WO2017110209A1 - 点火プラグ及びこれを備えた点火システム - Google Patents

点火プラグ及びこれを備えた点火システム Download PDF

Info

Publication number
WO2017110209A1
WO2017110209A1 PCT/JP2016/079898 JP2016079898W WO2017110209A1 WO 2017110209 A1 WO2017110209 A1 WO 2017110209A1 JP 2016079898 W JP2016079898 W JP 2016079898W WO 2017110209 A1 WO2017110209 A1 WO 2017110209A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
electrode
ground electrode
discharge
spark plug
Prior art date
Application number
PCT/JP2016/079898
Other languages
English (en)
French (fr)
Inventor
民田 太一郎
貴裕 井上
橋本 隆
中川 光
友一 坂下
孝佳 永井
棚谷 公彦
裕之 亀田
山田 裕一
謙治 伴
Original Assignee
三菱電機株式会社
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 日本特殊陶業株式会社 filed Critical 三菱電機株式会社
Priority to US15/769,120 priority Critical patent/US10522978B2/en
Priority to EP16878107.8A priority patent/EP3396795B1/en
Priority to JP2017557752A priority patent/JP6482684B2/ja
Priority to CN201680073742.4A priority patent/CN108370134B/zh
Publication of WO2017110209A1 publication Critical patent/WO2017110209A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/46Sparking plugs having two or more spark gaps
    • H01T13/467Sparking plugs having two or more spark gaps in parallel connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/52Sparking plugs characterised by a discharge along a surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/54Sparking plugs having electrodes arranged in a partly-enclosed ignition chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric

Definitions

  • the present invention relates to an ignition plug using dielectric barrier discharge and an ignition system including the same.
  • a spark plug used in a current gasoline engine generates a thermal plasma by arc discharge by applying a high voltage pulse between electrodes and ignites a fuel by this thermal plasma.
  • the low temperature plasma is a non-equilibrium plasma having a high electron temperature but a low temperature of ions and neutral particles, and has a feature that multipoint simultaneous ignition occupying a large volume, that is, volume ignition can be performed.
  • barrier discharge which is AC discharge through a dielectric between electrodes, is a technique that can stably generate low-temperature plasma because it can stably maintain non-equilibrium discharge over a wide electrode area.
  • barrier discharge In the barrier discharge, a small streamer discharge like a thin column is generated intermittently and uniformly on the electrode surface, so that low temperature plasma can be generated uniformly in a wide range. On the other hand, since the energy input by plasma spreads over the entire discharge space, the energy input per unit volume is low. In other words, barrier discharge can generate radicals efficiently, but can be said to be a technique in which the distribution of radicals is uniform and easily diluted.
  • Patent Document 1 discloses an ignition device in which annular electrodes are arranged concentrically outside a cylindrical dielectric electrode having a rod-shaped center electrode covered with a dielectric layer. Presented. In this example, the outer annular electrode is grounded, a high-voltage AC waveform is applied to the center electrode, and a barrier discharge is generated by a concentric electric field between the dielectric electrode and the annular electrode.
  • Patent Document 1 In the ignition device presented in Patent Document 1, barrier discharge occurs uniformly between the center electrode and the annular electrode, that is, inside the cylinder, and radicals generated by the discharge contribute to combustion.
  • the configuration of Patent Document 1 is unsuitable for direct ignition of fuel by radicals generated by barrier discharge, and it is considered that stable ignition cannot be performed. The reason will be described below.
  • Patent Document 1 is not suitable for direct ignition because the cylinder, which is the discharge space, is inside the partition wall of the engine. In order to ignite the fuel directly by barrier discharge, the fuel gas must flow into the discharge space where it reacts with radicals. On the other hand, in the configuration of Patent Document 1, it is considered that radicals generated in the discharge space gradually diffuse into the combustion chamber and react with the fuel. In such a configuration, radicals promote combustion, but it is considered difficult to ignite the fuel directly.
  • the present invention has been made in order to solve the above-described problems, and can directly ignite fuel by using barrier discharge and achieve excellent ignitability and combustibility. It is an object of the present invention to provide a spark plug that can be used and an ignition system including the same.
  • a spark plug according to the present invention includes a cylindrical metal shell, a rod-like or net-like ground electrode connected to one end surface of the metal shell, and a rod-like shape having one end exposed from the end surface side of the metal shell.
  • a high-voltage electrode and a first dielectric that covers the peripheral surface of the high-voltage electrode and is held by the metal shell, and either the end of the high-voltage electrode or the ground electrode is the first dielectric
  • the end portion of the high voltage electrode and the ground electrode are arranged to face each other through the discharge region facing the second dielectric, and face the discharge region.
  • the thickness of the two dielectrics is uniform, and the second dielectric covers the end of the high voltage electrode, the area of the ground electrode facing the discharge region is equal to that of the second dielectric facing the discharge region. It is smaller than the surface area.
  • a spark plug according to the present invention includes a cylindrical metal shell, a rod-like or net-like ground electrode connected to one end surface of the metal shell, and a rod-like shape having one end exposed from the end surface side of the metal shell.
  • the end portion of the high voltage electrode and the ground electrode are arranged to face each other through the discharge region facing the second dielectric, and face the discharge region.
  • the thickness dimensions of the two dielectrics are uniform, and G2 ⁇ 0.3 mm, where G2 is the distance between the first dielectric covering the peripheral surface of the high voltage electrode and the metal shell.
  • the spark plug according to the present invention includes a cylindrical metal shell, a rod-like or net-like ground electrode connected to one end surface of the metal shell, and one end portion exposed from the end surface side of the metal shell.
  • the second dielectric having a thickness smaller than that of the dielectric is covered, and the end portion of the high-voltage electrode and the ground electrode are disposed to face each other via a discharge region facing the second dielectric.
  • a third protrusion having a tip is provided at a location facing the discharge region.
  • An ignition system includes the above-described ignition plug, and AC voltage applying means that applies an AC voltage between a high-voltage electrode and a ground electrode of the ignition plug to generate a dielectric barrier discharge in a discharge region.
  • the metal shell is fixed inside the partition wall facing the combustion chamber of the engine, and the end portion of the high voltage electrode and the ground electrode are arranged to face each other inside the combustion chamber.
  • the spark plug by making the ground electrode into a rod-like or net-like shape, a sufficiently strong radical can be locally generated by dielectric barrier discharge, and the fuel can be ignited.
  • the flame-extinguishing effect of the ground electrode is small and it is difficult to hinder the growth of the flame.
  • the barrier discharge spreads to the surface of the second dielectric and the generation of radicals is maintained, so the flammability after ignition is accelerated. Is done.
  • the area of the ground electrode facing the discharge region is made smaller than the surface area of the second dielectric facing the discharge region, so that the fuel It is easy to flow into the discharge region, and the flame extinguishing action by the electrode is suppressed. Therefore, according to the present invention, it is possible to stably perform direct ignition of fuel using dielectric barrier discharge, and to obtain an ignition plug capable of realizing excellent ignitability and combustibility.
  • the spark plug by making the ground electrode into a rod-like or net-like shape, a sufficiently strong radical can be locally generated by dielectric barrier discharge, and the fuel can be ignited.
  • the flame-extinguishing effect of the ground electrode is small and it is difficult to hinder the growth of the flame.
  • the thickness dimension of the second dielectric facing the discharge region uniform, the barrier discharge spreads to the surface of the second dielectric and the generation of radicals is maintained, so the flammability after ignition is accelerated. Is done.
  • the distance G2 between the first dielectric covering the peripheral surface of the high voltage electrode and the metal shell to 0.3 mm or less, the discharge generated in the gap between the first dielectric and the metal shell is suppressed. And power loss due to the discharge generated in the gap is suppressed. Therefore, according to the present invention, it is possible to stably perform direct ignition of fuel using dielectric barrier discharge, and to obtain an ignition plug capable of realizing excellent ignitability and combustibility.
  • the spark plug according to the present invention by forming the ground electrode in a rod shape or a net shape, a sufficiently strong radical can be locally generated by the dielectric barrier discharge, and the fuel can be ignited. At the same time, the flame extinguishing effect of the ground electrode is small and it is difficult to prevent the growth of the flame. Moreover, the effect which makes the discharge start voltage low is acquired by providing the 3rd protrusion which has a pointed part in the location which faces the discharge area
  • the end of the high voltage electrode of the spark plug and the ground electrode are disposed opposite to each other inside the combustion chamber, so that the fuel gas introduced into the combustion chamber flows into the discharge region. Almost, radicals react with the fuel simultaneously with the occurrence of dielectric barrier discharge, and the fuel can be ignited. Therefore, according to the present invention, it is possible to stably perform direct ignition to fuel using barrier discharge, and to obtain an ignition system capable of realizing excellent ignitability and combustibility.
  • FIG. 1 is a sectional view and a bottom view showing the ignition plug according to the first embodiment.
  • the spark plug 1 according to Embodiment 1 includes a rod-shaped high-voltage electrode 11, a first dielectric 12 a that covers the peripheral surface 11 a of the high-voltage electrode 11, and a cylindrical metal shell 13. And a rod-shaped ground electrode 14.
  • the metal shell 13 which is the casing of the spark plug 1 has a threaded portion 13a on its peripheral surface, and is fixed inside the partition wall 21 facing the combustion chamber 22 of the engine.
  • a rod-shaped ground electrode 14 is connected to one end face 13 b of the metal shell 13.
  • the metal shell 13 and the ground electrode 14 are at the same ground potential as the engine.
  • the rod-shaped high voltage electrode 11 has a peripheral surface 11 a covered with the first dielectric 12 a held by the metal shell 13, and one end portion 11 c is exposed from the end surface 13 b side of the metal shell 13. .
  • a distance G2 (see FIG. 19) of a gap between the first dielectric 12a covering the peripheral surface 11a of the high voltage electrode 11 and the metal shell 13 is set to 0.3 mm or less.
  • the high voltage electrode 11 is a dielectric electrode covered with a dielectric 12 including a first dielectric 12a and a second dielectric 12b from the peripheral surface 11a to the end 11c. . Further, the thickness dimension of the second dielectric 12b facing the discharge region 15 is uniform.
  • the electrode covered with the second dielectric 12b is referred to as a dielectric electrode.
  • the ground electrode 14 has a bent portion 14 a whose end is bent in the direction of the high voltage electrode 11, and the bent portion 14 a and the tip portion 11 b of the high voltage electrode 11 are arranged to face each other. Forming. Further, since the ground electrode 14 is made of a thin rod-shaped metal, a sufficiently strong radical is locally generated by dielectric barrier discharge (hereinafter simply referred to as barrier discharge).
  • barrier discharge dielectric barrier discharge
  • the fuel gas needs to flow into the discharge region 15, but the discharge region 15 formed at the tip of the spark plug 1 protrudes into the combustion chamber 22. Exposed to the flow of fuel gas.
  • the second dielectric 12b covers the end 11c of the high voltage electrode 11
  • the area of the ground electrode 14 facing the discharge region 15 is larger than the surface area of the second dielectric 12b facing the discharge region 15. small. For this reason, the fuel introduced into the combustion chamber 22 easily flows into the discharge region 15 and is directly ignited by sufficiently strong radicals generated by the barrier discharge.
  • the shape and arrangement of the high voltage electrode 11, the ground electrode 14, and the second dielectric 12b are not limited to this, and various modifications are possible.
  • the ground electrode 14 does not necessarily have the bent portion 14a.
  • various modifications will be described.
  • the ignition system according to the first embodiment is an AC voltage that causes a barrier discharge in the discharge region 15 by applying an AC high voltage between the ignition plug 1 and the high voltage electrode 11 and the ground electrode 14 of the ignition plug 1.
  • Applying means FIG. 2 shows an example of a drive circuit that is an AC voltage application means
  • FIG. 3 shows waveforms of an ignition signal and an AC high voltage when the drive circuit shown in FIG. 2 is used.
  • the control circuit 3 that has acquired the engine ignition signal output from the ECU (Engine Control Unit) 2 generates a drive signal necessary for ignition.
  • the driver circuit 4 outputs a switching waveform as shown in FIG. 3B, and the switching element 5 is turned on / off.
  • the switching element 5 is turned on / off, the current from the DC power source 6 is converted into an alternating current and is boosted by the transformer 7.
  • a resonance coil 8 is provided on the secondary side of the transformer 7, and an alternating current high voltage is applied to the high-voltage terminal portion of the spark plug 1 by resonating the capacitance of the resonance coil 8 and the spark plug 1. .
  • the voltage across the secondary spark plug 1 rises due to resonance.
  • the voltage waveform gradually increases while fluctuating with alternating current, and reaches a steady value at a certain point. If the step-up ratio (Q value) due to resonance is large, many cycles are required until the steady value is reached. If the continuous pulse application period (number of times of switching) is too short, ignition cannot be reliably generated, and if it is too long, power is lost.
  • the drive circuit shown in FIG. 2 is a very simple circuit including one switching element 5, but a drive circuit having a half bridge configuration as shown in FIG. 4 may be used, for example.
  • the current from the DC power source 6 is converted into alternating current by a half-bridge inverter including two switching elements 5A and 5B, and through a demagnetization prevention capacitor 9 for preventing the transformer from demagnetizing.
  • the voltage is applied to the primary side of the transformer 7, boosted by the transformer 7, and output to the secondary side. Thereafter, similarly to the example of FIG. 2, the voltage is further boosted by the resonance coil 8, and an alternating high voltage is applied to the high voltage terminal portion of the spark plug 1.
  • a system of the switching circuit a system such as a full bridge inverter or push-pull can be used as a system of the switching circuit.
  • the ground electrode 14 by making the ground electrode 14 into a thin rod shape, a sufficiently strong radical can be locally generated by barrier discharge. Further, since the end portion 11c of the high-voltage electrode 11 and the ground electrode 14 are disposed to face each other inside the combustion chamber 22, the fuel gas introduced into the combustion chamber 22 easily flows into the discharge region 15 and radicals generated by the discharge. It is easy to be ignited by. That is, radicals react with the fuel simultaneously with the occurrence of barrier discharge, and the fuel can be ignited.
  • the ignition plug can stably perform direct ignition on the fuel using the barrier discharge, and can realize excellent ignitability and combustibility. 1 and an ignition system including the same can be obtained.
  • FIG. 1 a basic modification of the spark plug 1 (FIG. 1) according to the first embodiment will be described with reference to FIGS.
  • the same and corresponding parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the second dielectric 12b needs to be interposed between the high voltage electrode 11 and the ground electrode 14, and the second dielectric 12b may be provided on either electrode.
  • the high voltage electrode 11 is covered with the second dielectric 12b.
  • the ground electrode 14 may be covered with the second dielectric 12b to form a dielectric electrode. In that case, the end 11 c of the high voltage electrode 11 is exposed from the dielectric 12.
  • each rod-like ground electrode 14 is arranged in the first embodiment, but a plurality of ground electrodes 14 may be provided.
  • four thin rod-like ground electrodes 14 are provided, and each end portion has a bent portion 14 a bent in the direction of the high voltage electrode 11. Further, the tip end portion 14 b of the ground electrode 14 is opposed to the end portion 11 c above the tip end portion 11 b of the high voltage electrode 11 to form a discharge region 15.
  • ground electrode 14 When a plurality of ground electrodes 14 are provided, it is possible to generate barrier discharges in parallel. That is, since discharge can be simultaneously generated at a plurality of locations and combustion can be started at a plurality of locations, the stability of ignition and combustion is further improved.
  • the ground electrode 14 is a thin rod-like metal, and barrier discharge is generated at the tip end portion 14 b thereof, so that a sufficiently strong radical is locally generated.
  • the tip of the spark plug 1 forming the discharge region 15 protrudes into the combustion chamber 22 and is exposed to the flow of fuel gas. For this reason, the fuel gas flows into the discharge region 15 through the gap between the four thin rod-shaped ground electrodes 14, and is directly ignited by sufficiently strong radicals locally generated by the barrier discharge.
  • the area of the ground electrode 14 facing the discharge region 15 needs to be smaller than the area of the dielectric electrode facing the discharge region 15. .
  • the definition of the area of the ground electrode 14 and the dielectric electrode facing the discharge region 15 will be described with reference to FIG.
  • the shaded portion A indicates the area of the dielectric electrode facing the discharge region 15
  • the shaded portion B indicates the area of the ground electrode 14 facing the discharge region 15.
  • the area of these electrodes refers to a region into which current due to barrier discharge flows.
  • the ground electrode 14 which is a metal electrode the back side which is not opposed to the dielectric electrode is not included in the area of the electrode.
  • the ground electrode 14 is a metal electrode
  • the area of the shortest distance portion of the discharge region 15 (referred to as a discharge gap) facing the dielectric electrode is the area of the ground electrode 14 facing the discharge region 15. Defined as area.
  • the shaded portion A is defined as the surface area of the dielectric electrode facing the discharge region 15.
  • the barrier discharge is characterized in that the discharge is initially generated at the shortest distance between the electrodes, that is, at the discharge gap, but thereafter, the discharge is performed while avoiding the position where the discharge is once generated on the surface of the second dielectric 12b. For this reason, a discharge occurs along the surface of the second dielectric 12b. More precisely, the discharge is not first generated at the shortest distance between the electrodes, but is generated from the highest electric field strength.
  • spark discharge arc discharge
  • the gas temperature becomes extremely high, and the electrode is consumed due to the occurrence of discharge. Therefore, in order to extend the life of the spark plug, it is necessary to make the tip portion of the electrode thick to some extent.
  • the barrier discharge is not spark discharge (arc discharge)
  • the electrode is not consumed, and a sufficient life can be obtained even if the ground electrode 14 is formed thin.
  • the ground electrode 14 is made thinner, the fuel easily flows into the discharge region 15 and the flame extinguishing action by the electrode is suppressed. Therefore, the ground electrode 14 maintains the mechanical strength and overheats the electrode due to combustion. It is desirable to make it as thin as possible within the range that can prevent the above.
  • the same effect as in the first embodiment can be obtained, and a plurality of thin rod-shaped ground electrodes 14 can be used to simultaneously generate barrier discharge at a plurality of locations. Since the radicals are generated sufficiently by the discharge, the stability of ignition and combustion is further improved.
  • Embodiment 3 In the third embodiment of the present invention, as a modification of the spark plug 1 (FIG. 1) according to the first embodiment, the high-voltage electrode 11, the second dielectric 12 b, or the ground electrode 14 facing the discharge region 15 is used.
  • FIGS. 1 and corresponding parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the ground electrode 14 is a single metal electrode, and includes a first protrusion 16 having a pointed portion protruding from the discharge region 15 at a location facing the discharge region 15 of the bent portion 14 a. ing.
  • the ground electrode 14 is four thin rod-shaped metal electrodes, and includes a first protrusion 16 at the tip 14 b of the bent portion 14 a.
  • P represents an equipotential surface
  • E represents electric field concentration
  • D represents barrier discharge.
  • the tip of the first projection 16 of the ground electrode 14 is shown in FIG. Electric field concentrates on the part.
  • a barrier discharge is generated between the electrodes, a discharge is generated so as to spread from the tip of the first protrusion 16 of the ground electrode 14 to the surface of the second dielectric 12b as shown in FIG. To do.
  • barrier discharge As a characteristic of the barrier discharge, a thin streamer-like discharge occurs intermittently for a very short time and spreads on the surface of the dielectric electrode. In the case of normal barrier discharge that occurs between electrodes facing each other at regular intervals, uniform discharge occurs over a wide area, so that radicals are generated efficiently, while the generated radicals are distributed over a wide area and gas The temperature remains low. In order to perform stable ignition, a relatively high radical density and gas temperature are required, so that ordinary barrier discharge is not suitable for direct ignition.
  • a second protrusion 17 having a pointed portion protruding into the discharge region 15 is provided at a location facing the discharge region 15 of the end portion 11 c of the high voltage electrode 11.
  • the end 11c of the high voltage electrode 11 which is a metal electrode is exposed from the dielectric 12, and the four ground electrodes 14 are dielectric electrodes covered with the second dielectric 12b.
  • the end portion 11 c of the high voltage electrode 11 has four second protrusions 17 at positions facing the four ground electrodes 14.
  • the example shown in FIG. 11 is effective when the structure is complicated but the ground electrode 14 needs to be covered with the second dielectric 12b.
  • the second dielectric 12b that covers either the end 11c of the high voltage electrode 11 or the ground electrode 14 is provided.
  • a third protrusion 18 having a pointed portion protruding into the discharge region 15 may be provided at a location facing the discharge region 15. In the example shown in FIG. 12, four third protrusions 18 facing the four ground electrodes 14 are provided on the second dielectric 12 b covering the high voltage electrode 11.
  • the four ground electrodes 14 are covered with the second dielectric 12b, and the third protrusion 18 is provided on each of the second dielectrics 12b.
  • the third protrusion 18 has a pointed portion protruding into the discharge region 15, and the distance between the pointed portion of each third protrusion 18 and the opposing electrode is equal to both electrodes in the discharge region 15. The shortest distance between them, that is, the discharge gap.
  • any one of the first protrusion 16 or the second protrusion 17 provided on the metal electrode, or the third protrusion 18 provided on the second dielectric 12b is provided. Although the example provided is described, both of these may be provided.
  • the first protrusion 16 is provided at the tip portion 14 b of each of the four ground electrodes 14, and the four third protrusions 18 are provided on the dielectric electrode. In this case, since the discharge is concentrated at the respective tip portions of the first protrusion 16 and the third protrusion 18, the distance connecting the respective tip portions becomes the shortest distance of the discharge region 15, that is, the discharge gap. Make them face each other.
  • the example shown in FIG. 15 has the same configuration as that of FIG. 9, but the discharge gap is almost zero, and the configuration is close to corona discharge.
  • the discharge starts from the tip of the first protrusion 16 provided on the ground electrode 14 that is a metal electrode, and spreads over the dielectric electrode.
  • the example shown in FIG. 16A has the same configuration as that of FIG. 9, but the length of the high voltage electrode 11 covered with the second dielectric 12b is shorter than that of FIG. It is in a position away from the formed first protrusion 16.
  • the barrier discharge D flies over a long distance. For this reason, in contrast to the example shown in FIG. 15, the discharge voltage is increased, while radicals are generated efficiently, and the flame extinguishing effect by the electrode is suppressed.
  • metal pieces 19 and 19 a are provided at locations facing the discharge region 15 of the second dielectric 12 b covering the end portion 11 c of the high voltage electrode 11.
  • a small metal piece 19 such as a metal foil is attached to the surface of the second dielectric 12 b facing the first protrusion 16.
  • the barrier discharge D is caused by a small piece of metal provided on the tip of the first protrusion 16 provided on the ground electrode 14 and the surface of the second dielectric 12b. 19 occurs.
  • the barrier discharge D is usually generated by intermittently generating a minute discharge, but the amount of electric charge of one discharge is increased by providing the metal piece 19 and is stronger than the case where the metal piece 19 is not provided. Discharge occurs.
  • the amount of charge that moves due to the barrier discharge is proportional to the capacitance of the capacitor that the metal piece 19 on the second dielectric 12b comprises of the dielectric layer. That is, when the metal piece 19 is enlarged, the amount of electric charge that moves by one barrier discharge increases. By utilizing this fact, it is possible to intensify the discharge or control the intensity of the discharge to a desired value, and further stable ignition can be performed. Further, as shown in FIG. 18, the voltage of the barrier discharge can be further lowered by providing the metal piece 19a having a pointed portion. The metal pieces 19 and 19a may be provided on the surface of the second dielectric 12b that covers the ground electrode 14.
  • FIG. 19 is a partially enlarged cross-sectional view showing the tip of the spark plug sample. As shown in FIG. 19, the high voltage electrode 11 of the spark plug sample is covered with the dielectric 12 from the peripheral surface 11a to the end 11c, and the thickness of the second dielectric 12b facing the discharge region. The size is uniform.
  • the thickness dimension of the second dielectric 12b facing the discharge region is D1
  • the thickness dimension of the first dielectric 12a covering the peripheral surface 11a is D2
  • the end 11c of the high voltage electrode 11 is The discharge gap, which is the shortest distance between the covering second dielectric 12b and the ground electrode 14, is G1
  • the gap between the first dielectric 12a covering the peripheral surface 11a of the high voltage electrode 11 inside the metal shell 13 and the metal shell 13 is defined.
  • the thickness dimension of the ground electrode 14 is 1.3 mm
  • the width dimension is 2.2 mm
  • the thickness dimension D1 of the second dielectric 12b in the discharge gap is 0.8 mm
  • the discharge gap G1 is 1.1 mm.
  • G2 when G2 is 0.3 mm or less, good ignition is confirmed. Therefore, it is desirable that G2 ⁇ 0.3 mm.
  • FIG. 21 shows the results of the withstand voltage test
  • FIG. 22 shows the results of the combustion evaluation test.
  • “O” indicates that there is no penetration
  • “X” indicates that there is penetration.
  • the thickness dimension D1 of the second dielectric 12b in the discharge region is 0.6 mm ⁇ D1 ⁇ 1.2 mm, and the discharge gap G1 is 0.8 mm ⁇ G1 ⁇ 1.5 mm. It was confirmed that there was.
  • the thickness dimension D1 and the discharge gap G1 of the second dielectric 12b where the discharge gap is formed are factors that affect the mechanical breakdown of the second dielectric 12b due to voltage application and the discharge strength of the discharge space. If the above conditions are satisfied, each performance can be achieved at a high level.
  • S1 is a 39.4 mm 2 at a constant, the value of S2 is made different respective samples was performed combustion evaluation test.
  • the thickness dimension D1 of the second dielectric 12b in the discharge gap is 0.8 mm
  • the discharge gap G1 is 1.1 mm
  • the first dielectric 12a and the metal shell in the metal shell 13 are included. 13 is 0.3 mm
  • G1 1.1 mm
  • G2 0.3 mm Sample size).
  • combustion evaluation was performed under the same conditions and evaluation method as described above using a constant volume container filled with 0.25 MPa of a mixture of propane gas and air having an air-fuel ratio A / F of 20, 22, 24. The test was conducted. The result of the combustion evaluation test is shown in FIG.
  • FIG. 28A is a ground electrode having a tip angle of 45 degrees
  • FIG. 28B is a ground electrode having a tip angle of 90 degrees
  • FIG. 28C is a tip electrode having an angle of 135 degrees.
  • S1 is 39.4 mm 2
  • the conditions and evaluation method of the combustion evaluation test are the same as described above except that the air-fuel ratio A / F is 24 and 26.
  • the result of the combustion evaluation test is shown in FIG.
  • FIG. FIG. 30 is a cross-sectional view and a bottom view showing a spark plug according to Embodiment 5 of the present invention
  • FIGS. 31 to 33 are views showing modifications of the spark plug according to Embodiment 5.
  • the spark plug 1A according to the fifth embodiment includes a rod-shaped high voltage electrode 11, a first dielectric 12a that covers the peripheral surface 11a of the high voltage electrode 11, and a cylindrical metal shell 13. And a net-like ground electrode 14 ⁇ / b> A arranged so as to surround the end portion 11 c of the high voltage electrode 11.
  • the metal shell 13 which is the casing of the spark plug 1 has a threaded portion 13a on its peripheral surface, and is fixed inside the partition wall 21 facing the combustion chamber 22 of the engine.
  • a net-like ground electrode 14 ⁇ / b> A is connected to one end surface 13 b of the metal shell 13.
  • the metal shell 13 and the ground electrode 14A are at the same ground potential as the engine.
  • the rod-shaped high voltage electrode 11 has a peripheral surface 11 a covered with the first dielectric 12 a held by the metal shell 13, and one end portion 11 c is exposed from the end surface 13 b side of the metal shell 13. .
  • the end portion 11c of the high voltage electrode 11 is covered with the second dielectric 12b, and the end portion 11c of the high voltage electrode 11 and the ground electrode 14A are opposed to each other through the discharge region 15 facing the second dielectric 12b. Has been placed.
  • the ground electrode 14A which is a metal electrode, can be made thin enough to maintain the mechanical strength.
  • the mechanical strength can be maintained even if the electrode is sufficiently thin.
  • it is necessary to ensure a predetermined thickness in consideration of heating of the electrode by combustion.
  • fuel gas flows in and out from the mesh, it is suitable for direct ignition of fuel.
  • electric field concentration occurs at a plurality of intersections of the net-like ground electrode 14A, concentrated discharge can be generated at a plurality of locations.
  • barrier discharge starts near the shortest distance between the intersection point of the net-like ground electrode 14A and the opposing dielectric electrode, and spreads to the periphery. Since a large number of intersections are distributed, a large amount of discharge is generated between each intersection and the second dielectric 12b, and a volumetric discharge is generated in almost the entire region between the net-like ground electrode 14A and the dielectric electrode.
  • the tip of the ground electrode 14A shown in FIG. 32 is gradually narrowed as in FIG. 31, and covers the tip of the dielectric electrode. With such a configuration, combustion can be started near the tip of the spark plug 1A, and the mechanical strength of the mesh electrode is improved.
  • the ground electrode 14A has a cylindrical shape, one end of which is connected to the metal shell 13, and the other end has a plurality of protruding electrodes 20 protruding into the discharge region. ing. With such a configuration, discharge is not generated at the mesh portion of the ground electrode 14A but is discharged at the protruding electrode 20 at the tip, so that combustion can be started in a concentrated manner near the tip of the spark plug 1A.
  • a sufficiently strong radical can be locally generated by the barrier discharge, and the radical reacts with the fuel simultaneously with the occurrence of the discharge, It is possible to ignite the fuel. Furthermore, since the ground electrode 14 has a thin mesh shape, the effect of extinguishing the flame by the electrode is small, and it is difficult to prevent the growth of the flame. Further, the fuel gas introduced into the combustion chamber 22 easily flows into the discharge region and is easily ignited by radicals generated by the discharge.
  • the spark plug can stably perform direct ignition on the fuel using the barrier discharge and can realize excellent ignitability and combustibility.
  • 1A and an ignition system including the same can be obtained.
  • the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

点火プラグ(1)において、接地電極(14)を細い棒状または網状とすることにより、バリア放電によって局所的に十分強いラジカルが生成されると共に、電極による消炎効果が少なく火炎の成長を妨げにくい。また、放電領域(15)に対面する第二誘電体(12b)の厚さ寸法を均一にすることにより、バリア放電は第二誘電体(12b)の表面に広がり、ラジカルの生成が維持され着火後の燃焼性が促進される。また、高電圧電極(11)の端部(11c)と接地電極(14)が燃焼室(22)の内部で対向配置されているので、燃焼室(22)に導入された燃料ガスが放電領域(15)に流れ込み易く、放電で生じたラジカルによって着火され易い。

Description

点火プラグ及びこれを備えた点火システム
 本発明は、本発明は、誘電体バリア放電を利用した点火プラグ及びこれを備えた点火システムに関する。
 ガソリンエンジンにおいては、CO削減やガソリンの高騰等を背景として低燃費化要求が極めて高く、希薄燃焼や排気再循環等の技術によって燃費改善を図っているが、いずれも点火不良が課題である。現在のガソリンエンジンに用いられているスパークプラグは、電極間に高電圧パルスを印加してアーク放電による熱プラズマを生じさせ、この熱プラズマによって燃料に点火するものである。
 これに対し、点火の安定性改善のための技術として、低温プラズマを用いた体積的で高効率な点火方式の実用化が提案されている。低温プラズマは、電子温度は高いがイオンや中性粒子の温度は低い非平衡状態のプラズマであり、広い体積を占める多点同時点火、すなわち体積的な点火が行えるという特徴を有する。低温プラズマを用いることにより、点火プラグの消耗を抑制することができ、また、ラジカル(放電によって生成され、燃焼の起点となる活性粒子)の生成量が多いため、着火後の燃焼性を促進することができる。
 低温プラズマは、バリア放電、コロナ放電、またはストリーマ放電等により生成される。中でも、電極間に誘電体を介した交流放電であるバリア放電は、広い電極面積で安定して非平衡放電を維持することができることから、低温プラズマを安定して生成することができる手法である。
 バリア放電では、細い柱のような微小なストリーマ放電が間欠的に、且つ電極面に一様に発生するため、低温プラズマを広い範囲で均一に発生させることができる。一方、プラズマによるエネルギーの投入が放電空間全域に広がるため、単位体積当たりの投入エネルギーは低い。すなわちバリア放電は、ラジカルを効率的に生成することができるが、ラジカルの分布が均一で希薄となりやすい手法であると言える。
 バリア放電をエンジン点火に応用した先行技術として、特許文献1では、棒状の中心電極を誘電体層で覆った円柱型の誘電体電極の外側に、円環状電極を同心円状に配置した点火装置が提示されている。この例では、外側の円環状電極を接地し、中心電極に高電圧の交流波形を印加して、誘電体電極と円環状電極の間の同心円状の電界でバリア放電を生じさせている。
特開2009-36125号公報
 特許文献1に提示された点火装置では、中心電極と円環状電極の間、すなわち円筒の内部で均一にバリア放電が発生し、その放電によって生じたラジカルが燃焼に寄与する。しかしながら、この特許文献1の構成は、バリア放電で生じたラジカルによって燃料に直接点火するには不向きであり、安定した点火は行えないと考えられる。以下にその理由について説明する。
 まず、特許文献1の構成は、放電空間である円筒がエンジンの隔壁の内部にあるという点で、直接点火に適していない。バリア放電によって燃料に直接点火するためには、燃料ガスが放電空間に流れ込み、そこでラジカルと反応する必要がある。これに対し、特許文献1の構成では、放電空間で生じたラジカルが徐々に燃焼室内に拡散し、燃料と反応すると考えられる。このような構成では、ラジカルによって燃焼は促進されるが、燃料に直接点火することは難しいと考えられる。
 また、バリア放電によって直接点火するためには、強い燃焼反応が局所的に発生する必要があり、そのためには局所的に十分強いラジカルが生成される必要がある。しかし、特許文献1の点火装置では、バリア放電は電極面全域に均一に広がると考えられ、ラジカルが局所的に集中して生成される構成になっていない。
 本発明は、上記のような課題を解決するためになされたものであり、バリア放電を利用して燃料への直接点火を安定して行うことができ、優れた着火性及び燃焼性を実現することが可能な点火プラグ及びこれを備えた点火システムを得ることを目的とする。
 本発明に係る点火プラグは、筒状の主体金具と、主体金具の一方の端面に接続された棒状または網状の接地電極と、一方の端部が主体金具の端面の側から露出している棒状の高電圧電極と、高電圧電極の周面を覆い、かつ、主体金具に保持される第一誘電体とを備え、高電圧電極の端部と接地電極のいずれか一方は、第一誘電体よりも厚さ寸法が小さい第二誘電体で覆われており、高電圧電極の端部と接地電極は、第二誘電体に面する放電領域を介して対向配置され、放電領域に対面する第二誘電体の厚さ寸法は均一であり、第二誘電体が高電圧電極の端部を覆っている場合、放電領域に対面する接地電極の面積は、放電領域に対面する第二誘電体の表面積よりも小さいものである。
 本発明に係る点火プラグは、筒状の主体金具と、主体金具の一方の端面に接続された棒状または網状の接地電極と、一方の端部が主体金具の端面の側から露出している棒状の高電圧電極と、高電圧電極の周面を覆い、かつ、主体金具に保持される第一誘電体とを備え、高電圧電極の端部と接地電極のいずれか一方は、第一誘電体よりも厚さ寸法が小さい第二誘電体で覆われており、高電圧電極の端部と接地電極は、第二誘電体に面する放電領域を介して対向配置され、放電領域に対面する第二誘電体の厚さ寸法は均一であり、高電圧電極の周面を覆う第一誘電体と主体金具との隙間の距離をG2とするとき、G2≦0.3mmである。
 また、本発明に係る点火プラグは、筒状の主体金具と、主体金具の一方の端面に接続された棒状または網状の接地電極と、一方の端部が主体金具の端面の側から露出している棒状の高電圧電極と、高電圧電極の周面を覆い、かつ、主体金具に保持される第一誘電体とを備え、高電圧電極の端部と接地電極のいずれか一方は、第一誘電体よりも厚さ寸法が小さい第二誘電体で覆われており、高電圧電極の端部と接地電極は、第二誘電体に面する放電領域を介して対向配置され、第二誘電体の放電領域に対面する箇所に、尖端部を有する第三の突起を備えたものである。
 本発明に係る点火システムは、上記の点火プラグと、点火プラグの高電圧電極と接地電極との間に交流電圧を印加して放電領域に誘電体バリア放電を生じさせる交流電圧印加手段とを備えた点火システムであって、主体金具は、エンジンの燃焼室に臨む隔壁の内部に固定され、高電圧電極の端部と接地電極は燃焼室の内部で対向配置されたものである。
 本発明に係る点火プラグによれば、接地電極を棒状または網状とすることにより、誘電体バリア放電によって局所的に十分強いラジカルを生成することができ、燃料に着火することが可能であると共に、接地電極による消炎効果が少なく火炎の成長を妨げにくい。また、放電領域に対面する第二誘電体の厚さ寸法を均一にすることにより、バリア放電は第二誘電体の表面に広がり、ラジカルの生成が維持されるため、着火後の燃焼性が促進される。さらに、第二誘電体が高電圧電極の端部を覆っている場合、放電領域に対面する接地電極の面積を、放電領域に対面する第二誘電体の表面積よりも小さくすることにより、燃料が放電領域へ流れ込み易く、電極による消炎作用が抑制される。よって、本発明によれば、誘電体バリア放電を利用して燃料への直接点火を安定して行うことができ、優れた着火性及び燃焼性を実現することが可能な点火プラグが得られる。
 本発明に係る点火プラグによれば、接地電極を棒状または網状とすることにより、誘電体バリア放電によって局所的に十分強いラジカルを生成することができ、燃料に着火することが可能であると共に、接地電極による消炎効果が少なく火炎の成長を妨げにくい。また、放電領域に対面する第二誘電体の厚さ寸法を均一にすることにより、バリア放電は第二誘電体の表面に広がり、ラジカルの生成が維持されるため、着火後の燃焼性が促進される。さらに、高電圧電極の周面を覆う第一誘電体と主体金具との隙間の距離G2を0.3mm以下とすることにより、第一誘電体と主体金具との隙間に発生する放電を抑制することができ、該隙間に発生する放電による電力ロスが抑制される。よって、本発明によれば、誘電体バリア放電を利用して燃料への直接点火を安定して行うことができ、優れた着火性及び燃焼性を実現することが可能な点火プラグが得られる。
 また、本発明に係る点火プラグによれば、接地電極を棒状または網状とすることにより、誘電体バリア放電によって局所的に十分強いラジカルを生成することができ、燃料に着火することが可能であると共に、接地電極による消炎効果が少なく火炎の成長を妨げにくい。また、第二誘電体の放電領域に対面する箇所に、尖端部を有する第三の突起を備えることにより、放電の開始電圧を低くする効果が得られる。よって、本発明によれば、誘電体バリア放電を利用して燃料への直接点火を安定して行うことができ、優れた着火性及び燃焼性を実現することが可能な点火プラグが得られる。
 また、本発明に係る点火システムによれば、点火プラグの高電圧電極の端部と接地電極が燃焼室の内部で対向配置されているので、燃焼室に導入された燃料ガスが放電領域に流れ込み易く、誘電体バリア放電の発生と同時にラジカルが燃料と反応し、燃料に着火することが可能である。よって、本発明によれば、バリア放電を利用して燃料への直接点火を安定して行うことができ、優れた着火性及び燃焼性を実現することが可能な点火システムを得ることができる。
 この発明の上記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
本発明の実施の形態1に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態1に係る点火システムの駆動回路を示す図である。 本発明の実施の形態1に係る点火システムにおける点火信号と交流高電圧の波形を示す図である。 本発明の実施の形態1に係る点火システムの別の駆動回路を示す図である。 本発明の実施の形態2に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態2に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態2に係る点火プラグにおいて放電領域に対面する接地電極と誘電体電極の面積を説明する図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態3に係る点火プラグにおける接地電極の突起による電界集中を説明する図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び部分拡大断面図である。 本発明の実施の形態3に係る点火プラグを示す断面図及び部分拡大断面図である。 本発明の実施の形態3に係る点火プラグを示す部分拡大断面図である。 本発明の実施の形態4に係る点火プラグのサンプルを示す部分拡大断面図である。 本発明の実施の形態4に係る点火プラグの燃焼評価試験の結果を示す図である。 本発明の実施の形態4に係る点火プラグの耐電圧試験の結果を示す図である。 本発明の実施の形態4に係る点火プラグの燃焼評価試験の結果を示す図である。 本発明の実施の形態4に係る点火プラグにおける面積S1、S2を説明する図である。 本発明の実施の形態4に係る点火プラグの燃焼評価試験の結果を示す図である。 本発明の実施の形態4に係る点火プラグの接地電極を説明する図である。 本発明の実施の形態4に係る点火プラグの燃焼評価試験の結果を示す図である。 本発明の実施の形態4に係る点火プラグの燃焼評価試験の結果を示す図である。 本発明の実施の形態4に係る点火プラグの接地電極の突起の角度を説明する図である。 本発明の実施の形態4に係る点火プラグの燃焼評価試験の結果を示す図である。 本発明の実施の形態5に係る点火プラグを示す断面図及び下面図である。 本発明の実施の形態5に係る点火プラグを示す断面図である。 本発明の実施の形態5に係る点火プラグを示す断面図である。 本発明の実施の形態5に係る点火プラグを示す断面図及び下面図である。
実施の形態1.
 以下に、本発明の実施の形態1に係る点火プラグ及びこれを備えた点火システムについて、図面に基づいて説明する。図1は、本実施の形態1に係る点火プラグを示す断面図及び下面図である。本実施の形態1に係る点火プラグ1は、図1に示すように、棒状の高電圧電極11と、高電圧電極11の周面11aを覆う第一誘電体12aと、筒状の主体金具13と、棒状の接地電極14とを備えている。
 点火プラグ1の筐体である主体金具13は、その周面にネジ部13aを有しており、エンジンの燃焼室22に臨む隔壁21の内部に固定される。主体金具13の一方の端面13bには、棒状の接地電極14が接続されている。主体金具13及び接地電極14は、エンジンと同じ接地電位である。また、棒状の高電圧電極11は、第一誘電体12aで覆われた周面11aを主体金具13に保持され、一方の端部11cは、主体金具13の端面13bの側から露出している。高電圧電極11の周面11aを覆う第一誘電体12aと主体金具13との隙間の距離G2(図19参照)は、0.3mm以下に設定される。これにより、第一誘電体12aと主体金具13との隙間に発生する放電を抑制することができ、該隙間に発生する放電による電力ロスが抑制される。
 高電圧電極11の端部11cと接地電極14のいずれか一方は、第一誘電体12aよりも厚さ寸法が小さい第二誘電体12bで覆われており、高電圧電極11の端部11cと接地電極14は、第二誘電体12bに面する放電領域15を介して対向配置されている。図1に示す例では、高電圧電極11は、その周面11aから端部11cに亘って、第一誘電体12a及び第二誘電体12bを含む誘電体12で覆われた誘電体電極である。また、放電領域15に対面する第二誘電体12bの厚さ寸法は均一である。なお、以下の説明では、第二誘電体12bで覆われた方の電極を誘電体電極と呼ぶ。
 接地電極14は、その端部が高電圧電極11の方向に曲げられた屈曲部14aを有しており、この屈曲部14aと高電圧電極11の先端部11bが対向配置され、放電領域15を形成している。また、接地電極14を細い棒状の金属で構成しているため、誘電体バリア放電(以下、単にバリア放電と記す)によって局所的に十分強いラジカルが生成される。
 さらに、バリア放電による直接点火を可能にするためには、放電領域15に燃料ガスが流れ込む必要があるが、点火プラグ1の先端に形成された放電領域15は、燃焼室22の内部に突出しており、燃料ガスの流れの中に晒されている。また、第二誘電体12bが高電圧電極11の端部11cを覆っている場合、放電領域15に対面する接地電極14の面積は、放電領域15に対面する第二誘電体12bの表面積よりも小さい。このため、燃焼室22の内部に導入された燃料は放電領域15に流れ込み易く、バリア放電によって生じた十分強いラジカルによって直接点火される。
 なお、高電圧電極11、接地電極14、及び第二誘電体12bの形状や配置については、これに限定されるものではなく、様々な変形が可能である。例えば接地電極14は、必ずしも屈曲部14aを有していなくても良い。実施の形態2及び実施の形態3において、様々な変形例について説明する。
 本実施の形態1に係る点火システムは、点火プラグ1と、点火プラグ1の高電圧電極11と接地電極14との間に交流高電圧を印加して放電領域15にバリア放電を生じさせる交流電圧印加手段とを備えている。図2は、交流電圧印加手段である駆動回路の一例を示し、図3は、図2に示す駆動回路を用いた場合の点火信号と交流高電圧の波形を示している。
 図2において、ECU(Engine Control Unit)2から出力されたエンジンの点火信号を取得した制御回路3は、点火に必要な駆動信号を生成する。この駆動信号に従って、ドライバ回路4が図3(b)に示すようなスイッチング波形を出力し、スイッチング素子5をオンオフさせる。スイッチング素子5のオンオフによってDC電源6からの電流が交流に変換され、トランス7で昇圧される。トランス7の2次側には共振コイル8が設けられており、この共振コイル8と点火プラグ1の静電容量が共振することで、点火プラグ1の高圧端子部に交流高電圧が印加される。
 駆動回路の共振周波数に近い周波数でスイッチングを繰り返すと、2次側の点火プラグ1両端の電圧が共振によって上昇する。図3(a)に示すように、電圧波形は交流で変動しながら徐々に高くなっていき、あるところで定常値に達する。共振による昇圧比(Q値)が大きいと定常値に達するまでの周期が多く必要になる。連続パルスの印加期間(スイッチングの回数)は、短すぎると点火を確実に生じさせることができず、長すぎると電力の損失となる。
 なお、図2に示す駆動回路は、1つのスイッチング素子5を含む極めて単純な回路であるが、例えば図4に示すようなハーフブリッジ構成の駆動回路を用いても良い。図4に示す例では、2つのスイッチング素子5A、5Bを含むハーフブリッジインバータによってDC電源6からの電流が交流に変換され、トランスの偏磁を防止するための偏磁防止用コンデンサ9を介してトランス7の一次側に印加され、トランス7で昇圧されて2次側に出力される。その後は図2の例と同様に、共振コイル8によってさらに昇圧されて点火プラグ1の高圧端子部に交流高電圧が印加される。なお、スイッチング回路の方式としては、フルブリッジインバータやプッシュプル等の方式を用いることもできる。
 以上のように、本実施の形態1に係る点火プラグ1及び点火システムによれば、接地電極14を細い棒状とすることにより、バリア放電によって局所的に十分強いラジカルを生成することができる。また、高電圧電極11の端部11cと接地電極14が燃焼室22の内部で対向配置されているので、燃焼室22に導入された燃料ガスが放電領域15に流れ込み易く、放電で生じたラジカルによって着火され易い。すなわち、バリア放電の発生と同時にラジカルが燃料と反応し、燃料に着火することが可能である。
 また、バリア放電は誘電体電極の表面に広がり、ラジカルの生成が維持されるため、着火後の燃焼性が促進される。さらに、接地電極14は細い棒状であるため、電極による消炎効果が少なく、火炎の成長を妨げにくい。これらのことから、本実施の形態1によれば、バリア放電を利用して燃料への直接点火を安定して行うことができ、優れた着火性及び燃焼性を実現することが可能な点火プラグ1及びこれを備えた点火システムを得ることができる。
実施の形態2.
 本発明の実施の形態2では、上記実施の形態1に係る点火プラグ1(図1)の基本的な変形例について、図5~図7を用いて説明する。なお、各図において、図中、同一、相当部分には同一符号を付し、説明を省略する。
 バリア放電を生じるためには、高電圧電極11と接地電極14の間に第二誘電体12bを介している必要があり、第二誘電体12bが設けられるのはどちらの電極であっても良い。上記実施の形態1では、高電圧電極11を第二誘電体12bで覆う構成としたが、図5に示すように、接地電極14を第二誘電体12bで覆い、誘電体電極としても良い。その場合、高電圧電極11の端部11cは、誘電体12から露出している。
 また、上記実施の形態1では、棒状の接地電極14が1本配置されている例を示したが、接地電極14は複数本であっても良い。図6に示す例では、4本の細い棒状の接地電極14を備え、それぞれの端部は高電圧電極11の方向に曲げられた屈曲部14aを有している。また、接地電極14の先端部14bは、高電圧電極11の先端部11bよりも上方の端部11cと対向して放電領域15を形成している。
 複数本の接地電極14を有する場合、それぞれ並列にバリア放電を生じさせることが可能である。すなわち、複数箇所で同時に放電を生じさせ、複数箇所で燃焼を開始させることができることから、点火及び燃焼の安定性がさらに向上する。図6に示す例では、接地電極14は細い棒状の金属であり、その先端部14bでバリア放電が生じるようにしているため、局所的に十分強いラジカルが生成される。
 また、放電領域15を形成する点火プラグ1の先端は、燃焼室22の内部に突き出しており、燃料ガスの流れの中に晒されている。このため、燃料ガスは、4本の細い棒状の接地電極14の隙間を通って放電領域15に流れ込み、バリア放電によって局所的に生じた十分強いラジカルによって直接点火される。
 なお、燃焼室22に導入された燃料が放電領域15に流れ込むためには、放電領域15に対面する接地電極14の面積が、放電領域15に対面する誘電体電極の面積よりも小さい必要がある。放電領域15に対面する接地電極14と誘電体電極の面積の定義について、図7を用いて説明する。
 図7において、網掛け部Aは、放電領域15に対面する誘電体電極の面積、網掛け部Bは、放電領域15に対面する接地電極14の面積を示している。これらの電極の面積とは、バリア放電による電流が流れ込む領域を指している。金属電極である接地電極14において、誘電体電極と対向していない裏側については電極の面積に含まれない。接地電極14が金属電極の場合は、放電領域15の最短距離の部分(これを放電ギャップと称す)において誘電体電極に対向している部分の面積を、放電領域15に対面する接地電極14の面積と定義される。
 一方、誘電体電極の場合、バリア放電の特徴として、広い電極面積の全面に放電が広がる傾向にある。ただし、放電が広がるのは第二誘電体12bの厚さ寸法が均一な部分であり、厚さ寸法が大きい部分には放電は広がらない。従って、網掛け部Aの部分が、放電領域15に対面する誘電体電極の表面積と定義される。
 なお、バリア放電は、最初は電極間の最短距離、すなわち放電ギャップの箇所で放電が発生するが、以後は第二誘電体12b表面の一度放電が生じた箇所を避けて放電する特徴がある。このため、第二誘電体12bの表面に沿って放電が生じる。より正確には、最初に放電が生じるのは電極間の最短距離の箇所とは限らず、電界強度が最も高い箇所から放電が発生する。
 従来のスパークプラグでは、スパーク放電(アーク放電)を発生させるため、ガス温度が極めて高くなり、放電の発生によって電極が消耗する。従って、点火プラグの寿命を長くするためには、電極の先端部分をある程度太く形成する必要があった。一方、バリア放電はスパーク放電(アーク放電)ではないため電極が消耗しないという特徴があり、接地電極14を細く形成しても十分な寿命が得られる。
 さらに、接地電極14を細くすることにより、燃料が放電領域15へ流れ込み易く、電極による消炎作用が抑制されることからも、接地電極14は、機械的強度が保たれ、且つ燃焼による電極の過熱を防ぐことが可能な範囲で、できる限り細くすることが望ましい。
 本実施の形態2に係る点火プラグ1においても、上記実施の形態1と同様の効果が得られると共に、細い棒状の接地電極14を複数本とすることにより、複数箇所で同時にバリア放電を生じさせることができ、その放電によって十分強いラジカルが生成されることから、点火及び燃焼の安定性がさらに向上する。
実施の形態3.
 本発明の実施の形態3では、上記実施の形態1に係る点火プラグ1(図1)の変形例として、放電領域15に対面する高電圧電極11、第二誘電体12b、または接地電極14の表面に、尖端部を有する突起や金属小片を設けた例について、図8~図18を用いて説明する。なお、各図において、図中、同一、相当部分には同一符号を付し、説明を省略する。
 図8に示す例では、接地電極14は1本の金属電極であり、その屈曲部14aの放電領域15に対面する箇所に、放電領域15に突出した尖端部を有する第一の突起16を備えている。また、図9に示す例では、接地電極14は、4本の細い棒状の金属電極であり、屈曲部14aの先端部14bに、第一の突起16を備えている。
 本実施の形態3に係る点火プラグ1において、第一の突起16を有する接地電極14を誘電体電極と対向させた時の電界の集中について、図10を用いて説明する。図10において、Pは等ポテンシャル面、Eは電界の集中、Dはバリア放電をそれぞれ示している。金属電極である接地電極14に尖端部を有する第一の突起16を設け、誘電体電極と対向させた場合、図10(a)に示すように、接地電極14の第一の突起16の尖端部に電界が集中する。このような電極間にバリア放電を生じさせた場合、図10(b)に示すように、接地電極14の第一の突起16の尖端部から第二誘電体12b表面に広がるように放電が発生する。
 バリア放電の特徴として、細いストリーマ状の放電が極めて短時間、且つ断続的に発生して誘電体電極の表面に広がっていく。一定間隔で対向している電極の間に生じる通常のバリア放電の場合、広い面積で均一の放電が発生するため、ラジカルが効率的に発生する一方、生じたラジカルが広い面積に分布し、ガス温度は低い状態が保たれる。安定な点火を行うためには、ある程度高いラジカル密度とガス温度が必要であることから、通常のバリア放電は直接的な点火には不向きである。
 これに対し、図8及び図9に示す構成では、接地電極14の第一の突起16の尖端部に放電が集中し、局所的にラジカル密度とガス温度が高い部分が生じることから、安定な点火を実現することができる。また、図9に示すように、第一の突起16を有する接地電極14の数を複数にすることにより、点火のきっかけとなる部分が増え、より安定な点火が可能となる。さらに、第一の突起16を接地電極14の先端部14bに設け、この部分に放電を集中させて点火させることにより、より燃焼室22の中央近くで燃焼を開始させることが可能となり、点火プラグ1の根元部分による消炎効果を抑えることができる。
 また、図11に示す例では、高電圧電極11の端部11cの放電領域15に対面する箇所に、放電領域15に突出した尖端部を有する第二の突起17を備えている。この例では、金属電極である高電圧電極11の端部11cが誘電体12から露出しており、4本の接地電極14が第二誘電体12bに覆われた誘電体電極となっている。高電圧電極11の端部11cは、4本の接地電極14と対向する位置に、4つの第二の突起17を有している。図11に示す例は、構造は複雑であるが、接地電極14を第二誘電体12bで覆う必要がある場合に有効である。
 なお、第一の突起16及び第二の突起17は、金属電極上に直に設けられているが、高電圧電極11の端部11cと接地電極14のいずれか一方を覆う第二誘電体12bの放電領域15に対面する箇所に、放電領域15に突出した尖端部を有する第三の突起18を設けることもできる。図12に示す例では、高電圧電極11を覆う第二誘電体12b上に、4本の接地電極14に対向する4つの第三の突起18が設けられている。
 また、図13に示す例では、4本の接地電極14が第二誘電体12bで覆われており、それぞれの第二誘電体12b上に第三の突起18を設けている。これらの例では、第三の突起18は放電領域15に突出した尖端部を有しており、各々の第三の突起18の尖端部と対向する電極との距離が、放電領域15における両電極間の最短距離、すなわち放電ギャップとなっている。
 なお、金属電極に直に第一の突起16または第二の突起17を設ける場合と、誘電体電極の表面に第三の突起18を設ける場合とでは、放電の生じ方が異なる。第二誘電体12bの表面に第三の突起18を設けた場合においても、図10に示すような電界の集中は生じるので、この部分を起点に放電が発生する。
 しかし、金属電極上の第一の突起16または第二の突起17の場合は、その尖端部で放電が繰り返し発生するのに対して、第二誘電体12b上の第三の突起18の場合は、その部分で放電が連続して生じることはできないため、放電がある程度広がる。このため、第二誘電体12b上に第三の突起18を設けた場合は、放電の開始電圧を低くする効果は得られるものの、放電の集中が弱くなる。従って、要求される放電の集中の度合いによって適切な構成を選択すれば良い。
 なお、図8~図13では、金属電極上に設けられた第一の突起16または第二の突起17、あるいは第二誘電体12b上に設けられた第三の突起18のいずれか1つを備えた例について説明したが、これらの両方を備えていても良い。図14に示す例では、4本の接地電極14の各々の先端部14bに第一の突起16を備え、誘電体電極に4つの第三の突起18を備えている。この場合、第一の突起16と第三の突起18の各々の尖端部で集中的に放電させるため、各々の尖端部を結んだ距離が放電領域15の最短距離、すなわち放電ギャップとなるように対向させる。
 また、図15に示す例は、図9と同様の構成であるが、放電ギャップがほぼ零になっており、コロナ放電に近い構成である。この場合、金属電極である接地電極14に設けられた第一の突起16の尖端部から放電が開始して誘電体電極上を這うように放電が広がる。
このような構成とすることにより、放電電圧が低くなるという効果が得られる。
 さらに、図16(a)に示す例は、図9と同様の構成であるが、第二誘電体12bで覆われた高電圧電極11の長さが図9よりも短く、接地電極14に設けられた第一の突起16から離れた位置にある。このような場合、図16(b)に示すように、バリア放電Dは、長い距離を飛ぶことになる。このため、図15に示す例とは対照的に放電電圧は高くなる一方、ラジカルの発生が効率的になり、電極による消炎効果も抑えられる。
 また、図17及び図18に示す例では、高電圧電極11の端部11cを覆う第二誘電体12bの放電領域15に対面する箇所に、金属小片19、19aを設けている。図17に示す例では、第一の突起16と対向する第二誘電体12bの表面に、金属箔などの金属小片19を貼り付けている。このような場合、図17(b)に示すように、バリア放電Dは、接地電極14に設けられた第一の突起16の尖端部と、第二誘電体12bの表面に設けられた金属小片19との間で生じる。バリア放電Dは、通常、微小な放電が断続的に発生するものであるが、金属小片19を設けることにより一回の放電の電荷量が大きくなり、金属小片19を設けていない場合よりも強い放電が発生する。
 なお、バリア放電によって移動する電荷量は、第二誘電体12b上の金属小片19が誘電体層で構成するコンデンサの容量に比例する。すなわち、金属小片19を大きくすると、一回のバリア放電で移動する電荷量が大きくなる。このことを利用して、放電を強くしたり、放電の強さを所望の値に制御したりすることが可能であり、さらに安定な点火を行うことができる。また、図18に示すように、尖端部を有する金属小片19aを設けることにより、バリア放電の電圧をさらに下げることができる。なお、金属小片19、19aは、接地電極14を覆う第二誘電体12bの表面に設けても良い。
 本実施の形態3によれば、上記実施の形態1及び実施の形態2と同様の効果に加え、着火性能の向上や放電電圧の低下等の効果が得られ、さらに、バリア放電の強さを制御することが可能となり、より安定な点火が可能となる。
実施の形態4.
 本発明の実施の形態4では、点火プラグのサンプルを製作し、燃焼評価試験等の結果から各部の寸法等を詳細に検討した。図19は、点火プラグのサンプルの先端部を示す部分拡大断面図である。図19に示すように、点火プラグのサンプルの高電圧電極11は、その周面11aから端部11cに亘って誘電体12で覆われており、放電領域に対面する第二誘電体12bの厚さ寸法は均一である。
 図19に示すサンプルにおいて、放電領域に対面する第二誘電体12bの厚さ寸法をD1、周面11aを覆う第一誘電体12aの厚さ寸法をD2、高電圧電極11の端部11cを覆う第二誘電体12bと接地電極14との最短距離である放電ギャップをG1、主体金具13の内部において高電圧電極11の周面11aを覆う第一誘電体12aと主体金具13との隙間をG2とする。
(1)G2の検討(図20)
 バリア放電は、放電ギャップであるG1の部分で生じることが望ましいが、点火プラグの構造上、第一誘電体12aと主体金具13の間に隙間G2ができてしまう。このG2の部分での放電は望ましくない。放電が生じないG2の値を決定するために、G2を0.1mm~1.5mmの間で変化させたサンプルを製作し、燃焼評価試験を行った。
 各サンプルは、接地電極14の厚さ寸法を1.3mm、幅寸法を2.2mmとし、放電ギャップにおける第二誘電体12bの厚さ寸法D1を0.8mm、放電ギャップG1を1.1mmとした。なお、これらの寸法は、誘電体12の材質に依存する。今回の試験では、一般的な誘電体12としてアルミナ(比誘電率8~10)を用いた。
 これらのサンプルに対し、空燃比A/Fが20のプロパンガスと空気の混合気0.25MPaで満たされた定容容器を用いて、周波数40kHz、電圧尖頭値20kVの正弦波交流電圧を2ms印加して燃焼評価試験を実施した。評価方法は、サンプル毎に5回実施して着火性能を評価し、5回とも着火に至った場合を「○」、一度でも失火した場合は「×」とした。燃焼評価試験の結果を図20に示す。
 図20に示すように、G2が0.3mm以下では良好な着火が確認されたことから、G2≦0.3mmであることが望ましい。第一誘電体12aと主体金具13の隙間G2が0.3mmより大きい場合、空間に発生するコロナ放電による電力ロスが大きく、放電ギャップに伝わるエネルギーが消費されてしまうと考えられる。このため、G2は、ある程度小さい値でなくてはならない。なお、G2=0.3mmの条件で、D2=2mmであった。
(2)G1、D1の検討(図21、図22)
 次に、放電領域が形成される箇所の第二誘電体12bの厚さ寸法D1と放電ギャップG1について検討した。主体金具13の内部における第一誘電体12aと主体金具13との隙間G2を0.3mm、第一誘電体12aの厚さ寸法D2を2mmとして、点火プラグ先端の放電領域における第二誘電体12bの厚さ寸法D1と、放電ギャップG1の値が各々異なるサンプルを製作し、耐電圧試験及び燃焼評価試験を実施した。
 耐電圧試験の方法は、電圧印加を1分間行い、第二誘電体12bの貫通の有無を確認した。燃焼評価試験の方法は上述の通りである。耐電圧試験の結果を図21に、燃焼評価試験の結果を図22に示す。なお、図21では、貫通なしの場合を「○」、貫通ありの場合を「×」とした。
 図21及び図22に示す結果から、放電領域における第二誘電体12bの厚さ寸法D1は0.6mm≦D1≦1.2mm、放電ギャップG1は0.8mm≦G1≦1.5mmが適切であることが確認された。放電ギャップが形成される箇所の第二誘電体12bの厚さ寸法D1と放電ギャップG1は、電圧印加による第二誘電体12bの機械的破壊及び放電空間の放電強さに影響を及ぼす因子であり、上記条件を満たしていれば各々の性能が高い次元で両立可能である。
(3)点火プラグ尖端部の形状の検討(図24)
 次に、点火プラグ先端部の接地電極14の形状について検討した。接地電極14が接続される主体金具13の端面13bの面積をS1とし、この端面13bに接地電極14を投影したときに接地電極14が端面13bに占める面積をS2とする。図23(a)の斜線部分がS1、図23(b)の斜線部分がS2である。
 S1は一定で39.4mmとし、S2の値が各々異なるサンプルを製作して、燃焼評価試験を実施した。なお、各サンプルのその他の寸法として、放電ギャップにおける第二誘電体12bの厚さ寸法D1を0.8mm、放電ギャップG1を1.1mm、主体金具13の内部における第一誘電体12aと主体金具13との隙間G2を0.3mm、第一誘電体12aの厚さ寸法D2を2mmとした(以後、D1=0.8mm、D2=2mm、G1=1.1mm、G2=0.3mmを基本のサンプル寸法とする)。
 これらのサンプルに対し、空燃比A/Fが20、22、24のプロパンガスと空気の混合気0.25MPaで満たされた定容容器を用いて、上述と同様の条件及び評価方法で燃焼評価試験を実施した。燃焼評価試験の結果を図24に示す。
 図24に示す結果から、0.15≦S2/S1≦0.35が適切であることが確認された。接地電極14の占める面積S2が大きくなるに従って、消炎作用が発生し着火性能が劣る傾向にある。一方、S2が小さくなりすぎると、電界集中する部分が小さいため放電が広がらず、着火性能が悪化する。このため、接地電極14の面積S2には最適値があり、0.15≦S2/S1≦0.35であれば空燃比A/Fが22の条件でも着火可能である。
(4)接地電極の分割数の検討(図26、図27)
 次に、棒状の接地電極14の適切な本数について検討した。接地電極14は、同じ面積S2の場合、複数に分割されている方が放電領域15の範囲が広がるため、着火性能が良くなる。図25の斜線部は、接地電極14を4本に分割した場合の面積S2を示している。上述の基本のサンプル寸法において、S1を39.4mmとし、S2/S1の値を0.15と0.35の2種類とし、接地電極14の本数(分割数)が1本、2本、4本のサンプルを製作して燃焼評価試験を実施した。なお、燃焼評価試験のその他の条件及び評価方法については上述の通りである。
 図26は、S2/S1=0.15の場合、図27はS2/S1=0.35の場合の燃焼評価試験の結果を示している。いずれの場合も、接地電極14を2本以上に分割することにより、空燃比A/Fが24の条件でも着火可能であることから、接地電極14を複数に分割することが望ましいことが確認された。
(5)接地電極の尖端部形状の検討(図29)
 次に、接地電極14の尖端部の形状について検討した。接地電極14の放電領域に対面する箇所に、尖端部を有する第一の突起16を設けることにより、着火性能が向上することは上記実施の形態3で述べた。今回の実験では、厚さ寸法1.3mm、幅寸法2.2mmの接地電極14を4本有し、それぞれの尖端部の角度が45度、90度、135度であるサンプルを製作した。
 図28(a)は、尖端部の角度が45度の接地電極、図28(b)は、尖端部の角度が90度の接地電極、図28(c)は、尖端部の角度が135度の接地電極をそれぞれ示している。上述の基本のサンプル寸法において、S1は39.4mmとし、燃焼評価試験の条件及び評価方法は、空燃比A/Fを24、26とした以外は上述の通りである。燃焼評価試験の結果を図29に示す。
 図29に示す結果から、接地電極14の尖端部の角度を90度以下にした場合、上記実施の形態3(図10)で説明した電界集中の効果が強まり、着火性能が向上することが確認された。あるいは、接地電極14の尖端部が細くなることによって電極による消炎効果が抑えられ、着火性能が改善したとも考えられる。従って、接地電極14の尖端部の角度を90度以下とすることが好ましい。
実施の形態5.
 図30は、本発明の実施の形態5に係る点火プラグを示す断面図及び下面図であり、図31~図33は、本実施の形態5に係る点火プラグの変形例を示す図である。図30に示すように、本実施の形態5に係る点火プラグ1Aは、棒状の高電圧電極11と、高電圧電極11の周面11aを覆う第一誘電体12aと、筒状の主体金具13と、高電圧電極11の端部11cを囲むように配置された網状の接地電極14Aを有している。
 点火プラグ1の筐体である主体金具13は、その周面にネジ部13aを有しており、エンジンの燃焼室22に臨む隔壁21の内部に固定される。主体金具13の一方の端面13bには、網状の接地電極14Aが接続されている。主体金具13及び接地電極14Aは、エンジンと同じ接地電位である。
 また、棒状の高電圧電極11は、第一誘電体12aで覆われた周面11aを主体金具13に保持され、一方の端部11cは、主体金具13の端面13bの側から露出している。
高電圧電極11の端部11cは、第二誘電体12bで覆われており、高電圧電極11の端部11cと接地電極14Aは、第二誘電体12bに面する放電領域15を介して対向配置されている。
 バリア放電によって燃料に直接点火するためには、放電領域に燃料ガスを流入させる必要があり、さらに、ある程度の放電の集中が必要であり、多点点火のためには複数の箇所で同時に放電を発生させる必要がある。また、点火の際の消炎効果を抑えるためには、接地電極の熱容量を小さくする必要がある。網状の接地電極14Aは、これらの要件すべてを満たしている。
 バリア放電の場合、放電による電極の消耗は殆ど生じないため、金属電極である接地電極14Aを、機械的強度が保たれる程度に細くすることができる。網状の接地電極14Aの場合、電極を十分に細くしても機械的強度を維持することができる。ただし、燃焼による電極の加熱を考慮して、所定の太さは確保する必要がある。また、網目から燃料ガスが流入及び流出するため、燃料の直接点火に適している。さらに、網状の接地電極14Aの複数の交点に電界の集中が発生するため、集中した放電を複数箇所に発生させることができる。
 本実施の形態5では、網状の接地電極14Aの交点と、対向する誘電体電極との間の最短距離の付近でバリア放電が開始し、周囲に広がっていく。交点は多数分布しているので、各交点と第二誘電体12bの間に多くの放電が発生し、網状の接地電極14Aと誘電体電極の間のほぼ全領域で体積的な放電が生じる。
 図30に示すように、誘電体電極の周囲にほぼ同心円状に網状の接地電極14Aを配置することにより、広い面積で放電を生じさせることができる。一方、図31に示すように、接地電極14Aの先端を徐々に細くすることにより、点火プラグ1Aの先端付近すなわち燃焼室22の中央近くで燃焼を開始させることができる。
 また、図32に示す接地電極14Aは、図31と同様に先端が徐々に細くなっており、誘電体電極の先端まで覆っている。このような構成とすることにより、点火プラグ1Aの先端付近で燃焼を開始させることができると共に、網状電極の機械的強度が向上する。
 さらに、図33に示す例では、接地電極14Aは筒型であり、その一方の端部は主体金具13に接続され、他方の端部は放電領域に突出した複数本の突起電極20を有している。このような構成とすることにより、接地電極14Aの網状部分では放電せず、先端の突起電極20で放電するため、点火プラグ1Aの先端付近で集中して燃焼を開始させることができる。
 本実施の形態5に係る点火プラグ1Aにおいても、上記実施の形態1と同様に、バリア放電によって局所的に十分強いラジカルを生成することができ、放電の発生と同時にラジカルが燃料と反応し、燃料に着火することが可能である。さらに、接地電極14が細い網状であるため、電極による消炎効果が少なく、火炎の成長を妨げにくい。また、燃焼室22に導入された燃料ガスが放電領域に流れ込み易く、放電で生じたラジカルによって着火され易い。
 これらのことから、本実施の形態5によれば、バリア放電を利用して燃料への直接点火を安定して行うことができ、優れた着火性及び燃焼性を実現することが可能な点火プラグ1A及びこれを備えた点火システムを得ることができる。なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。

Claims (15)

  1.  筒状の主体金具と、
    前記主体金具の一方の端面に接続された棒状または網状の接地電極と、
    一方の端部が前記主体金具の前記端面の側から露出している棒状の高電圧電極と、
    前記高電圧電極の周面を覆い、かつ、前記主体金具に保持される第一誘電体とを備え、
    前記高電圧電極の前記端部と前記接地電極のいずれか一方は、前記第一誘電体よりも厚さ寸法が小さい第二誘電体で覆われており、
    前記高電圧電極の前記端部と前記接地電極は、前記第二誘電体に面する放電領域を介して対向配置され、前記放電領域に対面する前記第二誘電体の厚さ寸法は均一であり、前記第二誘電体が前記高電圧電極の前記端部を覆っている場合、前記放電領域に対面する前記接地電極の面積は、前記放電領域に対面する前記第二誘電体の表面積よりも小さいことを特徴とする点火プラグ。
  2.  筒状の主体金具と、
    前記主体金具の一方の端面に接続された棒状または網状の接地電極と、
    一方の端部が前記主体金具の前記端面の側から露出している棒状の高電圧電極と、
    前記高電圧電極の周面を覆い、かつ、前記主体金具に保持される第一誘電体とを備え、
    前記高電圧電極の前記端部と前記接地電極のいずれか一方は、前記第一誘電体よりも厚さ寸法が小さい第二誘電体で覆われており、
    前記高電圧電極の前記端部と前記接地電極は、前記第二誘電体に面する放電領域を介して対向配置され、前記放電領域に対面する前記第二誘電体の厚さ寸法は均一であり、前記高電圧電極の前記周面を覆う前記第一誘電体と前記主体金具との隙間の距離をG2とするとき、G2≦0.3mmであることを特徴とする点火プラグ。
  3.  前記接地電極は、1本または複数本の棒状電極であることを特徴とする請求項1または請求項2に記載の点火プラグ。
  4.  前記接地電極は、その端部が前記高電圧電極の方向に曲げられた屈曲部を有することを特徴とする請求項3記載の点火プラグ。
  5.  前記接地電極は、前記放電領域に対面する箇所に、尖端部を有する第一の突起を備えたことを特徴とする請求項3または請求項4に記載の点火プラグ。
  6.  前記接地電極は金属電極であり、前記尖端部の角度は90度以下であることを特徴とする請求項5記載の点火プラグ。
  7.  前記高電圧電極の前記端部は、前記放電領域に対面する箇所に、尖端部を有する第二の突起を備えたことを特徴とする請求項3から請求項6のいずれか一項に記載の点火プラグ。
  8.  前記高電圧電極の前記端部と前記接地電極のいずれか一方を覆う前記第二誘電体の前記放電領域に対面する箇所に、金属小片を備えたことを特徴とする請求項3から請求項7のいずれか一項に記載の点火プラグ。
  9.  前記高電圧電極の前記端部を覆う前記第二誘電体の厚さ寸法をD1とするとき、0.6mm≦D1≦1.2mmであり、前記高電圧電極の前記端部を覆う前記第二誘電体と前記接地電極との最短距離をG1とするとき、0.8mm≦G1≦1.5mmであることを特徴とする請求項1または請求項2に記載の点火プラグ。
  10.  前記主体金具の前記端面の面積をS1とし、前記端面に前記接地電極を投影したときに前記接地電極が前記端面に占める面積をS2とするとき、0.15≦S2/S1≦0.35であることを特徴とする請求項1または請求項2に記載の点火プラグ。
  11.  筒状の主体金具と、
    前記主体金具の一方の端面に接続された棒状または網状の接地電極と、
    一方の端部が前記主体金具の前記端面の側から露出している棒状の高電圧電極と、
    前記高電圧電極の周面を覆い、かつ、前記主体金具に保持される第一誘電体とを備え、
    前記高電圧電極の前記端部と前記接地電極のいずれか一方は、前記第一誘電体よりも厚さ寸法が小さい第二誘電体で覆われており、
    前記高電圧電極の前記端部と前記接地電極は、前記第二誘電体に面する放電領域を介して対向配置され、前記第二誘電体の前記放電領域に対面する箇所に、尖端部を有する第三の突起を備えたことを特徴とする点火プラグ。
  12.  前記接地電極は、1本または複数本の棒状電極であることを特徴とする請求項11記載の点火プラグ。
  13.  前記接地電極は、前記放電領域に対面する箇所に、尖端部を有する第一の突起を備えたことを特徴とする請求項12記載の点火プラグ。
  14.  前記第一の突起と前記第三の突起は、各々の前記尖端部を結んだ距離が前記放電領域の最短距離となるように配置されたことを特徴とする請求項13記載の点火プラグ。
  15.  請求項1から請求項14のいずれか一項に記載の点火プラグと、前記点火プラグの前記高電圧電極と前記接地電極との間に交流電圧を印加して前記放電領域に誘電体バリア放電を生じさせる交流電圧印加手段とを備えた点火システムであって、
    前記主体金具は、エンジンの燃焼室に臨む隔壁の内部に固定され、前記高電圧電極の前記端部と前記接地電極は前記燃焼室の内部で対向配置されたことを特徴とする点火システム。
PCT/JP2016/079898 2015-12-24 2016-10-07 点火プラグ及びこれを備えた点火システム WO2017110209A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/769,120 US10522978B2 (en) 2015-12-24 2016-10-07 Ignition plug and ignition system including the same
EP16878107.8A EP3396795B1 (en) 2015-12-24 2016-10-07 Ignition plug and ignition system provided with same
JP2017557752A JP6482684B2 (ja) 2015-12-24 2016-10-07 点火プラグ及びこれを備えた点火システム
CN201680073742.4A CN108370134B (zh) 2015-12-24 2016-10-07 火花塞以及具备该火花塞的点火系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015250927 2015-12-24
JP2015-250927 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110209A1 true WO2017110209A1 (ja) 2017-06-29

Family

ID=59089958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079898 WO2017110209A1 (ja) 2015-12-24 2016-10-07 点火プラグ及びこれを備えた点火システム

Country Status (5)

Country Link
US (1) US10522978B2 (ja)
EP (1) EP3396795B1 (ja)
JP (1) JP6482684B2 (ja)
CN (1) CN108370134B (ja)
WO (1) WO2017110209A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092907A1 (ja) * 2017-11-09 2019-05-16 三菱電機株式会社 点火装置
WO2019198295A1 (ja) * 2018-04-11 2019-10-17 日本特殊陶業株式会社 点火プラグ
WO2019205908A1 (zh) * 2018-04-23 2019-10-31 国家能源投资集团有限责任公司 火花塞、发动机、火花塞点火方法和发动机点火方法
JP2021034152A (ja) * 2019-08-20 2021-03-01 日本特殊陶業株式会社 点火プラグ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200182217A1 (en) * 2018-12-10 2020-06-11 GM Global Technology Operations LLC Combustion ignition devices for an internal combustion engine
US11156148B1 (en) * 2021-02-24 2021-10-26 Aramco Services Company Active prechamber for use in an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184718A (ja) * 2011-03-07 2012-09-27 Denso Corp 非熱平衡プラズマ点火装置
JP2014123435A (ja) * 2012-12-20 2014-07-03 Nippon Soken Inc 点火装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439707A (en) * 1980-07-23 1984-03-27 Nippon Soken, Inc. Spark plug with a wide discharge gap
DE4016997C1 (ja) * 1990-05-26 1991-08-08 Haug Gmbh & Co Kg, 7022 Leinfelden-Echterdingen, De
JP3242637B1 (ja) * 2001-11-26 2001-12-25 日本ぱちんこ部品株式会社 イオン発生装置
JP4924275B2 (ja) 2007-08-02 2012-04-25 日産自動車株式会社 非平衡プラズマ放電式の点火装置
JP2010037949A (ja) * 2008-07-31 2010-02-18 Nissan Motor Co Ltd 内燃機関用バリア放電装置
JP5715705B2 (ja) * 2010-10-28 2015-05-13 フェデラル−モーグル・イグニション・カンパニーFederal−Mogul Ignition Company 非熱プラズマ点火アークの抑制
KR20140008871A (ko) * 2012-07-12 2014-01-22 삼성전기주식회사 빌드업 절연필름용 에폭시 수지 조성물, 이로부터 제조된 절연 필름 및 이를 구비한 다층 인쇄회로기판
JP5934635B2 (ja) * 2012-11-29 2016-06-15 株式会社日本自動車部品総合研究所 点火装置
JP6035176B2 (ja) 2013-03-19 2016-11-30 株式会社日本自動車部品総合研究所 点火装置
JP6035232B2 (ja) * 2013-11-28 2016-11-30 株式会社日本自動車部品総合研究所 点火装置
CN105981243A (zh) * 2014-02-26 2016-09-28 通用汽车环球科技运作有限责任公司 等离子体点火装置
JP6419109B2 (ja) * 2016-06-08 2018-11-07 日本特殊陶業株式会社 プラズマジェットプラグ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184718A (ja) * 2011-03-07 2012-09-27 Denso Corp 非熱平衡プラズマ点火装置
JP2014123435A (ja) * 2012-12-20 2014-07-03 Nippon Soken Inc 点火装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396795A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092907A1 (ja) * 2017-11-09 2019-05-16 三菱電機株式会社 点火装置
WO2019198295A1 (ja) * 2018-04-11 2019-10-17 日本特殊陶業株式会社 点火プラグ
JP2019186050A (ja) * 2018-04-11 2019-10-24 日本特殊陶業株式会社 点火プラグ
US11128109B2 (en) 2018-04-11 2021-09-21 Ngk Spark Plug Co., Ltd. Spark plug having a plurality of ground electrodes
WO2019205908A1 (zh) * 2018-04-23 2019-10-31 国家能源投资集团有限责任公司 火花塞、发动机、火花塞点火方法和发动机点火方法
JP2021034152A (ja) * 2019-08-20 2021-03-01 日本特殊陶業株式会社 点火プラグ
JP7112992B2 (ja) 2019-08-20 2022-08-04 日本特殊陶業株式会社 点火プラグ

Also Published As

Publication number Publication date
EP3396795B1 (en) 2021-04-28
EP3396795A4 (en) 2018-12-05
JP6482684B2 (ja) 2019-03-13
US20180301877A1 (en) 2018-10-18
EP3396795A1 (en) 2018-10-31
CN108370134A (zh) 2018-08-03
CN108370134B (zh) 2020-07-24
JPWO2017110209A1 (ja) 2018-03-29
US10522978B2 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
JP6482684B2 (ja) 点火プラグ及びこれを備えた点火システム
JP5691662B2 (ja) 非熱平衡プラズマ点火装置
JP5062629B2 (ja) 高周波プラズマ点火プラグ
JP5934635B2 (ja) 点火装置
US9951743B2 (en) Plasma ignition device
Shiraishi et al. Fundamental analysis of combustion initiation characteristics of low temperature plasma ignition for internal combustion gasoline engine
WO2013011966A1 (ja) 内燃機関
US9377002B2 (en) Electrodes for multi-point ignition using single or multiple transient plasma discharges
JP2017072045A (ja) 点火装置
JP6444833B2 (ja) 点火プラグ及びこれを備えた内燃機関の点火装置
JP2013217279A (ja) 内燃機関の点火装置および点火方法
JP2016130512A (ja) 点火方法、及び点火システム
JPH02502661A (ja) 電界放電の形成
JP2019511671A (ja) 燃焼室内の空気/燃料の混合物に点火を行う点火装置
JP5477253B2 (ja) 内燃機関点火装置
KR101444126B1 (ko) 다공 금속 전극형 유전체 장벽 방전 점화 플러그
JP2008218204A (ja) 多点点火プラグ
JP2009047149A (ja) 複合放電方法および複合放電装置
US4639635A (en) Spark plug
JP2013182718A (ja) 点火プラグ
JP2009283380A (ja) 点火装置
KR101634094B1 (ko) 플라즈마 제트를 이용한 희박 연소 시스템
JP5495980B2 (ja) 火花点火式内燃機関用点火プラグ
WO2013042556A1 (ja) 点火プラグ、点火装置及び混合気に点火する方法
KR101605322B1 (ko) 플라즈마 제트를 이용한 희박 연소 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557752

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15769120

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016878107

Country of ref document: EP