WO2017122826A1 - 車両用ワイパ装置及び車両用ワイパの制御方法 - Google Patents

車両用ワイパ装置及び車両用ワイパの制御方法 Download PDF

Info

Publication number
WO2017122826A1
WO2017122826A1 PCT/JP2017/001257 JP2017001257W WO2017122826A1 WO 2017122826 A1 WO2017122826 A1 WO 2017122826A1 JP 2017001257 W JP2017001257 W JP 2017001257W WO 2017122826 A1 WO2017122826 A1 WO 2017122826A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiping
motor
speed
vehicle
wiper
Prior art date
Application number
PCT/JP2017/001257
Other languages
English (en)
French (fr)
Inventor
岡田 真一
崇文 根木
伊藤 靖英
Original Assignee
アスモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016005531A external-priority patent/JP6724372B2/ja
Priority claimed from JP2016008054A external-priority patent/JP6724376B2/ja
Application filed by アスモ株式会社 filed Critical アスモ株式会社
Publication of WO2017122826A1 publication Critical patent/WO2017122826A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/16Means for transmitting drive
    • B60S1/18Means for transmitting drive mechanically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/16Means for transmitting drive
    • B60S1/18Means for transmitting drive mechanically
    • B60S1/24Means for transmitting drive mechanically by rotary cranks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/28Wipers or the like, e.g. scrapers characterised by a plurality of wipers

Definitions

  • the present disclosure relates to a vehicle wiper device capable of changing a wiping range and a vehicle wiper control method.
  • the wiper device link mechanism is a so-called four-bar link, so that the entire length of the wiper arm in operation is apparently extended, thereby reducing the wiping range of the windshield glass on the passenger seat side.
  • a wiper device to change is disclosed.
  • the wiping speed in one reciprocation becomes faster than that on the driver side, which may give the passengers a feeling of strangeness in the operation of the wiper device.
  • the present disclosure provides a vehicle wiper device capable of suppressing a sense of incongruity to an occupant with respect to a wiping speed while suppressing a required motor output and mechanical strength when having a configuration capable of changing a wiping range. .
  • a first aspect of the present disclosure includes a first motor that performs a reciprocating wiping operation of a wiping surface by a wiper blade, a second motor that changes a wiping range of the wiping surface by the wiper blade, and a wiping speed of the wiper blade Alternatively, an instruction unit that instructs a wiping range, and a control unit that controls the first motor and the second motor so that the wiper blade performs a reciprocating wiping operation based on a preset condition. It is a wiper device for vehicles.
  • the reciprocating wiping operation of the wiping surface by the wiper blade is performed by the first motor, the wiping range of the wiping surface by the wiper blade is changed by the second motor, and the wiping speed or wiping range of the wiper blade is changed. Is instructed by the instruction unit.
  • the condition is a wiping speed instructed by an instruction unit, and the control unit greatly changes the wiping range as the wiping speed is slower.
  • a wiper device for a vehicle that controls the first motor and the second motor.
  • control unit is instructed at a wiping speed instructed by the instruction unit and in a wiping range predetermined according to the instructed wiping speed, or in a wiping range instructed by the instruction unit. It is conceivable to control the first motor and the second motor so as to perform the reciprocating wiping operation of the wiper blade at a predetermined wiping speed according to the wiping range.
  • the wiping range can be changed by controlling the first motor and the second motor so that the wiping speed according to the wiping range or the wiping range according to the wiping speed is obtained. While suppressing the output and mechanical strength of the motor, the feeling of discomfort to the occupant with respect to the wiping speed can be suppressed.
  • the said control part makes the said 1st motor and the said 2nd motor so that the said wiping range may be changed largely, so that the said wiping speed is slow. Control.
  • the wiping speed when the wiping speed is changed, the lower the wiping speed, the larger the wiping range can be changed, whereby the required motor output and mechanical strength can be suppressed, and the wiping speed can be reduced. There is no sense of incongruity to the crew.
  • the condition is a wiping range instructed by an instruction unit, and the control unit is configured so that the wiping speed is slower as the wiping range is larger.
  • a wiper device for a vehicle that controls the first motor and the second motor.
  • the detector further includes a detection unit that detects precipitation, and the instruction unit instructs a wiping speed or a wiping range or automatic wiping of the wiper blade.
  • the control unit determines one of a predetermined wiping speed and a wiping range according to the detection result of the detection unit, and determines the determined wiping speed and the The vehicle wiper device controls the first motor and the second motor so that the reciprocating wiping operation is performed at the other of a wiping range and a wiping speed determined in advance according to one of the wiping ranges.
  • one of the wiping speed and the wiping range is determined based on the precipitation detected by the detection unit, and depending on one of the determined wiping speed and the wiping range.
  • the change amount of the wiping range or the wiping range can be automatically controlled.
  • a fifth aspect of the present disclosure is the vehicle wiper device according to the first aspect, wherein the condition is a variable corresponding to a change in a driver's viewing angle.
  • the wiping range of the wiper blade it is possible to change the wiping range of the wiper blade according to the change in the viewing angle of the driver.
  • the change rate is reduced and the change of the wiping range is suppressed, so that the possibility that the vehicle occupant feels uncomfortable with the operation of the wiper device is reduced.
  • the variable includes a vehicle speed
  • the said control part is a wiper apparatus for vehicles which reduces the change rate of the said wiping range as the detected vehicle speed increases.
  • the change in the wiping range is suppressed according to the viewing angle of the driver that becomes narrower as the vehicle speed increases, the possibility that the vehicle occupant feels uncomfortable with the operation of the wiper device is reduced. .
  • the variable includes brightness in front of the vehicle, and the control unit changes the wiping range as the brightness in front of the vehicle decreases.
  • a wiper device for a vehicle that reduces the rate.
  • the vehicle occupant since the change of the wiping range is suppressed according to the viewing angle of the driver that becomes narrower according to the brightness in front of the vehicle, the vehicle occupant may feel uncomfortable with the operation of the wiper device. Less.
  • the variable includes precipitation
  • the control unit decreases the change rate of the wiping range as the precipitation increases. Wiper device.
  • the vehicle occupant since the change of the wiping range is suppressed according to the viewing angle of the driver that becomes narrower as the precipitation increases, the vehicle occupant is less likely to feel discomfort in the operation of the wiper device. Become.
  • the first motor has a first output shaft, and reciprocates a wiper arm that operates the wiper blade by the rotation of the first output shaft.
  • the wiper blade performs the reciprocating wiping operation of the wiper blade between a predetermined upper reversing position and a predetermined lower reversing position of the wiping surface
  • the second motor is connected to the wiper arm via a link mechanism.
  • a second output shaft that is coupled to the second output shaft, and a fulcrum that reciprocally rotates the wiper arm by the rotation of the second output shaft is separated from the first position and the first position toward the upper side of the passenger seat. It is a wiper device for vehicles which changes a wiping range by moving between positions.
  • the wiping range by the wiper blade can be changed to the upper side of the passenger seat by controlling the first motor and the second motor.
  • the wiper blade performs a reciprocating wiping operation of the wiping surface, the wiping range of the wiping surface by the wiper blade is changed, and the wiping speed or wiping range of the wiper blade is set.
  • a control method for a vehicle wiper device comprising: instructing and causing the wiper blade to perform a reciprocating wiping operation based on a preset condition.
  • the condition is an instructed wiping speed
  • causing the wiper blade to perform a reciprocating wiping operation means that the wiping range decreases as the wiping speed decreases.
  • the condition is an instructed wiping range
  • causing the wiper blade to perform a reciprocating wiping operation means that the wiping speed increases as the wiping range increases.
  • a thirteenth aspect of the present disclosure further includes detecting precipitation in the tenth to twelfth aspects, and instructing a wiping speed or a wiping range of the wiper blade instructs automatic wiping. And when the automatic wiping is instructed, one of a predetermined wiping speed and a wiping range is determined according to the detected precipitation amount, and determined. It is a control method of the wiper device for vehicles including determining the other of the predetermined wiping range and wiping speed according to one of the wiping speed and the wiping range.
  • a fourteenth aspect of the present disclosure is the control method for a vehicle wiper device according to the tenth aspect, wherein the condition is a variable corresponding to a change in a driver's viewing angle.
  • the fifteenth aspect of the present disclosure further includes detecting the speed of the vehicle, the variable includes the speed of the vehicle, and causing the wiper blade to perform a reciprocating wiping operation.
  • a sixteenth aspect of the present disclosure includes, in the fourteenth and fifteenth aspects, including detecting brightness in front of the vehicle, the variable includes brightness in front of the vehicle, and performing a reciprocating wiping operation on the wiper blade. What is performed is a method for controlling the wiper device for a vehicle, including reducing the change rate of the wiping range as the brightness in front of the vehicle decreases.
  • a seventeenth aspect of the present disclosure further includes detecting precipitation in the fourteenth to sixteenth aspects, wherein the variable includes precipitation, and causing the wiper blade to perform a reciprocating wiping operation.
  • a predetermined upper inversion position and a predetermined lower inversion position of the wiping surface are provided.
  • the reciprocating wiping operation of the wiper blade between the first position and a second fulcrum for reciprocally rotating the wiper arm connected to the wiper blade away from the first position toward the upper side of the passenger seat. It is a method for changing the wiping range by moving between positions, and for controlling the vehicle wiper device.
  • the tenth to eighteenth aspects correspond to the first to ninth aspects, respectively. Therefore, the tenth to eighteenth aspects can perform operations corresponding to the first to ninth aspects, respectively.
  • FIG. 3 is a cross-sectional view of the second holder member along the line AA in FIG. 2. It is a top view in operation
  • the wiper device concerning a 1st embodiment it is a flow chart which shows a part of processing performed by a control circuit in case a wiping speed is determined according to rainfall, and a wiping range is changed according to a wiping speed.
  • FIG. 1 is a schematic diagram showing an example of a wiper system 100 including a wiper device (hereinafter referred to as “wiper device”) 2 capable of changing a wiping range.
  • a wiper system 100 shown in FIG. 1 is for wiping a windshield glass 1 as a wiping surface provided in a vehicle such as a passenger car, for example, and includes a pair of wiper arms (a driver side wiper arm 17 and Passenger side wiper arm 35), first motor 11, second motor 12, control circuit 52, drive circuit 56, and washer device 70.
  • FIG. 1 shows the case of a right-hand drive vehicle
  • the right side of the vehicle (left side of FIG. 1) is the driver's seat side
  • the left side of the vehicle (right side of FIG. 1) is the passenger seat side.
  • the left side of the vehicle (right side in FIG. 1) is the driver's seat side
  • the right side of the vehicle (left side in FIG. 1) is the passenger seat side.
  • the configuration of the wiper device 2 is opposite to the left and right.
  • the first motor 11 reciprocates each of the driver seat side wiper arm 17 and the passenger seat side wiper arm 35 on the windshield glass 1 by rotating the output shaft forward and backward within a range of a predetermined rotation angle. It is a driving source.
  • the driver's seat side wiper arm 17 operates so that the driver's seat side wiper blade 18 wipes from the lower inversion position P2D to the upper inversion position P1D.
  • the passenger-side wiper blade 36 operates so as to wipe the upper inversion position P1P from the lower inversion position P2P.
  • the driver's seat side wiper arm 17 When the first motor 11 rotates in the reverse direction, the driver's seat side wiper arm 17 operates so that the driver's seat side wiper blade 18 wipes the upper inverted position P1D to the lower inverted position P2D, and the passenger seat side wiper arm 35
  • the passenger-side wiper blade 36 operates so as to wipe from the upper inversion position P1P to the lower inversion position P2P.
  • the outer edge portion of the windshield glass 1 is a light shielding portion 1A coated with a ceramic black pigment in order to block visible light and ultraviolet rays.
  • the black pigment is applied to the outer edge of the windshield glass 1 on the vehicle interior side, and then melted by being heated at a predetermined temperature, and is fixed on the vehicle interior side surface of the windshield glass 1.
  • the windshield glass 1 is fixed to the vehicle body by an adhesive applied to the outer edge portion.
  • the light shielding portion 1A that does not transmit ultraviolet rays is provided at the outer edge portion, so that the adhesive by ultraviolet rays is provided. Suppresses deterioration.
  • first predetermined rotation angle a predetermined rotation angle
  • the second motor 12 is positive at a rotation angle from 0 ° to a predetermined rotation angle (hereinafter referred to as “second predetermined rotation angle”) of an output shaft of the second motor 12 (second output shaft 12A described later).
  • second predetermined rotation angle a predetermined rotation angle
  • This is a drive source that apparently extends the wiper arm 35 on the passenger seat side by rotating and reversely rotating.
  • the passenger seat side wiper arm 35 is apparently extended upward on the passenger seat side, and the passenger seat side wiper blade 36 wipes the wiping range Z2.
  • the magnitude of the second predetermined rotation angle it is possible to change the range in which the passenger seat side wiper arm 35 extends. For example, if the second predetermined rotation angle is increased, the range in which the passenger seat side wiper arm 35 extends is increased, and if the second predetermined rotation angle is decreased, the range in which the passenger seat side wiper arm 35 is extended is decreased.
  • the first motor 11 and the second motor 12 are motors that can control the rotation direction of each output shaft to forward rotation and reverse rotation, and can also control the rotation speed of each output shaft. Either a DC motor or a brushless DC motor.
  • a control circuit 52 for controlling each rotation is connected to the first motor 11 and the second motor 12.
  • the control circuit 52 includes, for example, the first motor 11 and the first motor detected by an absolute angle sensor (not shown) provided near the output shaft end of each of the first motor 11 and the second motor 12.
  • the duty ratio of the voltage applied to each of the first motor 11 and the second motor 12 is calculated based on the rotation direction, rotation position, rotation speed, and rotation angle of each output shaft of the two motors 12.
  • the pulse width modulation that modulates the voltage applied to each of the first motor 11 and the second motor 12 into a pulsed waveform by turning on and off the voltage (approximately 12 V) of the in-vehicle battery as a power source by a switching element.
  • PWM switching element.
  • the duty ratio is a ratio of the time of one pulse generated when the switching element is turned on with respect to one period of a waveform of a voltage generated by PWM.
  • One period of the waveform of the voltage generated by PWM is the sum of the time of the one pulse described above and the time during which the switching element is turned off and no pulse is generated.
  • the drive circuit 56 turns on and off switching elements in the drive circuit 56 in accordance with the duty ratio calculated by the control circuit 52 to generate voltages to be applied to the first motor 11 and the second motor 12, and the generated voltages are supplied to the first circuit. The voltage is applied to each winding terminal of the first motor 11 and the second motor 12.
  • each of the first motor 11 and the second motor 12 has a speed reduction mechanism composed of a worm gear
  • the rotation direction, the rotation speed, and the rotation angle of each output shaft are the first
  • the rotation speed and rotation angle of the motor 11 main body and the second motor 12 main body are not the same.
  • each motor and each speed reduction mechanism are inseparably configured. Therefore, hereinafter, the rotation speed and the rotation angle of each output shaft of the first motor 11 and the second motor 12 are expressed as follows. The rotation direction, rotation speed, and rotation angle of each of the first motor 11 and the second motor 12 are considered.
  • the absolute angle sensor is provided, for example, in each speed reduction mechanism of the first motor 11 and the second motor 12, and converts the magnetic field (magnetic force) of an excitation coil or a magnet that rotates in conjunction with each output shaft into a current. It is a sensor to detect, for example, a magnetic sensor such as an MR sensor.
  • the control circuit 52 determines the position of the driver's seat side wiper blade 18 on the windshield glass 1 from the rotation angle of the output shaft of the first motor 11 detected by an absolute angle sensor provided near the output shaft end of the first motor.
  • a computable microcomputer 58 is provided. The microcomputer 58 controls the drive circuit 56 so that the rotational speed of the output shaft of the first motor 11 changes according to the calculated position.
  • the microcomputer 58 detects the rotation angle of the output shaft of the first motor 11 detected by the absolute angle sensor provided near the output shaft end of the first motor on the windshield glass 1 of the passenger side wiper blade 36. The position is calculated, and the drive circuit 56 is controlled so that the rotational speed of the output shaft of the second motor 12 changes according to the calculated position. Further, the microcomputer 58 calculates the degree of extension of the passenger seat side wiper arm 35 from the rotation angle of the output shaft of the second motor 12 detected by the absolute angle sensor provided near the output shaft end of the second motor 12.
  • the control circuit 52 is provided with a memory 60 that is a storage device that stores data and programs used to control the drive circuit 56.
  • the memory 60 stores the first motor 11 and the second motor 12 according to the rotation angle of the output shaft of the first motor 11 indicating the positions of the driver-side wiper blade 18 and the passenger-side wiper blade 36 on the windshield glass 1. Data and a program for calculating the rotation speed and the like (including the rotation angle) of each output shaft are stored.
  • the microcomputer 58 is connected to a vehicle ECU (Electronic Control Unit) 90 that controls the vehicle engine and the like. Further, a wiper switch 50, a washer switch 62, and a rain sensor 76 are connected to the vehicle ECU 90.
  • vehicle ECU Electronic Control Unit
  • the wiper switch 50 is a switch that turns on or off the power supplied from the vehicle battery to the first motor 11.
  • the wiper switch 50 is a low-speed operation mode selection position for operating the driver-side wiper blade 18 and the passenger-side wiper blade 36 at a low speed, a medium-speed operation mode selection position for operating at a medium speed, and a high-speed operation mode selection for operating at a high speed.
  • the position can be switched to an intermittent operation mode selection position that is operated intermittently at a fixed period, an AUTO (auto) operation mode selection position that is operated when the rain sensor 76 detects a raindrop, and a storage (stop) mode selection position.
  • a signal corresponding to the selected position of each mode is output to the microcomputer 58 via the vehicle ECU 90.
  • the speed at which the driver's seat wiper blade 18 and the passenger's seat wiper blade 36 are operated will be described as an example that can be selected from predetermined speeds. However, the speed can be changed steplessly. Good.
  • the microcomputer 58 controls the memory 60 to control corresponding to the output signal from the wiper switch 50. This is done using stored data and programs.
  • the wiper switch 50 may be separately provided with a change mode switch for changing the wiping range of the passenger side wiper blade 36 to the wiping range Z2.
  • a change mode switch for changing the wiping range of the passenger side wiper blade 36 to the wiping range Z2.
  • a predetermined signal is input to the microcomputer 58 via the vehicle ECU 90.
  • the second motor 12 is configured to wipe the wiping range Z2.
  • the washer switch 62 is a switch for turning on or off the power supplied from the battery of the vehicle to the washer motor 64, the first motor 11 and the second motor 12.
  • the washer switch 62 is provided integrally with an operating means such as a lever provided with the wiper switch 50 described above, and is turned on by an operation such as pulling the lever or the like by a passenger.
  • the microcomputer 58 operates the washer motor 64 and the first motor 11.
  • the wiper blade 36 on the passenger side wipes from the lower reverse position P2P to the upper reverse position P1P
  • the microcomputer 58 wipes the wiper blade 36 from the upper reverse position P1P so as to wipe the wiping range Z2.
  • the second motor 12 is controlled so as to wipe the wiping range Z1. With this control, the passenger seat side of the windshield glass 1 can be wiped widely.
  • the washer pump 66 While the washer switch 62 is on, the washer pump 66 is driven by the rotation of the washer motor 64 provided in the washer device 70.
  • the washer pump 66 pumps the washer liquid in the washer liquid tank 68 to the driver side hose 72A or the passenger side hose 72B.
  • the driver seat side hose 72A is connected to a driver seat side nozzle 74A provided below the driver seat side of the windshield glass 1.
  • the passenger seat side hose 72B is connected to a passenger seat side nozzle 74B provided below the windshield glass 1 on the passenger seat side.
  • the pumped washer liquid is sprayed onto the windshield glass 1 from the driver seat side nozzle 74A and the passenger seat side nozzle 74B.
  • the washer liquid adhering to the windshield glass 1 is wiped together with dirt on the windshield glass 1 by the operating driver side wiper blade 18 and the passenger seat side wiper blade 36.
  • the microcomputer 58 controls the washer motor 64 so that it operates only while the washer switch 62 is on. Further, the microcomputer 58 controls the first motor 11 so that the operation continues until the driver-side wiper blade 18 and the passenger-side wiper blade 36 reach the lower inversion positions P2D and P2P even when the washer switch 62 is turned off. Control. Further, when the washer switch 62 is turned off when the driver-side wiper blade 18 and the passenger-side wiper blade 36 are wiped toward the upper inversion positions P1D and P1P, the microcomputer 58 The second motor 12 is controlled to wipe the wiping range Z2 until the wiper blade 18 and the passenger side wiper blade 36 reach the upper inversion positions P1D and P1P by the rotation of the first motor 11.
  • the rain sensor 76 is, for example, a kind of optical sensor provided on the vehicle interior side of the windshield glass 1 and detects water droplets on the surface of the windshield glass 1.
  • the rain sensor 76 includes an LED that is an infrared light emitting element, a photodiode that is a light receiving element, a lens that forms an infrared optical path, and a control circuit.
  • the infrared rays emitted from the LED are totally reflected by the windshield glass 1, but if there are water droplets on the surface of the windshield glass 1, some of the infrared rays are transmitted through the water droplets and emitted to the outside.
  • the amount of reflection decreases.
  • the amount of light entering the photodiode that is the light receiving element is reduced. Based on the decrease in the amount of light, water droplets on the surface of the windshield glass 1 are detected.
  • the wiper device 2 has a plate-like central frame 3 and one end fixed to the central frame 3, and both sides of the central frame 3 in the vehicle width direction.
  • a pair of pipe frames 4 and 5 are provided.
  • a first holder member 6 including a driver seat side pivot shaft 15 of the driver seat side wiper arm 17 and the like is formed at the other end portion of the pipe frame 4.
  • the second holder member 7 provided with the second passenger seat side pivot shaft 22 of the passenger seat side wiper arm 35 and the like is formed at the other end portion of the pipe frame 5.
  • the wiper device 2 is supported on the vehicle by a support portion 3A provided on the central frame 3, and each of the fixing portion 6A of the first holder member 6 and the fixing portion 7A of the second holder member 7 is attached to the vehicle by a bolt or the like. By being fastened, it is fixed to the vehicle.
  • the wiper device 2 includes a first motor 11 and a second motor 12 for driving the wiper device 2 on the back surface (the surface facing the passenger compartment side) of the central frame 3.
  • the first output shaft 11A of the first motor 11 passes through the central frame 3 and protrudes from the surface of the central frame 3 (surface on the outside of the vehicle), and a first drive crank arm is provided at the tip of the first output shaft 11A.
  • One end of 13 is fixed.
  • the second output shaft 12A of the second motor 12 passes through the central frame 3 and protrudes from the surface of the central frame 3, and one end of the second drive crank arm 14 is fixed to the tip of the second output shaft 12A.
  • a driver seat side pivot shaft 15 is rotatably supported by the first holder member 6, and one end of the driver seat side swing lever 16 is provided at the base end portion (the back side in FIG. 2) of the driver seat side pivot shaft 15.
  • the arm head of the driver's seat side wiper arm 17 is fixed to the tip of the driver's seat side pivot shaft 15 (front side in FIG. 2).
  • a driver seat side wiper blade 18 for wiping the driver seat side of the windshield glass 1 is connected to the tip of the driver seat side wiper arm 17.
  • the other end of the first drive crank arm 13 and the other end of the driver seat side swing lever 16 are connected via a first connecting rod 19.
  • the driver seat side swing lever 16 rotates, and the rotational force is transmitted to the driver seat side swing lever 16 via the first connecting rod 19, and the driver seat side swing lever 16. Sway.
  • the driver seat side wiper arm 17 is also swung, and the driver seat side wiper blade 18 wipes the wiping range H1 between the lower inversion position P2D and the upper inversion position P1D.
  • FIG. 3 is a cross-sectional view of the second holder member 7 taken along line AA in FIG.
  • the first holder seat side pivot shaft 21 is supported on the second holder member 7 so as to be rotatable about the first axis L1
  • the second passenger seat side pivot shaft 22 is secondly supported. It is supported so as to be rotatable about the axis L2.
  • the first axis L1 and the second axis L2 are arranged on the same straight line L (concentric).
  • FIG. 3 shows a state where the waterproof cover K shown in FIG. 2 and FIGS. 4 to 8 is removed.
  • the cylindrical part 7B is formed in the second holder member 7, and the first passenger seat side pivot shaft 21 is rotatably supported via a bearing 23 on the inner peripheral side of the cylindrical part 7B.
  • the first passenger seat side pivot shaft 21 is formed in a cylindrical shape, and the second passenger seat side pivot shaft 22 is rotatably supported via a bearing 24 on the inner peripheral side of the first passenger seat side pivot shaft 21. .
  • first passenger seat side swing lever 25 is fixed to the base end portion of the first passenger seat side pivot shaft 21, and the first drive lever 26 has a first drive lever 26 attached to the distal end portion of the first passenger seat side pivot shaft 21. One end is fixed.
  • the other end of the first passenger seat side swing lever 25 and the other end of the driver seat side swing lever 16 are connected by a second connecting rod 27. Accordingly, when the first motor 11 is driven and the driver's seat side swing lever 16 is pivoted, the second connecting rod 27 transmits the driving force to the first passenger's seat side swing lever 25 and the first passenger seat side swing lever. 25, the first drive lever 26 is swung (rotated) around the first axis L1.
  • the second passenger seat side pivot shaft 22 is formed longer than the first passenger seat side pivot shaft 21, and the base end portion and the distal end portion of the second passenger seat side pivot shaft 22 are the first.
  • the other end of the second passenger seat side swing lever 28 is fixed to the base end of the second passenger seat side pivot shaft 21, and protrudes from the passenger seat side pivot shaft 21.
  • One end of the second drive lever 29 is fixed to the front end portion.
  • the other end of the second drive crank arm 14 and the other end of the second passenger seat side swing lever 28 are connected by a third connecting rod 31. Therefore, when the second motor 12 is driven, the second drive crank arm 14 rotates, and the third connecting rod 31 transmits the driving force of the second drive crank arm 14 to the second passenger seat side swing lever 28.
  • the second drive lever 29 is swung (rotated) together with the second passenger seat-side rocking lever 28.
  • the first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are provided coaxially, but the first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are not mutually connected.
  • the first passenger seat side pivot shaft 21 and the second passenger seat side pivot shaft 22 are not interlocked and rotate independently of each other.
  • the wiper device 2 includes a first driven lever having a base end portion coupled to a third axis L3 on the other end side of the first drive lever 26 so as to be rotatable. 32.
  • the wiper device 2 has a base end portion coupled to be rotatable about a fourth axis L4 on the distal end side of the first driven lever 32 and a fifth axis L5 on the other end side of the second drive lever 29.
  • An arm head 33 which is a second driven lever having a distal end connected to be rotatable about the center is provided.
  • the arm head 33 constitutes a passenger-side wiper arm 35 together with a retainer 34 whose base end is fixed to the distal end of the arm head 33.
  • a front passenger side wiper blade 36 for wiping the front passenger side of the windshield glass 1 is connected to the front end of the front passenger side wiper arm 35.
  • the first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33 have a length from the first axis L1 (second axis L2) to the third axis L3, and from the fourth axis L4 to the fifth. It connects so that the length to the axis line L5 may become the same.
  • the first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33 have a length from the third axis L3 to the fourth axis L4, and the first axis L1 (second axis L2) to the fifth. It connects so that the length to the axis line L5 may become the same.
  • first drive lever 26 and the arm head 33 are kept parallel, and the second drive lever 29 and the first driven lever 32 are kept parallel.
  • the first drive lever 26 and the second drive lever 29, the 1st driven lever 32, and the arm head 33 comprise the link mechanism of a substantially parallelogram shape.
  • the fifth axis L5 is a fulcrum when the passenger-side wiper arm 35 operates.
  • the passenger-side wiper arm 35 is rotated about the fifth axis L5 by the driving force of the first motor 11 to windshield glass. Reciprocates on 1.
  • the second motor 12 passes the fifth axis L5 through a substantially parallelogram link mechanism including the first drive lever 26, the second drive lever 29, the first driven lever 32, and the arm head 33.
  • the windshield glass 1 is moved more than in the case of FIGS.
  • the passenger side wiper arm 35 is apparently extended. Accordingly, when the second motor 12 is operated together with the first motor 11, the passenger side wiper blade 36 wipes the wiping range Z2.
  • the fifth axis L5 moves from the position shown in FIGS. 2, 7 and 8 (hereinafter referred to as “reference position”). Absent. Accordingly, the passenger side wiper arm 35 operates between the lower inversion position P2P and the upper inversion position P1P while drawing a substantially arc-shaped locus around the fifth axis L5 whose position does not change, and the passenger seat side wiper blade 36 The substantially fan-shaped wiping range Z1 is wiped.
  • the wiping range Z2 is wiped when the passenger seat wiper blade 36 moves from the lower inversion position P2P to the upper inversion position P1P.
  • the first motor 11 and the second motor 12 are each controlled.
  • the first motor 11 and the second motor 12 are respectively controlled so as to wipe the wiping range Z1 when the passenger seat wiper blade 36 reversed at the upper reversing position P1P moves toward the lower reversing position P2P.
  • the wiping range Z2 is wiped in the forward movement and the wiping range Z1 is wiped in the backward movement.
  • the wiping range Z1 is wiped in the forward movement and the wiping range Z2 is wiped in the backward movement.
  • a wide range of windshield glass 1 can be wiped off.
  • the wiping range Z2 may be wiped at the time of forward movement and backward movement.
  • the driver-seat-side wiper arm 17 and the driver-seat-side wiper blade 18 only operate around the driver-seat-side pivot shaft 15 according to the rotation of the first motor 11.
  • the operation of the passenger side wiper blade 36 will be described in detail.
  • FIG. 2 shows a state in which the passenger-side wiper blade 36 is positioned at the lower inversion position P2P, and the passenger-side wiper arm 35 is in the stop position.
  • the first output shaft 11A of the first motor 11 rotates in the rotation direction CC1 shown in FIG.
  • the first drive lever 26 starts rotating
  • the passenger seat side wiper arm 35 starts rotating around the fifth axis L5.
  • the second output shaft 12A of the second motor 12 also starts to rotate in the rotational direction CC2 shown in FIG.
  • the rotation in the rotation direction CC1 of the first output shaft 11A and the rotation in the rotation direction CC2 of the second output shaft 12A are defined as positive rotations in the respective output shafts.
  • FIG. 4 shows a state where the passenger-side wiper blade 36 wipes the windshield glass 1 halfway (approximately 1/4 of the forward travel).
  • the driving force generated by the rotation of the second motor 12 in the rotation direction CC ⁇ b> 2 is transmitted to the second drive lever 29.
  • the second drive lever 29 to which the driving force of the second motor 12 is transmitted operates in the operation direction CW3, and the fifth axis L5, which is a fulcrum of the passenger seat side wiper arm 35, is located above the passenger seat side of the windshield glass 1. Move towards.
  • FIG. 5 shows that when the first output shaft 11A is rotated to an intermediate rotation angle between 0 ° and the first predetermined angle, the first drive lever 26 is further rotated, and the front passenger side wiper blade 36 is in the lower inverted position. This shows a case where a substantially intermediate point of the stroke (forward stroke) between P2P and the upper reverse position P1P is reached.
  • the second output shaft 12A of the second motor 12 is also rotated to the second predetermined rotation angle in the rotation direction CC2 shown in FIG.
  • the fifth axis L5 which is the fulcrum of the passenger-side wiper arm 35, is connected to the second drive crank arm 14, the third connecting rod 31, the second The passenger seat side swing lever 28 and the second drive lever 29 are lifted to the uppermost position (change position).
  • the passenger seat side wiper blade 36 is moved to a position close to the upper corner of the windshield glass 1 on the passenger seat side, as shown in FIG.
  • the intermediate rotation angle described above is about half of the first predetermined rotation angle, but is set individually according to the shape of the windshield glass 1 and the like.
  • a change position is a position where the 5th axis L5 is arrange
  • the change position is determined when the first output shaft 11A is between 0 ° and the first predetermined angle when the passenger-side wiper blade 36 wipes a range wider than the wiping range Z1 (for example, the wiping range Z2). This is the position at which the fifth axis L5 is arranged when rotated to the intermediate rotation angle.
  • FIG. 6 shows that when the first drive lever 26 is further rotated, the passenger-side wiper blade 36 reaches approximately 3/4 of the stroke (forward stroke) between the lower inversion position P2P and the upper inversion position P1P. Shows the case.
  • the rotation direction of the first output shaft 11A of the first motor 11 is the same as that of FIGS. 4 and 5, but the second output shaft 12A of the second motor 12 is opposite to the case of FIGS. It rotates in the rotation direction CW2 (reverse rotation).
  • the second drive lever 29 operates in the operation direction CC3
  • the fifth axis L5 which is a fulcrum of the passenger seat side wiper arm 35, is moved downward from the change position.
  • the front passenger side wiper blade 36 moves on the windshield glass 1 while wiping the wiping range Z2 while drawing the locus indicated by the broken line above the wiping range Z2 shown in FIG.
  • FIG. 7 shows a case where the first output shaft 11A of the first motor 11 rotates forward to the first predetermined rotation angle and the second output shaft 12A of the second motor 12 rotates reversely at the second predetermined rotation angle. Yes. Since the rotation angle of the first output shaft 11A of the first motor 11 in the forward rotation is maximized, the driver seat side wiper arm 17 and the driver seat side wiper blade 18 reach the upper inversion position P1D. Further, the second output shaft 12A of the second motor 12 is reversed at the second predetermined rotation angle from the state shown in FIG. 5 (the state where the second output shaft 12A has reached the second predetermined rotation angle by forward rotation).
  • the fifth axis L5 which is the fulcrum of the passenger-side wiper arm 35, returns to the reference position, which is the position before the second output shaft 12A of the second motor 12 shown in FIG. ing.
  • the passenger seat side wiper arm 35 and the passenger seat side wiper blade 36 reach the same upper inversion position P1P as the wiping range Z1 when the second motor 12 is not driven.
  • FIG. 8 shows a state in which the driver's seat side wiper arm 17 and the driver's seat side wiper blade 18 and the passenger's seat side wiper arm 35 and the passenger's seat side wiper blade 36 move from the upper inverted positions P1D and P1P to the lower inverted positions P2D and P2P.
  • the state (return stroke) is shown.
  • the first output shaft 11A of the first motor 11 rotates in the reverse direction, and rotates in the rotation direction CW1 in the reverse direction to the case of FIGS.
  • the second output shaft 12A of the second motor 12 does not rotate, and therefore the fifth axis L5, which is the fulcrum of the passenger-side wiper arm 35, does not move from the reference position, so the first output shaft 11A of the first motor 11 does not move.
  • the passenger seat side wiper arm 35 draws a substantially arc-shaped locus.
  • the passenger side wiper blade 36 connected to the front end of the passenger side wiper arm 35 wipes the wiping range Z1.
  • the wiping range of the passenger-side wiper blade 36 can be changed, and the wiping-incapable area on the passenger seat side is reduced by changing the wiping range. be able to.
  • the wiping range is made variable in accordance with the speed at which the driver's seat wiper blade 18 and the passenger's seat wiper blade 36 are operated (hereinafter referred to as wiping speed).
  • the control circuit 52 performs control so as to change the wiping range as the wiping speed instructed by the wiper switch 50 is slower.
  • the control circuit 52 changes the wiping range Z2 to the maximum wiping range Z2, and the passenger seat side wiper blade 36 moves along the dotted line in FIG.
  • the control circuit 52 controls the first motor 11 and the second motor 12 so as to move at a low speed.
  • the wiper range 36 is changed to a wiping range Z3 that is smaller than the maximum so that the passenger side wiper blade 36 moves at medium speed along the one-dot chain line in FIG.
  • the control circuit 52 controls the first motor 11 and the second motor 12.
  • the control circuit 52 causes the passenger seat side wiper blade 36 to move at a high speed along the two-dot chain line in FIG.
  • the first motor 11 and the second motor 12 are controlled.
  • the wiper switch 50 is operated in the intermittent operation mode position, the wiping range is changed according to the wiping speed in the intermittent operation mode, but in the following, the wiper switch 50 is in the intermittent operation mode position. The description when operated is omitted.
  • the wiper switch 50 when the wiper switch 50 is operated to the medium speed operation mode selection position, the speed of the first motor 11 is driven at a preset medium speed (V_mid), the variable X is calculated by calculating the variable X.
  • the medium speed is described as a predetermined wiping speed.
  • the wiping speed can be changed steplessly, and can be controlled in the same manner as any wiping speed (V_Lo ⁇ V_mid ⁇ V_Hi). .
  • the second motor 12 when the wiping range is not changed, the second motor 12 is not driven (the rotation angle ⁇ 2 of the second motor 12 is always 0 °).
  • control circuit 52 controls the driving of the first motor 11 and the second motor 12, so that the wiping range can be changed according to the wiping speed.
  • the range of change can be set for each rotation angle from the above formula. , Can save memory capacity.
  • FIG. 11 is a flowchart illustrating a part of processing performed by the control circuit 52 when the wiping range is changed in accordance with the wiping speed in the wiper device according to the embodiment of the present disclosure. Note that the processing in FIG. 11 starts when the wiper switch 50 is turned on and the operation of the wiper device 2 is instructed. In addition, the process of FIG. 11 is a process that mainly captures the part related to the control of the second motor for the sake of simplicity, and a part of the control of the first motor 11 is omitted.
  • step 200 the control circuit 52 acquires the wiping speed of the wiper switch 50 and proceeds to step 202.
  • the control circuit 52 detects whether the wiper switch 50 is operated at the selected position of the low speed operation mode selection position, the medium speed operation mode selection position, or the high speed operation mode selection position.
  • step 202 the control circuit 52 determines the wiping speed of the first motor 11 to the selected wiping speed, and proceeds to step 204.
  • step 204 the control circuit 52 determines a speed variable X (variable X that changes depending on the wiping speed) for calculating the rotation angle of the second motor 12, and starts driving the first motor 11.
  • the motor is controlled and the routine proceeds to step 206.
  • step 206 the control circuit 52 calculates the rotation angle of the second motor 12 based on the rotation angle of the first motor 11 and the variable X, and proceeds to step 208. Thereby, it becomes possible to move the passenger side wiper blade 36 within the wiping range corresponding to the wiping speed.
  • step 208 the control circuit 52 controls the second motor 12 so that the rotation angle of the second motor 12 calculated in step 206 is reached, and the process proceeds to step 210.
  • step 210 the control circuit 52 acquires the wiping speed of the wiper switch 50 and proceeds to step 212 in the same manner as in step 200 in order to confirm whether or not the wiping speed is changed.
  • step 212 the control circuit 52 determines whether or not there is a change in the wiping speed. If the determination is affirmative, the process proceeds to step 214, and if the determination is negative, the process proceeds to step 218.
  • step 214 the control circuit 52 changes the speed of the first motor 11 to the changed wiping speed, and proceeds to step 216.
  • step 216 the control circuit 52 re-determines the speed variable X for calculating the rotation angle of the second motor 12, returns to step 206, and repeats the above processing.
  • step 218 the control circuit 52 determines whether or not the wiper switch 50 is turned off. If the determination is negative, the process returns to step 206 and the above-described processing is repeated. If the determination is affirmative, the routine proceeds to step 220.
  • step 220 the control circuit 52 controls the first motor 11 and the second motor 12 so that the driver's seat wiper blade 18 and the passenger's seat wiper blade 36 move to the stop position, and the series of processing ends.
  • the stop position is near the lower reverse position and the wiper blade is moved from the lower reverse position to the upper reverse position, the wiper blade moves to the stop position after passing through the upper reverse position.
  • control circuit 52 controls the wiping range according to the wiping speed instructed by the wiper switch 50.
  • the wiping speed instructed by the wiper switch 50 is slower, by controlling to change the wiping range, it is unnecessary to increase the output of the motor, and the mechanical strength can be suppressed. It is not necessary to increase the size of the motor, and cost increases can be suppressed.
  • the wiping speed is determined according to the rainfall
  • the wiping range is changed according to the wiping speed. May be.
  • the wiping speed is determined according to the rainfall
  • the wiping range is changed according to the wiping speed.
  • the process performed by the control circuit 52 when the wiping speed is determined according to the rainfall and the wiping range is changed according to the wiping speed will be described.
  • FIG. 12 is a flowchart illustrating a part of processing performed by the control circuit 52 when the wiping speed is determined according to the rainfall and the wiping range is changed according to the wiping speed in the wiper device according to the embodiment of the present disclosure. is there.
  • the same processes as those in FIG. 11 are denoted by the same reference numerals, and detailed description thereof is omitted. Further, the process of FIG. 12 is started when the AUTO operation mode is selected by the wiper switch 50, for example.
  • step 200A is performed instead of step 200.
  • the control circuit 52 acquires the detection result of the rain sensor 76, thereby detecting precipitation (rain in this embodiment), determines the wiping speed according to the rainfall, and proceeds to step 202.
  • the correspondence between light rain, medium rain, heavy rain and the detection value of the rain sensor 76 is determined in advance, and the wiping speed according to the rain is determined in advance.
  • the wiping speed is determined by detecting the rainfall corresponding to the detection value of the rain sensor 76.
  • step 210A is performed instead of step 210.
  • the control circuit 52 detects the rainfall again to determine whether or not there is a change in the rainfall, and proceeds to step 212A.
  • step 212A the control circuit 52 determines whether there is a change in rainfall. If the determination is affirmative, the process proceeds to step 214A, and if the determination is negative, the process proceeds to step 218 described above.
  • step 214A the control circuit 52 changes the speed of the first motor 11 to the wiping speed corresponding to the rainfall, and proceeds to step 216 described above.
  • FIG. 13 is a flowchart illustrating a part of processing performed by the control circuit 52 when the wiping speed is changed according to the wiping range in the wiper device according to the embodiment of the present disclosure. Note that the same processes as those in FIG. In the process of FIG. 13, the wiping range can be changed to two types of wiping range Z1 that is not changed and changed wiping range Z2 by operating the wiper switch 50, and the wiping speed is two types of HI and HOW. Will be described as an example.
  • step 200B is performed instead of step 200.
  • the control circuit 52 acquires the wiper switch 50 signal to detect the wiping range instruction, and proceeds to step 201.
  • step 201 the control circuit 52 determines whether or not to change the wiping range based on the signal from the wiper switch 50. If the determination is affirmative, the process proceeds to step 202A, and if the determination is negative, the process proceeds to step 202B.
  • step 202A the control circuit 52 sets the wiping speed of the first motor 11 to a predetermined LOW speed, and proceeds to step 204.
  • step 202B the control circuit 52 sets the wiping speed of the first motor 11 to a predetermined HI speed, and proceeds to step 204. Thereby, it becomes possible to set a wiping speed according to the wiping range.
  • step 210B is performed instead of step 210.
  • the control circuit 52 acquires the signal of the wiper switch 50 again in order to determine whether or not the wiping range has been changed, and proceeds to step 212B.
  • step 212B the control circuit 52 determines whether or not there is a change in the wiping range. If the determination is affirmative, the process proceeds to step 214B. If the determination is negative, the process proceeds to step 218 described above.
  • step 214B the control circuit 52 changes the speed of the first motor 11 according to the changed wiping range, and proceeds to step 216 described above.
  • the wiping speed can be automatically changed by instructing by the wiper switch 50 whether or not to change the wiping range.
  • it is not necessary to increase the motor output and reduce the mechanical strength by lowering the wiping speed than when not changing it, so there is no need to increase the size of the motor.
  • an increase in cost can be suppressed.
  • the wiping speed is the same when changing the wiping range and when not changing, the trajectory of the arm on the passenger seat side becomes longer, so the wiping speed in one round trip becomes very fast, and the passenger feels uncomfortable.
  • the wiping speed is changed according to the wiping range, it is possible to prevent the passenger from feeling uncomfortable.
  • processing of FIG. 11, processing of FIG. 12, and processing of FIG. 13 have been individually described.
  • the processing is not limited to this, and includes at least two processing such as the wiper switch 50 and the like. May be switchable.
  • the wiper blades 36 at the time of forward movement and backward movement are described as different trajectories when changing the wiping range, but the present invention is not limited to this.
  • the length of the passenger-side wiper blade 36 is set so that there is no area that is not wiped when the wiping range is changed, and wiping the same wiping trajectory during forward movement and backward movement You may control so that it may become the range Z2.
  • first output shaft 11A of the first motor 11 and the second output shaft 12A of the second motor 12 are controlled to be able to rotate forward and backward (reciprocating).
  • present invention is not limited to this. Absent.
  • one of the first output shaft 11A and the second output shaft 12A may rotate in one direction.
  • the rotation of the first output shaft 11A of the first motor 11 causes the driver-side wiper blade 18 and the passenger-side wiper blade 36 to move between the upper inversion positions P1D and P1P and the lower inversion positions P2D and P2P.
  • the first motor 11 includes a “driver's seat side first motor” and a “passenger's seat side first motor”, and the driver seat side wiper blade 18 is moved down to the upper inversion position P1D by the rotation of the driver seat side first motor.
  • the structure may be such that the passenger seat side wiper blade 36 is moved between the upper inversion position P1P and the lower inversion position P2P by moving between the inversion position P2D and rotation of the first passenger seat side motor.
  • the passenger seat side wiper arm 35 (passenger seat side wiper blade 36) is extended between the first output shaft 11A and the vicinity of the intermediate angle at the predetermined rotation angle, and from the intermediate angle to the predetermined rotation angle. While the control for reducing the passenger seat side wiper arm 35 (passenger seat side wiper blade 36) was performed in between, the present invention is not limited to this. For example, when the passenger seat side wiper blade 35 wipes from the lower inversion position P2P to the upper inversion position P1P (during forward wiping), the passenger seat side wiper arm 36 may be controlled to gradually extend.
  • the wiping speed is determined according to the rainfall detected by the rain sensor 76, and the first motor 11 and the second motor 12 are controlled in the wiping range according to the determined wiping speed. It is not limited to this.
  • the wiping range may be determined according to the rainfall detected by the rain sensor 76, and the first motor 11 and the second motor 12 may be controlled at the wiping speed according to the determined wiping range. Further, the first motor 11 and the second motor 12 may be controlled according to the amount of snow instead of the amount of rain.
  • the embodiment using the rotation angle of the first output shaft 11A of the first motor 11 and the rotation angle of the second output shaft 12A of the second motor 12 has been described.
  • the rotational position of the first output shaft 11A and the rotational position of the second output shaft 12A may be used.
  • the present invention is not limited to this, and a mechanism similar to that on the passenger side is provided on the driver side.
  • the wiping range may be changeable.
  • the second embodiment of the present disclosure provides a vehicle wiper device and a control method for the vehicle wiper device that execute a change in the wiping range according to a change in the driver's viewing angle.
  • the vehicle ECU 90 of the present embodiment includes a direction indicator switch 54, a vehicle speed sensor 92 that detects the speed of the vehicle, An in-vehicle camera 94 for photographing the front, a GPS (Global Positioning System) device 96, and a steering angle sensor 98 are connected.
  • the direction indicator switch 54 is a switch for instructing the operation of a vehicle direction indicator (not shown).
  • a signal for turning on the right or left direction indicator is operated to the vehicle ECU 90 by a driver's operation. Output.
  • the vehicle ECU 90 causes the right or left direction indicator lamp to blink based on the signal output from the direction indicator switch 54.
  • a signal output from the direction indicator switch 54 is also input to the microcomputer 58 via the vehicle ECU 90.
  • the vehicle speed sensor 92 is a sensor that detects the rotational speed of the vehicle wheel and outputs a signal indicating the rotational speed.
  • the vehicle ECU 90 calculates the vehicle speed from the signal output from the vehicle speed sensor 92 and the circumference of the wheel.
  • the in-vehicle camera 94 is a device that captures the front of the vehicle and acquires moving image data.
  • the vehicle ECU 90 can determine whether the vehicle is approaching a curve or the like by performing image processing on moving image data acquired by the in-vehicle camera 94. Further, the vehicle ECU 90 can calculate the brightness in front of the vehicle from the luminance of the moving image data acquired by the in-vehicle camera 94.
  • the GPS device is a device that calculates the current position of the vehicle based on a positioning signal received from a GPS satellite in the sky.
  • the GPS device 96 dedicated to the wiper system 100 is used.
  • the other GPS device may be used.
  • the steering angle sensor 98 is a sensor that is provided on a rotation shaft (not shown) of the steering as an example and detects the rotation angle of the steering.
  • FIG. 16 is a circuit diagram schematically showing a circuit of the wiper system 100 according to the present embodiment. As shown in FIG. 16, the wiper system 100 includes a control circuit 52 and a drive circuit 56.
  • control circuit 52 includes the microcomputer 58 and the memory 60.
  • the microcomputer 58 includes a wiper switch 50, a direction indicator switch 54, a washer switch 62, a vehicle ECU 90 (not shown), A rain sensor 76, a vehicle speed sensor 92, an in-vehicle camera 94, a GPS device 96, and a steering angle sensor 98 are connected to each other.
  • the drive circuit 56 includes a first pre-driver 104 and a first motor drive circuit 108 for driving the first motor 11, and a second pre-driver 106 and a second motor drive circuit 110 for driving the second motor 12. ing.
  • the drive circuit 56 includes a relay drive circuit 78, an FET drive circuit 80, and a washer motor drive circuit 57 for driving the washer motor 64.
  • the microcomputer 58 of the control circuit 52 rotates the first motor 11 via the second pre-driver 106 by turning on and off the switching elements constituting the first motor driving circuit 108 via the first pre-driver 104.
  • the rotation of the second motor 12 is controlled by turning on and off the switching elements of the two-motor drive circuit 110.
  • the microcomputer 58 controls the rotation of the washer motor 64 by controlling the relay drive circuit 78 and the FET drive circuit 80.
  • the first motor drive circuit 108 and the second motor drive circuit 110 each include four switching elements.
  • the switching element is, for example, an N-type FET (field effect transistor).
  • the first motor drive circuit 108 includes FETs 108A to 108D.
  • the FET 108 ⁇ / b> A has a drain connected to the power supply (+ B), a gate connected to the first pre-driver 104, and a source connected to one end of the first motor 11.
  • the FET 108 ⁇ / b> B has a drain connected to the power supply (+ B), a gate connected to the first pre-driver 104, and a source connected to the other end of the first motor 11.
  • the FET 108C has a drain connected to one end of the first motor 11, a gate connected to the first pre-driver 104, and a source grounded.
  • the FET 108D has a drain connected to the other end of the first motor 11, a gate connected to the first pre-driver 104, and a source grounded.
  • the first pre-driver 104 controls driving of the first motor 11 by switching a control signal supplied to the gates of the FETs 108A to 108D in accordance with a control signal from the microcomputer 58. That is, when the first pre-driver 104 rotates the first output shaft 11A of the first motor 11 in a predetermined direction (forward rotation), the first pre-driver 104 turns on the set of the FET 108A and the FET 108D and the first output of the first motor 11 When rotating the shaft 11A in the direction opposite to the predetermined direction (reverse rotation), the set of the FET 108B and the FET 108C is turned on. Further, the first pre-driver 104 performs PWM for intermittently turning on and off the FET 108A and the FET 108D based on a control signal from the microcomputer 58.
  • the first pre-driver 104 controls the rotational speed of the first motor 11 in the forward rotation by changing the duty ratio related to the on / off of the FET 108A and the FET 108D by PWM. If the duty ratio is increased, the effective value of the voltage applied to the terminal of the first motor 11 during forward rotation is increased, and the rotation speed of the first motor 11 is increased.
  • the first pre-driver 104 controls the rotational speed in the reverse rotation of the first motor 11 by changing the duty ratio related to on / off of the FET 108B and the FET 108C by PWM. If the duty ratio increases, the effective value of the voltage applied to the terminal of the first motor 11 during reverse rotation increases, and the rotation speed of the first motor 11 increases.
  • the second motor drive circuit 110 includes FETs 110A to 110D.
  • the FET 110 ⁇ / b> A has a drain connected to the power supply (+ B), a gate connected to the second pre-driver 106, and a source connected to one end of the second motor 12.
  • the FET 110 ⁇ / b> B has a drain connected to the power supply (+ B), a gate connected to the second pre-driver 106, and a source connected to the other end of the second motor 12.
  • the FET 110C has a drain connected to one end of the second motor 12, a gate connected to the second pre-driver 106, and a source grounded.
  • the FET 110D has a drain connected to the other end of the second motor 12, a gate connected to the second pre-driver 106, and a source grounded.
  • the second pre-driver 106 controls the driving of the second motor 12 by switching the control signal supplied to the gates of the FETs 110A to 110D in accordance with the control signal from the microcomputer 58. That is, when the second pre-driver 106 rotates the second output shaft 12A of the second motor 12 in a predetermined direction (forward rotation), the second pre-driver 106 turns on the set of the FET 110A and the FET 110D and outputs the second output of the second motor 12. When rotating the shaft 12A in the direction opposite to the predetermined direction (reverse rotation), the set of the FET 110B and the FET 110C is turned on.
  • the second pre-driver 104 controls the rotational speed of the second motor 12 by performing PWM like the first pre-driver 104 described above based on the control signal from the microcomputer 58.
  • a two-pole sensor magnet 112A is fixed to the output shaft end portion 112 of the first output shaft 11A in the speed reduction mechanism of the first motor 11, and a first absolute angle sensor 114 is provided so as to face the sensor magnet 112A. ing.
  • a two-pole sensor magnet 116A is fixed to the output shaft end portion 116 of the second output shaft 12A in the speed reduction mechanism of the second motor 12, and a second absolute angle sensor 118 is provided so as to face the sensor magnet 116A. ing.
  • the first absolute angle sensor 114 detects the magnetic field of the sensor magnet 112A
  • the second absolute angle sensor 118 detects the magnetic field of the sensor magnet 116A, and outputs a signal corresponding to the detected magnetic field strength.
  • the microcomputer 58 determines the rotational angle and rotational position of each of the first output shaft 11A of the first motor 11 and the second motor 12 based on the signals output from the first absolute angle sensor 114 and the second absolute angle sensor 118, respectively. The rotation direction and the rotation speed are calculated.
  • the position between the lower inversion position P2D and the upper inversion position P1D of the driver seat side wiper blade 18 can be calculated. Further, from the rotation angle of the second output shaft 12A of the second motor 12, the degree of apparent extension (degree of change) of the passenger side wiper arm 35 can be calculated.
  • the microcomputer 58 determines the rotation angle of the second output shaft 12A based on the position between the lower inversion position P2D and the upper inversion position P1D of the driver seat wiper blade 18 calculated from the rotation angle of the first output shaft 11A. By controlling the above, the operations of the first motor 11 and the second motor 12 are synchronized.
  • the position (or the rotation angle of the first output shaft 11A) between the lower inversion position P2D and the upper inversion position P1D of the driver seat side wiper blade 18 and the rotation angle of the second output shaft 12A is stored in advance, and the rotation angle of the second output shaft 12A is controlled according to the rotation angle of the first output shaft 11A according to the map.
  • FIG. 17 shows an example of a second output shaft rotation angle map that defines the rotation angle of the second output shaft 12A according to the rotation angle of the first output shaft 11A in the present embodiment.
  • the horizontal axis in FIG. 17 is the first output shaft rotation angle ⁇ A that is the rotation angle of the first output shaft 11A
  • the vertical axis is the second output shaft rotation angle ⁇ B that is the rotation angle of the second output shaft 12A.
  • the origin O in FIG. 17 shows a state in which the passenger seat side wiper blade 36 is at the lower inversion position P2P.
  • ⁇ 1 indicates a state in which the passenger seat side wiper blade 36 is at the upper inversion position P 1 P as a result of the first output shaft 11 A rotating by the first predetermined rotation angle ⁇ 1 .
  • the microcomputer 58 detects the rotation angle of the first output shaft 11A detected by the first absolute angle sensor 114 and the second output shaft. Check the rotation angle map. By such verification, the second output shaft rotation angle ⁇ B corresponding to the first output shaft rotation angle ⁇ A detected by the first absolute angle sensor 114 is calculated from the angle indicated by the curve 190 in FIG. so that the second output shaft rotation angle theta B controls the rotation angle of the second output shaft 12A of the second motor 12.
  • the microcomputer 58 determines that the first absolute angle sensor 114 starts to change the rotation angle of the first output shaft 11A of the first motor 11 from 0 ° in the positive rotation direction. It is determined that the blade 36 has started to move from the lower inversion position P2P, and the second output shaft 12A starts to rotate forward. As described above, the microcomputer 58 determines the rotation angle of the second output shaft 12A corresponding to the rotation angle of the first output shaft 11A using the second output shaft rotation angle map. 2 The rotation angle of the second output shaft 12A is monitored based on the signal from the absolute angle sensor 118, and the rotation of the second motor 12 is controlled so as to be the rotation angle determined using the second output shaft rotation angle map. .
  • the first output shaft rotation angle ⁇ A becomes an intermediate rotation angle ⁇ m between 0 ° and the first predetermined rotation angle ⁇ 1.
  • the rotation angle in the forward rotation of the second output shaft 12A is set to be a second predetermined rotational angle theta 2.
  • the fifth axis L5 which is the fulcrum of the passenger seat side wiper arm 35, is positioned above the passenger seat side on the windshield glass 1 ( To the second position).
  • the rotation angle in the forward rotation of the second output shaft 12A reaches a second predetermined rotational angle theta 2, in accordance with the second output shaft rotation angle map, reduces the rotation angle of the second output shaft 12A.
  • the rotation angle of the first output shaft 11A reaches the first predetermined rotational angle theta 1
  • the second output shaft 12A second predetermined rotation until the passenger's side wiper blade 36 reaches the upper reversal position P1P
  • the rotation angle of the second output shaft 12A is reduced to 0 °.
  • the fifth axis L5 that is the fulcrum of the passenger seat side wiper arm 35 is returned to the original position (first position).
  • the wiping range Z2 is wiped while the passenger seat side wiper blade 36 is moved from the lower inversion position P2P to the upper inversion position P1P.
  • the rotation angle of the first output shaft 11A is reversed from 0 ° by the first absolute angle sensor 114.
  • the change starts in the rotation direction it is determined that the passenger-side wiper blade 36 has started to move from the upper reversal position P1P, and the second output shaft 12A of the second motor 12 starts to rotate forward.
  • the second output shaft rotation angle map shown in FIG. 10 is has a symmetrical curve 190 by an intermediate rotation angle theta m to the shaft, but is not limited thereto. The curve of the map is set individually according to the shape of the windshield glass 1 and the like.
  • the microcomputer 58 changes the wiping speed of the wiper blade based on the position between the lower inversion position P2D and the upper inversion position P1D of the driver side wiper blade 18 and the degree of change of the passenger side wiper arm 35. It is also possible to perform control such as Hereinafter, an example of wiping speed control when the second predetermined rotation angle, which is the rotation angle of the second output shaft 12A, is set large to increase the degree of change of the passenger-side wiper arm 35 will be described. In such a case, the rotation speed of the first output shaft 11A is gradually reduced as the rotation angle of the first output shaft 11A of the first motor 11 approaches the intermediate rotation angle.
  • the rotation angle of the first output shaft 11A reaches the intermediate rotation angle, that is, when the passenger seat side wiper arm 35 is extended to the maximum, control is performed so that the rotation speed of the first output shaft 11A is minimized.
  • a map (not shown) of the rotation speed of the first output shaft 11A defined according to the rotation angle of the first output shaft 11A is used for controlling the rotation speed of the first output shaft 11A.
  • the rotational speed of the second output shaft 12A is also controlled in accordance with the rotational speed of the first output shaft 11A. For example, if the second output shaft rotation angle map as shown in FIG. 10 is used, the rotation of the second output shaft 12A can be synchronized with the rotation of the first output shaft 11A.
  • the rotation speed of the second output shaft 12A can also be controlled.
  • the speed at which the passenger-side wiper arm 35 is extended and the wiping speed of the passenger-side wiper blade 36 can be alleviated, and the possibility that the occupant feels an uncomfortable feeling that “the passenger-side wiper arm 35 has suddenly extended” can be reduced. .
  • the washer motor drive circuit 57 includes a relay unit 84 incorporating two relays RLY1 and RLY2, and two FETs 86A and 86B.
  • the relay coils of the relays RLY1 and RLY2 of the relay unit 84 are connected to the relay drive circuit 78, respectively.
  • the relay drive circuit 78 switches the relays RLY1 and RLY2 on and off (excitation / excitation stop of the relay coil). When the relay coils are not excited, the relays RLY1 and RLY2 maintain the state in which the common terminals 84C1 and 84C2 are connected to the first terminals 84A1 and 84A2 (off state), respectively, and the relay coils are excited.
  • the common terminals 84C1 and 84C2 are switched to the state of connecting to the second terminals 84B1 and 84B2, respectively.
  • the common terminal 84C1 of the relay RLY1 is connected to one end of the washer motor 64, and the common terminal 84C2 of the relay RLY2 is connected to the other end of the washer motor 64.
  • the first terminals 84A1 and 84A2 of the relays RLY1 and RLY2 are connected to the drain of the FET 86B, and the second terminals 84B1 and 84B2 of the relays RLY1 and RLY2 are connected to the power source (+ B).
  • the FET 86B has a gate connected to the FET drive circuit 80 and a source grounded. The duty ratio related to the on / off of the FET 86B is controlled by the FET drive circuit 80.
  • An FET 86A is provided between the drain of the FET 86B and the power source (+ B). The FET 86A is provided for the purpose of using a parasitic diode for absorbing a surge without switching on and off because no control signal is input to the gate.
  • the relay driving circuit 78 and the FET driving circuit 80 control the driving of the washer motor 64 by switching on and off the two relays RLY1, RLY2 and the FET 86B. That is, when rotating the output shaft of the washer motor 64 in a predetermined direction (forward rotation), the relay drive circuit 78 turns on the relay RLY1 (relay RLY2 is off), and the FET drive circuit 80 turns on the FET 86B with a predetermined duty ratio. Let With the above control, the rotation speed of the output shaft of the washer motor 64 is controlled.
  • FIG. 18 is a flowchart illustrating an example of a change rate control process for controlling the change rate of the passenger-side wiper arm 35 in accordance with the speed of the vehicle in the wiper system 100 according to the present embodiment.
  • a series of procedures shown in FIG. 11 is processed by the microcomputer 58 in the control circuit 52.
  • step 300 information on the vehicle speed calculated from the signal output from the vehicle speed sensor 92 is acquired. If the vehicle ECU 90 calculates the vehicle speed, the microcomputer 58 acquires vehicle speed information from the vehicle ECU 90.
  • FIG. 19 is a graph showing an example of a correspondence relationship between the viewing angle 120, which is the range of the driver's visual field, and the vehicle speed (vehicle speed).
  • the viewing angle 120 represents the range of the visual field in both human eyes in the left-right direction centered on the midline (the line that passes through the center of the front and back of the organism vertically straight from the top of the head). Yes, for a healthy person, it is approximately 120 °. However, as the vehicle speed increases, the driver's viewing angle 120 becomes narrower. As shown in FIG. 12, when the vehicle speed is 40 km / h, the driver's viewing angle 120 is approximately 100 °, but when the vehicle speed reaches 130 km / h, the viewing angle 120 becomes approximately 30 °.
  • the change of the wiping range by the wiper device 2 is effective for securing the front field of view on the front side of the passenger seat (securing a wide field of view on the front side of the passenger seat), but the wiping range is changed when the driver's field of view is lowered.
  • the effect is not significant.
  • the operation of changing the wiping range in which the passenger-side wiper arm 35 is extended may cause a sense of incongruity to the passenger, particularly the passenger on the passenger seat side. It is desirable to suppress the change rate of the wiping range as compared to the low speed range.
  • the wiping range change rate 122 is changed according to the vehicle speed as shown in FIG. Therefore, in step 302 of FIG. 18, the change rate X of the wiping range indicated by a numerical value of 0 to 1.0 is calculated according to the current vehicle speed V p by the following equation (1).
  • V max and V min in the formula (1) are constants.
  • V max is 90 km / h or more
  • V min is 30 to 40 km / h.
  • the change rate X corresponding to the vehicle speed may be calculated in advance as shown in FIG. 19 and stored in the memory 60 as a map of the change rate X with respect to the vehicle speed.
  • the microcomputer 58 determines the change rate X corresponding to the vehicle speed with reference to the map.
  • step 304 the extension of the passenger seat side wiper arm 35 is controlled in accordance with the change rate X calculated in step 302, and the process returns.
  • step 304 the rotation of the second output shaft rotation angle map and the second output shaft 12A so that the second output shaft rotational angle theta B calculated by the following equation (2) shown in change rate X and 13 Control the angle.
  • ⁇ A in the above formula (2) is the first output shaft rotation angle ⁇ A that is the rotation angle of the first output shaft 11A shown in FIGS.
  • f ( ⁇ A ) is the second output shaft determined according to the first output shaft rotation angle ⁇ A when the change rate X is 1.0 (corresponding to 100%) shown by the curve 190 in FIG.
  • the rotation angle is 12A.
  • g ( ⁇ A ) is a second output shaft that is determined according to the first output shaft rotation angle ⁇ A when the change rate X is 0 (equivalent to 0%) shown by the curve 194 in FIG.
  • the rotation angle is 12A.
  • the rotation angle g ( ⁇ A ) of the second output shaft 12A is related to the value of the first output shaft rotation angle ⁇ A. It is always 0 °.
  • the driving of the first motor 11 that reciprocates the driver-side wiper arm 17 and the passenger-side wiper arm 35 also to the link mechanism that moves the fifth axis L5 that is the fulcrum of the passenger-side wiper arm 35 is performed.
  • the force may be affected, and g ( ⁇ A ) may not always be 0 ° regardless of the value of the first output shaft rotation angle ⁇ A in practice.
  • a curve 192 in FIG. 20 represents the second output shaft rotation angle ⁇ B when the change rate X calculated based on the above equation (1) is 0.5 (equivalent to 50%).
  • the second output shaft rotation angle ⁇ B indicated by the curve 192 is substantially 1 ⁇ 2 of the angle indicated by the curve 190 when the change rate X is equivalent to 100%.
  • FIG. 21 shows an example of a change in the wiping range according to the change rate X.
  • the wiping range Z1 indicates the case where the change rate X is equivalent to 0%
  • the wiping range Z2 is the case where the change rate X is equivalent to 100%
  • the wiping range Z3 is the case where the change rate X is equivalent to 50%. Yes.
  • the degree of extension of the passenger-side wiper arm 35 is suppressed during high speed travel where the viewing angle of the driver is narrowed. It is possible to avoid giving a sense of incongruity about the second operation.
  • the degree of extension of the passenger side wiper arm 35 is controlled by paying attention to the change in the viewing angle of the driver with respect to the vehicle speed.
  • the viewing angle of the driver depends not only on the vehicle speed but also on the surrounding brightness and weather.
  • the brightness (illuminance) of the scene in front of the vehicle may be calculated from the brightness of the image data ahead of the vehicle acquired by the in-vehicle camera 94, and the change rate X may be calculated according to the calculated illuminance. .
  • the calculation of the change rate X according to the brightness outside the vehicle is based on the following formula (4) as an example.
  • L max and L min in equation (4) are constants.
  • L max is the illuminance of the scene in front of the vehicle in clear daytime
  • L min is at sunset in clear sky. It is the illuminance of the scene in front of the vehicle.
  • the change rate X may be calculated corresponding to the strength of the rain legs. Since the wiper system 100 according to the present embodiment includes the rain sensor 76, the change rate X is calculated based on the degree of precipitation detected by the rain sensor 76. The calculation of the change rate X according to the degree of precipitation is based on the following formula (5) as an example.
  • R max and R min in equation (4) are constants.
  • R max is the degree of precipitation corresponding to heavy rain of about 20 to 30 mm in one hour rainfall
  • R min is It is the degree of precipitation equivalent to a weak rain of about 1 to 3 mm per hour.
  • OR control when any one of the influences of the vehicle speed, the brightness in front of the vehicle, or the weather exists, so-called OR control is performed to change the change rate X according to the influence.
  • AND control that changes the change rate X when there are at least two influences due to the vehicle speed, the brightness in front of the vehicle, or the weather is performed. Good.
  • the change rate X corresponding to the illuminance or rain leg may be calculated in advance and stored in the memory 60 as a map of the change rate X for the illuminance or rain leg.
  • the microcomputer 58 determines the change rate X corresponding to the illuminance or the rain leg with reference to the map.
  • the change rate X is changed according to the affected effect.
  • the degree of extension of the passenger side wiper arm 35 can be suppressed so that the passenger does not feel uncomfortable about the operation of the wiper device 2.
  • FIG. 22 is a flowchart showing a modification of the change rate control process for controlling the change rate of the passenger-side wiper arm 35 according to the speed of the vehicle in the wiper system 100 according to the present embodiment.
  • a series of procedures shown in FIG. 22 is processed by the microcomputer 58 in the control circuit 52.
  • the change rate X is continuously changed according to the change in the vehicle speed.
  • the change rate X is stepwise according to a predetermined threshold speed. To change.
  • step 330 of FIG. 22 information on the vehicle speed calculated from the signal output from the vehicle speed sensor 92 is acquired. If the vehicle speed is calculated by the vehicle ECU 90, the microcomputer 58 acquires vehicle speed information from the vehicle ECU 90.
  • step 332 it is determined whether the vehicle speed is equal to or higher than the first threshold speed.
  • the first threshold speed is 40 to 50 km / h corresponding to the speed limit on a general road. If the determination in step 132 is affirmative, the procedure proceeds to step 336. If the determination in step 332 is negative, the change rate X is set to, for example, 100% in step 334, and the procedure proceeds to step 342.
  • step 336 it is determined whether the vehicle speed is equal to or higher than the second threshold speed.
  • the second threshold speed is 80 to 100 km / h corresponding to the speed limit on the highway. If the determination in step 336 is affirmative, the change rate X is set to 0%, for example, in step 340, and the procedure proceeds to step 342. If the determination in step 336 is negative, the change rate X is set to, for example, 50% in step 338, and the procedure proceeds to step 342.
  • step 342 the extension of the passenger side wiper arm 35 is controlled as in step 304 of FIG. 18 according to the change rates X calculated in steps 334, 338, and 340, and the process returns.
  • the change rate X is changed step by step in accordance with the vehicle speed, so that the calculation processing load by the microcomputer 58 is greater than that shown in FIG. Can be reduced. Therefore, the performance of the microcomputer 58 does not need to be higher than that in the case where the change rate X is continuously changed according to the vehicle speed as shown in FIG. It can be configured at a lower cost than the case.
  • the first output shaft 11A of the first motor 11 and the second output shaft 12A of the second motor 12 are controlled to be able to rotate forward and backward (reciprocating).
  • the present embodiment is limited to this. There is no.
  • one of the first output shaft 11A and the second output shaft 12A may rotate in one direction.
  • the rotation of the first output shaft 11A of the first motor 11 causes the driver-side wiper blade 18 and the passenger-side wiper blade 36 to move upside-down positions P1D and P1P and downside-inversion positions P2D and P2P.
  • the first motor 11 includes a “driver's seat side first motor” and a “passenger's seat side first motor”, and the driver seat side wiper blade 18 is moved down to the upper inversion position P1D by the rotation of the driver seat side first motor.
  • the structure may be such that the passenger seat side wiper blade 36 is moved between the upper inversion position P1P and the lower inversion position P2P by moving between the inversion position P2D and rotation of the first passenger seat side motor.
  • the driver-side wiper blade 18 and the passenger-side wiper blade 36 are structured not to overlap in the vehicle width direction at the lower inversion positions P2D and P2P.
  • the present invention is limited to this.
  • the driver seat side wiper blade 18 side of the passenger seat side wiper blade 36 may be set longer.
  • the length of the passenger seat side wiper blade 36 is set so that the driver seat side wiper blade 18 side of the passenger seat side wiper blade 36 overlaps the passenger seat side wiper blade 36 side of the driver seat side wiper blade 18. Also good. Thereby, when wiping the wiping range Z2 during the reciprocating motion, it is possible to reduce the non-wiping area that remains on the lower center side of the windshield glass.
  • the passenger seat-side wiper arm 35 (passenger seat-side wiper blade 36) is extended to the vicinity of the intermediate angle at the predetermined rotation angle of the first output shaft 11A, and from the vicinity of the intermediate angle to the predetermined rotation angle.
  • the passenger seat side wiper arm 35 (passenger seat side wiper blade 36) is controlled to be reduced, but the present invention is not limited to this.
  • the passenger seat side wiper arm 35 may be controlled to gradually extend.
  • the embodiment using the rotation angle of the first output shaft 11A of the first motor 11 and the rotation angle of the second output shaft 12A of the second motor 12 has been described.
  • the rotational position of the first output shaft 11A and the rotational position of the second output shaft 12A may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

(1)ワイパブレードによる払拭面の往復払拭動作を行わせる第1モータと、(2)前記ワイパブレードによる前記払拭面の払拭範囲を変更する第2モータと、(3)前記ワイパブレードの払拭速度または払拭範囲を指示する指示部と、(4)予め設定された条件に基づいて、前記ワイパブレードが往復払拭動作を行うように、前記第1モータ及び前記第2モータを制御する制御部と、を備えた車両用ワイパ装置が提供される。

Description

車両用ワイパ装置及び車両用ワイパの制御方法
 本開示は、払拭範囲を変更可能な車両用ワイパ装置及び車両用ワイパの制御方法に関する。
 特開2000-25578号公報には、ワイパ装置のリンク機構をいわゆる4節リンクとすることにより、動作中のワイパアームの全長を見かけ上伸長させることにより、助手席側のウィンドシールドガラスの払拭範囲を変更するワイパ装置が開示されている。
 しかしながら、特開2000-25578号公報に記載のワイパ装置では、払拭範囲を変更するために動作中の助手席側のワイパアームの全長を常時伸長させている。その結果、助手席側のアームの動く軌跡が長くなるため、アームの慣性等によりモータの出力が必要となり、かつ機械的強度も必要となる。モータの出力アップや機械的強度アップのためにモータを大型化すると、コスト増加に繋がる。
 また、助手席側のアームの動く軌跡が長くなることで、1往復での払拭速度が、運転席側に対して速くなり、乗員にワイパ装置の動作に違和感を与える可能性があった。
 本開示は、払拭範囲を変更可能な構成を有する場合に、必要とされるモータの出力及び機械的強度を抑制しながら、払拭速度に対する乗員への違和感を抑制可能な車両用ワイパ装置を提供する。
 本開示の第1の態様は、ワイパブレードによる払拭面の往復払拭動作を行わせる第1モータと、前記ワイパブレードによる前記払拭面の払拭範囲を変更する第2モータと、前記ワイパブレードの払拭速度または払拭範囲を指示する指示部と、予め設定された条件に基づいて、前記ワイパブレードが往復払拭動作を行うように、前記第1モータ及び前記第2モータを制御する制御部と、を備えた車両用ワイパ装置である。
 上記第1の態様によれば、第1モータによってワイパブレードによる払拭面の往復払拭動作が行われ、第2モータによってワイパブレードによる払拭面の払拭範囲が変更され、ワイパブレードの払拭速度または払拭範囲は、指示部によって指示される。
 本開示の第2の態様は、上記第1の態様において、前記条件は、指示部によって指示された払拭速度であり、前記制御部は、前記払拭速度が遅いほど前記払拭範囲を大きく変更するように前記第1モータ及び前記第2モータを制御する、車両用ワイパ装置である。
 上記第1の態様において、制御部に、指示部によって指示された払拭速度でかつ指示された払拭速度に応じて予め定めた払拭範囲で、または指示部によって指示された払拭範囲でかつ指示された払拭範囲に応じて予め定めた払拭速度で、ワイパブレードの往復払拭動作を行うように、第1モータ及び第2モータを制御させることが考えられる。
 このように、払拭範囲に応じた払拭速度、または払拭速度に応じた払拭範囲になるように第1モータ及び第2モータを制御することで、払拭範囲を変更可能な構成を有する場合に、必要とされるモータの出力及び機械的強度を抑制しながら、払拭速度に対する乗員への違和感を抑制することが可能となる。
 そして、上記第2の態様によれば、前記制御部は、前記払拭速度が指示された場合、前記払拭速度が遅いほど前記払拭範囲を大きく変更するように前記第1モータ及び前記第2モータを制御する。
 上記第2の態様によれば、払拭速度が変更された場合に、払拭速度が遅いほど払拭範囲を大きく変更することで、必要とされるモータの出力及び機械的強度を抑制できると共に、払拭速度に対する乗員への違和感もなくなる。
 本開示の第3の態様は、上記第1の態様において、前記条件は、指示部によって指示された払拭範囲であり、前記制御部は、前記払拭範囲が大きいほど前記払拭速度が遅くなるように前記第1モータ及び前記第2モータを制御する、車両用ワイパ装置である。
 上記第3の態様によれば、払拭範囲が変更された場合に、払拭範囲が大きいほど払拭速度を遅くすることで、必要とされるモータの出力及び機械的強度を抑制できると共に、払拭速度に対する乗員への違和感もなくなる。
 本開示の第4の態様は、上記第1~第3の態様において、降水量を検出する検出部を更に備え、前記指示部が、前記ワイパブレードの払拭速度または払拭範囲または自動払拭を指示し、前記制御部が、前記指示部によって前記自動払拭が指示された場合に、前記検出部の検出結果に応じて予め定めた払拭速度及び払拭範囲の一方を決定し、決定した当該払拭速度及び当該払拭範囲の一方に応じて予め定めた払拭範囲及び払拭速度の他方で前記往復払拭動作を行うように、前記第1モータ及び前記第2モータを制御する、車両用ワイパ装置である。
 上記第4の態様によれば、自動払拭が指示された場合に、検出部によって検出された降水量によって払拭速度及び払拭範囲の一方を決定し、決定した払拭速度及び払拭範囲の一方に応じて払拭範囲及び払拭範囲の他方を変更することで、払拭範囲の変更量または払拭範囲を自動的に制御することができる。
 本開示の第5の態様は、上記第1の態様において、前記条件は、運転者の視野角の変化に対応する変数である、車両用ワイパ装置である。
 上記第5の態様によれば、運転者の視野角の変化に応じて、ワイパブレードの払拭範囲を変更することが可能である。運転者の視野角が狭くなる状況では変更率を低下させて払拭範囲の変更を抑制するので、車両の乗員がワイパ装置の動作に違和感を覚える可能性が少なくなる。
 本開示の第6の態様は、上記第5の態様において、前記変数は、車両の速度を含み、
 前記制御部は、検知された車両の速度が増大するに従って前記払拭範囲の変更率を減少させる、車両用ワイパ装置である。
 上記第6の態様によれば、車速の増大に従って狭くなる運転者の視野角に応じて、払拭範囲の変更を抑制するので、車両の乗員がワイパ装置の動作に違和感を覚える可能性が少なくなる。
 本開示の第7の態様は、上記第5または第6の態様において、前記変数は、車両前方の明るさを含み、前記制御部は、車両前方の明るさが低下するに従って前記払拭範囲の変更率を減少させる、車両用ワイパ装置である。
 上記第7の態様によれば、車両前方の明るさに従って狭くなる運転者の視野角に応じて、払拭範囲の変更を抑制するので、車両の乗員がワイパ装置の動作に違和感を覚える可能性が少なくなる。
 本開示の第8の態様は、上記第5~第7の態様において、前記変数は、降水量を含み、前記制御部は、降水量が増大するに従って前記払拭範囲の変更率を減少させる、車両用ワイパ装置である。
 上記第8の態様によれば、降水量の増大に従って狭くなる運転者の視野角に応じて、払拭範囲の変更を抑制するので、車両の乗員がワイパ装置の動作に違和感を覚える可能性が少なくなる。
 本開示の第9の態様は、上記第1~第8の態様において、前記第1モータは、第1出力軸を有し、前記第1出力軸の回転により前記ワイパブレードを動作させるワイパアームを往復回転させて、前記払拭面の予め定めた上反転位置と予め定めた下反転位置との間で前記ワイパブレードの前記往復払拭動作を行わせ、前記第2モータは、リンク機構を介して前記ワイパアームに連結されて回転される第2出力軸を有し、前記第2出力軸の回転により前記ワイパアームを往復回転させる支点を、第1位置と前記第1位置から助手席側上方に離れた第2位置との間で移動することで払拭範囲を変更する、車両用ワイパ装置である。
 上記第9の態様によれば、第1モータ及び第2モータを制御することで、ワイパブレードによる払拭範囲を助手席側上方に変更することができる。
 本開示の第10の態様は、ワイパブレードに払拭面の往復払拭動作を行わせることと、前記ワイパブレードによる前記払拭面の払拭範囲を変更することと、前記ワイパブレードの払拭速度または払拭範囲を指示することと、予め設定された条件に基づいて、前記ワイパブレードに往復払拭動作を行わせることと、を含む、車両用ワイパ装置の制御方法である。
 本開示の第11の態様は、上記第10の態様において、前記条件は、指示された払拭速度であり、前記ワイパブレードに往復払拭動作を行わせることは、前記払拭速度が遅いほど前記払拭範囲を大きく変更することを含む、車両用ワイパ装置の制御方法である。
 本開示の第12の態様は、上記第10の態様において、前記条件は、指示された払拭範囲であり、前記ワイパブレードに往復払拭動作を行わせることは、前記払拭範囲が大きいほど前記払拭速度を遅くすることを含む、車両用ワイパ装置の制御方法である。
 本開示の第13の態様は、上記第10~第12の態様において、降水量を検知することをさらに含み、前記ワイパブレードの払拭速度または払拭範囲を指示することは、自動払拭を指示することを含み、前記ワイパブレードに往復払拭動作を行わせることは、前記自動払拭が指示された場合に、検知された前記降水量に応じて予め定めた払拭速度及び払拭範囲の一方を決定し、決定した当該払拭速度及び当該払拭範囲の一方に応じて予め定めた払拭範囲及び払拭速度の他方を決定することを含む、車両用ワイパ装置の制御方法である。
 本開示の第14の態様は、上記第10の態様において、前記条件は、運転者の視野角の変化に対応する変数である、車両用ワイパ装置の制御方法である。
 本開示の第15の態様は、上記第14の態様において、車両の速度を検知することをさらに含み、前記変数は、車両の速度を含み、前記ワイパブレードに往復払拭動作を行わせることは、検知された車両の速度が増大するに従って前記払拭範囲の変更率を減少させることを含む、車両用ワイパ装置の制御方法である。
 本開示の第16の態様は、上記第14及び15の態様において、車両前方の明るさを検知することを含み、前記変数は、車両前方の明るさを含み、前記ワイパブレードに往復払拭動作を行わせることは、車両前方の明るさが低下するに従って前記払拭範囲の変更率を減少させることを含む、車両用ワイパ装置の制御方法である。
 本開示の第17の態様は、上記第14~第16の態様において、降水量を検知することをさらに含み、前記変数は、降水量を含み、前記ワイパブレードに往復払拭動作を行わせることは、降水量が増大するに従って前記払拭範囲の変更率を減少させることを含む、車両用ワイパ装置の制御方法である。
 本開示の第18の態様は、上記第10~第17の態様において、前記ワイパブレードに往復払拭動作を行わせることは、前記払拭面の予め定めた上反転位置と予め定めた下反転位置との間で前記ワイパブレードの前記往復払拭動作を行わせることと、前記ワイパブレードに接続されるワイパアームを往復回転させる支点を、第1位置と前記第1位置から助手席側上方に離れた第2位置との間で移動させることによって前記払拭範囲を変更することと、車両用ワイパ装置の制御方法である。
 上記第10~第18の態様は、それぞれ上記第1~第9の態様に対応するものである。よって、上記第10~第18の態様は、それぞれ第1~第9の態様に相当する作用を行うことができる。
第1実施形態に係る車両用ワイパ装置を含む車両用ワイパシステムの一例を示した概略図である。 第1実施形態に係るワイパ装置の停止状態での平面図である。 図2のA-A線に沿った第2ホルダ部材の断面図である。 第1実施形態に係るワイパ装置の動作中の平面図である。 第1実施形態に係るワイパ装置の動作中の平面図である。 第1実施形態に係るワイパ装置の動作中の平面図である。 第1実施形態に係るワイパ装置の動作中の平面図である。 第1実施形態に係るワイパ装置の動作中の平面図である。 払拭速度に応じて変更される払拭範囲の一例を説明するための図である。 第1モータの回転角度と第2モータの回転角度の関係を示す図である。 払拭速度に応じて変わる変数の一例を示す図である。 第1実施形態に係るワイパ装置において、払拭速度に応じて払拭範囲を変更する際に、制御回路で行われる処理の一部を示すフローチャートである。 第1実施形態に係るワイパ装置において、雨量に応じて払拭速度を決定し、払拭速度に応じて払拭範囲を変更する場合の制御回路で行われる処理の一部を示すフローチャートである。 第1実施形態に係るワイパ装置において、払拭範囲に応じて払拭速度を変更する場合の制御回路で行われる処理の一部を示すフローチャートである。 助手席側ワイパブレードの長さを払拭範囲を変更した際に払拭されない領域がない長さに設定して往動時及び復動時共に同じ払拭軌跡の払拭範囲Z2にした例を示す図である。 本開示の第2実施形態に係るワイパ装置を含む車両用ワイパシステムの一例を示した概略図である。 第2実施形態に係るワイパシステムの回路を模式的に示した回路図である。 第2実施形態における第1出力軸の回転角度に応じた第2出力軸の回転角度を規定した第2出力軸回転角度マップの一例を示している。 第2実施形態に係るワイパシステムにおける、車両の速度に応じて助手席側ワイパアームの変更率を制御する変更率制御処理の一例を示したフローチャートである。 運転者の視野の範囲である視野角と、車両の速度(車速)との対応関係の一例を示したグラフである。 第2実施形態における第2出力軸の回転角度の変更率に応じた変化を示した概略図である。 第2実施形態における変更率Xに応じた払拭範囲の変化の一例を示した概略図である。 第2実施形態に係るワイパシステムにおける、車両の速度に応じて助手席側ワイパアームの変更率を制御する変更率制御処理の変形例を示したフローチャートである。
 [第1実施形態]
 以下、図面を参照して本開示の第1実施形態を詳細に説明する。図1は、払拭範囲を変更することが可能なワイパ装置(以下、「ワイパ装置」と称する)2を含むワイパシステム100の一例を示した概略図である。図1に示したワイパシステム100は、例えば、乗用自動車等の車両に備えられた払拭面としてのウィンドシールドガラス1を払拭するためのものであり、一対のワイパアーム(後述する運転席側ワイパアーム17及び助手席側ワイパアーム35)と、第1モータ11と、第2モータ12と、制御回路52と、駆動回路56と、ウォッシャ装置70と、を含んで構成されている。
 図1は、右ハンドル車の場合を示しているので、車両の右側(図1の左側)が運転席側、車両の左側(図1の右側)が助手席側である。車両が左ハンドル車の場合には、車両の左側(図1の右側)が運転席側、車両の右側(図1の左側)が助手席側になる。また、車両が左ハンドル車の場合には、ワイパ装置2の構成が左右反対になる。
 第1モータ11は、出力軸が所定の回転角度の範囲で正回転及び逆回転することにより、運転席側ワイパアーム17及び助手席側ワイパアーム35の各々をウィンドシールドガラス1上で往復動作させるための駆動源である。本実施形態では、第1モータ11が正回転した場合に、運転席側ワイパアーム17は運転席側ワイパブレード18が下反転位置P2Dから上反転位置P1Dを払拭するように動作し、助手席側ワイパアーム35は助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pを払拭するように動作する。また、第1モータ11が逆回転した場合には、運転席側ワイパアーム17は運転席側ワイパブレード18が上反転位置P1Dから下反転位置P2Dを払拭するように動作し、助手席側ワイパアーム35は助手席側ワイパブレード36が上反転位置P1Pから下反転位置P2Pを払拭するように動作する。
 ウィンドシールドガラス1の外縁部は、可視光及び紫外線を遮るため、セラミックス系の黒色顔料が塗布された遮光部1Aとなっている。黒色顔料は、ウィンドシールドガラス1の車室内側の外縁部に塗布された後、所定温度で加熱されることにより溶融し、ウィンドシールドガラス1の車室側表面に定着される。ウィンドシールドガラス1は、外縁部に塗布された接着剤により車体に固定されるが、図1に示したように、紫外線を透過させない遮光部1Aを外縁部に設けることにより、紫外線による当該接着剤の劣化を抑制する。
 後述する第2モータ12が動作しない場合には、第1モータ11の出力軸(後述する第1出力軸11A)が0°から所定の回転角度(以下、「第1所定回転角度」と称する)までの回転角度で正回転及び逆回転することにより、運転席側ワイパブレード18は払拭範囲H1を、助手席側ワイパブレード36は払拭範囲Z1を、各々払拭する。
 第2モータ12は、当該第2モータ12の出力軸(後述する第2出力軸12A)が0°から所定の回転角度(以下、「第2所定回転角度」と称する)までの回転角度で正回転及び逆回転することにより、助手席側ワイパアーム35を見かけ上伸長させる駆動源である。前述の第1モータ11が動作中に第2モータ12が動作することにより、助手席側ワイパアーム35は助手席側上方に見かけ上伸長され、助手席側ワイパブレード36は払拭範囲Z2を払拭する。また、第2所定回転角度の大きさを変更することにより、助手席側ワイパアーム35が伸長する範囲を変更することが可能となる。例えば、第2所定回転角度を大きくすれば、助手席側ワイパアーム35が伸長する範囲は大きくなり、第2所定回転角度を小さくすれば、助手席側ワイパアーム35が伸長する範囲は小さくなる。
 第1モータ11及び第2モータ12は、各々の出力軸の回転方向を正回転及び逆回転に制御可能であると共に、各々の出力軸の回転速度も制御可能なモータであり、一例としてブラシ付きDCモータ及びブラシレスDCモータのいずれかである。
 第1モータ11及び第2モータ12には、各々の回転を制御するための制御回路52が接続されている。本実施の形態に係る制御回路52は、例えば、第1モータ11及び第2モータ12の各々の出力軸末端付近に設けられた絶対角センサ(図示せず)が検知した第1モータ11及び第2モータ12の各々の出力軸の回転方向、回転位置、回転速度及び回転角度に基づいて、第1モータ11及び第2モータ12の各々に印加する電圧のデューティ比を算出する。
 本実施形態では、第1モータ11及び第2モータ12の各々に印加する電圧を、電源である車載バッテリの電圧(略12V)をスイッチング素子によってオンオフしてパルス状の波形に変調するパルス幅変調(PWM)によって生成する。本実施の形態でデューティ比は、PWMによって生成される電圧の波形の1周期間に対する前述のスイッチング素子がオンになったことで生じる1のパルスの時間の割合である。また、PWMによって生成される電圧の波形の1周期は、前述の1のパルスの時間と前述のスイッチング素子がオフになりパルスが生じない時間との和である。駆動回路56は、制御回路52によって算出されたデューティ比に従って駆動回路56内のスイッチング素子をオンオフさせて第1モータ11及び第2モータ12の各々に印加する電圧を生成し、生成した電圧を第1モータ11及び第2モータ12の各々の巻線の端子に印加する。
 本実施の形態に係る第1モータ11及び第2モータ12の各々は、ウォームギアで構成された減速機構を有しているので、各々の出力軸の回転方向、回転速度及び回転角度は、第1モータ11本体及び第2モータ12本体の各々の回転速度及び回転角度と同一ではない。しかしながら、本実施の形態では、各モータと各減速機構とは、一体不可分に構成されているので、以下、第1モータ11及び第2モータ12の各々の出力軸の回転速度及び回転角度を、第1モータ11及び第2モータ12の各々の回転方向、回転速度及び回転角度とみなすものとする。
 絶対角センサは、例えば第1モータ11及び第2モータ12の各々の減速機構内に設けられ、各々の出力軸に連動して回転する励磁コイル又はマグネットの磁界(磁力)を電流に変換して検出するセンサであり、一例として、MRセンサ等の磁気センサである。
 制御回路52は、第1モータの出力軸末端付近に設けられた絶対角センサが検出した第1モータ11の出力軸の回転角度から運転席側ワイパブレード18のウィンドシールドガラス1上での位置を算出可能なマイクロコンピュータ58を備えている。マイクロコンピュータ58は、算出した位置に応じて第1モータ11の出力軸の回転速度が変化するように駆動回路56を制御する。
 また、マイクロコンピュータ58は、第1モータの出力軸末端付近に設けられた絶対角センサが検出した第1モータ11の出力軸の回転角度から助手席側ワイパブレード36のウィンドシールドガラス1上での位置を算出し、算出した位置に応じて第2モータ12の出力軸の回転速度が変化するように駆動回路56を制御する。また、マイクロコンピュータ58は、第2モータ12の出力軸末端付近に設けられた絶対角センサが検出した第2モータ12の出力軸の回転角度から助手席側ワイパアーム35の伸長の程度を算出する。
 制御回路52には、駆動回路56の制御に用いるデータ及びプログラムを記憶した記憶装置であるメモリ60が設けられている。メモリ60は、運転席側ワイパブレード18及び助手席側ワイパブレード36のウィンドシールドガラス1上の位置を示す第1モータ11の出力軸の回転角度に応じて第1モータ11及び第2モータ12の各々の出力軸の回転速度等(回転角度を含む)を算出するためのデータ及びプログラムを記憶している。
 また、マイクロコンピュータ58には、車両のエンジン等の制御を統括する車両ECU(Electronic Control Unit)90が接続されている。また、車両ECU90には、ワイパスイッチ50、ウォッシャスイッチ62、及びレインセンサ76が接続されている。
 ワイパスイッチ50は、車両のバッテリから第1モータ11に供給される電力をオン又はオフするスイッチである。ワイパスイッチ50は、運転席側ワイパブレード18及び助手席側ワイパブレード36を、低速で動作させる低速作動モード選択位置、中速で動作させる中速作動モード選択位置、高速で動作させる高速作動モード選択位置、一定周期で間欠的に動作させる間欠作動モード選択位置、レインセンサ76が雨滴を検知した場合に動作させるAUTO(オート)作動モード選択位置、格納(停止)モード選択位置に切替可能である。また、各モードの選択位置に応じた信号を、車両ECU90を介してマイクロコンピュータ58に出力する。なお、本実施形態では、運転席側ワイパブレード18及び助手席側ワイパブレード36の動作させる速度は、予め定めた速度の中から選択可能な例として説明するが、無段階で速度変更可能としてもよい。
 ワイパスイッチ50から各モードの選択位置に応じて出力された信号が車両ECU90を介してマイクロコンピュータ58に入力されると、マイクロコンピュータ58がワイパスイッチ50からの出力信号に対応する制御をメモリ60に記憶されたデータ及びプログラムを用いて行う。
 本実施の形態では、ワイパスイッチ50には、助手席側ワイパブレード36の払拭範囲を払拭範囲Z2に変更する変更モードスイッチが別途設けられていてもよい。変更モードスイッチがオンになると、所定の信号が車両ECU90を介してマイクロコンピュータ58に入力される。マイクロコンピュータ58は、所定の信号が入力されると、例えば、助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pに動作する場合に、払拭範囲Z2を払拭するように第2モータ12を制御する。
 ウォッシャスイッチ62は、車両のバッテリからウォッシャモータ64、第1モータ11及び第2モータ12に供給される電力をオン又はオフするスイッチである。ウォッシャスイッチ62は、例えば、前述のワイパスイッチ50を備えたレバー等の操作手段に一体に設けられ、当該レバー等を乗員が手元に引く等の操作によりオンになる。マイクロコンピュータ58は、ウォッシャスイッチ62がオンになると、ウォッシャモータ64及び第1モータ11を作動させる。マイクロコンピュータ58は、助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pまで払拭する場合には、払拭範囲Z2を払拭するように、助手席側ワイパブレード36が上反転位置P1Pから下反転位置P2Pまで払拭する場合には、払拭範囲Z1を払拭するように第2モータ12を各々制御する。かかる制御により、ウィンドシールドガラス1の助手席側を広く払拭することが可能となる。
 ウォッシャスイッチ62がオンになっている間は、ウォッシャ装置70が備えるウォッシャモータ64の回転でウォッシャポンプ66が駆動される。ウォッシャポンプ66はウォッシャ液タンク68内のウォッシャ液を運転席側ホース72A又は助手席側ホース72Bに圧送する。運転席側ホース72Aは、ウィンドシールドガラス1の運転席側の下方に設けられた運転席側ノズル74Aに接続されている。また、助手席側ホース72Bは、ウィンドシールドガラス1の助手席側の下方に設けられた助手席側ノズル74Bに接続されている。圧送されたウォッシャ液は、運転席側ノズル74A及び助手席側ノズル74Bからウィンドシールドガラス1上に噴射される。ウィンドシールドガラス1上に付着したウォッシャ液は、動作している運転席側ワイパブレード18及び助手席側ワイパブレード36によってウィンドシールドガラス1上の汚れと一緒に払拭される。
 マイクロコンピュータ58は、ウォッシャスイッチ62がオンになっている間のみ動作するようにウォッシャモータ64を制御する。また、マイクロコンピュータ58は、ウォッシャスイッチ62がオフになっても運転席側ワイパブレード18及び助手席側ワイパブレード36が下反転位置P2D、P2Pに達するまで動作を継続するように第1モータ11を制御する。さらにマイクロコンピュータ58は、運転席側ワイパブレード18及び助手席側ワイパブレード36が上反転位置P1D、P1Pに向かって払拭している際にウォッシャスイッチ62がオフになった場合には、運転席側ワイパブレード18及び助手席側ワイパブレード36が、第1モータ11の回転により上反転位置P1D、P1Pに達するまで、払拭範囲Z2を払拭するように第2モータ12を制御する。
 レインセンサ76は、例えば、ウィンドシールドガラス1の車室内側に設けられる光学センサの一種であり、ウィンドシールドガラス1表面の水滴を検知する。レインセンサ76は、一例として、赤外線の発光素子であるLED、受光素子であるフォトダイオード、赤外線の光路を形成するレンズ及び制御回路を含んでいる。LEDから放射された赤外線はウィンドシールドガラス1で全反射するが、ウィンドシールドガラス1の表面に水滴が存在すると赤外線の一部が水滴を透過して外部に放出されるため、ウィンドシールドガラス1での反射量が減少する。その結果、受光素子であるフォトダイオードに入る光量が減少する。かかる光量の減少に基づいて、ウィンドシールドガラス1表面の水滴を検知する。
 以下、図2~8を用いて、本実施の形態に係るワイパ装置2の構成を説明する。図2、図4~8に示したように、本実施の形態に係るワイパ装置2は、板状の中央フレーム3と、中央フレーム3に一端部が固定され、中央フレーム3から車両幅方向両側に延設された一対のパイプフレーム4、5とを備える。パイプフレーム4の他端部には、運転席側ワイパアーム17の運転席側ピボット軸15等を備えた第1ホルダ部材6が形成されている。また、パイプフレーム5の他端部には、助手席側ワイパアーム35の第2助手席側ピボット軸22等が設けられた第2ホルダ部材7が形成されている。ワイパ装置2は、中央フレーム3に設けられた支持部3Aで車両に支持されると共に、第1ホルダ部材6の固定部6A及び第2ホルダ部材7の固定部7Aの各々がボルト等により車両に締結されることにより、車両に固定される。
 ワイパ装置2は、中央フレーム3の裏面(車室側に対向する面)に、ワイパ装置2を駆動させるための第1モータ11と第2モータ12とを備えている。第1モータ11の第1出力軸11Aは、中央フレーム3を貫通して中央フレーム3の表面(車両の外部側の面)に突出し、第1出力軸11Aの先端部には第1駆動クランクアーム13の一端が固定されている。第2モータ12の第2出力軸12Aは、中央フレーム3を貫通して中央フレーム3の表面に突出し、第2出力軸12Aの先端部には第2駆動クランクアーム14の一端が固定されている。
 第1ホルダ部材6には、運転席側ピボット軸15が回転可能に支持され、運転席側ピボット軸15の基端部(図2の奥側)には運転席側揺動レバー16の一端が固定され、運転席側ピボット軸15の先端部(図2の手前側)には運転席側ワイパアーム17のアームヘッドが固定されている。図1に示したように、運転席側ワイパアーム17の先端部には、ウィンドシールドガラス1の運転席側を払拭するための運転席側ワイパブレード18が連結されている。
 第1駆動クランクアーム13の他端と運転席側揺動レバー16の他端とは、第1連結ロッド19を介して連結されている。第1モータ11が駆動されると、第1駆動クランクアーム13は回転し、その回転力が第1連結ロッド19を介して運転席側揺動レバー16に伝達されて運転席側揺動レバー16を搖動させる。運転席側揺動レバー16が搖動されることにより運転席側ワイパアーム17も搖動し、運転席側ワイパブレード18が下反転位置P2Dと上反転位置P1Dとの間の払拭範囲H1を払拭する。
 図3は、図2のA-A線に沿った第2ホルダ部材7の断面図である。図3に示したように、第2ホルダ部材7には、第1助手席側ピボット軸21が第1軸線L1を中心として回転可能に支持させると共に、第2助手席側ピボット軸22が第2軸線L2を中心として回転可能に支持されている。本実施の形態では、第1軸線L1と第2軸線L2とが同一直線L(同心)上に配置されている。なお、図3は、図2、図4~8に示されている防水カバーKを外した状態を示している。
 第2ホルダ部材7には、筒状部7Bが形成され、筒状部7Bの内周側には軸受23を介して第1助手席側ピボット軸21が回転可能に支持されている。第1助手席側ピボット軸21は筒状に形成され、第1助手席側ピボット軸21の内周側には軸受24を介して第2助手席側ピボット軸22が回転可能に支持されている。
 第1助手席側ピボット軸21の基端部には、第1助手席側揺動レバー25の一端が固定され、第1助手席側ピボット軸21の先端部には、第1駆動レバー26の一端が固定されている。図2に示したように、第1助手席側揺動レバー25の他端と運転席側揺動レバー16の他端とは、第2連結ロッド27により連結されている。従って、第1モータ11が駆動されて運転席側揺動レバー16搖動すると、第2連結ロッド27が駆動力を第1助手席側揺動レバー25に伝達し、第1助手席側揺動レバー25と共に、第1駆動レバー26を第1軸線L1周りに揺動(回転)させる。
 図3に示したように、第2助手席側ピボット軸22は、第1助手席側ピボット軸21よりも長く形成され、第2助手席側ピボット軸22の基端部及び先端部が第1助手席側ピボット軸21から軸方向に突出し、第2助手席側ピボット軸の基端部には、第2助手席側揺動レバー28の他端が固定され、第2助手席側ピボット軸22の先端部には、第2駆動レバー29の一端が固定されている。
 第2駆動クランクアーム14の他端と第2助手席側揺動レバー28の他端とは、第3連結ロッド31によって連結されている。従って、第2モータ12が駆動されると、第2駆動クランクアーム14が回転し、第3連結ロッド31が第2駆動クランクアーム14の駆動力を第2助手席側揺動レバー28に伝達し、第2助手席側揺動レバー28と共に、第2駆動レバー29を揺動(回転)させる。前述のように第1助手席側ピボット軸21及び第2助手席側ピボット軸22は同軸に設けられているが、第1助手席側ピボット軸21及び第2助手席側ピボット軸22は互いには連動しておらず、第1助手席側ピボット軸21及び第2助手席側ピボット軸22は、各々独立して回転する。
 図2、図4~8に示したように、ワイパ装置2は、第1駆動レバー26の他端側にある第3軸線L3を中心として回転可能に基端部が連結された第1従動レバー32を備える。
 ワイパ装置2は、第1従動レバー32の先端側にある第4軸線L4を中心として回転可能に基端部が連結されると共に、第2駆動レバー29の他端側にある第5軸線L5を中心として回転可能に先端側が連結された第2従動レバーであるアームヘッド33を備える。アームヘッド33は、当該アームヘッド33の先端に基端部が固定されるリテーナ34と共に助手席側ワイパアーム35を構成する。助手席側ワイパアーム35の先端部には、ウィンドシールドガラス1の助手席側を払拭するための助手席側ワイパブレード36が連結されている。
 第1駆動レバー26、第2駆動レバー29、第1従動レバー32及びアームヘッド33は、第1軸線L1(第2軸線L2)から第3軸線L3までの長さと、第4軸線L4から第5軸線L5までの長さが同じになるように連結されている。第1駆動レバー26、第2駆動レバー29、第1従動レバー32及びアームヘッド33は、第3軸線L3から第4軸線L4までの長さと、第1軸線L1(第2軸線L2)から第5軸線L5までの長さが同じになるように連結されている。従って、第1駆動レバー26とアームヘッド33とが平行を保持し、かつ第2駆動レバー29と第1従動レバー32とが平行を保持することになり、第1駆動レバー26、第2駆動レバー29、第1従動レバー32及びアームヘッド33は、略平行四辺形状のリンク機構を構成する。
 第5軸線L5は、助手席側ワイパアーム35が動作する際の支点であり、助手席側ワイパアーム35は、第1モータ11の駆動力により、第5軸線L5を中心として回転することによりウィンドシールドガラス1上を往復動作する。また、第2モータ12は、第1駆動レバー26、第2駆動レバー29、第1従動レバー32及びアームヘッド33で構成される略平行四辺形状のリンク機構を介して、第5軸線L5を、図4~6に示したように、図2、図7及び図8の場合よりもウィンドシールドガラス1の上方に移動させる。かかる第5軸線L5の移動により、助手席側ワイパアーム35は見かけ上伸長される。従って、第1モータ11と共に第2モータ12が動作することにより、助手席側ワイパブレード36は払拭範囲Z2を払拭する。
 第2モータ12が動作せずに第1モータ11のみが動作する場合には、第5軸線L5は図2、図7及び図8に示した位置(以下、「基準位置」と称する)から動かない。従って、助手席側ワイパアーム35は、位置が変化しない第5軸線L5を中心に略円弧状の軌跡を描きながら下反転位置P2Pと上反転位置P1Pの間を動作し、助手席側ワイパブレード36は略扇形の払拭範囲Z1を払拭する。
 本実施の形態では、ウィンドシールドガラス1を広く払拭することを要する場合には、助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pに動作する往動時に、払拭範囲Z2を払拭するように第1モータ11及び第2モータ12を各々制御する。そして、上反転位置P1Pで反転した助手席側ワイパブレード36が下反転位置P2Pに向かって動作する復動時に、払拭範囲Z1を払拭するように第1モータ11及び第2モータ12を各々制御する。助手席側ワイパブレード36が下反転位置P2Pと上反転位置P1Pとの間を往復する際に、往動時には払拭範囲Z2を、復動時には払拭範囲Z1を、各々払拭することにより、ウィンドシールドガラス1の幅広い範囲を払拭できる。または、助手席側ワイパブレード36が下反転位置P2Pと上反転位置P1Pとの間を往復する際に、往動時には払拭範囲Z1を、復動時には払拭範囲Z2を、各々払拭することによっても、ウィンドシールドガラス1の幅広い範囲を払拭できる。または、往動時及び復動時に、払拭範囲Z2を払拭するようにしてもよい。
 以下、本実施の形態に係るワイパ装置2の動作について説明する。本実施の形態では、運転席側ワイパアーム17及び運転席側ワイパブレード18は、第1モータ11の回転に従い、運転席側ピボット軸15を中心として動作するのみなので、以下では、助手席側ワイパアーム35及び助手席側ワイパブレード36の動作について詳述する。
 図2は、助手席側ワイパブレード36が下反転位置P2Pに位置している状態であり、助手席側ワイパアーム35が停止位置にある状態を示している。かかる状態で、前述のウォッシャスイッチ62又は変更モードスイッチがオンになると、制御回路52の制御により第1モータ11の第1出力軸11Aが図4に示した回転方向CC1で回転することにより、第1駆動レバー26が回転を開始し、助手席側ワイパアーム35は、第5軸線L5を中心として回転動作を開始する。同時に、第2モータ12の第2出力軸12Aも、図4に示した回転方向CC2での回転を開始する。なお、本実施の形態では、第1出力軸11Aの回転方向CC1での回転、及び第2出力軸12Aの回転方向CC2での回転を、各々の出力軸における正回転とする。
 図4は、助手席側ワイパブレード36がウィンドシールドガラス1を途中(往動行程の略1/4)まで払拭した状態を示している。本実施の形態では、第1モータ11が回転方向CC1での回転を開始すると、第2モータ12の回転方向CC2での回転による駆動力が第2駆動レバー29に伝達される。第2モータ12の駆動力が伝達された第2駆動レバー29は、動作方向CW3に動作し、助手席側ワイパアーム35の支点である第5軸線L5をウィンドシールドガラス1の助手席側の上方に向けて移動させる。
 図5は、第1出力軸11Aが0°と第1所定角度との間の中間回転角度まで回転したことにより、第1駆動レバー26がさらに回転され、助手席側ワイパブレード36が下反転位置P2Pと上反転位置P1Pとの間の行程(往動行程)の略中間点に達した場合を示している。図5では、第2モータ12の第2出力軸12Aは、図4で示した回転方向CC2で第2所定回転角度まで回転した状態でもある。第2出力軸12Aの正回転での回転角度が最大となったことにより、助手席側ワイパアーム35の支点である第5軸線L5は、第2駆動クランクアーム14、第3連結ロッド31、第2助手席側揺動レバー28及び第2駆動レバー29により、最も上方の位置(変更位置)まで持ち上げられる。その結果、助手席側ワイパブレード36は、図1に示したように、ウィンドシールドガラス1の助手席側の上方の角に近い位置まで移動される。なお、前述の中間回転角度は、第1所定回転角度の半分程度であるが、ウィンドシールドガラス1の形状等に応じて、個別に設定する。なお、変更位置は、各々の変更率において第5軸線L5が最も上方に配置される位置である。詳説すると、変更位置は、助手席側ワイパブレード36が払拭範囲Z1より広い範囲(例えば、払拭範囲Z2)を払拭する際に、第1出力軸11Aが0°と第1所定角度との間の中間回転角度まで回転した時の第5軸線L5が配置される位置である。
 図6は、第1駆動レバー26がさらに回転されたことにより、助手席側ワイパブレード36が下反転位置P2Pと上反転位置P1Pとの間の行程(往動行程)の略3/4に達した場合を示している。図6では、第1モータ11の第1出力軸11Aの回転方向は図4、5の場合と同じだが、第2モータ12の第2出力軸12Aは、図4、5の場合とは逆の回転方向CW2で回転する(逆回転)。第2出力軸12Aが回転方向CW2で回転することにより、第2駆動レバー29は動作方向CC3で動作し、助手席側ワイパアーム35の支点である第5軸線L5は変更位置から下方へ移動される。その結果、助手席側ワイパブレード36は、その先端部が図1に示した払拭範囲Z2上方の破線で示された軌跡を描きながらウィンドシールドガラス1上を移動し、払拭範囲Z2を払拭する。
 図7は、第1モータ11の第1出力軸11Aが第1所定回転角度まで正回転し、かつ第2モータ12の第2出力軸12Aが第2所定回転角度で逆回転した場合を示している。第1モータ11の第1出力軸11Aの正回転での回転角度が最大となったことにより、運転席側ワイパアーム17及び運転席側ワイパブレード18は、上反転位置P1Dに達する。また、第2モータ12の第2出力軸12Aは、図5の示した状態(第2出力軸12Aが正回転にて第2所定回転角度に達した状態)から、第2所定回転角度で逆回転したことにより、助手席側ワイパアーム35の支点である第5軸線L5は、図2に示した第2モータ12の第2出力軸12Aが正回転を開始する前の位置である基準位置に戻っている。その結果、助手席側ワイパアーム35及び助手席側ワイパブレード36は、第2モータ12を駆動しない場合の払拭範囲Z1と同じ上反転位置P1Pに達する。
 図8は、運転席側ワイパアーム17及び運転席側ワイパブレード18並びに助手席側ワイパアーム35及び助手席側ワイパブレード36が上反転位置P1D、P1Pから下反転位置P2D、P2Pに移動する復動時の状態(復動行程)を示している。復動時では、第1モータ11の第1出力軸11Aは逆回転し、図2、図4~7の場合とは逆方向の回転方向CW1で回転する。しかしながら、第2モータ12の第2出力軸12Aは回転せず、従って助手席側ワイパアーム35の支点である第5軸線L5は基準位置から移動しないので、第1モータ11の第1出力軸11Aが逆回転することにより、助手席側ワイパアーム35は略円弧状の軌跡を描く。その結果、助手席側ワイパアーム35の先端に連結された助手席側ワイパブレード36は、払拭範囲Z1を払拭する。
 このように、本実施形態に係るワイパシステム100では、助手席側ワイパブレード36の払拭範囲を変更することが可能とされ、払拭範囲を変更することにより、助手席側の払拭不能領域を縮小することができる。
 しかしながら、払拭速度においては、払拭範囲を変更するほどアーム慣性などによりモータの出力が必要となり、かつ機械的強度も必要になってしまう。
 そこで、本実施形態では、運転席側ワイパブレード18及び助手席側ワイパブレード36を動作させる速度(以下、払拭速度という。)に応じて払拭範囲を可変するようになっている。具体的には、ワイパスイッチ50によって指示された払拭速度が遅いほど、払拭範囲を変更するように制御回路52による制御が行われる。
 詳細には、制御回路52は、低速作動モード選択位置にワイパスイッチ50が操作された場合に、払拭範囲最大の払拭範囲Z2に変更して図9の点線に沿って助手席側ワイパブレード36が低速で移動するように制御回路52が第1モータ11及び第2モータ12を制御する。また、中速作動モード選択位置にワイパスイッチ50が操作された場合に、最大より小さい払拭範囲Z3に変更して図9の一点鎖線に沿って助手席側ワイパブレード36が中速で移動するように制御回路52が第1モータ11及び第2モータ12を制御する。そして、高速作動モード選択位置にワイパスイッチ50が操作された場合に、変更しない払拭範囲Z1として図9の二点鎖線に沿って助手席側ワイパブレード36が高速で移動するように制御回路52が第1モータ11及び第2モータ12を制御する。なお、間欠作動モード位置にワイパスイッチ50が操作された場合には、間欠作動モード時の払拭速度に応じて払拭範囲を変更するものとするが、以下では、間欠作動モード位置にワイパスイッチ50が操作された場合の説明は省略する。
 次に、払拭速度(払拭サイクル)に応じて払拭範囲の変更制御を行う場合の制御回路52による第1モータ11及び第2モータ12の制御方法について説明する。
 払拭範囲を最大に変更する場合、第2モータ12(愛2出力軸12A)の回転角度は、第1モータ11(第1出力軸11A)の回転角度に応じて決定される。第1モータ11(第1出力軸11A)の回転角度をθ1、第2モータ12(第2出力軸12A)の回転角度をθ2とすると、図10(A)に示すように、第2モータ12の回転角度は、第1モータ11の回転角度の関数として表せる(θ2=f(θ1))。
 また、払拭範囲を変更しない場合の第2モータ12の回転角度をθ2=f’(θ1)とし、速度に応じて払拭範囲を最大と最小の間に変更する場合、第2モータ12の回転角度は、θ2={f(θ1)-f’(θ1)}*X+f’(θ1)で表せる。なお、Xは払拭速度で変わる変数とし、最大速度V_Hi、最低速度V_Lo、最大と最低の間の速度(中速度)をV_midとすると、X=(V_Hi-V_mid)/(V_Hi-V_Lo)で、例えば、図10(B)に示すようになる。
 この関数を利用して本実施形態では、低速作動モード選択位置にワイパスイッチ50が操作された場合には、第1モータ11の速度(ワイパブレードの払拭速度)を予め設定された最低速度(V_Lo)で駆動し、第2モータ12の回転角度をθ2=f(θ1)となるように駆動を制御する。
 また、中速作動モード選択位置にワイパスイッチ50が操作された場合には、第1モータ11の速度を予め設定された中速度(V_mid)で駆動し、変数Xを算出して算出した変数Xから第2モータ12の回転角度をθ2={f(θ1)-f’(θ1)}*X+f’(θ1)で算出し、第2モータを制御する。なお、本実施形態では、中速度は、予め定めた払拭速度として説明するが、払拭速度を無段階に変更可能として任意の払拭速度(V_Lo<V_mid<V_Hi)としても同様に制御することができる。
 また、高速作動モード選択位置にワイパスイッチ50が操作された場合には、第1モータ11の速度を予め設定された最大速度(V_Hi)で駆動して、第2モータ12の回転角度をθ2=f’(θ1)となるように駆動を制御する。
 なお、本実施形態では、払拭範囲を変更しない場合には、第2モータ12を駆動しないよう(第2モータ12の回転角度θ2が常に0°になるよう)にしたが、ワイパ装置2のリンク機構の構成やレイアウトによっては第1モータ11の駆動力が変更動作に干渉することがあるため、図10(A)に示すように、第2モータ12の回転角度はθ2=f’(θ1)として示した。
 このように制御回路52が第1モータ11及び第2モータ12の駆動を制御することで、払拭速度に応じて払拭範囲を変更することが可能となる。
 また、最大変更時及び変更しない場合の第1モータ11と第2モータ12の回転角度の設定だけをメモリ60等に記憶しておけば、変更の範囲は上記数式から各回転角度を設定できるので、メモリ容量を節約することができる。
 続いて、払拭速度に応じて払拭範囲を変更する際に、制御回路52で行われる処理の一部について説明する。図11は、本開示の実施形態に係るワイパ装置において、払拭速度に応じて払拭範囲を変更する際に、制御回路52で行われる処理の一部を示すフローチャートである。なお、図11の処理は、ワイパスイッチ50がオンされてワイパ装置2の作動が指示された場合に開始する。また、図11の処理は、説明を簡略化するために第2モータの制御に関わる部分を主に捉えた処理であり、第1モータ11の制御については一部省略して示す。
 ステップ200では、制御回路52が、ワイパスイッチ50の払拭速度を取得してステップ202へ移行する。すなわち、制御回路52が、低速作動モード選択位置、中速作動モード選択位置、または高速作動モード選択位置の選択位置にワイパスイッチ50が操作されたかを検出する。
 ステップ202では、制御回路52が、選択された払拭速度に第1モータ11の払拭速度を決定してステップ204へ移行する。
 ステップ204では、制御回路52が、第2モータ12の回転角度を算出するための速度の変数X(払拭速度で変わる変数X)を決定して、第1モータ11の駆動を開始するよう第1モータを制御してステップ206へ移行する。
 ステップ206では、制御回路52が、第1モータ11の回転角度及び変数Xに基づいて第2モータ12の回転角度を算出してステップ208へ移行する。これにより、払拭速度に応じた払拭範囲で助手席側ワイパブレード36を移動させることが可能となる。
 ステップ208では、制御回路52が、ステップ206で算出された第2モータ12の回転角度になるように第2モータ12を制御してステップ210へ移行する。
 ステップ210では、制御回路52が、払拭速度の変更がないかを確認するために、ステップ200と同様に、ワイパスイッチ50の払拭速度を取得してステップ212へ移行する。
 ステップ212では、制御回路52が、払拭速度の変更があるか否か判定する。該判定が肯定された場合にはステップ214へ移行し、否定された場合にはステップ218へ移行する。
 ステップ214では、制御回路52が、第1モータ11の速度を変更された払拭速度に変更してステップ216へ移行する。
 ステップ216では、制御回路52が、第2モータ12の回転角度を算出するための速度の変数Xを再決定してステップ206に戻って前述の処理が繰り返される。
 一方、ステップ218では、制御回路52が、ワイパスイッチ50がオフされたか否かを判定する。該判定が否定された場合にはステップ206に戻って前述の処理が繰り返され、判定が肯定された場合にはステップ220へ移行する。
 ステップ220では、制御回路52が、運転席側ワイパブレード18及び助手席側ワイパブレード36が停止位置に移動するように第1モータ11及び第2モータ12を制御して一連の処理を終了する。なお、停止位置が下反転位置付近であり、ワイパブレードが下反転位置から上反転位置へ移動している場合は、上反転位置を経由してから停止位置に移動する。
 このように制御回路52が制御することで、ワイパスイッチ50によって指示された払拭速度に応じた払拭範囲に変更することができる。本実施形態では、ワイパスイッチ50によって指示された払拭速度が遅いほど、払拭範囲を変更するように制御することで、モータの出力の増大が不要となり、また機械的強度も抑えることができるので、モータの大型化が不要となりコストアップを抑制することができる。
 なお、上記実施形態では、ワイパスイッチ50によって指示された払拭速度に応じて払拭範囲を変更する例を説明したが、雨量に応じて払拭速度を決定し、払拭速度に応じて払拭範囲を変更してもよい。例えば、ワイパスイッチ50によってAUTO作動モードが選択された場合に、雨量に応じて払拭速度を決定し、払拭速度に応じて払拭範囲を変更する。ここで、雨量に応じて払拭速度を決定し、払拭速度に応じて払拭範囲を変更する場合の制御回路52で行われる処理について説明する。図12は、本開示の実施形態に係るワイパ装置において、雨量に応じて払拭速度決定し、払拭速度に応じて払拭範囲を変更する場合の制御回路52で行われる処理の一部を示すフローチャートである。なお、図11の処理と同一処理については同一符号を付して詳細な説明は省略する。また、図12の処理は、例えば、ワイパスイッチ50によってAUTO作動モードが選択された場合に開始する。
 図12の処理の場合にはステップ200の代わりにステップ200Aを行う。ステップ200Aでは、制御回路52が、レインセンサ76の検出結果を取得することで、降水量(本実施形態では雨量)を検出し、雨量に応じた払拭速度を決定してステップ202へ移行する。例えば、少雨量、中雨量、多雨量とレインセンサ76の検出値の対応関係を予め定めると共に、雨量に応じた払拭速度を予め定めておく、例えば、少雨量の場合は低速、中雨量の場合は中速、多雨量の場合は高速として予め定めて、レインセンサ76の検出値に対応する雨量を検出して払拭速度を決定する。
 また、ステップ210の代わりにステップ210Aを行う。ステップ210Aでは、制御回路52が、雨量の変化があるか否かを判断するために雨量を再度検出してステップ212Aへ移行する。
 ステップ212Aでは、制御回路52が、雨量の変化があるか否かを判定する。該判定が肯定された場合にはステップ214Aへ移行し、否定された場合には前述のステップ218へ移行する。
 ステップ214Aでは、制御回路52が、雨量に応じた払拭速度に第1モータ11の速度を変更して前述のステップ216へ移行する。
 これにより、雨量に応じて払拭速度を自動的に決定して払拭範囲を変更することが可能となる。
 なお、上記の実施形態では、払拭速度に応じて払拭範囲を変更する例を説明したが、これに限るものではなく、払拭範囲に応じて払拭速度を変更するようにしてもよい。ここで、払拭範囲に応じて払拭速度を変更する場合の制御回路52で行われる処理について説明する。図13は、本開示の実施形態に係るワイパ装置において、払拭範囲に応じて払拭速度を変更する場合の制御回路52で行われる処理の一部を示すフローチャートである。なお、図11の処理と同一処理については同一符号を付して詳細な説明は省略する。また、図13の処理では、払拭範囲は、変更しない払拭範囲Z1と、変更した払拭範囲Z2に2種類にワイパスイッチ50の操作によって変更可能として、払拭速度がHIとHOWの2種類である場合を例として説明する。
 図13の処理の場合には、ステップ200の代わりステップ200Bを行う。ステップ200Bでは、制御回路52が、ワイパスイッチ50の信号を取得することにより、払拭範囲の指示を検出してステップ201へ移行する。
 ステップ201では、制御回路52が、ワイパスイッチ50の信号に基づいて払拭範囲を変更するか否かを判定する。該判定が肯定された場合にはステップ202Aへ移行し、否定された場合にはステップ202Bへ移行する。
 ステップ202Aでは、制御回路52が、第1モータ11の払拭速度を予め定めたLOW速度に設定してステップ204へ移行する。一方、ステップ202Bでは、制御回路52が、第1モータ11の払拭速度を予め定めたHI速度に設定してステップ204へ移行する。これにより、払拭範囲に応じて払拭速度を設定することが可能となる。
 また、ステップ210の代わりにステップ210Bを行う。ステップ210Bでは、制御回路52が、払拭範囲の変更があるか否かを判断するためにワイパスイッチ50の信号を再度取得してステップ212Bへ移行する。
 ステップ212Bでは、制御回路52が、払拭範囲の変更があるか否かを判定する。該判定が肯定された場合にはステップ214Bへ移行し、否定された場合には前述のステップ218へ移行する。
 ステップ214Bでは、制御回路52が、変更された払拭範囲に応じて第1モータ11の速度を変更して前述のステップ216へ移行する。
 これにより、払拭範囲を変更するか否かをワイパスイッチ50により指示することで、払拭速度を自動的に変更することができる。すなわち、払拭範囲を変更する場合には変更しない場合よりも払拭速度を遅くすることで、モータの出力の増大が不要となり、また機械的強度も抑えることができるので、モータの大型化等が不要となりコストアップを抑制することができる。
 また、払拭範囲を変更する場合と変更しない場合とで払拭速度が同じ場合は、助手席側のアームの動く軌跡が長くなるため、1往復での払拭速度が非常に速くなり、乗員に違和感を与えるが、払拭範囲に応じて払拭速度を変更するので、乗員の違和感を防止できる。
 なお、上記の図11の処理、図12の処理、及び図13の処理は、各々個別に説明したが、これに限るものではなく、少なくとも2つ以上の処理を含むものとして、ワイパスイッチ50等によって切替可能としてもよい。
 また、上記の実施形態では、助手席側ワイパブレード36の払拭範囲を変更することにより、助手席側ワイパブレード36の車両下側の払拭軌跡が運転席側ワイパブレード18の払拭軌跡と重ならず、払拭不能領域が発生してしまう。そのため、払拭不能な領域をなくすために、払拭範囲を変更する場合に往動時と復動時の助手席側ワイパブレード36を異なる軌跡として説明したが、これに限るものではない。例えば、図14に示すように、助手席側ワイパブレード36の長さが払拭範囲を変更した際に払拭されない領域がない長さに設定して往動時及び復動時共に同じ払拭軌跡の払拭範囲Z2となるように制御してもよい。
 また、本実施形態は、第1モータ11の第1出力軸11A及び第2モータ12の第2出力軸12Aが正逆(往復)回転可能に制御されていたが、これに限定されることはない。例えば、第1出力軸11A及び第2出力軸12Aの一方が一方向に回転するものでもよい。
 また、本実施形態は、第1モータ11の第1出力軸11Aの回転により、運転席側ワイパブレード18及び助手席側ワイパブレード36を上反転位置P1D、P1Pと下反転位置P2D、P2Pとの間で移動させていたが、これに限定されることはない。例えば、第1モータ11として「運転席側第1モータ」と「助手席側第1モータ」とを備え、運転席側第1モータの回転によって運転席側ワイパブレード18を上反転位置P1Dと下反転位置P2Dとの間で移動させ、助手席側第1モータの回転によって助手席側ワイパブレード36を上反転位置P1Pと下反転位置P2Pとの間で移動させる構造でもよい。
 また、本実施形態では、第1出力軸11Aの所定回転角度における中間角度付近までの間で助手席側ワイパアーム35(助手席側ワイパブレード36)を伸長させ、中間角度付近から所定回転角度までの間で助手席側ワイパアーム35(助手席側ワイパブレード36)を縮小させる制御を行ったが、これに限定されることはない。例えば、助手席側ワイパブレード35が下反転位置P2Pから上反転位置P1Pに向かって払拭する際(往動払拭時)に、助手席側ワイパアーム36が徐々に伸長するように制御してもよい。
 また、本実施形態では、レインセンサ76で検出した雨量に応じて払拭速度を決定し、決定した払拭速度に応じた払拭範囲にて第1モータ11及び第2モータ12を制御していたが、これに限定されることはない。例えば、レインセンサ76で検出した雨量に応じて払拭範囲を決定し、決定した払拭範囲に応じた払拭速度にて第1モータ11及び第2モータ12を制御してもよい。また、雨の量に代えて雪の量に応じて第1モータ11及び第2モータ12を制御してもよい。
 なお、本実施の形態では、第1モータ11の第1出力軸11Aの回転角度と第2モータ12の第2出力軸12Aの回転角度とを用いた実施の形態を説明したが、これに代えて第1出力軸11Aの回転位置と第2出力軸12Aの回転位置とを用いたものとしてもよい。
 また、上記の実施形態における払拭範囲を変更可能にする構成は一例として説明したが、これに限るものではなく、他の構成を適用してもよい。
 また、上記の実施形態では、助手席側ワイパブレード36の払拭範囲のみを変更可能な例を説明したが、これに限るものではなく、運転席側についても助手席側と同様の機構を設けて払拭範囲を変更可能としてもよい。
 以上、第1実施形態について説明したが、本開示は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
 [第2実施形態]
 本開示の第2実施形態は、運転手の視野角の変化に応じて払拭範囲の変更を実行する、車両用ワイパ装置及び車両用ワイパ装置の制御方法を提供する。
 以下、図面を参照して本開示の第2実施形態を説明する。ワイパシステム100自体の基本構成は第1実施形態と同様であるため、共通部分には同一の符号を用いて、説明を省略する。
 図15に示されるように、本実施形態の車両ECU90には、ワイパスイッチ50、ウォッシャスイッチ62、レインセンサ76に加えて、方向指示器スイッチ54、車両の速度を検知する車速センサ92、車両の前方を撮影する車載カメラ94、GPS(Global Positioning System)装置96及び操舵角センサ98が接続されている。
 方向指示器スイッチ54は、車両の方向指示器(図示せず)の作動を指示するスイッチであり、運転者の操作により、右又は左の方向指示器をオンにするための信号を車両ECU90に出力する。車両ECU90は、方向指示器スイッチ54から出力された信号に基づいて、右又は左の方向指示器のランプを点滅させる。方向指示器スイッチ54から出力された信号は、車両ECU90を介してマイクロコンピュータ58にも入力される。
 車速センサ92は、車両の車輪の回転数を検知し、当該回転数を示す信号を出力するセンサである。車両ECU90は、車速センサ92が出力した信号と車輪の周長から車速を算出する。
 車載カメラ94は、車両前方を撮影し、動画像のデータを取得する装置である。車両ECU90は、車載カメラ94で取得した動画像のデータを画像処理することにより、車両がカーブに差し掛かっている等を判定することが可能である。また、車両ECU90は、車載カメラ94で取得した動画像のデータの輝度から、車両前方の明るさを算出できる。
 GPS装置は、上空にあるGPS衛星から受信した測位のための信号に基づいて車両の現在位置を算出する装置である。本実施の形態では、ワイパシステム100専用のGPS装置96を用いるが、車両がカーナビゲーションシステム等の他のGPS装置を備える場合には、当該他のGPS装置を用いてもよい。
 操舵角センサ98は、一例としてステアリングの回転軸(図示せず)に設けられ、当該ステアリングの回転角度を検出するセンサである。
 図16は、本実施の形態に係るワイパシステム100の回路を模式的に示した回路図である。図16に示すように、ワイパシステム100は、制御回路52と駆動回路56とを含んでいる。
 制御回路52は、前述のようにマイクロコンピュータ58とメモリ60を有し、マイクロコンピュータ58には、車両ECU90(図示せず)を介して、ワイパスイッチ50、方向指示器スイッチ54、ウォッシャスイッチ62、レインセンサ76、車速センサ92、車載カメラ94、GPS装置96、操舵角センサ98が各々接続されている。
 駆動回路56は、第1モータ11を駆動させるための第1プリドライバ104及び第1モータ駆動回路108、第2モータ12を駆動させるための第2プリドライバ106及び第2モータ駆動回路110を備えている。また駆動回路56は、ウォッシャモータ64を駆動させるための、リレー駆動回路78、FET駆動回路80及びウォッシャモータ駆動回路57を有している。
 制御回路52のマイクロコンピュータ58は、第1プリドライバ104を介して第1モータ駆動回路108を構成するスイッチング素子をオンオフさせることにより第1モータ11の回転を、第2プリドライバ106を介して第2モータ駆動回路110のスイッチング素子をオンオフさせることにより第2モータ12の回転を、各々制御する。また、マイクロコンピュータ58は、リレー駆動回路78及びFET駆動回路80を制御することによりウォッシャモータ64の回転を制御する。
 第1モータ11及び第2モータ12がブラシ付きDCモータの場合、第1モータ駆動回路108及び第2モータ駆動回路110は、各々4個のスイッチング素子を含む。スイッチング素子は、一例としてN型のFET(電界効果トランジスタ)である。
 図16に示すように、第1モータ駆動回路108は、FET108A~108Dを含んでいる。FET108Aは、ドレインが電源(+B)に接続され、ゲートが第1プリドライバ104に接続され、ソースが第1モータ11の一端部に接続されている。FET108Bは、ドレインが電源(+B)に接続され、ゲートが第1プリドライバ104に接続され、ソースが第1モータ11の他端部に接続されている。FET108Cは、ドレインが第1モータ11の一端部に接続され、ゲートが第1プリドライバ104に接続され、ソースが接地されている。FET108Dは、ドレインが第1モータ11の他端部に接続され、ゲートが第1プリドライバ104に接続され、ソースが接地されている。
 第1プリドライバ104は、マイクロコンピュータ58からの制御信号に従ってFET108A~108Dのゲートに供給する制御信号を切り替えることで、第1モータ11の駆動を制御する。すなわち、第1プリドライバ104は、第1モータ11の第1出力軸11Aを所定方向に回転(正回転)させる場合には、FET108AとFET108Dの組をオンさせ、第1モータ11の第1出力軸11Aを所定方向と逆方向に回転(逆回転)させる場合には、FET108BとFET108Cの組をオンさせる。また、第1プリドライバ104は、マイクロコンピュータ58からの制御信号に基づいて、FET108A及びFET108Dを断続的にオンオフさせるPWMを行う。
 第1プリドライバ104はPWMにより、FET108A及びFET108Dのオンオフに係るデューティ比を変化させることにより、第1モータ11の正回転での回転速度を制御する。当該デューティ比が大きくなれば、正回転時に第1モータ11の端子に印加される電圧の実効値が高くなり、第1モータ11の回転速度は大きくなる。
 同様に、第1プリドライバ104はPWMにより、FET108B及びFET108Cのオンオフに係るデューティ比を変化させることにより、第1モータ11の逆回転での回転速度を制御する。当該デューティ比が大きくなれば、逆回転時に第1モータ11の端子に印加される電圧の実効値は高くなり、第1モータ11の回転速度は大きくなる。
 第2モータ駆動回路110は、FET110A~110Dを含んでいる。FET110Aは、ドレインが電源(+B)に接続され、ゲートが第2プリドライバ106に接続され、ソースが第2モータ12の一端部に接続されている。FET110Bは、ドレインが電源(+B)に接続され、ゲートが第2プリドライバ106に接続され、ソースが第2モータ12の他端部に接続されている。FET110Cは、ドレインが第2モータ12の一端部に接続され、ゲートが第2プリドライバ106に接続され、ソースが接地されている。FET110Dは、ドレインが第2モータ12の他端部に接続され、ゲートが第2プリドライバ106に接続され、ソースが接地されている。
 第2プリドライバ106は、マイクロコンピュータ58からの制御信号に従ってFET110A~110Dのゲートに供給する制御信号を切り替えることで、第2モータ12の駆動を制御する。すなわち、第2プリドライバ106は、第2モータ12の第2出力軸12Aを所定方向に回転(正回転)させる場合には、FET110AとFET110Dの組をオンさせ、第2モータ12の第2出力軸12Aを所定方向と逆方向に回転(逆回転)させる場合には、FET110BとFET110Cの組をオンさせる。また、第2プリドライバ104は、マイクロコンピュータ58からの制御信号に基づいて、前述の第1プリドライバ104のようなPWMを行うことにより、第2モータ12の回転速度を制御する。
 第1モータ11の減速機構内における第1出力軸11Aの出力軸端部112には、2極のセンサマグネット112Aが固定され、センサマグネット112Aに対向するように第1絶対角センサ114が設けられている。
 第2モータ12の減速機構内における第2出力軸12Aの出力軸端部116には、2極のセンサマグネット116Aが固定され、センサマグネット116Aに対向するように第2絶対角センサ118が設けられている。
 第1絶対角センサ114はセンサマグネット112Aの磁界を、第2絶対角センサ118はセンサマグネット116Aの磁界を、各々検出し、検出した磁界の強さに応じた信号を出力する。マイクロコンピュータ58は、第1絶対角センサ114及び第2絶対角センサ118が各々出力した信号に基づいて、第1モータ11の第1出力軸11A及び第2モータ12の各々の回転角度、回転位置、回転方向及び回転速度を算出する。
 第1モータ11の第1出力軸11Aの回転角度からは、運転席側ワイパブレード18の下反転位置P2Dと上反転位置P1Dとの間での位置が算出できる。また、第2モータ12の第2出力軸12Aの回転角度からは、助手席側ワイパアーム35の見かけの伸長の程度(変更の程度)が算出できる。マイクロコンピュータ58は、第1出力軸11Aの回転角度から算出した運転席側ワイパブレード18の下反転位置P2Dと上反転位置P1Dとの間での位置に基づいて、第2出力軸12Aの回転角度を制御することにより、第1モータ11と第2モータ12の各々の動作を同期させる。一例として、メモリ60に、運転席側ワイパブレード18の下反転位置P2Dと上反転位置P1Dとの間での位置(又は第1出力軸11Aの回転角度)と第2出力軸12Aの回転角度とを対応付けたマップ(例えば、後述する第2出力軸回転角度マップ)を予め記憶させ、当該マップに従って、第1出力軸11Aの回転角度に応じて第2出力軸12Aの回転角度を制御する。
 図17は、本実施の形態における第1出力軸11Aの回転角度に応じた第2出力軸12Aの回転角度を規定した第2出力軸回転角度マップの一例を示している。図17の横軸は第1出力軸11Aの回転角度である第1出力軸回転角度θAであり、縦軸は第2出力軸12Aの回転角度である第2出力軸回転角度θBである。図17の原点Oは、助手席側ワイパブレード36が下反転位置P2Pにある状態を示している。図17のθ1は、第1出力軸11Aが第1所定回転角度θ1回転した結果、助手席側ワイパブレード36が上反転位置P1Pにある状態を示している。
 マイクロコンピュータ58は、第1絶対角センサ114が第1モータ11の第1出力軸11Aが回転を始めると、第1絶対角センサ114で検知した第1出力軸11Aの回転角度と第2出力軸回転角度マップとを照合する。かかる照合により、図17の曲線190で示された角度から、第1絶対角センサ114で検知した第1出力軸回転角度θAに対応する第2出力軸回転角度θBを算出し、算出した第2出力軸回転角度θBになるように第2モータ12の第2出力軸12Aの回転角度を制御する。
 より具体的には、マイクロコンピュータ58は、第1絶対角センサ114により第1モータ11の第1出力軸11Aの回転角度が0°から正回転方向で変化を開始した場合を、助手席側ワイパブレード36が下反転位置P2Pからの移動を開始したと判定し、第2出力軸12Aの正回転を開始させる。マイクロコンピュータ58は、前述のように、第2出力軸回転角度マップを用いて第1出力軸11Aの回転角度に対応した第2出力軸12Aの回転角度を決定するが、マイクロコンピュータ58は、第2絶対角センサ118からの信号に基づいて第2出力軸12Aの回転角度をモニターし、第2出力軸回転角度マップを用いて決定した回転角度になるように第2モータ12の回転を制御する。第2出力軸回転角度マップの設定によるが、図10に示したように、第1出力軸回転角度θAが0°と第1所定回転角度θ1との間の中間回転角度θmになった場合に、第2出力軸12Aの正回転での回転角度が第2所定回転角度θ2となるようにする。第2出力軸12Aの正回転での回転角度が第2所定回転角度θ2になることで、助手席側ワイパアーム35の支点である第5軸線L5をウィンドシールドガラス1上の助手席側上方(第2位置)に移動させる。
 第2出力軸12Aの正回転での回転角度が第2所定回転角度θ2に達した後は、第2出力軸回転角度マップに従い、第2出力軸12Aの回転角度を減少させる。具体的には、第1出力軸11Aの回転角度が第1所定回転角度θ1に達して、助手席側ワイパブレード36が上反転位置P1Pに達するまでに第2出力軸12Aを第2所定回転角度θ2で逆回転させることにより、第2出力軸12Aの回転角度を0°まで減少させる。かかる第2出力軸12Aの逆回転により、助手席側ワイパアーム35の支点である第5軸線L5は元の位置(第1位置)に戻される。
 以上の説明は、助手席側ワイパブレード36を下反転位置P2Pから上反転位置P1Pに移動させながら払拭範囲Z2を払拭させる場合である。助手席側ワイパブレード36を上反転位置P1Pから下反転位置P2Pに移動させながら払拭範囲Z2を払拭させる場合には、第1絶対角センサ114により第1出力軸11Aの回転角度が0°から逆回転方向で変化を開始した場合を、助手席側ワイパブレード36が上反転位置P1Pからの移動を開始したと判定し、第2モータ12の第2出力軸12Aの正回転を開始させる。なお、図10に示す第2出力軸回転角度マップは中間回転角度θmを軸にして左右対称な曲線190となっているが、これに限定されることはない。マップの曲線はウィンドシールドガラス1の形状等に応じて、個別に設定する。
 また、マイクロコンピュータ58は、運転席側ワイパブレード18の下反転位置P2Dと上反転位置P1Dとの間での位置及び助手席側ワイパアーム35の変更の程度に基づいて、ワイパブレードの払拭速度を変化させる等の制御を行うことも可能である。以下に、第2出力軸12Aの回転角度である第2所定回転角度を大きく設定して、助手席側ワイパアーム35の変更の程度を大きくした場合の払拭速度の制御の一例について述べる。かかる場合には、第1モータ11の第1出力軸11Aの回転角度が中間回転角度に近づくにつれて、第1出力軸11Aの回転速度を徐々に減速させる。そして、第1出力軸11Aの回転角度が中間回転角度に達した場合、すなわち、助手席側ワイパアーム35が最大に伸長される場合に、第1出力軸11Aの回転速度が極小となるように制御する。第1出力軸11Aの回転速度の制御には、例えば、第1出力軸11Aの回転角度に応じて規定された第1出力軸11Aの回転速度のマップ等(図示せず)を用いる。また、第1出力軸11Aの回転速度に対応して、第2出力軸12Aの回転速度も制御する。例えば、図10に示したような第2出力軸回転角度マップを用いているのであれば、第1出力軸11Aの回転に第2出力軸12Aの回転を同期できるので、第1出力軸11Aの回転速度の増減に対応して、第2出力軸12Aの回転速度も制御できる。かかる制御により、助手席側ワイパアーム35を伸長させる速度と助手席側ワイパブレード36の払拭速度とを緩和でき、「助手席側ワイパアーム35が急激に伸びた」という違和感を乗員が覚えるおそれを軽減できる。
 ウォッシャモータ駆動回路57は、2個のリレーRLY1、RLY2を内蔵したリレーユニット84、2個のFET86A、86Bを含んでいる。リレーユニット84のリレーRLY1、RLY2のリレーコイルはリレー駆動回路78に各々接続されている。リレー駆動回路78はリレーRLY1、RLY2のオンオフ(リレーコイルの励磁/励磁停止)を切り替える。リレーRLY1、RLY2は、リレーコイルが励磁されていない間は、共通端子84C1、84C2が第1端子84A1、84A2と各々接続している状態(オフ状態)を維持し、リレーコイルが励磁されると共通端子84C1、84C2を第2端子84B1、84B2に各々接続する状態に切り替わる。リレーRLY1の共通端子84C1はウォッシャモータ64の一端に接続されており、リレーRLY2の共通端子84C2はウォッシャモータ64の他端に接続されている。また、リレーRLY1、RLY2の第1端子84A1、84A2の各々はFET86Bのドレインに接続され、リレーRLY1、RLY2の第2端子84B1、84B2の各々は電源(+B)に接続されている。
 FET86BはゲートがFET駆動回路80に接続され、ソースが接地されている。FET86Bのオンオフに係るデューティ比はFET駆動回路80によって制御される。また、FET86Bのドレインと電源(+B)との間にはFET86Aが設けられている。FET86Aは、ゲートに制御信号が入力されないのでオンオフの切り替えは行われず、寄生ダイオードをサージの吸収に用いる目的で設けられている。
 リレー駆動回路78及びFET駆動回路80は、2個のリレーRLY1、RLY2とFET86Bとのオンオフを切り替えることで、ウォッシャモータ64の駆動を制御する。すなわち、ウォッシャモータ64の出力軸を所定方向に回転(正回転)させる場合、リレー駆動回路78はリレーRLY1をオンさせ(リレーRLY2はオフ)、FET駆動回路80は所定のデューティ比でFET86Bをオンさせる。上記の制御により、ウォッシャモータ64の出力軸の回転速度が制御される。
 以下、本実施の形態に係るワイパシステム100の制御について説明する。図18は、本実施の形態に係るワイパシステム100における、車両の速度に応じて助手席側ワイパアーム35の変更率を制御する変更率制御処理の一例を示したフローチャートである。図11に示した一連の手順は、制御回路52内のマイクロコンピュータ58によって処理される。
 ステップ300では、車速センサ92が出力した信号から算出した車両の速度の情報を取得する。車両の速度が車両ECU90により算出されるのであれば、マイクロコンピュータ58は、車両ECU90から車両の速度の情報を取得する。
 図19は、運転者の視野の範囲である視野角120と、車両の速度(車速)との対応関係の一例を示したグラフである。視野角120は、正中線(生物体の前面・背面の中央を,頭頂から縦にまっすぐ通る線)を中心とした左右方向でのヒトの両眼での視野の範囲を角度で表したものであり、健常者であれば、略120°である。しかしながら、車速が増大すると運転者の視野角120は狭くなる。図12に示したように、車速が40km/hの場合、運転者の視野角120は略100°であるが、車速が130km/hに達すると視野角120は略30°となる。
 ワイパ装置2による払拭範囲の変更は、助手席側前方の視界確保(助手席側の広い視界の確保)に有効であるが、運転者の視野が低下している場合に払拭範囲の変更を行っても、その効果は有意とは言えない。助手席側ワイパアーム35が伸長される払拭範囲の変更の動作は、乗員、特に助手席側の乗員に違和感を抱かせるおそれがあるので、払拭範囲の変更の効果が薄いと思われる高速走行時には、払拭範囲の変更率を低速時に比して抑制することが望ましい。
 本実施の形態では、一例として、払拭範囲の変更率122を、図19に示したように車速に応じて変化させる。そのため、図18のステップ302では、下記の式(1)により、0~1.0の数値で示される払拭範囲の変更率Xを現在の車速Vpに応じて算出する。
Figure JPOXMLDOC01-appb-I000001

 
 一例として、式(1)中の、Vmax、Vminは各々定数であり、本実施の形態では、Vmaxは90km/h以上、Vminは30~40km/hである。上記の式(1)に変数である現在の車速Vpを代入して、車速に応じた変更率Xを算出する。
 または、車速に応じた変更率Xを、図19に示したように予め算出しておき、メモリ60に車速に対する変更率Xのマップとして記憶させてもよい。かかる場合には、マイクロコンピュータ58は、マップを参照して車速に応じた変更率Xを決定する。
 ステップ304では、ステップ302で算出した変更率Xに応じて助手席側ワイパアーム35の伸長の制御をして、処理をリターンする。ステップ304では、変更率Xと図13に示した第2出力軸回転角度マップと下記の式(2)とによって算出した第2出力軸回転角度θBになるように第2出力軸12Aの回転角度を制御する。
Figure JPOXMLDOC01-appb-I000002

 
 上記の式(2)中のθAは、図17、20で示した第1出力軸11Aの回転角度である第1出力軸回転角度θAである。f(θA)は図20の曲線190で示された、変更率Xが1.0(100%相当)の場合に、第1出力軸回転角度θAに応じて決定される第2出力軸12Aの回転角度である。また、g(θA)は図13の曲線194で示された、変更率Xが0(0%相当)の場合に、第1出力軸回転角度θAに応じて決定される第2出力軸12Aの回転角度である。
 変更率Xが0の場合、すなわち第2モータ12が回転しない場合には、理論上、第2出力軸12Aの回転角度g(θA)は、第1出力軸回転角度θAの値に関係なく常に0°になる。しかしながら、本実施の形態では、助手席側ワイパアーム35の支点である第5軸線L5を移動させるリンク機構にも、運転席側ワイパアーム17及び助手席側ワイパアーム35を往復動作させる第1モータ11の駆動力が影響する場合があり、g(θA)は、実際には第1出力軸回転角度θAの値に関係なく常に0°にはならない場合がある。
 ただし、第1出力軸回転角度θAに対するg(θA)の変化が無視できるようであれば、下記の式(3)のように、変更率Xでの第2出力軸回転角度θBは、f(θA)とXとの積で算出できる。
Figure JPOXMLDOC01-appb-I000003

 
 図20の曲線192は、上記の式(1)に基づいて算出された変更率Xが0.5(50%相当)の場合の第2出力軸回転角度θBである。曲線192が示す第2出力軸回転角度θBは、変更率Xが100%相当の場合である曲線190が示す角度の略1/2になっている。
 図21は、変更率Xに応じた払拭範囲の変化の一例を示している。図21において、払拭範囲Z1は変更率Xが0%相当の場合、払拭範囲Z2は変更率Xが100%相当の場合、払拭範囲Z3は変更率Xが50%相当の場合、を各々示している。図21に示したように、車速に応じて変更率Xを変化させることにより、運転者の視野角が狭まる高速走行時には、助手席側ワイパアーム35の伸長の程度を抑制して、乗員にワイパ装置2の動作についての違和感を与えないようにすることができる。
 なお、本実施の形態では、車速に対する運転者の視野角の変化に着目して助手席側ワイパアーム35の伸長の程度を制御した。運転者の視野角は車速以外にも、周囲の明るさ及び天候によっても左右される。
 例えば、車両前方の光景の明るさが低下するほど、運転者の視野角も低下する。本実施の形態では、車載カメラ94によって取得した車両前方の画像データの輝度から、車両前方の光景の明るさ(照度)を算出し、算出した照度に応じて変更率Xを算出してもよい。
 車外の明るさに応じた変更率Xの算出は、一例として、下記の式(4)による。
Figure JPOXMLDOC01-appb-I000004

 
 一例として、式(4)中のLmax、Lminは各々定数であり、本実施の形態では、Lmaxは晴天の日中における車両前方の光景の照度、Lminは晴天の日没時における車両前方の光景の照度である。上記の式(4)に変数である現在の照度Lpを代入して、照度Lpに応じた変更率Xを算出し、算出した変更率Xに応じて第2出力軸回転角度θBを制御する。
 または雨脚の強さに対応して変更率Xを算出してもよい。本実施の形態に係るワイパシステム100は、レインセンサ76を備えているので、レインセンサ76によって検知した降水の程度によって、変更率Xを算出する。降水の程度に応じた変更率Xの算出は、一例として、下記の式(5)による。
Figure JPOXMLDOC01-appb-I000005

 
 一例として、式(4)中のRmax、Rminは各々定数であり、本実施の形態では、Rmaxは1時間雨量で20~30mm程度の強い雨に相当する降水の程度、Rminは1時間雨量で1~3mm程度の弱い雨に相当する降水の程度である。上記の式(4)に変数であるレインセンサ76によって検知した降水の程度Rpを代入して、雨脚に応じた変更率Xを算出し、算出した変更率Xに応じて第2出力軸回転角度θBを制御する。
 本実施の形態では、上述のように、車速、車両前方の明るさ又は天候による影響がいずれか1つ存在する場合に、当該影響に応じて変更率Xを変化させる、いわゆるOR制御を行った。しかしながら、変更率Xの制御を厳格化する等の場合は、車速、車両前方の明るさ又は天候による影響が少なくとも2つ以上存在する場合に変更率Xを変化させる、いわゆるAND制御を行ってもよい。
 なお、上記照度又は雨脚に応じた変更率Xを、予め算出しておき、メモリ60に照度又は雨脚に対する変更率Xのマップとして記憶させてもよい。かかる場合には、マイクロコンピュータ58は、マップを参照して照度又は雨脚に応じた変更率Xを決定する。
 以上説明したように、本実施の形態によれば、車速、車両前方の明るさ又は天候によって運転者の視野角が影響を受ける場合には、受ける影響に応じて変更率Xを変化させることにより、運転者の視野角が狭まる場合に、助手席側ワイパアーム35の伸長の程度を抑制して、乗員にワイパ装置2の動作についての違和感を与えないようにすることができる。
 [第2実施形態の変形例]
 続いて、本実施の形態の変形例について説明する。図22は、本実施の形態に係るワイパシステム100における、車両の速度に応じて助手席側ワイパアーム35の変更率を制御する変更率制御処理の変形例を示したフローチャートである。図22に示した一連の手順は、制御回路52内のマイクロコンピュータ58によって処理される。
 図18に示した変更率制御処理は、車速の変化に応じて連続的に変更率Xを変更したが、図22に示した変形例は、所定の閾値速度に応じて段階的に変更率Xを変更する。
 図22のステップ330では、車速センサ92が出力した信号から算出した車速の情報を取得する。車速が車両ECU90により算出されるのであれば、マイクロコンピュータ58は、車両ECU90から車速の情報を取得する。
 ステップ332では、車速が第1閾値速度以上か否かを判定する。第1閾値速度は、一例として一般道での制限速度に相当する40~50km/hである。ステップ132で肯定判定の場合には、手順をステップ336に移行させる。ステップ332で否定判定の場合には、ステップ334で変更率Xを例えば100%相当に設定して、手順をステップ342に移行させる。
 ステップ336では、車速が第2閾値速度以上か否かを判定する。第2閾値速度は、一例として高速道路での制限速度に相当する80~100km/hである。ステップ336で肯定判定の場合には、ステップ340で変更率Xを例えば0%相当に設定して、手順をステップ342に移行させる。ステップ336で否定判定の場合には、ステップ338で変更率Xを例えば50%相当に設定して、手順をステップ342に移行させる。
 ステップ342では、ステップ334、338、340で各々算出された変更率Xに応じて、図18のステップ304のように、助手席側ワイパアーム35の伸長の制御を行い、処理をリターンする。
 以上説明したように、本実施の形態の変形例では、車速に応じて段階的に変更率Xを変更しているので、マイクロコンピュータ58による演算処理の負荷を、図18に示した場合よりも軽減できる。従って、図18に示したような、車速に応じて連続的に変更率Xを変更する場合よりも、マイクロコンピュータ58の性能は高度であることを必要とせず、ワイパシステム100を、図18の場合よりも低コストで構成できる。
 なお、本実施の形態は、第1モータ11の第1出力軸11A及び第2モータ12の第2出力軸12Aが正逆(往復)回転可能に制御されていたが、これに限定されることはない。例えば、第1出力軸11A及び第2出力軸12Aの一方が一方向に回転するものでもよい。
 なお、本実施の形態は、第1モータ11の第1出力軸11Aの回転により、運転席側ワイパブレード18及び助手席側ワイパブレード36を上反転位置P1D、P1Pと下反転位置P2D、P2Pとの間で移動させていたが、これに限定されることはない。例えば、第1モータ11として「運転席側第1モータ」と「助手席側第1モータ」とを備え、運転席側第1モータの回転によって運転席側ワイパブレード18を上反転位置P1Dと下反転位置P2Dとの間で移動させ、助手席側第1モータの回転によって助手席側ワイパブレード36を上反転位置P1Pと下反転位置P2Pとの間で移動させる構造でもよい。
 なお、本実施の形態では、運転席側ワイパブレード18と助手席側ワイパブレード36とが下反転位置P2D、P2Pにて車幅方向に重ならない構造になっていたが、これに限定されることはない。例えば、助手席側ワイパブレード36の運転席側ワイパブレード18側を長く設定してもよい。換言すると、助手席側ワイパブレード36の運転席側ワイパブレード18側が、当該運転席側ワイパブレード18の助手席側ワイパブレード36側と重なるように助手席側ワイパブレード36の長さを設定してもよい。これにより、往復動時に払拭範囲Z2を払拭する際に、ウィンドシールドガラスの中央下側に残る払拭不能領域を少なくすることができる。
 なお、本実施の形態では、第1出力軸11Aの所定回転角度における中間角度付近までの間で助手席側ワイパアーム35(助手席側ワイパブレード36)を伸長させ、中間角度付近から所定回転角度までの間で助手席側ワイパアーム35(助手席側ワイパブレード36)を縮小させる制御を行ったが、これに限定されることはない。例えば、助手席側ワイパブレード36が下反転位置P2Pから上反転位置P1Pに向かって払拭する際(往動払拭時)に、助手席側ワイパアーム35が徐々に伸長するように制御してもよい。
 なお、本実施の形態では、第1モータ11の第1出力軸11Aの回転角度と第2モータ12の第2出力軸12Aの回転角度とを用いた実施の形態を説明したが、これに代えて第1出力軸11Aの回転位置と第2出力軸12Aの回転位置とを用いたものとしてもよい。
 以上、第2実施形態について説明したが、本開示は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。例えば、第1実施形態と第2実施形態とを適宜組み合わせることが可能である。
 日本国特許出願2016-005531、及び日本国特許出願2016-008054の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (18)

  1.  ワイパブレードによる払拭面の往復払拭動作を行わせる第1モータと、
     前記ワイパブレードによる前記払拭面の払拭範囲を変更する第2モータと、
     前記ワイパブレードの払拭速度または払拭範囲を指示する指示部と、
     予め設定された条件に基づいて、前記ワイパブレードが往復払拭動作を行うように、前記第1モータ及び前記第2モータを制御する制御部と、
     を備えた車両用ワイパ装置。
  2.  前記条件は、指示部によって指示された払拭速度であり、
     前記制御部は、前記払拭速度が遅いほど前記払拭範囲を大きく変更するように前記第1モータ及び前記第2モータを制御する請求項1に記載の車両用ワイパ装置。
  3.  前記条件は、指示部によって指示された払拭範囲であり、
     前記制御部は、前記払拭範囲が大きいほど前記払拭速度が遅くなるように前記第1モータ及び前記第2モータを制御する請求項1に記載の車両用ワイパ装置。
  4.  降水量を検出する検出部を更に備え、
     前記指示部が、前記ワイパブレードの払拭速度または払拭範囲または自動払拭を指示し、
     前記制御部が、前記指示部によって前記自動払拭が指示された場合に、前記検出部の検出結果に応じて予め定めた払拭速度及び払拭範囲の一方を決定し、決定した当該払拭速度及び当該払拭範囲の一方に応じて予め定めた払拭範囲及び払拭速度の他方で前記往復払拭動作を行うように、前記第1モータ及び前記第2モータを制御する請求項1~3の何れか1項に記載の車両用ワイパ装置。
  5.  前記条件は、運転者の視野角の変化に対応する変数である、
     請求項1に記載の車両用ワイパ装置。
  6.  前記変数は、車両の速度を含み、
     前記制御部は、検知された車両の速度が増大するに従って前記払拭範囲の変更率を減少させる請求項5に記載の車両用ワイパ装置。
  7.  前記変数は、車両前方の明るさを含み、
     前記制御部は、車両前方の明るさが低下するに従って前記払拭範囲の変更率を減少させる、請求項5または6に記載の車両用ワイパ装置。
  8.  前記変数は、降水量を含み、
     前記制御部は、降水量が増大するに従って前記払拭範囲の変更率を減少させる請求項5~7のいずれか1項に記載の車両用ワイパ装置。
  9.  前記第1モータは、第1出力軸を有し、前記第1出力軸の回転により前記ワイパブレードを動作させるワイパアームを往復回転させて、前記払拭面の予め定めた上反転位置と予め定めた下反転位置との間で前記ワイパブレードの前記往復払拭動作を行わせ、
     前記第2モータは、リンク機構を介して前記ワイパアームに連結されて回転される第2出力軸を有し、前記第2出力軸の回転により前記ワイパアームを往復回転させる支点を、第1位置と前記第1位置から助手席側上方に離れた第2位置との間で移動することで払拭範囲を変更する請求項1~8の何れか1項に記載の車両用ワイパ装置。
  10.  ワイパブレードに払拭面の往復払拭動作を行わせることと、
     前記ワイパブレードによる前記払拭面の払拭範囲を変更することと、
     前記ワイパブレードの払拭速度または払拭範囲を指示することと、
     予め設定された条件に基づいて、前記ワイパブレードに往復払拭動作を行わせることと、
     を含む、車両用ワイパ装置の制御方法。
  11.  前記条件は、指示された払拭速度であり、
     前記ワイパブレードに往復払拭動作を行わせることは、前記払拭速度が遅いほど前記払拭範囲を大きく変更することを含む、
     請求項10に記載の車両用ワイパ装置の制御方法。
  12.  前記条件は、指示された払拭範囲であり、
     前記ワイパブレードに往復払拭動作を行わせることは、前記払拭範囲が大きいほど前記払拭速度を遅くすることを含む、
     請求項10に記載の車両用ワイパ装置の制御方法。
  13.  降水量を検知することをさらに含み、
     前記ワイパブレードの払拭速度または払拭範囲を指示することは、自動払拭を指示することを含み、
     前記ワイパブレードに往復払拭動作を行わせることは、前記自動払拭が指示された場合に、検知された前記降水量に応じて予め定めた払拭速度及び払拭範囲の一方を決定し、決定した当該払拭速度及び当該払拭範囲の一方に応じて予め定めた払拭範囲及び払拭速度の他方を決定することを含む、請求項10~12の何れか1項に記載の車両用ワイパ装置の制御方法。
  14.  前記条件は、運転者の視野角の変化に対応する変数である、
     請求項10に記載の車両用ワイパ装置の制御方法。
  15.  車両の速度を検知することをさらに含み、
     前記変数は、車両の速度を含み、
     前記ワイパブレードに往復払拭動作を行わせることは、検知された車両の速度が増大するに従って前記払拭範囲の変更率を減少させることを含む、
     請求項14に記載の車両用ワイパ装置の制御方法。
  16.  車両前方の明るさを検知することを含み、
     前記変数は、車両前方の明るさを含み、
     前記ワイパブレードに往復払拭動作を行わせることは、車両前方の明るさが低下するに従って前記払拭範囲の変更率を減少させることを含む、
     請求項14または15に記載の車両用ワイパ装置の制御方法。
  17.  降水量を検知することをさらに含み、
     前記変数は、降水量を含み、
     前記ワイパブレードに往復払拭動作を行わせることは、降水量が増大するに従って前記払拭範囲の変更率を減少させることを含む、
     請求項14~16のいずれか1項に記載の車両用ワイパ装置の制御方法。
  18.  前記ワイパブレードに往復払拭動作を行わせることは、
      前記払拭面の予め定めた上反転位置と予め定めた下反転位置との間で前記ワイパブレードの前記往復払拭動作を行わせることと、
      前記ワイパブレードに接続されるワイパアームを往復回転させる支点を、第1位置と前記第1位置から助手席側上方に離れた第2位置との間で移動させることによって前記払拭範囲を変更することと、
     を含む、請求項10~17のいずれか1項に記載の車両用ワイパ装置の制御方法。
PCT/JP2017/001257 2016-01-14 2017-01-16 車両用ワイパ装置及び車両用ワイパの制御方法 WO2017122826A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016005531A JP6724372B2 (ja) 2016-01-14 2016-01-14 車両用ワイパ装置及び車両用ワイパ制御プログラム
JP2016-005531 2016-01-14
JP2016-008054 2016-01-19
JP2016008054A JP6724376B2 (ja) 2016-01-19 2016-01-19 払拭範囲可変ワイパ装置及び払拭範囲可変ワイパ装置の制御方法

Publications (1)

Publication Number Publication Date
WO2017122826A1 true WO2017122826A1 (ja) 2017-07-20

Family

ID=59312191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001257 WO2017122826A1 (ja) 2016-01-14 2017-01-16 車両用ワイパ装置及び車両用ワイパの制御方法

Country Status (1)

Country Link
WO (1) WO2017122826A1 (ja)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4636568B1 (ja) * 1966-12-02 1971-10-27
JPS474247B1 (ja) * 1967-11-30 1972-02-05
JPS5525638A (en) * 1978-08-10 1980-02-23 Nippon Denso Co Ltd Wiper
GB2227926A (en) * 1989-02-10 1990-08-15 Delco Prod Overseas Windscreen wiper assembly
JPH03136956A (ja) * 1989-10-23 1991-06-11 Asmo Co Ltd 車両用ワイパ
JPH03262762A (ja) * 1990-03-12 1991-11-22 Asmo Co Ltd 車両用ワイパ
JPH0586727U (ja) * 1992-04-27 1993-11-22 株式会社三ツ葉電機製作所 ワイパ装置におけるブレードラバーの付着物除去構造
JP2000095067A (ja) * 1998-09-22 2000-04-04 Denso Corp ワイパー装置
JP2001106031A (ja) * 1999-10-06 2001-04-17 Jidosha Denki Kogyo Co Ltd ワイパ装置
JP2005075039A (ja) * 2003-08-28 2005-03-24 Nissan Motor Co Ltd ワイパ制御装置
JP2005206032A (ja) * 2004-01-22 2005-08-04 Mitsuba Corp 車両用ワイパ装置
JP2007326468A (ja) * 2006-06-08 2007-12-20 Mitsubishi Motors Corp ワイパ装置
JP2009126383A (ja) * 2007-11-26 2009-06-11 Nissan Motor Co Ltd ワイパ制御装置
JP2010137606A (ja) * 2008-12-09 2010-06-24 Tokai Rika Co Ltd ワイパ装置
JP2010179910A (ja) * 2009-01-09 2010-08-19 Asmo Co Ltd ワイパ装置、ワイパ制御方法、及びワイパ制御プログラム
JP2010264931A (ja) * 2009-05-18 2010-11-25 Mitsuba Corp 車両用ワイパ装置
JP2015189275A (ja) * 2014-03-27 2015-11-02 株式会社ミツバ ワイパシステム制御方法及びワイパシステム制御装置
WO2016203906A1 (ja) * 2015-06-17 2016-12-22 アスモ 株式会社 車両ワイパ装置

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4636568B1 (ja) * 1966-12-02 1971-10-27
JPS474247B1 (ja) * 1967-11-30 1972-02-05
JPS5525638A (en) * 1978-08-10 1980-02-23 Nippon Denso Co Ltd Wiper
GB2227926A (en) * 1989-02-10 1990-08-15 Delco Prod Overseas Windscreen wiper assembly
JPH03136956A (ja) * 1989-10-23 1991-06-11 Asmo Co Ltd 車両用ワイパ
JPH03262762A (ja) * 1990-03-12 1991-11-22 Asmo Co Ltd 車両用ワイパ
JPH0586727U (ja) * 1992-04-27 1993-11-22 株式会社三ツ葉電機製作所 ワイパ装置におけるブレードラバーの付着物除去構造
JP2000095067A (ja) * 1998-09-22 2000-04-04 Denso Corp ワイパー装置
JP2001106031A (ja) * 1999-10-06 2001-04-17 Jidosha Denki Kogyo Co Ltd ワイパ装置
JP2005075039A (ja) * 2003-08-28 2005-03-24 Nissan Motor Co Ltd ワイパ制御装置
JP2005206032A (ja) * 2004-01-22 2005-08-04 Mitsuba Corp 車両用ワイパ装置
JP2007326468A (ja) * 2006-06-08 2007-12-20 Mitsubishi Motors Corp ワイパ装置
JP2009126383A (ja) * 2007-11-26 2009-06-11 Nissan Motor Co Ltd ワイパ制御装置
JP2010137606A (ja) * 2008-12-09 2010-06-24 Tokai Rika Co Ltd ワイパ装置
JP2010179910A (ja) * 2009-01-09 2010-08-19 Asmo Co Ltd ワイパ装置、ワイパ制御方法、及びワイパ制御プログラム
JP2010264931A (ja) * 2009-05-18 2010-11-25 Mitsuba Corp 車両用ワイパ装置
JP2015189275A (ja) * 2014-03-27 2015-11-02 株式会社ミツバ ワイパシステム制御方法及びワイパシステム制御装置
WO2016203906A1 (ja) * 2015-06-17 2016-12-22 アスモ 株式会社 車両ワイパ装置

Similar Documents

Publication Publication Date Title
JP6790688B2 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
US11708052B2 (en) Vehicle cleaning system
WO2018110328A1 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
JP2005206032A (ja) 車両用ワイパ装置
JP2019018614A (ja) 車両用ワイパ装置
WO2017126526A1 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
JP6801678B2 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
WO2017122826A1 (ja) 車両用ワイパ装置及び車両用ワイパの制御方法
JP6724376B2 (ja) 払拭範囲可変ワイパ装置及び払拭範囲可変ワイパ装置の制御方法
JP6891683B2 (ja) 車両用ワイパ装置
JP6724469B2 (ja) 払拭範囲可変ワイパ装置及び払拭範囲可変ワイパ装置の制御方法
WO2017122825A1 (ja) ワイパ装置及びワイパ装置の制御方法
WO2018079248A1 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
JP6665680B2 (ja) 払拭範囲拡大ワイパ装置及び払拭範囲拡大ワイパ装置の制御方法
JP6724382B2 (ja) 払拭範囲可変ワイパ装置及び払拭範囲可変ワイパ装置の制御方法
JP2017159800A (ja) 払拭範囲拡大ワイパ装置及び払拭範囲拡大ワイパ装置の制御方法
JP6922484B2 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
JP6724372B2 (ja) 車両用ワイパ装置及び車両用ワイパ制御プログラム
JP6891679B2 (ja) 車両用ワイパ装置
WO2017164182A1 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
WO2017183560A1 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
JP6769081B2 (ja) 払拭範囲拡大ワイパ装置及び払拭範囲拡大ワイパ装置の制御方法
WO2017122643A1 (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
JP2018095044A (ja) 車両用ワイパ装置及び車両用ワイパ装置の制御方法
JP2019018756A (ja) 車両用ワイパ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738578

Country of ref document: EP

Kind code of ref document: A1