WO2017122563A1 - 光学補償フィルムおよびその製造方法 - Google Patents

光学補償フィルムおよびその製造方法 Download PDF

Info

Publication number
WO2017122563A1
WO2017122563A1 PCT/JP2017/000086 JP2017000086W WO2017122563A1 WO 2017122563 A1 WO2017122563 A1 WO 2017122563A1 JP 2017000086 W JP2017000086 W JP 2017000086W WO 2017122563 A1 WO2017122563 A1 WO 2017122563A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical compensation
compensation film
film
resin
residue unit
Prior art date
Application number
PCT/JP2017/000086
Other languages
English (en)
French (fr)
Inventor
北川貴裕
豊増信之
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016246632A external-priority patent/JP6897084B2/ja
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN201780004755.0A priority Critical patent/CN108369312B/zh
Publication of WO2017122563A1 publication Critical patent/WO2017122563A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to an optical compensation film and a method for producing the same, and more particularly to an optical compensation film for a liquid crystal display excellent in retardation characteristics and a method for producing the same.
  • Liquid crystal displays are widely used as the most important display devices in the multimedia society, including mobile phones, computer monitors, laptop computers, and televisions. Many optical films are used in liquid crystal displays to improve display characteristics. In particular, the optical compensation film plays a major role in improving contrast and compensating for color tone when viewed from the front or obliquely.
  • liquid crystal displays such as vertical alignment type (VA-LCD), in-plane alignment type liquid crystal (IPS-LCD), super twist nematic type liquid crystal (STN-LCD), reflection type liquid crystal display, and transflective type liquid crystal display.
  • VA-LCD vertical alignment type
  • IPS-LCD in-plane alignment type liquid crystal
  • STN-LCD super twist nematic type liquid crystal
  • reflection type liquid crystal display and transflective type liquid crystal display.
  • transflective type liquid crystal display There is a method, and an optical compensation film suitable for the display is required.
  • a stretched film such as a cellulose resin, polycarbonate, or cyclic polyolefin is used.
  • a film made of a cellulose-based resin such as a triacetyl cellulose film is widely used because it has good adhesion to polyvinyl alcohol as a polarizer.
  • an optical compensation film made of a cellulose resin has several problems.
  • a cellulose resin film is processed into an optical compensation film having retardation values suitable for various displays by adjusting stretching conditions, but the three-dimensional film obtained by uniaxial or biaxial stretching of the cellulose resin film.
  • nx represents the refractive index in the direction of the stretching axis in the film plane
  • ny represents the refractive index in the direction perpendicular to the stretching axis in the film plane
  • nz represents the refractive index outside the film plane (thickness direction).
  • Cellulosic resin films are generally produced by a solvent casting method. Since a cellulose resin film formed by a casting method has an out-of-plane retardation (Rth) of about 40 nm in the film thickness direction, IPS mode liquid crystal There are problems such as color shift in displays.
  • the out-of-plane phase difference (Rth) is a phase difference value represented by the following equation.
  • Rth [(nx + ny) / 2 ⁇ nz] ⁇ d (Where nx is the refractive index in the slow axis direction in the film plane, ny is the refractive index in the direction perpendicular to the stretching axis in the film plane, nz is the refractive index outside the film plane (thickness direction), d Indicates film thickness.)
  • the retardation film which consists of a fumarate-type resin is proposed (for example, refer patent document 4).
  • the three-dimensional refractive index of the stretched film made of a fumarate ester resin is nz> ny> nx, and in order to obtain an optical compensation film exhibiting the above three-dimensional refractive index, it is laminated with another optical compensation film or the like. Etc. are necessary.
  • Japanese Patent No. 2818983 Japanese Patent Laid-Open No. 5-297223 Japanese Unexamined Patent Publication No. 5-323120 Japanese Unexamined Patent Publication No. 2008-64817
  • the present invention has been made in view of the above problems, and an object thereof is to provide an optical compensation film having excellent retardation characteristics and a method for producing the same.
  • An optical compensation film, wherein Re) is 50 to 300 nm, and the Nz coefficient represented by the following formula (2) is 0 ⁇ Nz ⁇ 1.0.
  • R 1 , R 2 and R 3 each independently represent hydrogen, alkyl or halogen, and Ar represents benzene which may have a substituent.
  • Re (nx ⁇ ny) ⁇ d
  • Nz (nx ⁇ nz) / (nx ⁇ ny) (2)
  • nx represents the refractive index in the direction of the stretching axis in the film plane
  • ny represents the refractive index in the direction perpendicular to the stretching axis in the film plane
  • nz represents the refractive index outside the film plane (thickness direction).
  • the residue unit represented by the general formula (1) is an ⁇ , ⁇ , ⁇ -trifluorostyrene residue unit, p-hydroxystyrene residue unit, p-nitrostyrene residue unit, p-cyanostyrene residue.
  • the optical compensation film as described in [1] or [2] above, wherein the cellulose resin is represented by the following general formula (2).
  • R 4 , R 5 , and R 6 each independently represent hydrogen, acyl having 1 to 10 carbon atoms, or alkyl having 1 to 10 carbon atoms.
  • the cellulose resin is selected from the group consisting of methyl cellulose, ethyl cellulose, triacetyl cellulose, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate.
  • the optical compensation film according to any one of the above.
  • [5] The optical compensation film as described in any one of [1] to [4] above, wherein the film thickness is from 5 to 200 ⁇ m.
  • optical compensation film of the present invention exhibits specific retardation characteristics, it is useful as an optical compensation film for liquid crystal displays and an antireflection film.
  • the resin composition used for the optical compensation film of the present invention includes a resin having a residue unit represented by the following general formula (1) as a resin component, and a cellulose resin.
  • R 1, R 2, R 3 in the general formula (1) are each independently hydrogen, alkyl or halogen, the alkyl, e.g., methyl Group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, s-pentyl group, t-pentyl group, s-hexyl group, t-hexyl group, 2-ethylhexyl group , A cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • halogen examples include a chloro group, a fluoro group, a bromo group, and an iodo group.
  • a fluoro group, a bromo group, or an iodo group is preferred because an optical compensation film having excellent retardation characteristics and transparency can be obtained.
  • Ar in the general formula (1) represents benzene which may have a substituent.
  • examples of the substituent on Ar include alkyl, halogen, hydroxyl group, alkoxy, ether, ester, nitro, cyano, sulfonic acid, amine, aromatic ring, heterocyclic ring, and aliphatic ring.
  • examples of the alkyl include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, t-butyl, s-pentyl, t-pentyl, and s-hexyl.
  • halogen include chloro group, fluoro group, bromo group, iodo group and the like, and aromatic groups.
  • Examples of the ring include benzene, biphenyl, terphenyl, naphthalene, anthracene, phenanthrene, pyrene, naphthacene, pentacene and the like
  • examples of the heterocyclic ring include pyridine, pyrimidine, pyridazine, pyrazine, triazine, pyrrole, imidazole, Imidazoline, pyrazole, oxazole, isoxazo Oxadiazole, thiophene, thiazole, isothiazole, furan, carbazole, quinoline, indole, phthalimide, naphthalimide and the like
  • examples of the aliphatic ring include cyclopropane, cyclobutane, cyclopentane, cyclohexane, dioxane, Maleimide, lactam and the like can be mentioned, and the aromatic ring, heterocycle and ali
  • residue unit represented by the general formula (1) examples include ⁇ , ⁇ , ⁇ -trifluorostyrene residue unit, p-hydroxystyrene residue unit, p-nitrostyrene residue unit, p- Cyanostyrene residue unit, p-carboxystyrene residue unit, p-bromostyrene residue unit, p-iodostyrene residue unit, pt-butoxystyrene residue unit, p-acetoxystyrene residue unit, p- Examples include an ethyl styrene sulfonate residue unit, a p-aminostyrene residue unit, and the like, and since an optical compensation film having excellent retardation characteristics and transparency can be obtained, ⁇ , ⁇ , ⁇ -trifluorostyrene residue unit, A p-hydroxystyrene residue unit, a p-nitrostyrene residue unit, a p-cyanostyrene residue unit, and
  • resin having a residue unit represented by the general formula (1) examples include polyhydroxystyrene, poly ( ⁇ , ⁇ , ⁇ -trifluorostyrene), ⁇ , ⁇ , ⁇ -trifluorostyrene / p.
  • polyhydroxystyrene, ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer, p-nitrostyrene / p-hydroxy Styrene copolymers are preferred.
  • the resin having a residue unit represented by the general formula (1) of the present invention may have a monomer residue unit copolymerizable with the residue unit represented by the general formula (1).
  • Examples of the residue unit of the monomer copolymerizable with the residue unit represented by the general formula (1) include acrylic acid residues; methyl acrylate residues, ethyl acrylate residues, and butyl acrylate residues.
  • Acrylic acid residues such as: methacrylic acid residues; methacrylic acid residues such as methyl methacrylate residues, ethyl methacrylate residues, butyl methacrylate residues; vinyl acetate residues, vinyl propionate residues
  • Vinyl ester residues such as: methyl vinyl ether residues, ethyl vinyl ether residues, vinyl ether residues such as butyl vinyl ether residues; N-methyl maleimide residues, N-cyclohexyl maleimide residues, N-phenyl maleimide residues, etc.
  • N-substituted maleimide residues acrylonitrile residues; methacrylonitrile residues; cinnamic acid residues; cinnamic acid Cinnamic acid ester residues such as chill residues, ethyl cinnamate residues, and isopropyl cinnamate residues; olefin residues such as ethylene residues and propylene residues; vinylpyrrolidone residues; vinylpyridine residues, etc. 1 type or 2 types or more can be mentioned.
  • the number average molecular weight (Mn) in terms of standard polystyrene obtained from an elution curve measured by GPC) is preferably 1 ⁇ 10 3 to 5 ⁇ 10 6 , and preferably 5 ⁇ 10 3 to 2 ⁇ 10 5. Is more preferable.
  • any method may be used as long as the resin is obtained.
  • it can be produced by carrying out radical polymerization using a monomer related to the residue unit represented by the general formula (1), and optionally a monomer copolymerizable therewith.
  • the radical polymerization method for example, any of a bulk polymerization method, a solution polymerization method, a suspension polymerization method, a precipitation polymerization method, an emulsion polymerization method and the like can be employed.
  • polymerization initiator used for radical polymerization examples include benzoyl peroxide, lauryl peroxide, octanoyl peroxide, acetyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, and dicumyl peroxide.
  • Organic peroxides such as 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-butyronitrile), 2,2′-azobisisobutyronitrile, dimethyl-2 Azo initiators such as 1,2′-azobisisobutyrate and 1,1′-azobis (cyclohexane-1-carbonitrile).
  • solvent which can be used in solution polymerization method or precipitation polymerization method For example, aromatic solvents, such as benzene, toluene, xylene; Alcohol solvents, such as methanol, ethanol, propyl alcohol, and butyl alcohol; Cyclohexane, Examples thereof include dioxane, tetrahydrofuran, acetone, methyl ethyl ketone, dimethylformamide, isopropyl acetate, and a mixed solvent thereof.
  • the polymerization temperature at the time of performing radical polymerization can be appropriately set according to the decomposition temperature of the polymerization initiator, and it is generally preferable to carry out in the range of 30 to 150 ° C.
  • the resin having a residue unit represented by the general formula (1) may be obtained via a precursor.
  • the cellulose-based resin is not particularly limited as long as an optical compensation film having excellent retardation characteristics can be obtained using the resin, but when used as an optical compensation film, it is excellent in transparency and has an in-plane retardation.
  • a cellulose resin represented by the following general formula (2) is preferable because Re is large and the stretch processability is excellent.
  • R 4 , R 5 , and R 6 each independently represent hydrogen, acyl having 1 to 10 carbon atoms, or alkyl having 1 to 10 carbon atoms.
  • the cellulose resin represented by the general formula (2) is a polymer in which ⁇ -glucose units are linearly polymerized, and part or all of hydroxyl groups at the 2nd, 3rd and 6th positions of the glucose unit. Is a polymer substituted.
  • R 4 , R 5 and R 6 each independently have hydrogen, acyl having 1 to 10 carbons or alkyl having 1 to 10 carbons.
  • acyl having 1 to 10 carbon atoms include acetyl, propionyl, butyryl, pentanoyl, hexanoyl, heptanoyl, octanoyl, decanoyl, isobutyryl, t-butyryl, cyclohexanoyl, benzoyl Group, naphthoyl group and the like.
  • alkyl having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, butyl group, hexyl group, octyl group, decanyl group, isobutyl group, t-butyl group, cyclohexyl group, phenyl group, benzyl group, A naphthyl group etc. can be mentioned.
  • a methyl group, an ethyl group, and a propyl group are preferable because solubility and compatibility are further improved.
  • the substitution degree of substitution through the oxygen atom of the hydroxyl group of cellulose in the cellulose resin of the present invention is the ratio of substitution of the hydroxyl group of cellulose for each of the 2-position, 3-position and 6-position (100% substitution) Means the degree of substitution 3), and the degree of substitution is preferably 1.5 to 3.0, more preferably 1.8 to 2.8 from the viewpoint of solubility, compatibility, and stretchability. .
  • cellulose resin of the present invention examples include methyl cellulose, ethyl cellulose, triacetyl cellulose, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, and the like. Since a compensation film is obtained, ethyl cellulose, cellulose acetate butyrate, and cellulose acetate propionate are preferable.
  • the cellulose resin of the present invention has excellent mechanical properties and excellent moldability during film formation, standard polystyrene obtained from an elution curve measured by gel permeation chromatography (GPC).
  • the converted number average molecular weight (Mn) is preferably 1 ⁇ 10 3 to 1 ⁇ 10 6 , and more preferably 5 ⁇ 10 3 to 2 ⁇ 10 5 .
  • the optical compensation film of the present invention is characterized in that a desired retardation and Nz coefficient are expressed by blending a resin having a residue unit represented by the general formula (1) and a cellulose resin. . That is, the resin having the residue unit represented by the general formula (1) exhibits negative birefringence, the cellulose resin exhibits positive birefringence, and these resins exhibit excellent compatibility.
  • the optical compensation film according to the present invention obtained by blending these is characterized by being excellent in retardation characteristics while having practical transparency.
  • the general formula ( It is preferably 1 to 90% by weight of the resin having the residue unit represented by 1) and 99 to 10% by weight of the cellulose resin. More preferably, it is 10 to 85% by weight of a resin having a residue unit represented by the general formula (1) and 90 to 15% by weight of a cellulose resin, and particularly preferably has a residue unit represented by the general formula (1).
  • the resin is 20 to 80% by weight and the cellulose resin is 80 to 20% by weight.
  • the melt blending method is a method of manufacturing by melting and kneading a resin by heating.
  • the solution blending method is a method in which a resin is dissolved in a solvent and blended.
  • Solvents used for solution blending include, for example, chlorinated solvents such as methylene chloride and chloroform; aromatic solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone; ethyl acetate, An ester solvent such as butyl acetate; an alcohol solvent such as methanol, ethanol and propanol; an ether solvent such as dioxane and tetrahydrofuran; dimethylformamide, N-methylpyrrolidone and the like can be used.
  • Each resin and additive can be dissolved in a solvent and then blended. The powder, pellets, etc. of each resin can be kneaded and then dissolved in the solvent.
  • the optical compensation film of the present invention may contain an antioxidant in order to improve the thermal stability.
  • Antioxidants include, for example, hindered phenol antioxidants, phosphorus antioxidants, sulfur antioxidants, lactone antioxidants, amine antioxidants, hydroxylamine antioxidants, vitamin E series An antioxidant, other antioxidants, etc. are mentioned, and these antioxidants may be used alone or in combination of two or more.
  • the optical compensation film of the present invention may contain a hindered amine light stabilizer or an ultraviolet absorber for enhancing the weather resistance.
  • examples of the ultraviolet absorber include benzotriazole, benzophenone, triazine, benzoate and the like.
  • a compound known as a so-called plasticizer may be added for the purpose of improving mechanical properties, imparting flexibility, imparting water absorption resistance, reducing water vapor transmission rate, adjusting retardation, etc.
  • the plasticizer include phosphate esters and carboxylic acid esters. Acrylic polymers are also used.
  • phosphate ester examples include triphenyl phosphate, tricresyl phosphate, phenyl diphenyl phosphate, and the like.
  • carboxylic acid esters include phthalic acid esters, citric acid esters, fatty acid esters, glycerol esters, alkylphthalyl alkyl glycolates, and the like.
  • phthalate ester examples include dimethyl phthalate, diethyl phthalate, dicyclohexyl phthalate, dioctyl phthalate, and diethyl hexyl phthalate.
  • citrate ester include acetyl triethyl citrate and acetyl tributyl citrate. .
  • fatty acid ester examples include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and the like
  • glycerol ester examples include triacetin, trimethylolpropane tribenzoate, and the like.
  • the rate examples include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl ethyl glycolate, ethyl phthalate Methyl methacrylate, ethyl phthalyl propyl glycolate, propyl phthalyl ethyl glycolate, methyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl Phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl
  • the optical compensation film of the present invention may contain an additive having an aromatic hydrocarbon ring or an aromatic heterocycle for the purpose of adjusting the retardation.
  • the birefringence ⁇ n represented by the following formula (A) of the additive used for the purpose of adjusting the phase difference is not particularly limited. However, since it is an optical compensation film having excellent optical characteristics, it is preferably 0.00. It is 05 or more, more preferably 0.05 to 0.5, particularly preferably 0.1 to 0.5.
  • the ⁇ n of the additive can be obtained by molecular orbital calculation.
  • nx the refractive index in the slow axis direction of the additive molecule
  • ny the refractive index in the fast axis direction of the additive molecule.
  • Examples of the aromatic hydrocarbon ring include a 5-membered ring, a 6-membered ring, a 7-membered ring, or a condensed ring composed of two or more aromatic rings.
  • Examples of the aromatic heterocycle include a furan ring. Thiophene ring, pyrrole ring, oxazole ring, thiazole ring, imidazole ring, triazole ring, pyridine ring, pyrimidine ring, pyrazine ring, 1,3,5-triazine ring and the like.
  • the aromatic hydrocarbon ring or aromatic heterocycle may have a substituent.
  • substituents include a hydroxyl group, an ether group, a carbonyl group, an ester group, a carboxylic acid residue, an amino group, and an imino group.
  • Examples of the additive having an aromatic hydrocarbon ring or aromatic heterocycle used in the present invention include tricresyl phosphate, trixylenyl phosphate, triphenyl phosphate, 2-ethylhexyl diphenyl phosphate, cresyl diphenyl phosphate, Phosphate ester compounds such as bisphenol A bis (diphenyl phosphate); dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, dinormal octyl phthalate, 2-ethylhexyl phthalate, diisooctyl phthalate, dicapryl phthalate, dinonyl phthalate, diisononyl Phthalate compounds such as phthalate, didecyl phthalate, diisodecyl phthalate; tributyl trimellitate, tri-normal Trimellitic acid ester compounds such as syl trimellitate, tri (2-e
  • Pyromellitic acid ester compounds such as ethyl benzoate, isopropyl benzoate, ethyl paraoxybenzoate; phenyl salicylate, p-octylphenyl salicylate, p-tert-butyl phthalate Salicylic acid ester compounds such as nyl salicylate; glycolic acid ester compounds such as methyl phthalyl ethyl glycolate, ethyl phthalyl ethyl glycolate, butyl phthalyl butyl glycolate; 2- (2′-hydroxy-5′-t- Benzotriazole compounds such as butylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole; 2-hydroxy-4-methoxybenzophenone, 2,2′- Benzophenone compounds such as dihydroxy-4-methoxybenzophenone, 2,4-dihydroxy
  • tricresyl phosphate 2-ethylhexyl diphenyl phosphate, 2-hydroxy-4-methoxybenzophenone 2,2 ′, 4,4′-tetrahydroxybenzophenone is preferable, and these may be used alone or in combination as required. In combination it can be used.
  • the optical compensation film of the present invention contains an additive having an aromatic hydrocarbon ring or an aromatic heterocycle, it is preferably an aromatic hydrocarbon ring or an aromatic heterocycle from the viewpoint of optical properties and mechanical properties.
  • the ratio of the additive having a ring is 0.01 to 30% by weight, more preferably 0.01 to 20% by weight, and particularly preferably 0.01 to 15% by weight.
  • optical compensation film of the present invention contains other polymers, surfactants, polymer electrolytes, conductive complexes, pigments, dyes, antistatic agents, antiblocking agents, lubricants and the like within the scope of the invention. May be.
  • the retardation characteristics of the optical compensation film of the present invention are such that the in-plane retardation (Re) represented by the following formula (1) is 50 to 300 nm, and the Nz coefficient represented by the following formula (2) is 0 ⁇ Nz ⁇ 1. 0.
  • the phase difference characteristics at this time are measured using a fully automatic birefringence meter (manufactured by Oji Scientific Instruments Co., Ltd., trade name KOBRA-21ADH) under a measurement wavelength of 589 nm.
  • Re (nx ⁇ ny) ⁇ d (1)
  • Nz (nx ⁇ nz) / (nx ⁇ ny) (2)
  • Rth [(nx + ny) / 2 ⁇ nz] ⁇ d (3)
  • nx represents the refractive index in the direction of the stretching axis in the film plane
  • ny represents the refractive index in the direction perpendicular to the stretching axis in the film plane
  • nz represents the refractive index outside the film plane (thickness direction).
  • D indicates the film thickness.
  • the in-plane retardation (Re) is preferably 60 to 300 nm, more preferably 70 to 280 nm, and the Nz coefficient is preferably 0.1 to 0.85, more preferably 0.1 to 0.75.
  • the ratio Re (450) / Re (550) of the retardation at 450 nm to the retardation at 550 nm is preferably 0.60 ⁇ Re (450) in order to suppress color misregistration.
  • the thickness of the optical compensation film of the present invention is preferably from 5 to 200 ⁇ m, more preferably from 5 to 150 ⁇ m, most preferably from 5 to 120 ⁇ m, from the viewpoints of handleability of the film and suitability for thinning optical members. .
  • the optical compensation film of the present invention preferably has a light transmittance of 85% or more, and more preferably 90% or more, for improving luminance.
  • the haze is preferably 1% or less, more preferably 0.5% or less, in order to improve contrast.
  • the solution casting method is a method of obtaining an optical compensation film by casting a resin solution (generally referred to as a dope) on a support substrate and then evaporating the solvent by heating.
  • a resin solution generally referred to as a dope
  • a doctor blade method for example, a bar coater method, a roll coater method, a lip coater method or the like is used.
  • a method of continuously extruding is used.
  • the support substrate used examples include a glass substrate, a metal substrate such as stainless steel and ferrotype, and a plastic substrate such as polyethylene terephthalate.
  • a metal substrate having a mirror-finished surface is preferably used.
  • the viscosity of the resin solution is the resin concentration, molecular weight, and type of solvent. It depends on.
  • the viscosity of the resin solution when producing the optical compensation film of the present invention can be adjusted by the molecular weight of the polymer, the concentration of the polymer, and the type of solvent.
  • the viscosity of the resin solution is not particularly limited, but is preferably 100 to 10000 cps, more preferably 300 to 5000 cps, and particularly preferably 500 to 3000 cps in order to make the film coatability easier.
  • Examples of the method for producing an optical compensation film of the present invention include, for example, a resin solution obtained by dissolving a resin composition containing a resin having a residue unit represented by the following general formula (1) and a cellulose resin in a solvent. Can be cast on a base material, dried and then peeled off from the base material.
  • the out-of-plane retardation (Rth) can be controlled by the concentration of the resin contained in the resin composition, the molecular weight of the resin, the type of solvent, and the film-forming drying temperature.
  • the optical compensation film of the present invention is preferably uniaxially stretched or unbalanced biaxially stretched in order to develop in-plane retardation (Re).
  • a method for stretching the optical compensation film it is possible to use a longitudinal uniaxial stretching method by roll stretching, a transverse uniaxial stretching method by tenter stretching, an unbalanced sequential biaxial stretching method or an unbalanced simultaneous biaxial stretching method by a combination thereof. it can.
  • a phase difference characteristic can be expressed, without using the special extending
  • the thickness of the optical compensation film at the time of stretching is preferably from 10 to 200 ⁇ m, more preferably from 30 to 180 ⁇ m, particularly preferably from 30 to 150 ⁇ m, from the viewpoint of ease of stretching treatment and suitability for thinning of the optical member. .
  • the stretching temperature is not particularly limited, but is preferably 50 to 200 ° C., more preferably 100 to 180 ° C., because good retardation characteristics can be obtained.
  • the stretching ratio of uniaxial stretching is preferably 1.05 to 3.5 times, and more preferably 1.1 to 3.0 times because good retardation characteristics can be obtained.
  • the stretching ratio of the unbalanced biaxial stretching is preferably 1.05 to 3.5 times in the length direction, more preferably 1.1 to 3.0 times in the length direction because good retardation characteristics can be obtained. Is preferably 1.0 to 1.2 times, and more preferably 1.0 to 1.1 times.
  • the in-plane retardation (Re) can be controlled by the stretching temperature and the stretching ratio.
  • the optical compensation film of the present invention can be laminated with a film containing other resins as necessary.
  • other resins include polyether sulfone, polyarylate, polyethylene terephthalate, polynaphthalene terephthalate, polycarbonate, cyclic polyolefin, maleimide resin, fluorine resin, polyimide, and the like. It is also possible to laminate a hard coat layer or a gas barrier layer.
  • the light transmittance and haze of the prepared film were measured using a haze meter (trade name: NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the light transmittance was measured according to JIS K 7361-1 (1997 edition).
  • the measurement was performed according to JIS-K 7136 (2000 version).
  • the retardation characteristics of the optical compensation film were measured using light having a wavelength of 589 nm using a sample tilt type automatic birefringence meter (manufactured by Oji Scientific Instruments, trade name: KOBRA-WR).
  • Synthesis Example 1 Synthesis of a resin precursor having a residue unit represented by the general formula (1) (poly (p-tert-butoxy) styrene))
  • a glass ampule with a capacity of 75 mL was charged with 50 g of p-tert-butoxystyrene and 0.45 g of tert-butyl peroxypivalate as a polymerization initiator, and after repeating nitrogen substitution and depressurization, it was sealed under reduced pressure.
  • This ampoule was placed in a thermostat at 50 ° C. and held for 72 hours for radical polymerization. After completion of the polymerization reaction, the polymer was taken out from the ampoule and dissolved in 200 g of tetrahydrofuran.
  • This polymer solution was dropped into 4 L of hexane and precipitated, and then vacuum dried at 80 ° C. for 10 hours to obtain 26 g of poly (p-tert-butoxy) styrene.
  • the number average molecular weight of the obtained polymer was 319,000.
  • Synthesis Example 2 (Synthesis of resin (polyhydroxystyrene) having a residue unit represented by formula (1)) 30 g of the poly (p-tert-butoxy) styrene obtained in Synthesis Example 1 and 170 g of methanol were placed in a 500 mL four-necked flask, and 30.8 g of hydrobromic acid was added dropwise with stirring under a nitrogen stream. After completion of the dropwise addition, the solution refluxed for 8 hours was poured into water for precipitation, washed with water, and vacuum dried at 80 ° C. for 10 hours to obtain 20.1 g of polyhydroxystyrene. The number average molecular weight of the obtained polymer was 211,000.
  • Synthesis Example 3 Synthesis of resin precursor ( ⁇ , ⁇ , ⁇ -trifluorostyrene / p-tert-butoxystyrene copolymer) having a residue unit represented by the general formula (1))
  • resin precursor ⁇ , ⁇ , ⁇ -trifluorostyrene / p-tert-butoxystyrene copolymer having a residue unit represented by the general formula (1)
  • ion exchange water 52 g
  • ⁇ , ⁇ , ⁇ -trifluorostyrene 0.8 g
  • p-tert-butoxystyrene 8.0 g
  • potassium peroxodisulfate (initiator) 0.27 g
  • dodecylamine hydrochloride The salt (emulsifier) 1.1g was put, and after nitrogen substitution and depressurization were repeated, it was sealed under reduced pressure.
  • This ampoule was placed in a constant temperature bath at 70 ° C. and kept for 24 hours to carry out radical polymerization. After completion of the polymerization reaction, the polymer was taken out from the ampule, washed with stirring 3 times with 300 ml of distilled water and 3 times with 300 ml of methanol, filtered, and vacuum dried at 80 ° C. for 10 hours to obtain ⁇ , ⁇ , ⁇ -trifluorostyrene. 7.5 g of / p-tert-butoxystyrene copolymer was obtained.
  • Synthesis Example 4 (Synthesis of Resin ( ⁇ , ⁇ , ⁇ -Trifluorostyrene / p-Hydroxystyrene Copolymer) Having Residue Units Represented by General Formula (1))
  • Resin ⁇ , ⁇ , ⁇ -Trifluorostyrene / p-Hydroxystyrene Copolymer
  • methanol a three-necked flask with a capacity of 100 mL
  • 7 g of the ⁇ , ⁇ , ⁇ -trifluorostyrene / p-tert-butoxystyrene copolymer obtained in Synthesis Example 3 were placed, and 47% bromide under nitrogen flow with stirring. 6 g of hydrogen acid was added dropwise.
  • the solution refluxed for 10 hours was poured into water for precipitation, washed with water, and then vacuum-dried at 80 ° C. for 10 hours to obtain ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer 5 0.6 g was obtained.
  • the number average molecular weight of the obtained polymer was 403,000, ⁇ , ⁇ , ⁇ -trifluorostyrene was 18.9 mol%, and p-hydroxystyrene was 81.1 mol%.
  • Synthesis Example 5 Synthesis of precursor of resin having residue unit represented by general formula (1) ( ⁇ , ⁇ , ⁇ -trifluorostyrene / p-tert-butoxystyrene copolymer)
  • ion exchange water 52 g
  • ⁇ , ⁇ , ⁇ -trifluorostyrene 2.0 g
  • p-tert-butoxystyrene 6.7 g
  • potassium peroxodisulfate (initiator) 0.27 g
  • dodecylamine hydrochloride The salt (emulsifier) 1.1g was put, and after nitrogen substitution and depressurization were repeated, it was sealed under reduced pressure.
  • This ampoule was placed in a constant temperature bath at 70 ° C. and kept for 24 hours to carry out radical polymerization. After completion of the polymerization reaction, the polymer was taken out from the ampule, washed with stirring 3 times with 300 ml of distilled water and 3 times with 300 ml of methanol, filtered, and vacuum dried at 80 ° C. for 10 hours to obtain ⁇ , ⁇ , ⁇ -trifluorostyrene. 7.5 g of / p-tert-butoxystyrene copolymer was obtained.
  • Synthesis Example 6 Synthesis of resin having residue unit represented by general formula (1) ( ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer)
  • ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer In a three-necked flask with a capacity of 100 mL, 40 g of methanol and 7 g of the ⁇ , ⁇ , ⁇ -trifluorostyrene / p-tert-butoxystyrene copolymer obtained in Synthesis Example 5 were placed, and 47% bromide under nitrogen flow with stirring. 6 g of hydrogen acid was added dropwise.
  • the solution refluxed for 10 hours was poured into water for precipitation, washed with water, and then vacuum-dried at 80 ° C. for 10 hours to obtain ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer 5 .5 g was obtained.
  • the number average molecular weight of the obtained polymer was 121,000, ⁇ , ⁇ , ⁇ -trifluorostyrene was 34.4 mol%, and p-hydroxystyrene was 6.6 mol%.
  • Synthesis Example 7 Synthesis of resin precursor ( ⁇ , ⁇ , ⁇ -trifluorostyrene / p-tert-butoxystyrene copolymer) having a residue unit represented by the general formula (1))
  • resin precursor ⁇ , ⁇ , ⁇ -trifluorostyrene / p-tert-butoxystyrene copolymer having a residue unit represented by the general formula (1)
  • a glass ampule with a capacity of 75 mL 52 g of ion-exchanged water, 2.9 g of ⁇ , ⁇ , ⁇ -trifluorostyrene, 6.0 g of p-tert-butoxystyrene, 0.27 g of potassium peroxodisulfate (initiator), dodecylamine hydrochloride
  • the salt (emulsifier) 1.1g was put, and after nitrogen substitution and depressurization were repeated, it was sealed under reduced pressure.
  • This ampoule was placed in a constant temperature bath at 70 ° C. and kept for 24 hours to carry out radical polymerization. After completion of the polymerization reaction, the polymer was taken out from the ampule, washed with stirring 3 times with 300 ml of distilled water and 3 times with 300 ml of methanol, filtered, and vacuum dried at 80 ° C. for 10 hours to obtain ⁇ , ⁇ , ⁇ -trifluorostyrene. 6.9 g of / p-tert-butoxystyrene copolymer was obtained.
  • Synthesis Example 8 Synthesis of resin having residue unit represented by general formula (1) ( ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer)
  • ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer In a three-necked flask with a capacity of 100 mL, 40 g of methanol and 6 g of the ⁇ , ⁇ , ⁇ -trifluorostyrene / p-tert-butoxystyrene copolymer obtained in Synthesis Example 7 were placed, and 47% bromide under nitrogen flow with stirring. 6 g of hydrogen acid was added dropwise.
  • the solution refluxed for 10 hours was poured into water for precipitation, washed with water, and then vacuum-dried at 80 ° C. for 10 hours to obtain ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer 6 0.1 g was obtained.
  • the number average molecular weight of the obtained polymer was 150,000, ⁇ , ⁇ , ⁇ -trifluorostyrene 44.6 mol%, and p-hydroxystyrene 55.4 mol%.
  • Synthesis Example 9 (Synthesis of precursor of resin having residue unit represented by general formula (1) (p-nitrostyrene / p-tert-butoxystyrene copolymer)) Place 75 g of glass ampoule with 10 g of p-nitrostyrene, 35 g of p-tert-butoxystyrene and 0.46 g of di-2-ethylhexylperoxydicarbonate (initiator), and repeat the nitrogen substitution and depressurization. Sealed in the state. This ampoule was placed in a constant temperature bath at 42 ° C. and kept for 24 hours to carry out radical polymerization.
  • p-nitrostyrene / p-tert-butoxystyrene copolymer Place 75 g of glass ampoule with 10 g of p-nitrostyrene, 35 g of p-tert-butoxystyrene and 0.46 g of di-2-ethylhe
  • the polymer After completion of the polymerization reaction, the polymer is taken out from the ampule, poured into 500 ml of methanol, precipitated, and then vacuum-dried at 80 ° C. for 10 hours to give a p-nitrostyrene / p-tert-butoxystyrene copolymer. 6.3 g was obtained.
  • Synthesis Example 10 Synthesis of a resin having a residue unit represented by the general formula (1) (p-nitrostyrene / p-hydroxystyrene copolymer)
  • a resin having a residue unit represented by the general formula (1) p-nitrostyrene / p-hydroxystyrene copolymer
  • 40 g of methanol and 6 g of the p-nitrostyrene / p-tert-butoxystyrene copolymer obtained in Synthesis Example 9 were added, and 6 g of 47% hydrobromic acid was added dropwise with stirring under a nitrogen stream. did.
  • the solution refluxed for 10 hours was poured into water for precipitation, washed with water, and vacuum dried at 80 ° C.
  • the number average molecular weight of the obtained polymer was 20,000, p-nitrostyrene 33.9 mol%, and p-hydroxystyrene 66.1 mol%.
  • the light transmittance, haze, retardation characteristics, and wavelength dispersion characteristics of the obtained optical compensation film were measured. The results are also shown in Table 1.
  • the obtained optical compensation film had high light transmittance, excellent transparency, small haze, in-plane retardation (Re) and Nz coefficient, and the desired optical characteristics.
  • a film having a width of 150 mm was obtained (ethyl cellulose: 68% by weight, ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer: 32% by weight).
  • the obtained film was cut into 50 mm squares and uniaxially stretched 1.2 times at 155 ° C. (thickness after stretching 110 ⁇ m).
  • the obtained optical compensation film had high light transmittance, excellent transparency, small haze, in-plane retardation (Re) and Nz coefficient, and the desired optical characteristics.
  • a film having a width of 150 mm was obtained (ethyl cellulose: 66% by weight, ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer: 34% by weight).
  • the obtained film was cut into 50 mm squares and uniaxially stretched 1.3 times at 150 ° C. (thickness after stretching 110 ⁇ m).
  • the light transmittance, haze, retardation characteristics, and wavelength dispersion characteristics of the obtained optical compensation film were measured. The results are also shown in Table 1.
  • the obtained optical compensation film had high light transmittance, excellent transparency, small haze, in-plane retardation (Re) and Nz coefficient, and the desired optical characteristics.
  • a film having a width of 150 mm was obtained (ethyl cellulose: 68% by weight, ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer: 32% by weight).
  • the obtained film was cut into 50 mm squares and uniaxially stretched 1.3 times at 155 ° C. (thickness after stretching 110 ⁇ m).
  • the light transmittance, haze, retardation characteristics, and wavelength dispersion characteristics of the obtained optical compensation film were measured. The results are also shown in Table 1.
  • the obtained optical compensation film had high light transmittance, excellent transparency, small haze, in-plane retardation (Re) and Nz coefficient, and the desired optical characteristics.
  • the light transmittance, haze, retardation characteristics, and wavelength dispersion characteristics of the obtained optical compensation film were measured. The results are also shown in Table 1.
  • the obtained optical compensation film had high light transmittance, excellent transparency, small haze, in-plane retardation (Re) and Nz coefficient, and the desired optical characteristics.
  • a film having a width of 150 mm was obtained (ethyl cellulose: 70% by weight, ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer: 30% by weight).
  • the obtained film was cut into a 50 mm square and stretched at 155 ° C. to a length of 1.4 times and a width of 1.1 times (thickness after stretching: 100 ⁇ m).
  • the light transmittance, haze, retardation characteristics, and wavelength dispersion characteristics of the obtained optical compensation film were measured. The results are also shown in Table 1.
  • the obtained optical compensation film had high optical transmittance, excellent transparency, small haze, in-plane retardation (Re) and out-of-plane retardation (Rth), and the desired optical characteristics.
  • the obtained film did not have the desired optical characteristics of the Nz coefficient.
  • Comparative Example 2 15 g of polyhydroxystyrene obtained in Synthesis Example 2 is dissolved in butyl acetate to form a 15% by weight resin solution, which is poured onto a polyethylene terephthalate film by a coater, dried at a drying temperature of 60 ° C., and then a film having a width of 150 mm. Got. The obtained film was cut into a 50 mm square and uniaxially stretched 2.0 times at 170 ° C. (thickness after stretching: 30 ⁇ m).
  • the light transmittance, haze, retardation characteristics, and wavelength dispersion characteristics of the obtained film were measured. The results are also shown in Table 1.
  • the obtained film did not have the optical characteristics intended for the in-plane retardation (Re) and the Nz coefficient.
  • Comparative Example 3 2 g of ⁇ , ⁇ , ⁇ -trifluorostyrene / p-hydroxystyrene copolymer polyhydroxystyrene obtained in Synthesis Example 4 was dissolved in butyl acetate to give a 15% by weight resin solution, which was coated on a polyethylene terephthalate film with a coater. After flowing and drying at a drying temperature of 60 ° C., a film having a width of 100 mm was obtained. The obtained film was cut into a 50 mm square and uniaxially stretched 1.5 times at 170 ° C. (thickness after stretching 50 ⁇ m).
  • the light transmittance, haze, retardation characteristics, and wavelength dispersion characteristics of the obtained film were measured. The results are also shown in Table 1.
  • the obtained film did not have the optical characteristics intended for the in-plane retardation (Re) and the Nz coefficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

位相差特性に優れた光学補償フィルムおよびその製造方法を提供する。 下記一般式(1)で示される残基単位を有する樹脂、およびセルロース系樹脂を含む樹脂組成物を用いた延伸フィルムであって、下記式(1)で示される面内位相差(Re)が50~300nmで、下記式(2)で示されるNz係数が0<Nz<1.0であることを特徴とする光学補償フィルム。 (式中、R、R、Rはそれぞれ独立して水素、アルキルまたはハロゲンを示し、Arは置換基を有してもよいベンゼンを示す。) Re=(nx-ny)×d (1) Nz=(nx-nz)/(nx-ny) (2) (式中、nxはフィルム面内の延伸軸方向の屈折率を示し、nyはフィルム面内の延伸軸に直交する方向の屈折率を示し、nzはフィルム面外(厚み方向)の屈折率を示し、dはフィルム厚みを示す。)

Description

光学補償フィルムおよびその製造方法
 本発明は、光学補償フィルムおよびその製造方法に関するものであり、より詳しくは、位相差特性に優れた液晶ディスプレイ用の光学補償フィルムおよびその製造方法に関する。
 液晶ディスプレイは、マルチメディア社会における最も重要な表示デバイスとして、携帯電話、コンピューター用モニター、ノートパソコン、テレビまで幅広く使用されている。液晶ディスプレイには表示特性向上のため多くの光学フィルムが用いられている。特に光学補償フィルムは、正面や斜めから見た場合のコントラスト向上、色調の補償など大きな役割を果たしている。
 液晶ディスプレイには、垂直配向型(VA-LCD)、面内配向型液晶(IPS-LCD)、スーパーツイストネマチック型液晶(STN-LCD)、反射型液晶ディスプレイ、半透過型液晶ディスプレイなどの多くの方式が有り、ディスプレイにあわせた光学補償フィルムが必要となっている。
 従来の光学補償フィルムとしては、セルロース系樹脂、ポリカーボネートや環状ポリオレフィンなどの延伸フィルムが用いられている。特にトリアセチルセルロースフィルムなどのセルロース系樹脂からなるフィルムは、偏光子であるポリビニルアルコールとの接着性も良好なことから幅広く使用されている。
 しかしながら、セルロース系樹脂からなる光学補償フィルムはいくつかの課題がある。例えば、セルロース系樹脂フィルムは延伸条件を調整することで各種ディスプレイにあわせた位相差値を持つ光学補償フィルムに加工されるが、セルロース系樹脂フィルムの一軸または二軸延伸により得られるフィルムの3次元屈折率は、nx≧ny>nzであり、それ以外の3次元屈折率、例えば、nx>nz>nyや、nx=nz>nyなどの3次元屈折率を有する光学補償フィルムを製造するためには、フィルムの片面または両面に熱収縮性フィルムを接着し、その積層体を加熱延伸処理して、高分子フィルムの厚み方向に収縮力をかけるなど特殊な延伸方法が必要であり、屈折率(位相差値)の制御も困難である(例えば、特許文献1~3参照)。
 ここで、nxはフィルム面内の延伸軸方向の屈折率を示し、nyはフィルム面内の延伸軸に直交する方向の屈折率を示し、nzはフィルム面外(厚み方向)の屈折率を示す。
 また、セルロース系樹脂フィルムは一般に溶剤キャスト法により製造されるが、キャスト法により成膜したセルロース系樹脂フィルムはフィルム厚み方向に40nm程度の面外位相差(Rth)を有するため、IPSモードの液晶ディスプレイなどではカラーシフトが起こるなどの問題がある。ここで、面外位相差(Rth)は以下の式で示される位相差値である。
   Rth=[(nx+ny)/2-nz]×d
(式中、nxはフィルム面内の遅相軸方向の屈折率、nyはフィルム面内の延伸軸に直交する方向の屈折率、nzはフィルム面外(厚み方向)の屈折率を示し、dはフィルム厚みを示す。)
 また、フマル酸エステル系樹脂からなる位相差フィルムが提案されている(例えば、特許文献4参照)。
 しかしながら、フマル酸エステル系樹脂からなる延伸フィルムの3次元屈折率は、nz>ny>nxであり、上記3次元屈折率を示す光学補償フィルムを得るためには他の光学補償フィルム等との積層などが必要である。
日本国特許2818983号公報 日本国特開平5-297223号公報 日本国特開平5-323120号公報 日本国特開2008-64817号公報
 本発明は、上記課題に鑑みてなされたものであり、その目的は、位相差特性に優れた光学補償フィルムおよびその製造方法を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の樹脂組成物を用いた光学補償フィルムおよびその製造方法が、上記課題を解決することを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]及至[12]に存する。
[1] 下記一般式(1)で示される残基単位を有する樹脂、およびセルロース系樹脂を含む樹脂組成物を用いた延伸フィルムであって、下記式(1)で示される面内位相差(Re)が50~300nmで、下記式(2)で示されるNz係数が0<Nz<1.0であることを特徴とする光学補償フィルム。
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、Rはそれぞれ独立して水素、アルキルまたはハロゲンを示し、Arは置換基を有してもよいベンゼンを示す。)
    Re=(nx-ny)×d             (1)
    Nz=(nx-nz)/(nx-ny)       (2)
(式中、nxはフィルム面内の延伸軸方向の屈折率を示し、nyはフィルム面内の延伸軸に直交する方向の屈折率を示し、nzはフィルム面外(厚み方向)の屈折率を示し、dはフィルム厚みを示す。)
[2] 一般式(1)で示される残基単位が、α,β,β-トリフルオロスチレン残基単位、p-ヒドロキシスチレン残基単位、p-ニトロスチレン残基単位、p-シアノスチレン残基単位、p-カルボキシスチレン残基単位からなる群より選択されることを特徴とする上記[1]に記載の光学補償フィルム。
[3] セルロース系樹脂が、下記一般式(2)で示されることを特徴とする上記[1]または上記[2]に記載の光学補償フィルム。
Figure JPOXMLDOC01-appb-C000004
(式中、R、R、Rはそれぞれ独立して水素、炭素数1~10のアシルまたは炭素数1~10のアルキルを示す。)
[4] セルロース系樹脂が、メチルセルロース、エチルセルロース、トリアセチルセルロース、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートからなる群より選択されることを特徴とする上記[1]~上記[3]のいずれかに記載の光学補償フィルム。
[5] フィルム厚みが5~200μmであることを特徴とする上記[1]~上記[4]のいずれかに記載の光学補償フィルム。
[6] 光線透過率が85%以上であることを特徴とする上記[1]~上記[5]のいずれかに記載の光学補償フィルム。
[7] ヘーズが1%以下であることを特徴とする上記[1]~上記[6]のいずれかに記載の光学補償フィルム。
[8] 450nmにおけるレターデーションと550nmにおけるレターデーションの比Re(450)/Re(550)が0.60<Re(450)/Re(550)<1.10であることを特徴とする上記[1]~上記[7]のいずれかに記載の光学補償フィルム。
[9] 一般式(1)で示される残基単位を有する樹脂、およびセルロース系樹脂を含む樹脂組成物を溶剤に溶解し、得られた樹脂溶液を基材にキャストし、乾燥後、基材より剥離して得られることを特徴とする上記[1]~上記[8]のいずれかに記載の光学補償フィルムの製造方法。
[10] キャストして得られた厚み10~200μmのフィルムを少なくとも一軸以上で延伸させることを特徴とする上記[9]に記載の光学補償フィルムの製造方法。
[11] キャストして得られた厚み10~200μmのフィルムを1.05倍~3.5倍で一軸延伸させることを特徴とする上記[9]または上記[10]に記載の光学補償フィルムの製造方法。
[12] キャストして得られた厚み10~200μmのフィルムを長さ方向に1.05~3.5倍、幅方向に1.0~1.2倍でアンバランス二軸延伸させることを特徴とする上記[9]または上記[10]に記載の光学補償フィルムの製造方法。
 本発明の光学補償フィルムは、特定の位相差特性を示すことから、液晶ディスプレイ用光学補償フィルムや反射防止用フィルムとして有用である。
 以下、本発明について詳細に説明する。
 本発明の光学補償フィルムに用いられる樹脂組成物は、樹脂成分として下記一般式(1)で示される残基単位を有する樹脂、およびセルロース系樹脂を含む。
Figure JPOXMLDOC01-appb-C000005
(式中、R、R、Rはそれぞれ独立して水素、アルキルまたはハロゲンを示し、Arは置換基を有してもよいベンゼンを示す。)
 一般式(1)で示される残基単位を有する樹脂において、一般式(1)におけるR1、2、はそれぞれ独立して水素、アルキルまたはハロゲンであり、アルキルとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、s-ペンチル基、t-ペンチル基、s-ヘキシル基、t-ヘキシル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられ、ハロゲンとしては、例えば、クロロ基、フルオロ基、ブロモ基、ヨード基等が挙げられる。ハロゲンのうち、位相差特性および透明性に優れた光学補償フィルムが得られることから、フルオロ基、ブロモ基またはヨード基が好ましい。
 一般式(1)で示される残基単位を有する樹脂において、一般式(1)におけるArは置換基を有してもよいベンゼンを示す。
 また、Ar上の置換基としては、例えば、アルキル、ハロゲン、水酸基、アルコキシ、エーテル、エステル、ニトロ、シアノ、スルホン酸、アミン、芳香族環、複素環、脂肪族環等が挙げられる。これらのうち、アルキルとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、s-ペンチル基、t-ペンチル基、s-ヘキシル基、t-ヘキシル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられ、ハロゲンとしては、例えば、クロロ基、フルオロ基、ブロモ基、ヨード基等が挙げられ、芳香族環としては、例えば、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、フェナントレン、ピレン、ナフタセン、ペンタセン等が挙げられ、複素環としては、例えば、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン、ピロール、イミダゾール、イミダゾリン、ピラゾール、オキサゾール、イソオキサゾール、オキサジアゾール、チオフェン、チアゾール、イソチアゾール、フラン、カルバゾール、キノリン、インドール、フタルイミド、ナフタルイミド等が挙げられ、脂肪族環としては、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、ジオキサン、マレイミド、ラクタム等が挙げられ、さらに上記の芳香族環、複素環、脂肪族環がエステル、エーテル、アミド、一重結合等によってメソゲン構造を構成していてもよい。
 具体的な一般式(1)で示される残基単位としては、例えば、α,β,β-トリフルオロスチレン残基単位、p-ヒドロキシスチレン残基単位、p-ニトロスチレン残基単位、p-シアノスチレン残基単位、p-カルボキシスチレン残基単位、p-ブロモスチレン残基単位、p-ヨードスチレン残基単位、p-t-ブトキシスチレン残基単位、p-アセトキシスチレン残基単位、p-スチレンスルホン酸エチル残基単位、p-アミノスチレン残基単位等挙げられ、位相差特性および透明性に優れた光学補償フィルムが得られることから、α,β,β-トリフルオロスチレン残基単位、p-ヒドロキシスチレン残基単位、p-ニトロスチレン残基単位、p-シアノスチレン残基単位、p-カルボキシスチレン残基単位が好ましい。また、本発明において、一般式(1)で示される残基単位を有する樹脂は、これらの残基単位の1種又は2種以上含むものであっても良い。
 具体的な一般式(1)で示される残基単位を有する樹脂としては、例えば、ポリヒドロキシスチレン、ポリ(α,β,β-トリフルオロスチレン)、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体、p-ニトロスチレン/p-ヒドロキシスチレン共重合体、p-シアノスチレン/p-ヒドロキシスチレン共重合体、p-ブロモスチレン/p-ヒドロキシスチレン共重合体、p-ヨードスチレン/p-ヒドロキシスチレン共重合体、p-t-ブトキシスチレン/p-ヒドロキシスチレン共重合体が挙げられる。特に、位相差特性および透明性に優れた光学補償フィルムが得られることから、ポリヒドロキシスチレン、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体、p-ニトロスチレン/p-ヒドロキシスチレン共重合体が好ましい。
 本発明の一般式(1)で示される残基単位を有する樹脂は、一般式(1)で示される残基単位と共重合可能な単量体の残基単位を有していてもよい。
 一般式(1)で示される残基単位と共重合可能な単量体の残基単位としては、例えば、アクリル酸残基;アクリル酸メチル残基、アクリル酸エチル残基、アクリル酸ブチル残基などのアクリル酸エステル類残基;メタクリル酸残基;メタクリル酸メチル残基、メタクリル酸エチル残基、メタクリル酸ブチル残基などのメタクリル酸エステル類残基;酢酸ビニル残基、プロピオン酸ビニル残基などのビニルエステル類残基;メチルビニルエーテル残基、エチルビニルエーテル残基、ブチルビニルエーテル残基などのビニルエーテル残基;N-メチルマレイミド残基、N-シクロヘキシルマレイミド残基、N-フェニルマレイミド残基などのN-置換マレイミド残基;アクリロニトリル残基;メタクリロニトリル残基;ケイ皮酸残基;ケイ皮酸メチル残基、ケイ皮酸エチル残基、ケイ皮酸イソプロピル残基などのケイ皮酸エステル残基;エチレン残基、プロピレン残基などのオレフィン類残基;ビニルピロリドン残基;ビニルピリジン残基等の1種または2種以上を挙げることができる。
 本発明の一般式(1)で示される残基単位を有する樹脂は、特に機械特性に優れ、製膜時の成形加工性に優れたものとなることから、ゲル・パーミエイション・クロマトグラフィー(GPC)により測定した溶出曲線より得られる標準ポリスチレン換算の数平均分子量(Mn)が1×10~5×10のものであることが好ましく、5×10~2×10であることがさらに好ましい。
 一般式(1)で示される残基単位を有する樹脂の製造方法としては、該樹脂が得られる限りにおいて如何なる方法により製造してもよい。例えば、一般式(1)で示される残基単位に係る単量体、場合によってはこれと共重合可能な単量体を併用し、ラジカル重合を行うことにより製造することができる。ラジカル重合の方法としては、例えば、塊状重合法、溶液重合法、懸濁重合法、沈殿重合法、乳化重合法等のいずれもが採用可能である。
 ラジカル重合を行う際の重合開始剤としては、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイドなどの有機過酸化物;2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-ブチロニトリル)、2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレート、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)などのアゾ系開始剤等が挙げられる。
 そして、溶液重合法または沈殿重合法において使用可能な溶媒として特に制限はなく、例えば、ベンゼン、トルエン、キシレンなどの芳香族溶媒;メタノール、エタノール、プロピルアルコール、ブチルアルコールなどのアルコール系溶媒;シクロヘキサン、ジオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン、ジメチルホルムアミド、酢酸イソプロピル等が挙げられ、これらの混合溶媒をも挙げられる。
 また、ラジカル重合を行う際の重合温度は、重合開始剤の分解温度に応じて適宜設定することができ、一般的には30~150℃の範囲で行うことが好ましい。
 また、一般式(1)で示される残基単位を有する樹脂は、前駆体を介して得られたものでもよい。
 本発明において、セルロース系樹脂としては、該樹脂を用いて位相差特性に優れる光学補償フィルムが得られる限り特に制限はないが、光学補償フィルムとした際に透明性により優れ、かつ面内位相差Reが大きく、更に延伸加工性に優れるものとなることから、下記一般式(2)で示されるセルロース系樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、R、R、Rはそれぞれ独立して水素、炭素数1~10のアシルまたは炭素数1~10のアルキルを示す。)
 ここで、一般式(2)で示されるセルロース系樹脂は、β-グルコース単位が直鎖状に重合した高分子であり、グルコース単位の2位、3位および6位の水酸基の一部または全部を置換したポリマーである。
 一般式(2)で示されるセルロース系樹脂におけるR、R、Rはそれぞれ独立して水素、炭素数1~10のアシルまたは炭素数1~10のアルキルを有するものである。炭素数1~10のアシルとしては、例えば、アセチル基、プロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基、ヘプタノイル基、オクタノイル基、デカノイル基、イソブチリル基、t-ブチリル基、シクロヘキサノイル基、ベンゾイル基、ナフトイル基等を挙げることができる。炭素数1~10のアルキルとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、デカニル基、イソブチル基、t-ブチル基、シクロヘキシル基、フェニル基、ベンジル基、ナフチル基等を挙げることができる。また、これらの中でも、溶解性、相溶性がより優れたものになることから、メチル基、エチル基、プロピル基が好ましい。
 本発明のセルロース系樹脂におけるセルロースの水酸基の酸素原子を介して置換している置換度は、2位、3位および6位のそれぞれについて、セルロースの水酸基が置換されている割合(100%の置換は置換度3)を意味し、溶解性、相溶性、延伸加工性の点から、置換度は、好ましくは1.5~3.0であり、さらに好ましくは1.8~2.8である。
 具体的な本発明のセルロース系樹脂としては、例えば、メチルセルロース、エチルセルロース、トリアセチルセルロース、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート等が挙げられ、位相差特性および透明性により優れた光学補償フィルムが得られることから、エチルセルロース、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましい。
 本発明のセルロース系樹脂は、機械特性に優れ、製膜時の成形加工性に優れたものとなることから、ゲル・パーミエイション・クロマトグラフィー(GPC)により測定した溶出曲線より得られる標準ポリスチレン換算の数平均分子量(Mn)が1×10~1×10であることが好ましく、5×10~2×10であることがさらに好ましい。
 本発明の光学補償フィルムは、一般式(1)で示される残基単位を有する樹脂とセルロース系樹脂とをブレンドすることによって目的の位相差およびNz係数を発現することを特徴とするものである。すなわち、一般式(1)で示される残基単位を有する樹脂が負の複屈折を示し、セルロース系樹脂が正の複屈折を示し、かつ、これらの樹脂が優れた相溶性を示すことから、これらをブレンドして得られる本発明に係る光学補償フィルムは、実用的な透明性を有しつつ、位相差特性に優れることを特徴とするものである。
 本発明の光学補償フィルムにおけるセルロース系樹脂と一般式(1)で示される残基単位を有する樹脂の組成の割合は、位相差フィルムとする際の位相差の制御に好適なため、一般式(1)で示される残基単位を有する樹脂1~90重量%およびセルロース系樹脂99~10重量%であることが好ましい。さらに好ましくは一般式(1)で示される残基単位を有する樹脂10~85重量%およびセルロース系樹脂90~15重量%であり、特に好ましくは一般式(1)で示される残基単位を有する樹脂20~80重量%およびセルロース系樹脂80~20重量%である。
 ブレンドの方法としては、溶融ブレンド、溶液ブレンド等の方法を用いることができる。溶融ブレンド法とは加熱により樹脂を溶融させて混練することにより製造する方法である。溶液ブレンド法とは樹脂を溶剤に溶解しブレンドする方法である。溶液ブレンドに用いる溶剤としては、例えば、塩化メチレン、クロロホルムなどの塩素系溶剤;トルエン、キシレンなどの芳香族溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン溶剤;酢酸エチル、酢酸ブチル等のエステル溶剤;メタノール、エタノール、プロパノール等のアルコール溶剤;ジオキサン、テトラヒドロフラン等のエーテル溶剤;ジメチルホルムアミド、N-メチルピロリドン等を用いることができる。各樹脂および添加剤を溶剤に溶解したのちブレンドすることも可能であり、各樹脂の粉体、ペレット等を混練後、溶剤に溶解させることも可能である。
 本発明の光学補償フィルムは、熱安定性を向上させるために酸化防止剤を含有していても良い。酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ラクトン系酸化防止剤、アミン系酸化防止剤、ヒドロキシルアミン系酸化防止剤、ビタミンE系酸化防止剤、その他酸化防止剤等が挙げられ、これら酸化防止剤はそれぞれ単独でもよく、2種以上を組み合わせてもよい。
 本発明の光学補償フィルムは、耐候性を高めるためヒンダードアミン系光安定剤や紫外線吸収剤を含有していてもよい。紫外線吸収剤としては、例えば、ベンゾトリアゾール、ベンゾフェノン、トリアジン、ベンゾエート等が挙げられる。
 本発明の光学補償フィルムは、いわゆる可塑剤として知られる化合物を、機械的性質向上、柔軟性を付与、耐吸水性付与、水蒸気透過率低減、レターデーション調整等の目的で添加してもよく、可塑剤としては、例えば、リン酸エステルやカルボン酸エステル等が挙げられる。また、アクリル系ポリマーなども用いられる。
 リン酸エステルとしては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、フェニルジフェニルホスフェート等を挙げることが出来る。
 カルボン酸エステルとしては、例えば、フタル酸エステル、クエン酸エステル、脂肪酸エステル、グリセロールエステル、アルキルフタリルアルキルグリコレート等を挙げることができる。フタル酸エステルとしては、例えば、ジメチルフタレート、ジエチルフタレート、ジシクロヘキシルフタレート、ジオクチルフタレート及びジエチルヘキシルフタレート等が挙げられ、またクエン酸エステルとしては、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等を挙げることが出来る。また、脂肪酸エステルとしては、例えば、オレイン酸ブチル、リシノール酸メチルアセチル、セバチン酸ジブチル等が挙げられ、グリセロールエステルとしては、例えば、トリアセチン、トリメチロールプロパントリベンゾエート等が挙げられ、アルキルフタリルアルキルグリコレートとしては、例えば、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、プロピルフタリルエチルグリコレート、メチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等を挙げることが出来る。これら可塑剤は単独でもよく、2種以上混合して使用してもよい。
 本発明の光学補償フィルムは位相差を調整する目的で、芳香族炭化水素環または芳香族性ヘテロ環を有する添加剤を含有していてもよい。位相差を調整する目的で使用される添加剤の下記式(A)で示される複屈折Δnについては、特に制限はないが、光学特性に優れた光学補償フィルムとなることから、好ましくは0.05以上であり、さらに好ましくは0.05~0.5、特に好ましくは0.1~0.5である。添加剤のΔnは分子軌道計算によって求めることができる。
    Δn=nx-ny            (A)
(式中、nxは添加剤分子の遅相軸方向の屈折率を示し、nyは添加剤分子の進相軸方向の屈折率を示す。)
 本発明の光学補償フィルムに芳香族炭化水素環または芳香族性ヘテロ環を有する添加剤が含有される場合、該添加剤において、芳香族炭化水素環または芳香族性ヘテロ環の分子内の個数については特に制限はないが、光学特性に優れた光学補償フィルムとなることから、好ましくは1~12個であり、さらに好ましくは1~8個である。芳香族炭化水素環としては、例えば、5員環、6員環、7員環または二つ以上の芳香族環からなる縮合環等が挙げられ、芳香族性ヘテロ環としては、例えば、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピラジン環、1,3,5-トリアジン環等が挙げられる。
 芳香族炭化水素環または芳香族性ヘテロ環は置換基を有していてもよく、置換基としては、例えば、水酸基、エーテル基、カルボニル基、エステル基、カルボン酸残基、アミノ基、イミノ基、アミド基、イミド基、シアノ基、ニトロ基、スルホニル基、スルホン酸残基、ホスホニル基、ホスホン酸残基等が挙げられる。
 本発明で用いられる芳香族炭化水素環または芳香族性ヘテロ環を有する添加剤としては、例えば、トリクレジルホスフェート、トリキシレニルホスフェート、トリフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、クレジルジフェニルホスフェート、ビスフェノールAビス(ジフェニルホスフェート)等のリン酸エステル系化合物;ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジヘキシルフタレート、ジノルマルオクチルフタレート、2-エチルヘキシルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジノニルフタレート、ジイソノニルフタレート、ジデシルフタレート、ジイソデシルフタレート等のフタル酸エステル系化合物;トリブチルトリメリテート、トリ-ノルマルヘキシルトリメリテート、トリ(2-エチルヘキシル)トリメリテート、トリ-ノルマルオクチルトリメリテート、トリ-イソクチルトリメリテート、トリ-イソデシルトリメリテート等のトリメリット酸エステル系化合物;トリ(2-エチルヘキシル)ピロメリテート、テトラブチルピロメリテート、テトラ-ノルマルヘキシルピロメリテート、テトラ(2-エチルヘキシル)ピロメリテート、テトラ-ノルマルオクチルピロメリテート、テトラ-イソクチルピロメリテート、テトラ-イソデシルピロメリテート等のピロメリット酸エステル系化合物;安息香酸エチル、安息香酸イソプロピル、パラオキシ安息香酸エチル等の安息香酸エステル系化合物;フェニルサリシレート、p-オクチルフェニルサリシレート、p-tert-ブチルフェニルサリシレート等のサリチル酸エステル系化合物;メチルフタリルエチルグリコレート、エチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等のグリコール酸エステル系化合物;2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系化合物;2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン等のベンゾフェノン系化合物、N-ベンゼンスルホンアミド等のスルホンアミド系化合物、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン等のトリアジン系化合物等が挙げられ、位相差特性に優れた光学補償フィルムが得られるため、トリクレジルホスフェート、2-エチルヘキシルジフェニルホスフェート、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンが好ましく、これらは必要に応じて1種または2種以上を組み合わせて用いることができる。
 本発明の光学補償フィルムに芳香族炭化水素環または芳香族性ヘテロ環を有する添加剤が含有される場合、光学特性及び機械的特性の観点から、好ましくは芳香族炭化水素環または芳香族性ヘテロ環を有する添加剤の割合は0.01~30重量%であり、さらに好ましくは0.01~20重量%、特に好ましくは0.01~15重量%である。
 本発明の光学補償フィルムは、発明の主旨を超えない範囲で、その他ポリマー、界面活性剤、高分子電解質、導電性錯体、顔料、染料、帯電防止剤、アンチブロッキング剤、滑剤等を含有していてもよい。
 本発明の光学補償フィルムの位相差特性は、下記式(1)で示される面内位相差(Re)が50~300nmで、下記式(2)で示されるNz係数が0<Nz<1.0である。このときの位相差特性は全自動複屈折計(王子計測機器株式会社製、商品名KOBRA-21ADH)を用い、測定波長589nmの条件で測定されるものである。
    Re=(nx-ny)×d             (1)
    Nz=(nx-nz)/(nx-ny)       (2)
   Rth=[(nx+ny)/2-nz]×d     (3)
(式中、nxはフィルム面内の延伸軸方向の屈折率を示し、nyはフィルム面内の延伸軸に直交する方向の屈折率を示し、nzはフィルム面外(厚み方向)の屈折率を示し、dはフィルム厚みを示す。)
 本発明において、(Re)が50~300nmの範囲でない場合、または、Nz係数が0<Nz<1でない場合、ディスプレイの表示特性に劣るフィルムとなる。面内位相差(Re)が好ましくは60~300nm、さらに好ましくは70~280nmであって、Nz係数が好ましくは0.1~0.85、さらに好ましくは0.1~0.75である。
 これらは、従来の光学補償フィルムでは発現が困難な位相差特性を有している。
 本発明の光学補償フィルムの波長分散特性としては、色ずれ抑制のため、450nmにおけるレターデーションと550nmにおけるレターデーションの比Re(450)/Re(550)が好ましくは0.60<Re(450)/Re(550)<1.10であり、さらに好ましくは0.60<Re(450)/Re(550)<1.05であり、特に好ましくは0.61<Re(450)/Re(550)<1.02であり、最も好ましくは0.61<Re(450)/Re(550)<1.00である。
 本発明の光学補償フィルムは、フィルムの取扱い性及び光学部材の薄膜化への適合性の観点から、厚みが5~200μmであることが好ましく、5~150μmがさらに好ましく、5~120μmが最も好ましい。
 本発明の光学補償フィルムは、輝度向上のため、光線透過率が好ましくは85%以上、さらに好ましくは90%以上である。
 本発明の光学補償フィルムは、コントラスト向上のため、ヘーズが好ましくは1%以下、さらに好ましくは0.5%以下である。
 本発明の光学補償フィルムの製造方法としては、本発明の光学補償フィルムの製造が可能であれば如何なる方法を用いてもよいが、光学特性、耐熱性、表面特性などに優れる光学補償フィルムが得られることから、溶液キャスト法により製造することが好ましい。ここで、溶液キャスト法とは、樹脂溶液(一般にはドープと称する。)を支持基板上に流延した後、加熱することにより溶媒を蒸発させて光学補償フィルムを得る方法である。流延する方法としては、例えば、Tダイ法、ドクターブレード法、バーコーター法、ロールコーター法、リップコーター法等が用いられ、工業的には、ダイからドープをベルト状またはドラム状の支持基板に連続的に押し出す方法が一般的に用いられている。また、用いられる支持基板としては、例えば、ガラス基板、ステンレスやフェロタイプ等の金属基板、ポリエチレンテレフタレート等のプラスチック基板などがある。高度に表面性、光学均質性の優れた基板を工業的に連続製膜するには、表面を鏡面仕上げした金属基板が好ましく用いられる。溶液キャスト法において、厚み精度、表面平滑性に優れた光学補償フィルムを製造する際には、樹脂溶液の粘度は極めて重要な因子であり、樹脂溶液の粘度は樹脂の濃度、分子量、溶媒の種類に依存するものである。
 本発明の光学補償フィルムを製造する際の樹脂溶液の粘度は、重合体の分子量、重合体の濃度、溶媒の種類で調整可能である。樹脂溶液の粘度としては、特に制限はないが、フィルム塗工性をより容易にするため、好ましくは100~10000cps、さらに好ましくは300~5000cps、特に好ましくは500~3000cpsである。
 本発明の光学補償フィルムの製造方法としては、例えば、下記一般式(1)で示される残基単位を有する樹脂、およびセルロース系樹脂を含む樹脂組成物を溶剤に溶解し、得られた樹脂溶液を基材にキャストし、乾燥後、基材より剥離することが挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、Rはそれぞれ独立して水素、アルキルまたはハロゲンを示し、Arは置換基を有してもよいベンゼンを示す。)
 本発明では、樹脂組成物に含まれる樹脂の濃度、樹脂の分子量、溶媒の種類、成膜乾燥温度によって面外位相差(Rth)を制御することができる。
 本発明の光学補償フィルムは、面内位相差(Re)を発現するために一軸延伸またはアンバランス二軸延伸することが好ましい。光学補償フィルムを延伸する方法としては、ロール延伸による縦一軸延伸法やテンター延伸による横一軸延伸法、これらの組み合わせによるアンバランス逐次二軸延伸法やアンバランス同時二軸延伸法等を用いることができる。また本発明では、熱収縮性フィルムの収縮力の作用下に延伸を行う特殊延伸法を用いずに位相差特性を発現させることができる。
 延伸する際の光学補償フィルムの厚みは、延伸処理のし易さおよび光学部材の薄膜化への適合性の観点から、10~200μmが好ましく、30~180μmがさらに好ましく、30~150μmが特に好ましい。
 延伸の温度は特に制限はないが、良好な位相差特性が得られることから、好ましくは50~200℃、さらに好ましくは100~180℃である。一軸延伸の延伸倍率は良好な位相差特性が得られることから、1.05~3.5倍が好ましく、1.1~3.0倍がさらに好ましい。アンバランス二軸延伸の延伸倍率は良好な位相差特性が得られることから、長さ方向には1.05~3.5倍が好ましく、1.1~3.0倍がさらに好ましく、幅方向には1.0~1.2倍が好ましく、1.0~1.1倍がさらに好ましい。延伸温度、延伸倍率により面内位相差(Re)を制御することができる。
 本発明の光学補償フィルムは、必要に応じて他樹脂を含むフィルムと積層することができる。他樹脂としては、例えば、ポリエーテルサルフォン、ポリアリレート、ポリエチレンテレフタレート、ポリナフタレンテレフタレート、ポリカーボネート、環状ポリオレフィン、マレイミド系樹脂、フッ素系樹脂、ポリイミド等が挙げられる。また、ハードコート層やガスバリア層を積層することも可能である。
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、実施例により示す諸物性は、以下の方法により測定した。
 <重合体の解析>
 重合体の構造解析は核磁気共鳴測定装置(日本電子製、商品名:JNM-GX270)を用い、プロトン核磁気共鳴分光(H-NMR)スペクトル分析より求めた。
 <数平均分子量の測定>
 ゲル・パーミエイション・クロマトグラフィー(GPC)装置(東ソー製、商品名:C0-8011(カラムGMHHR―Hを装着))を用い、テトラヒドロフラン、またはジメチルホルムアミドを溶媒として、40℃で測定し、標準ポリスチレン換算値として求めた。
 <光学補償フィルムの光線透過率およびヘーズの測定>
 作成したフィルムの光線透過率およびヘーズの測定は、ヘーズメーター(日本電色工業製、商品名:NDH2000)を使用し、光線透過率の測定はJIS K 7361-1(1997版)に、ヘーズの測定はJIS-K 7136(2000年版)に、それぞれ準拠して測定した。
 <位相差特性の測定>
 試料傾斜型自動複屈折計(王子計測機器製、商品名:KOBRA-WR)を用いて波長589nmの光を用いて光学補償フィルムの位相差特性を測定した。
 <波長分散特性の測定>
 試料傾斜型自動複屈折計(王子計測機器製、商品名:KOBRA-WR)を用い、波長450nmの光による位相差Re(450)と波長550nmの光による位相差Re(550)の比として光学補償フィルムの波長分散特性を測定した。
 合成例1(一般式(1)で示される残基単位を有する樹脂の前駆体(ポリ(p-tert-ブトキシ)スチレン)の合成)
 容量75mLのガラスアンプルにp-tert-ブトキシスチレン50g、および重合開始剤であるtert-ブチルパーオキシピバレート0.45gを入れ、窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを50℃の恒温槽に入れ、72時間保持することによりラジカル重合をした。重合反応終了後、アンプルから重合物を取出し、テトラヒドロフラン200gで溶解させた。このポリマー溶液を4Lのヘキサン中に滴下して析出させた後、80℃で10時間真空乾燥することにより、ポリ(p-tert-ブトキシ)スチレン26gを得た。得られた重合体の数平均分子量は319,000であった。
 合成例2(一般式(1)で示される残基単位を有する樹脂(ポリヒドロキシスチレン)の合成)
 容量500mLの四ツ口フラスコに合成例1で得られたポリ(p-tert-ブトキシ)スチレン30g、メタノール170gを入れ、撹拌しながら窒素気流下で臭化水素酸30.8gを滴下した。滴下完了後、8時間還流した溶液を水中に投入し析出させ、水洗した後、80℃で10時間真空乾燥することにより、ポリヒドロキシスチレン20.1gを得た。得られた重合体の数平均分子量は211,000であった。
 合成例3(一般式(1)で示される残基単位を有する樹脂の前駆体(α,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体)の合成)
 容量75mLのガラスアンプルに、イオン交換水52g、α,β,β-トリフルオロスチレン0.8g、p-tert-ブトキシスチレン8.0g、ペルオキソ二硫酸カリウム(開始剤)0.27g、ドデシルアミン塩酸塩(乳化剤)1.1gを入れ、窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを70℃の恒温槽に入れ、24時間保持することによりラジカル重合をした。重合反応終了後、アンプルから重合物を取出し、蒸留水300mlで3回およびメタノール300mlで3回撹拌洗浄の後ろ過、80℃で10時間真空乾燥することにより、α,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体7.5gを得た。
 合成例4(一般式(1)で示される残基単位を有する樹脂(α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体)の合成)
 容量100mLの三ツ口フラスコにメタノール40g、合成例3で得られたα,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体7gを入れ、撹拌しながら窒素気流下で47%臭化水素酸6gを滴下した。滴下完了後、10時間還流した溶液を水中に投入し析出させ、水洗した後、80℃で10時間真空乾燥することにより、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体5.6gを得た。得られた重合体の数平均分子量は403,000、α,β,β-トリフルオロスチレン18.9mol%、p-ヒドロキシスチレン81.1mol%であった。
 合成例5(一般式(1)で示される残基単位を有する樹脂の前駆体(α,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体)の合成)
 容量75mLのガラスアンプルに、イオン交換水52g、α,β,β-トリフルオロスチレン2.0g、p-tert-ブトキシスチレン6.7gおよびペルオキソ二硫酸カリウム(開始剤)0.27g、ドデシルアミン塩酸塩(乳化剤)1.1gを入れ、窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを70℃の恒温槽に入れ、24時間保持することによりラジカル重合をした。重合反応終了後、アンプルから重合物を取出し、蒸留水300mlで3回およびメタノール300mlで3回撹拌洗浄の後ろ過、80℃で10時間真空乾燥することにより、α,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体7.5gを得た。
 合成例6(一般式(1)で示される残基単位を有する樹脂(α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体)の合成)
 容量100mLの三ツ口フラスコにメタノール40g、合成例5で得られたα,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体7gを入れ、撹拌しながら窒素気流下で47%臭化水素酸6gを滴下した。滴下完了後、10時間還流した溶液を水中に投入し析出させ、水洗した後、80℃で10時間真空乾燥することにより、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体5.5gを得た。得られた重合体の数平均分子量は121,000、α,β,β-トリフルオロスチレン34.4mol%、p-ヒドロキシスチレン6.6mol%であった。
 合成例7(一般式(1)で示される残基単位を有する樹脂の前駆体(α,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体)の合成)
 容量75mLのガラスアンプルに、イオン交換水52g、α,β,β-トリフルオロスチレン2.9g、p-tert-ブトキシスチレン6.0g、ペルオキソ二硫酸カリウム(開始剤)0.27g、ドデシルアミン塩酸塩(乳化剤)1.1gを入れ、窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを70℃の恒温槽に入れ、24時間保持することによりラジカル重合をした。重合反応終了後、アンプルから重合物を取出し、蒸留水300mlで3回およびメタノール300mlで3回撹拌洗浄の後ろ過、80℃で10時間真空乾燥することにより、α,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体6.9gを得た。
 合成例8(一般式(1)で示される残基単位を有する樹脂(α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体)の合成)
 容量100mLの三ツ口フラスコにメタノール40g、合成例7で得られたα,β,β-トリフルオロスチレン/p-tert-ブトキシスチレン共重合体6gを入れ、撹拌しながら窒素気流下で47%臭化水素酸6gを滴下した。滴下完了後、10時間還流した溶液を水中に投入し析出させ、水洗した後、80℃で10時間真空乾燥することにより、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体6.1gを得た。得られた重合体の数平均分子量は150,000、α,β,β-トリフルオロスチレン44.6mol%、p-ヒドロキシスチレン55.4mol%であった。
 合成例9(一般式(1)で示される残基単位を有する樹脂の前駆体(p-ニトロスチレン/p-tert-ブトキシスチレン共重合体)の合成)
 容量75mLのガラスアンプルに、p-ニトロスチレン10g、p-tert-ブトキシスチレン35gおよびジ-2-エチルヘキシルパーオキシジカーボネート(開始剤)0.46gを入れ、窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを42℃の恒温槽に入れ、24時間保持することによりラジカル重合をした。重合反応終了後、アンプルから重合物を取出し、500mlのメタノール中に投入して析出させた後、80℃で10時間真空乾燥することにより、p-ニトロスチレン/p-tert-ブトキシスチレン共重合体6.3gを得た。
 合成例10(一般式(1)で示される残基単位を有する樹脂(p-ニトロスチレン/p-ヒドロキシスチレン共重合体)の合成)
 容量100mLの三ツ口フラスコにメタノール40g、合成例9で得られたp-ニトロスチレン/p-tert-ブトキシスチレン共重合体6gを入れ、撹拌しながら窒素気流下で47%臭化水素酸6gを滴下した。滴下完了後、10時間還流した溶液を水中に投入し析出させ、水洗した後、80℃で10時間真空乾燥することにより、p-ニトロスチレン/p-ヒドロキシスチレン共重合体4.8gを得た。得られた重合体の数平均分子量は20,000、p-ニトロスチレン33.9mol%、p-ヒドロキシスチレン66.1mol%であった。
 実施例1
 セルロース系樹脂としてエチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)9g、合成例2により得られたポリヒドロキシスチレン9gを酢酸ブチルに溶解して13重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た(エチルセルロース:55重量%、ポリヒドロキシスチレン:45重量%)。得られたフィルムを50mm角に切り出し、145℃で1.5倍に一軸延伸した(延伸後の厚み30μm)。
 得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例2
 エチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)10.8g、合成例2により得られたポリヒドロキシスチレン7.2gを酢酸ブチルに溶解して13重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た(エチルセルロース:60重量%、ポリヒドロキシスチレン:40重量%)。得られたフィルムを50mm角に切り出し、150℃で1.2倍に一軸延伸した(延伸後の厚み120μm)。
 得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に合わせて示す。
 得られた光学補償フィルムは、光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
 実施例3
 エチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)6.8g、合成例4により得られたα,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体3.2gを酢酸エチルに溶解して13重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た(エチルセルロース:68重量%、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体:32重量%)。得られたフィルムを50mm角に切り出し、155℃で1.2倍に一軸延伸した(延伸後の厚み110μm)。
 得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に示す。
 得られた光学補償フィルムは、光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
 実施例4
 エチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)6.6g、合成例6により得られたα,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体3.4gを酢酸エチルに溶解して13重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た(エチルセルロース:66重量%、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体:34重量%)。得られたフィルムを50mm角に切り出し、150℃で1.3倍に一軸延伸した(延伸後の厚み110μm)。
 得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に合わせて示す。
 得られた光学補償フィルムは、光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
 実施例5
 エチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)6.8g、合成例8により得られたα,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体3.2gを酢酸エチルに溶解して13重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た(エチルセルロース:68重量%、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体:32重量%)。得られたフィルムを50mm角に切り出し、155℃で1.3倍に一軸延伸した(延伸後の厚み110μm)。
 得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に合わせて示す。
 得られた光学補償フィルムは、光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
 実施例6
 エチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)6.6g、合成例10により得られたp-ニトロスチレン/p-ヒドロキシスチレン共重合体3.4gを酢酸エチルに溶解して13重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た(エチルセルロース:66重量%、p-ニトロスチレン/p-ヒドロキシスチレン共重合体:34重量%)。得られたフィルムを50mm角に切り出し、155℃で1.2倍に一軸延伸した(延伸後の厚み110μm)。
 得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に合わせて示す。
 得られた光学補償フィルムは、光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
 実施例7
 エチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)7g、合成例4により得られたα,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体3gを酢酸エチルに溶解して13重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た(エチルセルロース:70重量%、α,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体:30量%)。得られたフィルムを50mm角に切り出し、155℃で縦1.4倍、横1.1倍に延伸した(延伸後の厚み100μm)。
 得られた光学補償フィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に合わせて示す。
 得られた光学補償フィルムは、光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)および面外位相差(Rth)が目的とする光学特性を有するものであった。
 比較例1
 エチルセルロース(ダウ・ケミカル社製 エトセル スタンダード(ETHOCEL standard)100、分子量Mn=55,000、分子量Mw=176,000、Mw/Mn=3.2、全置換度DS=2.5)15gを酢酸ブチルに溶解して15重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た。得られたフィルムを50mm角に切り出し、140℃で1.5倍に一軸延伸した(延伸後の厚み30μm)。
得られたフィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に合わせて示す。
 得られたフィルムは、Nz係数が目的とする光学特性を有していなかった。
 比較例2
 合成例2により得られたポリヒドロキシスチレン15gを酢酸ブチルに溶解して15重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅150mmのフィルムを得た。得られたフィルムを50mm角に切り出し、170℃で2.0倍に一軸延伸した(延伸後の厚み30μm)。
 得られたフィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に合わせて示す。
 得られたフィルムは、面内位相差(Re)およびNz係数が目的とする光学特性を有していなかった。
 比較例3
 合成例4により得られたα,β,β-トリフルオロスチレン/p-ヒドロキシスチレン共重合体ポリヒドロキシスチレン2gを酢酸ブチルに溶解して15重量%の樹脂溶液とし、コーターによりポリエチレンテレフタレートフィルム上に流涎し、乾燥温度60℃にて乾燥した後、幅100mmのフィルムを得た。得られたフィルムを50mm角に切り出し、170℃で1.5倍に一軸延伸した(延伸後の厚み50μm)。
 得られたフィルムの光線透過率、ヘーズ、位相差特性、波長分散特性を測定した。その結果を表1に合わせて示す。
 得られたフィルムは、面内位相差(Re)およびNz係数が目的とする光学特性を有していなかった。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2016年1月14日に出願された日本特許出願2016-005214号及び2016年12月20日に出願された日本特許出願2016-246632号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1. 下記一般式(1)で示される残基単位を有する樹脂、およびセルロース系樹脂を含む樹脂組成物を用いた延伸フィルムであって、下記式(1)で示される面内位相差(Re)が50~300nmで、下記式(2)で示されるNz係数が0<Nz<1.0であることを特徴とする光学補償フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R、R、Rはそれぞれ独立して水素、アルキルまたはハロゲンを示し、Arは置換基を有してもよいベンゼンを示す。)
        Re=(nx-ny)×d             (1)
        Nz=(nx-nz)/(nx-ny)       (2)
    (式中、nxはフィルム面内の延伸軸方向の屈折率を示し、nyはフィルム面内の延伸軸に直交する方向の屈折率を示し、nzはフィルム面外(厚み方向)の屈折率を示し、dはフィルム厚みを示す。)
  2. 一般式(1)で示される残基単位が、α,β,β-トリフルオロスチレン残基単位、p-ヒドロキシスチレン残基単位、p-ニトロスチレン残基単位、p-シアノスチレン残基単位、p-カルボキシスチレン残基単位からなる群より選択されることを特徴とする請求項1に記載の光学補償フィルム。
  3. セルロース系樹脂が、下記一般式(2)で示されることを特徴とする請求項1または請求項2に記載の光学補償フィルム。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、Rはそれぞれ独立して水素、炭素数1~10のアシルまたは炭素数1~10のアルキルを示す。)
  4. セルロース系樹脂が、メチルセルロース、エチルセルロース、トリアセチルセルロース、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートからなる群より選択されることを特徴とする請求項1~請求項3のいずれかの項に記載の光学補償フィルム。
  5. フィルム厚みが5~200μmであることを特徴とする請求項1~請求項4のいずれかの項に記載の光学補償フィルム。
  6. 光線透過率が85%以上であることを特徴とする請求項1~請求項5のいずれかの項に記載の光学補償フィルム。
  7. ヘーズが1%以下であることを特徴とする請求項1~請求項6のいずれかの項に記載の光学補償フィルム。
  8. 450nmにおけるレターデーションと550nmにおけるレターデーションの比Re(450)/Re(550)が0.60<Re(450)/Re(550)<1.10であることを特徴とする請求項1~請求項7のいずれかの項に記載の光学補償フィルム。
  9. 一般式(1)で示される残基単位を有する樹脂、およびセルロース系樹脂を含む樹脂組成物を溶剤に溶解し、得られた樹脂溶液を基材にキャストし、乾燥後、基材より剥離して得られることを特徴とする請求項1~請求項8のいずれかの項に記載の光学補償フィルムの製造方法。
  10. キャストして得られた厚み10~200μmのフィルムを少なくとも一軸以上で延伸させることを特徴とする請求項9に記載の光学補償フィルムの製造方法。
  11. キャストして得られた厚み10~200μmのフィルムを1.05倍~3.5倍で一軸延伸させることを特徴とする請求項9または請求項10に記載の光学補償フィルムの製造方法。
  12. キャストして得られた厚み10~200μmのフィルムを長さ方向に1.05~3.5倍、幅方向に1.0~1.2倍でアンバランス二軸延伸させることを特徴とする請求項9または請求項10に記載の光学補償フィルムの製造方法。
PCT/JP2017/000086 2016-01-14 2017-01-05 光学補償フィルムおよびその製造方法 WO2017122563A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780004755.0A CN108369312B (zh) 2016-01-14 2017-01-05 光学补偿膜及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016005214 2016-01-14
JP2016-005214 2016-01-14
JP2016246632A JP6897084B2 (ja) 2016-01-14 2016-12-20 光学補償フィルムおよびその製造方法
JP2016-246632 2016-12-20

Publications (1)

Publication Number Publication Date
WO2017122563A1 true WO2017122563A1 (ja) 2017-07-20

Family

ID=59311032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000086 WO2017122563A1 (ja) 2016-01-14 2017-01-05 光学補償フィルムおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2017122563A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539631A (zh) * 2022-01-30 2022-05-27 中国科学技术大学 三醋酸纤维素酯nrz型光学补偿膜及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194902A (ja) * 1990-11-27 1992-07-14 Toray Ind Inc 位相差フィルム
WO2006117981A1 (ja) * 2005-04-26 2006-11-09 Konica Minolta Opto, Inc. 光学フィルム、偏光板及び横電界スイッチングモード型液晶表示装置
JP2012208261A (ja) * 2011-03-29 2012-10-25 Nippon Zeon Co Ltd 複層フィルム、位相差フィルム及び製造方法
JP2012220823A (ja) * 2011-04-12 2012-11-12 Fujifilm Corp フィルム、並びに偏光板及び表示装置、及びフィルムの製造方法
JP2013539076A (ja) * 2010-09-24 2013-10-17 アクロン ポリマー システムズ,インク. フルオロポリマーに基づいた光学補償フィルム
JP2014224926A (ja) * 2013-05-16 2014-12-04 東ソー株式会社 ポリマー組成物を用いた光学フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194902A (ja) * 1990-11-27 1992-07-14 Toray Ind Inc 位相差フィルム
WO2006117981A1 (ja) * 2005-04-26 2006-11-09 Konica Minolta Opto, Inc. 光学フィルム、偏光板及び横電界スイッチングモード型液晶表示装置
JP2013539076A (ja) * 2010-09-24 2013-10-17 アクロン ポリマー システムズ,インク. フルオロポリマーに基づいた光学補償フィルム
JP2012208261A (ja) * 2011-03-29 2012-10-25 Nippon Zeon Co Ltd 複層フィルム、位相差フィルム及び製造方法
JP2012220823A (ja) * 2011-04-12 2012-11-12 Fujifilm Corp フィルム、並びに偏光板及び表示装置、及びフィルムの製造方法
JP2014224926A (ja) * 2013-05-16 2014-12-04 東ソー株式会社 ポリマー組成物を用いた光学フィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539631A (zh) * 2022-01-30 2022-05-27 中国科学技术大学 三醋酸纤维素酯nrz型光学补偿膜及其制备方法和应用
CN114539631B (zh) * 2022-01-30 2023-03-10 中国科学技术大学 三醋酸纤维素酯nrz型光学补偿膜及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP6048446B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
TWI531822B (zh) 未延伸相位差薄膜
JP6572532B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
US10126478B2 (en) Resin composition and optical compensation film using same
JP6136254B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
US9370901B2 (en) Resin composition, optical compensation film using the same and production method of optical compensation film
JP6136253B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
JP6048556B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
EP3553097B1 (en) Copolymer and optical film using same
JP5920052B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
WO2016060115A1 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
JP7151074B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
JP7095355B2 (ja) 共重合体及びそれを用いた光学フィルム
WO2017122563A1 (ja) 光学補償フィルムおよびその製造方法
JP6699260B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
JP6897084B2 (ja) 光学補償フィルムおよびその製造方法
JP6808939B2 (ja) 樹脂組成物およびそれを用いた光学補償フィルム
JP7287183B2 (ja) 樹脂組成物およびそれからなるフィルム
JP5664736B2 (ja) 光学補償フィルム
JP6229561B2 (ja) 光学補償フィルム用重合体
JP6237366B2 (ja) 光学補償フィルム用重合体
JP2023152307A (ja) 樹脂組成物およびそれを用いた光学フィルム
JP5428282B2 (ja) 光学補償膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738318

Country of ref document: EP

Kind code of ref document: A1