WO2017114314A1 - 磁图像传感器 - Google Patents

磁图像传感器 Download PDF

Info

Publication number
WO2017114314A1
WO2017114314A1 PCT/CN2016/111769 CN2016111769W WO2017114314A1 WO 2017114314 A1 WO2017114314 A1 WO 2017114314A1 CN 2016111769 W CN2016111769 W CN 2016111769W WO 2017114314 A1 WO2017114314 A1 WO 2017114314A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
magnetic
image sensor
magnetic induction
substrate
Prior art date
Application number
PCT/CN2016/111769
Other languages
English (en)
French (fr)
Inventor
戚务昌
孙明丰
Original Assignee
威海华菱光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海华菱光电股份有限公司 filed Critical 威海华菱光电股份有限公司
Priority to JP2018512211A priority Critical patent/JP6564528B2/ja
Priority to EP16881103.2A priority patent/EP3399504B1/en
Priority to US15/745,439 priority patent/US10690733B2/en
Publication of WO2017114314A1 publication Critical patent/WO2017114314A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/04Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/20Testing patterns thereon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D2207/00Paper-money testing devices

Definitions

  • the present application relates to the field of sensors, and in particular to a magnetic image sensor.
  • a magnetic image sensor is provided in the related art, which continuously arranges small magnetic heads throughout the reading recognition range to form a linear array of small magnetic heads, thereby being in the entire reading range. Magnetic information is read and recognized.
  • the volume of the single head is relatively large, and the read recognition range on each head occupies only a small portion of the head range, a large range between the heads is outside the effective reading range of the head. That is, the area between the magnetic heads cannot be read, and with such a magnetic image sensor, the magnetic information at the gap between the magnetic heads is lost.
  • a magnetic sensor device having a plurality of recesses linearly disposed along a longitudinal direction of an inner bracket on an upper surface of an inner bracket of the magnetic sensor device.
  • the magnetoresistive elements are housed in the respective concave portions, and the magnetic resistance elements are arranged in a linear array within the reading recognition range, and the magnetic information in the reading range is read and recognized.
  • the magnetic head is replaced by a magnetoresistive element, and the gap between the magnetoresistive elements is greatly reduced, so that the overall magnetic sensor device is miniaturized, but since the linear size of the magnetic group element is too large, in this size
  • the magnetic information in the range cannot be distinguished in detail.
  • the magnetic information on the read medium is very fuzzy and cannot distinguish the details of the magnetic information. Therefore, when it is necessary to distinguish the finer features of the magnetic information area, the magnetic sensing device can not achieve.
  • a magnetic sensor device in which an array-type magnetic sensing element of a magnetic characteristic of a reading medium is disposed in a direction of a reading range at an end of a planar side wall of one side of a frame body, and the magnetic sensing element is a point
  • the magnetic induction element produced by the printing and sintering process has a resolution of more than 50 DPI, and the resolution of the magnetic information is solved, but the magnetic induction element obtained by the printing and sintering process is obtained.
  • the deviation is very large, usually about 20%, even if the deviation of the magnetoresistance is reduced by the method of repairing, the deviation will be about 3%-5%, and at least 150mV level is generated for the common electrode voltage using 5V. Voltage deviation.
  • the actual magnetic signal voltage that can be detected is usually on the order of 10 mV, which means that the signal difference (noise signal) caused by the deviation of the actual magnetoresistance is much larger than the effective signal, which brings great problems to the signal processing. It is difficult to accurately separate the effective signal from the noise signal.
  • the main object of the present application is to provide a magnetic image sensor to solve the problem that the magnetic image sensor in the related art has a relatively large noise signal due to variations in magnetic resistance.
  • the magnetic image sensor comprises: a magnetic induction resistor arranged in the scanning direction for detecting a change of a magnetic signal in a range to be detected; a resistor is arranged, connected to the magnetic induction resistor, and the resistor is a resistor having an adjustable resistance; the driving circuit and the magnetic induction A resistor connection for output control of the signal detected by the magnetic induction resistor.
  • the configuration resistors are connected in one-to-one correspondence with the magnetic induction resistors.
  • the resistance of the configuration resistor is adjusted to be consistent with the resistance of the corresponding magnetic induction resistor.
  • the resistor is configured to be a resistor fabricated using a thick film printing process.
  • the magnetic image sensor further includes: a configuration resistor substrate, wherein the configuration resistor is disposed on the configuration resistor substrate; the substrate is mounted, wherein the magnetic induction resistor and the driving circuit are disposed on the loading substrate; and the connection substrate, wherein the resistor substrate is disposed The loading substrate is disposed on the connection substrate.
  • the resistor substrate is configured as a substrate made of a ceramic material, and a protective film is disposed on the arrangement resistor.
  • the loading substrate is provided with a connection pad
  • the configuration resistor comprises: a common electrode; and the individual electrodes, the individual electrodes are connected to the magnetic induction resistors in a one-to-one correspondence on the connection pads through the connection lines.
  • the configuration resistor is a plurality of configured resistors.
  • the common electrode is a plurality of common electrodes, and each of the plurality of common electrodes is shared by two of the plurality of configuration resistors, or between two adjacent ones of the plurality of configuration resistors Separate electrodes, each configured with a separate common electrode branch.
  • the magnetic induction resistor is a magnetoresistive body of a tunnel structure formed by vacuum coating on a semiconductor wafer, and both ends of the magnetoresistive body are provided with first and second pads for connecting the both ends.
  • the driving circuit includes: a shift register circuit; and a switch circuit for turning on to receive the signal detected by the magnetic induction resistor, wherein the magnetic image sensor further comprises: a signal amplifying circuit, and the serial SIG for receiving the output of the driving circuit The signal is amplified and the serial SIG signal is processed.
  • a magnetic image sensor including the following structure: a magnetic induction resistor arranged in the scanning direction for detecting a change of a magnetic signal in a range to be detected; a resistor is arranged, and a magnetic induction resistor is connected, and the resistance is adjusted to have an adjustable resistance value. Resistor; drive circuit, connected to a magnetic induction resistor for detecting a magnetic induction resistor The output control is performed, and the configuration resistance with adjustable resistance is connected with the magnetic induction resistor, which solves the problem that the magnetic image sensor in the related art has a relatively large noise signal due to the deviation of the magnetic resistance, thereby achieving the reduction of the magnetic image sensor. The effect of the noise signal.
  • FIG. 1 is a schematic cross-sectional view of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 2 is a schematic top plan view of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 3 is a schematic overall structural diagram of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 4 is an enlarged schematic view showing a partial unit structure of a magnetic image sensor according to an embodiment of the present application
  • FIG. 5 is a schematic enlarged view showing a partial structure of a ceramic substrate of a magnetic image sensor according to an embodiment of the present application
  • FIG. 6 is a schematic enlarged view showing another partial structure of a ceramic substrate of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a magnetic signal sensing pixel of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a driving circuit of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a circuit of a multi-level connection of a driving circuit of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram showing the circuit structure of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 11 is a timing diagram of a magnetic image sensor according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram showing the state of the substrate and the repairing process during the repair of the embodiment of the present application.
  • FIG. 1 is a schematic cross-sectional view of a magnetic image sensor according to an embodiment of the present application
  • FIG. 2 is a schematic top plan view of a magnetic image sensor according to an embodiment of the present application.
  • the magnetic image sensor includes a magnetic induction resistor 1, a configuration resistor 2, and a driving circuit 3.
  • the magnetic sensing resistor 1 is arranged along the scanning direction for detecting a change in the magnetic signal in the detection range, and the magnetic sensing resistor 1 can be one or
  • the magnetic induction resistor 1 is a plurality of magnetic induction resistors 1 , and the plurality of magnetic induction resistors 1 are arranged in a line along the scanning direction.
  • the magnetic induction resistor 1 of the embodiment of the present application is fabricated by a semiconductor process.
  • Tunnel type magnetic induction resistor (TMR), configuration resistor 2 is a resistance adjustable resistance, can be paired with magnetic induction resistor 1, configuration resistor 2 can be one or more configuration resistors 2, optionally, multiple configuration resistors 2 Arranged in a straight line, and a plurality of arrangement resistors 2 are connected to the plurality of magnetic induction resistors 1 in one-to-one correspondence, and the drive circuit 3 is configured to perform output control on the signals detected by the magnetic induction resistors 1, including transmitting the magnetic field signals detected by the magnetic induction resistors 1 And the output of the control signal.
  • each of the configuration resistors 2 in the embodiment of the present application may include one or more resistors.
  • each of the plurality of driving circuits 3 may control a plurality of magnetic sensing pixels, and the plurality of driving circuits 3 are sequentially connected and arranged to output and control the signals of the magnetic sensing pixels in the entire detection range. .
  • the magnetic image sensor may further include a signal amplifying circuit 4 for performing amplification processing on the detected magnetic signal, for example, a voltage signal converted by the magnetic induction resistor 1 and the configuration resistor 2.
  • a signal amplifying circuit 4 for performing amplification processing on the detected magnetic signal, for example, a voltage signal converted by the magnetic induction resistor 1 and the configuration resistor 2.
  • the magnetic image sensor may further include a magnet 5 disposed inside the magnetic image sensor, and S and N are two poles of the magnet, and are arranged as magnets for generating a longitudinal magnetic field, arranged in the scanning direction, and disposed under the magnetic induction resistor 1 Alternatively, the center line of the magnet 5 corresponds to the magnetic induction resistor 1.
  • the arrangement resistor 2 may be disposed on the arranging resistor substrate 20, and the arranging resistor 2 may be disposed on the arranging resistor substrate 20.
  • the arranging resistor 2 may further be provided with a protective film 23, a magnetic sensing resistor 1 and
  • the driving circuit 3 may be disposed on the loading substrate 30, and the arrangement resistive substrate 20 and the loading substrate 30 are both disposed on the connection substrate 10.
  • the connection substrate 10 is a non-magnetic substrate for mounting the loading substrate 30 and arranging the resistance substrate.
  • connection line 31 which may be a gold wire or an aluminum wire which is often used in a semiconductor process and is connected by a pressure welding process for loading the substrate 30 and arranging the resistance substrate.
  • connection line 31 which may be a gold wire or an aluminum wire which is often used in a semiconductor process and is connected by a pressure welding process for loading the substrate 30 and arranging the resistance substrate.
  • the magnetic image sensor can also be provided with a protective layer 32, passing After the electrical connection of the connecting line 31 is completed, the protective layer 32 is formed to provide protection for the magnetic signal sensing resistor 1, the driving circuit 3, and the connecting line 31.
  • the magnet 5 and the above-mentioned substrate may be disposed in the housing 6.
  • the housing 6 is for housing the magnet and various substrates, and the cover 6 is provided with a cover 7 for protecting the magnetic induction resistor 1 and the arrangement resistor 2 and
  • the driving circuit 3 passes the object to be detected (such as a banknote) on the upper surface of the cover 7, and the magnetic signal on the object to be detected is detected by the magnetic sensing pixel and outputs a corresponding signal.
  • the magnetic image sensor provided by the embodiment of the present application can reduce the noise of the magnetic image sensor itself due to the adjustable resistance of the resistance value, and optionally improve the accuracy of the read signal.
  • FIG. 2 is a plan view showing the internal structure of a magnetic image sensor in which the cover 7 is not mounted, and for the sake of clarity, only the main components of the magnetic image sensor are shown in the figure, the magnetic image sensor including the frame 6 and the arrangement resistors mounted therein
  • the substrate 20, the resistor 2, the substrate 30, the magnetic induction resistor 1, and the drive circuit 3 are mounted.
  • the magnetic induction resistor 1, the arrangement resistor 2, and the drive circuit 3 are each composed of a plurality of elements and are arranged in a straight line in the scanning direction.
  • FIG. 3 is a schematic view showing the overall structure of a magnetic image sensor according to an embodiment of the present application, wherein one side shows a schematic cross-sectional structure, the detection position 8 is a signal detection position of the magnetic image sensor, and the detection position 8 is a magnetic signal induction resistance 1 corresponding to The position near the outer surface of the cover plate 7.
  • the object to be detected 9 may be a medium such as a banknote, and has a pattern 91 on the object to be detected 9, which is a pattern with magnetic information on the object to be detected 9.
  • the object to be detected 9 moves in the direction of the arrow, and passes through the detection position 8 of the magnetic image sensor.
  • the magnetic signal of the pattern 91 with magnetic information on the object to be detected 9 changes the resistance value of the magnetic induction resistor 1 in the corresponding region, and the magnetic induction resistor 1
  • the change in resistance is converted to a voltage signal by an internal circuit.
  • the resistance value of the magnetic induction resistor 1 does not change, so that the magnetic image on the object to be detected can be detected according to the change of the resistance value of the magnetic induction resistor 1, the magnetic image sensor
  • the magnetic image sensor Each time a signal of one line is detected under the control of the driving circuit 3, as the object to be detected continuously moves, the magnetic image sensor continuously reads out the magnetic image information of the entire picture on the entire object to be detected.
  • FIG. 4 is an enlarged view of a partial unit of the assembled substrate.
  • an electrode including the resistor 2 a common electrode 21 in which the resistor 2 is disposed, an individual electrode 22 in which the resistor 2 is disposed, and an individual electrode are shown. 22 is connected to the magnetic induction resistor 1 in a one-to-one correspondence on the connection pad 301 on the loading substrate 30 through the connection line 31.
  • the common electrode 21 may be connected to the loading substrate 30 at a certain point (not shown), or may be externally connected. A voltage signal is supplied to the common electrode 21 alone.
  • FIG. 5 is a partial enlarged view of the arrangement of the resistor substrate 20.
  • the resistor substrate 20 is a substrate made of a ceramic material
  • 21a is a branch portion where the common electrode 21 and each resistor are connected to each other
  • 22a is a portion of the individual resistor 22 for soldering the wiring 31
  • the protective film 23 is a resistor 2 and The protective layer of the corresponding electrode.
  • the magnetic image sensor of the embodiment of the present application can realize magnetic image reading of 50 DPI, and the magnetic induction resistor 1 and its corresponding arrangement resistance 2 have an arrangement density of 0.5 mm.
  • the configuration resistor 2 can be a continuous resistor formed by a printing method.
  • the configuration resistor 2 of the embodiment of the present application uses a thick film printing process to fabricate a configuration resistor.
  • the configuration resistor is manufactured by:
  • a glass paste is printed in a desired region and sintered at a high temperature to form a protective layer of a resistor and an electrode.
  • the resistor body is a continuous resistor body formed by printing, and the corresponding electrode is disposed under the resistor body.
  • the position of the electrode determines the position of the resistor body, and one resistor is from the two sides of the resistor to the common The two parts of the electrode 21 are formed together.
  • FIG. 6 is another configuration resistor structure of the embodiment of the present application, the basic structure of which is similar to the embodiment shown in FIG. 5, but the independent electrode 24 is designed between adjacent resistors.
  • the branch 21a of each common electrode 21 is commonly used by two adjacent resistors, and in the present structure, the individual electrodes 24 are provided between the two resistors, and each resistor has an independent common electrode. 21 branch 21a, this structure can reduce the influence on adjacent resistance during the trimming process.
  • Fig. 7 is a schematic view showing the structure of a magnetic induction resistor used in the embodiment of the present application, in which a structure in which a plurality of magnetic induction resistors 1 are continuously arranged is shown.
  • the magnetic induction resistor 1 is a magnetoresistive body (TMR) 100 of a tunnel structure fabricated by vacuum coating on a semiconductor wafer.
  • TMR magnetoresistive body
  • the resistance of the magnetoresistive body 100 in a magnetic field environment varies with the magnitude and direction of the magnetic field. Its resistance also changes.
  • Pads 101 and 102 for connecting both ends of the magnetoresistance body are provided at both ends of the magneto-resistive body 100 for electrically connecting the resistor body to the outside.
  • the magnetic induction resistor used in the embodiment of the present application can be described by the relationship between the resistance value and the magnetic field in the magnetic field environment, the X axis can represent the direction and intensity of the magnetic field, and the Y axis can represent the magnitude of the resistance value.
  • FIG. 8 is a schematic structural diagram of a driving circuit 3 used in the embodiment of the present application.
  • the driving circuit 3 is a long strip structure, and the upper 302 is a receiving terminal, and the magnetic induction signal on the magnetic induction resistor is transmitted to the inside, and one terminal is connected to a magnetic induction.
  • Resistor 1, below is the control terminal for circuit control and signal output.
  • the structure of the driving circuit 3 is 12 mm long and 1 mm wide, and 24 receiving terminals are arranged at the upper end, and 24 magnetic induction resistors 1 can be connected at the same time. During the scanning process, signals of the magnetic induction resistor 1 are sent to the driving circuit 3 through these terminals.
  • the following control terminals include at least a drive signal input terminal SI, a drive signal output terminal SO, a clock signal CLK, and an output signal SIG, in addition to the operating power supply.
  • FIG. 9 is a schematic diagram of a circuit structure of a multi-stage connection of a driving circuit according to an embodiment of the present application.
  • the row driving signal SI is input from the SI terminal on the driving circuit 3 of the end portion, and is internal to the driving circuit 3 under the action of the clock signal CLK. Sub-backward transmission, each time opening an internal switch of an internal receiving terminal, transmitting the signal on the corresponding magnetic induction resistor 1 to the SIG signal line, and passing the last switch on the driving circuit 3 as the output driving of the driving circuit 3.
  • the signal SO is outputted outward while being input to the SI port of the next drive circuit 3 to continue to be transported backwards inside a drive circuit 3 until being transmitted to all the drive circuits 3, and all the magnetic induction resistors 1 connected to the drive circuit 3 are
  • the signals are sequentially transmitted to the SIG signal line to form a complete scan of the line.
  • the 10 is a schematic diagram of the electrical principle of the magnetic image sensor according to the embodiment of the present application.
  • the upper end of the configuration resistor 2 is a common electrode 21 connected to the power source VDD, and the lower individual electrodes are connected to the magnetic induction resistor 1 one by one, and the lower end of the magnetic induction resistor 1 is
  • the common electrode 21 is connected to the GND, and a signal collecting end is connected between the magnetic induction resistor 1 and the arrangement resistor 2 to be connected to the receiving terminal of the driving circuit 3.
  • the drive circuit 3 includes a two-part function, 3a is a shift register circuit, and 3b is a switch circuit.
  • the driving signal SI is a row driving pulse signal, and the switch in the switching circuit 3b is turned on one by one under the action of the clock, and the signal detected by the magnetic sensing resistor 1 is input to the driving circuit 3, and the driving circuit 3 converts the collected signal into a serial
  • the SIG signal is output to the outside, and is output to the amplification circuit of the subsequent stage for signal amplification.
  • the SI signal is a row driving pulse signal during scanning, and each pulse completes one line of scanning.
  • Vout is an output signal amplified by the SIG signal through the amplifying circuit, and needs to be occupied due to the internal reset function of the driving circuit 3 and the like.
  • the output signal is usually several clock cycles later than the SI signal.
  • the resistance of the magnetic induction resistor 1 may increase or decrease, so the output signal may be more than the reference potential. High, it is also possible to be lower than the reference potential.
  • the magnetic image sensor of the embodiment of the present application may be a magnetic image sensor capable of scanning a width of 192 mm, and has 384 magnetic induction resistors inside, and the arrangement period of each magnetic induction resistor is 0.5 mm, forming a scanning resolution of 50 DPI.
  • 384 configuration resistors 2 are provided in one-to-one correspondence with the magnetic induction resistors, and each of the drive circuits 3 can control 24 magnetic induction resistors 1, and a total of 16 drive circuits 3 are used to drive 384 magnetic induction resistors 1.
  • the magnetic induction resistor 1 (represented by Rm) and the configuration resistor 2 (represented by Rt) are connected in series between the power supply VDD and the ground GND, without an external magnetic field.
  • the potential between the two resistors is:
  • VREF0 is the potential of each magnetic induction resistor (ie, the reference potential of each pixel) when there is no magnetic field.
  • Rm changes with the resistance of the external magnetic field, thus generating a voltage signal change Vsig, this voltage
  • Vsig the voltage signal change
  • the signal collected by the driving circuit 3 from the two resistors is a superposition signal of the two voltages, that is, the serial signal SIG outputted by the driving circuit 3 is VREF0+Vsig.
  • the signal output by the amplifying circuit is:
  • Vout [(VREF0-VREF)+Vsig]*N (2)
  • Vsig is positive or negative
  • the difference between VREF0-VREF is usually greater than the maximum absolute value of Vsig.
  • the embodiment of the present application adopts a method of repairing the configuration resistor 2.
  • the arranging resistor 2 is made of a resistor paste containing yttrium oxide as a main component, and the resistance value (referred to as repair resistance) can be reduced by applying a pulse voltage of a certain power to the resistor body.
  • FIG. 12 is a schematic diagram showing the state of the substrate and the repairing process during the trimming of the embodiment of the present invention.
  • the connection between the resistor substrate 20 and the loading substrate 30 is not connected by the connecting line 31, and the resistor substrate 20 is disposed.
  • the upper end of each of the arrangement resistors 2 is connected by the common electrode 21, and the individual resistors 22 (22a) at the lower end are separated, that is, each of the arrangement resistors 2 is independent, and the magnetic induction resistor 1 on the loading substrate 30 passes through the connection line.
  • the method for correcting the resistance of the resistor is used to reduce the deviation of the reference signal between the pixels.
  • the specific method is to adjust the Rtn resistance of all the configured resistors 2 to be consistent with the resistance value Rmn of the corresponding magnetic induction resistor 1.
  • the magnetic induction resistor 1 is designed to have a target value of 5 K ⁇ .
  • the magnetic induction resistor 1 produced by the vacuum coating process is calculated to have a maximum deviation of 20%, and the actual resistance is between 4 K ⁇ and 6 K ⁇ .
  • the configuration resistor 2 is printed and sintered by a thick film resistor paste, and the maximum deviation is about 15%.
  • the design resistance of the configuration resistor 2 is set to 8K ⁇ , and the actual resistance value ranges from 6.8K ⁇ to 9.2K ⁇ , because the Rt is repaired.
  • the resistance can only reduce the resistance, so the actual resistance of Rt is higher than the actual resistance of Rm.
  • Correcting thick film resistors is a common method in the fabrication of thick film resistors, but it is usually set to a target resistance value, and then the resistors are trimmed to this uniform resistance value, for example, also with thick film resistors. For example, if the actual resistance is in the range of 6.8K ⁇ -9.2K ⁇ , if the target resistance is set to 5K ⁇ , the resistance of all resistors should be repaired to around 5K ⁇ .
  • the repair method used in the embodiment of the present application is to adjust the resistance of Rt to be consistent with Rm, so the target resistance of each Rtn is the resistance value of the corresponding Rmn.
  • There are two ways to actually repair the process, one is each time. Test the resistance Rmn of a magnetic induction resistor 1 as the target resistance value, and then trim the corresponding configuration resistor 2 to make Rtn Rmn (according to the current process level, the correction accuracy can reach less than 1%) .
  • the probe When the resistor is repaired, the probe is in contact with the protective films 23, 22a and 301, 302.
  • the resistance Rmn between 301 and 302 is tested first, and the resistance value is stored in the device as the target value of the corresponding configuration resistor 2, and then 23 and 22a are tested.
  • the resistance between the two (the initial value before the repair), the initial value is compared with the target value, according to the difference between the two, a certain voltage pulse trimming is applied between 23 and 22a, so that the resistance of the configuration resistor 2 is made. Decrease, then test the resistance between 23 and 22a, and compare it with the target value, and then repair the resistor again according to the new difference, repeating the resistance to the target value between 23 and 22a. After the anastomosis, the next resistor is repaired.
  • the level of the signal reference potential can be adjusted by the trimming of Rt as needed.
  • connection between the 22a of the resistor substrate 20 and the 301 of the load substrate 30 is performed by the connection line 31, thereby achieving electrical connection between the two substrates.
  • connection layer and the bare chip are covered with the protective layer 32.
  • the image sensor of this embodiment adopts a signal detection method of balanced resistance, which can ensure the image resolution of the magnetic signal, can also greatly reduce the noise of the product itself, and improve the accuracy of the read signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

一种磁图像传感器。该磁图像传感器包括:磁感应电阻(1),沿扫描方向排列,用于对待检测范围内的磁信号变化进行检测;配置电阻(2),与磁感应电阻(1)连接,配置电阻(2)为阻值可调的电阻;驱动电路(3),与磁感应电阻(1)连接,用于对磁感应电阻(1)检测到的信号进行输出控制。解决了磁图像传感器由于磁阻的偏差导致噪音信号比较大的问题。

Description

磁图像传感器 技术领域
本申请涉及传感器领域,具体而言,涉及一种磁图像传感器。
背景技术
在纸币、票据、有价证券等介质上制作特定的磁信息是现代防伪技术的重要手段之一,并且随着制作技术的发展,磁信息防伪技术的应用也在得到不断的加强,如许多国家的钞票(如人民币、美元、欧元等)内部都包含内容丰富的磁信息。而对于纸币、票据、有价证券等介质上特定的磁信息的识别也是必不可少的防伪检测手段。
为了实现上述的检测,在相关技术中提供了一种磁图像传感器,该磁图像传感器在整个读取识别范围内连续排列小型磁头,形成一个小型磁头的线性阵列,从而对整个读取范围内的磁信息进行读取识别。但是,由于单体磁头的体积比较大,并且每一个磁头上的读取识别范围也只占磁头范围的一小部份,因此磁头之间很大的范围是在磁头有效读取范围之外的,也即,磁头之间的区域是无法进行读取的,使用这种磁图像传感器,处于磁头之间的间隙处的磁信息就会被丢失。
在相关技术中还提供了一种磁传感装置,在磁传感装置的内部支架的上表面具有沿着内部支架的长边方向呈直线状设置的多个凹部。在各凹部收纳有磁阻元件,在读取识别范围内用磁阻元件排列成一个线性阵列,对读取范围内的磁信息进行读取识别。在该技术中,用磁阻元素取代了磁头,磁阻元素之间的间隙大大减小了,使整体磁传感器装置得到了小型化,但由于磁组元素的线性尺寸过大,在这一尺寸范围内的磁信息无法详细区分,读取的介质上的磁信息非常模糊,无法区分磁信息的细节,因此在需要对磁信息区更细微的特征做出判别时,这种磁传感装置就无法实现。
在相关技术中还提供了一种磁传感器装置,磁感应元素在框体一侧的平面侧壁的端部沿读取范围的方向配置的读取介质磁性特征的阵列式磁感应元素,磁感应元素是点状的或带状的,在该技术中,通过印刷烧结工艺制作的磁感应元素,其分辨率可以达到50DPI以上,对磁信息的分辨能力得到了解决,但这种通过印刷烧结工艺得到的磁感应元素的偏差非常大,通常有20%左右即使通过修阻的方法减小磁阻的偏差,这种偏差也会在3%-5%左右,对于使用5V的公共电极电压来说,至少产生150mV级的电压偏差。而实际能够检测到的磁信号电压通常为10mV数量级,也就是说实际磁阻的偏差造成的信号差异(噪音信号)远远大于有效信号,这给信号处理带来了很大的难题,通常情况下很难很准确地从噪音信号中分离出有效信号。
针对相关技术中的磁图像传感器由于磁阻的偏差导致噪音信号比较大的问题,目前尚未提出有效的解决方案。
发明内容
本申请的主要目的在于提供一种磁图像传感器,以解决相关技术中的磁图像传感器由于磁阻的偏差导致噪音信号比较大的问题。
为了实现上述目的,本申请提供了一种磁图像传感器。该磁图像传感器包括:磁感应电阻,沿扫描方向排列,用于对待检测范围内的磁信号变化进行检测;配置电阻,与磁感应电阻连接,配置电阻为阻值可调的电阻;驱动电路,与磁感应电阻连接,用于对磁感应电阻检测到的信号进行输出控制。
可选地,配置电阻与磁感应电阻一一对应连接。
可选地,配置电阻的阻值调整为与对应的磁感应电阻的阻值相一致。
可选地,配置电阻为采用厚膜印刷工艺制作的电阻。
可选地,磁图像传感器还包括:配置电阻基板,其中,配置电阻设置在配置电阻基板上;装载基板,其中,磁感应电阻和驱动电路设置在装载基板上;连接基板,其中,配置电阻基板和装载基板设置在连接基板上。
可选地,配置电阻基板为采用陶瓷材料制作的基板,在配置电阻上设置有保护膜。
可选地,装载基板上设置有连接焊盘,配置电阻包括:公共电极;个别电极,个别电极通过连接线在连接焊盘上与磁感应电阻一一对应连接。
可选地,配置电阻为多个配置电阻。公共电极为多个公共电极,多个公共电极中的每个公共电极由多个配置电阻中的两个配置电阻共用,或者,在多个配置电阻中相邻的两个配置电阻之间设置有独立电极,每个配置电阻均设置有独立的公共电极分支。
可选地,磁感应电阻为在半导体硅片上通过真空镀膜制作的隧道结构的磁电阻体,磁电阻体的两端设置有用于连接两端的第一焊盘和第二焊盘。
可选地,驱动电路包括:移位寄存器电路;开关电路,用于开启以接收磁感应电阻检测到的信号,其中,磁图像传感器还包括:信号放大电路,用于接收驱动电路输出的串行SIG信号并对串行SIG信号进行放大处理。
通过本申请,采用包括以下结构的磁图像传感器:磁感应电阻,沿扫描方向排列,用于对待检测范围内的磁信号变化进行检测;配置电阻,与磁感应电阻连接,配置电阻为阻值可调的电阻;驱动电路,与磁感应电阻连接,用于对磁感应电阻检测到的信 号进行输出控制,由于设置了阻值可调的配置电阻与磁感应电阻连接,解决了相关技术中的磁图像传感器由于磁阻的偏差导致噪音信号比较大的问题,进而达到了降低磁图像传感器的噪音信号的效果。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的磁图像传感器的断面示意图;
图2为本申请实施例的磁图像传感器的内部俯视示意图;
图3为本申请实施例的磁图像传感器的整体结构示意图;
图4为本申请实施例的磁图像传感器的局部单元结构放大示意图;
图5为本申请实施例的磁图像传感器的陶瓷基板局部结构放大示意图;
图6为本申请实施例的磁图像传感器的陶瓷基板另一种局部结构放大示意图;
图7为本申请实施例的磁图像传感器的磁信号感应像素的结构示意图;
图8为本申请实施例的磁图像传感器的驱动电路结构示意图;
图9为本申请实施例的磁图像传感器的驱动电路多级连接的电路结构示意图;
图10为本申请实施例的磁图像传感器的电路结构示意图;
图11为本申请实施例的磁图像传感器的时序示意图;以及
图12为本申请实施例的修阻时的基板状态及修阻原理图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1是本申请实施例的磁图像传感器的断面结构示意图,图2为本申请实施例的磁图像传感器的内部俯视示意图。
如图1所示,磁图像传感器包括磁感应电阻1、配置电阻2和驱动电路3,磁感应电阻1沿扫描方向排列,用于对检测范围内的磁信号变化进行检测,磁感应电阻1可以为一个或多个磁感应电阻1,可选地,磁感应电阻1为多个磁感应电阻1,并且多个磁感应电阻1沿扫描方向排列成直线,可选地,本申请实施例的磁感应电阻1为通过半导体工艺制作的隧道型磁感应电阻(TMR),配置电阻2为阻值可调整的电阻,可以与磁感应电阻1配对使用,配置电阻2可以为一个或多个配置电阻2,可选地,多个配置电阻2排列成直线,并且多个配置电阻2与多个磁感应电阻1一一对应连接,驱动电路3用于对所述磁感应电阻1检测到的信号进行输出控制,包括传输磁感应电阻1检测到的磁场信号和控制信号的输出。可选地,本申请实施例中的每个配置电阻2可以包括一段或多段电阻体。驱动电路3也可以为多个,多个驱动电路3中的每一个驱动电路3可控制多个磁感应像素,多个驱动电路3顺序连接排列,对整个检测范围内的磁感应像素的信号进行输出控制。
磁图像传感器还可以包括信号放大电路4,信号放大电路4用于对检测到的磁信号,例如,通过磁感应电阻1和配置电阻2转换成的电压信号进行放大处理。
磁图像传感器还可以包括磁铁5,该磁铁5设置在磁图像传感器内部,S和N为磁铁的两极,配置为用于产生纵向磁场的磁铁,沿扫描方向排列,设置于磁感应电阻1下,可选地,磁铁5的中心线与磁感应电阻1对应。
在本申请实施例的磁图像传感器中,配置电阻2可以设置在配置电阻基板20上,在配置电阻基板20上制作配置电阻2,配置电阻2上还可以设置有保护膜23,磁感应电阻1和驱动电路3可以设置在装载基板30上,配置电阻基板20和装载基板30均设置在连接基板10上,可选地,连接基板10是无磁性的基板,用于搭载装载基板30和配置电阻基板20,磁感应电阻1和驱动电路3与基板通过连接线31连接,连接线31可以是半导体工艺中经常使用的通过压焊工艺进行连接的金丝或铝丝,用于装载基板30和配置电阻基板20的电气连接,磁图像传感器中还可以设置保护层32,在通过 连接线31电气连接完成后制作该保护层32对磁信号感应电阻1、驱动电路3以及连接线31提供保护。
磁铁5和上述的基板可以设置在框体6中,框体6用于收纳磁铁及各种基板,在框体6上设置盖板7,盖板7用于保护磁感应电阻1及配置电阻2和驱动电路3,待检测物(如纸币等)在盖板7的上表面通过,待检测物上的磁信号通过磁感应像素检测并输出相应的信号。
本申请实施例提供的磁图像传感器,由于为阻值可调整的配置电阻,因而,可以降低磁图像传感器本身的噪音,可选地,提高了读取信号的准确性。
图2是没有安装盖板7的磁图像传感器的内部结构俯视图,为了清楚起见,在该图中仅示出了磁图像传感器的主要部件,磁图像传感器包括框体6以及安装在其中的配置电阻基板20、配置电阻2,装载基板30、磁感应电阻1和驱动电路3。磁感应电阻1、配置电阻2以及驱动电路3都是由多个组成并且分别沿扫描方向排列成直线。
图3是本申请实施例的磁图像传感器的整体结构示意图,其中的一侧示出了断面结构示意图,检测位置8是磁图像传感器的信号检测位置,检测位置8是磁信号感应电阻1所对应盖板7外表面附近的位置。待检测物9可以为纸币等介质,在待检测物9上具有图形91,该图形91是待检测物9上的带有磁信息的图形。待检测物9沿箭头方向移动,经过磁图像传感器的检测位置8,待检测物9上的带有磁信息的图形91的磁信号使相应区域的磁感应电阻1的阻值发生变化,磁感应电阻1的阻值变化通过内部电路转换成电压信号。待检测物9上没有磁信息的区域通过检测位置8时,磁感应电阻1的阻值不发生变化,从而可根据磁感应电阻1阻值的变化情况检测出待检测物上的磁图像,磁图像传感器在驱动电路3的控制下每次检测一行的信号,随着待检测物连续不断地移动,磁图像传感器连续读取出整个待检测物上整幅画面的磁图像信息。
图4是组装基板的局部单元放大示意图,在配置电阻基板20上除了配置电阻2外,还有配置电阻2的电极,包括配置电阻2的公共电极21,配置电阻2的个别电极22,个别电极22通过连接线31在装载基板30上的连接焊盘301上与磁感应电阻1一一对应相连,公共电极21可以在某一处与装载基板30相连(图中未示出),也可以从外部单独为公共电极21提供电压信号。
图5是配置电阻基板20的局部放大图。配置电阻基板20为采用陶瓷材料制作的基板,21a是公共电极21与每个电阻相互连接的分支部分,22a是个别电阻22的用于焊接连线31的部分,保护膜23为配置电阻2及相应电极的保护层。本申请实施例的磁图像传感器可以实现50DPI的磁图像读取,所采用的磁感应电阻1及与其相应的配置电阻2的排列密度为0.5mm。
配置电阻2可以是通过印刷方式形成的连续电阻体,可选地,本申请实施例的配置电阻2采用厚膜印刷工艺制作配置电阻,该配置电阻的制作过程为:
(1)在配置电阻基板20上印刷导体浆料(本申请实施例采用金导体浆料)并经过高温烧结还原出导体金的成份,
(2)通过模板刻蚀形成公共电极21和个别电极22,
(3)在预设位置(指定位置)印刷电阻浆料并进行高温烧结形成电阻22,
(4)在所需要的区域印刷玻璃浆料并经高温烧结形成电阻和电极的保护层。
在本申请的实施例中,电阻体是由通过印刷方式形成的连续电阻体,电阻体下设置相应的电极,电极的位置决定了电阻体的位置,同时一个电阻是由个别电阻两侧至公共电极21的两部分共同构成的。
图6是本申请实施例的另一种配置电阻结构,其基本结构与图5所示的实施例相似,但在相邻电阻之间设计了独立电极24。在前述结构中,每个公共电极21的分支21a都是由相邻的两个电阻共同使用,而在本结构中两个电阻之间设立了独立电极24,每个电阻都有独立的公共电极21分支21a,该种结构可以减小在修阻过程中对相邻电阻的影响。
图7是本申请实施例使用的磁感应电阻的结构示意图,在该图中示出了多个磁感应电阻1的连续排列的结构。在该实施例中,磁感应电阻1采用在半导体硅片上通过真空镀膜制作的隧道结构的磁电阻体(TMR)100,磁电阻体100在磁场环境中其阻值随磁场的大小和方向的改变其阻值也随之发生变化。在磁电阻体100的两端设置用于连接磁电阻体两端的焊盘101和102,用于将电阻体与外部进行电气连接。
本申请实施例使用的磁感应电阻可以用磁场环境中的阻值与磁场的变化关系曲线描述,X轴可以表示磁场的方向与强度,Y轴可以表示电阻阻值的大小。
图8为本申请实施例使用的驱动电路3的结构示意图,驱动电路3是一种长条形结构,上边的302是接收端子,将磁感应电阻上的磁感应信号传输到内部,一个端子连接一个磁感应电阻1,下面是控制端子用于电路的控制及信号的输出。本驱动电路3的结构为长12mm,宽度为1mm,上部的接收端子有24个,可以同时连接24个磁感应电阻1,在扫描过程中,磁感应电阻1的信号通过这些端子输送到驱动电路3中。下面的控制端子除提供工作电源外,至少包括驱动信号输入端子SI,驱动信号输出端子SO,时钟信号CLK,以及输出信号SIG等。
图9为本申请实施例的驱动电路的多级连接的电路结构示意图,行驱动信号SI从端部的驱动电路3上的SI端输入,在时钟信号CLK的作用下在驱动电路3内部依 次向后传输,每次打开内部的一个接收端子的内部开关,将相应磁感应电阻1上的信号传输到SIG信号线上,经过驱动电路3上的最后一个开关后作为该驱动电路3的输出驱动信号SO向外输出,同时输入到下一个驱动电路3的SI端口上继续向在一个驱动电路3内部向后传输,直至传输到所有驱动电路3,将驱动电路3连接的所有磁感应电阻1上的信号依次传输到SIG信号线上,形成一行完整的扫描数据。
图10为本申请实施例的磁图像传感器的电气原理示意图,配置电阻2的上端为公共电极21,与电源VDD相连,下面的个别电极与磁感应电阻1一一对应相连,磁感应电阻1的下端是公共电极21,与GND相连,在磁感应电阻1与配置电阻2之间引出信号采集端与驱动电路3的接收端子相连。
驱动电路3包括两部分功能,3a是移位寄存器电路,3b是开关电路。驱动信号SI是一个行驱动脉冲信号,在时钟作用下逐个开启开关电路3b中的开关,将磁感应电阻1检测到的信号输入到驱动电路3中,驱动电路3将收集到的信号转换成串行的SIG信号向外输出,输出到后级的放大电路进行信号放大。
图11是本申请实施例的磁图像传感器的时序图。如前所述,SI信号是扫描时的行驱动脉冲信号,每一个脉冲完成一行的扫描,Vout是SIG信号经过放大电路放大后的输出信号,由于驱动电路3内部复位等功能的需要会占用一定的时间,输出信号通常会比SI信号晚几个时钟周期,根据扫描环境中磁场的强度和方向,磁感应电阻1的阻值可能会升高也可能会降低,所以输出的信号有可能比基准电位高,也有可能比基准电位低。
本申请实施例的磁图像传感器可以是一个可以扫描192mm宽度的磁图像传感器,内部有384个磁感应电阻,每个磁感应电阻的排列周期是0.5mm,形成50DPI的扫描分辨率。同时设置有384个配置电阻2与磁感应电阻一一对应,每个驱动电路3可以控制24个磁感应电阻1,总共使用了16个驱动电路3来驱动384个磁感应电阻1。
在本申请实施例的电路结构中,磁感应电阻1(阻值用Rm表示)与配置电阻2(阻值用Rt表示)是串连连接在电源VDD和地GND之间的,在没有外界磁场的情况下,两个电阻之间的电位是:
VREF0=[Rm/(Rm+Rt)]*VDD     (1)
VREF0是一个在没有磁场时的每个磁感应电阻的电位(即每个像素的基准电位),在有外界磁场时Rm随外界磁场变化阻值发生变化,从而产生一个电压信号的变化Vsig,这个电压信号是叠加在VREF0上的,在扫描过程中,驱动电路3从两个电阻之间采集的信号是这两个电压的叠加信号,即驱动电路3输出的串行信号SIG为VREF0+Vsig。
从驱动电路3输出的串行信号SIG经过放大电路后,如果放大电路的放大倍数为N,放大电路的参考电位为VREF,则放大电路输出的信号为:
Vout=[(VREF0-VREF)+Vsig]*N     (2)
考虑到Vsig有正有负,为了使输出信号不出现负值,通常VREF0-VREF的差要大于Vsig的最大绝对值。
考虑到实际制作过程中,Rm和Rt都在存在一定的偏差,这种偏差通常在10%至20%之间,因此每对电阻之间的VREF0也会存在很大差别,从而导致输出信号Vout中每个信号之间的参考电位的偏差带来的信号失真。为了消除各像素之间的基准电位的偏差,本申请实施例采用对配置电阻2进行修阻的方法。配置电阻2是由以氧化钌为主要成份的电阻浆料烧制而成,通过对电阻体施加一定功率的脉冲电压进行冲击可以降低其阻值(简称修阻)。
图12为本申请实施例的修阻时的基板状态及修阻原理图,在修阻时,配置电阻基板20和装载基板30之间还没有通过连接线31进行连接,配置电阻基板20上的每个配置电阻2的上端通过公共电极21相连,下端的个别电阻22(22a)都是分离的,也就是说每个配置电阻2都是独立的,装载基板30上的磁感应电阻1通过连接线31与装载基板30上的焊盘301和302分别相连,但301和302也都各自独立的,因此磁感应电阻1这时也是各自独立的,本申请实施例中使用了384个磁感应电阻1(有时也称磁感应像素)和384个配置电阻2,第n个磁感应像素的阻值Rmn与之相对应的配置电阻2的阻值为Rtn(n=1~384)。
本申请实施例采用平衡阻值的修阻方法来减小各像素间的基准信号偏差,具体方法是将所有配置电阻2的Rtn阻值调整为与其相应的磁感应电阻1的阻值Rmn一致。在本申请的实施例中,磁感应电阻1设计目标值为5KΩ,实际通过真空镀膜工艺制作出来的磁感应电阻1按最大偏差20%计算的话,实际阻值在4KΩ-6KΩ之间。而配置电阻2由厚膜电阻浆料印刷烧结而成,最大偏差在15%左右,将配置电阻2的设计阻值定为8KΩ,实际电阻阻值范围为6.8KΩ-9.2KΩ,因为Rt的修阻只能使阻值降低,因此Rt的实际电阻值要高于Rm的实际电阻值。
对厚膜电阻进行修阻是制作厚膜电阻工艺中经常的方法,但通常是设定一个目标电阻值,然后将所在电阻都修阻到这个统一的电阻值上,例如,也以厚膜电阻的实际电阻阻值范围为6.8KΩ-9.2KΩ为例,如果设定目标阻值为5KΩ,则为将所有电阻的阻值都修到5KΩ附近。
本申请实施例使用的修阻方法是要将Rt的阻值调整的与Rm一致,因此每一个Rtn的目标阻值是与其对应的那个Rmn的阻值。实际修阻过程有两种方法,一是每次 测试一个磁感应电阻1的阻值Rmn,将其作为目标阻值,然后对与其相应的配置电阻2进行修阻,使Rtn=Rmn(根据目前的工艺水平,修阻精度可以达到偏差小于1%)。二是先测试所有的磁感应电阻1的阻值(Rm1~Rm384),将其保存在设备的内存中,分别作为各配置电阻2(Rt1~Rt384)的目标值,然后再逐一对各配置电阻2进行修阻。
修阻时通过探针与保护膜23,22a以及301,302接触,先测试301和302之间的电阻Rmn,阻值保存在设备内部作为相应配置电阻2的目标值,再测试23和22a之间的电阻(修阻之前的初始值),将初始值与目标值进行比较,根据二者的差值,在23和22a之间施加一定的电压脉冲修阻,使该配置电阻2的阻值降低,之后再测试23和22a之间的阻值,并与目标值进行比较,根据新的差值再次对该电阻进行修阻,反复多次至到23和22a之间的阻值与目标值吻合后再进行下一个电阻的修阻。
不管磁感应电阻1的阻值是大还是小,经过修阻后的配置电阻2,都与其对应的磁感应电阻1的阻值是一致的,从公式(1)可以看出,当Rt=Rm时,
VREF0=VDD/2          (3)
也即,不管Rm原来阻值是多少,只要通过修阻使Rt的阻值与其相等,所有像素的信号基准电位就会完全一致,并且是电源电压的一半。
另外,根据需要也可以通过Rt的修阻来调整信号参考电位的高低,Rt的修阻目标值可以不是Rm的值本身,而是带有一个相关系数k,即Rt=kRm,通过调整系数k可以改变VREF0的高低,例如:
当k=0.5时,VREF0=(2/3)*VDD,
当k=2时,VREF0=(1/3)*VDD,
修阻完成后用连接线31在配置电阻基板20的22a和装载基板30的301之间进行连接,从而实现两个基板之间的电气连接,连接完成后用保护层32对连接线和裸芯片进行封装保护
该实施例的图像传感器采用平衡阻值的信号检测方法,既能保证磁信号的图像分辨率,也可以大大减小产品本身的噪音,提高了读取信号的准确性。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种磁图像传感器,包括:
    磁感应电阻(1),沿扫描方向排列,用于对待检测范围内的磁信号变化进行检测;
    配置电阻(2),与所述磁感应电阻(1)连接,所述配置电阻(2)为阻值可调的电阻;以及
    驱动电路(3),与所述磁感应电阻(1)连接,用于对所述磁感应电阻(1)检测到的信号进行输出控制。
  2. 根据权利要求1所述的磁图像传感器,其中,所述配置电阻(2)与所述磁感应电阻(1)一一对应连接。
  3. 根据权利要求2所述的磁图像传感器,其中,所述配置电阻(2)的阻值调整为与对应的所述磁感应电阻(1)的阻值相一致。
  4. 根据权利要求1所述的磁图像传感器,其中,所述配置电阻(2)为采用厚膜印刷工艺制作的电阻。
  5. 根据权利要求1所述的磁图像传感器,其中,还包括:
    配置电阻基板(20),其中,所述配置电阻(2)设置在所述配置电阻基板(20)上;
    装载基板(30),其中,所述磁感应电阻(1)和所述驱动电路(3)设置在所述装载基板(30)上;以及
    连接基板(10),其中,所述配置电阻基板(20)和所述装载基板(30)设置在所述连接基板(10)上。
  6. 根据权利要求5所述的磁图像传感器,其中,所述配置电阻基板(20)为采用陶瓷材料制作的基板,在所述配置电阻(2)上设置有保护膜(23)。
  7. 根据权利要求5所述的磁图像传感器,其中,所述装载基板(30)上设置有连接焊盘(301),所述配置电阻(2)包括:
    公共电极(21);以及
    个别电极(22),所述个别电极(22)通过连接线(31)在所述连接焊盘(301)上与所述磁感应电阻(1)一一对应连接。
  8. 根据权利要求7所述的磁图像传感器,其中,所述配置电阻(2)为多个配置电阻(2),
    所述公共电极(21)为多个公共电极(21),所述多个公共电极(21)中的每个公共电极(21)由所述多个配置电阻(2)中的两个配置电阻(2)共用,
    或者,
    在所述多个配置电阻(2)中相邻的两个配置电阻(2)之间设置有独立电极(24),每个配置电阻均设置有独立的公共电极分支(21a)。
  9. 根据权利要求1所述的磁图像传感器,其中,所述磁感应电阻(1)为在半导体硅片上通过真空镀膜制作的隧道结构的磁电阻体(100),所述磁电阻体(100)的两端设置有用于连接所述两端的第一焊盘(101)和第二焊盘(102)。
  10. 根据权利要求1所述的磁图像传感器,其中,所述驱动电路(3)包括:
    移位寄存器电路(3a);以及
    开关电路(3b),用于开启以接收所述磁感应电阻(1)检测到的信号,
    其中,所述磁图像传感器还包括:
    信号放大电路(4),用于接收所述驱动电路(3)输出的串行SIG信号并对所述串行SIG信号进行放大处理。
PCT/CN2016/111769 2015-12-29 2016-12-23 磁图像传感器 WO2017114314A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018512211A JP6564528B2 (ja) 2015-12-29 2016-12-23 磁気イメージセンサー
EP16881103.2A EP3399504B1 (en) 2015-12-29 2016-12-23 Magnetic image sensor
US15/745,439 US10690733B2 (en) 2015-12-29 2016-12-23 Magnetic image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511019323.6 2015-12-29
CN201511019323.6A CN105701904B (zh) 2015-12-29 2015-12-29 磁图像传感器

Publications (1)

Publication Number Publication Date
WO2017114314A1 true WO2017114314A1 (zh) 2017-07-06

Family

ID=56226031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111769 WO2017114314A1 (zh) 2015-12-29 2016-12-23 磁图像传感器

Country Status (5)

Country Link
US (1) US10690733B2 (zh)
EP (1) EP3399504B1 (zh)
JP (1) JP6564528B2 (zh)
CN (1) CN105701904B (zh)
WO (1) WO2017114314A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105701904B (zh) 2015-12-29 2018-03-30 威海华菱光电股份有限公司 磁图像传感器
CN106197248B (zh) * 2016-07-21 2018-05-29 威海华菱光电股份有限公司 膜厚的检测装置
CN108182754A (zh) * 2016-12-08 2018-06-19 株式会社村田制作所 磁检测装置
CN107123185A (zh) * 2017-06-20 2017-09-01 深圳怡化电脑股份有限公司 一种有价文件磁性字符的识别装置及方法
US20200300935A1 (en) * 2019-03-22 2020-09-24 Lexmark International, Inc. Hall Effect Prism Sensor
GB2615816A (en) * 2022-02-21 2023-08-23 The Governor & Company Of The Bank Of England Document recognition device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2218949Y (zh) * 1993-12-09 1996-01-31 姜日华 交流台式全功能伪钞识别器
JP2005249468A (ja) * 2004-03-02 2005-09-15 Murata Mfg Co Ltd 長尺型磁気センサ
CN101382993A (zh) * 2008-10-17 2009-03-11 威海华菱光电有限公司 磁图像读取装置
CN104346857A (zh) * 2013-08-02 2015-02-11 北京嘉岳同乐极电子有限公司 磁成像方法及装置
CN205302449U (zh) * 2015-12-29 2016-06-08 威海华菱光电股份有限公司 磁图像传感器
CN105701904A (zh) * 2015-12-29 2016-06-22 威海华菱光电股份有限公司 磁图像传感器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173659A (ja) 1987-01-14 1988-07-18 Copal Co Ltd サ−マルヘツドのトリミング方法
JPS63242657A (ja) 1987-03-31 1988-10-07 Fujitsu General Ltd 熱印字濃度の調整方法
JPH03179214A (ja) 1989-12-07 1991-08-05 Fuji Electric Co Ltd アレイセンサの出力方式
JP2869815B2 (ja) 1990-06-21 1999-03-10 アオイ電子株式会社 サーマルヘッド及びその製造方法
JP2921262B2 (ja) * 1992-06-04 1999-07-19 株式会社村田製作所 長尺型磁気センサ
JPH06174409A (ja) * 1992-12-11 1994-06-24 Murata Mfg Co Ltd 磁気式回転センサ
JPH09104128A (ja) 1995-10-11 1997-04-22 Rohm Co Ltd サーマルプリントヘッドおよびサーマルプリントヘッドの発熱ドットの出力調整方法
JP3971091B2 (ja) 2000-07-21 2007-09-05 株式会社東芝 磁性体検知装置
JP3651433B2 (ja) * 2001-09-28 2005-05-25 株式会社村田製作所 磁気センサ
JP3879777B2 (ja) * 2004-02-27 2007-02-14 株式会社村田製作所 長尺型磁気センサ
JP4608912B2 (ja) * 2004-03-02 2011-01-12 株式会社村田製作所 長尺型磁気センサ
JP2005300228A (ja) * 2004-04-07 2005-10-27 Murata Mfg Co Ltd 長尺型磁気センサ
JP2007081091A (ja) * 2005-09-14 2007-03-29 Tdk Corp トンネル磁気抵抗効果素子の製造方法及びトンネル磁気抵抗効果素子
US7218125B2 (en) * 2005-09-30 2007-05-15 Agere Systems Inc Apparatus and method for performing a four-point voltage measurement for an integrated circuit
US8559139B2 (en) * 2007-12-14 2013-10-15 Intel Mobile Communications GmbH Sensor module and method for manufacturing a sensor module
JP5240657B2 (ja) 2008-10-02 2013-07-17 株式会社リコー センシング素子、センシング装置、方位検出装置及び情報機器
JP5234067B2 (ja) 2010-08-30 2013-07-10 三菱電機株式会社 磁気センサ装置及びそれを用いた読み取り判別装置
JP5687483B2 (ja) * 2010-12-15 2015-03-18 日本電産サンキョー株式会社 磁気パターン検出装置
JP2013029347A (ja) * 2011-07-27 2013-02-07 Nidec Sankyo Corp 磁気センサ装置およびコネクタ機構
JP5866956B2 (ja) * 2011-10-17 2016-02-24 株式会社デンソー 磁気センサ
JP5645271B2 (ja) * 2011-12-21 2014-12-24 日立オムロンターミナルソリューションズ株式会社 紙葉類識別装置
CN104105977B (zh) 2012-02-13 2017-09-26 株式会社村田制作所 磁传感装置
CN104797952B (zh) * 2012-11-15 2017-04-19 三菱电机株式会社 磁性传感器装置
JP5611409B1 (ja) 2013-04-26 2014-10-22 三菱電機株式会社 Tmr磁気センサデバイスの製造方法
JP6548868B2 (ja) * 2014-03-13 2019-07-24 株式会社東芝 磁気検査装置、および紙葉類処理装置
CN104301851B (zh) * 2014-07-14 2018-01-26 江苏多维科技有限公司 Tmr近场磁通信系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2218949Y (zh) * 1993-12-09 1996-01-31 姜日华 交流台式全功能伪钞识别器
JP2005249468A (ja) * 2004-03-02 2005-09-15 Murata Mfg Co Ltd 長尺型磁気センサ
CN101382993A (zh) * 2008-10-17 2009-03-11 威海华菱光电有限公司 磁图像读取装置
CN104346857A (zh) * 2013-08-02 2015-02-11 北京嘉岳同乐极电子有限公司 磁成像方法及装置
CN205302449U (zh) * 2015-12-29 2016-06-08 威海华菱光电股份有限公司 磁图像传感器
CN105701904A (zh) * 2015-12-29 2016-06-22 威海华菱光电股份有限公司 磁图像传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399504A4 *

Also Published As

Publication number Publication date
US10690733B2 (en) 2020-06-23
US20180306875A1 (en) 2018-10-25
CN105701904B (zh) 2018-03-30
EP3399504B1 (en) 2023-03-29
EP3399504A1 (en) 2018-11-07
JP6564528B2 (ja) 2019-08-21
EP3399504A4 (en) 2019-08-07
CN105701904A (zh) 2016-06-22
JP2018535391A (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2017114314A1 (zh) 磁图像传感器
US20150331072A1 (en) Magnetic field detecting sensor and magnetic field detecting apparatus using the same
CN108431620B (zh) 磁性传感器、传感器单元、磁性检测装置、以及磁性测量装置
US10168397B2 (en) Magnetic field sensor with increased field linearity
JP2009250931A (ja) 磁気センサおよびその動作方法、および磁気センサシステム
US11346901B2 (en) Anisotropic magnetoresistive (AMR) sensor without set and reset device
JP2014512003A (ja) シングルチッププッシュプルブリッジ型磁界センサ
CN205302449U (zh) 磁图像传感器
KR101135258B1 (ko) 자기 센서 장치
WO2019109676A1 (zh) 磁图像传感器
TWI731620B (zh) 磁場感測裝置
US8564350B2 (en) Hysteresis device
US11009569B2 (en) Magnetic field sensing device
JP2823539B2 (ja) 位置検出装置
JP5170614B2 (ja) 磁気センサ及び回転角度検出装置
JP5006341B2 (ja) 磁気検出方法および磁気検出装置
JP6618618B2 (ja) 磁気検出装置
WO2015146640A1 (ja) 電流センサ
JP2010008161A (ja) 磁気センサ及び回転角度検出装置
JP6456147B2 (ja) 磁気センサ装置および検出装置
CN115236568B (zh) 基于磁通调节器的宽量程垂直敏感磁传感器及其制备方法
EP3882646A1 (en) Integrated magnetometer and method of detecting a magnetic field
JP2008527370A (ja) 角度センサ
JP5417949B2 (ja) 磁気センサおよび磁気検出方法
JPH06201806A (ja) 磁気センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881103

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15745439

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018512211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE