WO2014030230A1 - 電力貯蔵電池 - Google Patents

電力貯蔵電池 Download PDF

Info

Publication number
WO2014030230A1
WO2014030230A1 PCT/JP2012/071223 JP2012071223W WO2014030230A1 WO 2014030230 A1 WO2014030230 A1 WO 2014030230A1 JP 2012071223 W JP2012071223 W JP 2012071223W WO 2014030230 A1 WO2014030230 A1 WO 2014030230A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode electrolyte
positive electrode
resin film
storage battery
Prior art date
Application number
PCT/JP2012/071223
Other languages
English (en)
French (fr)
Inventor
康之 奥村
洋成 出口
嵐 黄
昭介 山之内
Original Assignee
日新電機 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機 株式会社 filed Critical 日新電機 株式会社
Priority to US14/416,060 priority Critical patent/US9680176B2/en
Priority to JP2014531449A priority patent/JP5920470B2/ja
Priority to CN201280073864.5A priority patent/CN104364954B/zh
Priority to PCT/JP2012/071223 priority patent/WO2014030230A1/ja
Priority to IN23DEN2015 priority patent/IN2015DN00023A/en
Publication of WO2014030230A1 publication Critical patent/WO2014030230A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage battery such as a redox flow battery.
  • a battery having an ion exchange membrane based on a resin film as a diaphragm is known (see, for example, Patent Document 1).
  • a diaphragm for power storage batteries is known (refer patent document 2, 3).
  • Patent Document 4 As a general battery diaphragm, a structure in which styrene sulfonate is graft-polymerized on a resin film is known (see Patent Document 4).
  • JP 2010-244972 A JP 2008-027627 A JP 2001-167788 A JP-A-53-84134
  • a general aqueous battery uses a strongly acidic or strongly alkaline electrolyte.
  • the ion-conducting carriers are H + ions or OH ⁇ ions. Since both the mobility of H + ions and the mobility of OH ⁇ ions are relatively high, the conductivity of the electrolytic solution is high. As a result, the battery resistance increases, resulting in an increase in battery efficiency.
  • the material constituting the battery is required to have chemical resistance that can withstand the electrolyte.
  • the chemical resistance of the material constituting the battery can be lowered, so that the manufacturing cost of the power storage battery can be reduced.
  • the ion-conducting carriers are neither H + ions nor OH ⁇ ions, but are, for example, Na + ions, K + ions, Cl ⁇ ions, SO 4 2- ions, and the like. Since the mobility of such ions is small compared to H + ions and OH ⁇ ions, the conductivity of the electrolytic solution is low. This increases the resistance of the battery, resulting in lower battery efficiency.
  • the present invention has been made in view of such circumstances, and the object thereof is to reduce the manufacturing cost of a power storage battery when using an electrolytic solution having a pH in the range of 2 or more and 8 or less. It is in providing the power storage battery which has a suitable diaphragm at the point which exhibits efficiency of this.
  • the thickness of the resin film substrate is preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • the graft rate of the ion exchange membrane is more than 10% and less than 120%.
  • the redox flow battery includes a charge / discharge cell 11.
  • the inside of the charge / discharge cell 11 is partitioned into a positive electrode side cell 21 and a negative electrode side cell 31 by a diaphragm 12.
  • the redox flow type battery includes a positive electrode electrolyte tank 23 that stores a positive electrode electrolyte 22 used for the positive electrode side cell 21, and a negative electrode electrolyte tank 33 that stores a negative electrode electrolyte 32 used for the negative electrode side cell 31.
  • the redox flow battery is provided with a temperature adjusting device for adjusting the temperature around the charge / discharge cell 11 as necessary.
  • a positive electrode 21 a and a positive electrode current collector plate 21 b are arranged in contact with each other.
  • the negative electrode 31a and the negative electrode side current collecting plate 31b are arranged in contact with each other.
  • the positive electrode 21a and the negative electrode 31a are made of, for example, carbon felt.
  • the positive electrode side current collector plate 21b and the negative electrode side current collector plate 31b are made of, for example, a glassy carbon plate.
  • Each of the current collector plates 21 b and 31 b is electrically connected to the charging / discharging device 10.
  • a positive electrode electrolyte tank 23 is connected to the positive electrode side cell 21 via a supply pipe 24 and a recovery pipe 25.
  • the supply pipe 24 is equipped with a pump 26.
  • the positive electrolyte solution 22 in the positive electrode electrolyte tank 23 is supplied to the positive electrode side cell 21 through the supply pipe 24.
  • the positive electrode electrolyte 22 in the positive electrode side cell 21 is recovered in the positive electrode electrolyte tank 23 through the recovery tube 25. In this way, the positive electrode electrolyte 22 is circulated through the positive electrode electrolyte tank 23 and the positive electrode side cell 21.
  • a negative electrode electrolyte tank 33 is connected to the negative electrode side cell 31 via a supply pipe 34 and a recovery pipe 35.
  • the supply pipe 34 is equipped with a pump 36.
  • the negative electrode electrolyte 32 in the negative electrode electrolyte tank 33 is supplied to the negative electrode side cell 31 through the supply pipe 34.
  • the negative electrode electrolyte 32 in the negative electrode side cell 31 is recovered in the negative electrode electrolyte tank 33 through the recovery pipe 35.
  • the negative electrode electrolyte 32 is circulated through the negative electrode electrolyte tank 33 and the negative electrode side cell 31.
  • the inert gas supply pipe 13 for supplying an inert gas is connected to the charge / discharge cell 11, the positive electrode electrolyte tank 23, and the negative electrode electrolyte tank 33.
  • the inert gas supply pipe 13 is supplied with an inert gas from an inert gas generator.
  • the positive electrode electrolyte tank 23 and the negative electrode electrolyte tank 33 are supplied with an inert gas through the inert gas supply pipe 13 so that the positive electrode electrolyte 22 and the negative electrode electrolyte 32 are in contact with oxygen in the atmosphere. It is suppressed.
  • nitrogen gas is used as the inert gas.
  • the inert gas supplied to the positive electrode electrolyte tank 23 and the negative electrode electrolyte tank 33 is exhausted through the exhaust pipe 14.
  • a water seal 15 for sealing the opening of the exhaust pipe 14 is provided at the tip of the exhaust pipe 14 on the discharge side.
  • the water seal 15 prevents the air from flowing back into the exhaust pipe 14 and keeps the pressure in the positive electrolyte tank 23 and the negative electrolyte tank 33 constant.
  • an oxidation reaction is performed in the positive electrode electrolyte solution 22 in contact with the positive electrode 21a, and a reduction reaction is performed in the negative electrode electrolyte solution 32 in contact with the negative electrode 31a. That is, the positive electrode 21a emits electrons and the negative electrode 31a receives electrons.
  • the positive collector plate 21b supplies the electrons discharged from the positive electrode 21a to the charging / discharging device 10.
  • the negative electrode current collector 31b supplies the electrons received from the charge / discharge device 10 to the negative electrode 31a.
  • a reduction reaction is performed in the positive electrode electrolyte 22 in contact with the positive electrode 21a, and an oxidation reaction is performed in the negative electrode electrolyte 32 in contact with the negative electrode 31a. That is, the positive electrode 21a receives electrons and the negative electrode 31a emits electrons.
  • the positive collector plate 21b supplies the electrons received from the charge / discharge device 10 to the positive electrode 21a.
  • the negative electrode side current collecting plate 31 b supplies the electrons emitted from the negative electrode 31 a to the charge / discharge device 10.
  • the pH of the positive electrode electrolyte 22 and the pH of the negative electrode electrolyte 32 are in the range of 2 or more and 8 or less.
  • the pH of the positive electrode electrolyte 22 and the pH of the negative electrode electrolyte 32 are preferably in the range of 4 or more and 7 or less. That is, as each of the electrolytic solutions 22 and 32, an aqueous solution containing an active material capable of performing a redox reaction within the above pH range is used.
  • an aqueous solution containing an active material capable of performing a redox reaction within the above pH range is used.
  • the pH of the positive electrode electrolyte 22 and the pH of the negative electrode electrolyte 32 are 2 or more, corrosion resistance is easily ensured.
  • the pH of the positive electrode electrolyte 22 and the pH of the negative electrode electrolyte 32 are 8 or less, for example, the solubility of the active material is easily ensured.
  • the active material examples include an iron redox material, a chromium redox material, a manganese redox material, a copper redox material, and a vanadium redox material.
  • the active material is preferably contained in the electrolytic solution as a metal complex in order to suppress precipitation within the above pH range.
  • the chelating agent for forming the metal complex is capable of forming a complex with the active material, and is selected from, for example, an aminocarboxylic chelating agent and polyethyleneimine.
  • aminopolycarboxylic acid chelating agents include ethylenediaminetetraacetic acid (EDTA), glycol etherdiaminetetraacetic acid (EGTA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethylenediaminetriacetic acid (EDTA-OH), nitrilotriacetic acid ( NTA).
  • EDTA ethylenediaminetetraacetic acid
  • EGTA glycol etherdiaminetetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • EDTA-OH hydroxyethylenediaminetriacetic acid
  • NTA nitrilotriacetic acid
  • the aminopolycarboxylic acid chelating agent may be an alkali metal salt such as a sodium salt or a potassium salt.
  • the polyethyleneimine include those having a weight average molecular weight of 200 or more and 100,000 or less.
  • the positive electrode electrolyte solution 22 and the negative electrode electrolyte solution 32 may have different compositions or the same composition. From the viewpoint of keeping the performance of the redox flow battery stable for a long period of time, it is preferable that the positive electrode electrolyte solution 22 and the negative electrode electrolyte solution 32 be a one-component electrolyte solution using an electrolyte solution having the same composition. Examples of the one-component electrolyte include a Cr-EDTA complex and a Mn-EDTA complex. EDTA may be represented as “EDTA4H”.
  • the concentration of the active material or metal complex in the electrolytic solution is preferably 0.1 mol / L or more, more preferably 0.2 mol / L or more, and further preferably from the viewpoint of further improving energy efficiency. 0.4 mol / L or more.
  • the concentration of the active material or metal complex in the electrolytic solution is preferably 2.5 mol / L or less, more preferably 1.5 mol / L or less, from the viewpoint of suppressing the precipitation of the active material.
  • the electrolyte may contain an inorganic acid salt or an organic acid, if necessary.
  • the electrolytic solution can be prepared by a known method.
  • the water used for the electrolytic solution preferably has a purity equal to or higher than that of distilled water.
  • the redox flow battery is preferably charged / discharged with the electrolytic solution in an inert gas atmosphere.
  • the diaphragm 12 suppresses permeation of the active material between the positive electrode side cell 21 and the negative electrode side cell 31.
  • the diaphragm 12 is composed of an ion exchange membrane.
  • the diaphragm 12 transmits, for example, sodium ions in the positive electrode side cell 21 to the negative electrode side cell 31 during charging, and transmits, for example, sodium ions in the negative electrode side cell 31 to the positive electrode side cell 21 during discharge.
  • the ion exchange membrane can be obtained by graft polymerization of styrene sulfonate on a resin film substrate having an ethylene-vinyl alcohol copolymer as a matrix. In this ion exchange membrane, the sulfonate structure of the graft chain contributes to cation exchange.
  • the resin film base material for example, a non-porous resin film having a thickness of 20 ⁇ m or more and 150 ⁇ m or less is used.
  • the thickness of the resin film substrate is preferably 50 ⁇ m or more and 100 ⁇ m or less from the viewpoint of further improving energy efficiency.
  • the ethylene content of the ethylene-vinyl alcohol copolymer is preferably, for example, 20 mol% or more from the viewpoint that the strength as the diaphragm 12 is easily secured.
  • the ethylene content of the ethylene-vinyl alcohol copolymer is preferably 50 mol% or less from the viewpoint of hydrophilicity.
  • the resin film substrate may be blended with a resin other than the ethylene-vinyl alcohol copolymer.
  • the resin film substrate may contain an additive such as a plasticizer.
  • the resin film substrate preferably contains 90% by mass of an ethylene-vinyl alcohol copolymer.
  • Styrene sulfonate is graft-polymerized to an ethylene-vinyl alcohol copolymer to introduce polystyrene sulfonate as a graft chain.
  • an alkali metal salt is preferable, and a sodium salt or a potassium salt is more preferable.
  • the graft rate of the ion exchange membrane is preferably more than 10% and less than 120% from the viewpoint of further improving energy efficiency.
  • the graft ratio is calculated by substituting into the following formula (1), where W 0 is the mass of the resin film substrate before graft polymerization and W 1 is the mass of the ion exchange membrane.
  • graft chains are introduced into the radical active sites generated on the resin film substrate using polystyrene sulfonate.
  • the radical active site can be generated by, for example, radical polymerization initiator, ionizing radiation irradiation, ultraviolet irradiation, ultrasonic irradiation, plasma irradiation, or the like.
  • the polymerization step using ionizing radiation has the advantage that the production process is simple, safe and has a low environmental impact.
  • ionizing radiation examples include ⁇ rays, ⁇ rays, ⁇ rays, electron rays, X rays and the like.
  • ionizing radiations for example, ⁇ rays emitted from cobalt 60, electron beams emitted from an electron beam accelerator, X-rays, and the like are preferable from the viewpoint of easy industrial use.
  • Irradiation with ionizing radiation is preferably performed in an inert gas atmosphere such as nitrogen gas, neon gas, or argon gas from the viewpoint of suppressing the reaction between radical active sites and oxygen.
  • the absorbed dose of ionizing radiation is, for example, in the range of 1 to 300 kGy.
  • the graft ratio can be changed by adjusting the absorbed dose of ionizing radiation.
  • a solution containing styrene sulfonate is brought into contact with the resin film substrate on which radical active sites are generated.
  • the radical polymerization reaction can be promoted by shaking or heating the resin film substrate immersed in the solution containing styrene sulfonate.
  • Examples of the solvent of the solution containing styrene sulfonate include water, alcohols such as methanol and ethanol, hydrophilic solvents such as hydrophilic ketones such as acetone, and mixed solvents in which a plurality of hydrophilic solvents are mixed.
  • the solvent to be used preferably contains water as the main component, more preferably water, from the viewpoints of cost reduction of the production process, reduction of environmental burden, and improvement of process safety.
  • water for example, ion exchange water, pure water, ultrapure water, or the like can be used.
  • Graft ratio can be changed by adjusting the concentration of styrene sulfonate in the solution containing styrene sulfonate.
  • concentration of the styrene sulfonate in the solution containing the styrene sulfonate is, for example, in the range of 5% by mass to 35% by mass, and more preferably 10% by mass to 30% by mass.
  • concentration of styrene sulfonate is 5% by mass or more, it is easy to increase the graft ratio.
  • the concentration of styrene sulfonate is 35% by mass or less, the formation of a homopolymer of styrene sulfonate is suppressed.
  • the time for which the solution containing styrene sulfonate is brought into contact with the resin film substrate in which the radical active site is generated is, for example, in the range of 30 minutes to 48 hours.
  • the contact between the resin film substrate in which radical active sites are generated and the solution containing styrene sulfonate may be performed in an inert gas atmosphere such as nitrogen gas, neon gas, argon gas or the like. preferable.
  • the ion exchange membrane is washed with water in the washing process.
  • an acid may be used as necessary.
  • the pH of the electrolytic solution used for the redox flow battery is in the range of 2 or more and 8 or less. Such an electrolytic solution hardly deteriorates an ion exchange membrane having a resin film substrate having an ethylene-vinyl alcohol copolymer as a matrix.
  • the ion exchange membrane exhibits the performance of a redox flow battery because styrene sulfonate is graft-polymerized on a resin film base material using an ethylene-vinyl alcohol copolymer as a matrix.
  • the performance of a redox flow battery is indicated by energy efficiency.
  • Energy efficiency is calculated from Coulomb efficiency and voltage efficiency.
  • Coulomb efficiency is calculated by substituting the amount of coulomb (A) at the time of charging in the second cycle and the amount of coulomb (B) at the time of discharging in the second cycle into the following formula (2), where one charge / discharge cycle is one cycle. It is calculated by doing.
  • the coulomb efficiency is preferably 80% or more.
  • the average terminal voltage (V1) at the time of charging in the second cycle and the average terminal voltage (V2) at the time of discharging in the second cycle are substituted into the following formula (3). It is calculated by.
  • Voltage efficiency [%] V2 / V1 ⁇ 100 (3)
  • the voltage efficiency is preferably 75% or more.
  • Energy efficiency is calculated by substituting Coulomb efficiency and voltage efficiency into the following formula (4).
  • Energy efficiency [%] Coulomb efficiency ⁇ Voltage efficiency / 100 (4)
  • the energy efficiency is preferably 60% or more.
  • the pH of the positive electrode electrolyte 22 and the negative electrode electrolyte 32 is in the range of 2 or more and 8 or less.
  • This redox flow battery has, as a diaphragm 12, an ion exchange membrane formed by graft-polymerizing styrene sulfonate on a resin film substrate having an ethylene-vinyl alcohol copolymer as a matrix.
  • the resin film base material is less expensive than the ion exchange membrane using a resin film base material containing a fluororesin as a matrix, and high efficiency can be exhibited.
  • the redox flow type battery having the diaphragm 12 suitable for exhibiting the efficiency of the battery while suppressing the manufacturing cost of the power storage battery. Is provided.
  • the thickness of the resin film substrate is 50 ⁇ m or more and 100 ⁇ m or less, it becomes easy to further increase the energy efficiency.
  • a resin film substrate using an ethylene-vinyl alcohol copolymer as a matrix has hydrophilicity based on the hydroxyl group of vinyl alcohol. Therefore, an ion exchange membrane can be obtained by an aqueous polymerization reaction using a solution in which styrene sulfonate is dissolved in water. Therefore, the safety in manufacturing the ion exchange membrane can be enhanced.
  • the shape, arrangement, or number of the charge / discharge cells 11 of the redox flow battery and the capacities of the positive electrode electrolyte tank 23 and the negative electrode electrolyte tank 33 may be changed according to the performance required for the redox flow battery. . Further, the supply amount of the positive electrode electrolyte 22 and the negative electrode electrolyte 32 to the charge / discharge cell 11 can also be set according to, for example, the capacity of the charge / discharge cell 11.
  • a power storage battery other than a redox flow battery may be used. That is, the ion exchange membrane is effective for a power storage battery using an electrolytic solution in the above pH range.
  • Example 1 Manufacture of ion exchange membrane (diaphragm)>
  • an ethylene-vinyl alcohol copolymer film (trade name: Eval EF-F, thickness 50 ⁇ m, ethylene content 32 mol%, manufactured by Kuraray Co., Ltd.) is cut to a size of 80 ⁇ 80 mm and the resin film substrate is nitrogen-substituted. Sealed. This was irradiated with an electron beam under the conditions of an acceleration voltage of 750 kV and an absorbed dose of 50 kGy, and then 20 mL of a 10% by mass aqueous sodium styrenesulfonate solution was injected into the plastic bag.
  • the ion exchange membrane (diaphragm) was obtained by shaking the plastic bag in a constant temperature bath at 50 ° C. for 2 hours to graft polymerize sodium styrenesulfonate to the resin film substrate.
  • an aqueous solution was prepared by the following method so as to be a one-component electrolyte (also referred to as a premix electrolyte).
  • 0.08 mol (40 g) of CrK (SO 4 ) 2 ⁇ 12H 2 O was dissolved in 40 mL of distilled water.
  • 0.09 mol (26.3 g) of EDTA4H and 0.18 mol (7.2 g) of NaOH were added to the aqueous solution little by little and dissolved.
  • the resulting aqueous solution was heated to reflux for 4 hours.
  • distilled water was added so that the total amount became 140 mL, and then diluted sulfuric acid having a concentration of 2.5 mol / L was added dropwise to adjust the pH to 5.7.
  • a Cr-EDTA aqueous solution having a Cr-EDTA concentration of 0.57 mol / L was prepared.
  • the electrode area was set to 10 cm 2 using carbon felt (trade name: GFA5, manufactured by SGL).
  • carbon felt trade name: GFA5, manufactured by SGL.
  • a glassy carbon plate (trade name: SG carbon, thickness 0.6 mm, manufactured by Showa Denko KK) was used.
  • a glass container with a capacity of 10 mL was used as the positive electrode electrolyte tank and the negative electrode electrolyte tank. Silicone tubes were used as the supply pipe, recovery pipe, inert gas supply pipe, and exhaust pipe.
  • a micro tube pump MP-1000, manufactured by Tokyo Rika Kikai Co., Ltd.
  • PFX200 a charge / discharge battery test system (PFX200, manufactured by Kikusui Electronics Co., Ltd.) was used.
  • the conditions of the charge / discharge test were started from charging, charging and discharging were both performed at a constant current of 100 mA, the charging end voltage was set to 2.2V, and the discharging end voltage was set to 0.8V. And charging / discharging was repeated 3 times (3 cycles). Nitrogen gas was supplied from an inert gas supply pipe before and during the charge / discharge test.
  • Example 2 to 5 a charge / discharge test was conducted in the same manner as in Example 1 except that the ion exchange membrane (diaphragm) having a different graft ratio was changed as shown in Table 1. The results are shown in Table 1.
  • Example 6 the charge / discharge test was conducted in the same manner as in Example 1 except that the ion film was changed to an ion exchange membrane (diaphragm) having a different thickness and graft ratio as shown in Table 1. The results are shown in Table 1.
  • FIG. 2 shows the relationship between the graft ratio and energy efficiency.
  • FIG. 3 the relationship between the thickness of a resin film base material and the highest energy efficiency obtained by the thickness is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 電力貯蔵電池に用いられる正極電解液22及び負極電解液32のpHは、2以上、8以下の範囲内である。電力貯蔵電池の隔膜12には、エチレン-ビニルアルコール共重合体をマトリックスとする樹脂フィルム基材にスチレンスルホン酸塩をグラフト重合してなるイオン交換膜を用いる。

Description

電力貯蔵電池
 本発明は、例えばレドックスフロー型電池等の電力貯蔵電池に関する。
 従来、例えばレドックスフロー型電池等の電力貯蔵電池として、樹脂フィルムを基材とするイオン交換膜を隔膜として備えるものが知られている(例えば特許文献1参照)。また、電力貯蔵電池用の隔膜として、イオン交換基を有する重合物を織布等の基材に塗布して得られるものが知られている(特許文献2、3参照)。
 一般的な電池用隔膜として、樹脂フィルムにスチレンスルホン酸塩をグラフト重合させる構成が知られている(特許文献4参照)。
特開2010-244972号公報 特開2008-027627号公報 特開2001-167788号公報 特開昭53-84134号公報
 一般的な水系の電池は強酸性又は強アルカリ性の電解液を用いている。その場合、イオン伝導のキャリアはHイオン又はOHイオンである。Hイオンの移動度及びOHイオンの移動度はいずれも比較的高いため、電解液の導電率は高くなる。これにより、電池の抵抗は小さくなる結果、電池の効率は高まる。このように強酸性又は強アルカリ性の電解液を用いる場合、電池を構成する材料には、電解液に耐え得る耐薬品性が求められることになる。この点、正極電解液と負極電解液の隔膜を構成する基材としては、耐薬品性に優れるフッ素樹脂を用いることが好適である。ところが、耐薬品性に優れる高価な隔膜は、電力貯蔵電池の製造コストを増大させることになる。
 これに対して、pHが2以上8以下の電解液を用いる場合、電池を構成する材料の耐薬品性を低めることができる結果、電力貯蔵電池の製造コストを低減することが可能となる。ところが、その場合、イオン伝導のキャリアはHイオン及びOHイオンのいずれでもなく、例えばNaイオン、Kイオン、Clイオン、SO 2-イオン等となる。こうしたイオンの移動度は、Hイオン及びOHイオンに比較して小さいため、電解液の導電率は低くなる。これにより、電池の抵抗は大きくなる結果、電池の効率は低くなる。
 本発明は、こうした実情に鑑みてなされたものであり、その目的は、pHが2以上、8以下の範囲内の電解液を用いる場合に、電力貯蔵電池の製造コストを抑制しつつも、電池の効率を発揮させる点で好適な隔膜を有する電力貯蔵電池を提供することにある。
 上記の目的を達成するために、本発明の一態様では、pHが2以上、8以下の範囲内の正極電解液及び負極電解液が用いられる電力貯蔵電池であって、エチレン-ビニルアルコール共重合体をマトリックスとする樹脂フィルム基材にスチレンスルホン酸塩をグラフト重合してなるイオン交換膜を、正極電解液と負極電解液の隔膜として有する電力貯蔵電池を提供する。
 前記電力貯蔵電池において、前記樹脂フィルム基材の厚みは、50μm以上、100μm以下であることが好ましい。
 前記電力貯蔵電池において、前記イオン交換膜のグラフト率は、10%を超え、120%未満であることが好ましい。
本発明の実施形態のレドックスフロー型電池を示す概略図である。 実施例のレドックスフロー型電池のイオン交換膜のグラフト率と同電池のエネルギー効率との関係を示すグラフである。 実施例のレドックスフロー型電池の樹脂フィルム基材の厚みと同電池のエネルギー効率との関係を示すグラフである。
 以下、本発明の実施形態に係る電力貯蔵電池としてのレドックスフロー型電池について説明する。
 <レドックスフロー型電池の構造>
 図1に示すように、レドックスフロー型電池は、充放電セル11を備える。充放電セル11の内部は、隔膜12によって正極側セル21と負極側セル31とに仕切られている。レドックスフロー型電池は、正極側セル21に用いられる正極電解液22を貯蔵する正極電解液タンク23と、負極側セル31に用いられる負極電解液32を貯蔵する負極電解液タンク33とを備える。レドックスフロー型電池には、充放電セル11周辺の温度を調節する温度調節装置が必要に応じて設けられる。
 正極側セル21には、正極21aと正極側集電板21bとが接触した状態で配置されている。負極側セル31には、負極31aと負極側集電板31bとが接触された状態で配置されている。正極21a及び負極31aは、例えばカーボン製のフェルトから構成される。正極側集電板21b及び負極側集電板31bは、例えばガラス状カーボン板から構成される。各集電板21b,31bは、充放電装置10に電気的に接続されている。
 正極側セル21には、供給管24及び回収管25を介して正極電解液タンク23が接続されている。供給管24には、ポンプ26が装備されている。ポンプ26の作動により、正極電解液タンク23内の正極電解液22は、供給管24を通じて正極側セル21に供給される。このとき、正極側セル21内の正極電解液22は、回収管25を通じて正極電解液タンク23に回収される。このように正極電解液22は、正極電解液タンク23と正極側セル21とを循環される。
 負極側セル31には、供給管34及び回収管35を介して負極電解液タンク33が接続されている。供給管34には、ポンプ36が装備されている。ポンプ36の作動により、負極電解液タンク33内の負極電解液32は、供給管34を通じて負極側セル31に供給される。このとき、負極側セル31内の負極電解液32は、回収管35を通じて負極電解液タンク33に回収される。このように負極電解液32は、負極電解液タンク33と負極側セル31とを循環される。
 充放電セル11、正極電解液タンク23及び負極電解液タンク33には、不活性ガスを供給する不活性ガス供給管13が接続されている。不活性ガス供給管13には、不活性ガス発生装置から不活性ガスが供給される。正極電解液タンク23及び負極電解液タンク33には、不活性ガス供給管13を通じて、不活性ガスが供給されることで、正極電解液22及び負極電解液32と大気中の酸素との接触が抑制される。不活性ガスとしては、例えば窒素ガスが用いられる。正極電解液タンク23及び負極電解液タンク33に供給された不活性ガスは、排気管14を通じて排気される。排気管14の排出側の先端には、排気管14の開口を水封する水封部15が設けられている。水封部15は、排気管14内に大気が逆流することを防止するとともに、正極電解液タンク23内及び負極電解液タンク33内の圧力を一定に保つ。
 充電時には、正極21aに接触する正極電解液22中で酸化反応が行われるとともに、負極31aに接触する負極電解液32中で還元反応が行われる。すなわち、正極21aは電子を放出するとともに、負極31aは電子を受け取る。このとき、正極側集電板21bは、正極21aから放出された電子を充放電装置10に供給する。負極側集電板31bは、充放電装置10から受け取った電子を負極31aに供給する。
 放電時には、正極21aに接触する正極電解液22中で還元反応が行われるとともに、負極31aに接触する負極電解液32中で酸化反応が行われる。すなわち、正極21aは電子を受け取るとともに、負極31aは電子を放出する。このとき、正極側集電板21bは、充放電装置10から受け取った電子を正極21aに供給する。負極側集電板31bは、負極31aから放出された電子を充放電装置10に供給する。
 <電解液>
 正極電解液22のpH及び負極電解液32のpHは、2以上、8以下の範囲内である。正極電解液22のpH及び負極電解液32のpHは、好ましくは4以上、7以下の範囲内である。すなわち、各電解液22,32として、上記pHの範囲内で酸化還元反応を行うことのできる活物質を含む水溶液が用いられる。正極電解液22のpH及び負極電解液32のpHが2以上であることで、耐食性が確保され易くなる。正極電解液22のpH及び負極電解液32のpHが8以下であることで、例えば、活物質の溶解性が確保され易くなる。
 活物質としては、例えば、鉄のレドックス系物質、クロムのレドックス系物質、マンガンのレドックス系物質、銅のレドックス系物質、及びバナジウムのレドックス系物質が挙げられる。
 活物質は、上記pHの範囲内における析出を抑制するために、金属錯体として電解液中に含有されることが好適である。金属錯体を形成するためのキレート剤としては、活物質と錯体を形成し得るものであって、例えば、アミノカルボン系キレート剤、及びポリエチレンイミンから選択される。
 アミノポリカルボン酸系キレート剤としては、例えば、エチレンジアミン四酢酸(EDTA)、グリコールエーテルジアミン四酢酸(EGTA)、ジエチレントリアミン五酢酸(DTPA)、及びヒドロキシエチレンジアミン三酢酸(EDTA-OH)、ニトリロ三酢酸(NTA)が挙げられる。アミノポリカルボン酸系キレート剤は、ナトリウム塩、カリウム塩等のアルカリ金属塩であってもよい。ポリエチレンイミンとしては、例えば重量平均分子量が200以上、100000以下のものが挙げられる。
 活物質及びキレート剤は、一種類又は二種類以上を使用することができる。正極電解液22と負極電解液32とは異なる組成であってもよいし、同一の組成であってもよい。レドックスフロー型電池の性能を長期間安定に保つという観点から、正極電解液22及び負極電解液32として、同一の組成の電解液を用いる一液式の電解液とされることが好ましい。一液式の電解液としては、例えばCr-EDTA錯体とMn-EDTA錯体とを含有する。EDTAは、“EDTA4H”と表される場合もある。電解液中の活物質又は金属錯体の濃度は、エネルギー効率をより高めるという観点から、好ましくは0.1モル/L以上であり、より好ましくは0.2モル/L以上であり、さらに好ましくは0.4モル/L以上である。電解液中の活物質又は金属錯体の濃度は、活物質の析出を抑制するという観点から、好ましくは2.5モル/L以下、より好ましくは1.5モル/L以下である。
 電解液には、必要に応じて、無機酸の塩又は有機酸を含有させることもできる。電解液は、公知の方法で調製することができる。電解液に用いる水は、蒸留水と同等又はそれ以上の純度を有していることが好ましい。レドックスフロー型電池は、電解液を不活性ガスの雰囲気下として充放電されることが好ましい。
 <隔膜12の構成>
 隔膜12は、正極側セル21と負極側セル31との間において活物質の透過を抑制する。隔膜12はイオン交換膜から構成されている。隔膜12は、充電時には、正極側セル21中の例えばナトリウムイオンを負極側セル31へ透過させるとともに、放電時には、負極側セル31中の例えばナトリウムイオンを正極側セル21へ透過させる。イオン交換膜は、エチレン-ビニルアルコール共重合体をマトリックスとする樹脂フィルム基材にスチレンスルホン酸塩をグラフト重合して得られる。このイオン交換膜は、グラフト鎖の有するスルホン酸塩構造が陽イオンの交換に寄与する。
 樹脂フィルム基材としては、例えば20μm以上、150μm以下の厚みを有する非多孔質の樹脂フィルムが用いられる。樹脂フィルム基材の厚みは、エネルギー効率をより高めるという観点から、50μm以上、100μm以下であることが好ましい。また、エチレン-ビニルアルコール共重合体のエチレン含量は、隔膜12としての強度が容易に確保されるという観点から、例えば20mol%以上であることが好ましい。エチレン-ビニルアルコール共重合体のエチレン含量は、親水性の観点から、50mol%以下であることが好ましい。
 樹脂フィルム基材には、エチレン-ビニルアルコール共重合体以外の樹脂がブレンドされていてもよい。樹脂フィルム基材には、可塑剤等の添加剤が含有されていてもよい。樹脂フィルム基材には、エチレン-ビニルアルコール共重合体が90質量%含有されることが好ましい。
 スチレンスルホン酸塩は、エチレン-ビニルアルコール共重合体にグラフト重合されることで、ポリスチレンスルホン酸塩をグラフト鎖として導入する。スチレンスルホン酸塩としては、アルカリ金属塩が好ましく、ナトリウム塩又はカリウム塩がより好ましい。
 イオン交換膜のグラフト率は、エネルギー効率をより高めるという観点から、10%を超え、120%未満であることが好ましい。
 グラフト率は、グラフト重合前の樹脂フィルム基材の質量をW、イオン交換膜の質量をWとした場合、下記式(1)に代入して算出される。
 グラフト率(%)=100×(W-W)/W ・・・(1)
 <隔膜12(イオン交換膜)の製造>
 隔膜12(イオン交換膜)は、重合工程を通じて製造される。
 重合工程では、樹脂フィルム基材に生成させたラジカル活性点にポリスチレンスルホン酸塩を用いてグラフト鎖を導入する。ラジカル活性点は、例えば、ラジカル重合開始剤、電離放射線の照射、紫外線の照射、超音波の照射、プラズマの照射等により生成することができる。ラジカル活性点を生成する方法の中でも、電離放射線の照射を用いた重合工程は、製造プロセスが簡単、安全、かつ環境へ負荷も小さいという利点を有する。
 電離放射線としては、例えばα線、β線、γ線、電子線、X線等が挙げられる。電離放射線の中でも、工業的に利用し易いという観点から、例えばコバルト60から放射されるγ線、電子線加速器から放射される電子線、X線等が好適である。
 電離放射線の照射は、ラジカル活性点と酸素との反応を抑制するという観点から、窒素ガス、ネオンガス、アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。電離放射線の吸収線量は、例えば1~300kGyの範囲とされる。電離放射線の吸収線量を調整することで、グラフト率を変更することができる。
 重合工程では、ラジカル活性点の生成した樹脂フィルム基材に、スチレンスルホン酸塩を含む溶液を接触させる。この接触では、スチレンスルホン酸塩を含む溶液中に浸漬した樹脂フィルム基材を振とうしたり、加熱したりすることで、ラジカル重合反応を促進することが可能である。
 スチレンスルホン酸塩を含む溶液の溶媒としては、例えば、水、メタノール、エタノール等のアルコール、アセトン等の親水性ケトン等の親水性溶媒、親水性溶媒の複数種を混合した混合溶媒が挙げられる。使用する溶媒は、製造プロセスのコスト低減、環境負荷の低減、及びプロセスの安全性の向上の観点から、水を主成分とすることが好ましく、より好ましくは水である。水としては、例えば、イオン交換水、純水、超純水等を用いることができる。
 スチレンスルホン酸塩を含む溶液におけるスチレンスルホン酸塩の濃度調整により、グラフト率を変更することができる。スチレンスルホン酸塩を含む溶液中におけるスチレンスルホン酸塩の濃度は、例えば5質量%以上、35質量%以下の範囲であり、より好ましくは10質量%以上、30質量%以下である。スチレンスルホン酸塩の濃度が5質量%以上の場合、グラフト率を高めることが容易となる。スチレンスルホン酸塩の濃度が35質量%以下の場合、スチレンスルホン酸塩の単独重合体の生成が抑制される。
 ラジカル活性点の生成した樹脂フィルム基材に、スチレンスルホン酸塩を含む溶液を接触させる時間は、例えば30分以上、48時間以下の範囲とされる。
 ラジカル活性点の生成した樹脂フィルム基材とスチレンスルホン酸塩を含む溶液との接触についても、電離放射線の照射と同様に、窒素ガス、ネオンガス、アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。
 重合工程後、イオン交換膜は、洗浄工程において水で洗浄される。洗浄工程では、必要に応じて酸を用いてもよい。
 <レドックスフロー型電池の作用>
 レドックスフロー型電池に用いられる電解液のpHは、2以上、8以下の範囲内である。こうした電解液は、エチレン-ビニルアルコール共重合体をマトリックスとする樹脂フィルム基材を有するイオン交換膜を劣化させ難い。
 イオン交換膜は、エチレン-ビニルアルコール共重合体をマトリックスとする樹脂フィルム基材にスチレンスルホン酸塩をグラフト重合させているため、レドックスフロー型電池の性能が発揮される。
 レドックスフロー型電池の性能は、エネルギー効率によって示される。エネルギー効率は、クーロン効率及び電圧効率から算出される。
 クーロン効率は、1回の充放電を1サイクルとしたとき、2サイクル目の充電時のクーロン量(A)と2サイクル目の放電時のクーロン量(B)とを下記式(2)に代入することで算出される。
 クーロン効率[%]=B/A×100 ・・・(2)
 クーロン効率は、好ましくは80%以上である。
 電圧効率は、充放電を1サイクルとしたとき、2サイクル目の充電時の平均端子電圧(V1)と2サイクル目の放電時の平均端子電圧(V2)とを下記式(3)に代入することで算出される。
 電圧効率[%]=V2/V1×100 ・・・(3)
 電圧効率は、好ましくは75%以上である。
 エネルギー効率は、下記式(4)にクーロン効率と電圧効率とを代入することで算出される。
 エネルギー効率[%]=クーロン効率×電圧効率/100 ・・・(4)
 エネルギー効率は、好ましくは60%以上である。
 以上説明した本実施形態によれば、以下の効果を奏する。
 (1)本実施形態のレドックスフロー型電池では、正極電解液22及び負極電解液32のpHが2以上、8以下の範囲内である。このレドックスフロー型電池は、エチレン-ビニルアルコール共重合体をマトリックスとする樹脂フィルム基材にスチレンスルホン酸塩をグラフト重合してなるイオン交換膜を隔膜12として有する。例えば、フッ素系樹脂をマトリックスとする樹脂フィルム基材を用いたイオン交換膜よりも、樹脂フィルム基材が安価であり、高い効率を発揮させることも可能である。従って、pHが2以上、8以下の範囲内の電解液を用いる場合に、電力貯蔵電池の製造コストを抑制しつつも、電池の効率を発揮させる点で好適な隔膜12を有するレドックスフロー型電池が提供される。
 (2)樹脂フィルム基材の厚みが50μm以上、100μm以下であることで、エネルギー効率をより高めることが容易となる。
 (3)イオン交換膜のグラフト率が、10%を超え、120%未満であることで、エネルギー効率をより高めることが容易となる。
 (4)エチレン-ビニルアルコール共重合体をマトリックスとする樹脂フィルム基材は、ビニルアルコールの有する水酸基に基づく親水性を有する。このため、スチレンスルホン酸塩を水に溶解させた溶液を用いた水系での重合反応により、イオン交換膜を得ることができる。従って、イオン交換膜の製造における安全性を高めることができる。
 (変更例)
 前記実施形態は以下のように変更されてもよい。
 ・レドックスフロー型電池の有する充放電セル11の形状、配置、又は数や正極電解液タンク23及び負極電解液タンク33の容量はレドックスフロー型電池に求められる性能等に応じて変更されてもよい。また、充放電セル11に対する正極電解液22及び負極電解液32の供給量についても、例えば充放電セル11の容量等に応じて設定することができる。
 ・レドックスフロー型電池以外の電力貯蔵電池であってもよい。すなわち、前記イオン交換膜は、上記pHの範囲の電解液を用いる電力貯蔵電池に有効である。
 次に、実施例及び比較例により本発明をさらに詳細に説明する。
 (実施例1)
 <イオン交換膜(隔膜)の製造>
 エチレン-ビニルアルコール共重合体フィルム(商品名:エバールEF-F、厚み50μm、エチレン含量32mol%、株式会社クラレ製)を80×80mmの寸法に切断した樹脂フィルム基材を窒素置換したプラスチックバッグ中に密封した。これに電子線を加速電圧750kV、吸収線量50kGyの条件で照射した後、プラスチックバッグ中に10質量%のスチレンスルホン酸ナトリウム水溶液を20mL注入した。次に、プラスチックバッグを50℃の恒温槽中で2時間振とうすることで、樹脂フィルム基材にスチレンスルホン酸ナトリウムをグラフト重合させることで、イオン交換膜(隔膜)を得た。
 続いて、イオン交換膜をプラスチックバッグから取り出し、水等で洗浄した後に乾燥させた。予め測定した樹脂フィルム基材の質量(W)と、イオン交換膜の質量(W)とを上記式(1)に代入してグラフト率を算出した。
 <電解液の調製>
 正極電解液及び負極電解液として、一液式の電解液(プレミックス方式の電解液とも呼ばれる)となるように、次の方法によって水溶液を調製した。蒸留水40mLに、0.08モル(40g)のCrK(SO・12HOを溶解させた。続いて、この水溶液に、0.09モル(26.3g)のEDTA4Hと、0.18モル(7.2g)のNaOHとを少量ずつ添加して溶解させた。得られた水溶液を加熱して4時間還流させた。還流中に、濃度が5.0モル/LのNaOH水溶液32mLを少量ずつ添加した。そして、水溶液を冷却した後、0.2モル(16.4g)の無水酢酸ナトリウムを溶解させた。
 次いで、全量が140mLになるように蒸留水を加えた後、濃度が2.5モル/Lの希硫酸を滴下してpHを5.7に調整した。これにより、Cr-EDTAの濃度が0.57モル/LのCr-EDTA水溶液を調製した。
 次に、調製したCr-EDTA水溶液140mLに対して0.08モル(13.5g)のMnSO・HOを溶解させた。続いて、この水溶液に、0.08モル(33.3)のEDTA4Na・2HOを溶解させた。次いで、全量が200mLとなるように蒸留水を加えた。
 これにより、Cr-EDTA錯体(0.4モル/L)とMn-EDTA錯体(0.4モル/L)の一液式の電解液を得た。
 <充放電試験>
 上述したレドックスフロー型電池に上記イオン交換膜を隔膜として装着するとともに上記電解液を用いて充放電試験を行った。
 正極及び負極としては、カーボンフェルト(商品名:GFA5、SGL社製)を用いて電極面積を10cmに設定した。集電板としては、ガラス状カーボン板(商品名:SGカーボン、厚み0.6mm、昭和電工株式会社製)を用いた。
 正極電解液タンク及び負極電解液タンクとしては、容量10mLのガラス容器を用いた。供給管、回収管、不活性ガス供給管及び排気管としては、シリコーン製のチューブを用いた。ポンプとしては、マイクロチューブポンプ(MP-1000、東京理化器械株式会社製)を用いた。充放電装置としては、充放電バッテリテストシステム(PFX200、菊水電子工業株式会社製)を用いた。
 充放電試験の条件は、充電から開始し、充電及び放電を共に100mAの定電流で行い、充電終止電圧を2.2V、放電終止電圧を0.8Vに設定した。そして、充放電を三回(3サイクル)繰り返した。なお、充放電試験の開始前及び期間中、不活性ガス供給管から窒素ガスを供給した。
 充放電試験において、2サイクル目の充放電におけるクーロン効率、電圧効率、及びエネルギー効率を求めた。その結果を表1の“充放電試験結果”欄に示す。
 (実施例2~5)
 実施例2~5では、表1に示すようにグラフト率が異なるイオン交換膜(隔膜)に変更した以外は、実施例1と同様に充放電試験を行った。その結果を表1に示す。
 (実施例6~10)
 実施例6~10では、表1に示すように樹脂フィルム基材の厚み及びグラフト率の異なるイオン交換膜(隔膜)に変更した以外は、実施例1と同様に充放電試験を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図2には、グラフト率とエネルギー効率との関係を示す。図3には、樹脂フィルム基材の厚みとその厚みで得られた最も高いエネルギー効率との関係を示す。
 (比較例1)
 樹脂フィルム基材として、ポリエチレンフィルムを用いて、そのフィルムにスチレンスルホン酸ナトリウムをグラフト重合することを試みたが、グラフト率は数%に留まった。得られたイオン交換膜は、隔膜としての性能が得られなかった。
 (比較例2)
 樹脂フィルム基材として、ポリプロピレンフィルムを用いて、そのフィルムにスチレンスルホン酸ナトリウムをグラフト重合することを試みたが、グラフト率は数%に留まった。得られたイオン交換膜は、隔膜としての性能が得られなかった。
 (比較例3)
 樹脂フィルム基材として、ポリアミドフィルムを用いて、そのフィルムにスチレンスルホン酸ナトリウムをグラフト重合することを試みたが、グラフト率は数%に留まった。得られたイオン交換膜は、隔膜としての性能が得られなかった。

Claims (3)

  1.  pHが2以上、8以下の範囲内の正極電解液及び負極電解液が用いられる電力貯蔵電池であって、エチレン-ビニルアルコール共重合体をマトリックスとする樹脂フィルム基材にスチレンスルホン酸塩をグラフト重合してなるイオン交換膜を、正極電解液と負極電解液の隔膜として有することを特徴とする電力貯蔵電池。
  2.  前記樹脂フィルム基材の厚みは、50μm以上、100μm以下である、請求項1に記載の電力貯蔵電池。
  3.  前記イオン交換膜のグラフト率は、10%を超え、120%未満である、請求項1又は請求項2に記載の電力貯蔵電池。
PCT/JP2012/071223 2012-08-22 2012-08-22 電力貯蔵電池 WO2014030230A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/416,060 US9680176B2 (en) 2012-08-22 2012-08-22 Energy storage battery
JP2014531449A JP5920470B2 (ja) 2012-08-22 2012-08-22 電力貯蔵電池
CN201280073864.5A CN104364954B (zh) 2012-08-22 2012-08-22 蓄电池
PCT/JP2012/071223 WO2014030230A1 (ja) 2012-08-22 2012-08-22 電力貯蔵電池
IN23DEN2015 IN2015DN00023A (ja) 2012-08-22 2012-08-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071223 WO2014030230A1 (ja) 2012-08-22 2012-08-22 電力貯蔵電池

Publications (1)

Publication Number Publication Date
WO2014030230A1 true WO2014030230A1 (ja) 2014-02-27

Family

ID=50149566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071223 WO2014030230A1 (ja) 2012-08-22 2012-08-22 電力貯蔵電池

Country Status (5)

Country Link
US (1) US9680176B2 (ja)
JP (1) JP5920470B2 (ja)
CN (1) CN104364954B (ja)
IN (1) IN2015DN00023A (ja)
WO (1) WO2014030230A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006075A1 (ja) * 2014-07-10 2016-01-14 日新電機 株式会社 レドックスフロー電池
WO2017126081A1 (ja) * 2016-01-21 2017-07-27 日新電機 株式会社 レドックスフロー電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419379B2 (ja) 2019-08-08 2024-01-22 三井金属鉱業株式会社 分割スパッタリングターゲット
JP7438070B2 (ja) 2020-09-11 2024-02-26 新光電気工業株式会社 静電チャック、基板固定装置及び基板固定装置の製造方法
GB202015546D0 (en) * 2020-09-30 2020-11-11 Fujifilm Mfg Europe Bv Membranes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384134A (en) * 1976-12-29 1978-07-25 Yuasa Battery Co Ltd Method of manufacturing separator for battery
JPS54140136A (en) * 1978-04-21 1979-10-31 Nitto Electric Ind Co Method of producing cell separator
JPS62226580A (ja) * 1986-03-26 1987-10-05 Sumitomo Electric Ind Ltd レドツクスフロ−電池
JPH1074536A (ja) * 1996-08-30 1998-03-17 Yuasa Corp 密閉型ニッケル−水素蓄電池
JPH10172600A (ja) * 1996-12-10 1998-06-26 Tokuyama Corp バナジウム系レドックスフロー電池用隔膜

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112471A1 (en) * 1999-02-26 2005-05-26 Muguo Chen Nickel zinc electrochemical cell incorporating dendrite blocking ionically conductive separator
JP2001167788A (ja) 2000-10-19 2001-06-22 Tokuyama Corp レドックスフロー電池用隔膜の製造方法
WO2005001971A1 (ja) * 2003-06-30 2005-01-06 Sumitomo Chemical Company, Limited 高分子電解質複合膜、その製造方法及びその用途
JP4568044B2 (ja) * 2004-07-12 2010-10-27 株式会社日立製作所 膜電極複合体モジュール、燃料電池および電子機器並びに膜電極複合体モジュールの製造方法
JP4747241B2 (ja) * 2005-02-25 2011-08-17 独立行政法人 日本原子力研究開発機構 機能性膜、燃料電池用電解質膜の製造方法、及び燃料電池用電解質膜
US7396880B2 (en) * 2005-05-24 2008-07-08 Arkema Inc. Blend of ionic (co)polymer resins and matrix (co)polymers
JP2008027627A (ja) 2006-07-18 2008-02-07 Kansai Electric Power Co Inc:The レドックスフロー電池用隔膜
JP2010244972A (ja) 2009-04-09 2010-10-28 Sharp Corp レドックスフロー電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384134A (en) * 1976-12-29 1978-07-25 Yuasa Battery Co Ltd Method of manufacturing separator for battery
JPS54140136A (en) * 1978-04-21 1979-10-31 Nitto Electric Ind Co Method of producing cell separator
JPS62226580A (ja) * 1986-03-26 1987-10-05 Sumitomo Electric Ind Ltd レドツクスフロ−電池
JPH1074536A (ja) * 1996-08-30 1998-03-17 Yuasa Corp 密閉型ニッケル−水素蓄電池
JPH10172600A (ja) * 1996-12-10 1998-06-26 Tokuyama Corp バナジウム系レドックスフロー電池用隔膜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006075A1 (ja) * 2014-07-10 2016-01-14 日新電機 株式会社 レドックスフロー電池
CN106463751A (zh) * 2014-07-10 2017-02-22 日新电机株式会社 氧化还原液流电池
JPWO2016006075A1 (ja) * 2014-07-10 2017-04-27 日新電機株式会社 レドックスフロー電池
WO2017126081A1 (ja) * 2016-01-21 2017-07-27 日新電機 株式会社 レドックスフロー電池

Also Published As

Publication number Publication date
IN2015DN00023A (ja) 2015-05-22
JPWO2014030230A1 (ja) 2016-07-28
JP5920470B2 (ja) 2016-05-18
US20150194690A1 (en) 2015-07-09
US9680176B2 (en) 2017-06-13
CN104364954B (zh) 2017-04-12
CN104364954A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
JP6172394B2 (ja) レドックスフロー電池
JP6028862B2 (ja) レドックスフロー電池
JP5920470B2 (ja) 電力貯蔵電池
Ye et al. Advanced sulfonated poly (ether ether ketone)/graphene-oxide/titanium dioxide nanoparticle composited membrane with superior cyclability for vanadium redox flow battery
JP2013095918A (ja) イオン交換膜充電用組成物、イオン交換膜の製造方法、イオン交換膜及びレドックスフロー電池
CN105453321B (zh) 具有拥有最大水域团簇尺寸的水合离子交换膜的液流电池
JPH08502386A (ja) 空気電極を用いた電力配給用電気化学的装置
US20170271705A1 (en) Method for manufacturing positive electrode electrolyte for redox flow battery and redox flow battery
KR100726891B1 (ko) 유-무기 하이브리드형 나노입자 및 이를 포함하는리튬고분자 이차전지용 나노복합체 고분자 전해질
WO2016147640A1 (ja) アニオン交換基を有する樹脂、それを用いた樹脂含有液、積層体、部材、電気化学素子及び電気化学デバイス
CN117981156A (zh) 用于氧化还原电池的两性离子交换隔膜、其制造方法以及包括其的氧化还原电池
WO2017126081A1 (ja) レドックスフロー電池
JP6164576B2 (ja) レドックスフロー電池
KR102039854B1 (ko) 레독스 흐름 전지 시스템 및 이를 포함하는 레독스 흐름 전지
KR20130042941A (ko) 레독스 커플 담지 나노입자 및 이를 포함하는 레독스 흐름전지
Weng et al. Study of the electrochemical behavior of high voltage vanadium-metal hydride hybrid semi-flow battery
KR101531270B1 (ko) 나노 복합체, 이의 제조방법, 이를 이용한 전지용 멤브레인 및 그 제조방법
JP4811635B2 (ja) 鉛蓄電池及びこれに用いる負極並びに負極活物質
US11309567B2 (en) Ion exchange membrane and flow battery including same
JP2019067702A (ja) 二次電池
Xiang Superior Ion-Selective Polyetherimide Porous Membrane for Sustainable Zinc/4-Ho-Tempo Flow Batteries
CN118156571A (zh) 一种锌溴液流电池性能恢复方法
WO2014102898A1 (ja) 電力貯蔵電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531449

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416060

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883238

Country of ref document: EP

Kind code of ref document: A1