WO2017110306A1 - ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法 - Google Patents

ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法 Download PDF

Info

Publication number
WO2017110306A1
WO2017110306A1 PCT/JP2016/083729 JP2016083729W WO2017110306A1 WO 2017110306 A1 WO2017110306 A1 WO 2017110306A1 JP 2016083729 W JP2016083729 W JP 2016083729W WO 2017110306 A1 WO2017110306 A1 WO 2017110306A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
battery separator
sheet
longitudinal stretching
microporous membrane
Prior art date
Application number
PCT/JP2016/083729
Other languages
English (en)
French (fr)
Inventor
水野 直樹
まさみ 菅田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201680074097.8A priority Critical patent/CN108370014B/zh
Priority to KR1020207008014A priority patent/KR102177921B1/ko
Priority to KR1020207008013A priority patent/KR102101688B1/ko
Priority to KR1020187016796A priority patent/KR20180096618A/ko
Priority to JP2017557793A priority patent/JP6645516B2/ja
Priority to US16/065,374 priority patent/US10978721B2/en
Publication of WO2017110306A1 publication Critical patent/WO2017110306A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/469Separators, membranes or diaphragms characterised by their shape tubular or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is a battery separator comprising a porous layer having electrode adhesion and a polyolefin microporous membrane, and is suitable for a lithium ion secondary battery having a high winding density and a high volume energy density when used as a wound body. It is a battery separator.
  • Thermoplastic resin microporous membranes are widely used as separation membranes, permselective membranes, separation membranes and the like.
  • battery separators used in lithium ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries and polymer batteries, separators for electric double layer capacitors, reverse osmosis filtration membranes, ultrafiltration membranes, microfiltration membranes, etc. Filters, moisture permeable waterproof clothing, medical materials, etc.
  • a separator for lithium ion secondary battery it has ion permeability by impregnation with electrolyte, has excellent electrical insulation, interrupts current at a temperature of about 120 to 150 ° C when the temperature inside the battery is abnormally high, and excessively
  • a polyethylene microporous membrane having a pore closing function that suppresses the temperature rise is suitably used.
  • lithium ion battery separators are deeply involved in battery characteristics, battery productivity, and battery safety, and are required to have heat resistance, electrode adhesion, permeability, melt breakage characteristics (meltdown), and the like. So far, for example, it has been studied to provide heat resistance and adhesiveness to a battery separator by providing a porous layer on a polyolefin microporous film.
  • resin used for the porous layer heat-resistant polyamideimide resin, polyimide resin, polyamide resin, and fluorine resin having adhesiveness are preferably used.
  • a water-soluble or water-dispersible binder capable of laminating a porous layer by a relatively simple process has also been used.
  • the porous layer as used in this specification means the layer obtained by the wet coating method.
  • Example 1 of Patent Document 1 a coating solution prepared by dissolving a vinylidene fluoride-hexafluoropropylene copolymer in a mixed solvent of dimethylacetamide / tripropylene glycol was applied to both sides of a polyethylene microporous film, and then coagulated. It is made to enter the tank, washed with water and dried to obtain a non-aqueous secondary battery separator.
  • Example 1 of Patent Document 2 a coating solution in which VdF / HFP / CTFE is dissolved in a mixed solvent of DMAc / TPG is placed in a tank in which two Meyer bars are arranged in parallel at the bottom to form a polypropylene microporous membrane.
  • the coating liquid is applied to both sides by passing between the two Mayer bars by entering the tank at a conveying speed of 3 m / min from the upper part of the tank, entering the coagulation tank, washing with water and drying, and combined. A porous membrane is obtained.
  • lithium ion secondary batteries have been widely examined for use in lawn mowers, mowers, small ships, as well as electric vehicles, hybrid vehicles, and electric motorcycles. With such widespread use, lithium ion secondary batteries are required to have higher capacities and lower costs. For this reason, it is expected that battery separators will be made longer to 1000 m or more in order to reduce manufacturing costs. By increasing the length of the separator, it is possible to reduce the switching time of the battery separator roll in the slit process or the battery assembly process, and to obtain a battery separator for reducing material loss.
  • the average thickness needs to be 1.5 to 2 times the necessary minimum thickness, which is a high cost factor.
  • the increase in the thickness of the separator reduces the number of windings of the electrode winding body, which becomes a factor that hinders the increase in battery capacity.
  • the lengthening of the battery separator has an adverse effect on the winding shape of the winding body, for example, the winding is liable to occur due to an increase in the diameter of the winding body. This tendency tends to become more prominent as the number of wound bodies increases, and it is expected that the number of wound bodies will further increase as the separator becomes thinner.
  • the present invention aims to obtain a battery separator suitable for increasing the battery capacity, in which a porous layer having a uniform thickness is provided on the polyolefin microporous film.
  • the porous layer of uniform thickness as used in this specification means the porous layer whose fluctuation range (R) of the thickness of the porous layer in a length direction is 1.0 micrometer or less.
  • the present invention has been made not only by intensive research on coating technology, but also by pursuing the suitability for coating of polyolefin microporous membranes.
  • the present invention has the following configuration. (1) A porous layer containing a fluororesin and inorganic particles and having an average thickness T (ave) of 1 to 5 ⁇ m is provided on at least one surface of a polyolefin microporous membrane whose F25 value fluctuation range in the length direction is 1 MPa or less. Battery separator.
  • the F25 value represents a value obtained by dividing the load value when the test piece is stretched 25% by the tensile tester by the cross-sectional area of the test piece.
  • the thickness fluctuation width (R) in the length direction of the porous layer is preferably 1.0 ⁇ m or less.
  • the fluorine-based resin contains at least one selected from polyvinylidene fluoride or a polyvinylidene fluoride-hexafluoropropylene copolymer.
  • the length of the battery separator is 2000 m or more.
  • the length of the battery separator is preferably 3000 mm or more.
  • a method for producing a battery separator (A) A step of melt-kneading a polyolefin resin and a molding solvent to prepare a polyolefin resin solution (b) A step of extruding the polyolefin resin solution into a sheet form from an extruder and cooling to form an unstretched gel-like sheet , (C) The step of passing the unstretched gel-like sheet between at least three pairs of longitudinally stretched roll groups and stretching in the longitudinal direction by the peripheral speed of the roll group increasing stepwise to obtain a longitudinally stretched gel-like sheet (
  • a longitudinal stretching roll and a nip roll coated with a heat-resistant rubber in parallel with the longitudinal stretching roll are used as a pair of longitudinal stretching rolls, and the pressure at which the nip roll contacts the longitudinal stretching roll is 0.05 MPa or more and 0.5 MPa or less.
  • Step of heat-treating the dried sheet to obtain a polyolefin microporous membrane (g) A coating containing a fluororesin and inorganic particles on at least one surface of the polyolefin microporous membrane The manufacturing method of the separator for batteries including the process which coats a process liquid with the roll coat method using the coating roll whose shake accuracy is 10 micrometers / (PHI) 100 mm or less, and dries.
  • the transport speed of the battery separator described in (1) to (5) above or the battery separator obtained by the battery separator manufacturing method described in (6) or (7) above is 50 m / min or more.
  • a polyolefin microporous membrane and a porous layer having a uniform thickness containing a fluororesin and inorganic particles are provided on at least one surface of the polyolefin microporous membrane, which can be wound at high density and has excellent electrode adhesion.
  • a battery separator suitable for increasing the capacity of a battery having a property can be obtained.
  • the polyolefin microporous membrane of the present invention has a length of 1000 m or more, and the fluctuation range of the F25 value in the length direction is 1 MPa or less (where F25 value is the load when the test piece is stretched by 25% using a tensile tester) The value is obtained by dividing the value by the cross-sectional area of the test piece.).
  • the contact pressure at the tangent line between the polyolefin microporous film and the coating roll (hereinafter abbreviated as coating tangent) is set by setting the fluctuation range of the F25 value in the length direction of the polyolefin microporous film to 1 MPa or less.
  • the fluctuation range of the F25 value in the length direction exceeds 1 MPa, the winding hardness of the wound body of the microporous film can vary when winding in the slit process or coating process, and bending or winding deviation is likely to occur. Appearance deteriorates. For example, this becomes prominent when processing at a high speed such that the conveyance speed at the time of winding onto the winding core is 50 m / min or more.
  • the polyolefin microporous membrane used in the present invention has a fluctuation range of F25 value in the length direction of 1 MPa or less, preferably 0.8 MPa or less, more preferably 0.6 MPa or less, and further preferably 0.4 MPa or less.
  • the fluctuation range of the F25 value in the length direction of the polyethylene microporous membrane can be controlled by highly controlling the longitudinal stretching step and the lateral stretching step.
  • the polyolefin resin constituting the polyolefin microporous membrane is preferably polyethylene or polypropylene. It may be a single substance or a mixture of two or more different polyolefin resins, for example, a mixture of polyethylene and polypropylene, or a copolymer of different olefins. Among these, polyethylene is particularly preferable from the viewpoint of hole closing performance. Furthermore, from the viewpoint of pore closing performance, polyethylene preferably has a melting point (softening point) of 70 to 150 ° C.
  • polyethylene will be described in detail as an example of the polyolefin resin used in the present invention.
  • polyethylene include ultra high molecular weight polyethylene, high density polyethylene, medium density polyethylene, and low density polyethylene.
  • the polymerization catalyst is not particularly limited, and a Ziegler-Natta catalyst, a Philips catalyst, a metallocene catalyst, or the like can be used. These polyethylenes may be not only ethylene homopolymers but also copolymers containing small amounts of other ⁇ -olefins.
  • ⁇ -olefins other than ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, (meth) acrylic acid, esters of (meth) acrylic acid, styrene, etc. Is preferred.
  • the polyethylene may be a single material, but is preferably a polyethylene mixture composed of two or more types of polyethylene.
  • the polyethylene mixture a mixture of two or more types of ultrahigh molecular weight polyethylene having different weight average molecular weights (Mw), a mixture of high density polyethylene, a mixture of medium density polyethylene, or a mixture of low density polyethylene may be used. You may use the mixture of 2 or more types of polyethylene chosen from the group which consists of high molecular weight polyethylene, high density polyethylene, medium density polyethylene, and low density polyethylene.
  • the polyethylene mixture is preferably a mixture comprising ultra high molecular weight polyethylene having an Mw of 5 ⁇ 10 5 or more and polyethylene having an Mw of 1 ⁇ 10 4 to less than 5 ⁇ 10 5 .
  • the ultra high molecular weight polyethylene content in the mixture is preferably 1 to 40% by weight from the viewpoint of tensile strength.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of polyethylene is preferably in the range of 5 to 200 from the viewpoint of mechanical strength.
  • a method for producing a polyethylene microporous membrane As a method for producing a polyethylene microporous membrane, there are a dry method (a method using a crystal nucleating agent or particles without using a molding solvent (also referred to as a stretch-opening method)) and a wet method (phase separation method). In addition, the wet method is preferable from the viewpoints of uniformizing the fine holes and planarity.
  • a manufacturing method by a wet method for example, polyethylene and a molding solvent are heated and melt-kneaded, the obtained resin solution is extruded from a die, and cooled to form an unstretched gel sheet, and the obtained unstretched Examples include a method of obtaining a microporous film by stretching the gel-like sheet in at least a uniaxial direction, removing the molding solvent, and drying.
  • an unstretched gel-like sheet is formed by a roll method, a tenter method, or a combination of these methods in the length direction (also referred to as “MD: Machine Direction” or “longitudinal direction”) and the width direction (“TD: Transverse Direction”) or
  • the film is stretched at a predetermined magnification in two directions (also referred to as “lateral direction”).
  • stretching is preferably a sequential biaxial stretching method in which the longitudinal direction and the transverse direction are sequentially performed.
  • the simultaneous biaxial stretching method is a stretching method in which the clip is simultaneously expanded in the longitudinal direction and the lateral direction after being fixed with clips that grasp both ends of the unstretched gel-like sheet.
  • Such a simultaneous biaxial stretching method is not preferable because the gap between the clips increases with the draw ratio, and the quality of the sheet in the length direction varies, resulting in an increase in the fluctuation range of the F25 value in the length direction. .
  • the polyethylene microporous membrane may be a single-layer membrane or a layer structure composed of two or more layers having different polyolefin molecular weights or average pore diameters.
  • a layer structure composed of two or more layers it is preferable that at least one outermost polyethylene resin satisfies the above-mentioned molecular weight and molecular weight distribution of the polyolefin.
  • each polyethylene constituting the a layer and the b layer is heated and melt-kneaded with a molding solvent, and the obtained resin solutions are fed from respective extruders.
  • Either a method of supplying to one die and integrating and co-extrusion or a method of heat-sealing by overlapping the gel sheets constituting each layer can be produced.
  • the coextrusion method is preferred because it is easy to obtain the adhesive strength between layers, and it is easy to form communication holes between layers, so that high permeability is easily maintained and productivity is excellent.
  • melt-kneading method for example, a method using a twin-screw extruder described in Japanese Patent Publication No. 06-104736 and Japanese Patent No. 3347835 can be used. Since the melt-kneading method is well-known, description is abbreviate
  • the molding solvent is not particularly limited as long as it can sufficiently dissolve polyethylene.
  • the polyethylene resin concentration in the polyethylene resin solution is preferably 25 to 40 parts by weight, with the total of the polyethylene resin and the molding solvent being 100 parts by weight.
  • the polyethylene resin concentration is in the above preferred range, swell and neck-in can be prevented at the die outlet when the polyethylene resin solution is extruded, and the moldability and self-supporting property of the gel-like sheet are maintained.
  • (B) Step of forming unstretched gel sheet the polyethylene resin solution is fed directly from the extruder or through another extruder to the die, extruded into a sheet, cooled, and unstretched gel A shaped sheet is formed.
  • a plurality of polyolefin solutions having the same or different compositions may be fed from an extruder to a single die, where they are laminated in layers and extruded into sheets.
  • the extrusion method may be either a flat die method or an inflation method.
  • the extrusion temperature is preferably 140 to 250 ° C.
  • the extrusion speed is preferably 0.2 to 15 m / min.
  • the film thickness can be adjusted by adjusting each extrusion amount of the polyolefin solution.
  • the extrusion method for example, methods disclosed in Japanese Patent Publication No. 06-104736 and Japanese Patent No. 3347835 can be used.
  • a gel-like sheet is formed by cooling the polyethylene resin solution extruded into a sheet form.
  • a cooling method a method of contacting with a cooling medium such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used, but it is preferable that the cooling is performed by contacting with a roll cooled with a cooling medium.
  • an unstretched gel-like sheet can be formed by bringing a polyethylene resin solution extruded in a sheet shape into contact with a rotating cooling roll set at a surface temperature of 20 ° C. to 40 ° C. with a refrigerant.
  • the extruded polyethylene resin solution is preferably cooled to 25 ° C. or lower.
  • (C) Longitudinal stretching step At least three pairs of longitudinal stretching in which the peripheral speed between each roll is increased stepwise after the unstretched gel sheet is heated to a predetermined temperature via a plurality of preheated rolls. A roll group is passed and stretched in the longitudinal direction to obtain a longitudinally stretched gel sheet.
  • the longitudinal stretching step is preferably divided into two or more stretches rather than one stretch to obtain a desired stretch ratio. That is, it is important to arrange three or more longitudinal stretching rolls.
  • the present invention it is important to stretch the unstretched gel sheet in the length direction by gradually increasing the peripheral speed of each stretching roll. Furthermore, it is preferable to increase the peripheral speed ratio between adjacent stretching rolls in a stepwise manner. That is, the circumferential speed ratio of the first longitudinal stretching roll and the second longitudinal stretching roll, the circumferential speed ratio of the second and third longitudinal stretching rolls, and the circumferential speed ratio of the third and fourth longitudinal stretching rolls in order.
  • the peripheral speed ratio between adjacent stretching rolls in a stepwise manner. That is, the circumferential speed ratio of the first longitudinal stretching roll and the second longitudinal stretching roll, the circumferential speed ratio of the second and third longitudinal stretching rolls, and the circumferential speed ratio of the third and fourth longitudinal stretching rolls in order.
  • the squeezing effect means that the forming solvent can be squeezed out of the gel-like sheet to prevent slipping with the longitudinal stretching roll and to be stably stretched.
  • the upper limit of the peripheral speed ratio of the drawing roll in the first-stage longitudinal drawing step is preferably 1.5 or less, more preferably 1.3 or less, and still more preferably 1.2 or less.
  • the lower limit is preferably 1.1.
  • the difference in the peripheral speed ratio between adjacent stretching rolls is preferably 0.5 or less, more preferably 0.4 or less, and still more preferably 0.3 or less.
  • Adjacent stretching rolls are preferably arranged at an interval such that the distance from the gel sheet to the next stretching roll is 150 mm to 500 mm. If the distance is less than 150 mm, the fluctuation range of F25 may be large, and if it exceeds 500 mm, the temperature of the gel-like sheet during stretching may be lowered, and stretching spots may be generated.
  • the temperature of the gel sheet in the longitudinal stretching step is preferably the melting point of the polyolefin resin + 10 ° C. or less.
  • the draw ratio is preferably 9 times or more, more preferably 16 to 400 times in terms of surface magnification from the viewpoint of the elasticity and strength of the polyolefin microporous membrane.
  • the surface temperature of the longitudinal stretching roll controls the fluctuation range of the surface temperature within ⁇ 2 ° C. in the effective width of the stretching roll for each roll (the width through which the sheet being stretched passes).
  • the surface temperature of the longitudinal stretching roll can be measured, for example, with an infrared radiation thermometer.
  • the longitudinal stretching roll is preferably a metal roll that has been subjected to hard chrome plating with a surface roughness of 0.3S to 5.0S.
  • a surface roughness of 0.3S to 5.0S.
  • slippage of the gel-like sheet in the longitudinal stretching process is suppressed using a nip roll. If only the contact area between the longitudinal stretching roll and the gel-like sheet is increased without using the nip roll, a sufficient slip suppression effect cannot be obtained, and the fluctuation range of the F25 value may increase.
  • it is attempted to suppress sheet slippage with a single nip roll it is necessary to increase the pressure at which the nip roll contacts the drawing roll (also referred to as nip pressure), which may crush the pores of the resulting polyethylene microporous film. is there. Therefore, it is important to use three or more nip rolls to relatively reduce the nip pressure. A plurality of nip rolls may be used for one longitudinal stretching roll.
  • the nip pressure of each nip roll is 0.05 MPa or more and 0.5 Mpa or less. If the nip pressure of the nip roll exceeds 0.5 MPa, the pores of the obtained polyethylene microporous membrane may be crushed. If the pressure is less than 0.05 MPa, the nip pressure is not sufficient, the slip suppression effect cannot be obtained, and the squeezing effect of the molding solvent is hardly obtained.
  • the lower limit of the nip pressure of the nip roll is preferably 0.1 MPa, more preferably 0.2 MPa, and the upper limit is preferably 0.5 MPa, more preferably 0.4 MPa.
  • the nip roll needs to be covered with heat resistant rubber.
  • the forming solvent bleeds out from the gel-like sheet by pressure due to heat or tension.
  • the bleed out in the longitudinal stretching process immediately after extrusion is remarkable.
  • the sheet is conveyed and stretched while the bleed-out forming solvent is present at the boundary between the sheet and the roll surface, and the sheet becomes slippery.
  • a nip roll coated with a heat-resistant rubber is arranged so as to be in contact with the longitudinal stretching roll in parallel, and by passing through an unstretched gel-like sheet, it can be stretched while squeezing out the molding solvent from the gel-like sheet being stretched, As a result, slippage can be suppressed.
  • the nip roll is preferably a roll in which a metal roll having a diameter of 100 mm to 300 mm is coated with a heat resistant rubber having a thickness of 3 to 20 mm.
  • a so-called rubber roll in which the volume of the heat-resistant rubber portion occupies 80% or more is not preferable because it is easy to bend and it is difficult to apply a uniform pressure in the width direction.
  • the scraping means is not particularly limited, but can be a doctor blade, blown with compressed air, sucked, or a combination of these methods.
  • the method of scraping with a doctor blade is preferable because it can be carried out relatively easily.
  • the doctor blade is placed on the longitudinal stretching roll so as to be parallel to the width direction of the longitudinal stretching roll, and the molding solvent is not visible on the surface of the stretching roll immediately after passing through the doctor blade until the gel-like sheet being stretched contacts.
  • a method of scraping to the extent is preferred.
  • One doctor blade or a plurality of doctor blades may be used.
  • the scraping means may be installed on either the longitudinal stretching roll or the nip roll, or may be installed on both.
  • the material of the doctor blade is not particularly limited as long as it is resistant to the forming solvent, but is preferably made of resin or rubber rather than metal. In the case of metal, there is a risk of scratching the stretching roll.
  • the resin doctor blade include polyester, polyacetal, and polyethylene.
  • (D) Transverse stretching step The lateral stretching step will be described.
  • the transverse stretching step after fixing both ends of the longitudinally stretched gel-like sheet using clips, the clip is laterally expanded in the tenter and the longitudinally stretched gel-like sheet is stretched in the transverse direction to form a biaxially stretched gel.
  • a shaped sheet is obtained.
  • the distance between the clips in the sheet traveling direction is preferably maintained at 50 mm or less from the tenter entrance to the exit, more preferably 25 mm or less, and further preferably 10 mm or less.
  • the fluctuation range of the F25 value in the width direction can be suppressed.
  • the tenter In the transverse stretching process or heat treatment process, it is preferable to divide the tenter into 10 to 30 zones and control the temperature independently in each zone in order to suppress the influence of a rapid temperature change.
  • the temperature of each zone is raised by hot air stepwise in the sheet traveling direction, and a sudden temperature change occurs between the zones in the heat treatment process. It is preferable not to do so.
  • Cleaning solvents include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as ethane trifluoride, and ethers such as diethyl ether and dioxane. Volatile ones can be used. These cleaning solvents are appropriately selected according to the molding solvent and used alone or in combination.
  • the cleaning method can be performed by a method of immersing and extracting in a cleaning solvent, a method of showering the cleaning solvent, a method of sucking the cleaning solvent from the opposite side of the sheet, or a method using a combination thereof. Cleaning as described above is performed until the residual solvent of the sheet is less than 1% by weight. Then, although a sheet
  • Step of heat-treating the dried sheet to obtain a polyolefin microporous membrane Heat-treat the dried sheet to obtain a polyethylene microporous membrane.
  • the heat treatment is preferably performed at a temperature in the range of 90 to 150 ° C. from the viewpoint of heat shrinkage and air resistance.
  • the residence time of the heat treatment step is not particularly limited, it is usually preferably 1 second or longer and 10 minutes or shorter, more preferably 3 seconds or longer and 2 minutes or shorter.
  • any of a tenter method, a roll method, a rolling method, and a free method can be adopted.
  • the heat treatment step it is preferable to shrink in at least one of the length direction and the width direction while fixing both the length direction and the width direction.
  • the residual strain of the polyolefin microporous membrane can be removed by the heat treatment step.
  • the shrinkage rate in the length direction or width direction in the heat treatment step is preferably 0.01 to 50%, more preferably 3 to 20% from the viewpoint of the heat shrinkage rate and the air permeation resistance.
  • it may be reheated and restretched to improve the mechanical strength.
  • the re-stretching process may be either a stretching roll type or a tenter type.
  • the fluctuation range of the F25 value in the length direction of the polyethylene microporous membrane by highly controlling the longitudinal stretching and the lateral stretching as described above. This not only facilitates reducing the variation width of the coating thickness in the porous layer laminating step described later, but also provides a battery separator wound body having a good winding shape. Furthermore, even if the fluctuation range of the F25 value is 1 MPa or less, the meandering during the conveyance in the slit process or the coating process is performed even when the conveyance speed at the time of winding by the rewinder exceeds 50 m / min. Can be suppressed.
  • the width of the polyolefin microporous membrane is not particularly limited, but the lower limit is preferably 500 mm, more preferably 600 mm, still more preferably 1000 mm, and the upper limit is preferably 4000 mm, more preferably 3000 mm, still more preferably 2000 mm.
  • the thickness of the polyolefin microporous film is in the above range, it is suitable for producing a high-capacity battery and is not easily bent by its own weight.
  • the lower limit of the length of the polyolefin microporous membrane is preferably 1000 m, more preferably 2000 m, and still more preferably 3000 m.
  • the upper limit is not particularly defined, but is preferably 10,000 m, more preferably 8000 m, and still more preferably 7000 m.
  • the thickness of the polyolefin microporous membrane is preferably 5 to 25 ⁇ m from the viewpoint of increasing the battery capacity.
  • the air resistance of the polyolefin microporous membrane is preferably 50 sec / 100 cc Air to 300 sec / 100 cc Air.
  • the porosity of the polyolefin microporous membrane is preferably 30 to 70%.
  • the average pore size of the polyolefin microporous membrane is preferably 0.01 to 1.0 ⁇ m from the viewpoint of pore closing performance.
  • the porous layer referred to in the present invention has a function of improving electrode adhesion.
  • the porous layer is mainly composed of fluorine resin and inorganic particles.
  • the fluorine-based resin has a role of improving electrode adhesion, bonding inorganic particles, and bonding a polyolefin microporous film and a porous layer.
  • the fluorine-based resin is one selected from the group consisting of a vinylidene fluoride homopolymer, a vinylidene fluoride / fluorinated olefin copolymer, a vinyl fluoride homopolymer, and a vinyl fluoride / fluorinated olefin copolymer.
  • a resin obtained by graft polymerization of maleic acid or the like may be used. These polymers have excellent adhesion to electrodes, high affinity with non-aqueous electrolytes, and high chemical and physical stability against non-aqueous electrolytes. The affinity of can be maintained sufficiently.
  • polyvinylidene fluoride-hexafluoropropylene copolymer is preferable from the viewpoint of electrode adhesion.
  • Inorganic particles play a role of improving the heat resistance and imparting an effect of preventing short circuit caused by dendrite caused by electrode materials.
  • Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica, boehmite and the like.
  • the heat-resistant crosslinked polymer particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, and crosslinked methyl methacrylate particles.
  • the shape of the particle includes a true sphere shape, a substantially spherical shape, a plate shape, a needle shape, and a polyhedral shape, but is not particularly limited.
  • the average particle size of the particles is preferably 1.5 times or more and 50 times or less, more preferably 2 times or more and 20 times or less of the average pore size of the polyolefin microporous membrane.
  • the average particle diameter of the particles is within the above preferred range, the pores of the laminated polyolefin microporous film can be prevented from being blocked in a state where the fluororesin and the particles are mixed, and as a result, the air resistance can be maintained. In addition, it prevents particles from falling off during the battery assembly process and causing serious defects in the battery.
  • the upper limit of the content of inorganic particles contained in the porous layer is preferably 85 vol%, and more preferably 75 vol%.
  • the lower limit is preferably 30 vol%, more preferably 40 vol%. Heat resistance and a dendrite prevention effect are acquired as the addition amount of an inorganic particle is the said preferable upper limit.
  • the ratio of a functional resin becomes the optimal with respect to the total volume of a porous layer as it is the said preferable minimum, electrode adhesiveness is obtained.
  • Method for laminating Porous Layer on Polyolefin Microporous Membrane A method for laminating a porous layer on a polyolefin microporous membrane in the present invention will be described. Applying a coating liquid containing inorganic particles, a fluororesin, and a solvent that is soluble in the fluororesin and miscible with water to a predetermined polyolefin porous membrane, phase-separating the fluororesin and the solvent, A porous layer is formed by putting into a coagulation tank and coagulating the fluororesin. You may add phase-separation adjuvants, such as water, ethylene glycol, propylene glycol, to a coating liquid as needed.
  • phase-separation adjuvants such as water, ethylene glycol, propylene glycol
  • Solvents include N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), phosphoric acid hexamethyltriamide (HMPA), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) , ⁇ -butyrolactone, chloroform, tetrachloroethane, dichloroethane, 3-chloronaphthalene, parachlorophenol, tetralin, acetone, acetonitrile and the like, and can be freely selected according to the solubility of the resin.
  • DMAc N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • HMPA phosphoric acid hexamethyltriamide
  • DMF N, N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • ⁇ -butyrolactone chloroform, tetrachloroethane, dichloroethane
  • the viscosity of the coating solution is preferably in the range of 30 to 200 mPa ⁇ s, more preferably 40 to 180 mPa ⁇ s, and still more preferably 50 to 150 mPa ⁇ s.
  • the viscosity of the coating solution may be adjusted using the solid content concentration of the coating solution or a thickener, but may be used by blending fluorine resins having different molecular weights.
  • the solid content concentration of the coating solution is not particularly limited as long as it can be uniformly applied, but is preferably 3% by weight or more and 30% by weight or less, and more preferably 5% by weight or more and 25% by weight or less. If the solid content concentration is less than 3% by weight, the obtained porous layer may become brittle. Moreover, when it exceeds 30 weight%, productivity and coating property will fall.
  • a known roll coating method described later can be used as a method for laminating the porous layer on the polyolefin microporous membrane.
  • the roll coating method include a reverse roll coating method and a gravure coating method, and these methods can be performed alone or in combination. Of these, gravure coating is preferred from the viewpoint of uniform coating thickness.
  • the thickness of the coating tangent line between the roll and the polyolefin microporous film in the roll coating method is preferably 3 mm or more and 10 mm or less.
  • the thickness of the coating tangent exceeds 10 mm, the contact pressure between the polyolefin microporous film and the coating roll is large, and the coating surface is easily scratched.
  • the coating tangent is a line where the coating roll and the polyolefin microporous membrane are in contact, and the thickness of the coating tangent means the width in the length direction of the coating tangent (see FIG. 5).
  • the thickness of the coating tangent can be measured by observing the coating tangent of the coating roll and the polyolefin microporous membrane from the back surface of the polyolefin microporous membrane.
  • adjust the thickness of the coating tangent line adjust the position of the coating roll relative to the polyolefin microporous membrane back and forth, and adjust the left / right position balance of the back roll placed behind the coating surface in the horizontal direction. Is possible. It is more effective to arrange the back roll on both the upstream side and the downstream side with respect to the coating roll.
  • the runout accuracy of the coating roll is preferably 10 ⁇ m / ⁇ 100 mm or less, more preferably 8 ⁇ m / ⁇ 100 mm or less, and even more preferably 5 ⁇ m / ⁇ 100 mm or less.
  • the runout accuracy of the coating roll is within the above range, a uniform coating thickness can be easily obtained in the length direction.
  • the average thickness T (ave) of the porous layer is preferably 1 to 5 ⁇ m, more preferably 1 to 4 ⁇ m, still more preferably 1 to 3 ⁇ m from the viewpoint of electrode adhesion.
  • a winding separator can be suppressed, and the battery separator is suitable for a lithium ion secondary battery having a high volume energy density.
  • the porous layer having a uniform thickness in the width direction of the separator means that the variation width (R) of the thickness is 1.0 ⁇ m or less with respect to the effective coating width, R) is preferably 0.8 ⁇ m or less, more preferably 0.5 ⁇ m or less.
  • the effective coating width refers to a width excluding both ends of 3 mm with respect to the total coating width. 3 mm at both ends is because the coating liquid locally rises or oozes due to the surface tension of the coating liquid.
  • the porosity of the porous layer is preferably 30 to 90%, more preferably 40 to 70%.
  • the desired porosity can be obtained by appropriately adjusting the concentration of inorganic particles, the binder concentration, and the like.
  • the uniform thickness of the porous layer in the length direction of the separator means that the thickness variation width (R) is 1.0 ⁇ m or less with respect to the length of the separator of 1000 m or more.
  • the variation width (R) of the thickness is preferably 0.8 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the solid content concentration of the coating solution is not particularly limited as long as it can be uniformly applied, but is preferably 20% by weight or more and 80% by weight or less, and more preferably 50% by weight or more and 70% by weight or less.
  • the solid content concentration of the coating liquid is in the above preferred range, a uniform coating thickness can be easily obtained, and the porous layer can be prevented from becoming brittle.
  • the film thickness of the battery separator obtained by laminating a porous layer on a polyolefin microporous membrane is preferably 6 ⁇ m to 30 ⁇ m from the viewpoint of mechanical strength and battery capacity.
  • the width of the battery separator is not particularly limited, but the lower limit is preferably 30 mm, more preferably 60 mm, still more preferably 100 mm, and the upper limit is preferably 2000 mm, more preferably 1000 mm, and still more preferably 800 mm.
  • the thickness of the battery separator is in the above range, it is suitable for producing a high-capacity battery and is not easily bent by its own weight.
  • the lower limit of the length of the battery separator is preferably 1000 m, more preferably 2000 m, and still more preferably 3000 m.
  • the upper limit is not particularly defined, but is preferably 10,000 m, more preferably 8000 m, and still more preferably 7000 m.
  • the battery separator is desirably stored in a dry state, but when it is difficult to store in a completely dry state, it is preferable to perform a vacuum drying treatment at 100 ° C. or less immediately before use.
  • the battery separator of the present invention includes a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-zinc battery, a silver-zinc battery, a secondary battery such as a lithium secondary battery, a lithium polymer secondary battery, and a plastic film capacitor, ceramic Although it can be used as a separator for a capacitor, an electric double layer capacitor, etc., it is particularly preferably used as a separator for a lithium ion secondary battery.
  • a lithium ion secondary battery will be described as an example.
  • a lithium ion secondary battery contains an electrode body in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween and an electrolytic solution (electrolyte).
  • the structure of the electrode body is not particularly limited, and may be a known structure.
  • an electrode structure in which disc-shaped positive electrodes and negative electrodes are opposed to each other, an electrode structure in which flat plate-like positive electrodes and negative electrodes are alternately stacked (stacked type), and belt-shaped positive electrodes and negative electrodes are stacked. It can be set as a structure such as a wound electrode structure (winding type).
  • the measured value in an Example is a value measured with the following method. 1. Measurement of F25 Fluctuation Width Five test pieces of TD 10 mm ⁇ MD 50 mm were cut out at equal intervals in the width direction of the polyolefin microporous membranes obtained in Examples and Comparative Examples. The test pieces at both ends were cut from 30 to 40 mm from the end in the width direction of the microporous membrane.
  • JISK7113 using a tabletop precision universal testing machine (Autograph AGS-J (manufactured by Shimadzu Corporation)), the SS curve (normal stress (stress) and normal strain (strain) in the length direction of the test piece Relationship).
  • the vertical stress value at the time when the vertical strain was extended by 25% was read, and the value obtained by dividing the value by the cross-sectional area of each test piece was taken as F25 value, and an average value in the width direction of 5 points was determined.
  • the average value of the F25 value in the width direction was obtained at five locations at intervals of 250 m in the length direction, and the fluctuation range of the F25 value was obtained from the difference between the maximum value and the minimum value.
  • the film thickness was measured using the presence region of the inorganic particles as a porous layer, and the average value in the width direction of 5 points was determined. Each average value in the width direction was obtained at five locations at intervals of 250 m with respect to the length direction, and the variation width (R) of the thickness of the porous layer in the length direction was determined from the difference between the maximum value and the minimum value.
  • the porous layer is provided on both surfaces of the polyolefin microporous membrane, similarly, the fluctuation width (R) in the length direction of the film thickness of the porous layer is obtained for each side, and the larger value is the fluctuation width of the sample ( R).
  • the average thickness of the 25 test pieces in total was defined as the average thickness T (ave) of the porous layer.
  • the fluctuation range of the surface temperature of the longitudinal drawing roll The surface of each roll was measured 5 times every 5 minutes with an infrared radiation thermometer, and the fluctuation range of the surface temperature of the longitudinal drawing roll was determined from the difference between the maximum value and the minimum value.
  • the coating tangent is a line in the width direction where the coating roll and the polyolefin microporous membrane are in contact with each other during coating.
  • the thickness of the coating tangent is the width in the length direction of the coating tangent, and is a value read using the scale through the back surface of the polyolefin microporous membrane.
  • Example 1 To 100 parts by mass of a composition comprising 40% by mass of ultrahigh molecular weight polyethylene having a mass average molecular weight of 2.5 ⁇ 10 6 and 60% by mass of high density polyethylene having a mass average molecular weight of 2.8 ⁇ 10 5 , tetrakis [methylene- 3- (3,5-ditertiary butyl-4-hydroxyphenyl) -propionate] 0.375 parts by mass of methane was dry blended to prepare a polyethylene composition. 30 parts by weight of the obtained polyethylene composition was put into a twin screw extruder. Furthermore, 70 parts by weight of liquid paraffin was supplied from a side feeder of a twin screw extruder, melt kneaded, and a polyethylene resin solution was prepared in the extruder.
  • tetrakis methylene- 3- (3,5-ditertiary butyl-4-hydroxyphenyl) -propionate
  • a polyethylene resin solution was extruded at 190 ° C. from a die installed at the tip of the extruder, and an unstretched gel-like sheet was formed while being pulled by a cooling roll maintaining an internal cooling water temperature at 25 ° C.
  • the obtained unstretched gel-like sheet is passed through a group of four preheating rolls so that the temperature of the sheet surface becomes 110 ° C. and led to the longitudinal stretching apparatus A shown in FIG. Passed through roll.
  • a metal roll surface roughness 0.5S having a width of 1000 mm, a diameter of 300 mm, and hard chrome plating was used as the longitudinal stretching roll.
  • the surface temperature of each roll was set to 110 ° C., and the fluctuation range of the surface temperature was controlled to be within ⁇ 2 ° C.
  • a doctor blade made of polyester was used as the doctor blade.
  • Nitrile rubber-coated rolls (manufactured by Kakkuri Roller Manufacturing Co., Ltd.) were used as the nip rolls, and the pressure of each nip roll was 0.3 MPa.
  • the circumferential speed of the longitudinal stretching roll is increased stepwise in the conveying direction, the circumferential speed ratio of the first longitudinal stretching roll and the second longitudinal stretching roll is 1.3, and the circumferential speed ratio of the second longitudinal stretching roll and the third longitudinal stretching roll.
  • the circumferential speed ratio of the third longitudinal stretching roll and the fourth longitudinal stretching roll was set to 1.8
  • the circumferential speed ratio of the fourth longitudinal stretching roll to the fifth longitudinal stretching roll was set to 2.1.
  • the distance between the adjacent longitudinal stretching rolls was 200 mm until the gel-like sheet being stretched separated from the stretching roll and contacted with the next stretching roll.
  • four cooling rolls were passed so that the sheet temperature was 50 ° C. to form a longitudinally stretched gel sheet.
  • Both ends of the obtained longitudinally stretched gel-like sheet were held with clips and stretched 6 times in the transverse direction at a temperature of 115 ° C. in a tenter divided into 20 zones to form a biaxially stretched gel-like sheet.
  • the distance between the clips in the sheet traveling direction was 5 mm from the tenter entrance to the exit.
  • the obtained biaxially stretched gel-like sheet was cooled to 30 ° C., liquid paraffin was removed in a methylene chloride washing tank adjusted to 25 ° C., and dried in a drying furnace adjusted to 60 ° C.
  • the obtained dried sheet was re-stretched with a re-stretching apparatus shown in FIG. 5 so that the longitudinal magnification became 1.2 times, and heat-treated at 125 ° C. for 20 seconds to obtain a polyolefin microporous film having a thickness of 7 ⁇ m.
  • a polyolefin microporous film roll having a width of 4000 mm and a winding length of 5050 m at a conveyance speed of 50 m / min was obtained. This was slit to a width of 950 mm to obtain a coating substrate.
  • the alumina particles were blended so that the total volume of the fluororesin and the alumina particles was 50% by volume and the solid concentration was 10% by weight. After completely dissolving the fluororesin and uniformly dispersing the alumina particles, the solution was filtered with a filter having a filtration limit of 5 ⁇ m to prepare coating solution a. Using the coating apparatus shown in FIG.
  • the battery separator was slit so as to have an effective coating width, and a wound body of a battery separator having a width of 900 mm and a winding length of 5000 m was obtained.
  • the weight per unit area of the porous layer when dried was 5.0 g / m 2 .
  • Example 2 A battery separator was obtained in the same manner as in Example 1 except that the longitudinal stretching apparatus B shown in FIG. 2 was used instead of the longitudinal stretching apparatus A.
  • Example 3 A battery separator was obtained in the same manner as in Example 1 except that the longitudinal stretching apparatus C shown in FIG. 3 was used instead of the longitudinal stretching apparatus A.
  • Example 4 A longitudinal stretching apparatus D shown in FIG. 4 is used instead of the longitudinal stretching apparatus A, and the peripheral speed ratio 1.5 of the first longitudinal stretching roll and the second longitudinal stretching roll of the longitudinal stretching apparatus D, the second longitudinal stretching roll and the third A battery separator was obtained in the same manner as in Example 1 except that the peripheral speed ratio of the longitudinal stretching roll was set to 2.0 and the peripheral speed ratio of the third longitudinal stretching roll to the fourth longitudinal stretching roll was set to 2.5.
  • Example 5 In the longitudinal stretching apparatus A, a battery separator was obtained in the same manner as in Example 1 except that the pressure of each nip roll was changed to 0.1 MPa.
  • Example 6 In the longitudinal stretching apparatus A, a battery separator was obtained in the same manner as in Example 1 except that the pressure of each nip roll was 0.5 MPa.
  • Example 7 In the longitudinal stretching apparatus A, a battery separator was obtained in the same manner as in Example 1 except that a ceramic coated metal roll having a surface roughness of 5.0S was used for all the five longitudinal stretching rolls.
  • Example 8 In the longitudinal stretching apparatus A, the circumferential speed ratio of the first longitudinal stretching roll and the second longitudinal stretching roll is 1.2, the circumferential speed ratio of the second longitudinal stretching roll and the third longitudinal stretching roll is 1.5, the third longitudinal stretching roll, A battery separator was obtained in the same manner as in Example 1 except that the peripheral speed ratio of the fourth longitudinal stretching roll was 1.8 and the peripheral speed ratio of the fourth longitudinal stretching roll and the fifth longitudinal stretching roll was 2.3.
  • Example 9 In the longitudinal stretching apparatus A, the circumferential speed ratio 1.3 of the first longitudinal stretching roll and the second longitudinal stretching roll, the circumferential speed ratio 1.7 of the second longitudinal stretching roll and the third longitudinal stretching roll, the third longitudinal stretching roll, A battery separator was obtained in the same manner as in Example 1 except that the peripheral speed ratio of the fourth longitudinal stretching roll was 1.8 and the peripheral speed ratio of the fourth longitudinal stretching roll and the fifth longitudinal stretching roll was 1.9.
  • Example 10 In the adjustment of the coating liquid, Example 1 was used except that the blending ratio of each polyvinylidene fluoride-hexafluoropropylene copolymer was adjusted to use the coating liquid b in which the solution viscosity of the coating liquid was 70 mPa ⁇ s. Similarly, a battery separator was obtained.
  • Example 11 In the adjustment of the coating liquid, Example 1 was used except that the blending ratio of each polyvinylidene fluoride-hexafluoropropylene copolymer was adjusted to use the coating liquid c having a solution viscosity of 180 mPa ⁇ s. Similarly, a battery separator was obtained.
  • Example 12 A battery separator was obtained in the same manner as in Example 1 except that a gravure roll with a runout accuracy of 10 ⁇ m / ⁇ 100 mm was used.
  • Example 13 A battery separator was obtained in the same manner as in Example 1 except that a gravure roll with a runout accuracy of 5 ⁇ m / ⁇ 100 mm was used.
  • Example 14 A battery separator was obtained in the same manner as in Example 1 except that the positions of the gravure roll and back roll of the coating apparatus were adjusted so that the thickness of the coating tangent line was in the range of 5 to 7 mm.
  • Example 15 A battery separator was obtained in the same manner as in Example 1 except that the positions of the gravure roll and the back roll of the coating apparatus were adjusted so that the thickness of the coating tangent line was 8 to 10 mm.
  • Comparative Example 1 The both ends of the unstretched gel sheet formed in Example 1 are gripped with clips, and the unstretched gel sheet is guided to a tenter divided into five zones adjusted to a temperature of 116 ° C., and longitudinally stretched by simultaneous biaxial stretching.
  • a biaxially stretched gel sheet was formed by stretching 7 times in the direction and 7 times in the transverse direction. At this time, the interval between the clips was 5 mm at the tenter entrance and 95 mm at the tenter exit with respect to the transport direction.
  • the simultaneously biaxially stretched gel-like sheet is cooled to 30 ° C., washed in a methylene chloride washing tank adjusted to 25 ° C., and the liquid paraffin removed sheet is dried in a drying oven adjusted to 60 ° C.
  • a microporous polyolefin membrane was obtained. Furthermore, a polyolefin microporous film roll having a width of 4000 mm and a winding length of 5050 m at a conveyance speed of 50 m / min was obtained. This was slit to a width of 950 mm to obtain a coating substrate. A battery separator was obtained in the same manner as in Example 1 except that the obtained polyolefin microporous membrane was used.
  • Comparative Example 2 In the longitudinal stretching apparatus A, a battery separator was obtained in the same manner as in Example 1 except that no nip roll was used for the five longitudinal stretching rolls.
  • Comparative Example 3 A battery separator was obtained in the same manner as in Example 1 except that the longitudinal stretching apparatus B was used and none of the five longitudinal stretching rolls were used.
  • Comparative Example 4 In the longitudinal stretching apparatus A, a battery separator was obtained in the same manner as in Example 1 except that the pressure of each nip roll was 0.04 MPa.
  • Comparative Example 5 In the longitudinal stretching apparatus A, a battery separator was obtained in the same manner as in Example 1 except that a metal roll plated with hard chromium having a surface roughness of 0.1S was used as the longitudinal stretching roll.
  • Comparative Example 8 In the longitudinal stretching apparatus A in the production of the polyolefin microporous membrane, the circumferential speed ratio of the first longitudinal stretching roll and the second longitudinal stretching roll is 1.3, and the circumferential speed ratio of the second longitudinal stretching roll and the third longitudinal stretching roll is 1.7. In the same manner as in Example 1 except that the circumferential speed ratio of the third longitudinal stretching roll and the fourth longitudinal stretching roll was set to 1.8, and the circumferential speed ratio of the fourth longitudinal stretching roll to the fifth longitudinal stretching roll was set to 1.9. A battery separator was obtained.
  • Example 1 and Example 1 were used except that the blending ratio of each polyvinylidene fluoride-hexafluoropropylene copolymer was adjusted to use the coating liquid e having a solution viscosity of 650 Pa ⁇ s. Similarly, a battery separator was obtained.
  • Comparative Example 11 In the production of the polyolefin microporous membrane, the extrusion amount of the polyethylene resin solution was adjusted, and a polyethylene porous membrane having the same thickness as that of the battery separator of Example 1 was used as the battery separator.
  • Comparative Example 12 A battery separator was obtained in the same manner as in Example 1 except that a gravure roll with a runout accuracy of 12 ⁇ m / ⁇ 100 mm was used.
  • Comparative Example 13 A battery separator was obtained in the same manner as in Example 1 except that the positions of the gravure roll and back roll of the coating apparatus were adjusted so that the thickness of the coating tangent line was in the range of 11 to 13 mm.
  • Table 1 shows the production conditions and characteristics of the polyolefin microporous membrane obtained in Examples 1 to 15 and Comparative Examples 1 to 13.
  • Table 2 shows the manufacturing conditions of the battery separator, its characteristics, and the characteristics of the wound body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Cell Separators (AREA)

Abstract

本発明によれば、多孔層の厚みを均一に設けるのに適したポリオレフィン微多孔膜及び前記ポリオレフィン微多孔膜に多孔層の厚みを均一に設けた、電池の高容量化に適した電池用セパレータを提供する。長さ方向におけるF25値の変動幅が1MPa以下であるポリオレフィン微多孔膜と、その少なくとも片面に、フッ素系樹脂と無機粒子を含み、平均厚みT(ave)が1~5μmの多孔層を設けた電池用セパレータ。(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)

Description

ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
 本発明は、電極接着性を有する多孔層とポリオレフィン微多孔膜からなる電池用セパレータであり、捲回体としたときの捲回密度が高く、体積エネルギー密度の高いリチウムイオン二次電池に適した電池用セパレータである。
 熱可塑性樹脂微多孔膜は分離膜や選択透過膜や隔離膜等として広く用いられている。例えば、リチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池やポリマー電池に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料等などである。
 特にリチウムイオン二次電池用セパレータとしては、電解液の含浸によりイオン透過性を有し、電気絶縁性に優れ、電池内部の異常昇温時に120~150℃程度の温度において電流を遮断し、過度の昇温を抑制する孔閉塞機能を備えているポリエチレン製微多孔膜が好適に使用されている。
 さらに、リチウムイオン電池用セパレータは、電池特性、電池生産性及び電池安全性に深く関わっており、耐熱性、電極接着性、透過性、溶融破膜特性(メルトダウン)等を要求される。これまでに、例えば、ポリオレフィン製微多孔膜に多孔層を設けることで電池用セパレータに耐熱性や接着性を付与することが検討されている。多孔層に用いられる樹脂としては、耐熱性を持つポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂や接着性を持つフッ素系樹脂が好適に用いられている。また、近年、比較的簡易な工程で多孔層を積層できる水溶性または水分散性バインダーも用いられている。なお、本明細書でいう多孔層とは湿式コーティング法によって得られる層をいう。
 特許文献1の実施例1では、ジメチルアセトアミド/トリプロピレングリコールの混合溶媒にフッ化ビニリデン-ヘキサフロロプロピレン共重合体を溶解させた塗工液をポリエチレン微多孔膜の両面に塗布し、次いで、凝固槽に進入させて、水洗・乾燥し、非水系二次電池用セパレータを得ている。
 特許文献2の実施例1では、底部に2本のマイヤーバーを平行に配したタンクにDMAc/TPGの混合溶媒にVdF/HFP/CTFEを溶解させた塗工液を入れ、ポリプロピレン微多孔膜を該タンク上部からタンク内に3m/分の搬送速度で進入させて2本のマイヤーバー間を通過させることによって塗工液を両面に塗布し、凝固槽に進入させて、水洗・乾燥し、複合多孔膜を得ている。
特許第4988973号公報 特許第5226744号公報
 近年、リチウムイオン二次電池は電気自動車、ハイブリッド自動車、電動二輪車のほか、芝刈り機、草刈り機、小型船舶などにも広く使用の検討がなされている。こうした用途の普及に伴い、リチウムイオン二次電池は高容量化と低コスト化が求められている。そのため、電池用セパレータは製造コストを削減するために1000m以上のような長尺化が今後ますます進むことが予想される。セパレータの長尺化によりスリット工程や電池組み立て工程において電池用セパレータ捲回体の切り替え時間を削減し、材料ロス低減のための電池用セパレータを得ることができる。
 一方で、長尺化したポリオレフィン微多孔膜に湿式コーティングによって多孔層を設けて電池用セパレータを製造する際に、長さ方向に対して多孔層の厚み変動幅が大きいと(特に、部分的に多孔層が薄い部分が発生するような場合には)多孔層の機能を十分確保するために平均厚みを必要最低厚みの1.5倍から2倍の厚みとする必要があり、高コスト要因となる。また、セパレータの厚みが厚くなることで電極捲回体の捲回数が減少し、電池の高容量化を阻害する要因ともなる。
 また、電池用セパレータの長尺化は捲回体とした時の直径の増大によって、巻きずれが生じやすくなるなど、捲回体の巻き姿に悪影響を与える。この傾向は捲回体の捲数が増加するほど顕著となる傾向があり、セパレータの薄膜化により捲回体の捲数はさらに増加することが予想される。
 本発明は前記ポリオレフィン微多孔膜に均一な厚みの多孔層を設けた、電池の高容量化に適した電池用セパレータを得ることを目標とする。なお、本明細書でいう均一な厚みの多孔層とは、長さ方向における多孔層の厚みの変動幅(R)が1.0μm以下である多孔層を意味する。
 本発明は上記課題に鑑み、コーティング技術について鋭意研究を重ねたのみならず、ポリオレフィン微多孔膜についてもコーティングに対する適正を追求し成しえたものである。
 上記課題を解決するために本発明は以下の構成からなる。
(1)長さ方向におけるF25値の変動幅が1MPa以下であるポリオレフィン微多孔膜の少なくとも片面に、フッ素系樹脂と無機粒子を含み、平均厚みT(ave)が1~5μmの多孔層を設けた電池用セパレータ。
(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)
(2)多孔層の長さ方向における厚み変動幅(R)が1.0μm以下であることが好ましい。
(3)フッ素系樹脂がポリフッ化ビニリデンまたは、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体から選ばれる少なくとも一種を含むことが好ましい。
(4)電池用セパレータの長さが2000m以上であることが好ましい。
(5)電池用セパレータの長さが3000mm以上であることが好ましい。
(6)電池用セパレータの製造方法であって、
  (a)ポリオレフィン樹脂と成形用溶剤とを溶融混練してポリオレフィン樹脂溶液を調製する工程
  (b)前記ポリオレフィン樹脂溶液を押出機よりシート状に押出し、冷却して未延伸ゲル状シートを形成する工程、
  (c)前記未延伸ゲル状シートを少なくとも3対の縦延伸ロール群の間を通過させ、段階的に増大するロール群の周速によって縦方向に延伸し、縦延伸ゲル状シートを得る工程(ここで、縦延伸ロールとこれに平行に接する耐熱性ゴムで被覆したニップロールを1対の縦延伸ロール群とし、該ニップロールが縦延伸ロールに接する圧力は0.05MPa以上、0.5MPa以下である)
  (d)前記縦延伸ゲル状シートをクリップ間距離がテンター出口で50mm以下となるように把持して横方向に延伸し、二軸延伸ゲル状シートを得る工程
  (e)前記二軸延伸ゲル状シートから成形用溶剤を抽出し、乾燥する工程
  (f)乾燥後のシートを熱処理してポリオレフィン微多孔膜を得る工程
  (g)ポリオレフィン微多孔膜の少なくとも片面にフッ素系樹脂と無機粒子を含む塗工液を振れ精度が10μm/Φ100mm以下の塗工ロールも用いたロールコート法で塗工し、乾燥する工程
を含む電池用セパレータの製造方法。
(7)前記工程(c)における隣り合う縦延伸ロールの周速比が段階的に増大する電池用セパレータの製造方法。
(8)前記塗工ロールがグラビアロールである電池用セパレータの製造方法。
(9)上記(1)乃至(5)に記載の電池用セパレータ、または上記(6)若しくは(7)に記載の電池用セパレータの製造方法によって得られる電池用セパレータを搬送速度が50m/分以上で巻き芯に巻き上げる工程を含む電池用セパレータ捲回体の製造方法。
 本発明によれば、ポリオレフィン微多孔膜と、ポリオレフィン微多孔膜の少なくとも片面にフッ素系樹脂と無機粒子を含む均一な厚みの多孔層を設けた、高密度に捲回可能で、優れた電極接着性を有する電池の高容量化に適した電池用セパレータが得られる。
逐次二軸延伸に用いる縦延伸装置Aを示す略図である。 逐次二軸延伸に用いる縦延伸装置Bを示す略図である。 逐次二軸延伸に用いる縦延伸装置Cを示す略図である。 逐次二軸延伸に用いる縦延伸装置Dを示す略図である。 再延伸工程に用いる縦延伸装置の例を示す略図である。 塗工装置の例を示す略図である。
 本発明のポリオレフィン微多孔膜は長さ1000m以上で、長さ方向におけるF25値の変動幅が1MPa以下(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)である。
 本発明はポリオレフィン微多孔膜の長さ方向におけるF25値の変動幅を1MPa以下とすることで、ポリオレフィン微多孔膜と塗工ロールとの接線(以下、塗工接線と略記する。)における接触圧力がポリオレフィン微多孔膜の長さ方向に対して均一になりやすく、塗工厚を均一にしやすくなるという優れた効果を奏する。長さ方向におけるF25値の変動幅が1MPa超となるとスリット工程や塗工工程での巻き上げ時に微多孔膜の捲回体の巻き堅さにばらつきができ、たわみや巻きずれが発生しやすくなり捲き姿が悪化する。例えば、巻き芯への巻き上げ時の搬送速度が50m/分以上となるような高速で加工する場合には顕著になる。
1.ポリオレフィン微多孔膜
 まず、本発明に用いるポリオレフィン微多孔膜について説明する。
 本発明に用いるポリオレフィン微多孔膜は長さ方向のF25値の変動幅が1MPa以下であり、好ましくは0.8MPa以下、より好ましくは0.6MPa以下、さらに好ましくは0.4MPa以下である。下記に述べるように、特に、縦延伸工程及び横延伸工程を高度に制御することでポリエチレン微多孔膜の長さ方向のF25値の変動幅を制御することができる。
 ポリオレフィン微多孔膜を構成するポリオレフィン樹脂としては、ポリエチレンやポリプロピレンが好ましい。単一物又は2種以上の異なるポリオレフィン樹脂の混合物、例えば、ポリエチレンとポリプロピレンの混合物であってもよいし、異なるオレフィンの共重合体でもよい。なかでもポリエチレンが孔閉塞性能の観点から特に好ましい。さらに孔閉塞性能の観点から、ポリエチレンは融点(軟化点)が70~150℃が好ましい。
 以下、本発明で用いるポリオレフィン樹脂としてポリエチレンを例に詳述する。ポリエチレンとしては、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンなどが挙げられる。また、重合触媒には特に制限はなく、チーグラー・ナッタ系触媒、フィリップス系触媒やメタロセン系触媒などを用いることができる。これらのポリエチレンはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外のα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、(メタ)アクリル酸、(メタ)アクリル酸のエステル、スチレン等が好適である。ポリエチレンとしては、単一物でもよいが、2種以上のポリエチレンからなるポリエチレン混合物であることが好ましい。
 ポリエチレン混合物としては、重量平均分子量(Mw)の異なる2種類以上の超高分子量ポリエチレンの混合物、高密度ポリエチレンの混合物、中密度ポリエチレンの混合物、又は低密度ポリエチレンの混合物を用いてもよいし、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれた2種以上のポリエチレンの混合物を用いてもよい。ポリエチレン混合物としては、Mw5×10以上の超高分子量ポリエチレンとMw1×10~5×10未満のポリエチレンからなる混合物が好ましい。混合物中の超高分子量ポリエチレンの含有量は、引張強度の観点から1~40重量%が好ましい。ポリエチレンの分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、機械的強度の観点から5~200の範囲内であることが好ましい。
2.ポリエチレン微多孔膜の製造方法
 次いで、ポリエチレン微多孔膜の製造方法について説明する。
 ポリエチレン微多孔膜の製造方法としては、乾式法(成形用溶剤を用いず結晶核剤や粒子を用いて多孔化する方法(延伸開孔法ともいう。))と湿式法(相分離法)があり、微細孔の均一化や平面性の観点から湿式法が好ましい。
 湿式法による製造方法としては、例えば、ポリエチレンと成形用溶剤とを加熱溶融混練し、得られた樹脂溶液をダイより押出し、冷却することにより未延伸ゲル状シートを形成し、得られた未延伸ゲル状シートに対して少なくとも一軸方向に延伸を実施し、前記成形用溶剤を除去し、乾燥することによって微多孔膜を得る方法などが挙げられる。
 本発明では未延伸ゲル状シートをロール法、テンター法もしくはこれらの方法の組み合わせによって長さ方向(「MD:Machine Direction」又は「縦方向」ともいう)及び幅方向(「TD:Transverse Direction」又は「横方向」ともいう)の二方向に所定の倍率で延伸する。本発明において延伸は縦方向及び横方向を順次行う、逐次二軸延伸法が好ましい。同時二軸延伸法は、未延伸ゲル状シートの両端をつかむクリップで固定した後、縦方向及び横方向に同時に前記クリップを拡張させる延伸法である。このような同時二軸延伸法は延伸倍率に伴ってクリップの間隔が広くなり、長さ方向におけるシートの品質にばらつきが生じ、結果として長さ方向でF25値の変動幅が増大するので好ましくない。
 ポリエチレン微多孔膜は単層膜であってもよいし、ポリオレフィンの分子量あるいは平均細孔径の異なる二層以上からなる層構成であってもよい。二層以上からなる層構成の場合、少なくとも一つの最外層のポリエチレン樹脂は、前記ポリオレフィンの分子量、および分子量分布が前記を満足することが好ましい。
 二層以上からなる多層ポリエチレン微多孔膜の製造方法としては、例えば、a層及びb層を構成する各ポリエチレンを成形用溶剤と加熱溶融混練し、得られた各樹脂溶液をそれぞれの押出機から1つのダイに供給し、一体化させて共押出する方法や各層を構成するゲル状シートを重ね合わせて熱融着する方法のいずれでも作製できる。共押出法の方が、層間の接着強度を得やすく、層間に連通孔を形成しやすいため高い透過性を維持しやすく、生産性にも優れているため好ましい。
 以下、ポリオレフィン樹脂としてポリエチレン樹脂を使用した例で各工程について説明する。
(a)ポリエチレン樹脂溶液の調製工程
 まず、ポリエチレン樹脂に成形用溶剤を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する。溶融混練方法として、例えば、特公平06-104736号公報および日本国特許第3347835号公報に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
 成形用溶剤としては、ポリエチレンを十分に溶解できるものであれば特に限定されない。例えば、ノナン、デカン、ウンデカン、ドデカン、流動パラフィンなどの脂肪族または環式の炭化水素、あるいは沸点がこれらに対応する鉱油留分などがあげられるが、流動パラフィンのような不揮発性の溶剤が好ましい。
 ポリエチレン樹脂溶液中のポリエチレン樹脂濃度は、ポリエチレン樹脂と成形用溶剤の合計を100重量部として、25~40重量部であることが好ましい。ポリエチレン樹脂濃度が上記好ましい範囲であると、ポリエチレン樹脂溶液を押し出す際のダイ出口でスウェルやネックインを防止でき、ゲル状シートの成形性及び自己支持性が維持される。
(b)未延伸ゲル状シートを成形する工程
 次に、ポリエチレン樹脂溶液を押出機から直接的に又は別の押出機を介してダイに送給し、シート状に押し出し、冷却して未延伸ゲル状シートを成形する。同一または異なる組成の複数のポリオレフィン溶液を、押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。
 押出方法はフラットダイ法及びインフレーション法のいずれでもよい。押出し温度は140~250℃好ましく、押出速度は0.2~15m/分が好ましい。ポリオレフィン溶液の各押出量を調節することにより、膜厚を調節することができる。押出方法としては、例えば、特公平06-104736号公報および日本国特許第3347835号公報に開示の方法を利用することができる。
 シート状に押し出されたポリエチレン樹脂溶液を冷却することによりゲル状シートを形成する。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。例えば、冷媒で表面温度20℃から40℃に設定した回転する冷却ロールにシート状に押し出されたポリエチレン樹脂溶液を接触させることにより未延伸ゲル状シートを形成することができる。押出されたポリエチレン樹脂溶液は25℃以下まで冷却するのが好ましい。
(c)縦延伸工程 未延伸ゲル状シートを複数本の予熱ロールを経由させ、所定の温度まで昇温させた後、各ロール間の周速を段階的に増大させた少なくとも3対の縦延伸ロール群を通過させ、縦方向に延伸し、縦延伸ゲル状シートを得る。
 本発明では縦延伸におけるシート滑りを抑え、均一な縦延伸をすることが長さ方向のF25値を制御する上で重要となる。
 縦延伸ロールと、縦延伸ロールに平行に一定の圧力で接するニップロールとを1対の縦延伸ロール群とし、ゲル状シートが各ロール群を通過することで縦延伸ロール上にシートを密着させ、シートの延伸位置を固定することでシートを安定に走行させ、均一な縦延伸をすることができる。また、均一な縦延伸をするためには縦延伸工程は1段延伸より2段延伸以上に分けて所望の延伸倍率にすることが好ましい。つまり、縦延伸ロールを3つ以上配置することが重要である。
 本発明では、各延伸ロールの周速を段階的に増大することによって、未延伸ゲル状シートを長さ方向に延伸することが重要である。さらに隣り合う延伸ロールの周速比を段階的に増大させることが好ましい。つまり、1本目の縦延伸ロールと2本目の縦延伸ロールとの周速比、2本目と3本目の縦延伸ロールの周速比、3本目と4本目の縦延伸ロールの周速比を順に増大させることで長さ方向のF25の変動幅を制御しつつ、生産性を両立できる。これは、未延伸ゲル状シートが1本目の縦延伸ロールを通過する時点では成形用溶剤を多く含んでおり滑りやすいが、各延伸ロール間の周速を段階的に増大することで成形用溶剤の絞り出し効果が得られやすく、縦延伸工程における滑りを防ぐことができるからである。ここで、絞り出し効果とは、ゲル状シートから成形用溶剤を絞り出すことで縦延伸ロールとの滑りを抑制し安定して延伸できることをいう。
 1段目の縦延伸工程における延伸ロールの周速比の上限は1.5以下が好ましく、より好ましくは1.3以下、さらに好ましくは1.2以下である。下限は1.1が好ましい。また、隣り合う各延伸ロールの周速比の差は0.5以下が好ましく、より好ましくは0.4以下、さらに好ましくは0.3以下である。
 隣り合う延伸ロールは、ゲル状シートが延伸ロールから離れて次の延伸ロールに接するまでの距離が150mmから500mmの範囲となるような間隔に配置するのが好ましい。前記距離が150mm未満ではF25の変動幅が大きくなる場合があり、500mmを超えると延伸中のゲル状シートの温度低下を招き、延伸斑が発生する場合がある。
 縦延伸工程におけるゲル状シートの温度はポリオレフィン樹脂の融点+10℃以下が好ましい。また、延伸倍率はポリオレフィン微多孔膜の弾性、強度の観点から面倍率で9倍以上が好ましく、より好ましくは16~400倍である。
 縦延伸ロールの表面温度は、ロールごとに延伸ロールの有効幅(延伸中のシートが通過する幅)において表面温度の変動幅を±2℃以内に制御する。縦延伸ロールの表面温度は、例えば、赤外放射温度計で測定することができる。
 縦延伸ロールは、表面粗度が0.3S~5.0Sのハードクロムメッキが施された金属ロールが好ましい。表面粗度がこの範囲であると熱伝導もよく、ニップロールとの相乗効果でシートの滑りを効果的に抑制できる。
 本発明では、ニップロールを用いて縦延伸工程におけるゲル状シートの滑りを抑制する。ニップロールを用いずに縦延伸ロールとゲル状シートの接触面積を大きくするだけでは十分な滑り抑制効果は得られず、F25値の変動幅が増大するおそれがある。また、1本のニップロールでシートの滑りを抑制しようとするとニップロールが延伸ロールに接する圧力(ニップ圧ともいう)を高くする必要があり、得られるポリエチレン微多孔膜の細孔をつぶしてしまうおそれがある。よって、ニップロールは3本以上を使用して、ニップ圧を比較的小さくすることが重要である。1本の縦延伸ロールに対して複数本のニップロールを用いてもよい。
 各ニップロールのニップ圧は0.05MPa以上、0.5Mpa以下である。ニップロールのニップ圧が0.5MPaを超えると得られるポリエチレン微多孔膜の細孔がつぶれるおそれがある。0.05MPa未満ではニップ圧が十分でなく滑り抑制効果が得られず、成形用溶剤の絞り出し効果も得られにくい。ニップロールのニップ圧の下限は0.1MPaが好ましく、より好ましくは0.2MPaであり、上限は0.5MPaが好ましく、より好ましくは0.4MPaである。
 また、ニップロールは耐熱性ゴムで被覆する必要がある。縦延伸工程中、熱や張力による圧力でゲル状シートから成形用溶剤がブリードアウトし、特に、押出し直後の縦延伸工程でのブリードアウトは顕著である。ブリードアウトした成形用溶剤がシートとロール表面の境界に介在しながら、シートの搬送や延伸が行われることになり、シートは滑りやすい状態となる。耐熱性ゴムで被覆したニップロールを縦延伸ロールに平行に接するように配置し、未延伸ゲル状シートを通過させことによって、延伸中のゲル状シートから成形用溶剤を絞り出しながら延伸することができ、これによって滑りを抑制することができる。
 ニップロールは直径100mm~300mmの金属ロールに厚さ3~20mmの耐熱性ゴムで被覆したロールが好ましい。耐熱性ゴム部分の体積が80%以上を占める所謂ゴムロールではたわみやすく、幅方向に対して均一な圧力を与えにくいため好ましくない。
 縦延伸工程において、縦延伸ロール及びニップロールに付着した成形用溶剤をとり除く方法(掻き取り手段ともいう)を併用するとさらに効果的に滑り抑制効果が得られる。掻き取り手段は特に限定されないが、ドクターブレード、圧縮空気で吹き飛ばす、吸引する、またはこれらの方法を組み合わることができる。特に、ドクターブレードを用いて掻き落とす方法は比較的容易に実施できるため好ましい。縦延伸ロール上にドクターブレードを縦延伸ロールの幅方向と平行になるようにあてて、ドクターブレードを通過した直後から延伸中のゲル状シートが接するまでの延伸ロール表面に成形用溶剤が視認できない程度に掻き落とす方法が好ましい。ドクターブレードは1枚でもよいし、複数枚用いてもよい。また、掻き取り手段は縦延伸ロール又はニップロールのいずれに設置してもよく、あるいは両方に設置してもよい。
 ドクターブレードの材質は、成形用溶剤に耐性を有するものであれば特に限定されないが、金属製より樹脂製あるいはゴム製のものが好ましい。金属製の場合、延伸ロールにキズつけてしまうおそれがある。樹脂製ドクターブレードとしては、ポリエステル製、ポリアセタール製、ポリエチレン製などが挙げられる。
(d)横延伸工程
 横方向延伸工程について説明する。
 横延伸工程としては、縦延伸ゲル状シートの両端をクリップを用いて固定した後、テンター内で前記クリップを横方向に拡張させて縦延伸ゲル状シートを横方向に延伸し、二軸延伸ゲル状シートを得る。ここでシート進行方向のクリップ間距離はテンター入り口から出口まで50mm以下で維持されることが好ましく、より好ましくは25mm以下、さらに好ましくは10mm以下とする。クリップ間距離が上記好ましい範囲内にあると幅方向のF25値の変動幅を抑えることができる。
 横延伸工程又は熱処理工程では急激な温度変化の影響を抑制するために、テンター内を10~30ゾーンに分割し、各ゾーンで独立して温度制御することが好ましい。特に、熱処理工程の最高温度に設定されたゾーンにおいては、各ゾーンの温度をシート進行方向に対して段階的に熱風によって昇温させて、熱処理工程における各ゾーン間での急激な温度変化がおきないようにすることが好ましい。
(e)二軸延伸ゲル状シートから成形用溶剤を除去し、乾燥する工程
 洗浄溶剤を用いて二軸延伸ゲル状シートから成形用溶剤の除去(洗浄)をする。洗浄溶剤としては、ペンタン、ヘキサン、ヘプタンなどの炭化水素、塩化メチレン、四塩化炭素などの塩素化炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサンなどのエーテル類などの易揮発性のものを用いることができる。これらの洗浄溶剤は成形用溶剤に応じて適宜選択し、単独もしくは混合して用いる。洗浄方法は、洗浄溶剤に浸漬し抽出する方法、洗浄溶剤をシャワーする方法、洗浄溶剤をシートの反対側から吸引する方法、またはこれらの組合せによる方法などにより行うことができる。上述のような洗浄は、シートの残留溶剤が1重量%未満になるまで行う。その後、シートを乾燥するが、乾燥方法は加熱乾燥、風乾などの方法で行うことができる。
(f)乾燥後のシートを熱処理してポリオレフィン微多孔膜を得る工程
 乾燥後のシートを熱処理してポリエチレン微多孔膜を得る。熱処理は熱収縮率及び透気抵抗度の観点から90~150℃の範囲内の温度で行うのが好ましい。熱処理工程の滞留時間は、特に限定されることはないが、通常は1秒以上10分以下が好ましく、より好ましくは3秒以上2分以下である。熱処理はテンター方式、ロール方式、圧延方式、フリー方式のいずれも採用できる。
 熱処理工程では長さ方向及び幅方向の両方向の固定をしながら、長さ方向及び幅方向の少なくとも一方向に収縮させるのが好ましい。熱処理工程によってポリオレフィン微多孔膜の残留歪の除去を行うことができる。熱処理工程のおける長さ方向又は幅方向の収縮率は、熱収縮率及び透気抵抗度の観点から0.01~50%が好ましく、より好ましくは3~20%である。さらに、機械的強度向上のために再加熱し、再延伸してもよい。再延伸工程は延伸ロール式もしくはテンター式のいずれでもよい。なお、(a)~(f)の工程の後、必要に応じてコロナ処理工程や親水化工程等の機能付与工程を設けてもよい。
 上述のように高度に縦延伸及び横延伸を制御することによって、ポリエチレン微多孔膜の長さ方向のF25値の変動幅を小さくすることができる。これにより、後述する多孔層の積層工程において塗工厚の変動幅を小さくしやすくなるだけでなく、巻き姿の良好な電池用セパレータ捲回体が得られる。さらに、F25値の変動幅を1MPa以下とすることでリワインダーによる巻き上げ時の搬送速度が50m/分を超えるような高速で加工する場合であってもスリット工程や塗工工程における搬送中の蛇行を抑制することができる。
 ポリオレフィン微多孔膜の幅は特に制限はないが、下限は500mmが好ましく、より好ましくは600mm、さらに好ましくは1000mmであり、上限は4000mmが好ましく、より好ましくは3000mm、さらに好ましくは2000mmである。ポリオレフィン微多孔膜の厚さが上記範囲であると、高容量の電池作製に適し、自重によるたわみが生じにくい。
 ポリオレフィン微多孔膜の長さは、下限は1000mが好ましく、より好ましくは2000m、さらに好ましくは3000mである。上限は特に定めないが10000mが好ましく、より好ましくは8000m、さらに好ましくは7000mである。ポリオレフィン微多孔膜の長さが上記範囲であると、生産性を向上させ、捲回体とした場合に自重によりたわみが生じにくい。
 ポリオレフィン微多孔膜の厚さは電池の高容量化の観点から5~25μmが好ましい。
 ポリオレフィン微多孔膜の透気抵抗度は、50sec/100ccAir~300sec/100ccAirが好ましい。
 ポリオレフィン微多孔膜の空孔率は、30~70%が好ましい。
 ポリオレフィン微多孔膜の平均孔径については、孔閉塞性能の観点から、好ましくは0.01~1.0μmが好ましい。
3.多孔層
 次に、多孔層について説明する。
 本発明でいう多孔層は電極接着性を向上させる機能を有する。多孔層は主にフッ素系樹脂と無機粒子で構成される。フッ素系樹脂は電極接着性を向上させ、無機粒子同士を結合させる役割やポリオレフィン微多孔膜と多孔層とを結合させる役割を有するものである。フッ素系樹脂としては、フッ化ビニリデン単独重合体、フッ化ビニリデン/フッ化オレフィン共重合体、フッ化ビニル単独重合体、及びフッ化ビニル/フッ化オレフィン共重合体からなる群より選ばれる1種以上を使用することが好ましい。また、マレイン酸等をグラフト重合した樹脂であってもよい。これらの重合体は、電極との接着性に優れ、非水電解液とも親和性も高く、非水電解液に対する化学的、物理的な安定性が高いため高温下での使用にも電解液との親和性を十分維持できる。なかでもポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体が電極接着性の観点から好適である。
 無機粒子は耐熱性の向上や電極材料に起因するデンドライトに起因する短絡防止効果を付与する役割を担う。無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ、ベーマイトなどが挙げられる。また、必要に応じて耐熱性架橋高分子粒子を添加してもよい。耐熱性架橋高分子粒子としては、架橋ポリスチレン粒子、架橋アクリル系樹脂粒子、架橋メタクリル酸メチル系粒子などが挙げられる。粒子の形状は真球形状、略球形状、板状、針状、多面体形状が挙げられるが特に限定されない。
 粒子の平均粒径は、ポリオレフィン微多孔膜の平均細孔径の1.5倍以上、50倍以下であることが好ましく、より好ましくは2倍以上、20倍以下である。粒子の平均粒径が上記好ましい範囲であると、フッ素系樹脂と粒子が混在した状態で積層ポリオレフィン微多孔膜の細孔を塞ぐのを防ぎ、結果として透気抵抗度を維持できる。また、電池組み立て工程において粒子が脱落し、電池の重大な欠陥を招くのを防ぐ。
 多孔層に含まれる無機粒子の含有量は、上限は85vol%が好ましく、より好ましくは75vol%である。下限は30vol%が好ましく、より好ましくは40vol%である。無機粒子の添加量が上記好ましい上限であると耐熱性、デンドライト防止効果が得られる。また、上記好ましい下限であると多孔層の総体積に対して機能性樹脂の割合が最適となるため電極接着性が得られる。
4.ポリオレフィン微多孔膜への多孔層の積層方法
 本発明におけるポリオレフィン微多孔膜への多孔層の積層方法について説明する。
 無機粒子、フッ素系樹脂と、フッ素系樹脂に対して可溶でかつ水と混和する溶媒を含む塗工液を所定のポリオレフィン多孔質膜に塗布し、フッ素系樹脂と溶媒とを相分離させ、凝固槽に投入してフッ素系樹脂を凝固させることによって多孔層を形成する。塗工液には必要に応じて水、エチレングリコール、プロピレングリコール等の相分離助剤を添加しても良い。
 溶媒としては、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP),リン酸ヘキサメチルトリアミド(HMPA)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、γ-ブチロラクトン、クロロホルム、テトラクロロエタン、ジクロロエタン、3-クロロナフタレン、パラクロロフェノール、テトラリン、アセトン、アセトニトリルなどが挙げられ、樹脂の溶解性に併せて自由に選択できる。
 塗工液の粘度は30~200mPa・sの範囲が好ましく、より好ましくは40~180mPa・s、さらに好ましくは50~150mPa・sである。塗工液の粘度を上記好ましい範囲内にすることで多孔層の膜厚を均一にしやすく、且つ生産性にも優れる。塗工液の粘度は塗工液の固形分濃度や増粘剤を用いて調整してもよいが、分子量の異なるフッ素系樹脂をブレンドして用いてもよい。
 塗工液の固形分濃度は、均一に塗布できれば特に制限されないが、3重量%以上、30重量%以下が好ましく、5重量%以上、25重量%以下がさらに好ましい。固形分濃度が3重量%未満では得られた多孔層が脆くなる場合がある。また、30重量%を超えると、生産性、塗工性が低下する。
 ポリオレフィン微多孔膜へ多孔層を積層する方法は、例えば、後述する公知のロールコート法を用いることができる。ロールコート法としては、例えば、リバースロールコート法、グラビアコート法などが挙げられ、これらの方法は単独又は組み合わせて行うことができる。なかでも塗工厚の均一化の観点からはグラビアコート法が好ましい。
 本発明ではロールコート法におけるロールとポリオレフィン微多孔膜との塗工接線の太さが3mm以上、10mm以下であることが好ましい。塗工接線の太さが10mmを超えるとポリオレフィン微多孔膜と塗工ロールとの接触圧力が大きく、塗工面にキズが入りやすくなる。
 本明細書でいう塗工接線とは、塗工ロールとポリオレフィン微多孔膜が接する線であり、塗工接線の太さとは塗工接線の長さ方向の幅を意味する(図5参照)。塗工接線の太さは、塗工ロールとポリオレフィン微多孔膜の塗工接線をポリオレフィン微多孔膜の裏面から観察することによって測定することができる。塗工接線の太さを調整するには、ポリオレフィン微多孔膜に対する塗工ロールの位置を前後に調整するほか、塗工面の背後に配したバックロールの水平方向に対する左右の位置バランスを調整することによって可能である。バックロールは塗工ロールに対して上流側、下流側の両方に配置することがより効果的である。
 塗工ロールの振れ精度は、10μm/Φ100mm以下であることが好ましく、より好ましくは8μm/Φ100mm以下、さらに好ましくは5μm/Φ100mm以下である。塗工ロールの振れ精度が上記範囲内であると、長さ方向に対しても均一な塗工厚さが得られやすくなる。塗工ロールの振れ精度が高くなるほど高価になるが、本発明の課題を為しえるためには重要である。
 多孔層の平均厚みT(ave)は、電極接着性の観点から1~5μmが好ましく、より好ましくは1~4μm、さらに好ましくは1~3μmである。巻き嵩を抑制することができ、体積エネルギー密度の高いリチウムイオン二次電池に適した電池用セパレータとなる。
 本明細書でセパレータの幅方向における均一な厚みの多孔層とは、有効塗工幅に対して厚みの変動幅(R)が1.0μm以下であることを意味するが、厚みの変動幅(R)は0.8μm以下が好ましく、より好ましくは0.5μm以下である。ここで、有効塗工幅とは全塗工幅に対して両端3mmを除外した幅をいう。両端3mmは塗工液の表面張力により、塗工液が局所的に盛り上がったり、にじんだりするためである。
 多孔層の空孔率は、30~90%が好ましく、より好ましくは40~70%である。所望の空孔率は、無機粒子の濃度、バインダー濃度などを適宜調整することで得られる。
 本明細書でセパレータの長さ方向における多孔層の厚みが均一とは、セパレータが長さ1000m以上に対して厚みの変動幅(R)が1.0μm以下であることを意味する。厚みの変動幅(R)は0.8μm以下が好ましく、より好ましくは0.5μm以下である。
 塗工液の固形分濃度は、均一に塗工できれば特に制限されないが20重量%以上、80重量%以下が好ましく、50重量%以上、70重量%以下がより好ましい。塗工液の固形分濃度が上記好ましい範囲であると均一な塗工厚が得られやすくなり、多孔層が脆くなるのを防ぐことができる。
5.電池用セパレータ
 ポリオレフィン微多孔膜に多孔層を積層して得られた電池用セパレータの膜厚は、機械強度、電池容量の観点から6μm~30μmが好ましい。
 電池用セパレータの幅は特に制限はないが、下限は30mmが好ましく、より好ましくは60mm、さらに好ましくは100mmであり、上限は2000mmが好ましく、より好ましくは1000mm、さらに好ましくは800mmである。電池用セパレータの厚さが上記範囲であると、高容量の電池作製に適し、自重によるたわみが生じにくい。
 電池用セパレータの長さは、下限は1000mが好ましく、より好ましくは2000m、さらに好ましくは3000mである。上限は特に定めないが10000mが好ましく、より好ましくは8000m、さらに好ましくは7000mである。電池用セパレータの長さの長さが上記範囲であると、生産性を向上させ、捲回体とした場合に自重によりたわみが生じにくい。
 電池用セパレータは、乾燥状態で保存することが望ましいが、絶乾状態での保存が困難な場合は、使用の直前に100℃以下の減圧乾燥処理を行うことが好ましい。
 本発明の電池用セパレータは、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池、およびプラスチックフィルムコンデンサ、セラミックコンデンサ、電気二重層コンデンサなどのセパレータとして用いることができるが、特にリチウムイオン二次電池のセパレータとして用いるのが好ましい。以下にリチウムイオン二次電池を例にとって説明する。リチウムイオン二次電池は、正極と負極がセパレータを介して積層された電極体と電解液(電解質)を含有している。電極体の構造は特に限定されず、公知の構造であってよい。例えば、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、帯状の正極及び負極が重ねられて巻回された電極構造(巻回型)等の構造とすることができる。
 以下、実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。
1.F25値の変動幅の測定
 実施例及び比較例で得られたポリオレフィン微多孔膜の幅方向に対してTD10mm×MD50mmの試験片を等間隔に5点切り出した。両端部の試験片は微多孔膜の幅方向の端部から30~40mmの箇所から切り出した。JISK7113に準じ、卓上形精密万能試験機(オートグラフAGS‐J((株)島津製作所製))を用いて、試験片の長さ方向のSS曲線(垂直応力(stress)と垂直歪み(strein)との関係)を求めた。垂直歪みが25%伸長した時点での垂直応力値を読み取り、その値を各試験片の断面積で除した値をF25値とし、5点の幅方向の平均値を求めた。長さ方向に対して250m間隔で5箇所について、F25値の幅方向の各平均値を求め、その最大値と最小値の差からF25値の変動幅を求めた。なお、電池用セパレータから多孔層を剥離除去したポリオレフィン微多孔膜を試験片に供してもよい。
・測定条件
 ロードセル容量:1kN
 クリップ間距離:20mm
 試験速度:20mm/min
 測定環境:気温20℃、相対湿度60%
2.多孔層の膜厚の長さ方向の変動幅(R)
 実施例及び比較例で得られたポリオレフィン微多孔膜の幅方向に対してTD10mm×MD50mmの試験片を等間隔に5点切り出した。両端部の試験片は微多孔膜の幅方向の端部から30~40mmの箇所から切り出した。
 各試験片の断面をSEM観察することによって多孔層の厚みを求めた。断面試験片はクライオCP法を用いて作製し、電子線によるチャージアップを防ぐため、僅かに金属微粒子を蒸着してSEM観察を行った。無機粒子の存在領域を多孔層として膜厚を測定し、5点の幅方向の平均値を求めた。長さ方向に対して250m間隔で5箇所について幅方向の各平均値を求め、その最大値と最小値の差から長さ方向に対する多孔層の厚みの変動幅(R)とした。多孔層がポリオレフィン微多孔膜の両面に設けられている場合には、同様に片面ずつ多孔層の膜厚の長さ方向の変動幅(R)を求め、そのうち大きい値をその試料の変動幅(R)とした。上記計25点の試験片の厚みの平均値を多孔層の平均厚みT(ave)とした。
・測定装置
 電界放射型走査電子顕微鏡(FE‐SEM)S‐4800((株)日立ハイテクノロジ-ズ製)
 クロスセクションポリッシャ(CP)SM‐9010(日本電子(株)製)
・測定条件
 加速電圧:1.0kV
3.縦延伸ロールの表面温度の変動幅
 各ロールの表面を赤外放射温度計で5分間ごとに5回測定し、最大値と最小値の差から縦延伸ロールの表面温度の変動幅を求めた。
4.塗工接線の太さ測定
 塗工接線とは、塗工の際に塗工ロールとポリオレフィン微多孔膜が接する幅方向の線である。塗工接線の太さとは、塗工接線の長さ方向の幅であり、ポリオレフィン微多孔膜の裏面を通してスケールを用いて読み取った値をいう。
5.巻き姿
 実施例及び比較例で得られた電池用セパレータの捲回体を目視で観察を行い、たわみ、巻きずれの発生している箇所の数を数えた。
・判定基準
○(良好):なし
△(許容):1~3ヶ所
×(不良):4ヶ所以上
6.キズの評価
 実施例及び比較例で得られた電池用セパレータの捲回体から最外周部分を取り除いた後、内周部分1mを引き出し、評価用試料とした。キズの検出には、ブロムライト(写真撮影、ビデオ撮影時用いる照明器具)を塗工面に照射し、キズを目視で検出し、数を数えた。
・判定基準
○(良好):1箇所以下
△(許容):2~5箇所
×(不良):6箇所以上
実施例1
 質量平均分子量2.5×10の超高分子量ポリエチレンを40質量%と質量平均分子量2.8×10の高密度ポリエチレンを60質量%とからなる組成物100質量部に、テトラキス[メチレン‐3‐(3,5‐ジターシャリーブチル‐4‐ヒドロキシフェニル)-プロピオネート]メタン0.375質量部をドライブレンドし、ポリエチレン組成物を作成した。得られたポリエチレン組成物30重量部を二軸押出機に投入した。さらに、流動パラフィン70重量部を二軸押出機のサイドフィーダーから供給し、溶融混練して、押出機中にてポリエチレン樹脂溶液を調製した。続いて、この押出機の先端に設置されたダイから190℃でポリエチレン樹脂溶液を押し出し、内部の冷却水温度を25℃に保った冷却ロールで引き取りながら未延伸ゲル状シートを成形した。得られた未延伸ゲル状シートを、シート表面の温度が110℃になるように4本の予熱ロール群に通過させ、図1に示す縦延伸装置Aに導き、未延伸ゲル状シートを縦延伸ロールに通過させた。
 ここで、縦延伸装置Aにおいて縦延伸ロールには幅1000mm、直径300mm、ハードクロムメッキが施された金属ロール(表面粗度0.5S)を用いた。各ロールの表面温度は110℃とし、表面温度の変動幅は±2℃以内となるよう制御した。ドクターブレードにはポリエステル製のドクターブレードを用いた。ニップロールにはニトリルゴム被覆ロール((株)加貫ローラ製作所製)を用いて、各ニップロールの圧力は0.3MPaとした。縦延伸ロールの周速は搬送方向に段階的に増大させ、第1縦延伸ロールと第2縦延伸ロールの周速比1.3、第2縦延伸ロールと第3縦延伸ロールの周速比1.5、第3縦延伸ロールと第4縦延伸ロールの周速比1.8、第4縦延伸ロールと第5縦延伸ロールの周速比2.1に設定した。隣り合う縦延伸ロールの間隔は延伸中のゲル状シートが延伸ロールから離れて次の延伸ロールに接するまでの距離を200mmとした。次いで、シート温度が50℃になるよう4本の冷却ロールを通過させて縦延伸ゲル状シートを形成した。得られた縦延伸ゲル状シートの両端部をクリップで把持し、20ゾーンに分割されたテンター内で、温度115℃で横方向に6倍延伸し、二軸延伸ゲル状シートを成形した。このときシート進行方向に対してクリップの間隔はテンター入り口から出口まで5mmとした。得られた二軸延伸ゲル状シートを30℃まで冷却し、25℃に温調した塩化メチレンの洗浄槽内にて流動パラフィンを除去し、60℃に調整された乾燥炉で乾燥した。
 得られた乾燥後のシートを図5に示す再延伸装置にて縦倍率1.2倍となるよう再延伸し、125℃、20秒間熱処理し、厚さ7μmのポリオレフィン微多孔膜を得た。さらに、巻き上げ時の搬送速度を50m/分で幅4000mm、巻き長5050mのポリオレフィン微多孔膜捲回体を得た。これを幅950mmにスリット加工して塗工用基材とした。
(塗工液の作製)
 フッ素系樹脂として、塗工液の溶液粘度が100mPa・sになるように配合したポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(VdF/HFP=92/8(重量比)、重量平均分子量100万)とポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(VdF/HFP=88/12(重量比)、重量平均分子量60万)との混合物を用いた。
 フッ素系樹脂、アルミナ粒子(平均粒径0.5μm)及び、N-メチル-2-ピロリドンを混合した。アルミナ粒子はフッ素系樹脂とアルミナ粒子の合計体積に対して50体積%、固形分濃度が10重量%となるように配合した。フッ素系樹脂を完全に溶解し、アルミナ粒子を均一に分散させた後、濾過限界5μmのフィルターで濾過し、塗工液aを調合した。
 図5に示す塗工装置(リバースグラビアコート法)を用いて、搬送速度50m/分の条件で塗工用基材の両面に塗工液aを同量塗工し、N-メチル-2-ピロリドン5重量%含有する水溶液からなる凝固浴に浸漬して凝固させた後、水洗、乾燥し、電池用セパレータを得た。このとき、塗工装置のグラビアロールとバックロールの位置を調整し、塗工接線の太さが3~5mmの範囲内になるようにした。また、塗工ロールは直径100mm、振れ精度が8μm/Φ100mmのグラビアロールを用いた。次いで、電池用セパレータを有効塗工幅になるようにスリット加工し、幅900mm、巻き長5000mの電池用セパレータの捲回体を得た。多孔層の乾燥時の目付は両面合わせて5.0g/mであった。
実施例2
 縦延伸装置Aの替わりに図2に示す縦延伸装置Bを用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例3
 縦延伸装置Aの替わりに図3に示す縦延伸装置Cを用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例4
 縦延伸装置Aの替わりに図4に示す縦延伸装置Dを用い、縦延伸装置Dの第1縦延伸ロールと第2縦延伸ロールの周速比1.5、第2縦延伸ロールと第3縦延伸ロールの周速比2.0、第3縦延伸ロールと第4縦延伸ロールの周速比2.5に設定した以外は実施例1と同様にして電池用セパレータを得た。
実施例5
 縦延伸装置Aにおいて、各ニップロールの圧力を0.1MPaとした以外は実施例1と同様にして電池用セパレータを得た。
実施例6
 縦延伸装置Aにおいて、各ニップロールの圧力を0.5MPaとした以外は実施例1と同様にして電池用セパレータを得た。
実施例7
 縦延伸装置Aにおいて、5本の縦延伸ロールとも表面粗度が5.0Sのセラミック被覆金属ロールを用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例8
 縦延伸装置Aにおいて、第1縦延伸ロールと第2縦延伸ロールの周速比1.2、第2縦延伸ロールと第3縦延伸ロールの周速比1.5、第3縦延伸ロールと第4縦延伸ロールの周速比1.8、第4縦延伸ロールと第5縦延伸ロールの周速比2.3に設定した以外は実施例1と同様にして電池用セパレータを得た。
実施例9
 縦延伸装置Aにおいて、第1縦延伸ロールと第2縦延伸ロールの周速比1.3、第2縦延伸ロールと第3縦延伸ロールの周速比1.7、第3縦延伸ロールと第4縦延伸ロールの周速比1.8、第4縦延伸ロールと第5縦延伸ロールの周速比1.9に設定した以外は実施例1と同様にして電池用セパレータを得た。
実施例10
 塗工液の調整において、各ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体の配合比を調整して塗工液の溶液粘度を70mPa・sとした塗工液bを用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例11
 塗工液の調整において、各ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体の配合比を調整して塗工液の溶液粘度を180mPa・sとした塗工液cを用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例12
 振れ精度が10μm/Φ100mmのグラビアロールを用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例13
 振れ精度が5μm/Φ100mmのグラビアロールを用いた以外は実施例1と同様にして電池用セパレータを得た。
実施例14
 塗工装置のグラビアロールとバックロールの位置を調整し、塗工接線の太さが5~7mmの範囲とした以外は実施例1と同様にして電池用セパレータを得た。
実施例15
 塗工装置のグラビアロールとバックロールの位置を調整し、塗工接線の太さが8~10mmの範囲とした以外は実施例1と同様にして電池用セパレータを得た。
比較例1
 実施例1で成形された未延伸ゲル状シートの両端部をクリップで把持し、温度116℃に調節した5ゾーンに分割されたテンターに未延伸ゲル状シートを導き、同時二軸延伸法で縦方向に7倍、横方向に7倍に延伸して同時二軸延伸ゲル状シートを成形した。このとき、クリップの間隔は、搬送方向に対してテンター入り口では5mmであり、テンター出口では95mmであった。次いで、同時二軸延伸ゲル状シートを30℃まで冷却し、25℃に温調した塩化メチレンの洗浄槽内にて洗浄し、流動パラフィンを除去したシートを60℃に調整された乾燥炉で乾燥し、ポリオレフィン微多孔膜を得た。さらに、巻き上げ時の搬送速度を50m/分で幅4000mm、巻き長5050mのポリオレフィン微多孔膜捲回体を得た。これを幅950mmにスリット加工して塗工用基材とした。得られたポリオレフィン微多孔膜を用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例2
 縦延伸装置Aにおいて、5本の縦延伸ロールにニップロールを用いなかったこと以外は実施例1と同様にして電池用セパレータを得た。
比較例3
 縦延伸装置Bを用い、5本の縦延伸ロールともニップロールを用いなかったこと以外は実施例1と同様にして電池用セパレータを得た。
比較例4
 縦延伸装置Aにおいて、各ニップロールの圧力は0.04MPaとした以外は実施例1と同様にして電池用セパレータを得た。
比較例5
 縦延伸装置Aにおいて、縦延伸ロールとして表面粗度0.1Sのハードクロムメッキされた金属ロールを用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例6
 縦延伸装置Aにおいて、第1縦延伸ロールと第2縦延伸ロールの周速比1.6、第2縦延伸ロールと第3縦延伸ロールの周速比1.6、第3縦延伸ロールと第4縦延伸ロールの周速比1.7、第4縦延伸ロールと第5縦延伸ロールの周速比1.7に設定した以外は実施例1と同様にして電池用セパレータを得た。
比較例7
 ポリオレフィン微多孔膜の製造における縦延伸装置Aにおいて、第1縦延伸ロールと第2縦延伸ロールの周速比1.1、第2縦延伸ロールと第3縦延伸ロールの周速比1.3、第3縦延伸ロールと第4縦延伸ロールの周速比1.5、第4縦延伸ロールと第5縦延伸ロールの周速比3.5に設定した以外は実施例1と同様にして電池用セパレータを得た。
比較例8
 ポリオレフィン微多孔膜の製造における縦延伸装置Aにおいて、第1縦延伸ロールと第2縦延伸ロールの周速比1.3、第2縦延伸ロールと第3縦延伸ロールの周速比1.7、第3縦延伸ロールと第4縦延伸ロールの周速比1.8、第4縦延伸ロールと第5縦延伸ロールの周速比1.9に設定した以外は実施例1と同様にして電池用セパレータを得た。
比較例9
 縦延伸装置Aにおいて、各縦延伸ロールそれぞれの温度変動幅が±3℃以内であった以外は実施例1と同様にして電池用セパレータを得た。
比較例10 
 塗工液の調整において、各ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体の配合比を調整して塗工液の溶液粘度を650Pa・sとした塗工液eを用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例11
 ポリオレフィン微多孔膜の製造において、ポリエチレン樹脂溶液の押出量を調整し、実施例1の電池用セパレータの膜厚と同じ膜厚のポリエチレン多孔膜を電池用セパレータとした。
比較例12
 振れ精度が12μm/Φ100mmのグラビアロールを用いた以外は実施例1と同様にして電池用セパレータを得た。
比較例13
 塗工装置のグラビアロールとバックロールの位置を調整し、塗工接線の太さが11~13mmの範囲とした以外は実施例1と同様にして電池用セパレータを得た。
 表1に実施例1~15、比較例1~13で得られるポリオレフィン微多孔膜の製造条件及びその特性を示す。表2に電池用セパレータの製造条件、その特性及び捲回体の特性を示す。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
1.縦延伸ロール
2.ニップロール
3.ブレード
4.ゲル状シート
5.二軸延伸シート
6.再縦延伸ロール
7.再縦延伸用ニップロール
8.ポリオレフィン微多孔膜
9.塗工ロール
10.塗工接線
11.バックロール
12.ロール位置調整方向
 

Claims (9)

  1. 長さ方向におけるF25値の変動幅が1MPa以下であるポリオレフィン微多孔膜の少なくとも片面に、フッ素系樹脂と無機粒子を含み、平均厚みT(ave)が1~5μmの多孔層を設けた電池用セパレータ。(ここで、F25値とは引張試験機を用いて試験片が25%伸びた時の荷重値を試験片の断面積で除した値を表す。)
  2. 多孔層の長さ方向における厚み変動幅(R)が1.0μm以下である請求項1に記載の電池用セパレータ。
  3. フッ素系樹脂がポリフッ化ビニリデン又はポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体から選ばれる少なくとも一種を含む請求項1又は2に記載の電池用セパレータ。
  4. ポリオレフィン微多孔膜の長さが2000m以上の請求項1~3のいずれかに記載の電池用セパレータ。
  5. ポリオレフィン微多孔膜の長さが3000m以上の請求項1~4のいずれかに記載の電池用セパレータ。
  6. (a)ポリオレフィン樹脂と成形用溶剤とを溶融混練してポリオレフィン樹脂溶液を調製する工程
    (b)前記ポリオレフィン樹脂溶液を押出機よりシート状に押出し、冷却して未延伸ゲル状シートを形成する工程
    (c)前記未延伸ゲル状シートを少なくとも3対の縦延伸ロール群の間を通過させ、段階的に増大するロール群の周速によって縦方向に延伸し、縦延伸ゲル状シートを得る工程(ここで、縦延伸ロールとこれに平行に接する耐熱性ゴムで被覆したニップロールを1対の縦延伸ロール群とし、該ニップロールが縦延伸ロールに接する圧力は0.05MPa以上、0.5MPa以下である)
    (d)前記縦延伸ゲル状シートをクリップ間距離がテンター出口で50mm以下となるように把持して横方向に延伸し、二軸延伸ゲル状シートを得る工程
    (e)前記二軸延伸ゲル状シートから成形用溶剤を抽出し、乾燥する工程
    (f)乾燥後のシートを熱処理してポリオレフィン微多孔膜を得る工程
    (g)ポリオレフィン微多孔膜の少なくとも片面に、フッ素系樹脂と無機粒子を含む塗工液を振れ精度が10μm/Φ100mm以下の塗工ロールを用いたロールコート法で塗工し、乾燥する工程
    を含む電池用セパレータの製造方法。
  7. 工程(c)における隣り合う縦延伸ロールの周速比が段階的に増大する請求項6に記載の電池用セパレータの製造方法。
  8. 塗工ロールがグラビアロールである請求項6又は請求項7に記載の電池用セパレータの製造方法。
  9. 請求項1乃至請求項5に記載の電池用セパレータ、又は請求項6若しくは請求項7に記載の電池用セパレータの製造方法によって得られる電池用セパレータを搬送速度が50m/分以上で巻き芯に巻き上げる工程を含む電池用セパレータ捲回体の製造方法。
     
PCT/JP2016/083729 2015-12-24 2016-11-14 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法 WO2017110306A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680074097.8A CN108370014B (zh) 2015-12-24 2016-11-14 聚烯烃微多孔膜、电池用隔膜以及它们的制造方法
KR1020207008014A KR102177921B1 (ko) 2015-12-24 2016-11-14 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그것들의 제조 방법
KR1020207008013A KR102101688B1 (ko) 2015-12-24 2016-11-14 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그것들의 제조 방법
KR1020187016796A KR20180096618A (ko) 2015-12-24 2016-11-14 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그것들의 제조 방법
JP2017557793A JP6645516B2 (ja) 2015-12-24 2016-11-14 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
US16/065,374 US10978721B2 (en) 2015-12-24 2016-11-14 Polyolefin microporous membrane, battery separator and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252453 2015-12-24
JP2015-252453 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110306A1 true WO2017110306A1 (ja) 2017-06-29

Family

ID=59090089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083729 WO2017110306A1 (ja) 2015-12-24 2016-11-14 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法

Country Status (6)

Country Link
US (1) US10978721B2 (ja)
JP (1) JP6645516B2 (ja)
KR (3) KR102177921B1 (ja)
CN (1) CN108370014B (ja)
TW (1) TWI720088B (ja)
WO (1) WO2017110306A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029282A (ja) * 2017-08-02 2019-02-21 株式会社日本製鋼所 Lib用セパレータ製造システム
CN114552121A (zh) * 2022-04-06 2022-05-27 四川卓勤新材料科技有限公司 一种用于锂离子隔膜的刮油工装及其刮油装置
CN115256985A (zh) * 2022-07-29 2022-11-01 威海市龙升精密机械股份有限公司 一种反渗透膜元件后道次自动化加工设备及其加工方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770003B (zh) * 2016-04-27 2022-07-11 日商東麗股份有限公司 聚烯烴微多孔膜及其製造方法以及電池用隔膜及其製造方法
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430621B1 (ja) * 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) * 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430618B1 (ja) * 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
CN113491032B (zh) * 2019-02-28 2023-06-27 松下知识产权经营株式会社 非水电解质二次电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249480A (ja) * 2008-04-04 2009-10-29 Toshiba Mach Co Ltd 多孔性フィルムの製膜方法及び多孔性フィルム製膜用の逐次二軸延伸装置
JP2012500130A (ja) * 2008-08-15 2012-01-05 東レ東燃機能膜合同会社 微多孔膜の製造方法および微多孔膜の製造装置
WO2013080701A1 (ja) * 2011-12-02 2013-06-06 三菱樹脂株式会社 積層多孔フィルムロール及びその製造方法
JP2013142101A (ja) * 2012-01-10 2013-07-22 Tetsuro Nogata ポリオレフィン微多孔膜の製造方法
JP2013530261A (ja) * 2010-04-20 2013-07-25 エスケー イノベーション シーオー., エルティーディー. 生産性に優れ、物性調節が容易なポリオレフィン微多孔膜の製造方法
WO2014025004A1 (ja) * 2012-08-06 2014-02-13 住友化学株式会社 ロール部材、塗布装置、セパレータ製造装置及び二次電池製造装置
WO2016080200A1 (ja) * 2014-11-18 2016-05-26 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜、電池用セパレータおよびその製造方法
WO2016092993A1 (ja) * 2014-12-11 2016-06-16 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
JP2016143640A (ja) * 2015-02-05 2016-08-08 東レバッテリーセパレータフィルム株式会社 電池用セパレータの製造方法、および電池用セパレータの捲回体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236150B2 (ja) 1972-12-27 1977-09-13
JPS5110144A (ja) 1974-07-16 1976-01-27 Osaka Denki Co Ltd Shitamukijidoyosetsuho
JPS5226744A (en) 1975-08-25 1977-02-28 Keiichiro Yamazaki Grille
AU779797B2 (en) 2000-03-07 2005-02-10 Teijin Limited Lithium ion secondary cell, separator, cell pack, and charging method
JP5226744B2 (ja) 2001-09-28 2013-07-03 帝人株式会社 複合多孔膜の製造法
JP2008269928A (ja) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
PL2188127T3 (pl) * 2007-08-31 2017-09-29 Toray Battery Separator Film Co., Ltd. Wielowarstwowa, mikroporowata membrana poliolefinowa i sposób jej wytwarzania
TWI497791B (zh) 2011-04-08 2015-08-21 Teijin Ltd Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4988973B1 (ja) 2011-04-08 2012-08-01 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
KR101307384B1 (ko) * 2011-04-26 2013-09-11 주식회사 엘지화학 다이 코팅 방식의 분리막의 제조방법
AU2012361558B2 (en) 2011-12-28 2016-03-17 Asahi Kasei Kabushiki Kaisha Redox flow secondary battery and electrolyte membrane for redox flow secondary batteries
KR20140086843A (ko) * 2012-12-28 2014-07-08 제일모직주식회사 분리막의 제조 방법과 그 분리막, 및 이를 이용한 전지
KR20150091973A (ko) 2014-02-04 2015-08-12 에스케이이노베이션 주식회사 분리막의 제조방법 및 이로 제조된 분리막
CN104900832B (zh) 2015-05-26 2018-07-03 广东烛光新能源科技有限公司 一种多孔复合隔离膜及其制备方法
WO2017018483A1 (ja) * 2015-07-29 2017-02-02 東レバッテリーセパレータフィルム株式会社 電池用セパレータおよびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249480A (ja) * 2008-04-04 2009-10-29 Toshiba Mach Co Ltd 多孔性フィルムの製膜方法及び多孔性フィルム製膜用の逐次二軸延伸装置
JP2012500130A (ja) * 2008-08-15 2012-01-05 東レ東燃機能膜合同会社 微多孔膜の製造方法および微多孔膜の製造装置
JP2013530261A (ja) * 2010-04-20 2013-07-25 エスケー イノベーション シーオー., エルティーディー. 生産性に優れ、物性調節が容易なポリオレフィン微多孔膜の製造方法
WO2013080701A1 (ja) * 2011-12-02 2013-06-06 三菱樹脂株式会社 積層多孔フィルムロール及びその製造方法
JP2013142101A (ja) * 2012-01-10 2013-07-22 Tetsuro Nogata ポリオレフィン微多孔膜の製造方法
WO2014025004A1 (ja) * 2012-08-06 2014-02-13 住友化学株式会社 ロール部材、塗布装置、セパレータ製造装置及び二次電池製造装置
WO2016080200A1 (ja) * 2014-11-18 2016-05-26 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜、電池用セパレータおよびその製造方法
WO2016092993A1 (ja) * 2014-12-11 2016-06-16 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
JP2016143640A (ja) * 2015-02-05 2016-08-08 東レバッテリーセパレータフィルム株式会社 電池用セパレータの製造方法、および電池用セパレータの捲回体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029282A (ja) * 2017-08-02 2019-02-21 株式会社日本製鋼所 Lib用セパレータ製造システム
CN114552121A (zh) * 2022-04-06 2022-05-27 四川卓勤新材料科技有限公司 一种用于锂离子隔膜的刮油工装及其刮油装置
CN114552121B (zh) * 2022-04-06 2022-10-14 四川卓勤新材料科技有限公司 一种用于锂离子隔膜的刮油工装及其刮油装置
CN115256985A (zh) * 2022-07-29 2022-11-01 威海市龙升精密机械股份有限公司 一种反渗透膜元件后道次自动化加工设备及其加工方法

Also Published As

Publication number Publication date
US10978721B2 (en) 2021-04-13
TWI720088B (zh) 2021-03-01
KR20200032272A (ko) 2020-03-25
CN108370014A (zh) 2018-08-03
JP6645516B2 (ja) 2020-02-14
TW201727971A (zh) 2017-08-01
JPWO2017110306A1 (ja) 2018-10-11
KR20200032271A (ko) 2020-03-25
CN108370014B (zh) 2021-02-09
KR102101688B1 (ko) 2020-04-17
US20190190037A1 (en) 2019-06-20
KR20180096618A (ko) 2018-08-29
KR102177921B1 (ko) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2017110306A1 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法
KR102164178B1 (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그 제조 방법
US20200303705A1 (en) Microporous polyolefin film, separator for battery, and production processes therefor
KR102157492B1 (ko) 적층 폴리올레핀 미세 다공막, 전지용 세퍼레이터 및 그것들의 제조 방법
KR102160925B1 (ko) 폴리올레핀 미다공막, 전지용 세퍼레이터 및 그것들의 제조 방법
JP6624283B2 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびこれらの製造方法
KR102193965B1 (ko) 전지용 세퍼레이터 및 그 제조 방법
JP5914789B1 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびその製造方法
JP5914790B1 (ja) ポリオレフィン微多孔膜、電池用セパレータおよびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557793

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187016796

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878202

Country of ref document: EP

Kind code of ref document: A1