WO2017122820A1 - Frp前駆体、積層板、金属張積層板、プリント配線板、半導体パッケージ、及びそれらの製造方法 - Google Patents

Frp前駆体、積層板、金属張積層板、プリント配線板、半導体パッケージ、及びそれらの製造方法 Download PDF

Info

Publication number
WO2017122820A1
WO2017122820A1 PCT/JP2017/001134 JP2017001134W WO2017122820A1 WO 2017122820 A1 WO2017122820 A1 WO 2017122820A1 JP 2017001134 W JP2017001134 W JP 2017001134W WO 2017122820 A1 WO2017122820 A1 WO 2017122820A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
clad laminate
frp
less
frp precursor
Prior art date
Application number
PCT/JP2017/001134
Other languages
English (en)
French (fr)
Inventor
登坂 祐治
斉藤 猛
中村 幸雄
亮太 佐々木
清水 浩
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US16/069,933 priority Critical patent/US20190037691A1/en
Priority to CN201780006411.3A priority patent/CN108472831A/zh
Priority to JP2017561208A priority patent/JP6981256B2/ja
Priority to KR1020187019670A priority patent/KR20180103061A/ko
Priority to EP17738572.1A priority patent/EP3403801B1/en
Publication of WO2017122820A1 publication Critical patent/WO2017122820A1/ja
Priority to HK18114030.3A priority patent/HK1254930A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/041Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/06Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/08Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica comprising asbestos
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs

Definitions

  • the present invention relates to an FRP precursor, a laminate, a metal-clad laminate, a printed wiring board, a semiconductor package, and a method for producing them.
  • FRP Fiber Reinforced Plastic
  • a base material such as plastic to improve the strength.
  • It is a composite material that is inexpensive, lightweight, and highly durable, taking advantage of weather resistance, heat resistance, chemical resistance and light weight. Since the FRP has moldability and high strength, it is used in a wide range of fields such as housing equipment, ships, vehicles, aircrafts, and other structural materials, and electronic equipment.
  • a prepreg is mentioned as FRP utilized for an electronic device, and the prepreg before hardening is sometimes referred to as an FRP precursor.
  • Some of electronic components of electronic devices used in daily life are also manufactured using FRP precursors.
  • the electronic parts are required to be further reduced in weight and size from the viewpoint of convenience in use.
  • Printed wiring boards used for electronic parts are also made thinner and smaller, and the wiring patterns are being made finer and the thickness of the insulating layer is being reduced. Therefore, the glass cloth in the insulating layer is also being made thinner.
  • the copper foil is being made thinner.
  • the current method of manufacturing a printed wiring board is to sandwich a prepreg, copper foil, and an inner-layer core substrate with a mirror plate between hot plates, press and heat, and laminate the copper layer on the outermost layer.
  • the mainstream method is to use a copper-clad laminate with a foil and use a subtractive method for circuit processing and circuit connection to form a printed wiring board.
  • it has been laminated as it is without worrying about the surface of the prepreg obtained from the thermosetting resin composition and the reinforcing base material, but since it is pressed and flattened during lamination, There was no problem. For this reason, no unnecessary treatment such as reducing the surface waviness of the prepreg has been performed (for example, see Patent Document 1). This is because the thickness of the copper foil so far is sufficient and the mechanical strength of the copper foil is high.
  • the present invention provides an FRP precursor capable of providing a metal-clad laminate having a small surface waviness and a small light spot even if the thickness of the metal foil is 40 ⁇ m or less, and , A laminate containing the FRP precursor, a metal-clad laminate having a metal foil on the laminate, a printed wiring board having a circuit pattern formed on the metal-clad laminate, and a semiconductor package containing the printed wiring board It is an object to provide a manufacturing method thereof.
  • the present inventors have found that the above problems can be solved if the FRP precursor has a predetermined surface waviness or less, and the present invention has been completed.
  • the present invention has been completed based on such knowledge.
  • the present invention relates to the following [1] to [13].
  • [7] A printed wiring board in which a circuit pattern is formed on the metal-clad laminate according to any one of [4] to [6].
  • [8] A semiconductor package containing the printed wiring board according to [7] above.
  • [9] (1) A step of reducing the surface waviness on both sides of the FRP precursor to 12 ⁇ m or less, The manufacturing method of the FRP precursor as described in said [1] which has.
  • [10] (1) A step of reducing the surface waviness on both sides of the FRP precursor to 12 ⁇ m or less, and (2) a step of laminating two or more FRP precursors obtained in the step (1), The manufacturing method of a laminated board which has these.
  • a method for producing a metal-clad laminate comprising: [12] The method for producing a metal-clad laminate according to [11], wherein the thickness of the metal foil is 40 ⁇ m or less. [13] The method for producing a metal-clad laminate according to the above [11] or [12], wherein the metal foil is a copper foil.
  • the present invention even if the thickness of the metal foil is 40 ⁇ m or less, generation of light spots in the metal foil of the metal-clad laminate can be suppressed. Therefore, there is little possibility that the metal foil surface will be scratched or the metal foil will be broken. Furthermore, there is no need to divide the heating and pressurizing process at the time of manufacturing the laminate into two stages, and the lamination conditions are industrially advantageous.
  • (A) It is a schematic diagram which shows the state just before lamination
  • (B) It is a schematic diagram which shows the state after lamination
  • (C) It is a schematic diagram which shows the state just before lamination
  • (D) It is a schematic diagram which shows the state after lamination
  • FRP precursor Fiber Reinforced Plastics
  • a high elastic modulus material such as fiber is used as an aggregate, and the aggregate is placed in a matrix (matrix) such as plastic to improve the strength.
  • Matrix matrix
  • FRP can be used in a wide range of fields such as housing equipment, structural materials such as ships, vehicles and aircraft, and electronic equipment.
  • FRP utilized for an electronic device the laminated board containing the prepreg for printed wiring boards, etc. are mentioned.
  • a prepreg is mentioned as a FRP precursor for printed wiring boards.
  • the FRP precursor of the present invention has a surface waviness of 12 ⁇ m or less on both sides thereof.
  • the surface waviness can be obtained from a waviness curve according to ISO 4287 (1997). JIS B 0601 (2001) may be used instead of ISO 4287 (1997).
  • For the waviness curve reference can be made to 3.1.7 of JIS B 0601 (2001).
  • the surface waviness in the present invention is a surface waviness (also referred to as a waviness parameter) measured using “Surf Test SV-3200” (manufactured by Mitutoyo Corporation) as a surface roughness measuring device.
  • the surface waviness is “both sides” surface waviness of the FRP precursor. For example, even if the surface waviness on one side is 12 ⁇ m or less, the surface waviness on the other side exceeds 12 ⁇ m. FRP precursors that are present are not included in the present invention.
  • the surface waviness of the FRP precursor of the present invention is preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less.
  • the lower limit is not particularly limited, but may be 2 ⁇ m, 4 ⁇ m, 5 ⁇ m, or 6 ⁇ m.
  • the tent property of the metal foil is a property that maintains the flat state of the metal foil when the metal foil is supported by several fulcrums, and that the tent property of the metal foil is high. Means that the metal foil has a high property of maintaining a flat state without bending. Furthermore, if it is the FRP precursor of this invention, there is no need to divide the heat-pressing process at the time of manufacture of the laminated board mentioned later into two steps, and lamination conditions become industrially advantageous.
  • FIG. 1 is a schematic diagram which shows the state just before lamination
  • the FRP precursor (prepreg) processed so that the surface waviness is 12 ⁇ m or less is used, which corresponds to the present invention.
  • (c) of FIG. 2 is a schematic diagram showing a state immediately before lamination in the conventional method for producing a metal-clad laminate.
  • the FRP precursor (prepreg) prepared according to the conventional method is used as it is, the surface of the FRP precursor (prepreg) has a slight unevenness.
  • a thin metal foil having a thickness of 12 ⁇ m is used.
  • the results of producing a metal-clad laminate by heating and pressing these are shown in FIG. 1 (b) and FIG. 2 (d), respectively.
  • FIG. 1B the surface undulation of the metal foil is small, and no light spot is generated.
  • FIG. 2D it is considered that a light spot is likely to be generated as a result of the metal foil following the unevenness of the FRP precursor (prepreg).
  • the FRP precursor of the present invention (hereinafter, the FRP precursor can be read as “prepreg”) is (1) a step of reducing the surface waviness on both sides of the FRP precursor to 12 ⁇ m or less [hereinafter, step (1) ). ] Can be manufactured by the manufacturing method of the FRP precursor which has.
  • the FRP precursor used in step (1) before the surface waviness is reduced to 12 ⁇ m or less can be produced according to a conventional method. For example, if it is a prepreg, if it manufactured according to the manufacturing method of the normal prepreg mentioned later, it will correspond to the surface waviness exceeding 12 micrometers.
  • the method for reducing the surface waviness to 12 ⁇ m or less is not particularly limited, and all methods that can be considered by those skilled in the art can be adopted.
  • the FRP precursor is sandwiched from above and below, Examples thereof include a method of heating and pressurizing with a vacuum laminator and the like, and (ii) a method of laminating a thermosetting resin film on both surfaces of the FRP precursor.
  • the surface undulation of the FRP precursor is reduced to 12 ⁇ m or less by sandwiching the FRP precursor between the release films and then heating and pressing it.
  • release films include organic films such as polyethylene terephthalate (PET), biaxially oriented polypropylene (OPP), polyethylene, polyvinyl fluorate, and polyimide; films of copper, aluminum, and alloys of these metals, or these organic films or metals.
  • PET polyethylene terephthalate
  • OPP biaxially oriented polypropylene
  • polyethylene polyethylene
  • polyvinyl fluorate polyvinyl fluorate
  • polyimide polyimide
  • films of copper, aluminum, and alloys of these metals, or these organic films or metals are mentioned.
  • the heating and pressing conditions are not particularly limited, and may be set within a range usually employed by those skilled in the art.
  • the heating temperature is preferably 80 to 180 ° C, more preferably 100 to 150 ° C.
  • the load pressure when the FRP precursor sandwiched between the release films is pressurized is preferably 0.1 to 5 MPa, more preferably 0.1 to 2 MPa.
  • the heating time is preferably 5 to 60 seconds, more preferably 5 to 40 seconds before pressurization, and preferably 10 to 60 seconds, more preferably 15 to 45 seconds while pressurizing the FRP precursor. is there.
  • the degree of vacuum is preferably ⁇ 80 kPa (G) or less, more preferably ⁇ 90 kPa (G) or less.
  • thermosetting resin film although it does not restrict
  • the film formed using the thermosetting resin composition mentioned later can be used. More specifically, a film formed by drying a thermosetting resin composition described later to remove the organic solvent and semi-curing the thermosetting resin composition can be used.
  • the thickness of the thermosetting resin film (the thickness of the thermosetting resin portion) is preferably 3 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, still more preferably 3 to 15 ⁇ m, and particularly preferably 3 to 10 ⁇ m.
  • thermosetting resin composition is applied to a release film, an unnecessary organic solvent is removed and then thermoset to form a film, and then heat laminated to a glass cloth.
  • a method of simultaneously preparing the FRP precursor and reducing the surface waviness can also be employed.
  • the prepreg which is one of the FRP precursors will be specifically described.
  • the prepreg contains a reinforcing base material and a thermosetting resin composition.
  • the reinforcing base material for the prepreg well-known materials used for various types of laminates for electrical insulating materials can be used.
  • the material of the reinforcing substrate includes natural fibers such as paper and cotton linter; inorganic fibers such as glass fibers and asbestos; organic fibers such as aramid, polyimide, polyvinyl alcohol, polyester, tetrafluoroethylene, and acrylic; a mixture thereof Is mentioned.
  • glass fiber is preferable from the viewpoint of flame retardancy.
  • Glass fiber base materials include woven fabrics using E glass, C glass, D glass, S glass, etc., or glass woven fabrics obtained by bonding short fibers with an organic binder; glass fibers mixed with cellulose fibers, etc. Can be mentioned. More preferably, it is a glass woven fabric using E glass.
  • These reinforcing substrates have a shape such as a woven fabric, a nonwoven fabric, a low-ink, a chopped strand mat, or a surfacing mat.
  • a material and a shape are selected by the use and performance of the target molding, and 1 type may be used independently and 2 or more types of materials and shapes can also be combined as needed.
  • the prepreg can be produced by, for example, impregnating or coating a reinforcing base material with a thermosetting resin composition, and semi-curing (B-stage) by removing the organic solvent and thermosetting.
  • the heating temperature at the time of semi-curing (B-stage) is the temperature above the boiling point of the organic solvent, that is, the organic solvent removal efficiency is good because it also removes the organic solvent, that is, preferably 80 to 200 ° C.
  • the temperature is preferably 140 to 180 ° C.
  • the prepreg obtained by semi-curing (B stage) is regarded as an uncured prepreg, and the C prepreg is regarded as a cured prepreg.
  • thermosetting resin composition contains at least a thermosetting resin.
  • a curing agent if necessary, a curing accelerator, an inorganic filler, an organic filler, a coupling agent, a leveling agent, an antioxidant, a flame retardant, a flame retardant aid, a thixotropic agent.
  • examples include an imparting agent, a thickener, a thixotropic agent, a flexible material, a surfactant, a photopolymerization initiator, and the like, and preferably contains at least one selected from these.
  • each component which a thermosetting resin composition contains is demonstrated in order.
  • thermosetting resin epoxy resins, phenol resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, silicone resins, A triazine resin, a melamine resin, etc. are mentioned. Moreover, it does not restrict
  • Epoxy resins include cresol novolac type epoxy resin, phenol novolac type epoxy resin, naphthol novolak type epoxy resin, aralkyl novolac type epoxy resin, biphenyl novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type.
  • Epoxy resin bisphenol T type epoxy resin, bisphenol Z type epoxy resin, tetrabromobisphenol A type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, triphenyl type epoxy resin, tetraphenyl type epoxy resin, naphthol aralkyl type Epoxy resin, naphthalene all aralkyl epoxy resin, naphthol aralkyl epoxy resin, fluorene epoxy resin , An epoxy resin having a dicyclopentadiene skeleton, epoxy resins having an ethylenically unsaturated group in the backbone, the alicyclic type epoxy resins.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together from a viewpoint of insulation reliability and heat resistance.
  • Commercially available epoxy resins include “EPICLON (registered trademark) N-660” (made by DIC Corporation), which is a cresol novolac type epoxy resin, and “EPICLON (registered trademark) 840S” (DIC), which is a bisphenol A type epoxy resin. Co., Ltd.), “jER828EL”, “YL980” (manufactured by Mitsubishi Chemical Corporation), and the like.
  • the epoxy resin is not particularly limited. From the viewpoint of imparting flexibility, the epoxy resin has two or more epoxy groups in one molecule, and an alkylene glycol having 3 or more carbon atoms in the alkylene group. It may be an epoxy resin having a derived structural unit in the main chain. Further, from the viewpoint of further improving flexibility, two or more structural units derived from an alkylene glycol having 3 or more carbon atoms in the alkylene group may be continuously repeated.
  • the alkylene glycol having 3 or more carbon atoms in the alkylene group is preferably an alkylene glycol having 4 or more carbon atoms in the alkylene group.
  • the upper limit of the carbon number of the alkylene group is not particularly limited, but is preferably 15 or less, more preferably 10 or less, and still more preferably 8 or less.
  • an epoxy resin you may use a halogenated epoxy resin from a flame-retardant viewpoint.
  • thermosetting resin is an epoxy resin
  • epoxy resins such as phenolic curing agents, cyanate ester curing agents, acid anhydride curing agents, amine curing agents, active ester group-containing compounds, etc. Examples thereof include a curing agent.
  • a thermosetting resin is resin other than an epoxy resin
  • a well-known thing can be used as the hardening
  • curing agent may be used individually by 1 type, and may use 2 or more types together.
  • curing agent a biphenyl type hardening
  • phenolic curing agents examples include cresol novolac type curing agents such as KA-1160, KA-1163, and KA-1165 (all manufactured by DIC Corporation); MEH-7700, MEH-7810, MEH-7851 (any Biphenyl type curing agent such as Phenolite (registered trademark) TD2090 (made by DIC Corporation); naphthylene ether type such as EXB-6000 (made by DIC Corporation)
  • Hardeners Triazine skeleton-containing phenolic hardeners such as LA3018, LA7052, LA7054, and LA1356 (all manufactured by DIC Corporation).
  • the cyanate ester curing agent is not particularly limited, but is bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate).
  • the acid anhydride curing agent is not particularly limited, but phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, hydrogen Methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride Products, trimellitic anhydride, pyromellitic anhydride, and the like.
  • the amine curing agent is not particularly limited, but includes aliphatic amines such as triethylenetetramine, tetraethylenepentamine, and diethylaminopropylamine; aromatic amines such as metaphenylenediamine and 4,4′-diaminodiphenylmethane, and the like. Can be mentioned. Moreover, urea resin etc. can also be used as a hardening
  • thermosetting resin composition contains a curing agent
  • the content thereof is preferably 20 to 150 parts by mass, more preferably 20 to 100 parts by mass, and still more preferably 100 parts by mass of the thermosetting resin. 40 to 100 parts by mass.
  • the content may be represented using a functional group equivalent, and it is preferable to do so.
  • the curing agent may be added so that (mass of thermosetting resin / functional group equivalent) ⁇ (mass of curing agent / functional group equivalent capable of reacting with thermosetting resin) ⁇ constant C. preferable.
  • the constant C varies depending on the type of functional group of the curing agent, and is preferably 0.8 to 1.2 when the functional group is a phenolic hydroxyl group, and 0.2 to 0.4 when the functional group is an amino group. In the case of an active ester group, 0.3 to 0.6 is preferable.
  • the thermosetting resin is an epoxy resin
  • the above formula becomes (mass of epoxy resin / epoxy group equivalent) ⁇ (mass of curing agent / functional group equivalent capable of reacting with epoxy group) ⁇ constant C.
  • thermosetting resin As a hardening accelerator, the general hardening accelerator used for hardening of the said thermosetting resin can be used.
  • the thermosetting resin is an epoxy resin
  • examples of the curing accelerator include imidazole compounds and derivatives thereof; phosphorus compounds; tertiary amine compounds; quaternary ammonium compounds. From the viewpoint of promoting the curing reaction, imidazole compounds and derivatives thereof are preferred.
  • imidazole compound and derivatives thereof include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1,2-dimethylimidazole, 2-ethyl-1 -Methylimidazole, 1,2-diethylimidazole, 1-ethyl-2-methylimidazole, 2-ethyl-4-methylimidazole, 4-ethyl-2-methylimidazole, 1-isobutyl-2-methylimidazole, 2-phenyl -4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl- 4-me Ruimidazole, 2-methylimid
  • An imidazole compound may be used individually by 1 type, and may use 2 or more types together.
  • thermosetting resin composition contains a curing accelerator
  • the content thereof is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin. Part, more preferably 0.5 to 6 parts by weight.
  • Inorganic filler The inorganic filler can reduce the coefficient of thermal expansion and improve the coating strength.
  • Inorganic fillers include silica, alumina, barium sulfate, talc, mica, kaolin, boehmite, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, Aluminum borate, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, zinc borate, zinc stannate, aluminum oxide, zirconia, mullite, magnesia, zinc oxide, titanium oxide, silicon carbide, silicon nitride, boron nitride And clays such as calcined clay, short glass fibers, glass powder, hollow glass beads, and the like, and at least one selected from the group consisting of these is preferably used.
  • the glass include E glass, T glass, and D glass.
  • silica and alumina are preferable and silica is more preferable from the viewpoints of reduction of thermal expansion coefficient, relative dielectric constant, and dielectric loss tangent.
  • the silica include precipitated silica produced by a wet method and having a high water content, and dry method silica produced by a dry method and containing almost no bound water or the like.
  • the dry process silica include crushed silica, fumed silica, and fused silica (fused spherical silica) depending on the production method.
  • the inorganic filler may be surface-treated with a surface treatment agent such as a silane coupling agent in order to improve moisture resistance, or may be hydrophobized to improve dispersibility.
  • the inorganic filler can be appropriately selected depending on the purpose. From the viewpoint of facilitating the formation of fine wiring, the specific surface area of the inorganic filler is preferably 20 m 2 / g or more, more preferably 30 to 250 m 2 / g, still more preferably 100 to 250 m 2 / g.
  • the specific surface area of the inorganic filler can be determined by a measurement method usually performed by those skilled in the art, and can be measured, for example, by the BET method.
  • the BET method is a method in which molecules having a known adsorption occupation area are adsorbed on the surface of powder particles at the temperature of liquid nitrogen, and the specific surface area of the sample is obtained from the amount. In the specific surface area analysis, the BET method using an inert gas such as nitrogen is most often used.
  • the inorganic filler preferably contains an inorganic filler having an average primary particle size of 100 nm or less, more preferably 1 to 80 nm, still more preferably 1 to 50 nm, and still more preferably 5 to 30 nm. It is preferable to contain an inorganic filler, particularly preferably an inorganic filler of 10 to 30 nm.
  • the “average primary particle diameter” refers to the average diameter of aggregated particles, that is, the average particle diameter of a single substance that is not aggregated, not the secondary particle diameter. The primary average particle diameter can be determined by measuring with a laser diffraction particle size distribution meter.
  • the average primary particle size is the particle size at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle size is obtained with the total particle volume as 100%.
  • an inorganic filler having an average primary particle diameter of 0.1 to 50 ⁇ m may be further contained.
  • the average primary particle diameter of the inorganic filler is more preferably 0.1 to 30 ⁇ m, further preferably 0.5 to 15 ⁇ m, and particularly preferably 0.5 to 7 ⁇ m.
  • the content of the inorganic filler is more preferably 5 to 50% by volume, still more preferably 10 to 40% by volume.
  • a coupling agent By including the coupling agent, there are the effects of improving the dispersibility of the inorganic filler and the organic filler and improving the adhesion to the reinforcing substrate and the metal foil.
  • a coupling agent may be used individually by 1 type, and may use 2 or more types together.
  • As the coupling agent a silane coupling agent is preferable.
  • silane coupling agents include aminosilane coupling agents [eg, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, etc.], epoxysilane coupling agents [ For example, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc.], phenylsilane coupling agents, alkylsilane coupling agents, alkenylsilane coupling agents [ For example, vinyl silane coupling agents such as vinyl trichlorosilane and vinyl triethoxy silane], alkynyl silane coupling agents, haloalkyl silane coupling agents, siloxane coupling agents, hydrosilane coupling agents, silazane cups Coupling agent, alkoxysilane coupling agent, chlorosilane coupling agent, (me
  • thermosetting resin composition contains a coupling agent
  • the content thereof is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin. Part, more preferably 0.5 to 6 parts by weight.
  • the resin composition may further contain an organic solvent.
  • the resin composition containing an organic solvent may be referred to as a resin varnish.
  • the organic solvent is not particularly limited, but methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene Alcohol solvents such as glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, butanone, cyclohexanone and 4-methyl-2-pentanone; ester solvents such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether acetate Ether solvents such as tetrahydrofuran; aromatic
  • a ketone solvent is preferable, cyclohexanone, methyl ethyl ketone, and methyl isobutyl ketone are more preferable, and cyclohexanone and methyl ethyl ketone are more preferable.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the organic solvent is adjusted, for example, so that the nonvolatile content of the resin composition is preferably 20 to 85% by mass, more preferably 40 to 80% by mass. To do.
  • thermosetting resin composition may be directly stirred and mixed at a temperature at which curing of the thermosetting resin composition does not proceed remarkably and at a temperature at which the thermosetting resin composition liquefies.
  • thermosetting resin composition There is no restriction
  • a thermosetting resin and other components as necessary may be added to the solvent, and then mixed and stirred using various mixers to prepare a resin varnish.
  • the mixer include an ultrasonic dispersion method, a high-pressure collision dispersion method, a high-speed rotation dispersion method, a bead mill method, a high-speed shear dispersion method, and a rotation and revolution dispersion method.
  • the present invention also provides a metal-clad laminate having a metal foil on the laminate along with the laminate containing the FRP precursor (prepreg).
  • the laminate of the present invention is (1) a step of reducing the surface waviness on both sides of the FRP precursor to 12 ⁇ m or less, and (2) a step of laminating two or more FRP precursors obtained in the step (1), It can manufacture with the manufacturing method of the laminated board which has.
  • the metal-clad laminate of the present invention is (1) a step of reducing the surface waviness on both sides of the FRP precursor to 12 ⁇ m or less; (2) a step of laminating two or more FRP precursors obtained in the step (1), and (3) a step of providing a metal foil on the laminate obtained in the step (2), It can manufacture by the manufacturing method of the metal-clad laminated board which has.
  • a laminated board can be produced by laminating and forming two or more, preferably 2 to 20, sheets of the FRP precursor (prepreg).
  • a substrate on which inner layer circuit processing has been performed may be sandwiched between FRP precursors (prepregs).
  • a metal-clad laminate is obtained by laminating two or more of the FRP precursors (prepregs), preferably 2 to 20, and laminating the metal foil on one or both sides, preferably both sides.
  • a lamination condition in the step (2) a known condition used for production of a laminate can be employed. For example, a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine, etc.
  • the thickness of the metal foil is preferably 40 ⁇ m or less, more preferably 1 to 40 ⁇ m, still more preferably 5 to 40 ⁇ m, particularly preferably 5 to 35 ⁇ m, and most preferably 5 to 5 ⁇ m from the viewpoint of remarkably expressing the effects of the present invention. It is 25 ⁇ m, particularly preferably 5 to 17 ⁇ m.
  • metal of the metal foil from the viewpoint of conductivity, copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium, chromium, or at least one of these metal elements is included.
  • An alloy is preferred.
  • the alloy a copper alloy, an aluminum alloy, and an iron alloy are preferable.
  • the copper-based alloy include a copper-nickel alloy.
  • the iron-based alloy include an iron-nickel alloy (42 alloy).
  • copper, nickel, and 42 alloy are more preferable, and copper is more preferable from a viewpoint of availability and cost.
  • a printed wiring board can be manufactured by forming a wiring pattern in the said laminated board.
  • the method of forming the wiring pattern is not particularly limited, but a subtractive method, a full additive method, a semi-additive method (SAP) or a modified semi-additive process (m-SAP), etc. There are known methods.
  • the semiconductor package of the present invention contains the printed wiring board of the present invention. More specifically, the semiconductor package is formed by mounting a semiconductor on the printed wiring board of the present invention.
  • the semiconductor package of the present invention can be manufactured by mounting a semiconductor chip, a memory or the like at a predetermined position of the printed wiring board of the present invention.
  • the surface undulation obtained from the undulation curve was measured according to ISO 4287 (1997) using the prepreg before lamination produced in each example or the copper clad laminate. More specifically, surface waviness (waviness parameter) was measured using a surface roughness measuring instrument “Surf Test SV-3200” (manufactured by Mitutoyo Corporation) as a measuring device. In addition, the surface waviness was measured on both sides, and the larger value was adopted.
  • thermosetting resin varnish 1 Cresol novolak type epoxy resin “EPICLON (registered trademark) N-660” (manufactured by DIC Corporation) 100 parts by mass, bisphenol A type epoxy To 30 parts by mass of cyclohexanone and 120 parts by mass of methyl ethyl ketone was added to 10 parts by mass of the resin “EPICLON 840S” (manufactured by DIC Corporation) and 60 parts by mass of the phenol novolac resin “Phenolite (registered trademark) TD2090” (manufactured by DIC Corporation). Stir well and dissolve.
  • Cresol novolak type epoxy resin “EPICLON (registered trademark) N-660” manufactured by DIC Corporation
  • bisphenol A type epoxy To 30 parts by mass of cyclohexanone and 120 parts by mass of methyl ethyl ketone was added to 10 parts by mass of the resin “EPICLON 840S” (manufactured by DIC Corporation) and 60 parts by mass
  • Example 1 Production of prepreg and copper-clad laminate (production of prepreg)
  • the resin content after drying the thermosetting resin varnish 1 obtained in Preparation Example 1 on a glass cloth (basis weight 48 g / m 2 , IPC # 1080, substrate width 530 mm, manufactured by Nitto Boseki Co., Ltd.) is 62% by mass. It applied so that it might become. Subsequently, in order to semi-cure the thermosetting resin varnish 1 together with the removal of the organic solvent, it was heated in a hot air dryer at 160 ° C. to obtain a prepreg a.
  • the prepreg a was sandwiched between upper and lower parts with a release aluminum foil “Seponium 202BC” (manufactured by Toyo Aluminum Chiba Co., Ltd.), and this was vacuumed at 120 ° C. with a vacuum laminator “MVLP500” (manufactured by Meiki Seisakusho Co., Ltd.). After being left for 20 seconds, the surface waviness was reduced by pressurizing from one side (load pressure: 0.5 MPa) and holding for 30 seconds at the same temperature, and prepreg A was produced. According to the above method, the surface undulation of the prepreg A was determined. The results are shown in Table 1.
  • Example 2 In Example 1, instead of using a copper foil “GTS-12” (Furukawa Electric Co., Ltd.) having a thickness of 12 ⁇ m, a copper foil “GTS-35MP” (Furukawa Electric Co., Ltd.) having a thickness of 35 ⁇ m was used. Were similarly operated to produce a copper clad laminate. According to the said method, the surface waviness and the number of light spots of the obtained copper clad laminated board were measured. The results are shown in Table 1.
  • Example 1 a copper-clad laminate was prepared by performing the same operation except that prepreg a was used instead of prepreg A when the copper-clad laminate was produced. The surface undulation and the number of light spots were measured. The results are shown in Table 1.
  • Comparative Example 2 In Comparative Example 1, a 35 ⁇ m thick copper foil “GTS-35MP” (Furukawa Electric Co., Ltd.) was used instead of the 12 ⁇ m thick copper foil “GTS-12” (Furukawa Electric Co., Ltd.). Were similarly operated to produce a copper clad laminate. According to the said method, the surface waviness and the number of light spots of the obtained copper clad laminated board were measured. The results are shown in Table 1.
  • thermosetting resin varnish 1 obtained in Preparation Example 1 was applied to a 580 mm wide PET film “G-2” (manufactured by Teijin DuPont Films Ltd.). At this time, the coating amount was adjusted so that the coating width was 525 mm and the thickness was 5 ⁇ m after drying. After application, the organic solvent was removed by drying, and the thermosetting resin varnish 1 was semi-cured to prepare a thermosetting resin film A ′.
  • the thermosetting resin film A ′ was laminated on both surfaces of the prepreg a obtained in Example 1.
  • the pressure roll conditions of the laminate were a normal temperature, a roll temperature of 110 ° C., a linear pressure of 0.25 MPa, and a speed of 2.0 m / min.
  • Example 4 In Example 3, instead of using a 12 ⁇ m thick copper foil “GTS-12” (Furukawa Electric Co., Ltd.), a 35 ⁇ m thick copper foil “GTS-35MP” (Furukawa Electric Co., Ltd.) was used. Were similarly operated to produce a copper clad laminate. According to the said method, the surface waviness and the number of light spots of the obtained copper clad laminated board were measured. The results are shown in Table 1.
  • the metal-clad laminate formed using the prepreg of the present invention is useful as a printed wiring board for electronic equipment because it has a small light spot and a small surface waviness even if the metal foil is 40 ⁇ m or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

たとえ金属箔の厚みが40μm以下であったとしても、表面うねりが小さく、且つ光点の少ない金属張積層板を提供し得るFRP前駆体を提供すること、並びに、該FRP前駆体を含有する積層板、該積層板上に金属箔を有する金属張積層板、該金属張積層板に回路パターンが形成されたプリント配線板、該プリント配線板を含有する半導体パッケージ、並びにそれらの製造方法を提供する。該FRP前駆体は、その両面において表面うねりが12μm以下であるFRP前駆体である。

Description

FRP前駆体、積層板、金属張積層板、プリント配線板、半導体パッケージ、及びそれらの製造方法
 本発明は、FRP前駆体、積層板、金属張積層板、プリント配線板、半導体パッケージ、及びそれらの製造方法に関する。
 FRP(繊維強化プラスチック)は、ファイバー等の弾性率の高い材料を骨材とし、その骨材を、プラスチックのような母材(マトリックス)の中に入れて強度を向上させた複合材料であり、耐候性、耐熱性、耐薬品性及び軽量性を生かし、安価かつ軽量で高耐久性を有する複合材料である。該FRPは、造型性及び高強度を有することから、住宅機器、船舶、車両及び航空機等の構造材、並びに絶縁性を生かして電子機器等の幅広い分野で使用されている。電子機器に利用されているFRPとしてはプリプレグが挙げられ、硬化前のプリプレグは、特にFRP前駆体と称されることもある。
 日常生活において使用される電子機器の電子部品の一部もFRP前駆体を用いて製造されている。該電子部品は、使用上の利便性の観点等から、より一層の軽量化及び小型化が求められている。電子部品に使用されるプリント配線板においても、薄型化及び小型化され、配線パターンの細密化及び絶縁層の厚みの薄型化が進められており、そのため、絶縁層内のガラスクロスも薄くされつつあり、さらに銅箔も薄くされつつある。
 ところで、現在のプリント配線板の製造方法としては、熱盤の間に、プリプレグと銅箔、さらに必要に応じて内層コア基板とを鏡板で挟み、加圧加熱して積層し、最外層に銅箔を配した銅張積層板にし、サブトラクティブ工法で回路加工及び回路接続を行うことによってプリント配線板にする方法が主流である。従来は、熱硬化性樹脂組成物と補強基材とから得られるプリプレグの表面を気にすることなく、そのままの状態で積層させてきたが、積層の際にプレスされて平らになるため、特に問題はなかった。そのため、プリプレグの表面うねりを低減するなどという不要と思われる処置はなされなかった(例えば、特許文献1参照)。これは、これまでの銅箔の厚みが十分であり、銅箔の機械的強度が高かったためでもある。
特開2004-342871号公報
 しかしながら、銅箔の薄膜化の要求に伴い、近年では40μm以下の厚みの銅箔を用いることが必要な場合が生じてきており、この場合に、前記した従来のプリント配線板の製造方法を実施すると、光点が発生する傾向にあることが本発明者の検討によって判明した。
 この原因を検証したところ、プリプレグはガラスクロス等の補強基材で強化されているため、該補強基材由来の凹凸がプリプレグの表面へわずかな凹凸(表面うねり)を与えている。この凹凸(表面うねり)は、銅箔の厚みが十分である場合には銅箔に対して何の影響も与えなかったが、銅箔の厚みが40μm以下のときには銅箔の機械的強度が低下するため、銅箔がこの凹凸(表面うねり)へ追従してしまい、このことが、光点の発生の原因となっている可能性が高いのではないかと推察した。
 また、従来の方法で銅箔を加圧加熱する際に、プリプレグの表面の凹凸が大きいと、銅箔の接着面にこの凹凸部が当たり、銅箔表面に押し傷が発生したり、さらには銅箔を突き破る可能性もあるという問題がある。
 なお、積層する際にプリプレグ中の熱硬化性樹脂が軟化する温度までは圧力をかけず、軟化した後に加圧する積層方法、つまり、加熱加圧工程を2段階に分けて行う方法がある。しかし、当該方法は、軟化温度で一時保持するために積層時の時間が長くなり、生産性を阻害する要因となっている。また、当該方法によっても、軟化した熱硬化性樹脂はガラスクロスへ追従するため、プリプレグの表面の凹凸(表面うねり)は残存しており、光点の発生を十分に抑制することはできなかった。
 本発明は、こうした事情に鑑み、たとえ金属箔の厚みが40μm以下であったとしても、表面うねりが小さく、且つ光点の少ない金属張積層板を提供し得るFRP前駆体を提供すること、並びに、該FRP前駆体を含有する積層板、該積層板上に金属箔を有する金属張積層板、該金属張積層板に回路パターンが形成されたプリント配線板、該プリント配線板を含有する半導体パッケージ、並びにそれらの製造方法を提供することを課題とする。
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、所定の表面うねり以下のFRP前駆体であれば上記の課題を解決し得ることを見出し、本発明を完成するに至った。本発明は、係る知見に基づいて完成したものである。
 本発明は下記[1]~[13]に関する。
[1]FRP前駆体であって、その両面において表面うねりが12μm以下であるFRP前駆体。
[2]前記表面うねりが10μm以下である、上記[1]に記載のFRP前駆体。
[3]上記[1]又は[2]に記載のFRP前駆体を含有する積層板。
[4]上記[3]に記載の積層板上に金属箔を有する金属張積層板。
[5]前記金属箔の厚みが40μm以下である、上記[4]に記載の金属張積層板。
[6]前記金属箔が銅箔である、上記[4]又は[5]に記載の金属張積層板。
[7]上記[4]~[6]のいずれかに記載の金属張積層板に回路パターンが形成された、プリント配線板。
[8]上記[7]に記載のプリント配線板を含有する、半導体パッケージ。
[9](1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程、
を有する、上記[1]に記載のFRP前駆体の製造方法。
[10](1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程、及び
 (2)前記工程(1)で得たFRP前駆体を2枚以上積層させる工程、
とを有する、積層板の製造方法。
[11](1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程、
 (2)前記工程(1)で得たFRP前駆体を2枚以上積層させる工程、及び
 (3)前記工程(2)で得た積層板に金属箔を設ける工程、
とを有する、金属張積層板の製造方法。
[12]前記金属箔の厚みが40μm以下である、上記[11]に記載の金属張積層板の製造方法。
[13]前記金属箔が銅箔である、上記[11]又は[12]に記載の金属張積層板の製造方法。
 本発明により、たとえ金属箔の厚みが40μm以下であったとしても、金属張積層板の金属箔における光点の発生を抑制することができる。そのため、金属箔表面に押し傷が発生したり、金属箔が破れるおそれが小さい。さらに、積層板の製造時の加熱加圧工程を2段階に分ける必要性が無く、積層条件が工業的に有利である。
(a)本発明の金属張積層板の製造方法における、積層直前の状態を示す模式図である。(b)本発明の金属張積層板の製造方法における、積層後の状態を示す模式図である。 (c)従来の金属張積層板の製造方法における、積層直前の状態を示す模式図である。(d)従来の金属張積層板の製造方法における、積層後の状態を示す模式図である。
[FRP前駆体]
 FRP(Fiber Reinforced Plastics:繊維強化プラスチック)は、ファイバー等の弾性率の高い材料を骨材とし、その骨材を、プラスチックのような母材(マトリックス)の中に入れて強度を向上させた複合材料である。FRPは、住宅機器、船舶、車両及び航空機等の構造材、並びに電子機器等の幅広い分野で使用可能である。電子機器に利用されるFRPとしては、プリント配線板用のプリプレグを含有する積層板等が挙げられる。ここで、プリント配線板用のFRP前駆体としては、プリプレグが挙げられる。
 本発明のFRP前駆体は、その両面において表面うねりが12μm以下である。該表面うねりは、ISO 4287(1997年)に従ってうねり曲線から得ることができる。ISO 4287(1997年)の代わりに、JIS B 0601(2001年)を利用してもよい。うねり曲線については、JIS B 0601(2001年)の3.1.7を参照できる。本発明における表面うねりは、表面粗さ測定器の「サーフテストSV-3200」(株式会社ミツトヨ製)を用いて測定した表面うねり(うねりパラメータとも称する。)である。また、特に断りが無くとも、表面うねりは、FRP前駆体の「両面」の表面うねりであり、たとえば、片面の表面うねりが12μm以下であっても、他方の面の表面うねりが12μmを超えているFRP前駆体は、本発明には含まれない。
 本発明のFRP前駆体の表面うねりは、好ましくは10μm以下、より好ましくは9μm以下である。下限値に特に制限はないが、2μmであってもよく、4μmであってもよく、5μmであってもよく、6μmであってもよい。
 表面うねりが12μm以下のFRP前駆体であることにより、たとえ後述する金属張積層板の金属箔の厚みが40μm以下であったとしても、金属張積層板の金属箔における光点の発生を抑制することができる。また、金属箔表面に押し傷が発生したり、金属箔が破れたりするおそれが小さい。
 さらに、金属張積層板の金属箔の厚みが40μm以下というように薄い場合には、表面うねりが上記範囲でないと、金属箔がたわみ、テント性が低下することが分かった。これは、金属箔が十分に厚いと機械的強度が高いために生じない現象である。表面うねりを12μm以下にすることによって、金属箔との接点同士の距離が短くなり、金属箔のテント性を高め、その結果、金属箔の表面うねりが減少して光点の数が減少したのではないかと推察する。ここで、金属箔のテント性とは、金属箔が幾つかの支点で支えられているときに、金属箔の平らな状態を保持する性質のことであり、金属箔のテント性が高いということは、金属箔がたわまずに平らな状態を保持する性質が高いことを意味する。
 さらに、本発明のFRP前駆体であれば、後述する積層板の製造時の加熱加圧工程を2段階に分ける必要性が無く、積層条件が工業的に有利となる。
 当該現象について、図1及び図2を用いて説明する。図1の(a)は、本発明の金属張積層板の製造方法における、積層直前の状態を示す模式図である。図1の(a)では、FRP前駆体(プリプレグ)の表面うねりが12μm以下になるように処理されたものを用いており、本発明に相当する。一方、図2の(c)は、従来の金属張積層板の製造方法における、積層直前の状態を示す模式図である。図2の(c)では、FRP前駆体(プリプレグ)は、従来法に従って作成されたものをそのまま用いているため、FRP前駆体(プリプレグ)の表面には若干の凹凸があり、比較用の模式図である。なお、いずれにおいても、金属箔は厚み12μmの薄いものを使用している。
 これらを加熱加圧することによって金属張積層板を製造した結果が、それぞれ、図1の(b)、図2の(d)である。図1の(b)では、金属箔の表面うねりが小さく、光点も発生していない。一方、図2の(d)では、金属箔がFRP前駆体(プリプレグ)の凹凸へ追従した結果、光点が発生し易いと考えられる。
[FRP前駆体の製造方法]
 本発明のFRP前駆体(以下、FRP前駆体は、「プリプレグ」と読み替えることができる。)は、(1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程[以下、工程(1)と称する。]を有するFRP前駆体の製造方法によって製造することができる。
 工程(1)で使用する、表面うねりが12μm以下に低減される前のFRP前駆体は、従来の方法に従って製造できる。例えば、プリプレグであれば、後述する通常のプリプレグの製造方法に従って製造したものであれば、表面うねりが12μmを超えたものに相当する。
 次に、表面うねりを12μm以下に低減する方法としては、特に制限されるものではなく、当業者が考え得る方法を全て採用可能であるが、例えば、(i)FRP前駆体を上下から挟み、真空ラミネータ等によって加熱加圧する方法、(ii)FRP前駆体の両面に熱硬化性樹脂フィルムをラミネートする方法等が挙げられる。
 方法(i)では、FRP前駆体を離型フィルムに挟み、その後、これを加熱加圧することによって、FRP前駆体の表面うねりを12μm以下に低減する。離型フィルムとしては、ポリエチレンテレフタレート(PET)、二軸延伸ポリプロピレン(OPP)、ポリエチレン、ポリビニルフルオレート、ポリイミド等の有機フィルム;銅、アルミニウム、及びこれら金属の合金のフィルムか、これら有機フィルム又は金属フィルムの表面に離型剤で離型処理を行ったフィルムなどが挙げられる。
 前記方法(i)において、加熱加圧条件は特に制限されるものではなく、当業者が通常採用する範囲内で設定すればよい。具体的には、加熱温度としては、好ましくは80~180℃、より好ましくは100~150℃である。また、離型フィルムに挟まれたFRP前駆体を加圧する際の負荷圧力としては、好ましくは0.1~5MPa、より好ましくは0.1~2MPaである。加熱する時間としては、加圧前に好ましくは5~60秒、より好ましくは5~40秒であり、前記FRP前駆体を加圧しながら好ましくは10~60秒、より好ましくは15~45秒である。
 なお、方法(i)は真空下に実施することが好ましい。真空度は、好ましくは-80kPa(G)以下、より好ましくは-90kPa(G)以下である。
 前記方法(ii)において、熱硬化性樹脂フィルムとしては、特に制限されるものではないが、後述する熱硬化性樹脂組成物を用いて形成したフィルムを使用できる。より具体的には、後述する熱硬化性樹脂組成物を乾燥させ、有機溶剤を除去すると共に、熱硬化性樹脂組成物を半硬化させることによって形成したフィルムを使用できる。
 熱硬化性樹脂フィルムの厚み(熱硬化性樹脂部位の厚み)は、好ましくは3~50μm、より好ましくは3~30μm、さらに好ましくは3~15μm、特に好ましくは3~10μmである。
 前記方法(i)及び(ii)以外にも、熱硬化性樹脂組成物を離型フィルムに塗布し、不要な有機溶剤を除去してから熱硬化させてフィルム化し、ガラスクロスに加熱ラミネートしてFRP前駆体の作成と表面うねりの低減を同時に行う方法等も採用することができる。
 以下、FRP前駆体の1つであるプリプレグについて、具体的に説明する。
[プリプレグ]
 プリプレグは、補強基材と熱硬化性樹脂組成物とを含有してなるものである。プリプレグの補強基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。補強基材の材質としては、紙、コットンリンターのような天然繊維;ガラス繊維及びアスベスト等の無機物繊維;アラミド、ポリイミド、ポリビニルアルコール、ポリエステル、テトラフルオロエチレン及びアクリル等の有機繊維;これらの混合物などが挙げられる。これらの中でも、難燃性の観点から、ガラス繊維が好ましい。ガラス繊維基材としては、Eガラス、Cガラス、Dガラス、Sガラス等を用いた織布又は短繊維を有機バインダーで接着したガラス織布;ガラス繊維とセルロース繊維とを混沙したものなどが挙げられる。より好ましくは、Eガラスを使用したガラス織布である。
 これらの補強基材は、織布、不織布、ロービンク、チョップドストランドマット又はサーフェシングマット等の形状を有する。なお、材質及び形状は、目的とする成形物の用途や性能により選択され、1種を単独で使用してもよいし、必要に応じて、2種以上の材質及び形状を組み合わせることもできる。
 プリプレグは、例えば、熱硬化性樹脂組成物を補強基材に含浸又は塗工し、有機溶剤の除去及び熱硬化等により半硬化(Bステージ化)させて製造することができる。半硬化(Bステージ化)させる際の加熱温度は、有機溶剤の除去も同時に行うため、有機溶剤の除去効率が良好である有機溶剤の沸点以上の温度、つまり、好ましくは80~200℃、より好ましくは140~180℃である。なお、本発明においては、半硬化(Bステージ化)させて得られたプリプレグは、未硬化のプリプレグと捉え、Cステージ化されたプリプレグを硬化後のプリプレグと捉える。
〔熱硬化性樹脂組成物〕
 熱硬化性樹脂組成物は、少なくとも熱硬化性樹脂を含有する。該熱硬化性樹脂の他に、必要に応じて、硬化剤、硬化促進剤、無機充填材、有機充填材、カップリング剤、レベリング剤、酸化防止剤、難燃剤、難燃助剤、揺変性付与剤、増粘剤、チキソ性付与剤、可撓性材料、界面活性剤、光重合開始材等が挙げられ、これらから選択される少なくとも1つを含有することが好ましい。
 以下、熱硬化性樹脂組成物が含有する各成分について順に説明する。
(熱硬化性樹脂)
 熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。また、特にこれらに制限されず、公知の熱硬化性樹脂を使用できる。これらは、1種を単独で使用してもよいし、2種以上を併用することもできる。これらの中でも、成形性及び電気絶縁性の観点から、エポキシ樹脂が好ましい。
 エポキシ樹脂としては、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールT型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、トリフェニル型エポキシ樹脂、テトラフェニル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、エチレン性不飽和基を骨格に有するエポキシ樹脂、脂環式型エポキシ樹脂等が挙げられる。エポキシ樹脂は、1種を単独で使用してもよいし、絶縁信頼性及び耐熱性の観点から、2種以上を併用してもよい。
 エポキシ樹脂の市販品としては、クレゾールノボラック型エポキシ樹脂である「EPICLON(登録商標)N-660」(DIC株式会社製)、ビスフェノールA型エポキシ樹脂である、「EPICLON(登録商標)840S」(DIC株式会社製)、「jER828EL」、「YL980」(以上、三菱化学株式会社製)等が挙げられる。
 ここで、エポキシ樹脂としては、特に制限されるわけではないが、柔軟性を付与する観点から、1分子中に2個以上のエポキシ基を有すると共に、アルキレン基の炭素数3以上のアルキレングリコールに由来する構造単位を主鎖に有するエポキシ樹脂であってもよい。また、柔軟性をより向上させる観点からは、アルキレン基の炭素数3以上のアルキレングリコールに由来する構造単位は、2個以上連続して繰り返していてもよい。
 アルキレン基の炭素数3以上のアルキレングリコールとしては、アルキレン基の炭素数4以上のアルキレングリコールが好ましい。アルキレン基の炭素数の上限は、特に限定されないが、15以下が好ましく、10以下がより好ましく、8以下がさらに好ましい。
 また、エポキシ樹脂として、難燃性の観点から、ハロゲン化エポキシ樹脂を用いてもよい。
(硬化剤)
 硬化剤としては、熱硬化性樹脂がエポキシ樹脂である場合は、フェノール系硬化剤、シアネートエステル系硬化剤、酸無水物系硬化剤、アミン系硬化剤、活性エステル基含有化合物等のエポキシ樹脂用硬化剤などが挙げられる。なお、熱硬化性樹脂がエポキシ樹脂以外の樹脂である場合、その熱硬化性樹脂用の硬化剤として公知のものを用いることができる。硬化剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 前記フェノール系硬化剤としては、特に制限されないが、クレゾールノボラック型硬化剤、ビフェニル型硬化剤、フェノールノボラック型硬化剤、ナフチレンエーテル型硬化剤、トリアジン骨格含有フェノール系硬化剤等が好ましく挙げられる。
 フェノール系硬化剤の市販品としては、KA-1160、KA-1163、KA-1165(いずれもDIC株式会社製)等のクレゾールノボラック型硬化剤;MEH-7700、MEH-7810、MEH-7851(いずれも明和化成株式会社製)等のビフェニル型硬化剤;フェノライト(登録商標)TD2090(DIC株式会社製)等のフェノールノボラック型硬化剤;EXB-6000(DIC株式会社製)等のナフチレンエーテル型硬化剤;LA3018、LA7052、LA7054、LA1356(いずれもDIC株式会社製)等のトリアジン骨格含有フェノール系硬化剤などが挙げられる。
 前記シアネートエステル系硬化剤としては、特に制限はないが、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテル等が挙げられる。
 前記酸無水物系硬化剤としては、特に制限はないが、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸等が挙げられる。
 前記アミン系硬化剤としては、特に制限はないが、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミン等の脂肪族アミン;メタフェニレンジアミン、4,4’-ジアミノジフェニルメタン等の芳香族アミンなどが挙げられる。
 また、硬化剤としては、ユリア樹脂等も用いることができる。
 熱硬化性樹脂組成物が硬化剤を含有する場合、その含有量は、熱硬化性樹脂100質量部に対して、好ましくは20~150質量部、より好ましくは20~100質量部、さらに好ましくは40~100質量部である。
 なお、熱硬化性樹脂組成物が硬化剤を含有する場合、その含有量は、官能基当量を用いて表してもよく、また、そうすることが好ましい。具体的には、(熱硬化性樹脂の質量/官能基当量)≒(硬化剤の質量/熱硬化性樹脂と反応し得る官能基当量)×定数Cとなるように硬化剤を含有させることが好ましい。定数Cは、硬化剤の官能基の種類によって変化し、該官能基がフェノール性水酸基の場合には0.8~1.2が好ましく、アミノ基の場合には0.2~0.4が好ましく、活性エステル基の場合には0.3~0.6が好ましい。
 熱硬化性樹脂がエポキシ樹脂である場合には、前記式は、(エポキシ樹脂の質量/エポキシ基当量)≒(硬化剤の質量/エポキシ基と反応し得る官能基当量)×定数Cとなる。
(硬化促進剤)
 硬化促進剤としては、前記熱硬化性樹脂の硬化に用いられる一般的な硬化促進剤を使用することができる。例えば、熱硬化性樹脂がエポキシ樹脂である場合、硬化促進剤としては、イミダゾール化合物及びその誘導体;リン系化合物;第3級アミン化合物;第4級アンモニウム化合物等が挙げられる。硬化反応の促進の観点から、イミダゾール化合物及びその誘導体が好ましい。
 イミダゾール化合物及びその誘導体の具体例としては、2-メチルイミダゾール、2-エチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-1-メチルイミダゾール、1,2-ジエチルイミダゾール、1-エチル-2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、4-エチル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2'-ウンデシルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2'-エチル-4'-メチルイミダゾリル-(1’)]エチル-s-トリアジン等のイミダゾール化合物;1-シアノエチル-2-フェニルイミダゾリウムトリメリテート等の、前記イミダゾール化合物とトリメリト酸との塩;前記イミダゾール化合物とイソシアヌル酸との塩;前記イミダゾール化合物と臭化水素酸との塩などが挙げられる。イミダゾール化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 熱硬化性樹脂組成物が硬化促進剤を含有する場合、その含有量は、熱硬化性樹脂100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.1~10質量部、さらに好ましくは0.5~6質量部である。
(無機充填材)
 無機充填材により、熱膨張率の低減及び塗膜強度を向上させることができる。
 無機充填材としては、シリカ、アルミナ、硫酸バリウム、タルク、マイカ、カオリン、ベーマイト、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ホウ酸アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化アルミニウム、ジルコニア、ムライト、マグネシア、酸化亜鉛、酸化チタン、炭化ケイ素、窒化ケイ素、窒化ホウ素、焼成クレー等のクレー、ガラス短繊維、ガラス粉及び中空ガラスビーズ等が挙げられ、これらからなる群から選択される少なくとも1種が好ましく使用される。ガラスとしては、Eガラス、Tガラス、Dガラス等が好ましく挙げられる。これらの中でも、熱膨張率の低減、比誘電率及び誘電正接の低減の観点から、シリカ、アルミナが好ましく、シリカがより好ましい。
 前記シリカとしては、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられる。乾式法シリカとしては、さらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融シリカ(溶融球状シリカ)が挙げられる。
 無機充填材は、耐湿性を向上させるためにシランカップリング剤等の表面処理剤で表面処理されていてもよく、分散性を向上させるために疎水性化処理されていてもよい。
 無機充填材は、目的に応じて適宜選択できる。微細配線を形成し易くする観点から、無機充填材の比表面積は、好ましくは20m/g以上、より好ましくは30~250m/g、さらに好ましくは100~250m/gである。無機充填材の比表面積は、当業者が通常行う測定方法で求めることができ、例えば、BET法により測定することができる。BET法は、粉体粒子表面に、吸着占有面積の分かった分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法である。比表面積分析で、最もよく利用されているのが、窒素等の不活性気体によるBET法である。
 無機充填材としては、平均一次粒子径が100nm以下の無機充填材を含有することが好ましく、平均一次粒子径がより好ましくは1~80nm、さらに好ましくは1~50nm、さらに好ましくは5~30nmの無機充填材、特に好ましくは10~30nmの無機充填材を含有することが好ましい。ここで、「平均一次粒子径」とは、凝集した粒子の平均径、つまり二次粒子径ではなく、凝集していない単体での平均粒子径を指す。当該一次平均粒子径は、レーザー回折式粒度分布計で測定して求めることができる。また、該平均一次粒子径は、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径である。
 平均一次粒子径が100nm以下の無機充填材の市販品としては、AEROSIL 200(比表面積=200±25m/g、平均一次粒子径≒15~16nm、カタログ値)、AEROSIL R972(比表面積=110±20m/g、平均一次粒子径≒16nm、カタログ値)、AEROSIL R202(比表面積=100±20m/g、平均一次粒子径≒14nm、カタログ値)[以上、日本アエロジル株式会社製、商品名];PL-1(比表面積=181m/g、平均一次粒子径=15nm、カタログ値)及びPL-7(比表面積=36m/g、平均一次粒子径=75nm、カタログ値)[以上、扶桑化学工業株式会社製、商品名];AL-A06(比表面積=55m/g、カタログ値)[CIKナノテック株式会社製、商品名];「SO-C1」(球状シリカ、比表面積=17m/g、カタログ値)[株式会社アドマテックス製、商品名]等がある。
 無機充填材としては、前記の平均一次粒子径が100nm以下の無機充填材と共に、さらに、平均一次粒子径が0.1~50μmの無機充填材を含有していてもよい。該無機充填材の平均一次粒子径は、より好ましくは0.1~30μm、さらに好ましくは0.5~15μm、特に好ましくは0.5~7μmである。
 熱硬化性樹脂組成物が無機充填材を含有する場合、その含有量は、添加目的によっても異なるが、0.1~65体積%が好ましい。着色及び不透過目的では0.1体積%以上であれば十分効果を発揮できる傾向にある。一方、増量目的で添加するときは、65体積%以下に抑えることによって、接着力が低下するのを抑制できる傾向にあり、且つ、樹脂成分配合時の粘度が高くなり過ぎず、作業性が低下するのを抑制し易い傾向にある。同様の観点から、無機充填材の含有量は、より好ましくは5~50体積%、さらに好ましくは10~40体積%である。
(カップリング剤)
 カップリング剤を含有させることにより、無機充填材及び有機充填材の分散性の向上、及び補強基材及び金属箔への密着性の向上効果がある。カップリング剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 カップリング剤としては、シラン系カップリング剤が好ましい。シラン系カップリング剤としては、アミノシラン系カップリング剤[例えば、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン等]、エポキシシラン系カップリング剤[例えば、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等]、フェニルシラン系カップリング剤、アルキルシラン系カップリング剤、アルケニルシラン系カップリング剤[例えば、ビニルトリクロルシラン、ビニルトリエトキシシラン等のビニルシラン系カップリング剤など]、アルキニルシラン系カップリング剤、ハロアルキルシラン系カップリング剤、シロキサン系カップリング剤、ヒドロシラン系カップリング剤、シラザン系カップリング剤、アルコキシシラン系カップリング剤、クロロシラン系カップリング剤、(メタ)アクリルシラン系カップリング剤、アミノシラン系カップリング剤、イソシアヌレートシラン系カップリング剤、ウレイドシラン系カップリング剤、メルカプトシラン系カップリング剤、スルフィドシラン系カップリング剤及びイソシアネートシラン系カップリング剤等が挙げられる。これらの中でも、エポキシシラン系カップリング剤が好ましい。
 また、シラン部位がチタネートに置き換わった、いわゆるチタネート系カップリング剤を用いることもできる。
 熱硬化性樹脂組成物がカップリング剤を含有する場合、その含有量は、熱硬化性樹脂100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.1~10質量部、さらに好ましくは0.5~6質量部である。
(有機溶剤)
 取り扱いを容易にする観点から、樹脂組成物へさらに有機溶剤を含有させてもよい。本明細書では、有機溶剤を含有する樹脂組成物を、樹脂ワニスと称することがある。
 該有機溶剤としては、特に制限されないが、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のアルコール系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブタノン、シクロヘキサノン、4-メチル-2-ペンタノン等のケトン系溶剤;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶剤;テトラヒドロフラン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶剤;ジメチルスルホキシド等の硫黄原子含有溶剤などが挙げられる。これらの中でも、溶解性及び塗布後の外観の観点から、ケトン系溶剤が好ましく、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトンがより好ましく、シクロヘキサノン、メチルエチルケトンがさらに好ましい。
 有機溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 有機溶剤の含有量は、塗布容易性の観点から、例えば、樹脂組成物の不揮発分が好ましくは20~85質量%、より好ましくは40~80質量%となるように有機溶剤の使用量を調節する。
 一方、特性上問題がなければ、有機溶剤を用いずに、前記成分を粉末状にして混合する粉体混合を採用してもよいし、鹸濁化等の水溶液化を利用してもよい。また、熱硬化性樹脂組成物の硬化が著しく進行しない温度で、且つ熱硬化性樹脂組成物が液状化する温度にて直接攪拌混合してもよい。
(熱硬化性樹脂組成物の調製方法)

 前記熱硬化性樹脂組成物の調製方法に特に制限はなく、従来公知の調製方法を採用できる。
 例えば、前記溶媒中に、熱硬化性樹脂及び必要に応じてその他の成分を加えた後、各種混合機を用いて混合・攪拌することにより、樹脂ワニスとして調製することができる。混合機としては、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式及び自転公転式分散方式等の混合機が挙げられる。 

[積層板及び金属張積層板] 本発明は、前記FRP前駆体(プリプレグ)を含有する積層板と共に、該積層板上に金属箔を有する金属張積層板も提供する。
 本発明の積層板は、
 (1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程、及び
 (2)前記工程(1)で得たFRP前駆体を2枚以上積層させる工程、
とを有する積層板の製造方法によって製造できる。
 また、本発明の金属張積層板は、
 (1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程、
 (2)前記工程(1)で得たFRP前駆体を2枚以上積層させる工程、及び
 (3)前記工程(2)で得た積層板に金属箔を設ける工程、
とを有する金属張積層板の製造方法によって製造できる。
 より具体的には、前記FRP前駆体(プリプレグ)を2枚以上、好ましくは2~20枚重ねた状態で積層成形することにより、積層板を製造することができる。FRP前駆体(プリプレグ)の間に内層回路加工を行ってある基板を挟んでもよい。
 また、前記FRP前駆体(プリプレグ)を2枚以上、好ましくは2~20枚重ね、その片面又は両面、好ましくは両面に、金属箔を配置した構成で積層成形することにより、金属張積層板を製造することができる。
 前記工程(2)における積層条件としては、積層板の製造に利用される公知の条件を採用することができる。例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間で積層する条件を採用できる。
 金属箔の厚みとしては、本発明の効果を顕著に発現する観点から、好ましくは40μm以下、より好ましくは1~40μm、さらに好ましくは5~40μm、特に好ましくは5~35μm、最も好ましくは5~25μm、特に好ましくは5~17μmである。
 金属箔の金属としては、導電性の観点から、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム、又はこれらの金属元素のうちの少なくとも1種を含む合金であることが好ましい。合金としては、銅系合金、アルミニウム系合金、鉄系合金が好ましい。銅系合金としては、銅-ニッケル合金等が挙げられる。鉄系合金としては、鉄-ニッケル合金(42アロイ)等が挙げられる。これらの中でも、金属としては、銅、ニッケル、42アロイがより好ましく、入手容易性及びコストの観点からは、銅がさらに好ましい。
[プリント配線板]
 また、前記積層板に配線パターンを形成することによって、プリント配線板を製造することができる。配線パターンの形成方法としては特に限定されるものではないが、サブトラクティブ法、フルアディティブ法、セミアディティブ法(SAP:Semi Additive Process)又はモディファイドセミアディティブ法(m-SAP:modified Semi Additive Process)等の公知の方法が挙げられる。
[半導体パッケージ]
 本発明の半導体パッケージは、本発明のプリント配線板を含有するものであり、より詳細には、本発明のプリント配線板に半導体を搭載してなるものである。本発明の半導体パッケージは、本発明のプリント配線板の所定の位置に、半導体チップ、メモリ等を搭載して製造することができる。
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。なお、各例で製造したプリプレグ又は銅張積層板を用い、下記方法に従って、表面うねり及び光点の数を測定した。
(1.表面うねり)
 各例で作製した積層前のプリプレグ、又は銅張積層板を用い、ISO 4287(1997年)に従って、うねり曲線から得られる表面うねりを測定した。より具体的には、測定装置として表面粗さ測定器「サーフテストSV-3200」(株式会社ミツトヨ製)を使用して表面うねり(うねりパラメータ)を測定した。
 なお、表面うねりは、両面について測定し、値の大きい方を採用した。
(2.光点の数)
 各例で得た銅張積層板を用いて、500mm×500mmの範囲内の光点の数を測定した。測定は、「IPC-TM-650 No.2.1.8(仕上がり性)」に準じた条件で行った。
 光点が少ないほど外観が良好である。また、光点は、銅箔に無理な力がかかって発生しているため、光点が少ないほど、その部分の銅箔が割れている可能性が少なく好ましいと言える。
[調製例1]熱硬化性樹脂組成物(熱硬化性樹脂ワニス1)の調製
 クレゾールノボラック型エポキシ樹脂「EPICLON(登録商標)N-660」(DIC株式会社製)100質量部、ビスフェノールA型エポキシ樹脂「EPICLON 840S」(DIC株式会社製)10質量部、及びフェノールノボラック樹脂「フェノライト(登録商標)TD2090」(DIC株式会社製)60質量部へ、シクロヘキサノン30質量部及びメチルエチルケトン120質量部を加え、良く撹拌して溶解した。そこへ、水酸化アルミニウム「CL-303」(住友化学株式会社製)120質量部、シリカ「FB-3SDC」(電気化学工業株式会社製)35質量部、ナノシリカ「AEROSIL200」(日本エアロジル株式会社製)3質量部、カップリング剤「A-187」(モメンティブ・パフォーマンス・マテリアルズ社製)2質量部、1-イソブチル-2-メチルイミダゾール「IBMI-12」(硬化促進剤、三菱化学株式会社製)2質量部を加え、撹拌して溶解及び分散させ、不揮発分70質量%の熱硬化性樹脂ワニス1(シリカ及びナノシリカの含有量:9体積%、水酸化アルミニウムの含有量:25体積%)とした。

[実施例1]プリプレグ及び銅張積層板の製造(プリプレグの製造)
 調製例1で得た熱硬化性樹脂ワニス1を、ガラスクロス(坪量48g/m、IPC#1080、基材幅530mm、日東紡績株式会社製)に乾燥後の樹脂分が62質量%になるように塗布した。次いで、有機溶剤の除去と共に熱硬化性樹脂ワニス1を半硬化させるため、160℃の熱風式乾燥機にて加熱し、プリプレグaを得た。

 このプリプレグaを、離型アルミニウム箔「セパニウム202BC」(東洋アルミ千葉株式会社製)で上下を挟み、これを、真空ラミネータ「MVLP500」(株式会社名機製作所製)によって、120℃にて真空下で20秒放置した後、同温度のまま一方から加圧(負荷圧力:0.5MPa)して30秒保持することによって表面うねりの低減を行い、プリプレグAを作製した。前記方法に従って、該プリプレグAの表面うねりを求めた。結果を表1に示す。
(銅張積層板の製造)
 次いで、得られたプリプレグAを4枚重ね、これを、厚み12μmの銅箔「GTS-12」(古河電気工業株式会社製)2枚を用いて挟み込み、下記積層条件1又は2にて銅張積層板を作製した。前記方法に従って、得られた銅張積層板の表面うねりと光点の数を測定した。結果を表1に示す。(積層条件1)
 昇温速度3℃/分で25℃から185℃へ昇温し、185℃で90分保持後、30分冷却(計173分)
 製品圧力(銅箔で挟まれた4枚のプリプレグAにかかる圧力):4MPa(昇温開始から冷却終了まで)

(積層条件2) 昇温速度3℃/分で25℃から130℃へ昇温し、130℃で15分保持後、昇温速度3℃/分で185℃へ昇温し、185℃で90分保持後、30分冷却(計188分)

 製品圧力(銅箔で挟まれた4枚のプリプレグAにかかる圧力):0.5MPa(昇温開始から130℃保持終了まで)→4MPa(冷却終了まで) 
[実施例2]
 実施例1において、厚み12μmの銅箔「GTS-12」(古河電気工業株式会社製)の代わりに、厚み35μmの銅箔「GTS-35MP」(古河電気工業株式会社製)を用いたこと以外は同様に操作を行い、銅張積層板を作製した。前記方法に従って、得られた銅張積層板の表面うねりと光点の数を測定した。結果を表1に示す。
[比較例1]
 実施例1において、銅張積層板を製造する際にプリプレグAの代わりにプリプレグaを用いたこと以外は同様にして操作を行なうことによって銅張積層板を作製し、得られた銅張積層板の表面うねりと光点の数を測定した。結果を表1に示す。
[比較例2]
 比較例1において、厚み12μmの銅箔「GTS-12」(古河電気工業株式会社製)の代わりに、厚み35μmの銅箔「GTS-35MP」(古河電気工業株式会社製)を用いたこと以外は同様に操作を行い、銅張積層板を作製した。前記方法に従って、得られた銅張積層板の表面うねりと光点の数を測定した。結果を表1に示す。
[実施例3]
 調製例1で得た熱硬化性樹脂ワニス1を、580mm幅のPETフィルム「G-2」(帝人デュポンフィルム株式会社製)に塗布した。この際、塗布幅は525mmで、厚みは乾燥後5μmになるように塗布量を調整した。塗布後、乾燥させて、有機溶剤を除去すると共に、熱硬化性樹脂ワニス1を半硬化させることにより、熱硬化性樹脂フィルムA’を作成した。
 該熱硬化性樹脂フィルムA’を実施例1で得たプリプレグaの両面にラミネートした。ラミネートの加圧ロール条件は、常圧下、ロール温度110℃、線圧0.25MPa、速度2.0m/分とした。
 その後、冷却ロールで冷却して巻取り、プリプレグBを作成した。前記方法に従って、該プリプレグBの表面うねりを求めた。結果を表1に示す。
 次いで、実施例1においてプリプレグAの代わりにプリプレグBを用いたこと以外は同様にして操作を行い、銅張積層板を作製した。前記方法に従って、得られた銅張積層板の表面うねりと光点の数を測定した。結果を表1に示す。
[実施例4]
 実施例3において、厚み12μmの銅箔「GTS-12」(古河電気工業株式会社製)の代わりに、厚み35μmの銅箔「GTS-35MP」(古河電気工業株式会社製)を用いたこと以外は同様に操作を行い、銅張積層板を作製した。前記方法に従って、得られた銅張積層板の表面うねりと光点の数を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

 表1より、実施例1~4では、プリプレグの表面うねりを12μm以下とすることで、銅張積層板の表面うねりが小さく、銅張積層板の光点が少なくなった。そのため、銅箔表面に押し傷が発生するおそれ、及び銅箔が突き破られるおそれも少なく、銅箔のテント性も高いと言える。このように、本発明によれば、非特許文献1のように積層板の製造時の加熱加圧工程を2段階に分けずとも、表面うねりを小さくし、且つ光点を低減できるため、工業的に非常に有利である。
 一方、比較例1~2では、銅張積層板の光点が多く、銅張積層板の表面うねりが大きくなった。
 本発明のプリプレグを用いて形成された金属張積層板は、たとえ金属箔が40μm以下であっても光点が少なく、且つ表面うねりが小さいため、電子機器用のプリント配線板として有用である。
1 金属箔
2 熱硬化性樹脂組成物
3 補強基材

Claims (13)

  1.  FRP前駆体であって、その両面において表面うねりが12μm以下であるFRP前駆体。
  2.  前記表面うねりが10μm以下である、請求項1に記載のFRP前駆体。
  3.  請求項1又は2に記載のFRP前駆体を含有する積層板。
  4.  請求項3に記載の積層板上に金属箔を有する金属張積層板。
  5.  前記金属箔の厚みが40μm以下である、請求項4に記載の金属張積層板。
  6.  前記金属箔が銅箔である、請求項4又は5に記載の金属張積層板。
  7.  請求項4~6のいずれか1項に記載の金属張積層板に回路パターンが形成された、プリント配線板。
  8.  請求項7に記載のプリント配線板を含有する、半導体パッケージ。
  9.  (1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程、
    を有する、請求項1に記載のFRP前駆体の製造方法。
  10.  (1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程、及び
     (2)前記工程(1)で得たFRP前駆体を2枚以上積層させる工程、
    とを有する、積層板の製造方法。
  11.  (1)FRP前駆体の両面の表面うねりを12μm以下に低減する工程、
     (2)前記工程(1)で得たFRP前駆体を2枚以上積層させる工程、及び
     (3)前記工程(2)で得た積層板に金属箔を設ける工程、
    とを有する、金属張積層板の製造方法。
  12.  前記金属箔の厚みが40μm以下である、請求項11に記載の金属張積層板の製造方法。
  13.  前記金属箔が銅箔である、請求項11又は12に記載の金属張積層板の製造方法。
     
PCT/JP2017/001134 2016-01-15 2017-01-13 Frp前駆体、積層板、金属張積層板、プリント配線板、半導体パッケージ、及びそれらの製造方法 WO2017122820A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/069,933 US20190037691A1 (en) 2016-01-15 2017-01-13 Frp precursor, laminated plate, metal-clad laminate, printed circuit board, semiconductor package, and method for producing same
CN201780006411.3A CN108472831A (zh) 2016-01-15 2017-01-13 Frp前体、层叠板、覆金属层叠板、印刷布线板、半导体封装体及它们的制造方法
JP2017561208A JP6981256B2 (ja) 2016-01-15 2017-01-13 Frp前駆体、積層板、金属張積層板、プリント配線板、半導体パッケージ、及びそれらの製造方法
KR1020187019670A KR20180103061A (ko) 2016-01-15 2017-01-13 Frp 전구체, 적층판, 금속장 적층판, 프린트 배선판, 반도체 패키지 및 그들의 제조 방법
EP17738572.1A EP3403801B1 (en) 2016-01-15 2017-01-13 Frp precursor, laminated plate, metal-clad laminate, printed circuit board, semiconductor package, and method for producing same
HK18114030.3A HK1254930A1 (zh) 2016-01-15 2018-11-02 Frp前體、層叠板、覆金屬層叠板、印刷布線板、半導體封裝體及它們的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-006476 2016-01-15
JP2016006476 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017122820A1 true WO2017122820A1 (ja) 2017-07-20

Family

ID=59311190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001134 WO2017122820A1 (ja) 2016-01-15 2017-01-13 Frp前駆体、積層板、金属張積層板、プリント配線板、半導体パッケージ、及びそれらの製造方法

Country Status (8)

Country Link
US (1) US20190037691A1 (ja)
EP (1) EP3403801B1 (ja)
JP (1) JP6981256B2 (ja)
KR (1) KR20180103061A (ja)
CN (1) CN108472831A (ja)
HK (1) HK1254930A1 (ja)
TW (2) TW202138441A (ja)
WO (1) WO2017122820A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264293B2 (en) * 2017-07-24 2022-03-01 Kyocera Corporation Wiring board, electronic device package, and electronic device
WO2022254587A1 (ja) * 2021-06-01 2022-12-08 昭和電工マテリアルズ株式会社 プリプレグ、積層板、金属張り積層板、プリント配線板、半導体パッケージ並びにプリプレグの製造方法及び金属張り積層板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686293B (zh) * 2019-06-21 2020-03-01 台燿科技股份有限公司 金屬箔積層板及其製法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156851A (ja) * 1997-11-27 1999-06-15 Hitachi Chem Co Ltd プリプレグの製造方法
JP2004238465A (ja) * 2003-02-05 2004-08-26 Sumitomo Bakelite Co Ltd 複合基板の製造方法
JP2004342871A (ja) 2003-05-16 2004-12-02 Nec Toppan Circuit Solutions Inc 多層プリント配線板及びその製造方法
JP2007039495A (ja) * 2005-08-01 2007-02-15 Sumitomo Bakelite Co Ltd 基板の製造方法
JP2010147443A (ja) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd 積層板の製造方法
WO2011024870A1 (ja) * 2009-08-26 2011-03-03 旭化成イーマテリアルズ株式会社 プリント配線板用ガラスクロス
JP2013129827A (ja) * 2011-11-25 2013-07-04 Sumitomo Bakelite Co Ltd プリプレグ、積層板、多層プリント配線板、および半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206546A (zh) * 1996-10-25 1999-01-27 吉维迪意大利股份公司 用于印刷电路的采用单向性玻璃织物的叠层
JP2000327814A (ja) * 1999-05-19 2000-11-28 Mitsubishi Rayon Co Ltd プリプレグ及びこれを用いた管状成形体
TWI252721B (en) * 2004-09-10 2006-04-01 Nan Ya Printed Circuit Board C Method of manufacturing double-sided printed circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11156851A (ja) * 1997-11-27 1999-06-15 Hitachi Chem Co Ltd プリプレグの製造方法
JP2004238465A (ja) * 2003-02-05 2004-08-26 Sumitomo Bakelite Co Ltd 複合基板の製造方法
JP2004342871A (ja) 2003-05-16 2004-12-02 Nec Toppan Circuit Solutions Inc 多層プリント配線板及びその製造方法
JP2007039495A (ja) * 2005-08-01 2007-02-15 Sumitomo Bakelite Co Ltd 基板の製造方法
JP2010147443A (ja) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd 積層板の製造方法
WO2011024870A1 (ja) * 2009-08-26 2011-03-03 旭化成イーマテリアルズ株式会社 プリント配線板用ガラスクロス
JP2013129827A (ja) * 2011-11-25 2013-07-04 Sumitomo Bakelite Co Ltd プリプレグ、積層板、多層プリント配線板、および半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264293B2 (en) * 2017-07-24 2022-03-01 Kyocera Corporation Wiring board, electronic device package, and electronic device
WO2022254587A1 (ja) * 2021-06-01 2022-12-08 昭和電工マテリアルズ株式会社 プリプレグ、積層板、金属張り積層板、プリント配線板、半導体パッケージ並びにプリプレグの製造方法及び金属張り積層板の製造方法
WO2022255278A1 (ja) * 2021-06-01 2022-12-08 昭和電工マテリアルズ株式会社 プリプレグ、積層板、金属張り積層板、プリント配線板、半導体パッケージ並びにプリプレグの製造方法及び金属張り積層板の製造方法

Also Published As

Publication number Publication date
CN108472831A (zh) 2018-08-31
EP3403801B1 (en) 2022-03-02
JP6981256B2 (ja) 2021-12-15
EP3403801A4 (en) 2019-08-14
US20190037691A1 (en) 2019-01-31
KR20180103061A (ko) 2018-09-18
JPWO2017122820A1 (ja) 2018-11-01
TWI790989B (zh) 2023-02-01
HK1254930A1 (zh) 2019-08-02
EP3403801A1 (en) 2018-11-21
TW202138441A (zh) 2021-10-16
TW201736459A (zh) 2017-10-16

Similar Documents

Publication Publication Date Title
TWI738705B (zh) 預浸體、印刷線路板、半導體封裝體、及印刷線路板的製造方法
WO2014088099A9 (ja) 金属箔張積層板の製造方法
WO2018181513A1 (ja) Frp前駆体の製造方法及びfrpの製造方法
TW201815957A (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷電路板
WO2017122820A1 (ja) Frp前駆体、積層板、金属張積層板、プリント配線板、半導体パッケージ、及びそれらの製造方法
JP6620457B2 (ja) 樹脂組成物
JP7276400B2 (ja) 金属張積層板、プリント配線板及び半導体パッケージ
JP6988818B2 (ja) プリント配線板及び半導体パッケージ
JP7081231B2 (ja) プリプレグ、積層板、プリント配線板、半導体パッケージ及びプリプレグの製造方法
WO2023218969A1 (ja) Frp前駆体の製造方法及びfrpの製造方法
JP7434707B2 (ja) Frp前駆体、frp、積層板、金属張積層板、プリント配線板及び半導体パッケージ並びにfrp前駆体の製造方法
CN118082347A (zh) 预浸渍体、印刷布线板、半导体封装体及印刷布线板的制造方法
WO2022254587A1 (ja) プリプレグ、積層板、金属張り積層板、プリント配線板、半導体パッケージ並びにプリプレグの製造方法及び金属張り積層板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561208

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187019670

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738572

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738572

Country of ref document: EP

Effective date: 20180816