WO2017114364A1 - 容纳并加热材料的坩埚以及包括坩埚和加热器布置的系统 - Google Patents

容纳并加热材料的坩埚以及包括坩埚和加热器布置的系统 Download PDF

Info

Publication number
WO2017114364A1
WO2017114364A1 PCT/CN2016/112150 CN2016112150W WO2017114364A1 WO 2017114364 A1 WO2017114364 A1 WO 2017114364A1 CN 2016112150 W CN2016112150 W CN 2016112150W WO 2017114364 A1 WO2017114364 A1 WO 2017114364A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
heater
recess
undercut
undercuts
Prior art date
Application number
PCT/CN2016/112150
Other languages
English (en)
French (fr)
Inventor
巴斯蒂安·希普欣
克里斯蒂安·克拉夫特
迈克尔·哈尔
彭寿
格拉尔德·卡佩尔
维罗·泽尔曼斯
Original Assignee
中国建材国际工程集团有限公司
Ctf太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建材国际工程集团有限公司, Ctf太阳能有限公司 filed Critical 中国建材国际工程集团有限公司
Priority to JP2018553289A priority Critical patent/JP6681125B2/ja
Priority to EP16881153.7A priority patent/EP3399069B1/en
Priority to KR1020187022190A priority patent/KR102138990B1/ko
Priority to US16/064,423 priority patent/US20190119807A1/en
Publication of WO2017114364A1 publication Critical patent/WO2017114364A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source

Definitions

  • the present invention relates to a crucible for containing and heating a material to be evaporated or sublimated, in particular to a crucible suitable for containing and heating a reactive material, and a system for evaporating or sublimating a material, the system comprising the crucible and The heater arrangement of the crucible is heated.
  • the crucible and the system are particularly suitable for use in solar cell manufacturing where sulfur or selenium containing materials are evaporated or sublimed.
  • One technique for depositing materials on a substrate is chemical vapor deposition, in which the vapor of the material to be deposited is produced by evaporation or sublimation of the material from the source of the material due to high temperatures (temperatures above the boiling or sublimation temperature of the material). The vaporized material particles move toward the substrate and are ultimately deposited on the surface of the substrate.
  • the crucible containing the material to be deposited ie, the source of material
  • the crucible containing the material to be deposited (ie, the source of material) is heated by means of a heat lamp, RF coil or resistance heater placed on the exterior of the crucible or disposed at a distance relative to the crucible.
  • the heater or heating element and the crucible are typically thermally separated and the thermal energy is transferred over a large distance via radiation or via gas convection.
  • US 6,444,043 B1 describes a crucible or container formed of a piece of graphite and having a recess or opening for holding a material to be evaporated or sublimated, wherein the crucible is closed by means of the crucible A heating lamp is placed around the side and placed at a distance relative to the crucible.
  • an evaporation unit comprises a crucible and a heater frame spaced apart from the crucible and arranged to surround the lateral and bottom surfaces of the crucible.
  • a heater for heating the crucible is provided on an inner surface of the heater frame facing the crucible.
  • the material to be deposited also reaches the heater.
  • the material of the heater can be attacked by the material to be deposited or the components of the material to be deposited.
  • the heater can be in sulfur-containing gas Corrosion in the atmosphere.
  • the heater is placed at a distance from the crucible. Therefore, heat transfer is limited by the space between the heater and the crucible and the material in the space.
  • the invention provides a crucible according to claim 1 and a system for evaporating or sublimating a material according to claim 6.
  • Embodiments are included in the dependent claims.
  • the crucible according to the invention for heating the material to be evaporated or sublimated comprises at least one recessed recess and a bottom recess and/or undercut.
  • the recessed recess is adapted to receive the material to be evaporated or sublimated and is formed in a first surface (also referred to as a top surface) of the crucible.
  • the recessed recess forms an opening in the top surface.
  • the bottom recess is formed in the second surface of the crucible, wherein the second surface is opposite the first surface and is also referred to as a bottom surface.
  • the bottom recess forms an opening in the bottom surface of the crucible and is adapted to receive or receive a bottom heater for heating the bottom surface of the crucible.
  • the undercut is formed in the sidewall of the crucible, wherein the sidewall extends from the first surface to the second surface and joins the top surface and the bottom surface.
  • the undercut forms a hollow space in the sidewall of the crucible and the second surface adjacent the crucible has its opening. That is, the undercut does not form an opening in the side surface of the crucible, or in other words, the side wall is not open to the side.
  • the side surface is the surface of the side wall opposite the surface of the side wall adjacent the recessed recess and the bottom recess, and it is an outer surface of the outer surface of the crucible body.
  • the undercut is adapted to receive or house a side heater for heating the side surface of the crucible.
  • the shape of the crucible is not limited as long as the crucible has a top surface, a bottom surface, and at least one side wall. That is, the crucible may be, for example, a straight cylinder or an oblique cylinder having a circular or elliptical top surface and/or a bottom surface, or any kind of straight prism or oblique prism (for example, a rectangular parallelepiped) or any other kind of shape. All of the recesses may be extended such that at least a minimum thickness of the tantalum material is maintained at all points, wherein the minimum thickness of the tantalum material is suitable for ensuring the physical stability of the tantalum body.
  • the minimum thickness of the tantalum material in the wall separating the recessed recess from the bottom recess or separating the recessed recess from the undercut is directed to graphite as the material of the crucible and to the crucible
  • the outer dimensions of the body up to 1.5 m are in the range of 10 mm to 15 mm, however, the different recesses may have different lengths and/or widths.
  • the recessed recess can be smaller than the bottom recess in lateral dimension.
  • the size of the recessed recess is selected depending on the volume of material to be evaporated or sublimed that should be accommodated in the recessed recess, and the size of the bottom recess and the undercut depends on the respective heater
  • the dimensions are chosen such that the respective heaters are fully received in the respective recesses (in addition to the connections required to supply energy to the heater, if applicable). Since the heater (in particular, the side heater) is completely received in the corresponding recess of the weir, the heater is almost completely present when the material contained in the recessed recess is evaporated or sublimated The processing atmosphere is separated.
  • the crucible according to the present invention provides excellent protection to the heater from the aggressive or reactive components of the processing atmosphere.
  • the heater can be arranged in close proximity to the weir, i.e., "inside" the weir body, for example, within the sidewall of the weir, from the heater to be evaporated or sublimated and contained in a pocket
  • the heat transfer of the material in the recess is improved, resulting in a higher achievable temperature or a potentially reduced energy required to achieve a particular temperature.
  • more than one undercut may be formed in one particular sidewall, wherein all of the undercuts have openings adjacent the second surface of the stack.
  • the different undercuts in a particular side wall are separated from one another by strips of material formed from the side wall material, wherein the strip of material forms an intermediate wall between the respective undercuts and is obtainable from the first surface of the crucible to the second The surface extends across the entire thickness of the sidewall.
  • More than one bottom recess may also be formed in the second surface of the crucible, wherein the different bottom recesses are separated from one another by strips of material formed from the material of the crucible.
  • the crucible may have a plurality of side walls depending on the shape of the crucible. For example, if the crucible is a cuboid, the crucible has four side walls. In this case, an undercut may be formed in one of the side walls, or more than one undercut may be formed in more than one of the side walls. In other words: each undercut is formed in a particular side wall in the side wall of the crucible. Again, more than one undercut may be formed in one particular sidewall, in more than one sidewall, or even in all sidewalls, as described above. The number of undercuts formed in a particular sidewall may be different for different sidewalls.
  • a different undercut in the undercut is formed in all of the sidewalls of the crucible. That is, the number of the undercuts is equal to the number of sidewalls of the crucible. In any case, the dimensions of the different undercuts may vary.
  • the weir includes the undercut and further includes an adiabatic recess formed adjacent the same side wall of the weir adjacent the undercut.
  • the insulating recess is formed on the side of the undercut that is not adjacent to the recessed recess of the weir.
  • the undercut and the adiabatic recess are separated from each other by the material of the weir.
  • the insulating recess is formed in a similar size to the undercut, extending from the second surface of the crucible, and having an opening adjacent the second surface of the crucible.
  • the adiabatic recess can be filled with air or any other solid, liquid or gaseous material, or the adiabatic recess can be evacuated if the opening of the insulating recess is closed by a cover or any other suitable means.
  • the adiabatic recess acts as a thermal or thermal barrier that reduces heat transfer to the side surfaces of the sidewall.
  • the thermally insulating recess further improves the heat transfer from the side heater to the material to be evaporated or sublimated and contained in the recessed recess.
  • the crucible is composed of a material having a high thermal conductivity and relative to the material to be evaporated or sublimated or relative to the ambient atmosphere (for example, a processing atmosphere present when the material contained in the recessed recess is evaporated or sublimated)
  • the components are made of inert, non-diffusing materials. Therefore, the crucible itself will not react with the material to be evaporated or sublimated or the components of the ambient atmosphere.
  • the crucible reduces or prevents diffusion of reactive components through the walls of the crucible to the heater such that even if the heater is from or relative to the material contained in the recessed recess
  • the ambient atmosphere is made of a non-inert material and the heater is also prevented from deteriorating or damaging. Therefore, an inexpensive material (for example, stainless steel for an electric resistance heater) can be used for the heater.
  • the material of the crucible for example, is selected from the group of materials including graphite, silicon carbide, and oxide ceramic materials such as alumina.
  • the crucible according to the present invention can be used in a system for evaporating or sublimating materials.
  • the system also includes a heater arrangement for heating the crucible, wherein the heater arrangement includes at least one heater disposed in a bottom recess or undercut of the crucible.
  • the at least one heater can be any type of heater, with an induction heater or a resistance heater being preferred. If more than one heater is used (eg, a bottom heater disposed in the bottom recess and a side heater disposed in the undercut), the different heaters can be heaters of different types and sizes. If all of the heaters are the same type of heater, the heaters can be connected to each other or can be completely separated from one another such that the thermal energy provided by a particular heater can be controlled independently of the thermal energy provided by other particular heaters.
  • the heater arrangement includes a plurality of heaters, wherein in each of the undercuts, one of the heaters is disposed. Therefore, the heat transfer to the crucible can be excellently controlled from all sides of the recessed recess (except for the top surface as the evaporation opening) and, therefore, the material contained in the recessed recess A high degree of uniformity of temperature can be achieved.
  • the crucible protects the heater (particularly the side heater) from damage due to reactive components of the ambient atmosphere.
  • the heater can be made of a material that is non-inert with respect to the material to be evaporated or sublimated or with respect to the composition of the ambient atmosphere.
  • the heater can be used for a long time without the deterioration of heat generation or heat transfer due to the damaged heater.
  • additional gas can be applied to the evaporation or sublimation process without chemically attacking the heater.
  • the system of the present invention provides the advantage of reduced machine downtime due to the necessary replacement of the heater (even if reactive or aggressive components are used during processing); highly efficient heat transfer and economical energy use And the simple and compact setup of the system.
  • the heater can be coated with a non-diffusing material that has a high thermal conductivity and is inert with respect to the material to be evaporated or sublimed or the composition of the ambient atmosphere.
  • the bottom recess and/or the opening at the undercut are respectively It is closed and sealed to protect it from the atmosphere (eg, the treatment atmosphere) that exists outside the recess.
  • the supply of energy to the heaters arranged in the respective recesses should be ensured, for example, by means of openings in the mounting plate or chamber wall through which the connecting lines of the heater can pass, or by means of An interface between the mounting plate or the wall of the chamber and providing a connection between the heater and the exterior within the recess is ensured.
  • the term “seal” does not necessarily mean “hermetic”, but rather means that the diffusion of aggressive components into the recess is significantly reduced.
  • the degradation of the heater due to the aggressive ambient atmosphere can be significantly reduced while providing for a simple configuration and assembly of the system.
  • one or more or all of the bottom recesses and/or undercuts of the crucible may be closed or sealed by one or more covers or covers. That is, a particular cover may seal the bottom recess and all undercuts from the ambient atmosphere, or may only seal the bottom recess, or only seal one undercut or be selected from the bottom The recess and the plurality of recesses in the undercut, rather than sealing all of the recesses.
  • the cover or cover can be mounted to the file or other components of the system or process chamber and can be formed from any suitable material (e.g., the material of the file).
  • supplying energy to the heaters arranged in the respective recesses should be, for example, by means of an opening in the respective cover through which the connecting line of the heater can pass. It is ensured, or ensured, by means of an interface which is arranged in the respective cover and which provides a connection between the heater and the outside in the recess.
  • a cover can be used, inter alia, in the case where the mounting plate or any other mounting system has an opening such that the bottom recess and/or the undercut are not sealed by the mounting plate or the mounting system.
  • Figure 1 shows a perspective view of an exemplary embodiment of a crucible in accordance with the present invention.
  • Fig. 2 is a plan view of the crucible of Fig. 1.
  • Figure 3 is a bottom plan view of the cymbal of Figure 1.
  • Figure 4 is a bottom plan view of another embodiment of the crucible.
  • Fig. 5 is a cross-sectional view through the ⁇ of Fig. 1 taken along line A-A' shown in Fig. 3.
  • Figure 6 shows an exemplary embodiment of a heater arrangement as part of a system for evaporating or sublimating materials in accordance with the present invention.
  • Figure 7 shows a cross-sectional view of a processing chamber for evaporation or sublimation having an exemplary embodiment of a system for evaporating or sublimating materials in accordance with the present invention.
  • Figure 1 shows an exemplary embodiment of a crucible 10 in accordance with the present invention.
  • ⁇ 10 is a cuboid made of graphite or any other suitable material and has six surfaces: a first surface 110 which is a top surface; a second surface which is a bottom surface (not visible in this figure); One side surface, in this figure, only two of the side surfaces 133 and 134 are visible.
  • a recessed recess 11 is formed in the first surface 110, wherein the recessed recess 11 is adapted to receive material to be evaporated or sublimated.
  • the recessed recess 11 has its opening in the first surface and can have any suitable form and any suitable dimensions.
  • the crucible 10 can have more than one recessed recess 11.
  • the crucible can have a plurality of recessed recesses, wherein each of the recessed recesses is formed as a cylindrical bore in the first surface, and wherein the different recessed recesses in the recessed recess The materials being smashed are separated from each other.
  • FIG. 2 is a top view of the crucible 10, and thus showing a first surface 110 in which a recessed recess 11 is formed.
  • the material of the crucible 10 forms the side walls 141 to 144 of the crucible 10, and the side walls 141 to 144 extend from the recessed recess 11 to the respective side surfaces 131 to 134 of the crucible.
  • the side walls 141 to 144 extend from the first surface 110 to the second surface, that is, extend in the z direction, and connect the top and bottom of the crucible 10.
  • FIG. 3 is a bottom view of the crucible 10 and thus shows a second surface 120 opposite the first surface 110.
  • a bottom recess 12 is formed in the second surface 120, wherein the bottom recess 12 is for receiving the bottom heater when the crucible is used in an evaporation or sublimation process.
  • the bottom recess 12 can have any suitable form and size.
  • the openings of the undercuts 13a to 13d can be seen in FIG.
  • Each of the undercuts 13a to 13d is formed in a corresponding one of the side walls 141 to 144 and extends in the z direction as will be explained with respect to FIG.
  • the lateral dimension of the opening of the undercuts 13a to 13d in the second surface 120 and the lateral dimension of the undercuts 13a to 13d are as small as possible, as long as
  • the side heaters are inserted into the undercuts 13a to 13d without damage, and the side heaters are allowed to thermally expand in the undercuts 13a to 13d during heating.
  • the heat insulating recesses 14a to 14d are formed on the side of the respective undercuts 13a to 13d which faces away from the recessed recess and faces the respective side surface.
  • Each of the adiabatic recesses 14a to 14d is surrounded by the material of the respective side walls 141 to 144 and has an opening adjacent to the second surface 120.
  • the adiabatic recesses 14a, 14c have dimensions in the y-direction that are similar in size to the respective undercuts 13a, 13c, or even larger than the respective undercuts 13a, 13c.
  • Figure 4 is a bottom view of another raft 10'.
  • the ⁇ 10' differs from the ⁇ 10 only in that three undercuts 13aa to 13ac and 13ca to 13cc are respectively formed in each of the side walls 141 and 142 of the crucible. Further, the adiabatic recess shown in Fig. 3 is not shown in order to make the figure clearer.
  • the undercuts 13aa to 13ac in the side wall 141 are separated from the adjacent side recesses of one of the undercuts 13aa to 13ac by means of the strips 141a and 141b, respectively.
  • the strips of material 141a and 141b are part of the side wall 141 and form an intermediate wall between respective ones of the respective undercuts 13aa to 13ac.
  • Material strips 141a and 141b extend from first surface 110 to second surface 120.
  • the material strips 141a to 141b increase the stability of the side wall 141, and It is made possible to insert different side heaters into the respective undercuts 13aa to 13ac such that different lateral zones of the crucible 10' adjacent to the side walls 141 can be independently heated to further increase in the recessed recesses The uniformity of the temperature of the material contained.
  • Features described with respect to the undercuts 13aa to 13ac and the side walls 141 are also applicable to the undercuts 13ca to 13cc and the side walls 143.
  • FIG. 5 shows a cross-sectional view through the crucible 10 along the line AA' of FIG.
  • the recessed recess 11 in the first surface 110, the bottom recess 12 in the second surface 120 and the two undercuts 13a, 13c in the side walls 141, 143 can be seen.
  • the undercuts 13a, 13c extend over the entire dimension of almost ⁇ 10 along the z-direction and have openings adjacent to the second surface 120.
  • the heat insulating recesses 14a, 14c are formed on the side of the respective undercut 13a, 13c facing away from the recessed recess 11 and facing the respective side surfaces 131, 133.
  • Each of the adiabatic recesses 14a, 14c has an opening adjacent to the second surface 120.
  • the adiabatic recesses 14a, 14c may be filled with air.
  • the dimensions of the adiabatic recesses 14a, 14c in the x direction are limited only by the overall outer dimensions of the crucible 10 and the stability of the crucible itself.
  • the adiabatic recesses 14a, 14c preferably extend to the same value or more than the respective undercuts 13a, 13c.
  • Exemplary dimensions of the different elements of ⁇ 10 and ⁇ 10 are given in Table 1.
  • the crucible 10' can have a similar size in which the undercuts 13aa to 13ac and 13ca to 13cc are smaller in the y-direction.
  • FIG. 6 shows an exemplary heater arrangement 20 for heating the crucible 10 shown in FIGS. 1-3.
  • the heater arrangement 20 includes two bottom heaters 21a and 21b, two corner heaters and two intermediate heaters for each long side of the crucible, and one side heater for each short side of the crucible.
  • Each of the long-side heaters 2211a, 2212a, 2221a, and 2222a for the crucible may be inserted into the same undercut in the respective side wall or may be inserted into a different side formed in the respective side wall In the recess.
  • the heater is an electric resistance heater formed as a conductive loop.
  • the material of the wire of the heater is molybdenum, but may be any other suitable material.
  • Figure 7 is a cross-sectional view through a processing chamber 200 for evaporation or sublimation.
  • the system 210 for evaporating or sublimating materials in accordance with the present invention is disposed on the mounting plate 220 or directly on the chamber wall 230.
  • System 210 includes a crucible 10 and heater arrangement 20 as described above.
  • the recessed recess 11 contains the material 30 to be evaporated or sublimated, and the material 30 to be evaporated or sublimated is heated by the heater arranged by the above heater.
  • the heater is disposed in the bottom recess and the undercut, however, in Fig. 7, the bottom recess and the undercut are not shown in order to make the figure clearer.
  • FIG. 7 In the cross-sectional view of Figure 7, only the bottom heater 21a and the two corner heaters 2211a and 2211c are shown, however, more heaters may be provided in the heater arrangement as described above with respect to Figure 6. Further, energy supply connections 241a and 241b for supplying energy to the bottom heater 21a and energy supply connections 242a and 242c for supplying energy to the corner heaters 2211a and 2211c, respectively, are shown in FIG.
  • the energy supply connections 241a, 241b, 242a, 242b are directed to the exterior of the processing chamber 200, wherein the energy supply connections 241a, 241b, 242a, 242b are connected to one More or more generators. Due to the heat generated by the heater disposed by the heater, material 30 evaporates or sublimes and moves toward substrate 250 as indicated by the dashed arrow.
  • the substrate 250 is held and moved over the system 210 by means of a transfer roller 260.
  • the substrate 250 (the substrate 250 may also be a plurality of substrates disposed in the substrate holder) moves within the process chamber 200 in the direction indicated by the solid arrows.
  • static deposition of material 30 i.e., deposition of material onto substrate 250 that is not moving is also possible.
  • the heater of the heater arrangement is fixed relative to the crucible 10 and the process chamber 200 anyway.
  • the heater of the heater arrangement may be fixed in a corresponding recess (bottom recess and/or undercut) or may be fixed on the mounting plate 220 or on the chamber wall 230 or on one or more covers, The one or more covers are mounted to the bottom surface of the crucible 10 and seal the corresponding recess. Therefore, even if the recess is not sealed by any part of the system, the heater may not fall out of the recess of the crucible.
  • the heaters of the heater arrangement can be inserted into the recesses of the fixed jaws, or the crucible 10 can slide over the fixed heaters from the top.
  • the two components are movable so that the heater is inserted into the corresponding recess of the crucible.
  • the heater of the heater arrangement is disposed within the crucible 10, heat transfer from the heater to the material 30 is optimized. Further, the recess of the crucible 10 in which the heater is disposed is sealed by the mounting plate 220 such that the heater is effectively prevented from being affected by the environmental atmosphere within the processing chamber 200, wherein the ambient atmosphere may include a material relative to the heater An aggressive component.
  • the crucible 10 can be separated from the heater by simply lifting the crucible 10 away from the mounting plate 220. Thus, if the first crucible 10 must be cleaned or another material 30 must be evaporated or sublimed, the first crucible 10 can be replaced with the second crucible 10 without the need to also remove the heater arrangement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种用于加热待蒸发或升华的材料的坩埚(10,10'),包括:至少一个凹穴式凹处(11),其适合用于接纳待蒸发或升华的材料,凹穴式凹处(11)形成在坩埚(10,10')的第一表面(110)中;以及底部凹处(12)和/或侧凹处(13a-13d,13aa-13ac,13ca-13cc),底部凹处(12)形成在坩埚(10,10')的第二表面(120)中,第二表面(120)与第一表面(110)相反,且侧凹处(13a-13d,13aa-13ac,13ca-13cc)形成在坩埚(10,10')的侧壁(141-144)中,侧壁(141-144)从第一表面(110)延伸到第二表面(120),其中侧凹处(13a-13d,13aa-13ac,13ca-13cc)邻近于坩埚(10,10')的第二表面(120)具有其开口。还公开了一种用于蒸发或升华材料的系统(210)。

Description

容纳并加热材料的坩埚以及包括坩埚和加热器布置的系统 技术领域
本发明涉及用于容纳并加热待蒸发或升华的材料的坩埚,特别地涉及适合用于容纳且加热反应性材料的坩埚,以及用于蒸发或升华材料的系统,该系统包括该坩埚和用于加热该坩埚的加热器布置。该坩埚和该系统尤其适合用于太阳能电池制造,其中含硫或含硒的材料被蒸发或升华。
背景技术
一种用于在衬底上沉积材料的技术是化学气相沉积,其中待沉积的材料的蒸气通过由于高温(高于材料的沸腾或升华温度的温度)而从材料源蒸发或升华材料而产生。汽化的材料颗粒朝向衬底移动且最终沉积在衬底的表面上。通常,容纳待沉积的材料(即,材料源)的坩埚借助于放置在坩埚的外部上或相对于坩埚以一定距离布置的加热灯、RF线圈或电阻加热器来加热。加热器或加热元件和坩埚通常热分离,且热能在大距离上经由辐射或经由气体对流来传递。举例来说,US 6,444,043 B1描述一种坩埚或容器,该坩埚或容器由一块石墨形成,且具有用于保持待蒸发或升华的材料的凹处或开口,其中该坩埚借助于在该坩埚的封闭侧周围且相对于该坩埚以一定距离放置的加热灯来加热。在US 2014/0109829 A1中,一种蒸发单元包括坩埚以及与该坩埚间隔开且被设置成围绕该坩埚的横向表面和底表面的加热器框架。在该加热器框架的面向该坩埚的内表面上,提供用于加热该坩埚的加热器。
如果布置加热器的空间不被密封以免受汽化的材料所散布的空间的影响,那么待沉积的材料也会到达加热器。除导致加热效率降低的材料在加热器的表面上的可能沉积之外,加热器的材料可受到待沉积的材料或待沉积的材料的组分的侵袭。举例来说,加热器可在含硫气 氛中腐蚀。
此外,加热器相对于坩埚以一定距离设置。因此,热传递受加热器与坩埚之间的空间和该空间中的材料限制。
发明内容
因此,本发明的目的是提供一种坩埚以及一种包括该坩埚和加热器布置的系统,该加热器布置提供对加热器的良好保护,以使其免受周围的和可能侵蚀性的处理气氛影响,并且提供从加热器到坩埚的改进的热传递以及用于接合和分开系统的部件的简单方式。
为了实现此目的,本发明提供根据权利要求1的坩埚和根据权利要求6的用于蒸发或升华材料的系统。实施例被包括在从属权利要求中。
根据本发明的用于加热待蒸发或升华的材料的坩埚包括至少一个凹穴式凹处以及底部凹处和/或侧凹处。该凹穴式凹处适合用于接纳该待蒸发或升华的材料且形成在该坩埚的第一表面(也被称为顶表面)中。因此,该凹穴式凹处在该顶表面中形成该坩埚的开口。该底部凹处形成在该坩埚的第二表面中,其中该第二表面与该第一表面相反且也被称为底表面。该底部凹处在该坩埚的底表面中形成开口,且适合用于接纳或容纳用于加热该坩埚的底表面的底部加热器。该侧凹处形成在该坩埚的侧壁中,其中该侧壁从该第一表面延伸到该第二表面且连接该顶表面和该底表面。该侧凹处在该坩埚的侧壁中形成中空空间,且邻近于该坩埚的第二表面具有其开口。即,该侧凹处不在该坩埚的侧表面中形成开口,或换句话说,该侧壁不朝侧部敞开。该侧表面是该侧壁的与该侧壁的邻近于该凹穴式凹处和该底部凹处的表面相反的那一表面,而且它是坩埚本体的外表面中的一个外表面。该侧凹处适合用于接纳或容纳用于加热该坩埚的侧表面的侧加热器。
在全部情况下,该坩埚的外形不受限制,只要该坩埚具有顶表面、底表面和至少一个侧壁即可。即,该坩埚可例如为具有圆形或椭圆形顶表面和/或底表面的直柱体或斜柱体,或任何种类的直棱柱或斜棱柱(例如,长方体)或任何其它种类的形体。全部凹处可延伸以使得在全部点处保持坩埚材料的至少最小厚度,其中坩埚材料的最小厚度适合用于确保坩埚本体的物理稳定性。举例来说,将该凹穴式凹处与该底部凹处分开或将该凹穴式凹处与该侧凹处分开的壁中的坩埚材料的最小厚度针对作为坩埚的材料的石墨且针对坩埚本体的达1.5m的外部尺寸而言处于10mm到15mm的范围中,然而,不同凹处可具有不同长度和/或宽度。举例来说,该凹穴式凹处可在横向尺寸上小于该底部凹处。该凹穴式凹处的尺寸取决于应容纳在该凹穴式凹处中的待蒸发或升华的材料的容积来选择,而该底部凹处和该侧凹处的尺寸取决于相应加热器的尺寸来选择,且使得相应加热器可完全接纳在相应凹处中(除了向加热器供应能量所需的连接之外,如果适用的话)。因为该加热器(特别地,该侧加热器)完全接纳在该坩埚的相应凹处中,所以该加热器几乎完全与当在该凹穴式凹处中所容纳的材料被蒸发或升华时存在的处理气氛分开。因此,根据本发明的坩埚为该加热器提供极好的保护,以使其免受该处理气氛的侵蚀性或反应性组分的影响。此外,因为该加热器可被布置成极接近该坩埚,即,在坩埚本体“内”,例如,在该坩埚的侧壁内,所以从该加热器到待蒸发或升华且容纳在凹穴式凹处中的材料的热传递得以改进,从而导致较高的可实现的温度或实现特定温度所需的可能减少的能量。
此外,不止一个侧凹处(例如,两个或三个或更多个侧凹处)可形成在一个特定侧壁中,其中全部侧凹处邻近于该坩埚的第二表面具有开口。一个特定侧壁中的不同侧凹处被由侧壁材料形成的材料条彼此分开,其中该材料条形成相应侧凹处之间的中间壁,且可从该坩埚的第一表面到该第二表面且跨越该侧壁的整个厚度延伸。不止一个底部凹处也可形成在该坩埚的第二表面中,其中不同底部凹处被由该坩埚的材料形成的材料条彼此分开。
取决于该坩埚的外形,该坩埚可具有多个侧壁。举例来说,如果该坩埚是长方体,那么该坩埚具有四个侧壁。在此情况下,一个侧凹处可形成在这些侧壁中的一个侧壁中,或不止一个侧凹处可形成在这些侧壁中的不止一个侧壁中。换句话说:每一侧凹处形成在该坩埚的侧壁中的一个特定侧壁中。再次,不止一个侧凹处可形成在一个特定侧壁中、不止一个侧壁中或甚至全部侧壁中,如上面所述的那样。特定侧壁中所形成的侧凹处的数目可针对不同的侧壁而是不同的。在一个实施例中,在该坩埚的全部侧壁中,形成该侧凹处中的一个不同的侧凹处。即,所述侧凹处的数目等于该坩埚的侧壁的数目。在任何情况下,不同侧凹处的尺寸可不同。
在特定实施例中,该坩埚包括该侧凹处,且还包括绝热凹处,该绝热凹处邻近于该侧凹处在该坩埚的同一侧壁内形成。该绝热凹处形成在该侧凹处的不邻近于该坩埚的该凹穴式凹处的那一侧上。该侧凹处和该绝热凹处被该坩埚的材料彼此间隔开。该绝热凹处以与该侧凹处类似的尺寸形成,从该坩埚的第二表面延伸,且邻近于该坩埚的第二表面具有开口。该绝热凹处可被填充有空气或任何其它固态、液态或气态材料,或者如果该绝缘凹处的开口被盖子或任何其它适当装置闭合的话,那么该绝热凹处可被抽空。该绝热凹处充当减小到该侧壁的侧表面的热传递的隔热层或热屏障。因此,该热绝缘凹处进一步改进从侧加热器到待蒸发或升华且容纳在该凹穴式凹处中的材料的热传递。
优选地,该坩埚由具有高热导率且相对于该待蒸发或升华的材料或相对于环境气氛(例如,当该凹穴式凹处中所容纳的材料被蒸发或升华时存在的处理气氛)的组分惰性的并不扩散的材料制成。因此,该坩埚自身将不与该待蒸发或升华的材料或该环境气氛的组分反应。此外,该坩埚减少或防止反应性组分穿过该坩埚的壁扩散到加热器,以使得即使加热器由相对于该凹穴式凹处中所容纳的材料或相对于该 环境气氛的组分非惰性的材料制成,该加热器也被防止恶化或损坏。因此,便宜的材料(例如,用于电阻加热器的不锈钢)可用于加热器。该坩埚的材料(例如)选自包括石墨、碳化硅和氧化物陶瓷材料(如,氧化铝)的材料组。
如上所述,根据本发明的坩埚可用于蒸发或升华材料的系统中。该系统还包含用于加热该坩埚的加热器布置,其中该加热器布置包括布置在该坩埚的底部凹处或侧凹处中的至少一个加热器。该至少一个加热器可为任何种类的加热器,其中感应加热器或电阻加热器是优选的。如果使用不止一个加热器(例如,布置在该底部凹处中的底部加热器和布置在该侧凹处中的侧加热器),那么不同加热器可为不同种类和不同尺寸的加热器。如果全部加热器是相同种类的加热器,那么这些加热器可彼此连接或可彼此完全分开,以使得特定加热器所提供的热能可独立于其它特定加热器所提供的热能而进行控制。
如果该坩埚包括多个侧凹处,那么该加热器布置包括多个加热器,其中在侧凹处中的每一个中,布置加热器中的一个特定的加热器。因此,到该坩埚的热传递可从该凹穴式凹处的所有侧(除作为蒸发开口的顶表面之外)极好地受到控制,且因此,该凹穴式凹处中所容纳的材料的温度的高度均匀性可得以实现。
因为加热器布置在该坩埚的凹处中,所以该坩埚保护加热器(特别地说,侧加热器),以使其免受由于环境气氛的反应性组分所致的损坏。因此,加热器可由相对于该待蒸发或升华的材料或相对于该环境气氛的组分非惰性的材料制成。结果,加热器可较长时间地使用,而不存在因损坏的加热器所致的发热或热传递的恶化。此外,额外气体可被应用到蒸发或升华过程,而不会在化学上侵袭该加热器。因此,本发明的系统提供以下优点:因加热器的必要替换所致的机器停机时间减少(即使在处理期间使用反应性或侵蚀性组分也是如此);高度有效的热传递和经济的能量使用;以及系统的简单且紧凑的设置。
为了进一步保护该加热器,加热器可被涂布有具有高热导率且相对于该待蒸发或升华的材料或该环境气氛的组分惰性的并不扩散的材料。
在该系统安装或布置在处理室中以使得该坩埚被布置在该处理室内的安装板上或该处理室的室壁上的情况下,该底部凹处和/或该侧凹处的开口分别被闭合且被密封,以免受在凹处外存在的气氛(例如,处理气氛)的影响。当然,向在该相应凹处中所布置的加热器供应能量应例如借助于供该加热器的连接线可穿过的在安装板或室壁中的开口来确保,或借助于被布置在该安装板或该室壁内且提供在该凹处内的加热器与外部之间的连接的接口来确保。术语“密封”未必意味“气密”,而是意味侵蚀性组分到该凹处中的扩散被显著减少。结合该坩埚以及包括该坩埚和至少一个加热器的系统的上述构造,因侵蚀性环境气氛所致的加热器的降级可显著减少,同时提供系统的简单的构造设置和组装。
然而,该坩埚的底部凹处和/或侧凹处中的一个或更多个或全部可由一个或更多个罩盖或盖子闭合或密封。即,一个特定的罩盖可密封该底部凹处和全部侧凹处,以使其免受环境气氛的影响,或可仅密封该底部凹处,或仅密封一个侧凹处或选自该底部凹处和该侧凹处的多个凹处,而并非密封这些凹处中的全部。罩盖或盖子可安装到该坩埚或该系统或处理室的其它部件,且可由任何适当材料(例如,该坩埚的材料)形成。如上文关于该安装板或该室壁所述,向在该相应凹处中所布置的加热器供应能量应例如借助于供该加热器的连接线可穿过的在相应罩盖中的开口来确保,或借助于被布置在相应罩盖内且提供在该凹处内的加热器与外部之间的连接的接口来确保。这样的罩盖可尤其在如下情况中使用:该安装板或任何其它安装系统具有开口,以使得该底部凹处和/或该侧凹处不被该安装板或该安装系统密封。
附图说明
附图被包含在本文中,以利于进一步理解本发明的实施例,且并入本发明说明书中并构成本发明说明书的一部分。附图说明本发明的实施例且与本发明说明书一起用于解释原理。将容易了解本发明的其它实施例和许多预期优点,这是因为参照以下详细描述,这些实施例和预期优点将变得被更好地理解。附图的元件未必相对于彼此按比例缩放。类似附图标记表示对应的类似部分。
图1示出根据本发明的坩埚的示范性实施例的透视图。
图2是图1的坩埚的俯视图。
图3是图1的坩埚的仰视图。
图4是坩埚的另一实施例的仰视图。
图5是沿着图3所示的线A-A'通过图1的坩埚的横截面图。
图6示出作为根据本发明的用于蒸发或升华材料的系统的一部分的加热器布置的示范性实施例。
图7示出具有根据本发明的用于蒸发或升华材料的系统的示范性实施例的用于蒸发或升华的处理室的横截面图。
具体实施方式
图1示出根据本发明的坩埚10的示范性实施例。坩埚10是由石墨或任何其它适当材料制成的长方体且具有六个表面:第一表面110,其为顶表面;第二表面,其为底表面(在此图中无法看到);以及四个侧表面,在此图中,仅可看到其中的两个侧表面133和134。凹穴式凹处11形成在第一表面110中,其中凹穴式凹处11适合用于容纳待蒸发或升华的材料。凹穴式凹处11在第一表面中具有其开口,且可具有任何适当形式和任何适当尺寸。此外,坩埚10可具有不止一个凹穴式凹处11。举例来说,坩埚可具有多个凹穴式凹处,其中凹穴式凹处中的每一个在第一表面中形成为柱形孔,且其中凹穴式凹处中的不同凹穴式凹处被坩埚的材料彼此分开。
图2是坩埚10的俯视图,且因此示出第一表面110,凹穴式凹处11形成在第一表面110中。坩埚10的材料形成坩埚10的侧壁141到144,侧壁141到144从凹穴式凹处11延伸到坩埚的相应侧表面131到134。侧壁141到144从第一表面110延伸到第二表面,即,在z方向上延伸,且连接坩埚10的顶部和底部。
图3是坩埚10的仰视图,且因此示出与第一表面110相反的第二表面120。底部凹处12形成在第二表面120中,其中,底部凹处12用于在坩埚用于蒸发或升华过程时接纳底部加热器。底部凹处12可具有任何适当形式和尺寸。此外,可在图3中看到侧凹处13a到13d的开口。侧凹处13a到13d中的每一个形成在侧壁141到144中的相应侧壁中,且在z方向上延伸,如关于图4将解释的那样。第二表面120中的侧凹处13a到13d的开口的横向尺寸以及侧凹处13a到13d的横向尺寸(全部横向尺寸都是在x方向或y方向上测量的)尽可能得小,只要能够将侧加热器插入侧凹处13a到13d中而不损坏,且在加热期间允许侧加热器在侧凹处13a到13d中热膨胀即可。此外,在每一侧壁141到144中,绝热凹处14a到14d形成在相应侧凹处13a到13d的背离凹穴式凹处且面向相应侧表面的那一侧上。每一绝热凹处14a到14d被相应侧壁141到144的材料围绕,且邻近于第二表面120具有开口。优选地,绝热凹处14a、14c在y方向上具有与相应侧凹处13a、13c的尺寸类似的尺寸,或比相应侧凹处13a、13c甚至更大的尺寸。
图4是另一坩埚10'的仰视图。坩埚10'与坩埚10的不同之处仅在于:三个侧凹处13aa到13ac和13ca到13cc分别形成在坩埚的侧壁141和142中的每一个中。此外,未示出在图3中示出的绝热凹处,以便使该图更清楚。侧壁141中的侧凹处13aa到13ac分别借助于材料条141a和141b而与侧凹处13aa到13ac中的一个邻近的侧凹处分开。材料条141a和141b是侧壁141的一部分,且形成相应侧凹处13aa到13ac中的相应侧凹处之间的中间壁。材料条141a和141b从第一表面110延伸到第二表面120。材料条141a到141b提高侧壁141的稳定性,且 使得有可能将不同侧加热器插入到相应侧凹处13aa到13ac中,以使得坩埚10'的邻近于侧壁141的不同横向区可被独立加热,以进一步提高在凹穴式凹处中所容纳的材料的温度的均匀性。关于侧凹处13aa到13ac和侧壁141而描述的特征也适用于侧凹处13ca到13cc和侧壁143。
图5示出沿着图3的线A-A'通过坩埚10的横截面图。在横截面图中,可看到第一表面110中的凹穴式凹处11、第二表面120中的底部凹处12和侧壁141、143中的两个侧凹处13a、13c。侧凹处13a、13c沿着z方向在几乎坩埚10的整个尺寸上延伸,且邻近于第二表面120具有其开口。此外,在每一侧壁141、143中,绝热凹处14a、14c形成在相应侧凹处13a、13c的背离凹穴式凹处11且面向相应侧表面131、133的那一侧上。每一绝热凹处14a、14c邻近于第二表面120具有开口。举例来说,绝热凹处14a、14c可填充有空气。绝热凹处14a、14c在x方向上的尺寸仅受坩埚10的整体外部尺寸和坩埚自身的稳定性限制。在朝向第一表面110的z方向上,绝热凹处14a、14c优选延伸到与相应侧凹处13a、13c相同的值或更远。
表1中给出了坩埚10和坩埚10的不同元件的示范性尺寸。如清楚理解的,坩埚10'可具有类似尺寸,其中侧凹处13aa到13ac和13ca到13cc在y方向上较小。
Figure PCTCN2016112150-appb-000001
Figure PCTCN2016112150-appb-000002
表1
图6示出用于加热在图1到图3所示的坩埚10的示范性加热器布置20。加热器布置20包含两个底部加热器21a和21b、用于坩埚的每一长侧的两个角落加热器和两个中间加热器以及用于坩埚的每一短侧的一个侧加热器。在图6中,仅示出用于坩埚的短侧的一个侧加热器223b以及用于坩埚的一个长侧的角落加热器2211a和2212a与中间加热器2221a和2222a以及两个底部加热器21a和21b,以便使该图更清楚。用于坩埚的长侧的加热器2211a、2212a、2221a和2222a中的每一个可被插入到相应侧壁中的同一个侧凹处中或可被插入到在相应侧壁中所形成的不同侧凹处中。加热器是形成为导电回路的电阻加热器。加热器的导线的材料为钼,但可为任何其它适当材料。
图7是通过用于蒸发或升华的处理室200的横截面图。在处理室200内,根据本发明的用于蒸发或升华材料的系统210被布置在安装板220上或直接安装在室壁230上。系统210包括如上所述的坩埚10和加热器布置20。凹穴式凹处11容纳待蒸发或升华的材料30,待蒸发或升华的材料30由上述加热器布置的加热器加热。如关于图5所描述的那样,加热器被布置在底部凹处和侧凹处中,然而,在图7中,未示出底部凹处和侧凹处,以便使该图更清楚。此外,出于相同原因,在图7中也未示出关于图5所述的绝热凹处。在图7的横截面图中,仅示出底部加热器21a和两个角落加热器2211a和2211c,然而,更多的加热器可被提供在如上文关于图6所述的加热器布置中。此外,图7中示出用于向底部加热器21a供应能量的能量供应连接241a和241b以及用于分别向角落加热器2211a和2211c供应能量的能量供应连接242a和242c。能量供应连接241a、241b、242a、242b引导到处理室200的外部,其中能量供应连接241a、241b、242a、242b连接到一个 或更多个发电机。由于由加热器布置的加热器所产生的热,材料30蒸发或升华且朝向衬底250移动,如虚线箭头所示。衬底250借助于传送辊260在系统210上方保持和移动。衬底250(衬底250也可为布置在衬底保持器中的多个衬底)在实线箭头所示的方向上在处理室200内移动。然而,材料30的静态沉积(即,材料到不移动的衬底250上的沉积)也是可能的。
如本领域的技术人员清楚地理解的,加热器布置的加热器无论如何相对于坩埚10和处理室200是固定的。同样情况适用于坩埚10自身。即,加热器布置的加热器可固定在相应凹处(底部凹处和/或侧凹处)内,或可固定在安装板220上或室壁230上或一个或更多个罩盖上,该一个或更多个罩盖安装到坩埚10的底表面且密封相应凹处。因此,即使凹处未被系统的任何部件密封,加热器也可不从坩埚的凹处掉出。为了将加热器布置的加热器布置在坩埚10的相应凹处内,加热器可被插入固定坩埚的凹处中,或坩埚10可从顶部在固定加热器上滑动。然而,两个部件(坩埚和加热器)可移动,以使得加热器被插入坩埚的相应凹处中。
因为加热器布置的加热器被布置在坩埚10内,所以从加热器到材料30的热传递被优化。此外,布置了加热器的坩埚10的凹处被安装板220密封,以使得加热器被有效地防止以免受处理室200内的环境气氛的影响,其中该环境气氛可包括相对于加热器的材料具有侵蚀性的组分。此外,坩埚10可通过简单地将坩埚10提起远离安装板220而与加热器分开。因此,如果第一坩埚10必须被清洁或另一材料30必须蒸发或升华,那么第一坩埚10可被替换为第二坩埚10,而不需要也拆除加热器布置。
前文描述中所述的本发明的实施例是以说明方式给出的实例,且本发明不限于此。实施例的任何修改、变化和等同布置以及组合应被视为包含在本发明的范围内。
附图标记
10                       坩埚
110                      第一表面
120                      第二表面
131到134                 侧表面
141到144                 侧壁
141a、141b、143a、143b   侧壁中的材料条
11                       凹穴式凹处
12                       底部凹处
13a到13d                 侧凹处
14a、14c                 绝热凹处
20                       加热器布置
21a、21b                 底部加热器
2211a、2212a             角落加热器
2221a、2222a             中间加热器
223                      侧加热器
200                      处理室
210                      用于蒸发或升华的系统
220                      安装板
230                      室壁
241a、241b               用于底部加热器的能量供应连接
242a、242c               用于侧加热器的能量供应连接
250                      衬底
260                      传送辊

Claims (10)

  1. 一种用于加热待蒸发或升华的材料的坩埚,包括:
    -至少一个凹穴式凹处,所述凹穴式凹处适合用于接纳所述待蒸发或升华的材料,所述凹穴式凹处形成在所述坩埚的第一表面中,以及
    -底部凹处和/或侧凹处,所述底部凹处形成在所述坩埚的第二表面中,所述第二表面与所述第一表面相反,且所述侧凹处形成在所述坩埚的侧壁中,所述侧壁从所述第一表面延伸到所述第二表面,其中所述侧凹处邻近于所述坩埚的所述第二表面具有其开口。
  2. 根据权利要求1所述的坩埚,其中所述坩埚包括多个侧凹处,以使得在所述坩埚的所有侧壁中的每一个侧壁中,形成所述侧凹处中的一个不同的侧凹处。
  3. 根据权利要求1或2所述的坩埚,其中所述坩埚包括所述侧凹处,且还包括绝热凹处,所述绝热凹处在所述侧凹处的不邻近于所述坩埚的所述凹穴式凹处的那一侧上邻近于所述侧凹处在所述坩埚的同一侧壁内形成,其中所述侧凹处和所述绝热凹处被所述坩埚的材料彼此间隔开。
  4. 根据前述权利要求中任一项所述的坩埚,其中所述坩埚由具有高热导率且相对于所述待蒸发或升华的材料或相对于环境气氛的组分惰性的并且不扩散的材料制成。
  5. 根据权利要求4所述的坩埚,其中所述坩埚的材料选自包括石墨、碳化硅和氧化物陶瓷材料的材料组。
  6. 一种用于蒸发或升华材料的系统,包括根据前述权利要求中任一项所述的坩埚以及用于加热所述坩埚的加热器布置,其中所述加热器布置包括被布置在所述坩埚的所述底部凹处或所述侧凹处中的至 少一个加热器。
  7. 根据权利要求6所述的系统,其中所述坩埚包括多个侧凹处且所述加热器布置包括多个加热器,其中在所述侧凹处中的每一个侧凹处中,布置所述加热器中的一个特定的加热器。
  8. 根据权利要求6或7所述的系统,其中所述至少一个加热器由相对于所述待蒸发的材料或相对于环境气氛的组分非惰性的材料制成。
  9. 根据权利要求8所述的系统,其中所述至少一个加热器被涂布有具有高热导率且相对于所述待蒸发或升华的材料或相对于环境气氛的组分惰性的并且不扩散的材料。
  10. 根据权利要求6至9中任一项所述的系统,其中所述系统还包括至少一个罩盖,所述至少一个罩盖用于密封所述坩埚的所述底部凹处或所述侧凹处中的至少一个,以使其免受环境气氛的影响。
PCT/CN2016/112150 2015-12-31 2016-12-26 容纳并加热材料的坩埚以及包括坩埚和加热器布置的系统 WO2017114364A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018553289A JP6681125B2 (ja) 2015-12-31 2016-12-26 材料を収容・加熱する坩堝及び坩堝と加熱器セットを含むシステム
EP16881153.7A EP3399069B1 (en) 2015-12-31 2016-12-26 Crucible for accommodating and heating material, and system comprising arranged crucible and heater
KR1020187022190A KR102138990B1 (ko) 2015-12-31 2016-12-26 재료를 용납 및 가열하는 도가니 및 도가니와 히터 구성을 포함하는 시스템
US16/064,423 US20190119807A1 (en) 2015-12-31 2016-12-26 Crucible for accommodating and heating material, and system comprising arranged crucible and heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511026677.3 2015-12-31
CN201511026677.3A CN106929805B (zh) 2015-12-31 2015-12-31 容纳并加热材料的坩埚以及包括坩埚和加热器布置的系统

Publications (1)

Publication Number Publication Date
WO2017114364A1 true WO2017114364A1 (zh) 2017-07-06

Family

ID=59225890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112150 WO2017114364A1 (zh) 2015-12-31 2016-12-26 容纳并加热材料的坩埚以及包括坩埚和加热器布置的系统

Country Status (6)

Country Link
US (1) US20190119807A1 (zh)
EP (1) EP3399069B1 (zh)
JP (1) JP6681125B2 (zh)
KR (1) KR102138990B1 (zh)
CN (1) CN106929805B (zh)
WO (1) WO2017114364A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11643749B2 (en) * 2018-04-26 2023-05-09 Showa Denko K.K. Crucible and SiC single crystal growth apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107805782B (zh) * 2017-11-27 2019-09-20 深圳市华星光电半导体显示技术有限公司 一种蒸镀装置
KR102198114B1 (ko) * 2020-09-16 2021-01-04 조슬기 수경재배용 이산화탄소 공급장치를 구비하는 다년생 수삼 수경재배장치
US20220228250A1 (en) * 2021-01-15 2022-07-21 Phoenix Silicon International Corp. Crucible and vapor deposition apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550532A (zh) * 2009-05-14 2009-10-07 苏州大学 用于真空镀膜设备的加热装置
CN103510051A (zh) * 2012-06-20 2014-01-15 乐金显示有限公司 用于制造显示装置的加热装置
CN203639543U (zh) * 2013-12-16 2014-06-11 中国电子科技集团公司第十八研究所 一种硒源蒸发装置
KR20150072828A (ko) * 2013-12-20 2015-06-30 엘지디스플레이 주식회사 유기발광표시장치 제조용 증착 소스 유닛
WO2015136857A1 (ja) * 2014-03-11 2015-09-17 株式会社Joled 蒸着装置及びその制御方法、蒸着装置を用いた蒸着方法、及びデバイスの製造方法
WO2015177217A1 (de) * 2014-05-23 2015-11-26 Manz Ag Verdampferquelle für die oberflächenbehandlung von substraten

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636305A (en) * 1971-03-10 1972-01-18 Gte Sylvania Inc Apparatus for metal vaporization comprising a heater and a refractory vessel
JPH0610118A (ja) * 1992-06-29 1994-01-18 Nec Kansai Ltd 蒸着方法及び蒸発装置
JP2003166049A (ja) * 2001-11-28 2003-06-13 Murata Mfg Co Ltd 蒸着用ルツボ
JP2007270261A (ja) * 2006-03-31 2007-10-18 Kyocera Corp 蒸着装置、蒸着方法、有機el装置の製造方法、及び蒸着用セル
WO2008016247A1 (en) * 2006-08-04 2008-02-07 Soonchunhyang University Industry Academy Cooperation Foundation Linear deposition sources for deposition processes
KR101106289B1 (ko) * 2006-08-04 2012-01-18 순천향대학교 산학협력단 증착 공정을 위한 선형 증착 소스
CN102245813B (zh) * 2008-12-08 2014-08-06 Ii-Vi有限公司 改进的轴向梯度传输(agt)生长工艺和利用电阻加热的装置
WO2013001827A1 (ja) * 2011-06-29 2013-01-03 パナソニック株式会社 加熱装置、真空加熱方法及び薄膜製造方法
KR102218677B1 (ko) * 2014-01-03 2021-02-23 삼성디스플레이 주식회사 증착원
CN104357797B (zh) * 2014-11-14 2017-01-18 京东方科技集团股份有限公司 一种坩埚用加热装置、坩埚和蒸发源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550532A (zh) * 2009-05-14 2009-10-07 苏州大学 用于真空镀膜设备的加热装置
CN103510051A (zh) * 2012-06-20 2014-01-15 乐金显示有限公司 用于制造显示装置的加热装置
CN203639543U (zh) * 2013-12-16 2014-06-11 中国电子科技集团公司第十八研究所 一种硒源蒸发装置
KR20150072828A (ko) * 2013-12-20 2015-06-30 엘지디스플레이 주식회사 유기발광표시장치 제조용 증착 소스 유닛
WO2015136857A1 (ja) * 2014-03-11 2015-09-17 株式会社Joled 蒸着装置及びその制御方法、蒸着装置を用いた蒸着方法、及びデバイスの製造方法
WO2015177217A1 (de) * 2014-05-23 2015-11-26 Manz Ag Verdampferquelle für die oberflächenbehandlung von substraten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399069A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11643749B2 (en) * 2018-04-26 2023-05-09 Showa Denko K.K. Crucible and SiC single crystal growth apparatus

Also Published As

Publication number Publication date
EP3399069A1 (en) 2018-11-07
KR102138990B1 (ko) 2020-07-29
KR20180098668A (ko) 2018-09-04
CN106929805B (zh) 2022-02-25
EP3399069A4 (en) 2019-10-16
CN106929805A (zh) 2017-07-07
JP2019506536A (ja) 2019-03-07
JP6681125B2 (ja) 2020-04-15
EP3399069B1 (en) 2021-12-08
US20190119807A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2017114364A1 (zh) 容纳并加热材料的坩埚以及包括坩埚和加热器布置的系统
US10781518B2 (en) Gas cooled electrostatic chuck (ESC) having a gas channel formed therein and coupled to a gas box on both ends of the gas channel
JP4786177B2 (ja) サセプタを含む処理チャンバ内で半導体基板を加熱するプロセスおよびシステム
US20160284522A1 (en) Upper electrode, edge ring, and plasma processing apparatus
US9580806B2 (en) Method of processing a substrate support assembly
JP6602922B2 (ja) 裏面パッシベーションのための装置及び方法
KR102538550B1 (ko) 운반 링
JP7376426B2 (ja) 真空蒸着装置用の蒸着源
WO2018059019A1 (zh) 坩埚、蒸镀装置及蒸镀系统
TW201823854A (zh) 用於使遮罩保持平面位置之裝置及方法
TW201533828A (zh) 用於減少熱能傳輸之基板載體及其使用及應用其之系統
US10844490B2 (en) Vapor phase film deposition apparatus
WO2017114367A1 (zh) 用于加热坩埚的加热器设备、其操作方法和用于容纳且加热待蒸发或升华的材料的坩埚
JP7138550B2 (ja) 基板処理装置
TW202042275A (zh) 能提高控溫精度的基板安裝台及電漿處理設備
US10727092B2 (en) Heated substrate support ring
JP2008013850A (ja) 蒸着装置とその輸送システム
JP4149495B2 (ja) 熱処理装置
KR101909210B1 (ko) 박막증착장치의 증발원 및 그를 가지는 박막증착장치
US20180051369A1 (en) Apparatus for Evaporating a Material
JPH10214772A (ja) 基板熱処理装置
JP2009299901A (ja) ネジ
JP2009088354A (ja) 基板処理装置、ランプユニット及び半導体装置の製造方法
JP2007224320A (ja) 薄膜形成装置及び薄膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187022190

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016881153

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881153

Country of ref document: EP

Effective date: 20180731