WO2013011966A1 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2013011966A1
WO2013011966A1 PCT/JP2012/068009 JP2012068009W WO2013011966A1 WO 2013011966 A1 WO2013011966 A1 WO 2013011966A1 JP 2012068009 W JP2012068009 W JP 2012068009W WO 2013011966 A1 WO2013011966 A1 WO 2013011966A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
combustion engine
internal combustion
receiving antenna
antenna
Prior art date
Application number
PCT/JP2012/068009
Other languages
English (en)
French (fr)
Inventor
池田 裕二
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to JP2013524712A priority Critical patent/JP6040362B2/ja
Priority to EP12815229.5A priority patent/EP2743495B1/en
Publication of WO2013011966A1 publication Critical patent/WO2013011966A1/ja
Priority to US14/156,061 priority patent/US20140216381A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/463Microwave discharges using antennas or applicators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/04Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits one of the spark electrodes being mounted on the engine working piston

Definitions

  • the present invention relates to an internal combustion engine that promotes combustion of an air-fuel mixture in a combustion chamber using electromagnetic waves.
  • the internal combustion engine described in Japanese Patent Application Laid-Open No. 2007-113570 includes an ignition device that emits microwaves to a combustion chamber before and after ignition of an air-fuel mixture to generate plasma discharge.
  • the ignition device creates a local plasma using the discharge of the ignition plug so that the plasma is generated in a high pressure field, and this plasma is grown by the microwave. Local plasma is generated in the discharge gap between the tip of the anode terminal and the ground terminal.
  • the present invention has been made in view of such points, and an object of the present invention is to increase the propagation speed of a flame in a region near the outer periphery of the combustion chamber in an internal combustion engine that promotes the combustion of air-fuel mixture in the combustion chamber using electromagnetic waves. Is to increase.
  • an internal combustion engine body having a combustion chamber formed therein, and an ignition device that ignites an air-fuel mixture at a central portion of the combustion chamber, and the air-fuel mixture is ignited by the ignition device to burn the air-fuel mixture
  • An internal combustion engine in which a combustion cycle is repeatedly performed and includes an electromagnetic wave radiation device that radiates electromagnetic waves from a radiation antenna to the combustion chamber, and a partition member that partitions the combustion chamber, wherein the region near the outer periphery of the combustion chamber is partitioned
  • a receiving antenna that resonates with electromagnetic waves radiated from the radiating antenna to the combustion chamber, and from the radiating antenna to the combustion chamber during propagation of a flame after the mixture is ignited by the ignition device
  • a plurality of the receiving antennas are arranged in parallel on the partition member.
  • the receiving antenna is provided on an insulating layer laminated on a surface of the partition member on the combustion chamber side.
  • the covering layer constituted by an insulator, the receiving antenna, and the insulator
  • the configured support layer is laminated, and the covering layer is thinner than the support layer.
  • the thickness of the coating layer decreases from the inside to the outside of the combustion chamber.
  • a sixth invention is the third, fourth, or fifth invention, wherein the insulating layer is provided in a groove formed in the partition member along a circumferential direction of the combustion chamber, and the receiving antenna is In the insulating layer, the groove extends between the inner wall and the outer wall of the groove along the groove.
  • the distance between the outer periphery of the receiving antenna and the outer wall of the groove is shorter than the distance between the inner periphery of the receiving antenna and the inner wall of the groove.
  • the insulating layer is provided with a plurality of receiving antennas at intervals in the thickness direction.
  • the plurality of receiving antennas are connected by a pressure equalizing conductor that equalizes a voltage at a connection position at at least one position.
  • the receiving antenna is provided in a region near the outer periphery of the top of the piston, which is one of the partition members.
  • the receiving antenna is provided on a gasket which is one of the partition members.
  • the receiving antenna is formed in a ring shape extending in the circumferential direction of the combustion chamber.
  • the receiving antenna is formed in a ring shape extending in the circumferential direction of the combustion chamber, and the ring-shaped receiving antennas having different diameters are multiplexed on the top of the piston. Is provided.
  • a cross-sectional area of a conductor constituting the receiving antenna is changed in a circumferential direction thereof.
  • a plurality of broken line portions for concentrating the electric field are formed on the inner periphery or the outer periphery of the ring-shaped receiving antenna.
  • the receiving antenna is provided on an insulating member laminated on a top surface of the piston, and is formed on a top surface of the piston on the piston side of the insulating member. A convex portion that meshes with the concave portion is formed.
  • the radiating antenna is provided in a cylinder head.
  • a strong electric field region is formed in a region near the outer periphery of the combustion chamber during the propagation of the flame.
  • a strong electric field region is formed in a region near the outer periphery when the flame passes through a region near the outer periphery of the combustion chamber, the flame receives the energy of electromagnetic waves and the propagation speed of the flame increases.
  • the electromagnetic wave energy is large, plasma is generated in a region near the combustion chamber.
  • active species for example, OH radicals
  • the propagation speed of the flame increases due to the active species.
  • the flame propagation speed can be increased in the region near the outer periphery of the combustion chamber.
  • FIG. 1 is a longitudinal sectional view of an internal combustion engine according to an embodiment. It is a front view of the ceiling surface of the combustion chamber of the internal combustion engine which concerns on embodiment. It is a block diagram of the ignition device and electromagnetic wave radiation device concerning an embodiment. It is a front view of the top surface of the piston which concerns on embodiment. It is a longitudinal cross-sectional view of the principal part of another form of the internal combustion engine which concerns on embodiment. It is a front view of another form of the top surface of the piston which concerns on embodiment. It is a longitudinal cross-sectional view of the principal part of the internal combustion engine which concerns on the modification 2 of embodiment. It is a longitudinal cross-sectional view of the principal part of the internal combustion engine which concerns on the modification 3 of embodiment.
  • the present embodiment is an internal combustion engine 10 according to the present invention.
  • the internal combustion engine 10 is a reciprocating type internal combustion engine in which a piston 23 reciprocates.
  • the internal combustion engine 10 includes an internal combustion engine main body 11, an ignition device 12, and an electromagnetic wave emission device 13.
  • a combustion cycle in which the air-fuel mixture is ignited by the ignition device 12 and the air-fuel mixture is combusted is repeatedly performed.
  • the internal combustion engine main body 11 includes a cylinder block 21, a cylinder head 22, and a piston 23 as shown in FIG.
  • a plurality of cylinders 24 having a circular cross section are formed in the cylinder block 21.
  • a piston 23 is provided in each cylinder 24 so as to reciprocate.
  • the piston 23 is connected to the crankshaft via a connecting rod (not shown).
  • the crankshaft is rotatably supported by the cylinder block 21.
  • the cylinder head 22 is placed on the cylinder block 21 with the gasket 18 in between.
  • the cylinder head 22, together with the cylinder 24, the piston 23, and the gasket 18, constitutes a partition member that partitions the combustion chamber 20 having a circular cross section.
  • the diameter of the combustion chamber 20 is, for example, about half of the wavelength of the microwave radiated to the combustion chamber 20 by the electromagnetic wave emission device 13 described later.
  • the cylinder head 22 is provided with one spark plug 40 that constitutes a part of the ignition device 12 for each cylinder 24.
  • the tip exposed to the combustion chamber 20 is located at the center of the ceiling surface 51 of the combustion chamber 20 (the surface exposed to the combustion chamber 20 in the cylinder head 22).
  • the outer periphery of the distal end portion of the spark plug 40 is circular as viewed from the axial direction.
  • a center electrode 40 a and a ground electrode 40 b are provided at the tip of the spark plug 40.
  • a discharge gap is formed between the tip of the ground electrode 40b and the tip of the center electrode 40a.
  • An intake port 25 and an exhaust port 26 are formed in the cylinder head 22 for each cylinder 24.
  • the intake port 25 is provided with an intake valve 27 that opens and closes an intake side opening 25a of the intake port 25, and an injector 29 that injects fuel.
  • the exhaust port 26 is provided with an exhaust valve 28 for opening and closing the exhaust side opening 26 a of the exhaust port 26.
  • the intake port 25 is designed so that a strong tumble flow is formed in the combustion chamber 20.
  • each ignition device 12 is provided for each combustion chamber 20. As shown in FIG. 3, each ignition device 12 includes an ignition coil 14 that outputs a high voltage pulse, and an ignition plug 40 that is supplied with the high voltage pulse output from the ignition coil 14.
  • the ignition coil 14 is connected to a DC power source (not shown).
  • the ignition coil 14 boosts the voltage applied from the DC power supply, and outputs the boosted high voltage pulse to the center electrode 40 a of the spark plug 40.
  • the spark plug 40 when a high voltage pulse is applied to the center electrode 40a, dielectric breakdown occurs in the discharge gap and spark discharge occurs. A discharge plasma is generated in the discharge path of the spark discharge. A negative voltage is applied to the center electrode 40a as a high voltage pulse.
  • the ignition device 12 may include a plasma expansion unit that supplies electric energy to the discharge plasma to expand the discharge plasma.
  • a plasma expansion part expands a spark discharge by supplying high frequency (for example, microwave) energy to discharge plasma, for example. According to the plasma expansion part, it is possible to improve the stability of ignition with respect to a lean air-fuel mixture.
  • the electromagnetic wave emission device 13 may be used as the plasma expansion unit.
  • the electromagnetic wave radiation device 13 includes an electromagnetic wave generator 31, an electromagnetic wave switch 32, and a radiation antenna 16.
  • the electromagnetic wave generation device 31 and the electromagnetic wave switch 32 are provided one by one, and the radiation antenna 16 is provided for each combustion chamber 20.
  • the electromagnetic wave generator 31 When receiving the electromagnetic wave drive signal from the control device 35, the electromagnetic wave generator 31 repeatedly outputs a microwave pulse at a predetermined duty ratio.
  • the electromagnetic wave drive signal is a pulse signal.
  • the electromagnetic wave generator 31 repeatedly outputs the microwave pulse over the time of the pulse width of the electromagnetic wave drive signal.
  • a semiconductor oscillator In the electromagnetic wave generator 31, a semiconductor oscillator generates a microwave pulse. In place of the semiconductor oscillator, another oscillator such as a magnetron may be used.
  • the electromagnetic wave switch 32 includes one input terminal and a plurality of output terminals provided for each radiation antenna 16.
  • the input terminal is connected to the electromagnetic wave generator 31.
  • Each output terminal is connected to a corresponding radiation antenna 16.
  • the electromagnetic wave switch 32 is controlled by the control device 35 and sequentially switches the supply destination of the microwaves output from the electromagnetic wave generator 31 between the plurality of radiation antennas 16.
  • the radiation antenna 16 is provided on the ceiling surface 51 of the combustion chamber 20.
  • the radiation antenna 16 is formed in an annular shape in a front view of the ceiling surface 51 of the combustion chamber 20 and surrounds the tip of the spark plug 40.
  • the radiating antenna 16 may be formed in a C shape in a front view of the ceiling surface 51 of the combustion chamber 20.
  • the radiation antenna 16 is laminated on an annular insulating layer 19 formed around the mounting hole of the spark plug 40 in the ceiling surface 51 of the combustion chamber 20.
  • the insulating layer 19 is formed, for example, by spraying an insulator by thermal spraying.
  • the radiating antenna 16 is electrically insulated from the cylinder head 22 by the insulating layer 19.
  • the length in the circumferential direction of the radiation antenna 16 (the length of the center line between the outer circumference and the inner circumference) is set to a length that is half the wavelength of the microwave radiated from the radiation antenna 16.
  • the radiation antenna 16 is electrically connected to the output terminal of the electromagnetic wave switch 32 through a microwave transmission line 33 embedded in the cylinder head 22.
  • a plurality of receiving antennas 52 that resonate with microwaves radiated from the radiating antenna 16 to the combustion chamber 20 are provided in a partition member that divides the combustion chamber 20.
  • two receiving antennas 52 a and 52 b are provided in a portion of the partition member that partitions a region near the outer periphery of the combustion chamber 20.
  • the region near the outer periphery of the combustion chamber 20 is a region outside the center of the combustion chamber 20 and the middle of the outer periphery.
  • a period during which the flame passes through the region near the outer periphery is referred to as a “second half period of flame propagation”.
  • the length L of the receiving antenna 52 satisfies the relationship of Equation 1 where n is the wavelength of the microwave radiated from the radiation antenna 16 to the combustion chamber 20 (n is a natural number).
  • Each receiving antenna 52a, 52b is provided in a region near the outer periphery of the top of the piston 23, as shown in FIGS.
  • the region near the outer periphery of the top portion of the piston 23 is a region outside the center of the top portion of the piston 23 and the middle of the outer periphery.
  • Each of the receiving antennas 52 a and 52 b is formed in a ring shape (annular shape) extending in the circumferential direction of the combustion chamber 20, and the center thereof coincides with the central axis of the piston 23.
  • the two receiving antennas 52a and 52b have different diameters and are arranged side by side so as to form a double ring.
  • the two receiving antennas 52a and 52b are arranged coaxially.
  • the outer side constitutes the first receiving antenna 52a and the inner side constitutes the second receiving antenna 52b.
  • the distance X between the first receiving antenna 52a and the second receiving antenna 52b satisfies the relationship of Equation 2 when the wavelength of the microwave radiated from the radiation antenna 16 to the combustion chamber 20 is ⁇ .
  • Formula 2 ⁇ / 16 ⁇ X ⁇ 2 ⁇ / 3
  • Each receiving antenna 52a, 52b is provided on an insulating layer 56 laminated on the top surface of the piston 23 (surface on the combustion chamber side of the partition member). Each of the receiving antennas 52a and 52b is electrically insulated from the piston 23 by the insulating layer 56, and is provided in an electrically floating state.
  • the number of receiving antennas 52 provided on the top of the piston 23 may be one.
  • the center of the receiving antenna 52 may be deviated from the central axis of the piston 23 regardless of whether the number of the receiving antennas 52 provided on the top of the piston 23 is one or more.
  • the center of the receiving antenna 52 is shifted to the exhaust side from the center of the piston 23 as shown in FIG. For this reason, during the microwave radiation period, the flame surface passes through the exhaust side and the intake side of the receiving antenna 52 at substantially the same timing.
  • the plurality of ring-shaped receiving antennas 52a and 52b may not be arranged coaxially.
  • the center of the inner ring-shaped receiving antenna 52b may be shifted toward the intake side opening 25a.
  • the electric field at the intake side opening 25a can be strengthened.
  • the operation of the control device 35 will be described.
  • the control device 35 performs a first operation for instructing the ignition device 12 to ignite the air-fuel mixture in one combustion cycle for each combustion chamber 20, and a microwave is applied to the electromagnetic wave emission device 13 after the ignition of the air-fuel mixture.
  • a second operation for instructing radiation is performed.
  • control device 35 performs the first operation at the ignition timing at which the piston 23 is positioned before the compression top dead center.
  • the control device 35 outputs an ignition signal as the first operation.
  • spark discharge occurs in the discharge gap of the spark plug 40 as described above.
  • the air-fuel mixture is ignited by spark discharge.
  • the flame spreads from the ignition position of the air-fuel mixture at the center of the combustion chamber 20 toward the wall surface of the cylinder 24.
  • the control device 35 performs the second operation after the air-fuel mixture has ignited, for example, at the start timing of the second half period of flame propagation.
  • the control device 35 outputs an electromagnetic wave drive signal as the second operation.
  • the control device 35 constitutes control means for controlling the electromagnetic wave radiation device 13 so that microwaves are emitted from the radiation antenna 16 to the combustion chamber 20 during the propagation of the flame after the air-fuel mixture is ignited by the ignition device 12. ing.
  • the electromagnetic wave radiation device 13 When receiving the electromagnetic wave drive signal, the electromagnetic wave radiation device 13 repeatedly radiates the microwave pulse from the radiation antenna 16 as described above.
  • the microwave pulse is emitted repeatedly over the second half of the flame propagation.
  • the output timing and pulse width of the electromagnetic wave drive signal are set so that the microwave pulse is repeatedly emitted over a period in which the flame passes through a region near the outer periphery of the top surface of the piston 23.
  • the microwave pulse resonates.
  • a strong electric field region having a relatively strong electric field strength is formed in the combustion chamber 20 throughout the latter half of the flame propagation.
  • the propagation speed of the flame is increased by receiving microwave energy when the flame passes through the strong electric field region.
  • a strong electric field region is formed in a region near the outer periphery of the combustion chamber 20 during the propagation of the flame. Therefore, the flame propagation speed can be increased in the region near the outer periphery of the combustion chamber 20.
  • the electromagnetic wave radiation device 13 is configured such that microwave plasma is generated by the microwave radiated from the radiation antenna 16.
  • the energy per unit time of the microwave oscillated from the electromagnetic wave generator 31 is set so that microwave plasma is generated in the vicinity of each receiving antenna 52 by the microwave radiated from the radiation antenna 16.
  • the electromagnetic wave emission device 13 repeatedly emits a microwave pulse, for example, during the second half period of flame propagation. In the vicinity of each receiving antenna 52, microwave plasma is generated throughout the second half of the flame propagation period. Since active species (for example, OH radicals) are generated in the generation region of the microwave plasma, the propagation speed of the flame passing through the generation region of the microwave plasma is increased by the active species.
  • active species for example, OH radicals
  • the electromagnetic wave emission device 13 may repeatedly emit a microwave pulse, for example, in the first half period of flame propagation. In that case, microwave plasma is generated in the first half of the flame propagation.
  • the moving speed of the flame passing through the region near the outer periphery of the combustion chamber 20 is increased by the active species generated in the first half period of the flame propagation.
  • the internal combustion engine 10 also includes a plasma discharge device that generates a discharge in a region near the outer periphery of the combustion chamber 20 during the microwave emission period in order to reduce the energy of the microwave radiated from the radiation antenna 16. It may be.
  • the discharge device generates a discharge by applying a high voltage pulse between a pair of electrodes.
  • a pair of electrodes for example, one first electrode is provided on the cylinder head 22, and the other second electrode is provided on the top surface of the piston 23.
  • a 2nd electrode is provided in the top part of the convex part provided in the top surface of piston 23 so that the distance with a 1st electrode may become short.
  • a plurality of receiving antennas 52 arranged coaxially are provided on the top surface of the piston 23.
  • the plurality of receiving antennas 52 have different resonance frequencies.
  • the electromagnetic wave generator 31 changes the oscillation frequency of the microwave so that the inner receiving antenna 52 resonates earlier during the propagation of the flame.
  • a strong electric field region is formed in the vicinity in order from the inner receiving antenna 52. In the vicinity of each receiving antenna 52, the moving speed of the flame surface is increased.
  • the inner insulating layer 56b on which the second receiving antenna 52b is stacked is thicker than the outer insulating layer 56a on which the first receiving antenna 52a is stacked.
  • the receiving antenna 52 is grounded via a diode.
  • the second receiving antenna 52b is grounded via a diode, but only the first receiving antenna 52a may be grounded via a diode, or all the receiving antennas 52a and 52b may be grounded. It may be grounded through a diode.
  • a ring-shaped receiving antenna 52 is provided on the inner peripheral portion of the gasket 18.
  • a plurality of ring-shaped receiving antennas 52 may be provided on the gasket 18 at intervals in the thickness direction of the gasket 18.
  • a receiving antenna 52 may be provided on the top surface of the piston 23.
  • the reception antenna 52 is arranged just inside the region where the squish flow is generated. Therefore, the microwave plasma generated near the receiving antenna 52 is moved inward by the squish flow. Active species generated in the plasma region diffuse.
  • the receiving antenna 52 is embedded in the insulating layer 56.
  • the insulating layer 56 is made of, for example, ceramic.
  • a coating layer 56 a made of an insulator, a receiving antenna 52, and a support layer 56 b made of an insulator are stacked in order from the combustion chamber 20 side.
  • the support layer 56 is laminated on a partition member such as the piston 23.
  • the coating layer 56a is thinner than the support layer 56b. Therefore, when the receiving antenna 52 is protected by an insulator, the electric field on the combustion chamber 23 side can be suppressed from being weakened.
  • the receiving antenna 52 is doubled on the top of the piston 23.
  • the two receiving antennas 52 are covered with a covering layer 56a.
  • the thickness of the coating layer 56a decreases from the inside to the outside of the combustion chamber 20.
  • the electric field when microwaves are radiated into the combustion chamber 20 is stronger on the outer side than on the inner side. Therefore, the flame propagation speed can be effectively improved outside the combustion chamber 20.
  • the insulating layer 56 is provided in the groove portion 70 formed along the circumferential direction of the combustion chamber 20 in the piston 23 (partition member).
  • the receiving antenna 52 extends along the groove 70 between the inner wall 121 and the outer wall 122 of the groove 70 in the insulating layer 56.
  • an electric field is formed in the vertical direction between the reception antenna 52 and the wall surfaces 121 and 122 of the groove portion 70 on the inside and outside of the reception antenna 52. Therefore, the propagation speed of the flame can be effectively improved by the electric field in the vicinity of the receiving antenna 52.
  • the distance A between the outer periphery of the receiving antenna 52 and the outer wall 122 of the groove 70 is shorter than the distance B between the inner periphery of the receiving antenna 52 and the inner wall 121 of the groove 70. For this reason, since the electric field is stronger on the outer side than the inner side of the receiving antenna 52, the flame propagation speed can be improved in the vicinity of the wall surface of the combustion chamber 20. -Variation 9 of the embodiment-
  • the two receiving antennas 52 are connected to each other by a columnar pressure equalizing conductor 80 that equalizes the voltage at the connection point at at least one point.
  • the pressure equalizing conductor 80 is provided between the two receiving antennas 52 in the circumferential direction of the receiving antenna 52 at intervals of a quarter of the wavelength of the microwave in the receiving antenna 52. Yes.
  • a plurality of receiving antennas 52 may be provided in multiple layers.
  • the plurality of receiving antennas 52 are provided at intervals in the thickness direction of the gasket 18 made of an insulator.
  • the pressure equalizing conductor 80 may be provided.
  • the ring-shaped receiving antenna 52 has a cross-sectional area of a conductor constituting the receiving antenna 52 changed in the circumferential direction.
  • the receiving antenna 52 is provided with convex portions 120 protruding toward the piston 23 at equal intervals, and the cross-sectional area of the conductor is changed in the convex portion 120.
  • the thickness of the convex portion 120 is larger than that between the convex portions 120.
  • the cross-sectional area of the conductor may be changed by changing the width of the receiving antenna 52.
  • the receiving antenna 52 is formed in a gear shape in plan view.
  • the cross-sectional area of the conductor may be changed by providing the receiving antenna 52 with a disk portion 140 having a diameter larger than the width of the adjacent portion 141.
  • the cross-sectional area of the conductor constituting the receiving antenna 52 may be changed only on the intake side opening side 25a.
  • a plurality of broken line portions 85 for concentrating the electric field are formed on the outer periphery of the ring-shaped receiving antenna 52.
  • the electric field concentrates on the broken line portion 85 in the reception antenna 52. Therefore, when plasma is generated by microwaves, plasma can be generated with less energy.
  • the broken line portion 85 is provided only on the intake side opening side 25a, but the broken line portion 85 may be provided in other locations. Further, a broken line portion 85 may be formed on the inner periphery of the ring-shaped receiving antenna 52.
  • the receiving antenna 52 is provided on an insulating member 90 made of, for example, ceramic laminated on the top surface of the piston 23.
  • an insulating member 90 made of, for example, ceramic laminated on the top surface of the piston 23.
  • a plurality of convex portions 92 that mesh with the concave portions 91 formed on the top surface of the piston 23 are formed.
  • the insulating member 90 can be made difficult to peel off from the piston 23.
  • a cushion layer 95 that is softer than the piston 23 may be provided between the piston 23 and the insulating member 90.
  • a metal having high ductility such as gold can be used.
  • the embodiment may be configured as follows.
  • the center electrode 40a of the spark plug 40 may also serve as a radiation antenna.
  • the center electrode 40a of the spark plug 40 is electrically connected to the output terminal of the mixing circuit.
  • the mixing circuit receives the high voltage pulse from the ignition coil 14 and the microwave from the electromagnetic wave switch 32 at separate input terminals, and outputs the high voltage pulse and the microwave from the same output terminal.
  • the ring-shaped radiation antenna 16 may be provided on the gasket 18, and the ring-shaped reception antenna 52 may be provided on the top surface of the piston 23.
  • the receiving antenna 52 may be provided on the inner wall surface of the cylinder 24.
  • the dielectric for example, ceramic
  • the planar shape of the receiving antenna 52 and the dielectric may be a ring shape, or may be a shape where the band is bent at an acute angle.
  • the present invention is useful for an internal combustion engine that uses electromagnetic waves to promote combustion of an air-fuel mixture in a combustion chamber.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Plasma Technology (AREA)

Abstract

 燃焼室が形成された内燃機関本体と、燃焼室の中央部において混合気に点火する点火装置とを備え、点火装置により混合気に点火して該混合気を燃焼させる燃焼サイクルが繰り返し行われる内燃機関において、燃焼室の外周寄りの領域において火炎の伝播速度を増大させる。内燃機関は、放射アンテナから燃焼室へ電磁波を放射する電磁波放射装置と、燃焼室を区画する区画部材(ピストン)のうち、燃焼室の外周寄りの領域を区画する部分に設けられ、放射アンテナから燃焼室へ放射された電磁波に共振する受信アンテナと、点火装置により混合気が点火された後の火炎の伝播中に放射アンテナから燃焼室へ電磁波が放射されるように電磁波放射装置を制御する制御装置とを備えている。

Description

内燃機関
 本発明は、電磁波を利用して燃焼室における混合気の燃焼を促進させる内燃機関に関するものである。
 従来から、電磁波を利用して燃焼室における混合気の燃焼を促進させる内燃機関が知られている。例えば特開2007-113570号公報には、この種の内燃機関が開示されている。
 特開2007-113570号公報に記載の内燃機関は、混合気の着火前や着火後に燃焼室にマイクロ波を放射して、プラズマ放電を起こす点火装置を備えている。点火装置は、高圧場においてプラズマが生成されるように、点火プラグの放電を用いて局所的なプラズマを作り、このプラズマをマイクロ波により成長させる。局所的なプラズマは、陽極端子の先端部とグランド端子部との間の放電ギャップに生成される。
特開2007-113570号公報
 ところで、従来の内燃機関では、混合気の着火後に放射されたマイクロ波により、点火プラグの近傍にプラズマが生成される。そのため、点火プラグが位置する燃焼室の中央部を通過した火炎の伝播速度を増大させることが困難であった。例えば、火炎の伝播速度が遅い希薄な混合気の場合に、火炎が燃焼室の壁面に到達せずに、比較的多くの燃料が未燃のまま排出されるおそれがあった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、電磁波を利用して燃焼室における混合気の燃焼を促進させる内燃機関において、燃焼室の外周寄りの領域において火炎の伝播速度を増大させることにある。
 第1の発明は、燃焼室が形成された内燃機関本体と、前記燃焼室の中央部において混合気に点火する点火装置とを備え、前記点火装置により混合気に点火して該混合気を燃焼させる燃焼サイクルが繰り返し行われる内燃機関であって、放射アンテナから前記燃焼室へ電磁波を放射する電磁波放射装置と、前記燃焼室を区画する区画部材のうち、前記燃焼室の外周寄りの領域を区画する部分に設けられ、前記放射アンテナから前記燃焼室へ放射された電磁波に共振する受信アンテナと、前記点火装置により混合気が点火された後の火炎の伝播中に前記放射アンテナから前記燃焼室へ電磁波が放射されるように前記電磁波放射装置を制御する制御手段とを備えている。
 第2の発明は、第1の発明において、前記区画部材には、前記受信アンテナが複数個並設されている。
 第3の発明は、第1又は第2の発明において、前記受信アンテナは、前記区画部材における前記燃焼室側の面に積層された絶縁層に設けられている。
 第4の発明は、第3の発明において、前記絶縁層における前記受信アンテナの設置部の断面では、前記燃焼室側から順番に、絶縁体により構成された被覆層、前記受信アンテナ、絶縁体により構成された支持層が積層され、前記被覆層は、前記支持層よりも厚みが薄い。
 第5の発明は、第4の発明において、前記被覆層の厚みは、前記燃焼室の内側から外側へ向かって薄くなっている。
 第6の発明は、第3、第4、又は第5の発明において、前記絶縁層は、前記区画部材に前記燃焼室の周方向に沿って形成された溝部に設けられ、前記受信アンテナは、前記絶縁層において、前記溝部の内壁と外壁の間を該溝部に沿って延びている。
 第7の発明は、第6の発明において、前記受信アンテナの外周と前記溝部の外壁との距離は、前記受信アンテナの内周と前記溝部の内壁との距離よりも短い。
 第8の発明は、第3の発明において、前記絶縁層では、その厚さ方向に複数の受信アンテナが間隔を隔てて設けられている。
 第9の発明は、第8の発明において、前記絶縁層では、前記複数の受信アンテナが、少なくとも1箇所で互いの接続箇所の電圧を均圧する均圧導体により接続されている。
 第10の発明は、第1の発明において、前記受信アンテナは、前記区画部材の1つであるピストンの頂部の外周寄りの領域に設けられている。
 第11の発明は、第1の発明において、前記受信アンテナは、前記区画部材の1つであるガスケットに設けられている。
 第12の発明は、第10又は第11の発明において、前記受信アンテナは、前記燃焼室の周方向に延びるリング状に形成されている。
 第13の発明は、第10の発明において、前記受信アンテナは、前記燃焼室の周方向に延びるリング状に形成され、前記ピストンの頂部には、直径が互いに異なる前記リング状の受信アンテナが多重に設けられている。
 第14の発明は、第12又は第13の発明において、前記リング状の受信アンテナは、その周方向に、該受信アンテナを構成する導体の断面積が変化している。
 第15の発明は、第12、第13、又は第14の発明において、前記リング状の受信アンテナの内周又は外周には、電界を集中させる折れ線部が複数箇所形成されている。
 第16の発明は、第10の発明において、前記受信アンテナは、前記ピストンの頂面に積層された絶縁部材に設けられ、前記絶縁部材の前記ピストン側には、前記ピストンの頂面に形成された凹部と噛み合う凸部が形成されている。
 第17の発明は、第10の発明において、前記放射アンテナは、シリンダヘッドに設けられている。
 本発明では、火炎の伝播中に、燃焼室の外周寄りの領域に強電界領域が形成されるようにしている。例えば、火炎が燃焼室の外周寄りの領域を通過しているときに、その外周寄りの領域に強電界領域が形成されると、火炎が電磁波のエネルギーを受け、火炎の伝播速度が増大する。また、電磁波のエネルギーが大きい場合には、燃焼室の寄りの領域でプラズマが生成される。プラズマの生成領域では、活性種(例えば、OHラジカル)が生成される。火炎が燃焼室の外周寄りの領域に入る前、又は、火炎が燃焼室の外周寄りの領域を通過しているときに、電磁波によりプラズマが生成されると、火炎の伝播速度が活性種により増大する。本発明によれば、燃焼室の外周寄りの領域において火炎の伝播速度を増大させることができる。
実施形態に係る内燃機関の縦断面図である。 実施形態に係る内燃機関の燃焼室の天井面の正面図である。 実施形態に係る点火装置及び電磁波放射装置のブロック図である。 実施形態に係るピストンの頂面の正面図である。 実施形態に係る内燃機関の別の形態の要部の縦断面図である。 実施形態に係るピストンの頂面の別の形態の正面図である。 実施形態の変形例2に係る内燃機関の要部の縦断面図である。 実施形態の変形例3に係る内燃機関の要部の縦断面図である。 実施形態の変形例4に係る内燃機関の要部の縦断面図である。 実施形態の変形例6に係る内燃機関の要部の縦断面図である。 実施形態の変形例7に係る内燃機関の要部の縦断面図である。 実施形態の変形例8に係る内燃機関の要部の縦断面図である。 実施形態の変形例9に係るピストンの頂部の縦断面図である。 実施形態の変形例10に係るピストンの頂面の正面図である。 実施形態の変形例10に係るピストンの頂面の別の形態の正面図である。 実施形態の変形例11に係るピストンの頂面の正面図である。 実施形態の変形例12に係るピストンの頂部の縦断面図である。 実施形態の変形例12に係るピストンの頂部の別の形態の縦断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本実施形態は、本発明に係る内燃機関10である。内燃機関10は、ピストン23が往復動するレシプロタイプの内燃機関である。内燃機関10は、内燃機関本体11と点火装置12と電磁波放射装置13とを備えている。内燃機関10では、点火装置12により混合気に点火して混合気を燃焼させる燃焼サイクルが繰り返し行われる。
 -内燃機関本体-
 内燃機関本体11は、図1に示すように、シリンダブロック21とシリンダヘッド22とピストン23とを備えている。シリンダブロック21には、横断面が円形のシリンダ24が複数形成されている。各シリンダ24内には、ピストン23が往復自在に設けられている。ピストン23は、コネクティングロッドを介して、クランクシャフトに連結されている(図示省略)。クランクシャフトは、シリンダブロック21に回転自在に支持されている。各シリンダ24内においてシリンダ24の軸方向にピストン23が往復運動すると、コネクティングロッドがピストン23の往復運動をクランクシャフトの回転運動に変換する。
 シリンダヘッド22は、ガスケット18を挟んで、シリンダブロック21上に載置されている。シリンダヘッド22は、シリンダ24、ピストン23及びガスケット18と共に、円形断面の燃焼室20を区画する区画部材を構成している。燃焼室20の直径は、例えば、後述する電磁波放射装置13により燃焼室20へ放射されるマイクロ波の波長の半分程度である。
 シリンダヘッド22には、各シリンダ24に対して、点火装置12の一部を構成する点火プラグ40が1つずつ設けられている。図2に示すように、点火プラグ40では、燃焼室20に露出する先端部が、燃焼室20の天井面51(シリンダヘッド22における燃焼室20に露出する面)の中央部に位置している。点火プラグ40の先端部の外周は、その軸方向から見て円形である。点火プラグ40の先端部には、中心電極40a及び接地電極40bが設けられている。接地電極40bの先端部と中心電極40aの先端との間には、放電ギャップが形成されている。
 シリンダヘッド22には、各シリンダ24に対して、吸気ポート25及び排気ポート26が形成されている。吸気ポート25には、吸気ポート25の吸気側開口25aを開閉する吸気バルブ27と、燃料を噴射するインジェクター29とが設けられている。一方、排気ポート26には、排気ポート26の排気側開口26aを開閉する排気バルブ28が設けられている。なお、内燃機関10は、燃焼室20において強いタンブル流が形成されるように吸気ポート25が設計されている。
 -点火装置-
 点火装置12は、燃焼室20毎に設けられている。図3に示すように、各点火装置12は、高電圧パルスを出力する点火コイル14と、点火コイル14から出力された高電圧パルスが供給される点火プラグ40とを備えている。
 点火コイル14は、直流電源(図示省略)に接続されている。点火コイル14は、制御装置35から点火信号を受けると、直流電源から印加された電圧を昇圧し、昇圧後の高電圧パルスを点火プラグ40の中心電極40aに出力する。点火プラグ40では、高電圧パルスが中心電極40aに印加されると、放電ギャップにおいて絶縁破壊が生じてスパーク放電が生じる。スパーク放電の放電経路には、放電プラズマが生成される。中心電極40aには、高電圧パルスとしてマイナスの電圧が印加される。
 なお、点火装置12は、放電プラズマに電気エネルギーを供給して放電プラズマを拡大させるプラズマ拡大部を備えていてもよい。プラズマ拡大部は、例えば、放電プラズマに高周波(例えばマイクロ波)のエネルギーを供給することによりスパーク放電を拡大させる。プラズマ拡大部によれば、希薄な混合気に対して着火の安定性を向上させることができる。プラズマ拡大部として、電磁波放射装置13を利用してもよい。
 -電磁波放射装置-
 電磁波放射装置13は、図3に示すように、電磁波発生装置31と電磁波切替器32と放射アンテナ16とを備えている。電磁波放射装置13では、電磁波発生装置31と電磁波切替器32が1つずつ設けられ、燃焼室20毎に放射アンテナ16が設けられている。
 電磁波発生装置31は、制御装置35から電磁波駆動信号を受けると、所定のデューティー比でマイクロ波パルスを繰り返し出力する。電磁波駆動信号はパルス信号である。電磁波発生装置31は、電磁波駆動信号のパルス幅の時間に亘って、マイクロ波パルスを繰り返し出力する。電磁波発生装置31では、半導体発振器がマイクロ波パルスを生成する。なお、半導体発振器の代わりに、マグネトロン等の他の発振器を使用してもよい。
 電磁波切替器32は、1つの入力端子と、放射アンテナ16毎に設けられた複数の出力端子とを備えている。入力端子は、電磁波発生装置31に接続されている。各出力端子は、対応する放射アンテナ16に接続されている。電磁波切替器32は、制御装置35により制御されて、複数の放射アンテナ16の間で、電磁波発生装置31から出力されたマイクロ波の供給先を順番に切り替える。
 放射アンテナ16は、燃焼室20の天井面51に設けられている。放射アンテナ16は、燃焼室20の天井面51の正面視において、円環状に形成され、点火プラグ40の先端部を囲っている。なお、放射アンテナ16は、燃焼室20の天井面51の正面視において、C字状に形成されていてもよい。
 放射アンテナ16は、燃焼室20の天井面51における点火プラグ40の取付孔の周囲に形成された環状の絶縁層19の上に積層されている。絶縁層19は、例えば溶射により絶縁体を吹き付けることにより形成されている。放射アンテナ16は、絶縁層19によりシリンダヘッド22から電気的に絶縁されている。放射アンテナ16の周方向の長さ(外周と内周の真ん中の中心線の長さ)は、放射アンテナ16から放射されるマイクロ波の波長の2分の1の長さに設定されている。放射アンテナ16は、シリンダヘッド22に埋設されたマイクロ波の伝送線路33を介して、電磁波切替器32の出力端子に電気的に接続されている。
 内燃機関本体11では、燃焼室20を区画する区画部材に、放射アンテナ16から燃焼室20へ放射されたマイクロ波に共振する複数の受信アンテナ52が設けられている。本実施形態では、2つの受信アンテナ52a,52bが、前記区画部材のうち、燃焼室20の外周寄りの領域を区画する部分に設けられている。なお、燃焼室20の外周寄りの領域とは、燃焼室20における中心と外周の真ん中よりも外側の領域である。この外周寄りの領域を火炎が通過する期間を、「火炎伝播の後半期間」という。また、受信アンテナ52の長さLは、放射アンテナ16から燃焼室20へ放射されたマイクロ波の波長をλとした場合に、式1の関係を満たす(nは自然数)。
 式1:L=(n×λ)/2
 各受信アンテナ52a,52bは、図1及び図4に示すように、ピストン23の頂部の外周寄りの領域に設けられている。なお、ピストン23の頂部の外周寄りの領域とは、ピストン23の頂部における中心と外周の真ん中よりも外側の領域である。
 各受信アンテナ52a,52bは、燃焼室20の周方向に延びるリング状(円環状)に形成され、その中心がピストン23の中心軸に一致している。2つの受信アンテナ52a,52bは、直径が互いに異なり、二重にリングを構成するように並設されている。2つの受信アンテナ52a,52bは、同軸に配置されている。2つの受信アンテナ52a,52bでは、外側が第1受信アンテナ52aを構成し、内側が第2受信アンテナ52bを構成している。なお、第1受信アンテナ52aと第2受信アンテナ52bとの距離Xは、放射アンテナ16から燃焼室20へ放射されたマイクロ波の波長をλとした場合に、式2の関係を満たす。
 式2:λ/16≦X≦2λ/3
 各受信アンテナ52a,52bは、ピストン23の頂面(区画部材における燃焼室側の面)に積層された絶縁層56上に設けられている。各受信アンテナ52a,52bは、絶縁層56によりピストン23から電気的に絶縁され、電気的にフローティングの状態で設けられている。
 なお、図5に示すように、ピストン23の頂部に設ける受信アンテナ52の個数は、1個であってもよい。
 また、ピストン23の頂部に設ける受信アンテナ52の個数が1個である場合においても複数個である場合においても、受信アンテナ52の中心が、ピストン23の中心軸からずれていてもよい。例えば、受信アンテナ52の中心は、図6に示すように、ピストン23の中心よりも排気側にずれている。そのため、マイクロ波の放射期間に、火炎面が、受信アンテナ52の排気側と吸気側とをほぼ同時のタイミングで通過する。
 また、複数のリング状の受信アンテナ52a,52bは、同軸に配置されていなくてもよい。例えば、内側のリング状の受信アンテナ52bの中心を吸気側開口25a側へずらしてもよい。この場合、第1受信アンテナ52aと第2受信アンテナ52bとの距離が、吸気側開口25a側ほど短くなるので、吸気側開口25a側における電界を強めることができる。
 -制御装置の動作-
 制御装置35の動作について説明する。制御装置35は、各燃焼室20に対して、1回の燃焼サイクルに、点火装置12に混合気への点火を指示する第1動作と、混合気の着火後に電磁波放射装置13にマイクロ波の放射を指示する第2動作とを行う。
 具体的に、制御装置35は、ピストン23が圧縮上死点の手前に位置する点火タイミングに第1動作を行う。制御装置35は、第1動作として点火信号を出力する。
 点火装置12は、点火信号を受けると、上述したように、点火プラグ40の放電ギャップにおいてスパーク放電が生じる。混合気は、スパーク放電により着火する。混合気が着火すると、燃焼室20の中心部の混合気の着火位置からシリンダ24の壁面へ向かって火炎が広がる。
 制御装置35は、混合気が着火した後に、例えば火炎伝播の後半期間の開始タイミングに第2動作を行う。制御装置35は、第2動作として電磁波駆動信号を出力する。制御装置35は、点火装置12により混合気が点火された後の火炎の伝播中に放射アンテナ16から燃焼室20へマイクロ波が放射されるように電磁波放射装置13を制御する制御手段を構成している。
 電磁波放射装置13は、電磁波駆動信号を受けると、上述したように、放射アンテナ16からマイクロ波パルスを繰り返し放射する。マイクロ波パルスは、火炎伝播の後半期間に亘って繰り返し放射される。電磁波駆動信号の出力タイミング及びパルス幅は、火炎がピストン23の頂面の外周寄りの領域を通過する期間に亘ってマイクロ波パルスが繰り返し放射されるように設定されている。
 各受信アンテナ52では、マイクロ波パルスが共振する。2つの受信アンテナ52がある燃焼室20の外周寄りの領域では、火炎伝播の後半期間の間ずっと、燃焼室20において相対的に電界強度が強い強電界領域が形成される。火炎の伝播速度は、その火炎が強電界領域を通過する際にマイクロ波のエネルギーを受けて増大する。
  -実施形態の効果-
 本実施形態では、火炎の伝播中に、燃焼室20の外周寄りの領域に強電界領域が形成されるようにしている。従って、燃焼室20の外周寄りの領域において火炎の伝播速度を増大させることができる。
  -実施形態の変形例1-
 実施形態の変形例1では、放射アンテナ16から放射されるマイクロ波によりマイクロ波プラズマが生成されるように電磁波放射装置13が構成されている。電磁波発生装置31から発振されるマイクロ波の単位時間当たりのエネルギーは、放射アンテナ16から放射されるマイクロ波により、各受信アンテナ52の近傍にマイクロ波プラズマが生成されるように設定されている。
 電磁波放射装置13は、例えば、火炎伝播の後半期間の間ずっとマイクロ波パルスを繰り返し放射する。各受信アンテナ52の近傍では、火炎伝播の後半期間の間ずっと、マイクロ波プラズマが生成される。マイクロ波プラズマの生成領域では活性種(例えば、OHラジカル)が生成されるので、マイクロ波プラズマの生成領域を通過する火炎の伝播速度は、活性種により増大する。
 なお、電磁波放射装置13は、例えば、火炎伝播の前半期間にマイクロ波パルスを繰り返し放射してもよい。その場合は、火炎伝播の前半期間にマイクロ波プラズマが生成される。燃焼室20の外周寄りの領域を通過する火炎の移動速度は、火炎伝播の前半期間に生成された活性種により増大する。
 また、内燃機関10は、放射アンテナ16から放射されるマイクロ波のエネルギーを低くするために、マイクロ波の放射期間に燃焼室20の外周寄りの領域で放電を生じさせるプラズマ用の放電装置を備えていてもよい。放電装置は、例えば、一対の電極の間に高電圧パルスを印加することにより放電を生じさせる。その場合に、一対の電極は、例えば、片方の第1電極がシリンダヘッド22に設けられ、もう片方の第2電極がピストン23の頂面に設けられる。第2電極は、第1電極との距離が短くなるように、ピストン23の頂面に設けられた凸部の頂部に設けられる。
  -実施形態の変形例2-
 実施形態の変形例2では、図7に示すように、ピストン23の頂面に、同軸に配置された複数の受信アンテナ52が設けられている。複数の受信アンテナ52は、互いに共振周波数が異なる。電磁波発生装置31は、火炎の伝播中に、内側の受信アンテナ52ほど先に共振するようにマイクロ波の発振周波数を変化させる。複数の受信アンテナ52では、内側の受信アンテナ52から順番に、近傍に強電界領域が形成される。各受信アンテナ52の近傍では火炎面の移動速度を増大する。
 なお、変形例2では、第1受信アンテナ52aが積層された外側絶縁層56aより、第2受信アンテナ52bが積層された内側絶縁層56bの方が厚くなっている。
  -実施形態の変形例3-
 実施形態の変形例3では、図8に示すように、受信アンテナ52がダイオードを介して接地されている。なお、変形例3では、第2受信アンテナ52bだけをダイオードを介して接地しているが、第1受信アンテナ52aだけをダイオードを介して接地してもよいし、全ての受信アンテナ52a,52bをダイオードを介して接地してもよい。
 変形例3によれば、接地された第2受信アンテナ52bの電流が直流になるので、火炎中の第2受信アンテナ52bとは反対の極性のイオンを誘引することができ、火炎の伝播速度を効果的に向上させることができる。
 -実施形態の変形例4-
 実施形態の変形例4では、図9に示すように、リング状の受信アンテナ52がガスケット18の内周部に設けられている。なお、図9では、ガスケット18にリング状の受信アンテナ52を1つだけ設けているが、ガスケット18に複数のリング状の受信アンテナ52をガスケット18の厚さ方向に間隔を隔てて設けてもよい。また、ガスケット18に加えて、ピストン23の頂面に受信アンテナ52を設けてもよい。
 -実施形態の変形例5-
 実施形態の変形例5では、受信アンテナ52が、スキッシュ流が生成される領域のすぐ内側に配置されている。そのため、受信アンテナ52の近傍で生成されたマイクロ波プラズマは、スキッシュ流により内側へ動かされる。プラズマ領域で生成された活性種が拡散する。
 -実施形態の変形例6-
 実施形態の変形例6では、図10に示すように、受信アンテナ52が絶縁層56に埋設されている。絶縁層56は例えばセラミックにより構成されている。
 絶縁層56における受信アンテナ52の設置部の断面では、燃焼室20側から順番に、絶縁体により構成された被覆層56a、受信アンテナ52、絶縁体により構成された支持層56bが積層されている。支持層56は、ピストン23等の区画部材に積層されている。
 変形例6では、被覆層56aが支持層56bよりも厚みが薄い。従って、受信アンテナ52を絶縁体で保護した場合に、燃焼室23側の電界が弱くなることを抑制できる。
 -実施形態の変形例7-
 実施形態の変形例7では、図11に示すように、ピストン23の頂部に2重に受信アンテナ52が設けられている。2つの受信アンテナ52は、被覆層56aにより覆われている。被覆層56aの厚みは、前記燃焼室20の内側から外側へ向かって薄くなっている。2つの受信アンテナ52を被覆する被覆層56a上では、燃焼室20にマイクロ波が放射されたときの電界が、内側より外側の方が強くなる。従って、燃焼室20の外側で火炎の伝播速度を効果的に向上させることができる。
 -実施形態の変形例8-
 実施形態の変形例8では、絶縁層56が、ピストン23(区画部材)において燃焼室20の周方向に沿って形成された溝部70に設けられている。図12に示すように、受信アンテナ52は、絶縁層56において、溝部70の内壁121と外壁122の間を該溝部70に沿って延びている。放射アンテナ16からマイクロ波が放射されると、受信アンテナ52の内側と外側では、受信アンテナ52と溝部70の壁面121,122の間で、縦方向に電界が形成される。従って、受信アンテナ52の近傍の電界により火炎の伝播速度を効果的に向上させることができる。
 なお、変形例8では、受信アンテナ52の外周と溝部70の外壁122との距離Aは、受信アンテナ52の内周と溝部70の内壁121との距離Bよりも短くなっている。このため、受信アンテナ52の内側より外側の方が、電界が強くなるので、燃焼室20の壁面近傍で火炎の伝播速度を向上させることができる。
 -実施形態の変形例9-
 実施形態の変形例9では、図13に示すように、ピストン23(区画部材)に積層された環状の絶縁層56において、2つのリング状の受信アンテナ52が、絶縁層56の厚さ方向に間隔を隔てて設けられている。
 また、絶縁層56では、2つの受信アンテナ52が、少なくとも1箇所で互いの接続箇所の電圧を均圧する柱状の均圧導体80により接続されている。変形例9では、2つの受信アンテナ52の間に、受信アンテナ52の周方向において、受信アンテナ52におけるマイクロ波の波長の4分の1の長さの間隔で、均圧導体80が設けられている。
 なお、リング状の受信アンテナ52をガスケット18に設ける場合においても、同様に、複数の受信アンテナ52を多層に設けてもよい。複数の受信アンテナ52は、絶縁体により構成されたガスケット18の厚さ方向に、間隔を隔てて設けられ。この場合においても、前記均圧導体80を設けてもよい。
 -実施形態の変形例10-
 実施形態の変形例10では、図14に示すように、リング状の受信アンテナ52が、その周方向に、その受信アンテナ52を構成する導体の断面積が変化している。変形例10では、受信アンテナ52において等間隔にピストン23側に突出する凸部120が設けられ、その凸部120において導体の断面積が変化している。受信アンテナ52では、凸部120の間に比べて、凸部120の厚みが大きい。変形例10によれば、放射アンテナ16からマイクロ波が放射されたときに、受信アンテナ52上において、電界の粗密分布を形成することができる。
 なお、受信アンテナ52の幅を変化させることによって、導体の断面積を変化させてもよい。例えば、受信アンテナ52を平面視において歯車状に形成する。また、図15に示すように、受信アンテナ52に、隣接部141の幅よりも直径が大きい円板部140を設けることによって、導体の断面積を変化させてもよい。
 また、受信アンテナ52において、吸気側開口側25aだけ、受信アンテナ52を構成する導体の断面積を変化させてもよい。
 -実施形態の変形例11-
 実施形態の変形例11では、図16に示すように、リング状の受信アンテナ52の外周に、電界を集中させる折れ線部85が複数箇所形成されている。放射アンテナ16からマイクロ波が放射されると、受信アンテナ52の中で特に折れ線部85に電界が集中する。従って、マイクロ波によりプラズマを生成する場合には、少ないエネルギーでプラズマを生成することができる。
 なお、変形例11では、受信アンテナ52において、吸気側開口側25aだけに折れ線部85が設けられているが、それ以外の箇所に折れ線部85を設けてもよい。また、リング状の受信アンテナ52の内周に、折れ線部85を形成してもよい。
 -実施形態の変形例12-
 実施形態の変形例12では、図17に示すように、受信アンテナ52が、ピストン23の頂面に積層された例えばセラミック製の絶縁部材90に設けられている。絶縁部材90のピストン23側には、ピストン23の頂面に形成された凹部91と噛み合う凸部92が複数形成されている。変形例12によれば、絶縁部材90がピストン23から剥がれにくくすることができる。
 なお、図18に示すように、ピストン23と絶縁部材90の間に、ピストン23より柔らかいクッション層95を設けてもよい。クッション層95には、例えば金などの延性が高い金属を用いることができる。クッション層95を設けることで、ノッキングにより絶縁部材90が破損することが抑制される。
 -その他の実施形態-
 前記実施形態は、以下のように構成してもよい。
 前記実施形態において、点火プラグ40の中心電極40aが、放射アンテナを兼ねていてもよい。点火プラグ40の中心電極40aは、混合回路の出力端子に電気的に接続される。混合回路は、別々の入力端子で点火コイル14からの高電圧パルスと電磁波切替器32からのマイクロ波とを受けて、同じ出力端子から高電圧パルスとマイクロ波を出力する。
 また、前記実施形態において、ガスケット18にリング状の放射アンテナ16を設けて、ピストン23の頂面にもリング状の受信アンテナ52を設けてもよい。
 また、前記実施形態において、シリンダ24の内壁面に受信アンテナ52を設けてもよい。
 また、前記実施形態において、ピストン23の頂面に、受信アンテナ52が設けられた耐熱性の誘電体(例えば、セラミック)を固着する場合に、受信アンテナ52に有機マスクを塗布する工程、誘電体に向かってアルミ溶射を行う工程、有機マスクと共に受信アンテナ52上のアルミ溶射膜を剥がす固定を順番に行い、アルミ溶射膜により誘電体をピストン23に固着させてもよい。この場合に、受信アンテナ52及び誘電体の平面形状は、リング状であってもよいし、帯を鋭角に折れ曲げた形状であってもよい。
 
 以上説明したように、本発明は、電磁波を利用して燃焼室における混合気の燃焼を促進させる内燃機関について有用である。
              10       内燃機関
              11       内燃機関本体
              12       点火装置
              13       電磁波放射装置
              14       点火コイル(高電圧発生装置)
              15       放電電極
              16       放射アンテナ
              20       燃焼室
              30       プラズマ生成装置
              31       電磁波発生装置

Claims (17)

  1.  燃焼室が形成された内燃機関本体と、
     前記燃焼室の中央部において混合気に点火する点火装置とを備え、
     前記点火装置により混合気に点火して該混合気を燃焼させる燃焼サイクルが繰り返し行われる内燃機関であって、
     放射アンテナから前記燃焼室へ電磁波を放射する電磁波放射装置と、
     前記燃焼室を区画する区画部材のうち、前記燃焼室の外周寄りの領域を区画する部分に設けられ、前記放射アンテナから前記燃焼室へ放射された電磁波に共振する受信アンテナと、
     前記点火装置により混合気が点火された後の火炎の伝播中に前記放射アンテナから前記燃焼室へ電磁波が放射されるように前記電磁波放射装置を制御する制御手段とを備えている
     ことを特徴とする内燃機関。
  2.  請求項1において、
     前記区画部材には、前記受信アンテナが複数個並設されている
     ことを特徴とする内燃機関。
  3.  請求項1又は請求項2において、
     前記受信アンテナは、前記区画部材における前記燃焼室側の面に積層された絶縁層に設けられている
     ことを特徴とする内燃機関。
  4.  請求項3において、
     前記絶縁層における前記受信アンテナの設置部の断面では、前記燃焼室側から順番に、絶縁体により構成された被覆層、前記受信アンテナ、絶縁体により構成された支持層が積層され、
     前記被覆層は、前記支持層よりも厚みが薄い
     ことを特徴とする内燃機関。
  5.  請求項4において、
     前記被覆層の厚みは、前記燃焼室の内側から外側へ向かって薄くなっている
     ことを特徴とする内燃機関。
  6.  請求項3、請求項4、又は請求項5において、
     前記絶縁層は、前記区画部材に前記燃焼室の周方向に沿って形成された溝部に設けられ、
     前記受信アンテナは、前記絶縁層において、前記溝部の内壁と外壁の間を該溝部に沿って延びている
     ことを特徴とする内燃機関。
  7.  請求項6において、
     前記受信アンテナの外周と前記溝部の外壁との距離は、前記受信アンテナの内周と前記溝部の内壁との距離よりも短い
     ことを特徴とする内燃機関。
  8.  請求項3において、
     前記絶縁層では、その厚さ方向に複数の受信アンテナが間隔を隔てて設けられている
     ことを特徴とする内燃機関。
  9.  請求項8において、
     前記絶縁層では、前記複数の受信アンテナが、少なくとも1箇所で互いの接続箇所の電圧を均圧する均圧導体により接続されている
     ことを特徴とする内燃機関。
  10.  請求項1において、
     前記受信アンテナは、前記区画部材の1つであるピストンの頂部の外周寄りの領域に設けられている
     ことを特徴とする内燃機関。
  11.  請求項1において、
     前記受信アンテナは、前記区画部材の1つであるガスケットに設けられている
     ことを特徴とする内燃機関。
  12.  請求項10又は請求項11において、
     前記受信アンテナは、前記燃焼室の周方向に延びるリング状に形成されている
     ことを特徴とする内燃機関。
  13.  請求項10において、
     前記受信アンテナは、前記燃焼室の周方向に延びるリング状に形成され、
     前記ピストンの頂部には、直径が互いに異なる前記リング状の受信アンテナが多重に設けられている
     ことを特徴とする内燃機関。
  14.  請求項12又は請求項13において、
     前記リング状の受信アンテナは、その周方向に、該受信アンテナを構成する導体の断面積が変化している
     ことを特徴とする内燃機関。
  15.  請求項12、請求項13、又は請求項14において、
     前記リング状の受信アンテナの内周又は外周には、電界を集中させる折れ線部が複数箇所形成されている
     ことを特徴とする内燃機関。
  16.  請求項10において、
     前記受信アンテナは、前記ピストンの頂面に積層された絶縁部材に設けられ、
     前記絶縁部材の前記ピストン側には、前記ピストンの頂面に形成された凹部と噛み合う凸部が形成されている
     ことを特徴とする内燃機関。
  17.  請求項10において、
     前記放射アンテナは、シリンダヘッドに設けられている
     ことを特徴とする内燃機関。
PCT/JP2012/068009 2011-07-16 2012-07-13 内燃機関 WO2013011966A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013524712A JP6040362B2 (ja) 2011-07-16 2012-07-13 内燃機関
EP12815229.5A EP2743495B1 (en) 2011-07-16 2012-07-13 Internal combustion engine
US14/156,061 US20140216381A1 (en) 2011-07-16 2014-01-15 Internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011157285 2011-07-16
JP2011-157285 2011-07-16
JP2011-175393 2011-08-10
JP2011175393 2011-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/156,061 Continuation US20140216381A1 (en) 2011-07-16 2014-01-15 Internal combustion engine

Publications (1)

Publication Number Publication Date
WO2013011966A1 true WO2013011966A1 (ja) 2013-01-24

Family

ID=47558143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068009 WO2013011966A1 (ja) 2011-07-16 2012-07-13 内燃機関

Country Status (4)

Country Link
US (1) US20140216381A1 (ja)
EP (1) EP2743495B1 (ja)
JP (1) JP6040362B2 (ja)
WO (1) WO2013011966A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098835A (ja) * 2013-11-19 2015-05-28 行廣 睦夫 バンケル型ロータリーエンジンの点火方法
WO2016084772A1 (ja) * 2014-11-24 2016-06-02 イマジニアリング株式会社 点火ユニット、点火システム、及び内燃機関

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9309812B2 (en) * 2011-01-31 2016-04-12 Imagineering, Inc. Internal combustion engine
EP2687714A4 (en) * 2011-03-14 2014-11-05 Imagineering Inc COMBUSTION ENGINE
EP2760259B1 (en) * 2011-09-22 2016-12-28 Imagineering, Inc. Plasma generating device, and internal combustion engine
EP3064766A1 (de) * 2015-03-03 2016-09-07 MWI Micro Wave Ignition AG Verfahren und Vorrichtung zum Einbringen von Mikrowellenenergie in einen Brennraum eines Verbrennungsmotors
CN106939846A (zh) * 2017-05-12 2017-07-11 沈阳航空航天大学 一种用于等离子体强化燃烧的缸套组件
WO2019197731A1 (fr) * 2018-04-12 2019-10-17 Jose Buendia Depollution des champs variables
CN112377322B (zh) * 2020-05-26 2021-10-22 北京礴德恒激光科技有限公司 用于等离子云激励均质均燃发动机的活塞放电结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132518A (ja) * 2004-10-07 2006-05-25 Toyota Central Res & Dev Lab Inc 内燃機関及びその点火装置
JP2007113570A (ja) 2005-09-20 2007-05-10 Imagineering Kk 点火装置、内燃機関、点火プラグ、プラズマ装置、排ガス分解装置、オゾン発生・滅菌・消毒装置及び消臭装置
JP2008082286A (ja) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc 内燃機関及びその点火装置
JP2009221947A (ja) * 2008-03-14 2009-10-01 Imagineering Inc 複数放電のプラズマ装置
JP2010001827A (ja) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp 内燃機関用点火装置
JP2010096128A (ja) * 2008-10-17 2010-04-30 Daihatsu Motor Co Ltd 火花点火式内燃機関
JP2010096127A (ja) * 2008-10-17 2010-04-30 Daihatsu Motor Co Ltd 火花点火式内燃機関の点火プラグ配置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297983A (en) * 1978-12-11 1981-11-03 Ward Michael A V Spherical reentrant chamber
US4561406A (en) * 1984-05-25 1985-12-31 Combustion Electromagnetics, Inc. Winged reentrant electromagnetic combustion chamber
US4774914A (en) * 1985-09-24 1988-10-04 Combustion Electromagnetics, Inc. Electromagnetic ignition--an ignition system producing a large size and intense capacitive and inductive spark with an intense electromagnetic field feeding the spark
GB9400187D0 (en) * 1994-01-07 1994-03-02 Smith Tech Dev H R Sealing, method, means and apparatus
US6883507B2 (en) * 2003-01-06 2005-04-26 Etatech, Inc. System and method for generating and sustaining a corona electric discharge for igniting a combustible gaseous mixture
US7004120B2 (en) * 2003-05-09 2006-02-28 Warren James C Opposed piston engine
US7182076B1 (en) * 2005-12-20 2007-02-27 Minker Gary A Spark-based igniting system for internal combustion engines
JP3984636B1 (ja) * 2006-03-07 2007-10-03 ミヤマ株式会社 多点点火エンジン
KR101335974B1 (ko) * 2006-09-20 2013-12-04 이마지니어링 가부시키가이샤 점화장치, 내연기관, 점화 플러그, 플라즈마장치, 배기가스 분해장치, 오존 발생·멸균·소독장치 및 소취장치
US8424501B2 (en) * 2006-12-07 2013-04-23 Contour Hardening, Inc. Induction driven ignition system
EP2178181B1 (en) * 2007-07-12 2017-08-30 Imagineering, Inc. Ignition plug, and analyzing device
JP5061335B2 (ja) * 2008-03-14 2012-10-31 イマジニアリング株式会社 シリンダヘッドを用いたプラズマ装置
JP5061310B2 (ja) * 2008-03-14 2012-10-31 イマジニアリング株式会社 バルブを用いたプラズマ装置
JP5277375B2 (ja) * 2008-03-14 2013-08-28 イマジニアリング株式会社 燃焼室直下流の排気ガス後処理装置
DE102008048449B4 (de) * 2008-09-23 2013-05-08 Continental Automotive Gmbh Brennkraftmaschine, Zündverfahren und Steuervorrichtung
KR20120004040A (ko) * 2010-07-06 2012-01-12 삼성전자주식회사 플라즈마 발생장치
JP6082877B2 (ja) * 2011-01-18 2017-02-22 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
US20140318489A1 (en) * 2011-01-24 2014-10-30 Goji Ltd. Em energy application for combustion engines
JP6191030B2 (ja) * 2011-07-16 2017-09-06 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
EP2733348B1 (en) * 2011-07-16 2017-03-01 Imagineering, Inc. Internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132518A (ja) * 2004-10-07 2006-05-25 Toyota Central Res & Dev Lab Inc 内燃機関及びその点火装置
JP2007113570A (ja) 2005-09-20 2007-05-10 Imagineering Kk 点火装置、内燃機関、点火プラグ、プラズマ装置、排ガス分解装置、オゾン発生・滅菌・消毒装置及び消臭装置
JP2008082286A (ja) * 2006-09-28 2008-04-10 Toyota Central R&D Labs Inc 内燃機関及びその点火装置
JP2009221947A (ja) * 2008-03-14 2009-10-01 Imagineering Inc 複数放電のプラズマ装置
JP2010001827A (ja) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp 内燃機関用点火装置
JP2010096128A (ja) * 2008-10-17 2010-04-30 Daihatsu Motor Co Ltd 火花点火式内燃機関
JP2010096127A (ja) * 2008-10-17 2010-04-30 Daihatsu Motor Co Ltd 火花点火式内燃機関の点火プラグ配置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2743495A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098835A (ja) * 2013-11-19 2015-05-28 行廣 睦夫 バンケル型ロータリーエンジンの点火方法
WO2016084772A1 (ja) * 2014-11-24 2016-06-02 イマジニアリング株式会社 点火ユニット、点火システム、及び内燃機関
JPWO2016084772A1 (ja) * 2014-11-24 2017-11-09 イマジニアリング株式会社 点火ユニット、点火システム、及び内燃機関

Also Published As

Publication number Publication date
EP2743495B1 (en) 2016-12-28
JPWO2013011966A1 (ja) 2015-02-23
EP2743495A4 (en) 2015-05-20
EP2743495A1 (en) 2014-06-18
US20140216381A1 (en) 2014-08-07
JP6040362B2 (ja) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6040362B2 (ja) 内燃機関
JP6229121B2 (ja) 内燃機関
WO2012124671A2 (ja) 内燃機関
WO2009113692A1 (ja) 複数放電のプラズマ装置
JP6082880B2 (ja) 高周波放射用プラグ
JP6023956B2 (ja) 内燃機関
US9599089B2 (en) Internal combustion engine and plasma generation provision
JP6191030B2 (ja) プラズマ生成装置、及び内燃機関
JP6014864B2 (ja) 火花点火式内燃機関
JP6298961B2 (ja) 電磁波放射装置
WO2013021852A1 (ja) 内燃機関
JP2011007163A (ja) 火花点火式内燃機関
JP6023966B2 (ja) 内燃機関
WO2012161232A1 (ja) 点火プラグ、及び内燃機関
JP6086443B2 (ja) 内燃機関
JP6145759B2 (ja) アンテナ構造、高周波放射用プラグ、及び内燃機関
JP6145760B2 (ja) 高周波放射用プラグ及び内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012815229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012815229

Country of ref document: EP