WO2017126062A1 - エレベータ装置及びその制御方法 - Google Patents
エレベータ装置及びその制御方法 Download PDFInfo
- Publication number
- WO2017126062A1 WO2017126062A1 PCT/JP2016/051601 JP2016051601W WO2017126062A1 WO 2017126062 A1 WO2017126062 A1 WO 2017126062A1 JP 2016051601 W JP2016051601 W JP 2016051601W WO 2017126062 A1 WO2017126062 A1 WO 2017126062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- car
- rope
- zone
- swing
- vibration
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- 238000001514 detection method Methods 0.000 claims description 17
- 230000002889 sympathetic effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 10
- 230000002238 attenuated effect Effects 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
Definitions
- the present invention relates to an elevator apparatus and a control method thereof, and particularly relates to suppression of car vibration due to rope swing.
- a plurality of dampers are provided in the hoistway and in the machine room where the rope contacts when the rope sway occurs.
- the damper prevents the vibration energy of the rope from being converted into the vibration of the car by absorbing the vibration energy of the rope.
- the elevator controller moves the car to a designated position in the hoistway, or moves the car to the nearest floor and drops the passenger from the car (for example, , See Patent Document 2).
- the present invention has been made to solve the above-described problems, and an elevator apparatus capable of preventing deterioration of the riding comfort of a car due to rope vibration while suppressing deterioration in serviceability with a simple configuration. And it aims at obtaining the control method.
- An elevator apparatus includes a car that moves up and down a hoistway provided in a building, a rope that is connected to the car, and a control device that controls the operation of the car.
- the car vibration zone which is the car movement area where the car vibration is excessive due to resonance, is set, and the control device determines whether or not the rope swings above the rope swing setting level. If it is determined that the car is likely to enter the car vibration zone, and if it is determined that the car is high, stop the car at least at one location before the car vibration zone. By stopping at a point, the swing of the rope is attenuated.
- an elevator apparatus includes a car that moves up and down a hoistway provided in a building, a rope connected to the car, and a control device that controls the operation of the car.
- the car vibration zone which is the car movement area where the vibration of the car becomes excessive due to resonance of the swing of the car, is set, and the control device determines whether the rope is shaking more than the rope swing setting level, If it is determined that it has occurred, movement of the car to the car vibration zone is prohibited.
- the elevator apparatus has a car and a rope connected to the car, and a plurality of elevator bodies provided in the same bank, and a control device for controlling the operation of the car.
- the control device has a control effective zone, which is a car movement area where the rope is likely to be shaken by the shaking of the building, and a car vibration zone, which is a car movement area where the vibration of the car becomes excessive due to the vibration of the rope.
- the control device determines whether or not the swing of the rope swing set level or higher has occurred in at least one of the ropes. If it is determined that the swing has occurred, the control range of the cage is controlled.
- the control is divided into a first zone including only one of the effective zone and the car vibration zone and a second zone including only the other of the control effective zone and the car vibration zone. To.
- the method for controlling an elevator apparatus includes the step of determining whether or not the rope connected to the car is swayed more than a rope swaying setting level, and the swaying exceeding the rope swaying setting level is generated in the rope.
- the step of determining whether or not the rope connected to the car is swayed more than the rope swaying setting level, and the swaying more than the rope swaying setting level is described above.
- a step of prohibiting the movement of the car to the car vibration zone which is a car movement area in which the vibration of the car becomes excessive due to resonance of the rope swing when it is determined that the car is generated on the rope.
- the elevator apparatus control method according to the present invention includes a car and a rope connected to the car, and controls a plurality of elevator bodies provided in the same bank and the operation of the car.
- a control method for an elevator apparatus comprising a control device for determining whether or not a swing greater than a rope swing set level has occurred in at least one of the ropes, and a rope swing set level in any of the ropes If it is determined that the above-mentioned shaking has occurred, the car movement range will be excessive due to the control effective zone, which is the cage movement area where the rope is likely to shake due to the shaking of the building, and the rope shaking.
- a first zone including only one of the car vibration zones, which is a car movement area, and only the other of the control effective zone and the car vibration zone Comprising the step of limiting and distributing the second zone including.
- the elevator apparatus and the control method thereof according to the present invention can prevent the car from entering the car vibration zone in a state where the rope sway is generated, and the rope can be prevented from being deteriorated in serviceability with a simple configuration. Deterioration of the riding comfort of the car due to vibration can be prevented.
- FIG. 1 It is a block diagram which shows the elevator apparatus by Embodiment 1 of this invention. It is a graph which shows an example of the measurement result of the cage
- FIG. 10 is an explanatory diagram illustrating a control method by a control device for an elevator apparatus according to a sixth embodiment.
- FIG. 1 is a block diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
- a hoistway 1 is provided in the building.
- a machine room 2 is provided above the hoistway 1 in the building.
- a hoisting machine 3, a deflector 4, and a control device 5 are installed.
- the hoisting machine 3 includes a drive sheave 6, a hoisting machine motor (not shown) that rotates the driving sheave 6, and a hoisting machine brake (not shown) that brakes the rotation of the driving sheave 6.
- a plurality of main ropes 7 (only one is shown in the figure) are wound around the driving sheave 6 and the deflecting wheel 4.
- a car 8 is connected to the first end of the main rope 7.
- a counterweight 9 is connected to the second end of the main rope 7.
- the car 8 and the counterweight 9 are suspended in the hoistway 1 by the main rope 7 and are moved up and down in the hoistway 1 by rotating the drive sheave 6.
- the control device 5 moves the car 8 up and down at a set speed by controlling the rotation of the hoisting machine 3.
- a pair of car guide rails 10 that guide the raising and lowering of the car 8 and a pair of counterweight guide rails 11 that guide the raising and lowering of the counterweight 9 are installed.
- the car 8 is provided with a plurality of roller guide devices (not shown) in contact with the car guide rail 10.
- Each roller guide device has a plurality of guide rollers that roll along the car guide rail 10 and a plurality of pressing springs that press the guide rollers against the car guide rail 10.
- compen- sion ropes 12 for compensating the mass of the main rope 7 are suspended.
- the first end of the compen- sion rope 12 is connected to the lower part of the car 8.
- the second end of the compen- sion rope 12 is connected to the lower part of the counterweight 9.
- a pair of compen- sion rope tensioning wheels 13 a and 13 b for applying tension to the compen- sion rope 12 is provided.
- FIG. 2 shows an example of measurement results of the car speed and the longitudinal acceleration of the car 8 when the car 8 is run from the lowest floor to the top floor in a state where the main rope 7 of FIG. It is a graph.
- a relatively large vibration is generated in the front-rear direction of the car 8 in the deceleration region near the top floor.
- FIG. 3 is a graph showing the primary natural frequency of the car side portion of the main rope 7 of FIG. 1 and the relationship between the primary natural frequency of the car 8 in the left-right direction and the car position.
- fr is the primary natural frequency of the car side portion of the main rope 7
- L is the portion of the main rope 7 between the car 8 and the drive sheave 6, that is, the length of the car side portion
- T is the rope tension per piece
- ⁇ is the rope line density per piece.
- the primary natural frequency of the main rope 7 changes depending on the car position because the distance from the car 8 to the drive sheave 6 changes depending on the car position. That is, as the car 8 approaches the top floor, the length L decreases, and the primary natural frequency fr of the car side portion of the main rope 7 tends to increase in inverse proportion to the length L.
- the primary natural frequency fc1 in the left-right direction of the car 8 that is guided by the car guide rail 10 through the roller guide device and moves up and down varies depending on the car position and the weight of the car 8 and the support rigidity of the roller guide device. Therefore, the value is constant with respect to the car position.
- the primary natural frequency of the car 8 in the front-rear direction is also a constant value with respect to the car position.
- a region where a relatively large vibration is generated in the car 8 is such that the primary natural frequency of the car side portion of the main rope 7 in FIG. It is considered that the area is near the position where
- the main rope 7 is shaken as the building shakes, and if the car travels to the upper floor in that state, the main rope 7 approaches the uppermost floor. Although the amplitude of the rope 7 is reduced, the vibration frequency of the main rope 7 is increased. And it is thought that the horizontal external force according to the tension
- the control device 5 includes a plurality of car movement areas in the hoistway 1 in which the main rope 7 or the compen- sion rope 12 easily shakes due to the shaking of the building when the car 8 is located in the zone.
- a control effective zone is preset.
- a main rope resonance zone 1a, a first compensation rope resonance zone 1b, and a second compensation rope resonance zone 1c are set as the control effective zones.
- the main rope resonance zone 1a is an area where the car side portion of the main rope 7 is likely to resonate due to the shaking of the building when the car 8 is present in the zone.
- the first and second compensation rope resonance zones 1b and 1c are regions in which the cage side portion of the compensation rope 12 is likely to resonate due to the shaking of the building when the cage 8 is present in the zone.
- the main rope resonance zone 1a is set near the lowest floor. Further, the first compensation rope resonance zone 1b is set near the intermediate floor. Furthermore, the second compensation rope resonance zone 1c is set near the top floor. These resonance zones 1a, 1b, and 1c are different areas in the hoistway 1 and are set at intervals in the vertical direction.
- each resonance zone 1a, 1b, 1c may be only on the first floor or across multiple floors, and the actual building swing and the swing of the main rope 7 and compen rope 12 It can be set as appropriate according to the relationship.
- the control device 5 is preset with a first car vibration zone 1d shown in FIG. 5 and a second car vibration zone 1e shown in FIG.
- the first car vibration zone 1d is a car in the hoistway 1 in which, when the car 8 is located in the zone, the vibration of the car 8 becomes excessive due to resonance of the car side portion of the main rope 7. It is a moving area.
- the second car vibration zone 1e the car 8 in the hoistway 1 in which the vibration of the car 8 becomes excessive due to the vibration of the car side portion of the compensation rope 12 when the car 8 is located in the zone. It is a moving area.
- the first car vibration zone 1d is set near the top floor.
- the second car vibration zone 1e is set near the lowest floor.
- the control device 5 determines whether the main rope 7 or the compen- sion rope 12 is swayed more than the rope sway set level. And when it determines with having generate
- control method for the elevator apparatus includes a first determination step, a second determination step, and an attenuation step.
- the first determination step it is determined whether or not the main rope 7 (or the compen- sion rope 12) has swayed more than the rope sway set level.
- the second determination step is performed.
- the second determination step it is determined whether or not the car 8 is likely to enter the first car vibration zone 1d (or the second car vibration zone 1e). In the second determination step, if it is determined that the possibility is high, an attenuation step is performed.
- the car 8 is stopped at at least one stop point before the first car vibration zone 1d (or the second car vibration zone 1e), so that the main rope 7 (or the compen- sion rope 12). Damping the shaking.
- the control device 5 sets the rope swing when the car 8 stays in the main rope resonance zone 1a for the zone stay upper limit time or more in a state in which the building swing of the building swing set level or higher is detected. It is determined that the swing of the level or more has occurred in the main rope 7. In addition, when it is determined that the main rope 7 is swaying more than the rope swaying setting level, if the call on the first car vibration zone 1d side with respect to the main rope resonance zone 1a occurs, the car 8 becomes the first. It is determined that there is a high possibility of entering the car vibration zone 1d.
- the control device 5 keeps the car 8 staying in the first or second compensation rope resonance zone 1b, 1c for more than the zone stay upper limit time in a state where the building shake exceeding the building shake setting level is detected. If it is, it is determined that the swing of the rope swing setting level or more has occurred in the compensation rope 12. In addition, when it is determined that a swing of the rope swing set level or higher has occurred in the compen- sion rope 12, the call on the second car vibration zone 1e side rather than the first or second compensation rope resonance zone 1b, 1c is called. When it occurs, it is determined that there is a high possibility that the car 8 will enter the second car vibration zone 1e.
- stay of “staying longer than the zone stay upper limit time” includes the time when the car 8 is stopped and the time when the car 8 is traveling.
- the zone stay upper limit time is also set in the control device 5 in advance.
- the stop location is the stop floor before the first or second car vibration zone 1d, 1e.
- the stop floor as a stop location is referred to as a retreat floor.
- the control apparatus 5 stops the cage
- the control device 5 may stop the car 8 on the evacuation floor by generating a new call from the car 8.
- the control device 5 may stop the car 8 on the evacuation floor by generating a new call internally without lighting any call button.
- stop floors that can suppress the shaking of various ropes arranged in the hoistway 1, such as the main rope 7, the compen- sion rope 12, and the governor rope (not shown) are selected. It is preferable to do this.
- FIG. 7 is a block diagram showing the control device 5 of FIG.
- the control device 5 includes a control operation determination unit 5a, a control operation execution condition determination unit 5b, a stop floor determination unit 5c, an operation control unit 5d, and a call registration unit 5e.
- the control operation determination unit 5a receives a signal from the building shake detector 14 that detects the building shake.
- the building shake detector 14 for example, a long-period vibration detector that senses long-period vibration due to an earthquake is used.
- the car position information from the car position detector 15 is input to the control operation determination unit 5a.
- the car position detector 15 include a hoisting machine encoder (not shown) provided in the hoisting machine 3 and a speed governor encoder (not shown) provided in a speed governor (not shown). ), And a plurality of car position detection switches (not shown) installed in the hoistway 1 can be used.
- the control operation determination unit 5a is configured such that the car 8 is in the main rope resonance zone 1a, the first compen- sion resonance zone 1b, or the second in a state where the building shake detector 14 detects the shake of the building above the building shake setting level. It is determined whether or not the compen- sion resonance zone 1c stays longer than the upper limit time of the zone stay, and the control operation flag is established when the above condition is satisfied.
- the control operation execution condition determination unit 5b receives car position information, driving direction information, information from the control operation determination unit 5a, and information from the call registration unit 5e.
- the control operation execution condition determination unit 5b has a condition for performing an UP control operation that is a control operation for attenuating the vibration of the main rope 7 or a DOWN control operation that is a control operation for attenuating the vibration of the compensation rope 12. It is determined whether it is established.
- the stop floor determination unit 5c determines whether or not it is necessary to generate a new evacuation floor call, and inputs a command for generating a new evacuation floor call to the operation control unit 5d when necessary.
- FIG. 8 is a flowchart showing the operation of the control device 5 of FIG.
- the control device 5 periodically performs the process shown in FIG. 8 in the normal operation process.
- it is first determined whether or not a building shake exceeding the building shake setting level is detected (step S1).
- a building shake exceeding the building shake setting level is detected, it is determined whether the car 8 is located in the main rope resonance zone 1a, the first compensation rope resonance zone 1b, or the second compensation rope resonance zone 1c. (Step S2).
- step S3 If a building shake exceeding the building shake setting level is detected and the car 8 is located in any control effective zone, the zone stay time is counted (step S3). Then, it is determined whether the car 8 is still located in any of the control effective zones (step S4), and it is determined whether the zone stay time has reached the zone stay upper limit time (step S5).
- step S6 the zone stay time is reset (step S6), and the process returns to step S1.
- the car 8 may return to the control effective zone immediately after leaving the control effective zone, the car 8 may return to step S1 after the set time.
- step S7 it is determined again whether the car 8 is located in the control effective zone and whether the building shake exceeding the building shake set level is detected.
- step S8 If the two conditions are satisfied, the control operation flag is established (step S8).
- the zone stay time is reset (step S9), and the process returns to step S1.
- the building shaking detection flag has passed the rope attenuation setting time after the building acceleration falls below the building shaking setting level. It is preferred to reset later.
- step S10 it is determined whether there is a registration of a car call or a landing call outside the control effective zone corresponding to the control operation of the established flag (step S10). If there is no call registration outside the control effective zone, the process returns to step S7. In the second and subsequent steps S7, if the car 8 is out of the control effective zone, or if the building shake exceeding the building shake set level is not detected, the zone stay time is reset and the control operation flag is set. Reset and return to step S1 (step S9).
- step S10 when there is a call registration outside the control effective zone, it is determined whether the control operation to be performed is a control operation performed when the car 8 is traveling upward, that is, UP control (step S11).
- step S12 When the control operation to be performed is UP control, it is determined whether or not the UP control condition is satisfied (step S12).
- the UP control condition it is determined whether or not the car 8 is a call to exit the control effective zone upward. If the car 8 is a call to exit the control effective zone downward, the process proceeds to step S9. However, since the car 8 may return to the control effective zone immediately after passing through the control effective zone in the downward direction, the process may proceed to step S9 after the set time.
- step S13 when the control operation to be performed is DOWN control, it is determined whether or not the DOWN control condition is satisfied (step S13).
- the DOWN control condition it is determined whether or not the car 8 is a call to exit the control effective zone downward. If the car 8 is a call to exit the control effective zone upward, the process proceeds to step S9. However, since the car 8 may return to the control effective zone immediately after passing upward from the control effective zone, the process may proceed to step S9 after the set time.
- step S14 If the UP control condition is satisfied, one or more UP evacuation floor calls are registered as stop points (step S14). When the DOWN control condition is satisfied, one or more DOWN evacuation floor calls are registered as a stop point (step S15).
- the zone stay time is reset, the control operation flag is reset (step S16), and the process of this time is ended.
- the control device 5 is configured by a computer, for example. That is, the function of the control device 5 can be executed by computer processing.
- the rope swing is estimated based on the signal from the building shake detector 14 existing in many buildings and the car position information, it is not necessary to add a rope shake detector and the cost can be reduced.
- the stop point is the stop floor
- the car 8 can be easily stopped at the stop point only by generating a call, and the user is not disturbed.
- the car 8 is stopped at the stop point by generating a new call from the landing, it is possible to further reduce anxiety given to the users in the car 8.
- the car 8 is stopped at the stop point by generating a new call from the car 8, it is possible to further reduce anxiety given to the user at the landing.
- control device 5 determines that the car 8 needs to be stopped at the stop point, whether or not the destination floor call before the first or second car vibration zone 1d, 1e is generated. If it occurs, the destination floor before the first or second car vibration zone 1d, 1e may be used as a part or all of the stop points.
- Embodiment 2 a second embodiment of the present invention will be described.
- the configuration of the elevator apparatus of the second embodiment is the same as that of the first embodiment.
- the control device 5 according to the second embodiment determines that the main rope 7 is swaying more than the rope swaying setting level, it is within the first car vibration zone 1d or the first car vibration zone 1d.
- the call of the control effective destination floor which is the destination floor in the area that has passed, is generated, it is determined that there is a high possibility that the car 8 will enter the first car vibration zone 1d.
- control device 5 determines that a swing of the rope swing set level or higher has occurred in the compen- sion rope 12, the region within the second car vibration zone 1e or the second car vibration zone 1e.
- the call of the control effective destination floor which is the destination floor is generated, it is determined that the possibility that the car 8 enters the second car vibration zone 1e is high.
- a call for a destination floor before the corresponding first or second car vibration zone 1d, 1e is generated. Determine whether or not. And when the call of the front destination floor has generate
- FIG. 9 is a flowchart showing the operation of the control device 5 of the second embodiment. After establishing the control operation flag (step S8), the control device 5 determines whether or not there is a call registration to the control effective destination floor (step S21).
- step S22 and S23 Other operations are the same as those in the first embodiment.
- a call to the control effective destination floor is generated after the control operation flag is established, it depends on the presence or absence of the call registration of the destination floor before the first or second car vibration zone 1d, 1e. Instead, a call to a preset evacuation floor may be automatically registered.
- FIG. 10 is a block diagram showing a control device 5 for an elevator apparatus according to Embodiment 3 of the present invention.
- detection signals from a plurality of rope swing detectors 16 that detect the swing of the main rope 7 and the compen- sion rope 12 are input to the control operation determination unit 5a.
- the rope shake detector 16 for example, a photoelectric sensor having a light emitting unit and a light receiving unit that detects infrared rays emitted from the light emitting unit is used.
- the control operation determination unit 5a determines that the main rope 7 or the compensation rope 12 is swayed more than the rope swing setting level when the infrared ray is blocked by the main rope 7 or the compensation rope 12.
- control device 5 determines that the main rope 7 is swayed more than the rope swaying setting level, if the call on the first car vibration zone 1d side from the main rope resonance zone 1a occurs, the car 8 Is likely to enter the first car vibration zone 1d.
- the control device 5 determines that the swing of the rope swing set level or more has occurred in the compen- sion rope 12, the second cage vibration zone is more than the first or second compensation rope resonance zone 1b, 1c.
- the control device 5 determines that the swing of the rope swing set level or more has occurred in the compen- sion rope 12
- the second cage vibration zone is more than the first or second compensation rope resonance zone 1b, 1c.
- FIG. 11 is a flowchart showing the operation of the control device 5 of FIG.
- the control device 5 periodically performs the process shown in FIG. 11 in the normal operation process.
- control operation flag When the control operation flag is established, it is determined whether there is a registration of a car call or a landing call outside the control effective zone corresponding to the rope in which the swing of the rope swing set level or more is detected (step S33). If there is no call registration outside the control effective zone, it is determined whether or not the rope shake continues (step S34), and if it continues, the process returns to step S33. If the rope swing does not continue, the control operation flag is reset (step S35), and the process returns to step S31.
- step S11 it is determined whether the control operation to be performed is UP control (step S11), and the UP control condition or the DOWN control condition is determined. Is determined (step S12 or step S13).
- the evacuation floor registration (step S14 or step S15) when the control condition is satisfied is the same as in the first embodiment.
- control operation flag is reset (step S35), and the process returns to step S31.
- control operation flag is reset (step S36), and the process of this time is ended.
- Other configurations and operations are the same as those in the first embodiment.
- the rope sway is determined based on the detection signal from the rope sway detector 16, it is possible to more reliably determine whether or not the sway exceeding the rope sway set level has occurred. Deterioration of ride comfort can be prevented more reliably.
- Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described.
- the configuration of the elevator apparatus of the fourth embodiment is the same as that of the third embodiment.
- the control device 5 according to the fourth embodiment determines that the main rope 7 is swayed more than the rope sway set level, the control device 5 in the first car vibration zone 1d or the first car vibration zone 1d.
- the call of the control effective destination floor which is the destination floor in the area that has passed, is generated, it is determined that there is a high possibility that the car 8 will enter the first car vibration zone 1d.
- the control device 5 determines that a swing of the rope swing set level or higher has occurred in the compen- sion rope 12, the region within the second car vibration zone 1e or the second car vibration zone 1e.
- the call of the control effective destination floor which is the destination floor is generated, it is determined that there is a high possibility that the car 8 enters the second car vibration zone 1e.
- a call for a destination floor before the corresponding first or second car vibration zone 1d, 1e is generated. Determine whether or not. And when the call of the front destination floor has generate
- FIG. 12 is a flowchart showing the operation of the control device 5 of the fourth embodiment. After the control operation flag is established (step S32), the control device 5 determines whether there is a call registration to the control effective destination floor (step S41).
- the rope shake detector 16 of the third and fourth embodiments is not limited to a photoelectric sensor, and may be, for example, a type of rope shake detector that detects rope shake from an image taken by a camera. .
- FIG. 13 is an explanatory diagram showing a control method by the control device 5 of the elevator apparatus according to the fifth embodiment.
- the control method is superimposed on a graph showing the relationship between the secondary natural frequency and the primary natural frequency in the left-right direction of the car 8 and the car position.
- the car position S ⁇ b> 1 is a position where the primary natural frequency in the left-right direction of the car 8 matches the primary natural frequency of the car side portion of the main rope 7.
- the car position S ⁇ b> 2 is a position where the primary natural frequency in the left-right direction of the car 8 coincides with the primary natural frequency of the car side portion of the compen rope 12.
- the configuration of the elevator apparatus of the fifth embodiment is the same as that of the first, second, third, or fourth embodiment.
- the main rope 7 or the compen- sion rope 12 is swayed more than the rope swing setting level. If it is determined, the movement of the car 8 to the first and second car vibration zones 1d and 1e is prohibited.
- the control method for the elevator apparatus includes a determination step for determining whether or not the main rope 7 or the compen- sion rope 12 is swayed more than the rope sway set level, and the sway higher than the rope sway set level. And a prohibiting step for prohibiting the movement of the car 8 to the first and second car vibration zones 1d and 1e when it is determined that the main rope 7 or the compensating rope 12 is generated.
- the movement to the first car vibration zone 1d is performed. If the movement of the car 8 is prohibited and it is determined that the swing of the rope swing set level or higher has occurred in the compen- sion rope 12, the movement of the car 8 to the second car vibration zone 1e may be prohibited.
- the control device 5 determines whether the main rope 7 or the compen- sion rope 12 is in a state where the building swing is smaller than a preset level. It is determined that the vibration is sufficiently damped, and the movement of the car 8 to the first and second car vibration zones 1d and 1e is permitted.
- control device 5 can detect the main rope 7 or the compensator 12 when the swing of the main rope 7 or the compen rope 12 becomes smaller than a preset level. It is determined that the swing of the compensation rope 12 has sufficiently attenuated, and the movement of the car 8 to the first and second car vibration zones 1d and 1e is permitted.
- the control device 5 causes the car to be located at the position of the car when the main rope 7 or the compen- sion rope 12 is swayed more than the rope swing setting level. 8 and when the swing of the main rope 7 or the compensation rope 12 at the car position becomes smaller than a preset level, it is determined that the swing of the main rope 7 or the compensation rope 12 has sufficiently attenuated, The movement of the car 8 to the first or second car vibration zone 1d, 1e is permitted.
- FIG. 14 is a block diagram showing an elevator apparatus according to Embodiment 6 of the present invention.
- a plurality of (two in FIG. 14) elevator bodies having the same configuration are provided in the same bank.
- a “ ⁇ 1” symbol is added to the first device, and a “ ⁇ 2” symbol is added to the second device.
- the control device 5 includes two units of the configuration shown in FIG. 7 or 10 and a group management control unit that controls the first and second machines as a group.
- FIG. 15 is an explanatory diagram showing a control method by the control device 5 of the elevator apparatus according to the sixth embodiment.
- the control device 5 includes the main rope resonance zone 1a, the first compensation rope resonance zone 1b, the second compensation rope resonance zone 1c, the first car vibration zone 1d, and the second A car vibration zone 1e is set.
- the control device 5 determines whether or not the swing of the rope swing set level or higher has occurred in at least one of the main ropes 7-1 and 7-2. 1, 8-2, the first zone Z1 including only one of the main rope resonance zone 1a and the first car vibration zone 1d, and the main rope resonance zone 1a and the first car vibration zone 1d. And restricting to the second zone Z2 including only the other one of the elevator bodies.
- the control device 5 determines whether or not the swing of the rope swing set level or more has occurred in at least one of the compensation ropes 12-1 and 12-2.
- the movement ranges of the cars 8-1 and 8-2 are set such that the first zone Z1 including only one of the compensation rope resonance zones 1b and 1c and the second cage vibration zone 1e, the compensation rope resonance zones 1b and 1c, and Each elevator body is limited to the second zone Z2 including only the other of the second car vibration zones 1e.
- the determination method of the rope swing is the same as that in any one of the first to fourth embodiments for the control device 5.
- the uppermost floor of the first zone Z1 and the lowermost floor of the second zone Z2 are vertically adjacent to each other, but even if they overlap one floor or two or more floors. Good.
- the control method for an elevator apparatus includes a determination step and a restriction step.
- the determination step it is determined whether or not at least one of the ropes has a swing greater than or equal to the rope swing setting level. And when it determines with the swing more than a rope swing setting level having generate
- the limiting step the moving range of the cars 8-1 and 8-2 is limited as described above.
- the control device 5 detects the rope shake detection car, which is the car 8 to which the rope having a swing higher than the rope shake set level is connected.
- the vehicle is kept in the zone where the rope sway detection car is currently arranged, and the other car 8 is assigned to the zone where the rope sway detection car does not exist.
- first and second zones Z1 and Z2 are adjacent or partially overlapped so that the user can move from the lowest floor to the top floor by transferring the machine, and continuous service is possible. .
- the number of units included in the elevator apparatus may be three or more.
- the zone can be divided into three or more.
- the layout of the elevator apparatus is not limited to the layout of FIG.
- the present invention can be applied to a 2: 1 roping type elevator, an elevator in which a hoisting machine is disposed at the lower part of a hoistway, and an elevator using two or more counterweights.
- the main rope 7 and the compensation rope 12 have been described.
- the present invention may be applied to only one of them, and a rope connected to the car 8 such as a governor rope. If so, it is within the scope of the present invention.
- a belt having a flat cross section is also included in the rope of the present invention if there is a possibility that excessive vibration is generated in the car 8 in the car vibration zone.
- the present invention can be applied to all types of elevator devices such as machine room-less elevators, double deck elevators, and one-shaft multi-car elevators in which a plurality of cars are arranged in a common hoistway.
Landscapes
- Maintenance And Inspection Apparatuses For Elevators (AREA)
- Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
Abstract
Description
また、この発明に係るエレベータ装置は、建物内に設けられている昇降路を昇降するかご、かごに接続されているロープ、及びかごの運転を制御する制御装置を備え、制御装置には、ロープの揺れに共振してかごの振動が過大となるかご移動領域であるかご振動ゾーンが設定されており、制御装置は、ロープ揺れ設定レベル以上の揺れがロープに発生しているかどうかを判定し、発生していると判定した場合には、かご振動ゾーンへのかごの移動を禁止する。
さらに、この発明に係るエレベータ装置は、かごと、かごに接続されているロープとをそれぞれ有しており、同一バンク内に設けられている複数のエレベータ本体、及びかごの運転を制御する制御装置を備え、制御装置には、建物の揺れによりロープが揺れ易いかご移動領域である管制有効ゾーンと、ロープの揺れに共振してかごの振動が過大となるかご移動領域であるかご振動ゾーンとが設定されており、制御装置は、ロープ揺れ設定レベル以上の揺れが少なくともいずれかのロープに発生しているかどうかを判定し、発生していると判定した場合には、かごの移動範囲を、管制有効ゾーン及びかご振動ゾーンのいずれか一方のみを含む第1のゾーンと、管制有効ゾーン及びかご振動ゾーンの他方のみを含む第2のゾーンとに振り分けて制限する。
この発明に係るエレベータ装置の制御方法は、かごに接続されているロープに、ロープ揺れ設定レベル以上の揺れが発生しているかどうかを判定するステップ、ロープ揺れ設定レベル以上の揺れがロープに発生していると判定した場合に、ロープの揺れに共振してかごの振動が過大となるかご移動領域であるかご振動ゾーンに、かごが進入する可能性が高いかどうかを判定するステップ、及びロープ揺れ設定レベル以上の揺れがロープに発生しており、かつかご振動ゾーンにかごが進入する可能性が高いと判定した場合に、かごを、かご振動ゾーンよりも手前の少なくとも1箇所の停止箇所で停止させることにより、ロープの揺れを減衰させるステップを含む。
また、この発明に係るエレベータ装置の制御方法は、かごに接続されているロープに、ロープ揺れ設定レベル以上の揺れが発生しているかどうかを判定するステップ、及びロープ揺れ設定レベル以上の揺れが前記ロープに発生していると判定した場合に、ロープの揺れに共振してかごの振動が過大となるかご移動領域であるかご振動ゾーンへのかごの移動を禁止するステップを含む。
さらに、この発明に係るエレベータ装置の制御方法は、かごと、かごに接続されているロープとをそれぞれ有しており、同一バンク内に設けられている複数のエレベータ本体、及びかごの運転を制御する制御装置を備えているエレベータ装置の制御方法であって、ロープ揺れ設定レベル以上の揺れが少なくともいずれかのロープに発生しているかどうかを判定するステップ、及びいずれかのロープにロープ揺れ設定レベル以上の揺れが発生していると判定した場合に、かごの移動範囲を、建物の揺れによりロープが揺れ易いかご移動領域である管制有効ゾーン、及びロープの揺れに共振してかごの振動が過大となるかご移動領域であるかご振動ゾーンのいずれか一方のみを含む第1のゾーンと、管制有効ゾーン及びかご振動ゾーンの他方のみを含む第2のゾーンとに振り分けて制限するステップを含む。
実施の形態1.
図1はこの発明の実施の形態1によるエレベータ装置を示す構成図である。図において、建物内には、昇降路1が設けられている。建物内の昇降路1の上部には、機械室2が設けられている。機械室2には、巻上機3、そらせ車4、及び制御装置5が設置されている。巻上機3は、駆動シーブ6、駆動シーブ6を回転させる巻上機モータ(図示せず)、及び駆動シーブ6の回転を制動する巻上機ブレーキ(図示せず)を有している。
また、乗場からの新たな呼びを生成することにより停止箇所にかご8を停止させる場合、かご8内の利用者に与える不安感をより低減することができる。
さらに、かご8内からの新たな呼びを生成することにより停止箇所にかご8を停止させる場合、乗場にいる利用者に与える不安感をより低減することができる。
次に、この発明の実施の形態2について説明する。実施の形態2のエレベータ装置の構成は、実施の形態1と同様である。但し、実施の形態2の制御装置5は、ロープ揺れ設定レベル以上の揺れが主ロープ7に発生していると判定したときに、第1のかご振動ゾーン1d内又は第1のかご振動ゾーン1dを通り過ぎた領域内の行き先階である管制有効行き先階の呼びが発生すると、かご8が第1のかご振動ゾーン1dに進入する可能性が高いと判定する。
次に、図10はこの発明の実施の形態3によるエレベータ装置の制御装置5を示すブロック図である。実施の形態3では、主ロープ7及びコンペンロープ12の揺れを検出する複数(図では1つのみ示す)のロープ揺れ検出器16からの検出信号が管制運転判定部5aに入力される。
次に、この発明の実施の形態4について説明する。実施の形態4のエレベータ装置の構成は、実施の形態3と同様である。但し、実施の形態4の制御装置5は、ロープ揺れ設定レベル以上の揺れが主ロープ7に発生していると判定したときに、第1のかご振動ゾーン1d内又は第1のかご振動ゾーン1dを通り過ぎた領域内の行き先階である管制有効行き先階の呼びが発生すると、かご8が第1のかご振動ゾーン1dに進入する可能性が高いと判定する。
また、実施の形態3、4のロープ揺れ検出器16は、光電センサに限定されるものではなく、例えばカメラで撮影した画像からロープ揺れを検出するタイプのロープ揺れ検出器などであってもよい。
次に、この発明の実施の形態5について説明する。図13は実施の形態5のエレベータ装置の制御装置5による制御方法を示す説明図であり、図1の主ロープ7のかご側部分の1次固有振動数、コンペンロープ12のかご側部分の1次固有振動数、及びかご8の左右方向の1次固有振動数と、かご位置との関係を示すグラフに制御方法を重ねて示している。かご位置S1は、かご8の左右方向の1次固有振動数が主ロープ7のかご側部分の1次固有振動数と一致する位置である。また、かご位置S2は、かご8の左右方向の1次固有振動数がコンペンロープ12のかご側部分の1次固有振動数と一致する位置である。
次に、図14はこの発明の実施の形態6によるエレベータ装置を示す構成図である。実施の形態6のエレベータ装置では、同一バンク内に同様の構成の複数(図14では2機)のエレベータ本体が設けられている。また、図14では、1号機の機器に「-1」の符号を添え、2号機の機器に「-2」の符号を添えている。制御装置5は、図7又は図10の構成を2台分と、1号機及び2号機を群として制御する群管理制御部とを有している。
また、エレベータ装置のレイアウトは、図1のレイアウトに限定されるものではない。例えば2:1ローピング方式のエレベータ、巻上機が昇降路の下部に配置されているエレベータ、及び2個以上の釣合おもりを用いるエレベータ等にもこの発明は適用できる。
さらに、上記の例では、主ロープ7及びコンペンロープ12について述べたが、いずれか一方のみにこの発明を適用してもよく、また、例えば調速機ロープなど、かご8に接続されているロープであれば、この発明の適用範囲内である。また、断面が偏平なベルトについても、かご振動ゾーンにおいてかご8に過大な振動を発生させる可能性があれば、この発明におけるロープに含まれる。
さらにまた、この発明は、機械室レスエレベータ、ダブルデッキエレベータ、共通の昇降路内に複数のかごが配置されているワンシャフトマルチカー方式のエレベータなど、あらゆるタイプのエレベータ装置に適用できる。
Claims (17)
- 建物内に設けられている昇降路を昇降するかご、
前記かごに接続されているロープ、及び
前記かごの運転を制御する制御装置
を備え、
前記制御装置には、前記ロープの揺れに共振して前記かごの振動が過大となるかご移動領域であるかご振動ゾーンが設定されており、
前記制御装置は、
ロープ揺れ設定レベル以上の揺れが前記ロープに発生しているかどうかを判定し、発生していると判定した場合には、前記かごが前記かご振動ゾーンに進入する可能性が高いかどうかを判定し、高いと判定した場合には、前記かごを、前記かご振動ゾーンよりも手前の少なくとも1箇所の停止箇所で停止させることにより、前記ロープの揺れを減衰させるエレベータ装置。 - 前記制御装置には、前記建物の揺れにより前記ロープが揺れ易いかご移動領域である管制有効ゾーンがさらに設定されており、
前記制御装置は、前記建物の揺れを検出する建物揺れ検出器により建物揺れ設定レベル以上の揺れが検出されている状態で、前記かごが前記管制有効ゾーンにゾーン滞在上限時間以上滞在していると、前記ロープ揺れ設定レベル以上の揺れが前記ロープに発生していると判定する請求項1記載のエレベータ装置。 - 前記制御装置は、前記ロープ揺れ設定レベル以上の揺れが前記ロープに発生していると判定したときに、前記管制有効ゾーンよりも前記かご振動ゾーン側の呼びが発生すると、前記かごが前記かご振動ゾーンに進入する可能性が高いと判定する請求項2記載のエレベータ装置。
- 前記制御装置は、前記ロープ揺れ設定レベル以上の揺れが前記ロープに発生していると判定したときに、前記かご振動ゾーン内又は前記かご振動ゾーンを通り過ぎた領域内の行き先階である管制有効行き先階の呼びが発生すると、前記かごが前記かご振動ゾーンに進入する可能性が高いと判定する請求項2記載のエレベータ装置。
- 前記ロープの揺れを検出するロープ揺れ検出器をさらに備え、
前記制御装置は、前記ロープ揺れ検出器からの信号により、ロープ揺れ設定レベル以上の揺れが前記ロープに発生しているかどうかを判定する請求項1記載のエレベータ装置。 - 前記制御装置には、前記建物の揺れにより前記ロープが揺れ易いかご移動領域である管制有効ゾーンがさらに設定されており、
前記制御装置は、前記ロープ揺れ設定レベル以上の揺れが前記ロープに発生していると判定したときに、前記管制有効ゾーンよりも前記かご振動ゾーン側の呼びが発生すると、前記かごが前記かご振動ゾーンに進入する可能性が高いと判定する請求項5記載のエレベータ装置。 - 前記制御装置は、前記ロープ揺れ設定レベル以上の揺れが前記ロープに発生していると判定したときに、前記かご振動ゾーン内又は前記かご振動ゾーンを通り過ぎた領域内の行き先階である管制有効行き先階の呼びが発生すると、前記かごが前記かご振動ゾーンに進入する可能性が高いと判定する請求項5記載のエレベータ装置。
- 前記停止箇所は停止階である請求項1から請求項7までのいずれか1項に記載のエレベータ装置。
- 前記制御装置は、乗場からの新たな呼びを生成することにより、前記停止箇所に前記かごを停止させる請求項8記載のエレベータ装置。
- 前記制御装置は、かご内からの新たな呼びを生成することにより、前記停止箇所に前記かごを停止させる請求項8記載のエレベータ装置。
- 前記制御装置は、前記かごを前記停止箇所に停止させる必要があると判定した場合に、前記かご振動ゾーンよりも手前の行き先階の呼びが発生していると、前記かご振動ゾーンよりも手前の前記行き先階を前記停止箇所の一部又は全てとして利用する請求項1から請求項10までのいずれか1項に記載のエレベータ装置。
- 建物内に設けられている昇降路を昇降するかご、
前記かごに接続されているロープ、及び
前記かごの運転を制御する制御装置
を備え、
前記制御装置には、前記ロープの揺れに共振して前記かごの振動が過大となるかご移動領域であるかご振動ゾーンが設定されており、
前記制御装置は、ロープ揺れ設定レベル以上の揺れが前記ロープに発生しているかどうかを判定し、発生していると判定した場合には、前記かご振動ゾーンへの前記かごの移動を禁止するエレベータ装置。 - かごと、前記かごに接続されているロープとをそれぞれ有しており、同一バンク内に設けられている複数のエレベータ本体、及び
前記かごの運転を制御する制御装置
を備え、
前記制御装置には、建物の揺れにより前記ロープが揺れ易いかご移動領域である管制有効ゾーンと、前記ロープの揺れに共振して前記かごの振動が過大となるかご移動領域であるかご振動ゾーンとが設定されており、
前記制御装置は、ロープ揺れ設定レベル以上の揺れが少なくともいずれかの前記ロープに発生しているかどうかを判定し、発生していると判定した場合には、前記かごの移動範囲を、前記管制有効ゾーン及び前記かご振動ゾーンのいずれか一方のみを含む第1のゾーンと、前記管制有効ゾーン及び前記かご振動ゾーンの他方のみを含む第2のゾーンとに振り分けて制限するエレベータ装置。 - 前記制御装置は、前記かごの移動範囲の制限時に、ロープ揺れ設定レベル以上の揺れが発生している前記ロープが接続されている前記かごであるロープ揺れ検出かごが前記かご振動ゾーンに進入する可能性が高いかどうかを判定し、高いと判定した場合には、前記ロープ揺れ検出かごを、前記かご振動ゾーンよりも手前の少なくとも1箇所の停止箇所で停止させることにより、前記ロープ揺れ検出かごに接続されている前記ロープの揺れを減衰させる請求項13記載のエレベータ装置。
- かごに接続されているロープに、ロープ揺れ設定レベル以上の揺れが発生しているかどうかを判定するステップ、
ロープ揺れ設定レベル以上の揺れが前記ロープに発生していると判定した場合に、前記ロープの揺れに共振して前記かごの振動が過大となるかご移動領域であるかご振動ゾーンに、前記かごが進入する可能性が高いかどうかを判定するステップ、及び
ロープ揺れ設定レベル以上の揺れが前記ロープに発生しており、かつ前記かご振動ゾーンに前記かごが進入する可能性が高いと判定した場合に、前記かごを、前記かご振動ゾーンよりも手前の少なくとも1箇所の停止箇所で停止させることにより、前記ロープの揺れを減衰させるステップ
を含むエレベータ装置の制御方法。 - かごに接続されているロープに、ロープ揺れ設定レベル以上の揺れが発生しているかどうかを判定するステップ、及び
ロープ揺れ設定レベル以上の揺れが前記ロープに発生していると判定した場合に、前記ロープの揺れに共振して前記かごの振動が過大となるかご移動領域であるかご振動ゾーンへの前記かごの移動を禁止するステップ
を含むエレベータ装置の制御方法。 - かごと、前記かごに接続されているロープとをそれぞれ有しており、同一バンク内に設けられている複数のエレベータ本体、及び
前記かごの運転を制御する制御装置
を備えているエレベータ装置の制御方法であって、
ロープ揺れ設定レベル以上の揺れが少なくともいずれかの前記ロープに発生しているかどうかを判定するステップ、及び
いずれかの前記ロープにロープ揺れ設定レベル以上の揺れが発生していると判定した場合に、前記かごの移動範囲を、建物の揺れにより前記ロープが揺れ易いかご移動領域である管制有効ゾーン、及び前記ロープの揺れに共振して前記かごの振動が過大となるかご移動領域であるかご振動ゾーンのいずれか一方のみを含む第1のゾーンと、前記管制有効ゾーン及び前記かご振動ゾーンの他方のみを含む第2のゾーンとに振り分けて制限するステップ
を含むエレベータ装置の制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/051601 WO2017126062A1 (ja) | 2016-01-20 | 2016-01-20 | エレベータ装置及びその制御方法 |
CN201680077681.9A CN108463423B (zh) | 2016-01-20 | 2016-01-20 | 电梯装置及其控制方法 |
JP2017562219A JP6490248B2 (ja) | 2016-01-20 | 2016-01-20 | エレベータ装置及びその制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/051601 WO2017126062A1 (ja) | 2016-01-20 | 2016-01-20 | エレベータ装置及びその制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126062A1 true WO2017126062A1 (ja) | 2017-07-27 |
Family
ID=59362200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/051601 WO2017126062A1 (ja) | 2016-01-20 | 2016-01-20 | エレベータ装置及びその制御方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6490248B2 (ja) |
CN (1) | CN108463423B (ja) |
WO (1) | WO2017126062A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020157822A1 (ja) * | 2019-01-29 | 2020-08-06 | 三菱電機株式会社 | エレベータ装置 |
CN116963984A (zh) * | 2021-03-12 | 2023-10-27 | 三菱电机楼宇解决方案株式会社 | 电梯装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5145854A (ja) * | 1974-10-18 | 1976-04-19 | Tokyo Shibaura Electric Co | |
WO2007099619A1 (ja) * | 2006-03-01 | 2007-09-07 | Mitsubishi Denki Kabushiki Kaisha | エレベータの管制運転装置 |
JP2013535385A (ja) * | 2010-07-30 | 2013-09-12 | オーチス エレベータ カンパニー | ロープ揺れ検出を備えるエレベータシステム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54113148A (en) * | 1978-02-24 | 1979-09-04 | Mitsubishi Electric Corp | Elevator speed controlling system |
JP4399438B2 (ja) * | 2006-06-16 | 2010-01-13 | 株式会社日立製作所 | エレベーター装置 |
CN101811635B (zh) * | 2009-02-20 | 2012-09-26 | 三菱电机株式会社 | 电梯的绳索摆动检测装置及地震自动恢复运转控制方法 |
CN103534191B (zh) * | 2011-09-16 | 2016-05-25 | 三菱电机株式会社 | 电梯装置 |
JP5489303B2 (ja) * | 2012-03-30 | 2014-05-14 | 東芝エレベータ株式会社 | エレベータの制御装置 |
JP5788543B2 (ja) * | 2014-01-23 | 2015-09-30 | 東芝エレベータ株式会社 | エレベータの制御装置 |
-
2016
- 2016-01-20 CN CN201680077681.9A patent/CN108463423B/zh active Active
- 2016-01-20 WO PCT/JP2016/051601 patent/WO2017126062A1/ja active Application Filing
- 2016-01-20 JP JP2017562219A patent/JP6490248B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5145854A (ja) * | 1974-10-18 | 1976-04-19 | Tokyo Shibaura Electric Co | |
WO2007099619A1 (ja) * | 2006-03-01 | 2007-09-07 | Mitsubishi Denki Kabushiki Kaisha | エレベータの管制運転装置 |
JP2013535385A (ja) * | 2010-07-30 | 2013-09-12 | オーチス エレベータ カンパニー | ロープ揺れ検出を備えるエレベータシステム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020157822A1 (ja) * | 2019-01-29 | 2020-08-06 | 三菱電機株式会社 | エレベータ装置 |
JPWO2020157822A1 (ja) * | 2019-01-29 | 2021-09-09 | 三菱電機株式会社 | エレベータ装置 |
JP7038862B2 (ja) | 2019-01-29 | 2022-03-18 | 三菱電機株式会社 | エレベータ装置 |
CN116963984A (zh) * | 2021-03-12 | 2023-10-27 | 三菱电机楼宇解决方案株式会社 | 电梯装置 |
CN116963984B (zh) * | 2021-03-12 | 2024-06-07 | 三菱电机楼宇解决方案株式会社 | 电梯装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017126062A1 (ja) | 2018-07-12 |
CN108463423B (zh) | 2023-09-15 |
CN108463423A (zh) | 2018-08-28 |
JP6490248B2 (ja) | 2019-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9914619B2 (en) | Elevator rope sway mitigation | |
JP5244965B2 (ja) | 揺れ軽減用のエレベータ運行制御 | |
JP6452914B1 (ja) | エレベーター装置 | |
JP6494864B2 (ja) | エレベータシステム及びその制御方法 | |
JP5523625B2 (ja) | ダブルデッキエレベーター | |
JP2004155519A (ja) | エレベーター装置 | |
JP2008524091A (ja) | 昇降路内に複数のかごを有するエレベータシステム | |
CN109153537B (zh) | 电梯装置 | |
EP1591399A1 (en) | Elevator equipment | |
JP6490248B2 (ja) | エレベータ装置及びその制御方法 | |
JP6494793B2 (ja) | エレベータ、及びエレベータの運転方法 | |
JP3868789B2 (ja) | エレベータ装置 | |
JP2014073906A (ja) | エレベータの群管理制御装置 | |
JP2014114157A (ja) | エレベータの制御装置 | |
JP5055946B2 (ja) | エレベータの地震時管制運転装置 | |
JP2006315796A (ja) | マルチカーエレベータ装置 | |
JP2005206341A (ja) | エレベータ装置 | |
JP6223799B2 (ja) | エレベータの速度制御方法 | |
JP5433748B2 (ja) | 揺れ軽減用のエレベータ運行制御 | |
WO2020179062A1 (ja) | エレベーター装置 | |
JP6172082B2 (ja) | ダブルデッキエレベータ | |
JP2022181766A (ja) | エレベータ制御装置 | |
JP2005231867A (ja) | エレベータの制振装置 | |
JP2018144977A (ja) | 非常用マシンルームレスエレベータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16886304 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017562219 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201680077681.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16886304 Country of ref document: EP Kind code of ref document: A1 |