the acid to the iron redox substance in the positive electrode electrolyte 22 is preferably in the range of 1 or more and 4 or less.
  • the molar ratio is 1 or more, the electrical resistance of the positive electrode electrolyte 22 becomes lower, so that the Coulomb efficiency and the utilization rate of the positive electrode electrolyte 22 can be easily increased.
  • the molar ratio is 4 or less, both economic efficiency and practicality can be easily achieved.
  • the pH of the positive electrode electrolyte 22 is preferably in the range of 1 or more and 7 or less, more preferably 2 or more and 5 or less, for example, since it is easy to ensure the solubility of the iron redox material and the acid. Is within the range.
  • the pH is a value measured at 20 ° C., for example.
  • the positive electrode electrolyte 22 may contain, for example, an inorganic acid salt or various chelating agents as necessary.
  • the negative electrode electrolyte 32 is an electrolyte containing a redox material of titanium and an acid.
  • the acid is citric acid or lactic acid.
  • titanium functions as an active material. For example, reduction from titanium (IV) to titanium (III) occurs during charging, and oxidation from titanium (III) to titanium (IV) occurs during discharging. Is presumed to occur.
  • the negative electrode electrolyte solution 32 is complexed by containing the above acid, and the potential of about 0.2 V is lowered, so that a practical electromotive force is easily obtained.
  • the concentration of the titanium redox material (titanium ions) in the negative electrode electrolyte 32 is preferably 0.2 mol / L or more, more preferably 0.3 mol / L or more, from the viewpoint of increasing the energy density. More preferably 0.4 mol / L or more.
  • the concentration of the titanium redox substance (titanium ions) in the negative electrode electrolyte solution 32 is preferably 1.0 mol / L or less.
  • the molar ratio of the acid to the redox substance of titanium in the negative electrode electrolyte solution 32 is preferably in the range of 1 or more and 4 or less.
  • the molar ratio is 1 or more, the electric resistance of the negative electrode electrolyte 32 becomes lower, so that the Coulomb efficiency and the utilization factor of the negative electrode electrolyte 32 are easily increased.
  • the molar ratio is 4 or less, both economic efficiency and practicality can be easily achieved.
  • the pH of the negative electrode electrolyte solution 32 is preferably in the range of 1 or more and 7 or less because, for example, it is easy to ensure the solubility of the redox material of titanium and the acid.
  • the pH of the negative electrode electrolyte solution 32 is more preferably in the range of 2 or more and 5 or less.
  • the negative electrode electrolyte 32 may contain, for example, an inorganic acid salt or various chelating agents as necessary.
  • the positive electrode electrolyte 22 and the negative electrode electrolyte 32 can be prepared by a known method. It is preferable that the water used for the positive electrode electrolyte 22 and the negative electrode electrolyte 32 has a purity equal to or higher than that of distilled water.
  • the amount of dissolved oxygen in the negative electrode electrolyte solution 32 in the second tank 33 is preferably set to 1.5 mg / L or less.
  • the dissolved oxygen amount is more preferably 1.0 mg / L or less.
  • the oxygen concentration in the case 41 is preferably 10% by volume or less.
  • the oxygen concentration in the gas phase in the second tank 33 is preferably 1% by volume or less.
  • the dissolved oxygen amount in the positive electrode electrolyte solution 22 in the first tank 23 may also be set to 1.5 mg / L or less, or may be set to 1.0 mg / L or less.
  • the oxygen concentration in the gas phase in the first tank 23 may also be set to 1% by volume or less.
  • Energy efficiency is calculated by substituting Coulomb efficiency and voltage efficiency into the following equation (3).
  • Energy efficiency [%] Coulomb efficiency ⁇ Voltage efficiency / 100 (3)
  • the energy efficiency is preferably 60% or more.
  • Coulomb efficiency is calculated by substituting the amount of coulomb (A) at the time of charging in the second cycle and the amount of coulomb (B) at the time of discharging in the second cycle into the following formula (4), where one charge / discharge is one cycle It is calculated by doing.
  • the diaphragm 12 in the redox flow battery of the present embodiment is a graft copolymer obtained by graft copolymerizing styrene sulfonate with a non-porous substrate made of an ethylene-vinyl alcohol copolymer, and is crosslinked by a dialdehyde.
  • the diaphragm 12 configured as described above can avoid using an expensive resin material or requiring special processing like a porous substrate.
  • the redox flow battery which has the diaphragm 12 suitable when using electrolyte solution in the range whose pH is 2 or more and 8 or less can be provided.
  • the cross-linking structure makes it easy to suppress the transmittance of metal ions constituting the redox material. Therefore, suitable battery performance is easily exhibited.
  • the graft ratio of the diaphragm 12 is preferably in the range of 15% or more and 25% or less.
  • the graft ratio of the diaphragm 12 is 15% or more, it becomes easy to ensure the permeability of cations serving as ionic conduction carriers.
  • the graft ratio of the diaphragm 12 is 25% or less, the permeation of metal ions constituting the redox substance is easily suppressed. Therefore, suitable battery performance is easily exhibited.
  • the gel fraction of the diaphragm 12 is preferably 80% or more. In this case, the permeation of metal ions constituting the redox material is easily suppressed. Therefore, suitable battery performance is easily exhibited.
  • the embodiment may be modified as follows.
  • the diaphragm 12 may be provided with a support having higher permeability of ions serving as ion-conducting carriers than the diaphragm 12. That is, the diaphragm 12 may be a laminate having an ion exchange membrane and a support that supports the membrane.
  • the shape, arrangement, or number of the charge / discharge cells 11 included in the redox flow battery and the capacities of the first tank 23 and the second tank 33 may be changed according to performance required for the redox flow battery. Further, the supply amount of the positive electrode electrolyte 22 and the negative electrode electrolyte 32 to the charge / discharge cell 11 can also be set according to, for example, the capacity of the charge / discharge cell 11. For example, the case 41 may be omitted in the case of an electrolyte having a small influence of oxygen concentration.
  • graft copolymer obtained by graft-polymerizing sodium styrenesulfonate on an ethylene-vinyl alcohol copolymer film was obtained.
  • the graft ratio of the obtained graft copolymer is in the range of 15 to 25%.
  • the graft copolymer is immersed in an aqueous solution containing 20% by mass of dialdehyde (glutaraldehyde) and 17.5% by mass of sodium chloride for 24 hours.
  • an ion exchange membrane diaphragm having a crosslinked structure was obtained.
  • the obtained ion exchange membrane was taken out of the bag, washed with water, etc. and dried.
  • Production Example 2 As shown in Table 1, in Production Example 2, an ion exchange membrane was produced in the same manner as Production Example 1 except that the concentration of dialdehyde was changed.
  • Comparative Example 1 an ion exchange membrane was produced in the same manner as in Production Example 1 except that the crosslinking reaction using dialdehyde was omitted.
  • Comparative Example 2 The ion exchange membrane of Comparative Example 2 is a commercially available ion exchange membrane (CMS, manufactured by Astom Corp.) made of a material different from the ethylene-vinyl alcohol copolymer.
  • CMS commercially available ion exchange membrane
  • a beaker containing 100 mL of distilled water was prepared, and the ion exchange membrane attached to the glass container was immersed in distilled water, and the distilled water was stirred for 24 hours using a stirrer.
  • the iron ion concentration in distilled water was measured. This iron ion concentration was converted into the concentration per 1 cm 2 of the area of the ion exchange membrane, 1 mol of the electrolyte solution, and 1 hour, and the converted value was defined as the transmittance.
  • Example 1 ⁇ Redox flow battery> The redox flow battery shown in FIG. 1 was used.
  • the electrode area was set to 10 cm 2 using carbon felt (trade name: GFA5, manufactured by SGL).
  • the current collector plate pure titanium having a thickness of 1.0 mm was used.
  • the diaphragm the ion exchange membrane of Production Example 1 was used.
  • a glass container with a capacity of 30 mL was used as the first tank and the second tank. Silicone tubes were used as the supply tubes, the recovery tubes, the gas tubes, and the exhaust tubes.
  • a micro tube pump MP-1000, manufactured by Tokyo Rika Kikai Co., Ltd.
  • PFX200 manufactured by Kikusui Electronics Co., Ltd.
  • the oxygen concentration in the ambient atmosphere of the charge / discharge cell was adjusted to 1% or less by supplying nitrogen from the second gas pipe into the case.
  • the supply of nitrogen gas from the second gas pipe was continued during the subsequent charge / discharge test.
  • the amount of dissolved oxygen was measured using a dissolved oxygen meter (“B-506” manufactured by Iijima Electronics Co., Ltd.).
  • the oxygen concentration was measured using an oxygen concentration meter (“XPO-318” manufactured by Shin Cosmos Electric Co., Ltd.).
  • ⁇ Charge / discharge test> In the charge / discharge test, first, charging was performed at a constant current for 60 minutes. Next, the battery was discharged at a constant current with a final discharge voltage of 0V. From the first cycle to the third cycle of charge / discharge, the constant current is set to 50 mA, from the fourth cycle to the sixth cycle of charge / discharge, the constant current is set to 100 mA, and from the seventh cycle to the ninth cycle of charge / discharge. The constant current was 200 mA.
  • the redox reaction at the time of charging / discharging is estimated as follows. Positive electrode: Iron (II) -citric acid complex ⁇ Iron (III) -citric acid complex + e ⁇ Negative electrode: Titanium (IV) -citric acid complex + e ⁇ ⁇ ⁇ Titanium (III) -citric acid complex The energy efficiency of the redox flow battery of Example 1 was calculated. The energy efficiency in the redox flow battery of Example 1 was 75%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

レドックスフロー型電池に用いられる正極電解液及び負極電解液のpHは、2以上、8以下の範囲内である。正極電解液と負極電解液の間に設けられる隔膜は、エチレン-ビニルアルコール共重合体製の非多孔質基材にスチレンスルホン酸塩をグラフト共重合したグラフト共重合体であるとともにジアルデヒドにより架橋された構造を有する。

Description

レドックスフロー電池
 本発明は、レドックスフロー電池に関する。
 一般的にレドックスフロー電池では強酸性の電解液が用いられる。強酸性の電解液の例としては、バナジウムのレドックス系物質を含有する電解液が実用化されている。強酸性の電解液中における金属レドックスイオンは、比較的高濃度であっても安定して溶解されるため、電池のエネルギー密度を高くすることができる。また、強酸性の電解液では、イオン伝導のキャリアはHイオン又はOHイオンとなる。Hイオンの移動度及びOHイオンの移動度はいずれも比較的高いため、強酸性の電解液は高い導電率を有する。これにより、電池の抵抗が小さくなる結果、電池の効率は高まる。ところが、レドックスフロー電池を構成する部品には、強酸性の電解液に耐え得る耐薬品性が求められるため、部品のコストが増大する傾向にある。この点、液性を中性に近づけた電解液を用いることにより、レドックスフロー電池を構成する部品に求められる耐薬品性を緩和することが可能である。特許文献1のレドックスフロー電池は、pHが2以上、8以下の範囲内の電解液と、エチレン-ビニルアルコール共重合体を基材とした隔膜とを備えている。
国際公開第2014/030230号
 レドックスフロー電池において、pHが2以上、8以下の範囲内の電解液を用いた場合、電池の部品に求められる耐薬品性が緩和されるため、高価な材料の使用を回避することが可能となる。したがって、設備の低コスト化が実現可能となるため、レドックスフロー電池の更なる普及を促進するという観点で有利である。
 本発明の目的は、pHが2以上、8以下の範囲内の電解液を用いる場合に好適な隔膜を有するレドックスフロー電池を提供することにある。
 上記の目的を達成するために、本発明の一態様では、pHが2以上、8以下の範囲内の正極電解液及び負極電解液が用いられるレドックスフロー電池であって、前記正極電解液と前記負極電解液の間に隔膜を備え、前記隔膜は、エチレン-ビニルアルコール共重合体製の非多孔質基材にスチレンスルホン酸塩をグラフト共重合したグラフト共重合体であるとともにジアルデヒドにより架橋された構造を有するレドックスフロー電池を提供する。
 前記レドックスフロー電池において、前記隔膜のグラフト率は、15%以上、25%以下の範囲であることが好ましい。
 前記レドックスフロー電池において、前記隔膜のゲル分率は、80%以上であることが好ましい。
本発明の実施形態のレドックスフロー電池を示す概略図である。
 以下、本発明の実施形態に係るレドックスフロー電池について説明する。
 <レドックスフロー電池の構造>
 図1に示すように、レドックスフロー電池は、充放電セル11と、正極電解液22を貯蔵する第1タンク23と、負極電解液32を貯蔵する第2タンク33とを備える。充放電セル11は、正極電解液22と負極電解液32との間に隔膜12を備える。換言すると、充放電セル11の内部は、隔膜12によって正極側セル21と負極側セル31とに仕切られている。
 正極側セル21には、正極21aと正極側集電板21bとが互いに接触した状態で配置されている。負極側セル31には、負極31aと負極側集電板31bとが互いに接触した状態で配置されている。正極21a及び負極31aは、例えばカーボン製のフェルトから構成される。正極側集電板21b及び負極側集電板31bは、例えばガラス状カーボン板から構成される。正極側集電板21b及び負極側集電板31bは、充放電装置10に電気的に接続されている。レドックスフロー電池には、充放電セル11周辺の温度を調節する温度調節装置が必要に応じて設けられる。
 正極側セル21には、第1供給管24及び第1回収管25を介して第1タンク23が接続されている。第1供給管24には、第1ポンプ26が装備されている。第1ポンプ26の作動により、第1タンク23内の正極電解液22は、第1供給管24を通じて正極側セル21に供給される。このとき、正極側セル21内の正極電解液22は、第1回収管25を通じて第1タンク23に回収される。このように正極電解液22は、第1タンク23と正極側セル21との間を循環する。
 負極側セル31には、第2供給管34及び第2回収管35を介して第2タンク33が接続されている。第2供給管34には、第2ポンプ36が装備されている。第2ポンプ36の作動により、第2タンク33内の負極電解液32は、第2供給管34を通じて負極側セル31に供給される。このとき、負極側セル31内の負極電解液32は、第2回収管35を通じて第2タンク33に回収される。このように負極電解液32は、第2タンク33と負極側セル31との間を循環する。
 第1タンク23及び第2タンク33には、第1ガス管13aが接続されている。第1ガス管13aは、不活性ガス発生装置から供給される不活性ガスを、第1タンク23内の正極電解液22中及び第2タンク33内の負極電解液32中に供給する。これにより、正極電解液22及び負極電解液32と大気中の酸素との接触が抑制される。第1タンク23内及び第2タンク33内の気相中の酸素濃度は、不活性ガスの供給量を調整することで、略一定に保たれる。
 不活性ガスとしては、例えば窒素ガスが用いられる。なお、使用できる不活性ガスの例としては、窒素ガス以外に、例えば、二酸化炭素ガス、アルゴンガス、ヘリウムガスが挙げられる。第1タンク23及び第2タンク33に供給された不活性ガスは、排気管14を通じて排気される。排気管14の排出側の先端には、排気管14の先端開口を水封する水封部15が設けられている。水封部15は、排気管14内に大気が逆流することを防止するとともに、第1タンク23内及び第2タンク33内の圧力を一定に保つ。
 レドックスフロー電池は、充放電セル11の周囲の酸素濃度を低減させるケース41を備えていてもよい。ケース41は、例えば、充放電セル11、第1タンク23、及び第2タンク33を取り囲むように構成される。ケース41には、第2ガス管13bが接続されている。第2ガス管13bは、不活性ガス発生装置から供給される不活性ガスを充放電セル11の周囲に供給する。これにより、充放電セル11と大気中の酸素との接触が抑制される。ケース41内の酸素濃度は、不活性ガスの供給量を調整することで、略一定に保たれる。
 充電時には、正極21aに接触する正極電解液22中で酸化反応が行われるとともに、負極31aに接触する負極電解液32中で還元反応が行われる。すなわち、正極21aは電子を放出するとともに、負極31aは電子を受け取る。このとき、正極側集電板21bは、正極21aから放出された電子を充放電装置10に供給する。負極側集電板31bは、充放電装置10から受け取った電子を負極31aに供給する。
 放電時には、正極21aに接触する正極電解液22中で還元反応が行われるとともに、負極31aに接触する負極電解液32中で酸化反応が行われる。すなわち、正極21aは電子を受け取るとともに、負極31aは電子を放出する。このとき、正極側集電板21bは、充放電装置10から受け取った電子を正極21aに供給する。
 <隔膜12(イオン交換膜)の構成>
 隔膜12(イオン交換膜)は、正極側セル21と負極側セル31との間において活物質の透過を抑制する。隔膜12は、充電時には、正極側セル21中の陽イオンを負極側セル31へ透過させるとともに、放電時には、負極側セル31中の陽イオンを正極側セル21へ透過させる。
 隔膜12は、エチレン-ビニルアルコール共重合体製の非多孔質基材にスチレンスルホン酸塩をグラフト共重合したグラフト共重合体であるとともにジアルデヒドにより架橋した架橋構造を有している。この隔膜12は、グラフト鎖の有するスルホン酸塩構造が陽イオンの交換に寄与する。
 エチレン-ビニルアルコール共重合体製の非多孔質基材としては、市販のフィルム又はシートから選択して用いることができる。フィルム又はシートは、延伸フィルム又は延伸シートであってもよいし、無延伸フィルム又は無延伸シートであってもよい。
 上記非多孔質基材の厚みは、15μm以上、50μm以下であることが好ましい。非多孔質基材の比重、すなわちエチレン-ビニルアルコール共重合体の比重は、1.17以上、1.23以下であることが好ましい。この比重は、JIS Z8807:2012に準拠して測定される。具体的には、比重瓶を用いて比重を測定することができる。エチレン-ビニルアルコール共重合体のエチレン含量は、隔膜12としての強度が容易に確保されるという観点から、例えば20mol%以上であることが好ましい。エチレン-ビニルアルコール共重合体のエチレン含量は、親水性の観点から、50mol%以下であることが好ましい。なお、非多孔質基材には、例えば、可塑剤等の添加剤が含有されていてもよい。
 スチレンスルホン酸塩をグラフト共重合させることでエチレン-ビニルアルコール共重合体に対してスルホン酸塩構造を有するグラフト鎖が導入される。スチレンスルホン酸塩としては、アルカリ金属塩が好ましく、ナトリウム塩又はカリウム塩がより好ましい。
 グラフト共重合体のグラフト率は、15%以上、25%以下であることが好ましい。
 グラフト率は、非多孔質基材の質量をW0、グラフト共重合体の質量をW1とした場合、下記式(1)に代入して算出される。
 グラフト率(%)=100×(W1-W0)/W0 ・・・(1)
 ジアルデヒドは、グラフト共重合体を化学架橋する架橋剤である。詳述すると、隔膜12は、グラフト重合体の主鎖であるエチレン-ビニルアルコール共重合体の有する水酸基が架橋点となり、ジアルデヒドにより架橋されている。ジアルデヒドとしては、例えば、炭素数が2以上、8以下のジアルデヒドが好ましい。ジアルデヒドとしては、例えば、グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、及びフタルジアルデヒドが挙げられる。ジアルデヒドは、一種類又は二種類以上を使用することができる。
 隔膜12(イオン交換膜)のゲル分率は、80%以上であることが好ましい。ゲル分率は、イオン交換膜の質量をW2、そのイオン交換膜を2-プロパノールの50重量%水溶液に浸漬した後の不溶部分の乾燥質量をW3とした場合、下記式(2)に代入して算出される。イオン交換膜を上記水溶液に浸漬する条件は、80℃、1時間である。
 ゲル分率(%)=W3/W2×100(%) ・・・(2)
 なお、ゲル分率の上限は100%である。
 イオン交換膜の電気抵抗(膜抵抗)は、例えば、10Ω/cm以下であることが好ましい。イオン交換膜の電気抵抗は、イオン交換膜を塩化ナトリウムの3重量%水溶液に30分以上浸漬した後、電極で挟み、電流を流すことで測定することができる。
 次に、イオン交換膜の製造方法について説明する。イオン交換膜の製造方法は、重合工程と、架橋工程とを備えている。
 重合工程は、上記非多孔質基材にスチレンスルホン酸塩をグラフト共重合したグラフト共重合体を得る工程である。重合工程は、非多孔質基材に生成させたラジカル活性点に、スチレンスルホン酸塩を用いてグラフト鎖を導入する。ラジカル活性点は、例えば、ラジカル重合開始剤、電離放射線の照射、紫外線の照射、超音波の照射、プラズマの照射等により生成することができる。ラジカル活性点を生成する方法の中でも、電離放射線の照射を用いる方法は、製造プロセスが簡単、安全、かつ環境へ負荷も小さいという利点を有する。
 電離放射線としては、例えばα線、β線、γ線、電子線、X線等が挙げられる。電離放射線の中でも、工業的に利用し易いという観点から、例えばコバルト60から放射されるγ線、電子線加速器から放射される電子線、X線等が好適である。
 電離放射線の照射は、ラジカル活性点と酸素との反応を抑制するという観点から、窒素ガス、ネオンガス、アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。電離放射線の吸収線量は、例えば1~300kGyの範囲とされる。電離放射線の吸収線量を調整することで、グラフト率を変更することができる。
 重合工程では、ラジカル活性点の生成した非多孔質基材に、スチレンスルホン酸塩を含む溶液を接触させる。この接触では、スチレンスルホン酸塩を含む溶液中に浸漬した非多孔質基材を振とうしたり、加熱したりすることで、ラジカル重合反応を促進することが可能である。
 スチレンスルホン酸塩を含む溶液の溶媒としては、例えば、水、メタノール、エタノール等のアルコール、アセトン等の親水性ケトン等の親水性溶媒を使用することができる。複数種の親水性溶媒を混合した混合溶媒を用いてもよい。使用する溶媒は、製造プロセスのコスト低減、環境負荷の低減、及びプロセスの安全性の向上の観点から、水を主成分とすることが好ましく、より好ましくは水である。水としては、例えば、イオン交換水、純水、超純水等を用いることができる。
 重合工程では、スチレンスルホン酸塩を含む溶液中のスチレンスルホン酸塩の濃度調整により、グラフト率を変更することが可能である。スチレンスルホン酸塩を含む溶液中におけるスチレンスルホン酸塩の濃度は、例えば3質量%以上、35質量%以下の範囲であり、より好ましくは5質量%以上、30質量%以下である。スチレンスルホン酸塩の濃度が3質量%以上の場合、グラフト率を高めることが容易となる。スチレンスルホン酸塩の濃度が35質量%以下の場合、スチレンスルホン酸塩の単独重合体の生成が抑制される。
 重合工程において、ラジカル活性点の生成した非多孔質基材に、スチレンスルホン酸塩を含む溶液を接触させる時間は、例えば30分以上、48時間以下の範囲とされる。
 ラジカル活性点の生成した非多孔質基材とスチレンスルホン酸塩を含む溶液との接触についても、電離放射線の照射と同様に、窒素ガス、ネオンガス、アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。
 重合工程で得られたグラフト共重合体は、必要に応じて洗浄工程により洗浄される。洗浄工程の洗浄液としては、例えば、水や酸を用いることができる。
 架橋工程は、ジアルデヒドを用いてグラフト共重合体に架橋構造を導入することでイオン交換膜(隔膜12)を得る工程である。架橋工程では、ジアルデヒドを含む溶液とグラフト共重合体とを接触させることで、架橋反応を行う。架橋工程では、ジアルデヒドを含む溶液中におけるジアルデヒドの濃度調整により、架橋度(ゲル分率)を変更することが可能である。ジアルデヒドを含む溶液中におけるジアルデヒドの濃度は、例えば、0.2質量%以上、30質量%以下である。ジアルデヒドの濃度が0.2質量%以上の場合、架橋度を高めることが容易となる。ジアルデヒドの濃度が30質量%以下の場合、未反応のジアルデヒドを削減することが容易となる。ジアルデヒドを含む溶液には、例えば、塩化ナトリウム等の塩を含有させてもよい。架橋工程において、ジアルデヒドを含む溶液と、グラフト共重合体とを接触させる時間は、例えば30分以上、48時間以下の範囲とされる。
 <電解液>
 正極電解液22のpH及び負極電解液32のpHは、2以上、8以下の範囲内である。
 正極電解液22及び負極電解液32として、上記pHの範囲内で酸化還元反応を行うことのできる活物質を含む水溶液が用いられる。正極電解液22のpH及び負極電解液32のpHが2以上であることで、耐食性が確保され易くなる。正極電解液22のpH及び負極電解液32のpHが8以下であることで、例えば、活物質の溶解性が確保され易くなる。
 活物質としては、例えば、鉄のレドックス系物質のレドックス対、チタンのレドックス系物質、クロムのレドックス系物質、マンガンのレドックス系物質、及び銅のレドックス系物質が挙げられる。本出願で記載する「レドックス系物質」とは、金属の酸化還元反応で生成する金属イオン、金属錯イオン又は金属のことを言う。
 活物質は、上記pHの範囲内における析出を抑制するために、金属錯体として電解液中に含有されることが好適である。金属錯体を形成するためのキレート剤としては、活物質と錯体を形成し得るものであって、例えば、アミン、クエン酸、乳酸、アミノカルボン系キレート剤、及びポリエチレンイミンが挙げられる。
 以下、正極電解液22及び負極電解液32の一例の詳細について説明する。
 正極電解液22は、鉄のレドックス系物質と、酸とを含有する。酸は、クエン酸又は乳酸である。
 正極電解液22中では、鉄が活物質として機能し、例えば、充電時には、鉄(II)から鉄(III)への酸化が起こり、放電時には、鉄(III)から鉄(II)への還元が起こると推測される。正極電解液22は、上記の酸を含有することにより、実用的な起電力が得られ易くなっている。
 正極電解液22中における鉄のレドックス系物質(鉄イオン)の濃度は、エネルギー密度を高めるという観点から、好ましくは0.2モル/L以上であり、より好ましくは0.3モル/L以上であり、さらに好ましくは0.4モル/L以上である。正極電解液22中における鉄のレドックス系物質(鉄イオン)の濃度は、好ましくは1.0モル/L以下である。
 正極電解液22中の鉄のレドックス系物質に対する上記酸のモル比は、1以上、4以下の範囲内であることが好ましい。前記モル比が1以上の場合、正極電解液22の電気抵抗がより低くなるため、クーロン効率及び正極電解液22の利用率を高めることが容易となる。前記モル比が4以下の場合、経済性と実用性の両立が容易となる。
 正極電解液22のpHは、例えば、鉄のレドックス系物質及び上記酸の溶解性を確保し易いことから、1以上、7以下の範囲内であることが好ましく、より好ましくは2以上、5以下の範囲内である。なお、pHは、例えば20℃で測定される値である。
 正極電解液22には、必要に応じて、例えば、無機酸の塩、又は各種キレート剤を含有させることもできる。
 負極電解液32は、チタンのレドックス系物質と酸とを含有する電解液である。酸は、クエン酸又は乳酸である。
 負極電解液32中では、チタンが活物質として機能し、例えば、充電時には、チタン(IV)からチタン(III)への還元が起こり、放電時には、チタン(III)からチタン(IV)への酸化が起こると推測される。負極電解液32は、上記の酸を含有することにより、錯体化し、約0.2V電位が下がるため、実用的な起電力が得られ易くなっている。
 負極電解液32中におけるチタンのレドックス系物質(チタンイオン)の濃度は、エネルギー密度を高めるという観点から、好ましくは0.2モル/L以上であり、より好ましくは0.3モル/L以上であり、さらに好ましくは0.4モル/L以上である。負極電解液32中におけるチタンのレドックス系物質(チタンイオン)の濃度は、好ましくは1.0モル/L以下である。
 負極電解液32中のチタンのレドックス系物質に対する上記酸のモル比は、1以上、4以下の範囲内であることが好ましい。前記モル比が1以上の場合、負極電解液32の電気抵抗がより低くなるため、クーロン効率及び負極電解液32の利用率を高めることが容易となる。前記モル比が4以下の場合、経済性と実用性の両立が容易となる。
 負極電解液32のpHは、例えば、チタンのレドックス系物質及び上記酸の溶解性を確保し易いことから、1以上、7以下の範囲内であることが好ましい。負極電解液32のpHは、2以上、5以下の範囲内であることがより好ましい。
 負極電解液32には、必要に応じて、例えば、無機酸の塩、又は各種キレート剤を含有させることもできる。
 正極電解液22及び負極電解液32は、公知の方法で調製することができる。正極電解液22及び負極電解液32に用いる水は、蒸留水と同等又はそれ以上の純度を有していることが好ましい。
 以上のように構成されたレドックスフロー電池では、第2タンク33内の負極電解液32中の溶存酸素量が1.5mg/L以下に設定されることが好ましい。溶存酸素量は、1.0mg/L以下であることがより好ましい。さらに、ケース41内の酸素濃度は10体積%以下であることが好ましい。加えて、第2タンク33内の気相中の酸素濃度は1体積%以下であることが好ましい。
 なお、第1タンク23内の正極電解液22中の溶存酸素量についても1.5mg/L以下に設定されてもよいし、1.0mg/L以下に設定されてもよい。また、第1タンク23内の気相中の酸素濃度についても1体積%以下に設定されてもよい。
 <レドックスフロー電池の作用>
 pHが2以上、8以下の範囲内の正極電解液22及び負極電解液32を用いたレドックスフロー電池は、上述したイオン交換膜を隔膜12として有するため、レドックス系物質を構成する金属イオンの透過が好適に抑制され、良好なエネルギー効率が発揮される。
 エネルギー効率は、下記式(3)にクーロン効率と電圧効率とを代入することで算出される。
 エネルギー効率[%]=クーロン効率×電圧効率/100 ・・・(3)
 エネルギー効率は、好ましくは60%以上である。
 クーロン効率は、1回の充放電を1サイクルとしたとき、2サイクル目の充電時のクーロン量(A)と2サイクル目の放電時のクーロン量(B)とを下記式(4)に代入することで算出される。
 クーロン効率[%]=B/A×100 ・・・(4)
 電圧効率は、充放電を1サイクルとしたとき、2サイクル目の充電時の平均端子電圧(V1)と2サイクル目の放電時の平均端子電圧(V2)とを下記式(5)に代入することで算出される。
 電圧効率[%]=V2/V1×100 ・・・(5)
 なお、レドックスフロー電池の充放電1回を1サイクルという。
 以上説明した本実施形態によれば、以下の効果を奏する。
 (1)本実施形態のレドックスフロー電池における隔膜12は、エチレン-ビニルアルコール共重合体製の非多孔質基材にスチレンスルホン酸塩をグラフト共重合したグラフト共重合体であるとともにジアルデヒドにより架橋された構造を有している。このように構成された隔膜12は、高価な樹脂材料を用いたり、多孔質基材のように特殊な加工を要したりすることを回避することが可能である。これにより、pHが2以上、8以下の範囲内の電解液を用いる場合に好適な隔膜12を有するレドックスフロー電池を提供することができる。また、上記の架橋構造により、レドックス系物質を構成する金属イオンの透過率が抑制され易くなる。したがって、好適な電池性能が発揮され易くなる。
 (2)隔膜12のグラフト率は、15%以上、25%以下の範囲であることが好ましい。隔膜12のグラフト率が15%以上の場合、イオン伝導のキャリアとなる陽イオンの透過性が確保され易くなる。隔膜12のグラフト率が25%以下の場合、レドックス系物質を構成する金属イオンの透過が抑制され易くなる。したがって、好適な電池性能が発揮され易くなる。
 (3)隔膜12のゲル分率は、80%以上であることが好ましい。この場合、レドックス系物質を構成する金属イオンの透過が抑制され易くなる。したがって、好適な電池性能が発揮され易くなる。
 (変更例)
 前記実施形態は以下のように変更されてもよい。
 ・前記隔膜12は、イオン伝導のキャリアとなるイオンの透過性が隔膜12よりも高い支持体を備えていてもよい。すなわち、隔膜12は、イオン交換膜と、それを支持する支持体とを有する積層体であってもよい。
 ・レドックスフロー電池の有する充放電セル11の形状、配置、又は数や第1タンク23及び第2タンク33の容量はレドックスフロー電池に求められる性能等に応じて変更されてもよい。また、充放電セル11に対する正極電解液22及び負極電解液32の供給量についても、例えば充放電セル11の容量等に応じて設定することができる。また、例えば、酸素濃度の影響の小さい電解液の場合には、ケース41を省略してもよい。
 次に、実施例及び比較例により本発明をさらに詳細に説明する。
 (製造例1)
 エチレン-ビニルアルコール共重合体フィルム(商品名:エバールフィルムEF-F50、無延伸、厚み50μm、寸法80×80mm、比重1.19、株式会社クラレ製)を袋に密封した後、その袋中を窒素置換した。これに電子線を加速電圧750kV、照射線量250kGyの条件で照射した後、袋中にスチレンスルホン酸ナトリウムの5質量%水溶液を20mL注入した。次に、袋を50℃の恒温槽中で2時間振とうした。これにより、エチレン-ビニルアルコール共重合体フィルムにスチレンスルホン酸ナトリウムをグラフト重合したグラフト共重合体を得た。得られたグラフト共重合体のグラフト率は、15~25%の範囲内である。
 次に、グラフト共重合体を塩化ナトリウムの17.5質量%水溶液に24時間以上浸漬した後、ジアルデヒド(グルタルアルデヒド)を20質量%及び塩化ナトリウムを17.5質量%含有する水溶液に24時間浸漬することで、架橋構造を有するイオン交換膜(隔膜)を得た。得られたイオン交換膜を袋から取り出し、水等で洗浄した後に乾燥させた。
 (製造例2)
 表1に示すように、製造例2では、ジアルデヒドの濃度を変更した以外は、製造例1と同様にイオン交換膜を製造した。
 (比較例1)
 比較例1では、ジアルデヒドを用いた架橋反応を省略した以外は製造例1と同様にイオン交換膜を製造した。
 (比較例2)
 比較例2のイオン交換膜は、エチレン-ビニルアルコール共重合体とは異なる材料から構成された市販のイオン交換膜(CMS、アストム社製)である。
 (イオン交換膜のゲル分率及び電気抵抗の測定)
 製造例1,2及び比較例1のイオン交換膜についてゲル分率及び電気抵抗を測定した。
 製造例1,2及び比較例1のイオン交換膜のゲル分率及び電気抵抗をそれぞれ表1の“ゲル分率”欄及び“電気抵抗”欄に示す。
 表1に示すように、製造例1,2のイオン交換膜は、市販品である比較例2と同様に、比較的低い電気抵抗を示すことが分かる。
 (電解液中のイオンの透過率の測定)
 製造例1,2及び比較例1,2のイオン交換膜について、電解液中のイオンの透過率を次のように測定した。まず、電解液を入れたガラス製容器の開口をイオン交換膜で密封した。電解液としては、0.6モル/Lの鉄(II)-クエン酸錯体水溶液を用いた。
 次に、100mLの蒸留水を入れたビーカーを準備し、上記のガラス製容器に取り付けたイオン交換膜を蒸留水中に浸漬した状態で、スターラーを用いて蒸留水を24時間撹拌した。次に、蒸留水中の鉄イオン濃度を測定した。この鉄イオン濃度を、イオン交換膜の面積1cm当たり、かつ電解液の濃度1モル当たり、かつ1時間当たりの濃度に換算し、その換算値を透過率とした。
 表1に示すように、製造例1,2のイオン交換膜の透過率は、比較例1のイオン交換膜よりも低い値であった。
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 <レドックスフロー電池>
 図1に示されるレドックスフロー電池を用いた。正極及び負極としては、カーボンフェルト(商品名:GFA5、SGL社製)を用いて電極面積を10cmに設定した。集電板としては、厚み1.0mmの純チタンを用いた。隔膜としては、製造例1のイオン交換膜を用いた。
 第1タンク及び第2タンクとしては、容量30mLのガラス容器を用いた。各供給管、各回収管、各ガス管及び排気管としては、シリコーン製のチューブを用いた。各ポンプとしては、マイクロチューブポンプ(MP-1000、東京理化器械株式会社製)を用いた。充放電装置としては、充放電バッテリテストシステム(PFX200、菊水電子工業株式会社製)を用いた。
 <鉄(II)-クエン酸錯体水溶液の調製>
 蒸留水50mLに0.04モル(8.4g)のクエン酸を溶解させた。この水溶液に、0.01モル(0.4g)のNaOHを添加することで、pHを2に調整した。この水溶液に、0.02モル(4.0g)のFeCl・4HOを溶解させた。次に、この水溶液に、全量が100mLとなるように蒸留水を加えた。これにより、鉄(II)-クエン酸錯体の濃度が0.2モル/Lの水溶液を得た。
 <チタン(IV)-クエン酸錯体水溶液の調製>
 蒸留水30mLに0.04モル(8.4g)のクエン酸を溶解させた。この水溶液に、28質量%アンモニア水を3.6g(0.06モルのアンモニアに相当)添加した後、0.06モル(2.4g)のNaOHを添加することで、pHを5に調整した。この水溶液に、チタンの濃度が16質量%のTiCl水溶液を6g(0.02モルのチタンに相当)添加した。次に、この水溶液に、全量が100mLとなるように蒸留水を加えて60℃に加温しながら透明になるまで撹拌した。これにより、チタン(IV)-クエン酸錯体の濃度が0.2モル/Lの水溶液を得た。
 <酸素濃度の調整>
 正極電解液として鉄(II)-クエン酸錯体水溶液を用いるとともに、負極電解液としてチタン(IV)-クエン酸錯体水溶液を用いた。第1ガス管から窒素ガスを供給することで、各電解液のバブリングを行い、各電解液中の溶存酸素量を0.8mg/L(飽和酸素濃度の約10%)以下に調整した。なお、第1ガス管からの窒素ガスの供給は、以降の充放電試験中においても継続した。
 次に、第2ガス管からケース内に窒素を供給することで、充放電セルの周囲雰囲気の酸素濃度を1%以下に調整した。なお、第2ガス管からの窒素ガスの供給は、以降の充放電試験中においても継続した。
 溶存酸素量は、溶存酸素計(飯島電子工業株式会社製、“B-506”)を用いて測定した。酸素濃度は、酸素濃度計(新コスモス電機株式会社製、“XPO-318”)を用いて測定した。
 <充放電試験>
 充放電試験は、まず、充電を定電流で60分間行った。次に、定電流で、放電終止電圧を0Vとして放電した。充放電の1サイクル目から3サイクル目までは、定電流を50mAとし、充放電の4サイクル目から6サイクル目までは、定電流を100mAとし、充放電の7サイクル目から9サイクル目までは、定電流を200mAとした。
 充放電を行う際のレドックス反応は、以下のように推定される。
 正極:鉄(II)-クエン酸錯体 ⇔ 鉄(III)-クエン酸錯体+e
 負極:チタン(IV)-クエン酸錯体+e ⇔ チタン(III)-クエン酸錯体
 実施例1のレドックスフロー電池について、エネルギー効率を算出した。実施例1のレドックスフロー電池におけるエネルギー効率は、75%であった。
 (参考例1)
 参考例1では、上記レドックスフロー電池の隔膜として比較例2のイオン交換膜を用いた以外は、実施例1と同様にエネルギー効率を算出した。参考例1のレドックスフロー電池におけるエネルギー効率は、75%であった。この結果に示されるように、実施例1のレドックスフロー電池の隔膜(製造例1のイオン交換膜)は、参考例1のレドックスフロー電池の隔膜(比較例2のイオン交換膜)と同等の性能を有することが分かる。

Claims (3)

  1.  pHが2以上、8以下の範囲内の正極電解液及び負極電解液が用いられるレドックスフロー電池であって、
     前記正極電解液と前記負極電解液の間に隔膜を備え、
     前記隔膜は、
     エチレン-ビニルアルコール共重合体製の非多孔質基材にスチレンスルホン酸塩をグラフト共重合したグラフト共重合体であるとともにジアルデヒドにより架橋された構造を有する、ことを特徴とするレドックスフロー電池。
  2.  前記隔膜のグラフト率は、15%以上、25%以下の範囲である、請求項1に記載のレドックスフロー電池。
  3.  前記隔膜のゲル分率は、80%以上である、請求項1又は請求項2に記載のレドックスフロー電池。
PCT/JP2016/051704 2016-01-21 2016-01-21 レドックスフロー電池 WO2017126081A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051704 WO2017126081A1 (ja) 2016-01-21 2016-01-21 レドックスフロー電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051704 WO2017126081A1 (ja) 2016-01-21 2016-01-21 レドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2017126081A1 true WO2017126081A1 (ja) 2017-07-27

Family

ID=59361739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051704 WO2017126081A1 (ja) 2016-01-21 2016-01-21 レドックスフロー電池

Country Status (1)

Country Link
WO (1) WO2017126081A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020523732A (ja) * 2017-07-28 2020-08-06 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft レドックスフロー電池およびレドックスフロー電池を作動するための方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157131A1 (en) * 2003-02-07 2004-08-12 Qinbai Fan High temperature composite proton exchange membranes
JP2006291161A (ja) * 2005-03-16 2006-10-26 Toyota Motor Corp グラフトポリマー、高分子電解質膜、これらの製造方法、及びそれを用いた燃料電池
WO2014030230A1 (ja) * 2012-08-22 2014-02-27 日新電機 株式会社 電力貯蔵電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157131A1 (en) * 2003-02-07 2004-08-12 Qinbai Fan High temperature composite proton exchange membranes
JP2006291161A (ja) * 2005-03-16 2006-10-26 Toyota Motor Corp グラフトポリマー、高分子電解質膜、これらの製造方法、及びそれを用いた燃料電池
WO2014030230A1 (ja) * 2012-08-22 2014-02-27 日新電機 株式会社 電力貯蔵電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020523732A (ja) * 2017-07-28 2020-08-06 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft レドックスフロー電池およびレドックスフロー電池を作動するための方法

Similar Documents

Publication Publication Date Title
JP6172394B2 (ja) レドックスフロー電池
JP6028862B2 (ja) レドックスフロー電池
CN102151502B (zh) 一种咪唑嗡盐型阴离子交换膜及其制备方法
JP2010533222A (ja) 陰イオン交換膜およびポリマーイオノマーを含む電気化学的装置
JP2018520872A (ja) バイポーラ電気透析方法及びシステム
JPS6134515B2 (ja)
JP5920470B2 (ja) 電力貯蔵電池
WO2017098732A1 (ja) 電解質膜及びその製造方法、並びに電解質膜を備えた燃料電池用の膜-電極接合体
JPWO2008120675A1 (ja) 直接液体燃料型燃料電池用隔膜およびその製造方法
JP5959046B2 (ja) アニオン伝導電解質膜およびその製造方法
JPH0830276B2 (ja) 固体電解質材料,その製造法及びその電気化学的な用途
WO2017126081A1 (ja) レドックスフロー電池
JP6910460B2 (ja) 水分解装置
JP6064087B2 (ja) アニオン交換形電解質膜、それを備えた燃料電池用の膜−電極接合体及び燃料電池
JPWO2016147640A1 (ja) アニオン交換基を有する樹脂、それを用いた樹脂含有液、積層体、部材、電気化学素子及び電気化学デバイス
JP6164576B2 (ja) レドックスフロー電池
JPH08180891A (ja) 常温型燃料電池用薄膜電解質及び常温型燃料電池
WO2013180071A1 (ja) アルカリ水電解用隔膜
Jin et al. Preparation and investigation of high-temperature proton exchange membranes based on phosphoric acid doped imidazolium polysilsesquioxane crosslinked poly (vinyl chloride)
KR20090032803A (ko) 이온교환섬유, 이의 제조방법 및 이를 이용하는 전기탈이온장치
JP4499004B2 (ja) スルホン化された高分子電解質膜の製造方法
JP2001160408A (ja) 固体高分子電解質型燃料電池
JPH0788475A (ja) 塩基性電解生成水
Sata Cation-exchange reaction with accompanying current discharge
JPS5930792B2 (ja) 陽イオン交換膜の水酸イオン透過阻止性の向上方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP