WO2017111136A1 - 二酸化チタン粉体およびそれを配合した化粧料 - Google Patents
二酸化チタン粉体およびそれを配合した化粧料 Download PDFInfo
- Publication number
- WO2017111136A1 WO2017111136A1 PCT/JP2016/088579 JP2016088579W WO2017111136A1 WO 2017111136 A1 WO2017111136 A1 WO 2017111136A1 JP 2016088579 W JP2016088579 W JP 2016088579W WO 2017111136 A1 WO2017111136 A1 WO 2017111136A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium dioxide
- dioxide powder
- firing
- rutile
- powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/36—Compounds of titanium
- C09C1/3607—Titanium dioxide
- C09C1/3615—Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
- C09C1/363—Drying, calcination
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0216—Solid or semisolid forms
- A61K8/022—Powders; Compacted Powders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/29—Titanium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/12—Face or body powders for grooming, adorning or absorbing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/08—Drying; Calcining ; After treatment of titanium oxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/60—Compounds characterised by their crystallite size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Definitions
- the present invention relates to titanium dioxide powder, and more particularly to titanium dioxide powder that can be suitably used for cosmetics, paints, catalysts, and the like and cosmetics containing the same.
- Titanium dioxide is widely used as a white pigment for paints and plastics because of its high refractive index and excellent whiteness, hiding power, and coloring power. Titanium dioxide can also be used for cosmetics and catalysts as a UV absorber or UV shielding agent as a UV shielding substance by controlling its particle size or photoactivity. For these reasons, research and development for these applications has been actively conducted in recent years.
- titanium dioxide powder of apparent specific average particle diameter formed from small spherical particles of titanium dioxide having a specific average primary particle diameter of marimo-like formed from a large number of titanium dioxides is used in cosmetics, It is known to be a functional material capable of imparting good slipperiness and excellent light resistance not found in titanium dioxide.
- Patent Document 1 1-15% by mass of rutile-type titanium oxide aggregated particles having an average particle size of 0.2-0.4 ⁇ m and an average coefficient of friction (MIU value) of 0.4-0.6, and a semi-solid oil content of 1-40 It is known that a cosmetic for lips containing mass% is glossy, suppresses the appearance of wrinkles on the lips, and is excellent in long-lasting makeup (Patent Document 2).
- the light transmittance inside the skin is close to that of the bare skin by blending a material with a low absorption factor for light on the long wavelength side (wavelength 630 to 700 nm) even in the visible light region. It is known that a natural finish can be realized (Patent Document 3).
- Titanium dioxide on the other hand, has a high refractive index and high hiding power, such as skin spots, but when added in a large amount to increase the hiding power, it produces an unnatural finish and the unevenness on the skin is more noticeable than the bare skin. May end up. As described above, the bare skin is light-transmitting and has a lot of light scattering feedback from the inside of the skin. Therefore, it is difficult to shade the minute unevenness on the skin and it looks natural. However, since titanium dioxide reflects more light on its surface, the transmission of light into the skin is suppressed, and the unevenness on the skin is shaded, making it noticeable. Therefore, it is desired to develop titanium oxide designed to further improve the light transmittance on the long wavelength side while having a hiding power comparable to that of a general pigment titanium oxide.
- rod-like particles are in the form of particles that are oriented and aggregated in bundles, and the apparent average major axis length of oriented and aggregated particles is 80 to 300 nm, and oriented and aggregated.
- Rutile having an apparent average short axis length of 30 to 150 nm, an apparent average long axis length / apparent average short axis length of 1.1 to 4 and a specific surface area of 120 to 180 m 2 / g.
- a strip-shaped or bundle-like rutile-type titanium oxide, which is a type of titanium oxide, has been developed, and it is known that both transparency and ultraviolet shielding ability are high (Patent Document 4).
- this titanium dioxide is an aggregate of rod-like particles, and since there are many voids in the secondary aggregate, the apparent refractive index is lowered, and there is a hiding power to actually add it to cosmetics. It was insufficient. Also, because the main focus is on UV protection, the apparent particle size of secondary aggregates is less than 100 nm, which is clearly smaller than the particle size that maximizes the titanium oxide scattering effect based on Mie's theory. For this reason, the concealing power is also a factor.
- the present invention has been made in view of the prior art, and the problem to be solved is excellent in the function of transmitting light in the long wavelength region (red light selective transmission function) while maintaining the hiding power. It is to provide titanium dioxide.
- titanium dioxide having a specific particle diameter, a specific crystallite diameter, and a specific specific surface area is obtained by firing specific titanium dioxide.
- the present invention has been completed by finding out that it has a sufficient red light selective transmission function while having sufficient hiding power required for the material.
- the titanium dioxide powder according to the present invention is a rutile titanium dioxide powder obtained by firing rutile titanium dioxide having acicular protrusions on the particle surface, and has an apparent average particle diameter of 100 to 500 nm.
- the average crystallite diameter measured by X-ray diffraction method is 15 to 30 nm, and the specific surface area is 10 to 30 m 2 / g.
- the titanium dioxide powder according to the present invention has an average crystallite diameter of 15 to 30 nm and a specific surface area of 10 to 30 m 2 / g measured by X-ray diffraction method, and a reflectance value of 450 nm. It is a rutile type titanium dioxide powder characterized by being 1.3 times or more of the reflectance value of 650 nm and having a color difference ( ⁇ E) of 20 or less.
- the color difference ( ⁇ E) was determined by dispersing and mixing titanium dioxide powder in a nitrocellulose lacquer so as to have a concentration of 5%. The resulting dispersion was 0.101 ⁇ m on a black-and-white concealment rate test paper JIS-K5400.
- test sample was obtained by coating and drying with a film thickness.
- the obtained test sample was subjected to colorimetry on the surface of the coating film on white and black paper using a spectrocolorimeter.
- the color difference ( ⁇ E) in the Hunter Lab color space was calculated.
- the firing temperature of titanium dioxide is preferably 500 ° C. to 700 ° C. In the titanium dioxide powder, the firing temperature of titanium dioxide is preferably 600 ° C. to 700 ° C.
- the reflectance value at 450 nm is preferably 1.3 times or more the reflectance value at 650 nm, and it is preferable that light on the long wavelength side is more easily transmitted. It is preferable to surface-treat the titanium dioxide powder.
- the cosmetic according to the present invention is characterized by blending the titanium dioxide powder.
- a method for producing a rutile type titanium dioxide powder according to the present invention is a method for producing a rutile type titanium dioxide powder including a step of firing rutile type titanium dioxide having acicular protrusions on the particle surface, and the resulting rutile type
- the titanium dioxide powder has an apparent average particle diameter of 100 to 500 nm, an average crystallite diameter measured by X-ray diffraction method of 15 to 30 nm, and a specific surface area of 10 to 30 m 2 / g.
- the firing temperature of titanium dioxide is preferably 500 ° C. to 700 ° C.
- the titanium dioxide powder according to the present invention is a rutile titanium dioxide powder obtained by firing rutile titanium dioxide having needle-like protrusions on the particle surface satisfying the following (a) to (c). Is preferred.
- the titanium dioxide powder according to the present invention is A rutile-type titanium dioxide powder obtained by firing rutile-type titanium dioxide having needle-like projections on the surface of particles in which rod-like or needle-like particles are oriented and aggregated, and has an apparent average particle diameter of 100 to 500 nm, X-ray It is preferable that the average crystallite diameter measured by the diffraction method is 15 to 30 nm and the specific surface area is 10 to 30 m 2 / g.
- the titanium dioxide powder according to the present invention is obtained by firing titanium dioxide having needle-like protrusions on the surface of particles in which rod-like or needle-like particles are oriented and aggregated at 500 to 800 ° C., more preferably 550 to 750 ° C.
- titanium dioxide used for mother core The crystal form of titanium dioxide used for the mother nucleus is classified into anatase type and rutile type due to the difference in crystal structure.
- the crystal form of titanium dioxide used in the present invention needs to be a rutile type having low photocatalytic activity and a high refractive index because of high refractive index.
- titanium dioxide having a red light transmission function is used as the rutile titanium dioxide used for the mother nucleus.
- the apparent average particle diameter of titanium dioxide used for the mother nucleus is not particularly limited, but considering the fact that shrinkage generally occurs after firing, it has excellent hiding power by scattering of titanium dioxide obtained in the present invention. From the viewpoint of realizing a red transmission function, it is desirable that the thickness is 100 to 600 nm, more preferably 200 to 500 nm.
- Examples of the shape of rutile type titanium dioxide used for the mother nucleus include bundles, strips, spheres, needles, rods, and the like.
- the specific surface area of titanium dioxide used for the mother nucleus is not particularly limited, but is preferably 40 to 200 m 2 / g from the viewpoint of efficient apparent refractive index improvement by firing.
- the rutile type titanium dioxide used for the mother nucleus is not particularly limited, but the average crystallite diameter measured by X-ray diffraction method is preferably 1 to 25 nm.
- titanium dioxide may be used for the mother core.
- ST700 series manufactured by Titanium Industry Co., Ltd. can be mentioned, among which ST710 and ST730 are mentioned.
- the titanium dioxide powder of the present invention can be obtained by firing titanium dioxide used for the mother nucleus.
- the firing temperature cannot be generally defined by the firing apparatus, the rod-like or needle-like particles existing before firing are primary particles that are oriented and aggregated, reducing voids existing between the rod-like or needle-like particles, and It is desirable that the temperature be such that the rod-like or needle-like particles sinter and the average crystallite diameter measured by the X-ray diffraction method does not increase excessively. This makes it possible to achieve both a sufficient hiding power and a red light selective transmission function.
- the appropriate firing temperature varies depending on the firing apparatus, but when firing in a general firing furnace such as a muffle furnace or a rotary kiln, firing is preferably performed in the range of 500 to 800 ° C, more preferably 550 to 750 ° C. When the temperature is lower than 500 ° C., voids existing before firing are not sufficiently reduced, so that the concealing force is not sufficient. When the temperature exceeds 800 ° C., sintering proceeds excessively, and the red light selective transmission function is lost.
- the titanium dioxide of the present invention needs to have an average crystallite diameter of 15 to 30 nm as measured by X-ray diffraction.
- the crystallite diameter is less than 15 nm, it is not preferable because sufficient hiding power cannot be obtained.
- sintering progresses and it is unpreferable at the point that sufficient red light selective transmission function is lost.
- the titanium dioxide powder of the present invention has an apparent average particle diameter of 100 to 500 nm, more preferably 200 to 400 nm, from the viewpoint of effectively realizing a hiding power by scattering and an excellent red transmission function. is required.
- the specific surface area of the titanium dioxide powder of the present invention is an index indicating a decrease in the porosity of the obtained titanium oxide particles and the progress of sintering, and it is necessary to be 10 to 30 m 2 / g. If it is less than 10 m 2 / g, sintering proceeds, and a sufficient red light selective transmission function is lost, which is not preferable. Moreover, when it exceeds 30 m ⁇ 2 > / g, a space
- the titanium dioxide powder of the present invention can be subjected to a surface treatment after firing. By performing the surface treatment, it is possible to obtain titanium dioxide having excellent usability while improving the viscosity, dispersibility in oil, and cosmetic durability associated with water repellency.
- inorganic substances that can be used as the surface treatment agent include hydrated oxides or oxides of metals such as aluminum, silicon, zinc, titanium, zirconium, iron, cerium, and tin.
- the metal salt used for this is not particularly limited.
- organic substances that can be used as the surface treatment agent include stearic acid, oleic acid, and isostearic acid to add lipophilicity after surface treatment with a metal oxide or metal hydroxide such as aluminum hydroxide or aluminum oxide.
- Acids fatty acids such as myristic acid, palmitic acid, behenic acid, methylhydrogenpolysiloxane, dimethicone, alkyl (C8-C18 etc.) trialkoxysilane, amino-modified silicone, carboxyl-modified silicone and other silicone compounds, perfluoroalkylalkyl phosphoric acid Fluorine compounds such as salts, amino acid derivatives such as dextrin myristate, dextrin palmitate, lauroyl lysine, lauroyl glutamate and the like.
- These surface-treating agents are preferably 1 to 10% by mass with respect to the titanium dioxide powder because of their high hiding power.
- the titanium dioxide powder of the present invention can be widely blended in cosmetics, pigments, inks, paints and the like.
- the dosage form of the cosmetic of the present invention can be used in any state such as powder, powder solid, cream, emulsion, lotion, oily liquid, oily solid, and paste.
- Cosmetic applications include makeup base, foundation, concealer, face powder, control color, sunscreen cosmetic, lipstick, lip balm, eye shadow, eyeliner, mascara, teak color, nail polish, body powder, perfume powder Makeup cosmetics such as baby powder, skin care cosmetics, hair care cosmetics, and the like.
- the cosmetics of the present invention can contain other components in addition to the above components within a quantitative and qualitative range that does not impair the effects of the present invention, depending on the purpose.
- oily ingredients, pigments, pH adjusters, humectants, thickeners, surfactants, dispersants, stabilizers, colorants, preservatives, antioxidants, metal sequestering agents, astringents, flame retardants, ultraviolet rays Absorbers, fragrances, other pigments, and the like can be appropriately blended within a range that achieves the object of the present invention.
- the present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
- the blending amount is expressed in mass% with respect to the system in which the component is blended. Prior to the description of the examples, the evaluation method of the test used in the present invention will be described.
- Evaluation (1) Measuring Method of Average Crystallite Diameter A sample was measured with an X-ray diffractometer (Geigerflex, manufactured by Rigaku Corporation), and an average crystallite diameter was calculated by applying the Scherrer equation.
- Evaluation (2) Evaluation of hiding power Titanium dioxide powder was dispersed and mixed in a nitrocellulose lacquer so as to have a concentration of 5%, and the obtained dispersion was 0.101 ⁇ m on a black and white hiding rate test paper JIS-K5400.
- a test sample was obtained by coating and drying at a film thickness of. The obtained test sample was measured for the color of the coating film surface on white and black paper with a spectrocolorimeter (CM-2600, manufactured by Konica Minolta).
- the color difference ( ⁇ E) in the Hunter Lab color space was calculated and evaluated as the hiding power. The higher the ⁇ E, the smaller the hiding power, and the lower the ⁇ E, the higher the hiding power.
- ⁇ E (Evaluation criteria) ⁇ : 30 ⁇ E ⁇ : 25 ⁇ E ⁇ 30 ⁇ : 20 ⁇ E ⁇ 25 A: ⁇ E ⁇ 20
- Red transmittance is the spectral reflectance at each wavelength obtained by measurement on black paper as in the case of the above-described hiding power, and the reflectance and wavelength at a wavelength of 450 nm.
- the reflectance ratio at 650 nm (wavelength reflectance at 450 nm / average reflectance at 650 nm: R450 / R650) was calculated. The higher R450 / R650, the higher the red transmittance, and the lower R450 / R650, the lower R450 / R650.
- the present inventors evaluated the pigment grade rutile type and anatase type titanium oxide available as commercial products by the above evaluation method. The results are shown in Table 1.
- Both the rutile type pigment grade titanium oxide and the anatase type pigment grade titanium oxide had low red transmittance. Moreover, even if these were baked at high temperature, the red permeability was low.
- the present inventors have examined whether or not a product with excellent red transmittance can be produced using rutile-type titanium oxide having a high hiding power.
- the inventors of the present invention synthesized two types of titanium dioxide having different particle diameters having needle-like protrusions on the particle surface where needle-like particles are oriented and aggregated using the technique of Patent Document 4. Titanium oxide A (apparent average particle diameter: 0.2 to 0.3 ⁇ m, needle-like protrusion shape), titanium oxide B (apparent average particle diameter: 0.3 ⁇ m, needle-like protrusion shape) are respectively obtained from the obtained titanium oxide. Called.
- titanium dioxide having a needle-like protrusion on the particle surface which is a commercially available product (ST-730; manufactured by Titanium Industry Co., Ltd.), is referred to as titanium oxide C (apparent average particle diameter: 0.5 ⁇ m, needle-like protrusion shape). .
- titanium dioxide powder was obtained by the following method.
- the obtained titanium dioxide powder was evaluated by the above evaluation method, and the relationship between the type of titanium dioxide before firing and the firing temperature was examined. The results are shown in Tables 2-4.
- the results of measuring the spectral reflectance of rutile pigment grade titanium oxide (* 1) and titanium oxide B (unfired, firing temperature: 700 ° C., 900 ° C.) are shown in FIG.
- titanium dioxide powder was dispersed and mixed in a nitrocellulose lacquer so as to have a concentration of 5%, and the obtained dispersion was coated on a black and white concealment rate test paper JIS-K5400 with a film thickness of 0.101 ⁇ m.
- -A test sample was obtained after drying.
- the obtained test samples were each measured for the color of the coating film surface on black paper with a spectrocolorimeter (CM-2600, manufactured by Konica Minolta) to obtain spectral reflectance.
- CM-2600 spectrocolorimeter
- Titanium dioxide powder was obtained by putting 100 g of titanium dioxide in a crucible made of quartz and firing at a temperature in a muffle furnace for 1 hour.
- Titanium oxide A (apparent average particle size: 0.2-0.3 ⁇ m, needle-like protrusion shape)
- Titanium oxide B (apparent average particle size: 0.3 ⁇ m, needle-like protrusion shape)
- Titanium oxide C (apparent average particle diameter: 0.5 ⁇ m, needle-like protrusion shape)
- the hiding power was improved by raising the firing temperature. As the temperature rises, the specific surface area decreases, indicating that the voids present in the particles are decreasing. This causes an apparent increase in refractive index and improves the hiding power.
- the red transmission gradually decreased. In particular, when fired at a high temperature, sintering occurred completely, and the initial red transmittance was significantly reduced. In particular, with respect to titanium oxide C having a large particle size, the red transmittance was almost lost at 700 ° C.
- Titanium oxide B has a wide allowable temperature range from the viewpoint of improving concealment and maintaining red permeability.
- the appropriate temperature range is 500-800 ° C, more preferably 500-700 ° C.
- the present inventors examined the firing temperature in the range of 500 ° C. to 800 ° C. finely with titanium oxide B as the core. That is, this inventor evaluated the dioxide powder which changed the calcination temperature with the said evaluation method. The results are shown in Tables 5 and 6.
- Firing was carried out in a rotary kiln (rotary kiln) that is closer to mass production and has high firing efficiency.
- a rotary firing furnace has a high firing efficiency and can obtain a similar firing state at a lower temperature than when firing in a muffle furnace that is fired by standing.
- the firing temperature is preferably 550 to 700 ° C. and more preferably 575 to 660 ° C. for excellent hiding power and red transmittance.
- the present inventor uses a titanium dioxide of the present invention obtained at a calcination temperature of 660 ° C. in Table 6 to prepare a powder cosmetic and oil containing a hydrophobized titanium dioxide obtained by the following surface treatment method.
- a powder cosmetic and oil containing a hydrophobized titanium dioxide obtained by the following surface treatment method.
- Each of the water-in-water emulsified cosmetics was prepared by a conventional method.
- the obtained cosmetics were evaluated by the following evaluation method.
- the results of the powder cosmetic and the water-in-oil emulsified cosmetic are shown in Tables 7 and 8, respectively.
- the obtained titanium dioxide powder was dispersed in ion-exchanged water, heated, adsorbed with 3% by mass of stearic acid, and then dehydrated, washed and dried to obtain surface-treated titanium dioxide.
- Evaluation (5) Stain / Freckle Cover
- Evaluation (6) Poor conspicuous pores Ten professional panels applied samples to their faces and evaluated the feeling after use. A: Nine or more of 10 panelists answered that pores were not noticeable. ⁇ : 7 to less than 9 out of 10 panelists answered that pores were not noticeable. ⁇ : 5 or more and less than 7 out of 10 panelists answered that pores were not noticeable. X: Less than 5 out of 10 panelists answered that pores were not noticeable.
- Evaluation (7) Natural finish Ten professional panels applied samples to their faces and evaluated the feeling after use. A: Nine or more of the 10 panelists answered that the finish was natural. ⁇ : 7 to 10 out of 10 panelists answered that the finish was natural. ⁇ : 5 or more and less than 7 out of 10 panelists answered that the finish was natural. X: Less than 5 out of 10 panelists answered that the finish was natural.
- Evaluation (8) No powderiness Ten professional panelists applied samples to their faces and evaluated the feeling after use. A: Nine or more of 10 panelists answered that they were not powdery. ⁇ : 7 to less than 9 out of 10 panelists answered that it was not powdery. ⁇ : 5 or more and less than 7 out of 10 panelists answered that it was not powdery. X: Less than 5 out of 10 panelists answered that it was not powdery.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Cosmetics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
また、平均粒径が0.2~0.4μmで、平均摩擦係数(MIU値)が0.4~0.6であるルチル型酸化チタン凝集粒子1~15質量%と半固形油分1~40質量%を含有する唇用化粧料が、ツヤがあり、唇のシワの目立ちを抑え、化粧持ちに優れていることが知られている(特許文献2)。
また、化粧料として用いられる色材として、可視光領域でも長波長側の光(波長630~700nm)の吸収率の小さいものを配合することで、肌内部での光透過性が素肌と近くなり、自然な仕上がりを実現できることが知られている(特許文献3)。
そのため、一般的な顔料酸化チタンに匹敵する隠ぺい力を有しながら、長波長側の光の透過性をより高めるように設計された酸化チタンの開発が望まれている。
しかし、この二酸化チタンは、棒状粒子の凝集体であり、二次凝集体中の空げきも多いことから、見かけの屈折率が低下してしまい、実際に化粧料に配合するには隠ぺい力が不十分であった。また、紫外線防御に目的の主眼が置かれているため、二次凝集体の見かけの粒子径も100nm未満であり、Mieの理論に基づく酸化チタンの散乱効果を最大化させる粒子径より明らかに小さいため、このことも隠ぺい力が小さい要因となってしまう。
なお、色差(ΔE)は、二酸化チタン粉体を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機にて、白と黒紙上の塗膜表面をそれぞれ測色した。Hunter Lab色空間における、色差(ΔE)を算出した。
前記二酸化チタン粉体において、二酸化チタンの焼成温度が、600℃~700℃であることが好適である。
前記二酸化チタン粉体を表面処理することが好適である。
前記二酸化チタン粉体の製造方法において、二酸化チタンの焼成温度が、500℃~700℃であることが好適である。
(a)見かけ上の平均粒子径が100~600nm
(b)X線回折法で測定される平均結晶子径が1~25nm
(c)比表面積が40~200m2/g
棒状もしくは針状粒子が配向凝集した粒子表面に針状突起を有するルチル型二酸化チタンを焼成して得られるルチル型二酸化チタン粉体であって、見かけ上の平均粒子径が100~500nm、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m2/gであることが好適である。
母核に用いる二酸化チタンの結晶型は、結晶構造の違いから、アナターゼ型とルチル型がある。ここで本発明に用いる二酸化チタンの結晶型は、光触媒活性が低く、屈折率が高いため隠ぺい力が高いルチル型である必要がある。
本発明の二酸化チタン粉体は、母核に用いる二酸化チタンを焼成することによって、得られる。
焼成温度は焼成を行う装置によって一概には定義できないが、焼成前に存在する棒状もしくは針状粒子が配向凝集した一次粒子にあって、棒状もしくは針状粒子間に存在する空げきを減らし、かつ、棒状もしくは針状粒子同士が焼結して、X線回折法で測定される平均結晶子径が過度に増大しない温度条件であることが望ましい。これにより、十分な隠ぺい力と赤色光選択透過機能の両立が可能となる。
上記結晶子径が15nm未満の場合は、十分な隠ぺい力が得られないという理由で好ましくない。また、30nmを超える場合は、焼結が進行し、十分な赤色光選択透過機能が失われるという点で好ましくない。
実施例の説明に先立ち本発明で用いた試験の評価方法について説明する。
試料をX線回折装置(Geigerflex、理学電機社製)で測定し、シェラー式を適用することにより、平均結晶子径を算出した。
二酸化チタン粉体を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機(CM-2600、コニカミノルタ社製)にて、白と黒紙上の塗膜表面をそれぞれ測色した。Hunter Lab色空間における、色差(ΔE)を算出し、これを隠蔽力として評価した。なお、ΔEが高いほど、隠ぺい力が小さく、ΔEが低いほど、隠蔽力が高いことを示す。
ΔE=
(評価基準)
×:30<ΔE
△:25<ΔE≦30
○:20 <ΔE≦25
◎:ΔE≦20
赤色透過性とは、前述の隠ぺい力と同様に黒紙上での測定により得られる各波長での分光反射率のうち、波長が450nmにおける反射率と波長が650nmにおける反射率比(波長が450nmにおける反射率/650nmにおける平均反射率:R450/R650)を算出した。
R450/R650が高いほど、赤色透過性が高く、R450/R650が低いほどR450/R650が低いことを示す。
(評価基準)
×:R450/R650≦1.2
△:1.2<R450/R650≦1.3
○:1.3<R450/R650≦1.35
◎:1.35<R450/R650
◎◎:1.4<R450/R650
単位質量当たりの比表面積は、国際基準ISO 5794/1(付録D)に相当するThe Journal of the American Chemical Society、60巻、309頁、1938年2月に記載のBET(ブルナウアー-エメット-テラー)法として知られる窒素吸着法によって求めることができる。
本発明者らは、特許文献4の手法を用いて、針状粒子が配向凝集した粒子表面に針状突起を有する粒径の異なる二酸化チタンを2種合成した。
得られた酸化チタンそれぞれを、酸化チタンA(見掛け上の平均粒子径:0.2~0.3μm、針状突起形状)、酸化チタンB(見掛け上の平均粒子径:0.3μm、針状突起形状)と称する。
また、市販品(ST-730;チタン工業株式会社製)である粒子表面に針状突起を有する二酸化チタンを、酸化チタンC(見掛け上の平均粒子径:0.5μm、針状突起形状)と称する。
ルチル型顔料級酸化チタン(*1)および酸化チタンB(未焼成、焼成温度:700℃、900℃)の分光反射率を測定した結果を図1に示す。なお、測定は、二酸化チタン粉末を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機(CM-2600、コニカミノルタ社製)にて、黒紙上の塗膜表面をそれぞれ測色し、分光反射率を得た。
二酸化チタン100gを石英製のるつぼに入れ、マッフル炉にて各温度で1時間焼成を行うことにより、二酸化チタン粉末を得た。
特に、粒子径が大きい酸化チタンCについては、700℃で赤色透過性はほぼ失われていた。
また、二酸化チタンBについて、ロータリーキルンでの焼成温度変化による隠蔽力、赤色透過性を測定した。結果を、それぞれ図3、図4に示す。
一般的に回転式焼成炉は焼成効率が高く、静置で焼成するマッフル炉で焼成した場合よりも低い温度で同様の焼成状態を得ることができることが知られている。
得られた二酸化チタン粉体をイオン交換水に分散させ、加温したのち、ステアリン酸を3質量%吸着させ、その後脱水・洗浄・乾燥させることで表面処理二酸化チタンを得た。
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
◎:パネル10名中9名以上がシミ・そばかすがカバーされていると回答した。
○:パネル10名中7名以上9名未満がシミ・そばかすがカバーされていると回答した。
△:パネル10名中5名以上7名未満がシミ・そばかすがカバーされていると回答した。
×:パネル10名中5名未満がシミ・そばかすがカバーされていると回答した。
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
◎:パネル10名中9名以上が毛穴が目立たないと回答した。
○:パネル10名中7名以上9名未満が毛穴が目立たないと回答した。
△:パネル10名中5名以上7名未満が毛穴が目立たないと回答した。
×:パネル10名中5名未満が毛穴が目立たないと回答した。
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
◎:パネル10名中9名以上が自然な仕上がりであると回答した。
○:パネル10名中7名以上9名未満が自然な仕上がりであると回答した。
△:パネル10名中5名以上7名未満が自然な仕上がりであると回答した。
×:パネル10名中5名未満が自然な仕上がりであると回答した。
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
◎:パネル10名中9名以上が粉っぽくないと回答した。
○:パネル10名中7名以上9名未満が粉っぽくないと回答した。
△:パネル10名中5名以上7名未満が粉っぽくないと回答した。
×:パネル10名中5名未満が粉っぽくないと回答した。
一方、本発明にかかる二酸化チタン粉体を配合した場合、カバー力がありながら、毛穴も目立たず、自然な仕上がりも実現できた。さらに、配合量を増やしても、さらにカバー力がありながら、毛穴も目立たず、自然な仕上がりも実現できた。また、仕上がりの粉っぽさのなさもなかった。
(処方) (質量%)
ジメチコン処理タルク(*1) To 100
シリコーン処理セリサイト 5
合成フッ素金雲母(*2) 10
合成フッ素金雲母鉄 10
窒化ホウ素(*3) 3
ステアリン酸アルミ処理二酸化チタン(本発明) 10
ジメチコン処理微粒子二酸化チタン 6
ジメチコン処理ベンガラ 0.8
ジメチコン処理黄酸化鉄 3
ジメチコン処理黒酸化鉄 0.2
シリコーンエラストマー球状粉末 (*4) 5
シリコーンレジン被服シリコーンエラストマー球状粉末(*5) 5
ジメチコン(6cs) 3
メチルフェニルポリシロキサン 2
トリオクタノイン 1
ソルビタンセスキイソステアレート 1
オクチルメトキシシンナメート 3
オクトクリレン 2
防腐剤 0.1
酸化防止剤 0.01
香料 0.01
*2 トピー工業株式会社 PDM-9WA
*3 メルク株式会社 RonaFlair Boroneige SF-12
*4 東レダウコーニング トレフィルE506S
*5 信越化学工業株式会社 KSP100
〔製法〕
粉末・防腐剤と80℃に加温した油分・酸化防止剤・香料をヘンシェルミキサーにて混合後、パルペライザーにて粉砕した後、得られた粉末を樹脂中皿に乾式プレス成型し、両用パウダリーファンデーションを得た。
(処方) (質量%)
マグネシウムミリステート処理タルク To 100
マイカ 20
シリコーン処理合成フッ素金雲母 20
窒化ホウ素(*6) 5
オキシ塩化ビスマス(*7) 3
二酸化チタン(本発明) 8
酸化亜鉛 3
ステアリン酸処理微粒子二酸化チタン 6
球状シリコーン粉末(*8) 3
球状シリカ 3
球状ポリウレタン末(*9) 3
シリコーンレジン被服シリコーンエラストマー球状粉末(*5) 3
シリコーン処理ベンガラ 0.6
シリコーン処理黄酸化鉄 2
シリコーン処理黒酸化鉄 0.2
ジメチコン6cs 1
オクタン酸セチル 1
オクチルメトキシシンナメート 2
防腐剤 0.2
酸化防止剤 0.05
香料 0.05
*7 メルク株式会社 RonaFlair LF-2000
*8 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 トスパール145A
*9 東色ピグメント株式会社 プラスティックパウダーD-400
粉末・防腐剤と80℃に加温した油分・酸化防止剤・香料をヘンシェルミキサーにて混合後、パルペライザーにて粉砕し、ルース状ファンデーションを得た。
(処方) (質量%)
油相
デカメチルシクロペンタシロキサン 15
ジメチコン(1.5cs) 10
メチルフェニルポリシロキサン 3
トリオクタノイン 2
オクチルメトキシシンナメート 5
ポリオキシアルキレン変性シリコーン(*10) 2
ポリオキシアルキレン・アルキル共変性シリコーン(*11) 2
有機変性ヘクトライト 1
粉末
オクチルトリエトキシシラン処理二酸化チタン(本発明) 10
ステアリン酸処理微粒子二酸化チタン 5
ジメチコン処理ベンガラ 0.4
ジメチコン処理黄酸化鉄 1.5
ジメチコン処理黒酸化鉄 0.1
球状ナイロン末 5
水相
イオン交換水 To 100
グリセリン 5
エタノール 3
1,3-ブチレングリコール 5
フェノキシエタノール 0.5
*11信越化学工業株式会社 KF6038
油相部に有機変性ヘクトライトを加えて、ホモジナイザーで1分間混合後、粉末部を添加し、さらにホモジナイザーにて1分混合した後、溶解させた水相部を添加して、さらにホモジナイザーで1分間混合・乳化させることで油中水型乳化ファンデーションを得た。
Claims (9)
- 粒子表面に針状突起を有するルチル型二酸化チタンを焼成して得られるルチル型二酸化チタン粉体であって、見かけ上の平均粒子径が100~500nm、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m2/gであることを特徴とする二酸化チタン粉体。
- X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m2/gであって、450nmの反射率の値が、650nmの反射率の値の1.3倍以上であり、色差(ΔE)が20以下であることを特徴とするルチル型二酸化チタン粉体。
なお、色差(ΔE)は、二酸化チタン粉体を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機にて、白と黒紙上の塗膜表面をそれぞれ測色した。Hunter Lab色空間における、色差(ΔE)を算出した。 - 請求項1又は2に記載の二酸化チタン粉体において、二酸化チタンの焼成温度が、500℃~700℃であることを特徴とする二酸化チタン粉体。
- 請求項3に記載の二酸化チタン粉体において、二酸化チタンの焼成温度が、600℃~700℃であることを特徴とする二酸化チタン粉体。
- 請求項1又は3又は4に記載の二酸化チタン粉体において、450nmの反射率の値が、650nmの反射率の値の1.3倍以上であり、長波長側の光をより透過しやすいことを特徴とする二酸化チタン粉体。
- 請求項1~5のいずれかに記載の二酸化チタン粉体を表面処理することを特徴とする二酸化チタン粉体。
- 請求項1~6に記載の二酸化チタン粉体を配合することを特徴とする化粧料。
- 見掛け上の平均粒子径が100~500nmである粒子表面に針状突起を有するルチル型二酸化チタンを焼成する工程を含む二酸化チタン粉体の製造方法であって、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m2/gであることを特徴とする二酸化チタン粉体の製造方法。
- 請求項8に記載の二酸化チタン粉体の製造方法において、二酸化チタンの焼成温度が、500℃~700℃であることを特徴とする二酸化チタン粉体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16879022.8A EP3395764A4 (en) | 2015-12-25 | 2016-12-22 | TITANIUM DIOXIDE POWDER AND FORMULATED COSMETICS THEREFOR |
CN201680076105.2A CN108473336B (zh) | 2015-12-25 | 2016-12-22 | 二氧化钛粉体和配合有其的化妆品 |
US16/065,965 US10703913B2 (en) | 2015-12-25 | 2016-12-22 | Titanium dioxide powder and cosmetic formulated therewith |
KR1020187020991A KR102635958B1 (ko) | 2015-12-25 | 2016-12-22 | 이산화티탄 분체 및 이를 배합한 화장료 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-254315 | 2015-12-25 | ||
JP2015254315 | 2015-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017111136A1 true WO2017111136A1 (ja) | 2017-06-29 |
Family
ID=59090656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/088579 WO2017111136A1 (ja) | 2015-12-25 | 2016-12-22 | 二酸化チタン粉体およびそれを配合した化粧料 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10703913B2 (ja) |
EP (1) | EP3395764A4 (ja) |
JP (1) | JP6258462B2 (ja) |
KR (1) | KR102635958B1 (ja) |
CN (1) | CN108473336B (ja) |
TW (1) | TWI720098B (ja) |
WO (1) | WO2017111136A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7084112B2 (ja) | 2017-06-26 | 2022-06-14 | 株式会社 資生堂 | 二酸化チタン粉体およびそれを配合した粉末化粧料 |
JP7010607B2 (ja) * | 2017-06-26 | 2022-01-26 | 株式会社 資生堂 | 固形粉末化粧料 |
JP7013967B2 (ja) * | 2018-03-16 | 2022-02-01 | 株式会社リコー | インク用白色顔料分散体、インク組成物、画像形成方法および画像形成装置 |
JP7098384B2 (ja) * | 2018-03-30 | 2022-07-11 | 株式会社コーセー | 粉末化粧料 |
JP7098383B2 (ja) * | 2018-03-30 | 2022-07-11 | 株式会社コーセー | 油性固形化粧料 |
GB201806041D0 (en) * | 2018-04-12 | 2018-05-30 | Croda Int Plc | Titanium dioxide particles |
EP3798191B1 (en) | 2018-05-23 | 2023-06-14 | Kose Corporation | Novel titanium oxide powder and cosmetic formulated therewith |
JP2021104933A (ja) * | 2019-12-13 | 2021-07-26 | ロレアル | 粉末化粧用組成物 |
KR102336189B1 (ko) * | 2019-12-18 | 2021-12-07 | 주식회사 엘지생활건강 | 화장품 제조장치 및 화장품 제조장치의 토출 정보 결정 방법 |
JP7254319B2 (ja) * | 2020-03-27 | 2023-04-10 | 日本碍子株式会社 | 多孔質ルチル型チタニア粒子の製法 |
CN116194072A (zh) * | 2020-07-29 | 2023-05-30 | 联合利华知识产权控股有限公司 | 用于改善皮肤外观的化妆面膜 |
JP2022051225A (ja) | 2020-09-18 | 2022-03-31 | チタン工業株式会社 | カルシウムチタン複合酸化物を主成分とする粒子からなる顔料及びその使用 |
JP2022086603A (ja) | 2020-11-30 | 2022-06-09 | チタン工業株式会社 | カルシウムチタン複合酸化物を主成分とする粒子からなる顔料及びその製造方法並びにその使用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214030A (ja) * | 1990-03-01 | 1992-08-05 | Kemira Oy | 二酸化チタンの製法 |
JPH07138021A (ja) * | 1993-11-10 | 1995-05-30 | Ishihara Sangyo Kaisha Ltd | 樹枝状又はヒトデ状微粒子二酸化チタン及びその製造方法 |
JPH10245228A (ja) * | 1997-02-28 | 1998-09-14 | Titan Kogyo Kk | 扇状又は盤状酸化チタン及びその製造方法、並びにその用途 |
JP2000191325A (ja) | 1998-12-25 | 2000-07-11 | Tayca Corp | 二酸化チタンの小球状粒子から形成される球状二酸化チタン集合体およびその製造方法 |
JP2006265134A (ja) | 2005-03-23 | 2006-10-05 | Shiseido Co Ltd | 肌化粧料用色材組成物、それを用いたファンデーション、化粧方法 |
JP2010024189A (ja) | 2008-07-22 | 2010-02-04 | Shiseido Co Ltd | 唇用化粧料 |
JP2010173863A (ja) | 2009-01-27 | 2010-08-12 | Titan Kogyo Kk | 藁束状ルチル型酸化チタン、それを使用した化粧料及びトナー用外添剤 |
JP2010536689A (ja) * | 2007-08-16 | 2010-12-02 | サチトレベン ピグメンツ オーワイ | 分散良好な微結晶二酸化チタン生成物の調製方法、その生成物、およびその使用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950604B2 (ja) * | 1981-11-27 | 1984-12-10 | 三菱マテリアル株式会社 | 酸化チタン粉末の製造法 |
JP3053667B2 (ja) * | 1991-06-10 | 2000-06-19 | 株式会社資生堂 | ホトクロミック性紫外線遮蔽粉体及びその製造方法、皮膚外用剤 |
DE69411662T2 (de) | 1993-10-22 | 1998-12-24 | Ishihara Sangyo Kaisha | Dendrit- oder sternförmige Titandioxid-Mikropartikel und Verfahren zur seiner Herstellung |
JP5642924B2 (ja) | 2008-07-18 | 2014-12-17 | 御木本製薬株式会社 | 皮膚バリア機能回復促進用水中油型乳化組成物 |
-
2016
- 2016-12-22 WO PCT/JP2016/088579 patent/WO2017111136A1/ja active Application Filing
- 2016-12-22 EP EP16879022.8A patent/EP3395764A4/en active Pending
- 2016-12-22 JP JP2016250069A patent/JP6258462B2/ja active Active
- 2016-12-22 KR KR1020187020991A patent/KR102635958B1/ko active IP Right Grant
- 2016-12-22 US US16/065,965 patent/US10703913B2/en active Active
- 2016-12-22 CN CN201680076105.2A patent/CN108473336B/zh active Active
- 2016-12-23 TW TW105142971A patent/TWI720098B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04214030A (ja) * | 1990-03-01 | 1992-08-05 | Kemira Oy | 二酸化チタンの製法 |
JPH07138021A (ja) * | 1993-11-10 | 1995-05-30 | Ishihara Sangyo Kaisha Ltd | 樹枝状又はヒトデ状微粒子二酸化チタン及びその製造方法 |
JPH10245228A (ja) * | 1997-02-28 | 1998-09-14 | Titan Kogyo Kk | 扇状又は盤状酸化チタン及びその製造方法、並びにその用途 |
JP2000191325A (ja) | 1998-12-25 | 2000-07-11 | Tayca Corp | 二酸化チタンの小球状粒子から形成される球状二酸化チタン集合体およびその製造方法 |
JP2006265134A (ja) | 2005-03-23 | 2006-10-05 | Shiseido Co Ltd | 肌化粧料用色材組成物、それを用いたファンデーション、化粧方法 |
JP2010536689A (ja) * | 2007-08-16 | 2010-12-02 | サチトレベン ピグメンツ オーワイ | 分散良好な微結晶二酸化チタン生成物の調製方法、その生成物、およびその使用 |
JP2010024189A (ja) | 2008-07-22 | 2010-02-04 | Shiseido Co Ltd | 唇用化粧料 |
JP2010173863A (ja) | 2009-01-27 | 2010-08-12 | Titan Kogyo Kk | 藁束状ルチル型酸化チタン、それを使用した化粧料及びトナー用外添剤 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3395764A4 |
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, February 1938 (1938-02-01), pages 309 |
Also Published As
Publication number | Publication date |
---|---|
US20180371257A1 (en) | 2018-12-27 |
JP6258462B2 (ja) | 2018-01-10 |
EP3395764A4 (en) | 2019-08-14 |
KR20180097685A (ko) | 2018-08-31 |
CN108473336A (zh) | 2018-08-31 |
US10703913B2 (en) | 2020-07-07 |
KR102635958B1 (ko) | 2024-02-08 |
EP3395764A1 (en) | 2018-10-31 |
CN108473336B (zh) | 2021-01-26 |
TWI720098B (zh) | 2021-03-01 |
TW201729793A (zh) | 2017-09-01 |
JP2017119622A (ja) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6258462B2 (ja) | 二酸化チタン粉体およびそれを配合した化粧料 | |
US8986742B2 (en) | Rutile-type titanium dioxide and cosmetics using the same | |
JP5096383B2 (ja) | 藁束状ルチル型酸化チタン、それを使用した化粧料及びトナー用外添剤 | |
JP4684970B2 (ja) | ルチル型酸化チタン凝集粒子およびそれを配合した化粧料 | |
TWI815892B (zh) | 新穎氧化鈦粉體以及調配新穎氧化鈦粉體之化妝料、皮膚外用劑、以及氧化鈦粉體之使用方法 | |
JP5374248B2 (ja) | 束状に凝集したルチル型酸化チタンならびにそれを使用した化粧料 | |
JPH10182397A (ja) | 紫外線防御化粧料 | |
EP3902608B1 (en) | A novel process and cosmetic composition for gloss and blur | |
WO2015072540A1 (ja) | テアニンを用いた表面処理粉体及びそれを含有する化粧料 | |
US12065571B2 (en) | Pigment composed of particles containing calcium-titanium composite oxide as main component, and use thereof | |
JP3492966B2 (ja) | 化粧料 | |
JP3677610B2 (ja) | 酸化鉄含有二酸化チタン及びこれを含有する組成物 | |
JP5511565B2 (ja) | 束状あるいは藁束状ルチル型酸化チタンを被覆した複合粉末及びそれを使用した化粧料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16879022 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187020991 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016879022 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016879022 Country of ref document: EP Effective date: 20180725 |