WO2020179062A1 - エレベーター装置 - Google Patents
エレベーター装置 Download PDFInfo
- Publication number
- WO2020179062A1 WO2020179062A1 PCT/JP2019/009120 JP2019009120W WO2020179062A1 WO 2020179062 A1 WO2020179062 A1 WO 2020179062A1 JP 2019009120 W JP2019009120 W JP 2019009120W WO 2020179062 A1 WO2020179062 A1 WO 2020179062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- accelerometer
- detected
- satisfied
- relative displacement
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B7/00—Other common features of elevators
Definitions
- the present invention relates to an elevator device.
- Patent Document 1 describes an elevator device.
- the elevator device described in Patent Document 1 when an earthquake occurs, it is determined whether or not the building is equipped with a seismic isolation device. Appropriate recovery methods are adopted depending on whether the building is equipped with seismic isolation devices or not.
- a hoistway is formed in a structure supported by a seismic isolation device.
- elevator hoistways are formed on both the foundation structure and the superstructure provided on the foundation structure via the seismic isolation device.
- the elevator device installed in such a building has a problem that it is difficult to judge whether or not automatic restoration is possible after an earthquake based only on the signal from the earthquake detector.
- An object of the present invention is to provide an elevator device capable of appropriately determining whether or not automatic recovery after an earthquake is possible even when hoistways are formed in both the foundation structure and the upper structure. ..
- the elevator device is provided in a building having a foundation structure, a seismic isolation device provided in the foundation structure, and an upper structure provided in the foundation structure via the seismic isolation device. It is an elevator device.
- the elevator device moves along a first hoistway formed in a basic structure and a second hoistway formed in an upper structure, an accelerometer provided in the basic structure or the upper structure, and an acceleration.
- the operation control means performs a control operation for evacuating the passengers in the car according to the acceleration detected by the meter, and a displacement meter that detects the relative displacement in the horizontal direction of the foundation structure and the upper structure.
- the operation control means starts a diagnostic operation for determining the presence or absence of an abnormality based on the acceleration detected by the accelerometer and the relative displacement detected by the displacement meter.
- Embodiment 1 It is a block diagram which shows the function of a control apparatus.
- 3 is a flowchart showing an operation example of the elevator device according to the first embodiment. It is a figure for explaining the function of a control device. It is a flowchart which shows the example of 2nd control. It is a flowchart which shows the example of 3rd control. It is a flowchart which shows the example of 1st control. It is a figure which shows the example of the hardware resource of a control device. It is a figure which shows the other example of the hardware resources of a control apparatus.
- FIG. 1 is a diagram illustrating an example of an elevator device according to the first embodiment.
- FIG. 1 shows an example in which an elevator device is provided in a building 1.
- the building 1 includes, for example, a foundation structure 2, a seismic isolation device 3, and an upper structure 4.
- the foundation structure 2 is provided on the ground 5.
- the seismic isolation device 3 is provided above the foundation structure 2.
- the superstructure 4 is provided on the foundation structure 2 via the seismic isolation device 3.
- the seismic isolation device 3 absorbs the shaking of the basic structure 2 and makes it difficult for the shaking of the basic structure 2 to be transmitted to the upper structure 4. Therefore, when an earthquake occurs, the shaking of the upper structure 4 becomes smaller than the shaking of the foundation structure 2.
- the hoistway 6 is formed in the foundation structure 2.
- a hoistway 7 is formed in the upper structure 4.
- the hoistway 6 and the hoistway 7 are formed in the building 1 so as to extend vertically in a straight line. That is, the hoistway 7 is arranged directly above the hoistway 6.
- FIG. 1 shows an example in which a machine room 8 for an elevator is formed in the superstructure 4. The machine room 8 is arranged above the hoistway 7.
- the elevator device is equipped with a basket 9 and a balance weight 10.
- the car 9 moves up and down in the hoistway 6 and the hoistway 7. For example, the car 9 passes through the height where the seismic isolation device 3 is arranged.
- the counterweight 10 moves up and down the hoistway 6 and the hoistway 7.
- the car 9 and the counterweight 10 are suspended from the hoistway 6 and the hoistway 7 by the main rope 11.
- the main rope 11 is wound around the drive sheave 13 of the hoisting machine 12.
- the car 9 moves according to the rotation of the drive sheave 13.
- the control device 14 controls the rotation and stop of the drive sheave 13. That is, the movement of the car 9 is controlled by the control device 14.
- the accelerometer 15 is an example of an earthquake detector.
- FIG. 1 shows an example in which the accelerometer 15 is provided on the foundation structure 2.
- the accelerometer 15 may be provided on the superstructure 4.
- the accelerometer 15 detects the acceleration of the substructure 2.
- the accelerometer 15 outputs a signal corresponding to the detected acceleration.
- the signal from the accelerometer 15 is input to the control device 14.
- the accelerometer 15 outputs a three-stage signal according to the detected acceleration.
- the accelerometer 15 outputs a first signal when detecting a specific first level acceleration.
- the accelerometer 15 outputs a second signal when it detects a specific second level acceleration.
- the second level acceleration is greater than the first level acceleration.
- the accelerometer 15 outputs a third signal when it detects a specific third level acceleration.
- the third level acceleration is greater than the second level acceleration.
- the displacement gauge 16 detects the relative displacement of the basic structure 2 and the upper structure 4 in the horizontal direction. For example, the displacement meter 16 detects the amount of horizontal displacement of the upper structure 4 with respect to the base structure 2.
- the method in which the displacement meter 16 detects the relative displacement may be any method.
- the displacement meter 16 outputs a signal according to the detected relative displacement.
- the signal from the displacement meter 16 is input to the control device 14. In the present embodiment, an example will be described in which a detection signal is output when the displacement meter 16 detects a relative displacement larger than a specific threshold value.
- the displacement meter 16 may output a plurality of types of signals according to the level of the detected relative displacement.
- FIG. 2 is a block diagram showing the functions of the control device 14.
- the control device 14 includes, for example, a storage unit 20, a condition determination unit 21, and an operation control unit 22. Information necessary for control is stored in the storage unit 20.
- the operation control unit 22 controls, for example, automatic operation, seismic control operation, and diagnostic operation.
- the automatic operation is an operation in which the car 9 is sequentially answered to the registered calls.
- the seismic control operation is an operation for evacuating the passengers in the car 9 immediately after the occurrence of the earthquake.
- the operation control unit 22 performs seismic control operation according to the acceleration detected by the accelerometer 15. For example, the operation control unit 22 performs the seismic control operation when the accelerometer 15 outputs at least one signal of the first signal, the second signal, and the third signal.
- the diagnostic operation is an operation for determining the presence or absence of abnormality. The diagnostic operation is performed by moving the car 9 after the seismic control operation is completed.
- FIG. 3 is a flowchart showing an operation example of the elevator device according to the first embodiment.
- FIG. 4 is a diagram for explaining the function of the control device 14.
- the control device 14 determines whether or not the third signal is input from the accelerometer 15 (S101). For example, when an acceleration greater than the third level acceleration acts on the accelerometer 15, the accelerometer 15 outputs a third signal. When the third signal is input from the accelerometer 15 (Yes in S101), the control device 14 performs the third control (S102).
- the control device 14 if the third signal is not input from the accelerometer 15 (No in S101), it is determined whether the second signal is input from the accelerometer 15 (S103). For example, when an acceleration smaller than the third level acceleration and larger than the second level acceleration acts on the accelerometer 15, the accelerometer 15 outputs a second signal. When the second signal is input from the accelerometer 15 without inputting the third signal (Yes in S103), the control device 14 performs the second control (S104).
- the control device 14 determines whether the first signal is input from the accelerometer 15 (S105). For example, when an acceleration smaller than the acceleration of the second level and larger than the acceleration of the first level acts on the accelerometer 15, the first signal is output from the accelerometer 15. When the first signal is input from the accelerometer 15 without inputting the second signal (Yes in S105), the control device 14 performs the first control (S106).
- the operation control unit 22 performs automatic operation if none of the first signal, the second signal, and the third signal is input from the accelerometer 15 (S107).
- FIG. 5 is a flowchart showing an example of the second control. As described above, the second control is performed when the second signal is output without the third signal being output from the accelerometer 15.
- the operation control unit 22 starts the seismic control operation (S201).
- the operation control unit 22 stops the car 9 at the nearest floor, for example.
- the operation control unit 22 opens the door when the car 9 is stopped. At this time, an announcement may be carried out in the car 9 to prompt the passenger to get off.
- the operation control unit 22 opens the door on the stopped floor and then closes the door after a certain period of time elapses.
- the condition determination unit 21 determines whether or not a specific start condition is satisfied (S202).
- the start condition is a condition for starting the diagnostic operation. For example, the start condition is satisfied when both the following requirement 1 and requirement 2 are satisfied.
- Requirement 1 The second signal is output from the accelerometer 15 without outputting the third signal.
- Requirement 2 The relative displacement detected by the displacement meter 16 is smaller than a specific threshold TH.
- the second control is performed, the above requirement 1 is satisfied. Therefore, when the second control is performed, the start condition is satisfied if the relative displacement detected by the displacement meter 16 is smaller than the threshold value TH. On the other hand, if the relative displacement detected by the displacement meter 16 is not smaller than the threshold value TH, the start condition is not satisfied.
- the operation control unit 22 starts the diagnostic operation (S203). In the diagnostic operation, it is determined whether or not an abnormality is detected based on the acquired data (S204). When an abnormality is detected in the diagnostic operation (Yes in S204), the operation control unit 22 suspends the elevator (S208). When the diagnostic operation ends without detecting an abnormality (Yes in S205), the operation control unit 22 returns the elevator to the automatic operation (S206).
- the operation control unit 22 suspends the elevator (S207) as shown in FIG. For example, even when the requirement 1 is satisfied, if the relative displacement detected by the displacement meter 16 is larger than the threshold value TH, the start condition is not satisfied and the elevator is stopped.
- the process returns to S202. That is, the condition determination unit 21 again determines whether or not the start condition is satisfied. For example, consider a case where the displacement meter 16 detects the relative displacement shown at point B in FIG. 4 immediately after the seismic control operation is completed. The value detected by the displacement gauge 16 decreases with the passage of time. Therefore, even if the start condition is not satisfied immediately after the seismic control operation ends, if the relative displacement detected by the displacement gauge 16 becomes smaller than the threshold value TH, the start condition is satisfied at that time.
- the condition determination unit 21 determines that the start condition is satisfied (Yes in S202)
- the operation control unit 22 starts the diagnostic operation (S203).
- the range A of FIG. 4 shows the range where the start condition is satisfied.
- FIG. 6 is a flowchart showing an example of the third control.
- the third control is performed when the third signal is output from the accelerometer 15.
- the operation control unit 22 starts the seismic control operation (S301).
- S301 the same process as the process performed in S201 is performed.
- the operation control unit 22 suspends the elevator (S303).
- FIG. 7 is a flowchart showing an example of the first control.
- the first control is performed when the accelerometer 15 outputs the first signal without outputting the second signal.
- the operation control unit 22 starts the seismic control operation (S401).
- S401 the same processing as the processing performed in S201 is performed.
- Requirement 1 is not satisfied when the second signal is not input from the accelerometer 15 to the control device 14. Therefore, in the first control, the start condition is not satisfied regardless of the relative displacement detected by the displacement meter 16 (S402). In the first control, when the seismic control operation is completed, it is determined whether or not the relative displacement detected by the displacement meter 16 is smaller than the threshold value TH (S403).
- the operation control unit 22 If the relative displacement detected by the displacement gauge 16 is smaller than the threshold value TH (Yes in S403), it is determined whether or not a certain time has passed since the end of the seismic control operation (S404). If it is determined to be Yes in S404, the operation control unit 22 returns the elevator to automatic operation (S405).
- the operation control unit 22 suspends the elevator (S406).
- the process returns to S403. That is, it is determined again whether or not the relative displacement detected by the displacement meter 16 is smaller than the threshold value TH. For example, even if it is determined No in S403 immediately after the end of the seismic control operation, if the relative displacement detected by the displacement meter 16 becomes smaller than the threshold value TH after that, it is determined Yes in S403. In such a case, in S404, it is determined whether or not a fixed time has elapsed after the determination of Yes in S403.
- the diagnostic operation in the second control, it is determined whether or not the diagnostic operation may be started based on both the acceleration detected by the accelerometer 15 and the relative displacement detected by the displacement meter 16. To be done. Therefore, in an elevator device in which hoistways are formed in both the foundation structure 2 and the superstructure 4, it is possible to appropriately determine whether or not automatic restoration is possible after an earthquake.
- the process may be completed by stopping the elevator in S207.
- the process may be completed.
- the process may be completed when the elevator is stopped at S406.
- the process may be terminated.
- each part indicated by reference numerals 20 to 22 indicates a function possessed by the control device 14.
- FIG. 8 is a diagram showing an example of hardware resources of the control device 14.
- the control device 14 includes, as a hardware resource, a processing circuit 30 including a processor 31 and a memory 32, for example.
- the function of the storage unit 20 is realized by the memory 32.
- the control device 14 realizes the functions of the respective parts shown by reference numerals 21 to 22 by executing the program stored in the memory 32 by the processor 31.
- FIG. 9 is a diagram showing another example of the hardware resource of the control device 14.
- the control device 14 includes, for example, a processing circuit 30 including a processor 31, a memory 32, and dedicated hardware 33.
- FIG. 9 shows an example in which a part of the functions of the control device 14 is realized by the dedicated hardware 33. All the functions of the control device 14 may be realized by the dedicated hardware 33.
- the elevator device according to the present invention can be applied to a building in which the superstructure is provided on the foundation structure via a seismic isolation device.
Landscapes
- Maintenance And Inspection Apparatuses For Elevators (AREA)
- Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
Abstract
エレベーター装置は、かご(9)、加速度計(15)、運転制御部(22)、及び変位計(16)を備える。かご(9)は、昇降路(6)及び昇降路(7)を移動する。加速度計(15)は、基礎構造体(2)又は上部構造体(4)に設けられる。変位計(16)は、基礎構造体(2)及び上部構造体(4)の水平方向における相対変位を検出する。運転制御部(22)は、加速度計(15)が検出した加速度と変位計(16)が検出した相対変位とに基づいて診断運転を開始する。
Description
この発明は、エレベーター装置に関する。
特許文献1にエレベーター装置が記載されている。特許文献1に記載されたエレベーター装置では、地震が発生すると、建物に免震装置が備えられているか否かが判定される。建物に免震装置が備えられている場合と備えられていない場合とに応じて、適切な復旧方式が採用される。
特許文献1に記載されたエレベーター装置では、免震装置に支えられた構造物に昇降路が形成されている。
一方、免震装置を備える建物には、基礎構造体と免震装置を介して基礎構造体に設けられた上部構造体との双方にエレベーターの昇降路が形成されているものがある。このような建物に備えられたエレベーター装置では、地震感知器からの信号のみに基づいて地震後の自動復旧の可否を判断することが難しいという問題があった。
この発明は、上述のような課題を解決するためになされた。この発明の目的は、基礎構造体と上部構造体との双方に昇降路が形成されている場合でも、地震後の自動復旧の可否を適切に判断することができるエレベーター装置を提供することである。
この発明に係るエレベーター装置は、基礎構造体と、基礎構造体に設けられた免震装置と、免震装置を介して基礎構造体に設けられた上部構造体と、を有する建物に備えられたエレベーター装置である。当該エレベーター装置は、基礎構造体に形成された第1昇降路及び上部構造体に形成された第2昇降路を移動するかごと、基礎構造体又は上部構造体に設けられた加速度計と、加速度計が検出した加速度に応じて、かご内の乗客を避難させるための管制運転を行う運転制御手段と、基礎構造体及び上部構造体の水平方向における相対変位を検出する変位計と、を備える。運転制御手段は、管制運転が終了すると、加速度計が検出した加速度と変位計が検出した相対変位とに基づいて、異常の有無を判定するための診断運転を開始する。
この発明によれば、基礎構造体と上部構造体との双方に昇降路が形成されているエレベーター装置において、地震後の自動復旧の可否を適切に判断することができる。
添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。
実施の形態1.
図1は、実施の形態1におけるエレベーター装置の例を示す図である。図1は、エレベーター装置が建物1に備えられた例を示す。建物1は、例えば基礎構造体2、免震装置3、及び上部構造体4を備える。
図1は、実施の形態1におけるエレベーター装置の例を示す図である。図1は、エレベーター装置が建物1に備えられた例を示す。建物1は、例えば基礎構造体2、免震装置3、及び上部構造体4を備える。
基礎構造体2は、地面5に設けられる。免震装置3は、基礎構造体2の上部に設けられる。上部構造体4は、免震装置3を介して基礎構造体2に設けられる。免震装置3は、基礎構造体2の揺れを吸収し、基礎構造体2の揺れを上部構造体4に伝わり難くする。このため、地震が発生した場合、上部構造体4の揺れは基礎構造体2の揺れより小さくなる。
図1に示す例では、基礎構造体2に昇降路6が形成される。上部構造体4に昇降路7が形成される。昇降路6及び昇降路7は、上下に一直線状に延びるように建物1に形成される。即ち、昇降路7は、昇降路6の直上に配置される。図1は、上部構造体4に、エレベーター用の機械室8が形成される例を示す。機械室8は、昇降路7の上方に配置される。
エレベーター装置は、かご9及びつり合いおもり10を備える。かご9は、昇降路6及び昇降路7を上下に移動する。例えば、かご9は、免震装置3が配置された高さを通過する。つり合いおもり10は、昇降路6及び昇降路7を上下に移動する。かご9及びつり合いおもり10は、主ロープ11によって昇降路6及び昇降路7に吊り下げられる。
主ロープ11は、巻上機12の駆動綱車13に巻き掛けられる。かご9は、駆動綱車13の回転に応じて移動する。制御装置14は、駆動綱車13の回転及び停止を制御する。即ち、かご9の移動は、制御装置14によって制御される。
建物1に、加速度計15及び変位計16が設けられる。加速度計15は、地震感知器の一例である。図1は、加速度計15が基礎構造体2に設けられる例を示す。加速度計15は、上部構造体4に設けられても良い。図1に示す例では、加速度計15は、基礎構造体2の加速度を検出する。加速度計15は、検出した加速度に応じた信号を出力する。加速度計15からの信号は、制御装置14に入力される。
本実施の形態では、加速度計15が、検出した加速度に応じて3段階の信号を出力する例について説明する。例えば、加速度計15は、特定の第1レベルの加速度を検出すると、第1信号を出力する。加速度計15は、特定の第2レベルの加速度を検出すると、第2信号を出力する。第2レベルの加速度は、第1レベルの加速度より大きい。加速度計15は、特定の第3レベルの加速度を検出すると、第3信号を出力する。第3レベルの加速度は、第2レベルの加速度より大きい。
変位計16は、基礎構造体2と上部構造体4との水平方向における相対変位を検出する。例えば、変位計16は、上部構造体4が基礎構造体2に対して水平方向に変位した量を検出する。変位計16が相対変位を検出する方式は、如何なる方式であっても良い。変位計16は、検出した相対変位に応じた信号を出力する。変位計16からの信号は、制御装置14に入力される。本実施の形態では、変位計16が特定の閾値より大きい相対変位を検出すると、検出信号を出力する例について説明する。変位計16は、検出した相対変位のレベルに応じて複数種類の信号を出力しても良い。
図2は、制御装置14の機能を示すブロック図である。制御装置14は、例えば記憶部20、条件判定部21、及び運転制御部22を備える。記憶部20に、制御に必要な情報が記憶される。
運転制御部22は、例えば自動運転、地震管制運転、及び診断運転を制御する。自動運転は、登録された呼びにかご9を順次応答させる運転である。地震管制運転は、地震が発生した直後に、かご9内の乗客を避難させるための運転である。運転制御部22は、加速度計15が検出した加速度に応じて、地震管制運転を行う。例えば、運転制御部22は、加速度計15から第1信号、第2信号、又は第3信号の少なくとも何れか1つの信号が出力されると、地震管制運転を行う。診断運転は、異常の有無を判定するための運転である。診断運転は、地震管制運転が終了した後にかご9を移動させることによって行われる。
本実施の形態に示す例では、かご9が昇降路6と昇降路7との双方を移動するため、加速度計15が検出した加速度のみに基づいて診断運転の開始を判断しない。運転制御部22は、加速度計15が検出した加速度と変位計16が検出した相対変位との双方に基づいて、診断運転を開始する。以下に、図3から図7も参照し、本エレベーター装置が有する機能について詳しく説明する。図3は、実施の形態1におけるエレベーター装置の動作例を示すフローチャートである。図4は、制御装置14の機能を説明するための図である。
制御装置14では、加速度計15から第3信号が入力されたか否かが判定される(S101)。例えば、第3レベルの加速度より大きい加速度が加速度計15に作用すると、加速度計15から第3信号が出力される。制御装置14は、加速度計15から第3信号が入力されると(S101のYes)、第3制御を行う(S102)。
制御装置14では、加速度計15から第3信号が入力されていなければ(S101のNo)、加速度計15から第2信号が入力されたか否かが判定される(S103)。例えば、第3レベルの加速度より小さく第2レベルの加速度より大きい加速度が加速度計15に作用すると、加速度計15から第2信号が出力される。制御装置14は、加速度計15から第3信号が入力されることなく第2信号が入力されると(S103のYes)、第2制御を行う(S104)。
制御装置14では、加速度計15から第2信号が入力されていなければ(S103のNo)、加速度計15から第1信号が入力されたか否かが判定される(S105)。例えば、第2レベルの加速度より小さく第1レベルの加速度より大きい加速度が加速度計15に作用すると、加速度計15から第1信号が出力される。制御装置14は、加速度計15から第2信号が入力されることなく第1信号が入力されると(S105のYes)、第1制御を行う(S106)。
運転制御部22は、加速度計15から第1信号、第2信号、及び第3信号の何れの信号も入力されていなければ、自動運転を行う(S107)。
図5は、第2制御の例を示すフローチャートである。上述したように、第2制御は、加速度計15から第3信号が出力されることなく第2信号が出力された場合に行われる。
加速度計15から制御装置14に第2信号が入力されると、運転制御部22は、地震管制運転を開始する(S201)。地震管制運転では、運転制御部22は、例えばかご9を最寄り階に停止させる。運転制御部22は、かご9を停止させると、ドアを開放させる。この時、かご9内で、降車を促すアナウンスを実施しても良い。運転制御部22は、停止した階でドアを開放させた後、一定時間が経過するとドアを閉める。
地震管制運転が終了すると、条件判定部21は、特定の開始条件が成立したか否かを判定する(S202)。開始条件は、診断運転を開始するための条件である。例えば、開始条件は、下記要件1及び要件2の双方を満たす場合に成立する。
要件1:加速度計15から第3信号が出力されることなく第2信号が出力される。
要件2:変位計16が検出した相対変位が特定の閾値THより小さい。
要件1:加速度計15から第3信号が出力されることなく第2信号が出力される。
要件2:変位計16が検出した相対変位が特定の閾値THより小さい。
第2制御が行われている場合は、上記要件1を満たす。このため、第2制御が行われている場合、変位計16が検出した相対変位が閾値THより小さければ開始条件は成立する。一方、変位計16が検出した相対変位が閾値THより小さくなければ、開始条件は成立しない。
開始条件が成立すると条件判定部21が判定すると(S202のYes)、運転制御部22は診断運転を開始する(S203)。診断運転では、取得したデータに基づいて異常が検出されたか否かが判定される(S204)。診断運転において異常が検出されると(S204のYes)、運転制御部22は、エレベーターを休止させる(S208)。異常が検出されることなく診断運転が終了すると(S205のYes)、運転制御部22は、エレベーターを自動運転に復帰させる(S206)。
一方、開始条件が成立しないと条件判定部21が判定すると(S202のNo)、図4にも示されているように、運転制御部22は、エレベーターを休止させる(S207)。例えば、要件1を満たしている場合であっても、変位計16が検出した相対変位が閾値THより大きければ開始条件は成立せず、エレベーターは休止される。
S207でエレベーターが休止されると、S202の処理に戻る。即ち、条件判定部21は、開始条件が成立したか否かを再び判定する。例えば、地震管制運転が終了した直後に変位計16が図4の点Bに示す相対変位を検出した場合を考える。変位計16が検出する値は、時間の経過とともに小さくなる。このため、地震管制運転が終了した直後に開始条件が成立しなくても、その後に変位計16が検出した相対変位が閾値THより小さくなると、その時点で開始条件が成立する。開始条件が成立すると条件判定部21が判定すると(S202のYes)、運転制御部22は診断運転を開始する(S203)。なお、図4の範囲Aは、開始条件が成立する範囲を示す。
図6は、第3制御の例を示すフローチャートである。第3制御は、加速度計15から第3信号が出力された場合に行われる。
加速度計15から制御装置14に第3信号が入力されると、運転制御部22は、地震管制運転を開始する(S301)。S301では、S201で行われる処理と同様の処理が行われる。
加速度計15から制御装置14に第3信号が入力される場合、上記要件1を満たさない。このため、第3制御では、変位計16が検出した相対変位に関わらず、開始条件は成立しない(S302)。第3制御では、地震管制運転が終了すると、運転制御部22は、エレベーターを休止させる(S303)。
図7は、第1制御の例を示すフローチャートである。第1制御は、加速度計15から第2信号が出力されることなく第1信号が出力された場合に行われる。
加速度計15から制御装置14に第1信号が入力されると、運転制御部22は、地震管制運転を開始する(S401)。S401では、S201で行われる処理と同様の処理が行われる。
加速度計15から制御装置14に第2信号が入力されない場合、上記要件1を満たさない。このため、第1制御では、変位計16が検出した相対変位に関わらず、開始条件は成立しない(S402)。第1制御では、地震管制運転が終了すると、変位計16が検出した相対変位が閾値THより小さいか否かが判定される(S403)。
変位計16が検出した相対変位が閾値THより小さければ(S403のYes)、地震管制運転が終了してから一定時間が経過したか否かが判定される(S404)。S404でYesと判定されると、運転制御部22は、エレベーターを自動運転に復帰させる(S405)。
一方、変位計16が検出した相対変位が閾値THより小さくなければ(S403のNo)、運転制御部22は、エレベーターを休止させる(S406)。S406でエレベーターが休止されると、S403の処理に戻る。即ち、変位計16が検出した相対変位が閾値THより小さいか否かが再び判定される。例えば、地震管制運転が終了した直後にS403でNoと判定されても、その後に変位計16が検出した相対変位が閾値THより小さくなると、S403でYesと判定される。かかる場合、S404では、S403でYesと判定されてから一定時間が経過したか否かが判定される。
本実施の形態に示す例では、第2制御において、加速度計15が検出した加速度と変位計16が検出した相対変位との双方に基づいて、診断運転を開始しても良いか否かが判断される。このため、基礎構造体2と上部構造体4との双方に昇降路が形成されているエレベーター装置において、地震後の自動復旧の可否を適切に判断することができる。
本実施の形態では、第2制御において、S207でエレベーターが休止された後にS202の判定が再び行われる例について説明した。これは一例である。第2制御では、S207でエレベーターが休止されることによって処理が終了しても良い。他の例として、S207でエレベーターが休止された後、一定時間が経過してもS202でYesと判定されない場合に処理が終了しても良い。
同様に、本実施の形態では、第1制御において、S406でエレベーターが休止された後にS403の判定が再び行われる例について説明した。これは一例である。第1制御では、S406でエレベーターが休止されることによって処理が終了しても良い。他の例として、S406でエレベーターが休止された後、一定時間が経過してもS403でYesと判定されない場合に処理が終了しても良い。
本実施の形態において、符号20~22に示す各部は、制御装置14が有する機能を示す。図8は、制御装置14のハードウェア資源の例を示す図である。制御装置14は、ハードウェア資源として、例えばプロセッサ31とメモリ32とを含む処理回路30を備える。記憶部20が有する機能はメモリ32によって実現される。制御装置14は、メモリ32に記憶されたプログラムをプロセッサ31によって実行することにより、符号21~22に示す各部の機能を実現する。
図9は、制御装置14のハードウェア資源の他の例を示す図である。図9に示す例では、制御装置14は、例えばプロセッサ31、メモリ32、及び専用ハードウェア33を含む処理回路30を備える。図9は、制御装置14が有する機能の一部を専用ハードウェア33によって実現する例を示す。制御装置14が有する機能の全部を専用ハードウェア33によって実現しても良い。
この発明に係るエレベーター装置は、上部構造体が免震装置を介して基礎構造体に設けられた建物に適用できる。
1 建物、 2 基礎構造体、 3 免震装置、 4 上部構造体、 5 地面、 6 昇降路、 7 昇降路、 8 機械室、 9 かご、 10 つり合いおもり、 11 主ロープ、 12 巻上機、 13 駆動綱車、 14 制御装置、 15 加速度計、 16 変位計、 20 記憶部、 21 条件判定部、 22 運転制御部、 30 処理回路、 31 プロセッサ、 32 メモリ、 33 専用ハードウェア
Claims (7)
- 基礎構造体と、
前記基礎構造体に設けられた免震装置と、
前記免震装置を介して前記基礎構造体に設けられた上部構造体と、
を有する建物に備えられたエレベーター装置であって、
前記基礎構造体に形成された第1昇降路及び前記上部構造体に形成された第2昇降路を移動するかごと、
前記基礎構造体又は前記上部構造体に設けられた加速度計と、
前記加速度計が検出した加速度に応じて、前記かご内の乗客を避難させるための管制運転を行う運転制御手段と、
前記基礎構造体及び前記上部構造体の水平方向における相対変位を検出する変位計と、
を備え、
前記運転制御手段は、前記管制運転が終了すると、前記加速度計が検出した加速度と前記変位計が検出した相対変位とに基づいて、異常の有無を判定するための診断運転を開始するエレベーター装置。 - 特定の開始条件が成立したか否かを判定する判定手段を更に備え、
前記運転制御手段は、前記開始条件が成立すると前記判定手段が判定すると、前記診断運転を開始する請求項1に記載のエレベーター装置。 - 前記加速度計は、特定の第1レベルの加速度を検出すると第1信号を出力し、前記第1レベルより大きい特定の第2レベルの加速度を検出すると第2信号を出力し、前記第2レベルより大きい特定の第3レベルの加速度を検出すると第3信号を出力し、
前記運転制御手段は、前記第1信号、前記第2信号、又は前記第3信号の少なくとも何れか1つの信号が前記加速度計から出力されると前記管制運転を行い、
前記開始条件は、前記加速度計から前記第3信号が出力されることなく前記第2信号が出力され、且つ前記変位計が検出した相対変位が特定の閾値より小さい場合に成立する請求項2に記載のエレベーター装置。 - 前記開始条件は、前記加速度計から前記第3信号が出力されることなく前記第2信号が出力された場合であっても、前記変位計が検出した相対変位が前記閾値より大きい場合は成立しない請求項3に記載のエレベーター装置。
- 前記加速度計から前記第3信号が出力されることなく前記第2信号が出力された場合に、前記変位計が検出した相対変位が前記閾値より大きいことによって前記開始条件が成立しない場合であっても、その後に前記変位計が検出した相対変位が前記閾値より小さくなると前記開始条件が成立する請求項4に記載のエレベーター装置。
- 前記開始条件は、前記加速度計から前記第3信号が出力されると、前記変位計が検出した相対変位に関わらず成立しない請求項3から請求項5の何れか一項に記載のエレベーター装置。
- 前記運転制御手段は、前記加速度計から前記第2信号が出力されることなく前記第1信号が出力された場合に、前記変位計が検出した相対変位が前記閾値より小さければ、一定時間が経過した後に自動運転に復帰させる請求項3から請求項6の何れか一項に記載のエレベーター装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019538699A JP6648864B1 (ja) | 2019-03-07 | 2019-03-07 | エレベーター装置 |
CN201980073642.5A CN112996740B (zh) | 2019-03-07 | 2019-03-07 | 电梯装置 |
PCT/JP2019/009120 WO2020179062A1 (ja) | 2019-03-07 | 2019-03-07 | エレベーター装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/009120 WO2020179062A1 (ja) | 2019-03-07 | 2019-03-07 | エレベーター装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020179062A1 true WO2020179062A1 (ja) | 2020-09-10 |
Family
ID=69568194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009120 WO2020179062A1 (ja) | 2019-03-07 | 2019-03-07 | エレベーター装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6648864B1 (ja) |
CN (1) | CN112996740B (ja) |
WO (1) | WO2020179062A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4096925A (en) * | 1977-04-08 | 1978-06-27 | Westinghouse Electric Corp. | Elevator system with detector for indicating relative positions of car and counterweight |
JP2004262613A (ja) * | 2003-03-03 | 2004-09-24 | Mitsubishi Electric Corp | エレベータの運転制御装置 |
JP2004345752A (ja) * | 2003-05-20 | 2004-12-09 | Mitsubishi Electric Corp | 免震建築物用エレベータの制御装置 |
JP2007217171A (ja) * | 2006-02-20 | 2007-08-30 | Toshiba Elevator Co Ltd | エレベータシステム |
JP2009220994A (ja) * | 2008-03-18 | 2009-10-01 | Mitsubishi Electric Corp | エレベータの地震復旧装置及び地震復旧運転の制御方法 |
WO2018134891A1 (ja) * | 2017-01-17 | 2018-07-26 | 三菱電機ビルテクノサービス株式会社 | エレベーターの自動復旧システム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5035012B2 (ja) * | 2008-02-22 | 2012-09-26 | 三菱電機ビルテクノサービス株式会社 | エレベータの制御装置及び制御方法 |
CN101683945B (zh) * | 2008-09-27 | 2014-03-12 | 三菱电机大楼技术服务株式会社 | 电梯的诊断运转装置及诊断运转方法 |
-
2019
- 2019-03-07 CN CN201980073642.5A patent/CN112996740B/zh active Active
- 2019-03-07 JP JP2019538699A patent/JP6648864B1/ja active Active
- 2019-03-07 WO PCT/JP2019/009120 patent/WO2020179062A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4096925A (en) * | 1977-04-08 | 1978-06-27 | Westinghouse Electric Corp. | Elevator system with detector for indicating relative positions of car and counterweight |
JP2004262613A (ja) * | 2003-03-03 | 2004-09-24 | Mitsubishi Electric Corp | エレベータの運転制御装置 |
JP2004345752A (ja) * | 2003-05-20 | 2004-12-09 | Mitsubishi Electric Corp | 免震建築物用エレベータの制御装置 |
JP2007217171A (ja) * | 2006-02-20 | 2007-08-30 | Toshiba Elevator Co Ltd | エレベータシステム |
JP2009220994A (ja) * | 2008-03-18 | 2009-10-01 | Mitsubishi Electric Corp | エレベータの地震復旧装置及び地震復旧運転の制御方法 |
WO2018134891A1 (ja) * | 2017-01-17 | 2018-07-26 | 三菱電機ビルテクノサービス株式会社 | エレベーターの自動復旧システム |
Also Published As
Publication number | Publication date |
---|---|
CN112996740B (zh) | 2023-04-07 |
JPWO2020179062A1 (ja) | 2021-03-11 |
CN112996740A (zh) | 2021-06-18 |
JP6648864B1 (ja) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5246636B2 (ja) | エレベータの地震管制システム | |
JP4973014B2 (ja) | エレベータの地震管制運転システム | |
JP4994633B2 (ja) | エレベータの自動点検装置 | |
JP4850477B2 (ja) | エレベータ装置の自動点検方法及びエレベータ制御装置 | |
CN103359568B (zh) | 电梯的控制装置 | |
JP5743027B2 (ja) | エレベータの制御装置 | |
JP6480840B2 (ja) | エレベータ及びエレベータの管制運転方法 | |
JP2008044701A (ja) | エレベータの地震管制運転装置 | |
JP4992387B2 (ja) | エレベータの地震管制運転システム | |
JP2009091100A (ja) | エレベータの地震管制運転制御システム | |
JP5456836B2 (ja) | エレベータの制御装置 | |
JP4867813B2 (ja) | エレベータの地震時管制運転システム | |
WO2020179062A1 (ja) | エレベーター装置 | |
JP2014073906A (ja) | エレベータの群管理制御装置 | |
JP5535441B2 (ja) | エレベータの管制運転装置 | |
JP6776955B2 (ja) | 異常音の検出方法 | |
JPWO2017098545A1 (ja) | エレベータ、及びエレベータの運転方法 | |
JP5979971B2 (ja) | エレベータの制御装置 | |
JP7080326B2 (ja) | エレベータ装置 | |
JP6490248B2 (ja) | エレベータ装置及びその制御方法 | |
JP6741366B2 (ja) | 健全性診断装置 | |
WO2011016132A1 (ja) | エレベータの地震時管制運転システム | |
JP2016023044A (ja) | エレベーターの地震時仮復旧運転装置 | |
WO2024042642A1 (ja) | エレベーターのガイドレールの変形検出システムおよび変形検出方法 | |
JP6747613B1 (ja) | エレベーター装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019538699 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19917666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19917666 Country of ref document: EP Kind code of ref document: A1 |