WO2017110079A1 - 抵抗器 - Google Patents

抵抗器 Download PDF

Info

Publication number
WO2017110079A1
WO2017110079A1 PCT/JP2016/005177 JP2016005177W WO2017110079A1 WO 2017110079 A1 WO2017110079 A1 WO 2017110079A1 JP 2016005177 W JP2016005177 W JP 2016005177W WO 2017110079 A1 WO2017110079 A1 WO 2017110079A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
resin substrate
gap
heat
longitudinal direction
Prior art date
Application number
PCT/JP2016/005177
Other languages
English (en)
French (fr)
Inventor
直弘 三家本
冬希 阿部
祐二 安岡
章光 藤井
祥吾 中山
井関 健
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680003998.8A priority Critical patent/CN107112099B/zh
Priority to JP2017521258A priority patent/JPWO2017110079A1/ja
Priority to US15/527,319 priority patent/US10141088B2/en
Publication of WO2017110079A1 publication Critical patent/WO2017110079A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements
    • H01C1/084Cooling, heating or ventilating arrangements using self-cooling, e.g. fins, heat sinks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/028Housing; Enclosing; Embedding; Filling the housing or enclosure the resistive element being embedded in insulation with outer enclosing sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/032Housing; Enclosing; Embedding; Filling the housing or enclosure plural layers surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature

Definitions

  • the present invention relates to a resistor having a high power resistance and a low resistance value used for detecting a current value of various electronic devices.
  • FIG. 6 is a cross-sectional view of a conventional resistor 9.
  • the resistor 9 includes a resistor 1 made of a plate-like or foil-like metal, a pair of electrodes 2 formed on both ends of the upper surface of the resistor 1, and an insulating adhesive on the lower surface of the resistor 1. 3 is provided with a heat dissipation plate 4 with good heat conduction pasted through 3 and a protective film 5 formed between the pair of electrodes 2 and on the upper surface of the heat dissipation plate 4.
  • the heat sink 4 is divided into two by a gap 6.
  • Patent Document 1 A conventional resistor similar to the resistor 9 is disclosed in Patent Document 1, for example.
  • the resistor includes a resistor, a first resin substrate having high thermal conductivity provided on the upper surface of the resistor, and a first heat radiating plate made of metal provided on the upper surface of the first resin substrate.
  • a second resin substrate provided on the upper surface of the first heat radiating plate, a second heat radiating plate made of metal provided on the upper surface of the second resin substrate, and a first end surface of the resistor.
  • a first end face electrode provided and connected to the first heat dissipating plate; and a second end face electrode provided on the second end face of the resistor and connected to the second heat dissipating plate.
  • FIG. 1A is a top view of the resistor in the first embodiment.
  • 1B is a cross-sectional view of the resistor shown in FIG. 1A along line 1B-1B.
  • FIG. 1C is a top view showing a heat sink of the resistor shown in FIG. 1B.
  • FIG. 1D is a top view showing a heat sink of another resistor in the first embodiment.
  • FIG. 2A is a cross-sectional view of still another resistor in the first embodiment.
  • FIG. 2B is a top view showing a heat sink of the resistor shown in FIG. 2A.
  • FIG. 2C is a top view showing a heat sink of still another resistor in the first embodiment.
  • FIG. 2D is a top view showing a heat sink of still another resistor in the first embodiment.
  • FIG. 1A is a top view of the resistor in the first embodiment.
  • FIG. 2B is a cross-sectional view of still another resistor in the first embodiment.
  • FIG. 2C is
  • FIG. 3 is a cross-sectional view of still another resistor in the first embodiment.
  • FIG. 4 is a top view showing a heat radiating plate of still another resistor in the first embodiment.
  • FIG. 5A is a cross-sectional view of the resistor in the second embodiment.
  • FIG. 5B is a top view showing the heat sink of the resistor in the second embodiment.
  • FIG. 6 is a sectional view of a conventional resistor.
  • FIG. 1A is a top view of resistor 1001 in the first embodiment.
  • 1B is a cross-sectional view of resistor 1001 at line 1B-1B shown in FIG. 1A.
  • the resistor 1001 includes a resistor 11 made of metal, lower electrodes 12 a and 12 b provided on the lower surface 211 of the resistor 11, and a resin substrate 13 having high thermal conductivity provided on the upper surface 111 of the resistor 11. And heat radiation plates 14 a and 14 b provided on the upper surface 113 of the resin substrate 13, and end face electrodes 15 a and 15 b provided on the resistor 11.
  • the resistor 11 is made of a metal having an upper surface 111, a lower surface 211, and end surfaces 311, 411, 511, 611 connected to the upper surface 111 and the lower surface 211.
  • the end surfaces 311 and 411 are located on the opposite sides, and the end surfaces 511 and 611 are located on the opposite sides.
  • the lower electrode 12 a is provided on the end portion 211 a of the lower surface 211 that is connected to the end surface 311 of the resistor 11.
  • the lower electrode 12 b is provided at the end 211 b of the lower surface 211 that is connected to the end surface 411 of the resistor 11.
  • the end surface electrodes 15 a and 15 b are provided on the end surfaces 311 and 411 of the resistor 11, respectively.
  • the end surface 411 of the resistor 11 is opposite to the end surface 311 and is located in the longitudinal direction DL from the end surface 311. The current flows mainly between the end face electrodes 15a and 15b in the longitudinal direction DL.
  • the resistor 1001 is configured to be mounted on the mounting substrate 2001.
  • Both the heat sinks 14a and 14b are made of metal.
  • the heat sinks 14a and 14b are separated from each other via a gap 16, and are connected to the end face electrodes 15a and 15b, respectively.
  • the resistor 1001 further includes a resin substrate 17 provided on the upper surfaces 114a and 114b of the heat radiating plates 14a and 14b, and heat radiating plates 18a and 18b provided on the upper surface 117 of the resin substrate 17. Both the heat sinks 18a and 18b are made of metal. The heat sinks 18a and 18b are separated from each other via a gap 19, and are connected to the end face electrodes 15a and 15b, respectively.
  • the resin substrate 13 is positioned in the longitudinal direction DL from the end 313 on the opposite side of the end 313, the upper surface 113, the lower surface 213 located on the upper surface 111 of the resistor 11, the end 313 connected to the upper surface 113 and the lower surface 213.
  • An end 413 connected to the upper surface 113 and the lower surface 213 is provided.
  • the heat sink 14a is located in the longitudinal direction DL from the end 314a on the opposite side of the end 314a, the end 314a connected to the upper surface 114a, the lower surface 214a located on the upper surface 113 of the resin substrate 13, the upper surface 114a and the lower surface 214a.
  • An end 414a connected to the upper surface 114a and the lower surface 214a is provided.
  • the end 314a is connected to the end face electrode 15a.
  • the heat radiating plate 14b includes an upper surface 114b, a lower surface 214b positioned on the upper surface 113 of the resin substrate 13, an end 414b connected to the end surface electrode 15b connected to the upper surface 114b and the lower surface 214b, and an end 414b on the opposite side of the end 414b.
  • An end 314b connected to the upper surface 114b and the lower surface 214b is located in the direction opposite to the longitudinal direction DL.
  • the end 414b is connected to the end face electrode 15b.
  • the end 414a of the heat sink 14a is opposed to the end 314b of the heat sink 14b through the gap 16.
  • the resin substrate 17 includes an upper surface 117, a lower surface 217 positioned on the upper surfaces 114a and 114b of the heat sinks 14a and 14b, an end 317 connected to the upper surface 117 and the lower surface 217, and a longitudinal direction DL from the end 317 on the opposite side of the end 317. And an end 417 connected to the upper surface 117 and the lower surface 217.
  • the heat radiating plate 18a is located in the longitudinal direction DL from the end 318a on the opposite side of the end 318a, the end 318a connected to the upper surface 118a, the lower surface 218a located on the upper surface 117 of the resin substrate 17, the upper surface 118a and the lower surface 218a.
  • An end 418a connected to the upper surface 118a and the lower surface 218a is provided.
  • the end 318a is connected to the end face electrode 15a.
  • the heat radiating plate 18b includes an upper surface 118b, a lower surface 218b positioned on the upper surface 117 of the resin substrate 17, an end 418b connected to the upper surface 118b and the lower surface 218b, and a direction opposite to the longitudinal direction DL from the end 418b on the opposite side of the end 418b. And an end 318b connected to the upper surface 118b and the lower surface 218b.
  • the end 418b is connected to the end face electrode 15b.
  • the end 418a of the heat sink 18a faces the end 318b of the heat sink 18b through the gap 16.
  • the resistor 11 is made of plate-like or foil-like CuMnNi (manganin).
  • the resistor 11 may be made of other metal materials such as CuNi, CuMn, NiCr, CuNiSn, CuMnSn, and more preferably made of CuMnNi having a low resistance temperature coefficient (TCR).
  • FIG. 1A shows the shape of the resistor 11 with a broken line.
  • the resistor 11 is processed by etching or the like to have a meandering shape.
  • the portion having the meandering shape of the resistor 11 is located near the center in the longitudinal direction DL.
  • the resistor 11 may be provided with one or more trimming grooves for adjusting the resistance value.
  • the lower electrodes 12a and 12b are formed by directly plating the lower surface 211 of the resistor 11 with a metal material mainly composed of Cu.
  • the lower electrodes 12a and 12b may be formed by welding and clad joining a separate metal plate to the lower surface 211 of the resistor 11, or by sputtering and printing the metal material on the lower surface 211 of the resistor 11. Good.
  • a protective film 20 made of an epoxy resin or a silicon resin is provided between the lower electrodes 12a and 12b.
  • the resin substrate 13 is formed so as to be in direct contact with the upper surface 111 of the resistor 11, and is made of a mixture containing the resin 13r and the ceramic powder 13p dispersed in the resin 13r.
  • the resin 13r is an epoxy resin
  • the ceramic powder 13p is an alumina powder.
  • the resin substrate 13 has high thermal conductivity and high insulating properties due to the ceramic powder 13p. Further, since the resin substrate 13 contains the resin 13r, the resin substrate 13 is firmly bonded to the resistor 11 and the heat radiating plates 14a and 14b without any adhesive by pressing and has high adhesiveness. That is, by using the resin substrate 13, both thermal conductivity and adhesiveness can be satisfied.
  • the content of the ceramic powder 13p contained in the resin substrate 13 is preferably 30 vol% to 90 vol%, or 85 wt% to 98 wt%. When the content of the ceramic powder 13p is small, the thermal conductivity is deteriorated. If the content of the ceramic powder 13p is large, the adhesiveness is deteriorated.
  • the ceramic powder 13p may be a silica powder, but an alumina powder having a high thermal conductivity is more preferable.
  • the thickness of the resin substrate 13 is larger than the heat sinks 14a, 14b, 18a, 18b.
  • the heat sinks 14 a and 14 b are directly formed at both ends connected to the ends 313 and 413 arranged in the longitudinal direction DL of the upper surface 113 of the resin substrate 13.
  • the heat sinks 14a and 14b are separated from each other through a gap 16.
  • the heat sinks 14a, 14b, 18a, 18b are made of a metal such as Cu.
  • the end 314a of the heat sink 14a is connected to the end face electrode 15a, and the heat sink 14b is connected to the end face electrode 15b.
  • the end face electrode 15a is made of metal such as copper or nichrome on the end face 311 of the resistor 11, the lower electrode 12a, the end 313 of the resin board 13, the end 314a of the heat sink 14a, the end 317 of the resin board 17, and the end 318a of the heat sink 18a. It is formed by sputtering.
  • the end surface electrode 15b is made of metal such as copper or nichrome on the end surface 411 of the resistor 11, the lower electrode 12b, the end 413 of the resin substrate 13, the end 414b of the heat sink 14b, the end 417 of the resin substrate 17, and the end 418b of the heat sink 18b. It is formed by sputtering.
  • a metal layer such as a copper layer, a nickel plating layer, or a tin plating layer is formed on the surfaces of the end face electrodes 15a and 15b.
  • solder plating for mounting is formed on the surface of the metal layer.
  • the resin substrate 17 is provided on the upper surfaces of the heat dissipation plates 14a and 14b, and is made of the same glass epoxy as the material contained in the mounting substrate 2001.
  • the heat radiating plate 18 a is formed at the end connected to the end 317 of the upper surface 117 of the resin substrate 17, and the heat radiating plate 18 b is formed at the end connected to the end 417 of the upper surface 117 of the resin substrate 17.
  • the heat radiating plate 18 a is separated from the heat radiating plate 18 b through the gap 19.
  • the heat sinks 18a and 18b are made of a metal such as Cu.
  • the end 318a of the heat sink 18a is connected to the end face electrode 15a, and the end 418b of the heat sink 18b is connected to the end face electrode 15b.
  • the heat radiating plates 14 a and 14 b are formed by attaching a metal plate such as Cu to the upper surface 113 of the resin substrate 13.
  • the heat radiating plates 18 a and 18 b are formed by attaching a metal plate such as Cu to the upper surface 117 of the resin substrate 17.
  • the gap 16 between the heat radiating plates 14a and 14b prevents a current path between the heat radiating plates 14a and 14b.
  • a gap 19 between the heat sinks 18a and 18b prevents a current path between the heat sinks 18a and 18b.
  • the width in the longitudinal direction DL of the gaps 16 and 19 is preferably 1/50 or more of the entire length of the resistor 1001 (the length of the resin substrate 13 and the resin substrate 17) in the longitudinal direction DL.
  • the width in the longitudinal direction DL of the gaps 16 and 19 exceeds 1/10 of the total length of the resistor 1001 in the longitudinal direction DL, the length in the longitudinal direction DL of the heat dissipation plates 14a, 14b, 18a, and 18b is shortened. Becomes small and is not preferable.
  • a resin substrate 17a made of glass epoxy is formed on the upper surfaces of the heat sinks 18a and 18b.
  • a protective film may be provided on the upper surface of the resin substrate 17a.
  • the heat generated in the resistor 1 is not easily conducted to the heat sink 4 by the insulating adhesive 3 between the heat sink 4 and the resistor 1. Therefore, the temperature of the resistor 1 becomes high, and long-term reliability deteriorates.
  • heat generated in the resistor 11 when current is applied is transmitted to the heat radiating plates 14a, 14b, 18a, and 18b via the resin substrate 13 and the resin substrate 17.
  • the heat transmitted to the heat sinks 14a, 14b, 18a, 18b is released to the mounting substrate 2001 through the end face electrodes 15a, 15b and the lower electrodes 12a, 12b, and thereby the temperature of the resistor 11 can be lowered.
  • the rated power of the resistor 1001 can be increased and the long-term reliability can be improved.
  • the portion having the meandering shape of the resistor 11 is a hot spot that generates a larger amount of heat than other portions. It is preferable that the hot spot of the resistor 11 does not overlap with the gaps 16 and 19 when viewed from above. Thereby, the heat generated at the hot spot is easily transmitted to the heat radiating plates 14a, 14b, 18a, and 18b.
  • a heat sink 14a, 14b and a part corresponding to the gap 16 and one metal plate to be the heat sink 14a, 14b, a heat sink 18a, 18b and a part corresponding to the gap 19 are used for heat dissipation.
  • One metal plate to be the plates 18a and 18b is prepared.
  • the one metal plate to be the heat dissipation plates 18a and 18b is bonded to the upper surface 117 of the resin substrate 17 by thermocompression bonding, and the one metal plate to be the heat dissipation plates 14a and 14b is bonded to the lower surface 217 of the resin substrate 17 by thermocompression bonding. Adhere with.
  • the gap 16 is formed by etching the one metal plate to be the heat radiating plates 14a and 14b, and the gap 19 is formed by etching the one metal plate to be the heat radiating plates 18a and 18b.
  • the heat sinks 14 a and 14 b are formed at both ends of the lower surface 217 of the resin substrate 17, and the heat sinks 18 a and 18 b are formed at both ends of the upper surface 117 of the resin substrate 17.
  • lower electrodes 12a and 12b are formed on both ends of the lower surface 211 of the resistor 11 by plating.
  • a trimming groove is formed in the resistor 11 to adjust the resistance value.
  • an epoxy resin or a silicon resin is applied between the lower electrodes 12 a and 12 b of the lower surface 211 of the resistor 11 and dried to form the protective film 20.
  • the end face electrode 15a is formed by sputtering copper or nichrome on the ends of the resistor 11, the lower electrode 12a, the resin substrate 13, the heat radiating plate 14a, the resin substrate 17, and the heat radiating plate 18a.
  • the end face electrode 15b is formed by sputtering copper or nichrome on the ends of the electrode 12b, the resin substrate 13, the heat radiating plate 14b, the resin substrate 17, and the heat radiating plate 18b. Thereafter, a copper layer, a nickel plating layer, or a tin plating layer is formed on the surfaces of the end face electrodes 15a and 15b.
  • resin substrate 13 having high thermal conductivity is composed of a mixture of epoxy resin (resin 13r) and alumina powder (ceramic powder 13p), and resin substrate 13 and resistor 11 are in direct contact with each other.
  • the resin substrate 13 is in direct contact with the heat sinks 14a and 14b. Therefore, most of the heat generated in the resistor 11 easily escapes to the mounting substrate 2001 via the heat sinks 14a and 14b, thereby significantly reducing the temperature of the resistor 11 and improving long-term reliability. Can be made.
  • the resin substrate 13 having a high thermal conductivity made of a mixture of epoxy resin and alumina powder between each of the radiator plates 14a and 14b and the resistor 11 is used. Is formed. Therefore, as described above, the resin substrate 13 has high thermal conductivity and high insulation, and can be firmly bonded to the resistor 11 and the heat dissipation plates 14a and 14b.
  • the resin substrate 13 having high thermal conductivity is preferably bonded to the resistor 11 and the heat sinks 14a and 14b without an adhesive. Even if the resin substrate 13 is thickened to improve the insulation, the thermal conductivity is maintained. However, if an adhesive is used, the thermal conductivity is lowered if the resin substrate 13 is thickened.
  • the resin substrate 17 is made of glass epoxy contained in the mounting substrate 2001, solder cracks due to the difference in thermal expansion coefficient between the resin substrate 17 after mounting the resistor 1001 and the mounting substrate 2001 can be prevented. Furthermore, it is excellent in heat resistance.
  • a resistor is formed by laminating a resin substrate 13 having a high thermal conductivity made of a mixture of epoxy resin (resin 13r) and alumina powder (ceramic powder 13p) and a resin substrate 17 made of glass epoxy. 1001 can improve long-term reliability, increase the rated power, prevent solder cracks, and achieve heat resistance.
  • FIG. 1C is a top view showing the heat sinks 14a, 14b, 18a, 18b of the resistor 1001.
  • FIG. The ends 414a and 314b of the heat sinks 14a and 14b facing each other through the gap 16 extend linearly in parallel with each other, and the gap 16 extends linearly.
  • the ends 418a and 318b of the heat sinks 18a and 18b facing each other through the gap 19 extend linearly in parallel with each other, and the gap 19 extends linearly.
  • the gaps 16 and 19 are provided at the same position when viewed from above. Thereby, it becomes easy to confirm the gap 19 and the shape of the resin substrate 13 having high thermal conductivity from above.
  • the gaps 16 and 19 are both parallel to the upper surface 111 of the resistor 11 and passed through the center in the longitudinal direction DL of the resistor 1001 (resistor 11) when viewed from above. It is provided along a center line LC perpendicular to the direction DL. Thereby, the heat sinks 14a, 14b, 18a, and 18b can radiate the resistor 11 in a well-balanced manner in the longitudinal direction DL.
  • FIG. 1D is a top view showing heat sinks 14a, 14b, 18a, 18b of another resistor 1001a in the first embodiment. 1D, the same reference numerals are given to the same portions as those of the resistor 1001 shown in FIGS. 1A to 1C.
  • the gaps 16 and 19 are arranged at the same position as viewed from above and shifted from the center line LC of the resistor 1001a.
  • the heat radiating plate 14b and the heat radiating plate 18b are provided above the hot spot of the resistor 11, heat dissipation is improved, and mechanical strength can be further improved.
  • FIG. 2A is a cross-sectional view of still another resistor 1001b in the first embodiment.
  • FIG. 2B is a top view showing the heat sinks 14a, 14b, 18a, and 18b of the resistor 1001b.
  • the same parts as those of the resistor 1001 shown in FIGS. 1A to 1C are denoted by the same reference numerals.
  • the gaps 16 and 19 are provided at different positions as viewed from above. Thereby, the mechanical strength of the resistor 1001b can be improved.
  • the gaps 16 and 19 extending linearly in parallel with the center line LC are arranged symmetrically with respect to the center line LC. Thereby, the central part of the resistor 1001b that is most easily deformed by stress can be efficiently reinforced.
  • the gaps 16 and 19 may have a V shape, an L shape, or a zigzag shape when viewed from above.
  • the mechanical strength of the resistor in the first embodiment can be improved.
  • a resistor having gaps 16 and 19 having these shapes will be described below.
  • FIG. 2C is a top view showing heat radiating plates 14a, 14b, 18a, 18b of still another resistor 1001c in the first embodiment.
  • the same reference numerals are given to the same portions as the resistor 1001b shown in FIGS. 2A and 2B.
  • the ends 414a and 314b of the heat sinks 14a and 14b are not parallel to the center line LC.
  • the end 414a of the heat radiating plate 14a has a V-shape that is recessed in the direction opposite to the longitudinal direction DL, and the end 314b of the heat radiating plate 14b protrudes in the direction opposite to the longitudinal direction DL. It has a V shape.
  • the gap 16 has a V-shape projecting in the longitudinal direction DL and intersects through the center line LC when viewed from above.
  • the ends 414a and 314b of the heat sinks 14a and 14b intersect the center line LC.
  • one of the ends 414a, 314b of the heat sinks 14a, 14b may not intersect the center line LC, that is, at least one of the ends 414a, 314b of the heat sinks 14a, 14b is the center line LC. Intersects. Thereby, the mechanical strength of the resistor 1001c can be improved.
  • the ends 418a and 318b of the heat sinks 18a and 18b are not parallel to the center line LC.
  • the end 418a of the heat radiating plate 18a has a V shape that is recessed in the longitudinal direction DL
  • the end 318b of the heat radiating plate 18b has a V shape that protrudes in the longitudinal direction DL.
  • the gap 19 has a V-shape projecting in the direction opposite to the longitudinal direction DL, and intersects through the center line LC when viewed from above.
  • the ends 418a and 318b of the heat sinks 18a and 18b intersect the center line LC.
  • one of the ends 418a and 318b of the heat sinks 18a and 18b may not intersect the center line LC, that is, at least one of the ends 418a and 318b of the heat sinks 18a and 18b may be the center line LC. Intersects. Thereby, the mechanical strength of the resistor 1001c can be improved.
  • the range W16 where the gap 16 exists in the longitudinal direction DL substantially matches the range W19 where the gap 19 exists in the longitudinal direction DL. Thereby, the mechanical strength of the resistor 1001c can be improved. Viewed from above, the range W16 may not coincide with the range W19 in the longitudinal direction DL.
  • FIG. 2D is a top view showing heat radiating plates 14a, 14b, 18a, 18b of still another resistor 1001d in the first embodiment.
  • the same reference numerals are given to the same portions as the resistor 1001c shown in FIG. 2C.
  • the ends 414a and 314b of the heat sinks 14a and 14b have portions that are not parallel to the center line LC.
  • the end 414a of the heat radiating plate 14a has a zigzag shape extending while meandering in parallel with the center line LC, and has a portion 514a extending in the longitudinal direction DL and intersecting the center line LC.
  • the end 314b of the heat radiating plate 14b has a zigzag shape extending while meandering in parallel with the center line LC, and has a portion 514b extending in the longitudinal direction DL and intersecting the center line LC.
  • the gap 16 has a zigzag shape that extends while meandering in parallel with the center line LC, and has a portion 516 that extends in the longitudinal direction DL and intersects the center line LC. Thereby, the mechanical strength of the resistor 1001d can be improved.
  • the ends 418a and 318b of the heat sinks 18a and 18b have portions that are not parallel to the center line LC.
  • the end 418a of the heat radiating plate 18a has a zigzag shape extending while meandering in parallel with the center line LC, and has a portion 518a extending in the longitudinal direction DL and intersecting the center line LC.
  • the end 318b of the heat radiating plate 18b has a zigzag shape extending meandering in parallel with the center line LC, and has a portion 518b extending in the longitudinal direction DL and intersecting the center line LC.
  • the gap 19 has a zigzag shape extending while meandering in parallel with the center line LC, and has a portion 519 extending in the longitudinal direction DL and intersecting the center line LC.
  • the mechanical strength of the resistor 1001d can be improved.
  • the portion 516 of the gap 16 is located between the portions 519 of the gap 19 and does not coincide with the portion 519 of the gap 19 when viewed from above. Thereby, the mechanical strength of the resistor 1001d can be improved.
  • the resistors 1001 and 1001a to 1001d shown in FIGS. 1A to 2D may include a plurality of sets each including a resin substrate 17 and heat radiation plates 18a and 18b provided on the upper surface 117 of the resin substrate 17. Such a resistor is described below.
  • FIG. 3 is a cross-sectional view of still another resistor 1001e according to the first embodiment.
  • Resistor 1001e further includes heat dissipation plates 58a and 58b provided on upper surface 117 of resin substrate 17 of resistor 1001 shown in FIG. 1A, and resin substrate 57 provided on the upper surfaces of heat dissipation plates 58a and 58b.
  • the resin substrate 17a is provided on the upper surfaces of the heat sinks 18a and 18b.
  • the resin substrate 57 is made of the same material as the resin substrate 17.
  • the heat dissipation plates 58a and 58b are separated from each other through a gap 59 filled with the resin substrate 57, and are connected to the end surface electrodes 15a and 15b, respectively.
  • the resistor 1001e can have higher rated power and improved long-term reliability.
  • FIG. 4 is a top view showing heat radiation plates 14a to 14c and 18a to 18c of still another resistor 1001f in the first embodiment.
  • a resistor 1001 f shown in FIG. 4 further includes a heat radiating plate 14 c provided on the upper surface 113 of the resin substrate 13 and a heat radiating plate 18 c provided on the upper surface 117 of the resin substrate 17.
  • the heat sink 14c is provided in the gap 16 between the heat sinks 14a and 14b.
  • the heat sinks 14a and 14c are separated from each other via a gap 16a, and the heat sinks 14b and 14c are separated from each other via a gap 16b.
  • the heat sink 18c is provided in the gap 19 between the heat sinks 18a and 18b.
  • the heat sinks 18a and 18c are separated from each other via a gap 19a, and the heat sinks 18b and 18c are separated from each other via a gap 19b.
  • the protective film 20 shown in FIGS. 1B, 2A, and 3 preferably contains a filler made of ceramic powder such as silica or alumina. Thereby, the heat generated in the resistor 11 can be released to the protective film 20 as well, so that the temperature of the resistor 11 can be further lowered.
  • FIG. 5A is a cross-sectional view of resistor 1002 in the second embodiment. 5A, the same reference numerals are given to the same portions as those of resistor 1001 in the first embodiment shown in FIG. 1A.
  • the resistor 1002 in the second embodiment does not include the heat radiation plates 14b and 18a of the resistor 1001 in the first embodiment.
  • FIG. 5B is a top view showing the heat radiating plates 14 a and 18 b of the resistor 1002.
  • the heat radiating plate 14 a extends to the vicinity of the end 413 so as not to reach the end 413 of the resin substrate 13 in the longitudinal direction DL beyond the center line LC.
  • the heat dissipation plate 18b extends to the vicinity of the end 313 so as not to reach the end 313 of the resin substrate 13 in the direction opposite to the longitudinal direction DL beyond the center line LC.
  • the heat sinks 14a and 18b overlap.
  • terms indicating directions such as “upper surface”, “lower surface”, and “upward” are relative positions of the constituent members of the resistor such as the resistor 11 and the heat sinks 14a, 14b, 18a, and 18b. It indicates the relative direction determined only by the relationship, and does not indicate the absolute direction such as the vertical direction.
  • the resistor according to the present invention can improve long-term reliability, and can be applied particularly to a high-power and low-resistance resistor used for detecting a current value of various electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

抵抗器は、抵抗体と、抵抗体の上面に設けられた高熱伝導性を有する第1の樹脂基板と、第1の樹脂基板の上面に設けられた金属で構成された第1の放熱板と、第1の放熱板の上面に設けられた第2の樹脂基板と、第2の樹脂基板の上面に設けられた金属で構成された第2の放熱板と、抵抗体の第1の端面に設けられてかつ第1の放熱板に接続された第1の端面電極と、抵抗体の第2の端面に設けられてかつ第2の放熱板に接続された第2の端面電極とを備える。

Description

抵抗器
 本発明は、各種電子機器の電流値検出等に使用される高耐電力で低い抵抗値の抵抗器に関するものである。
 図6は従来の抵抗器9の断面図である。抵抗器9は、板状または箔状の金属で構成された抵抗体1と、抵抗体1の上面の両端部に形成された一対の電極2と、抵抗体1の下面に絶縁性の接着剤3を介して貼付けされた熱伝導が良好な放熱板4と、一対の電極2間および放熱板4の上面に形成された保護膜5とを備える。放熱板4は、隙間6によって2つに分割されている。
 抵抗器9に類似の従来の抵抗器は、例えば、特許文献1に開示されている。
特開2010-514171号公報
 抵抗器は、抵抗体と、抵抗体の上面に設けられた高熱伝導性を有する第1の樹脂基板と、第1の樹脂基板の上面に設けられた金属で構成された第1の放熱板と、第1の放熱板の上面に設けられた第2の樹脂基板と、第2の樹脂基板の上面に設けられた金属で構成された第2の放熱板と、抵抗体の第1の端面に設けられてかつ第1の放熱板に接続された第1の端面電極と、抵抗体の第2の端面に設けられてかつ第2の放熱板に接続された第2の端面電極とを備える。
 この抵抗器は、抵抗体の温度を大幅に下げることができるので、長期信頼性を向上させることができる。
図1Aは実施の形態1における抵抗器の上面図である。 図1Bは図1Aに示す抵抗器の線1B-1Bにおける断面図である。 図1Cは図1Bに示す抵抗器の放熱板を示す上面図である。 図1Dは実施の形態1における他の抵抗器の放熱板を示す上面図である。 図2Aは実施の形態1におけるさらに他の抵抗器の断面図である。 図2Bは図2Aに示す抵抗器の放熱板を示す上面図である。 図2Cは実施の形態1におけるさらに他の抵抗器の放熱板を示す上面図である。 図2Dは実施の形態1におけるさらに他の抵抗器の放熱板を示す上面図である。 図3は実施の形態1におけるさらに他の抵抗器の断面図である。 図4は実施の形態1におけるさらに他の抵抗器の放熱板を示す上面図である。 図5Aは実施の形態2における抵抗器の断面図である。 図5Bは実施の形態2における抵抗器の放熱板を示す上面図である。 図6は従来の抵抗器の断面図である。
 (実施の形態1)
 図1Aは実施の形態1における抵抗器1001の上面図である。図1Bは図1Aに示す抵抗器1001の線1B-1Bにおける断面図である。抵抗器1001は、金属で構成された抵抗体11と、抵抗体11の下面211に設けられた下電極12a、12bと、抵抗体11の上面111に設けられた高熱伝導性を有する樹脂基板13と、樹脂基板13の上面113に設けられた放熱板14a、14bと、抵抗体11に設けられた端面電極15a、15bとを備えている。抵抗体11は、上面111と、下面211と、上面111と下面211とに繋がる端面311、411、511、611とを有する金属で構成されている。端面311、411は互いに反対側に位置し、端面511、611は互いに反対側に位置する。下電極12aは抵抗体11の端面311に繋がる下面211の端部211aに設けられている。下電極12bは抵抗体11の端面411に繋がる下面211の端部211bに設けられている。端面電極15a、15bは抵抗体11の端面311、411にそれぞれ設けられている。抵抗体11の端面411は端面311の反対側であり、端面311から長手方向DLに位置する。電流は端面電極15a、15b間を主に長手方向DLに流れる。
 図1Bに示すように、抵抗器1001は実装用基板2001に実装されるように構成されている。
 放熱板14a、14bは共に金属よりなる。放熱板14a、14bは隙間16を介して互いに離れており、端面電極15a、15bにそれぞれ接続されている。
 抵抗器1001は、放熱板14a、14bの上面114a、114bに設けられた樹脂基板17と、樹脂基板17の上面117に設けられた放熱板18a、18bとをさらに備える。放熱板18a、18bは共に金属よりなる。放熱板18a、18bは隙間19を介して互いに離れており、端面電極15a、15bにそれぞれ接続されている。
 樹脂基板13は、上面113と、抵抗体11の上面111に位置する下面213と、上面113と下面213とに繋がる端313と、端313の反対側で端313から長手方向DLに位置して上面113と下面213とに繋がる端413とを有する。
 放熱板14aは、上面114aと、樹脂基板13の上面113に位置する下面214aと、上面114aと下面214aとに繋がる端314aと、端314aの反対側で端314aから長手方向DLに位置して上面114aと下面214aとに繋がる端414aとを有する。端314aは端面電極15aに接続されている。放熱板14bは、上面114bと、樹脂基板13の上面113に位置する下面214bと、上面114bと下面214bとに繋がる端面電極15bに接続された端414bと、端414bの反対側で端414bから長手方向DLの反対の方向に位置して上面114bと下面214bとに繋がる端314bとを有する。端414bは端面電極15bに接続されている。放熱板14aの端414aは隙間16を介して放熱板14bの端314bに対向する。
 樹脂基板17は、上面117と、放熱板14a、14bの上面114a、114bに位置する下面217と、上面117と下面217とに繋がる端317と、端317の反対側で端317から長手方向DLに位置して上面117と下面217とに繋がる端417とを有する。
 放熱板18aは、上面118aと、樹脂基板17の上面117に位置する下面218aと、上面118aと下面218aとに繋がる端318aと、端318aの反対側で端318aから長手方向DLに位置して上面118aと下面218aとに繋がる端418aとを有する。端318aは端面電極15aに接続されている。放熱板18bは、上面118bと、樹脂基板17の上面117に位置する下面218bと、上面118bと下面218bとに繋がる端418bと、端418bの反対側で端418bから長手方向DLの反対の方向に位置して上面118bと下面218bとに繋がる端318bとを有する。端418bは端面電極15bに接続されている。放熱板18aの端418aは隙間16を介して放熱板18bの端318bに対向する。
 抵抗体11は、板状または箔状のCuMnNi(マンガニン)で構成されている。抵抗体11はCuNi、CuMn、NiCr、CuNiSn、CuMnSn等の他の金属材料で構成されていてもよく、低い抵抗温度係数(TCR)を有するCuMnNiで構成されていることがより好ましい。
 図1Aは抵抗体11の形状を破線で示す。抵抗体11にはエッチング等により加工されて蛇行形状を有する。実施の形態1において、抵抗体11の蛇行形状を有する部分は長手方向DLの中心付近に位置する。抵抗体11には、その抵抗値を調整するための1つ以上のトリミング溝が設けられていてもよい。
 下電極12a、12bは、Cuを主成分とした金属材料を抵抗体11の下面211に直接めっきして形成する。下電極12a、12bは、別体の金属板を抵抗体11の下面211に溶接、クラッド接合したり、抵抗体11の下面211に、上記金属材料をスパッタ、印刷したりして形成してもよい。
 抵抗体11の下面211において下電極12a、12b間にエポキシ樹脂またはシリコン樹脂で構成された保護膜20が設けられている。
 樹脂基板13は抵抗体11の上面111に直接接するように形成され、樹脂13rと、樹脂13rに分散するセラミック粉末13pとを含む混合物よりなる。実施の形態では樹脂13rはエポキシ樹脂であり、セラミック粉末13pはアルミナ粉末である。
 樹脂基板13は、セラミック粉末13pによって高い熱伝導性と高い絶縁性とを有している。また、樹脂基板13は樹脂13rを含有しているため、プレスすることによって抵抗体11と放熱板14a、14bとに接着剤無しで強固に接着されて高い接着性を有する。すなわち、樹脂基板13を用いることによって、熱伝導性と接着性の両方を満たすことができる。
 樹脂基板13中に含まれるセラミック粉末13pの含有量は30vol%~90vol%、または85wt%~98wt%が好ましい。セラミック粉末13pの含有量が少ないと熱伝導性が悪化する。セラミック粉末13pの含有量が多いと接着性が悪化してしまう。
 なお、セラミック粉末13pはシリカ粉末であってもよいが、熱伝導率の大きいアルミナ粉末の方がより好ましい。
 樹脂基板13の厚みは放熱板14a、14b、18a、18bより大きい。
 放熱板14a、14bは、樹脂基板13の上面113の長手方向DLに配列された端313、413に繋がる両端部にそれぞれ直接形成されている。放熱板14a、14bは隙間16を介して互いに離れている。放熱板14a、14b、18a、18bは、Cuなどの金属で構成されている。放熱板14aの端314aは端面電極15aに接続されており、放熱板14bは端面電極15bに接続している。
 端面電極15aは抵抗体11の端面311と下電極12aと樹脂基板13の端313と放熱板14aの端314aと樹脂基板17の端317と放熱板18aの端318aに銅やニクロム等の金属をスパッタすることによって形成されている。端面電極15bは抵抗体11の端面411と下電極12bと樹脂基板13の端413と放熱板14bの端414bと樹脂基板17の端417と放熱板18bの端418bに銅やニクロム等の金属をスパッタすることによって形成されている。端面電極15a、15bの表面には銅層、ニッケルめっき層、またはすずめっき層などの金属層が形成されている。抵抗器1001の実装時には金属層の表面に実装用のはんだめっきが形成される。
 樹脂基板17は、放熱板14a、14bの上面に設けられ、実装用基板2001に含有される材料と同じガラスエポキシで構成されている。
 放熱板18aは、樹脂基板17の上面117の端317に繋がる端部に形成され、放熱板18bは、樹脂基板17の上面117の端417に繋がる端部に形成されている。放熱板18aは隙間19を介して放熱板18bから離れている。放熱板18a、18bはCuなどの金属で構成されている。放熱板18aの端318aは端面電極15aに接続されており、放熱板18bの端418bは端面電極15bに接続されている。
 放熱板14a、14bは、Cuなどの金属板を樹脂基板13の上面113に貼り付けて形成される。放熱板18a、18bは、Cuなどの金属板を、樹脂基板17の上面117に貼り付けて形成される。
 放熱板14a、14b間の隙間16により、放熱板14a、14b間に電流の経路ができないようにしている。放熱板18a、18b間の隙間19により、放熱板18a、18b間に電流の経路ができないようにしている。
 隙間16、19の長手方向DLの幅は、長手方向DLでの抵抗器1001の全長(樹脂基板13、樹脂基板17の長さ)の1/50以上であることが好ましい。隙間16、19の長手方向DLの幅が長手方向DLでの抵抗器1001の全長の1/10を越えると放熱板14a、14b、18a、18bの長手方向DLの長さが短くなって放熱効果が小さくなり、好ましくない。
 放熱板18a、18bの上面にガラスエポキシで構成された樹脂基板17aが形成されている。樹脂基板17aの上面に保護膜が設けられていてもよい。
 図6に示す従来の抵抗器9では、放熱板4と抵抗体1との間の絶縁性の接着剤3によって、抵抗体1で発生した熱が放熱板4に伝導しにくくなる。したがって、抵抗体1の温度が高い状態となり、長期信頼性が悪化する。
 実施の形態1における抵抗器1001では、電流が印加されたときに抵抗体11で発生する熱が樹脂基板13と樹脂基板17とを介して放熱板14a、14b、18a、18bへ伝わる。放熱板14a、14b、18a、18bへ伝わった熱が端面電極15a、15bと下電極12a、12bを通って実装用基板2001に放出され、これにより、抵抗体11の温度を低くすることができ、この結果、抵抗器1001の高定格電力化、長期信頼性の向上が可能になる。
 抵抗体11の蛇行形状を有する部分は他の部分より発熱量が大きいホットスポットである。上方から見て、抵抗体11のホットスポットが隙間16、19と重ならないことが好ましい。これにより、ホットスポットで発生した熱が放熱板14a、14b、18a、18bへ伝わり易くなる。
 次に、実施の形態1における抵抗器1001の製造方法について説明する。
 まず、放熱板14a、14bと隙間16に対応する部分を有して放熱板14a、14bとなる1枚の金属板と、放熱板18a、18bと隙間19に対応する部分とを有して放熱板18a、18bとなる1枚の金属板とを準備する。樹脂基板17の上面117に放熱板18a、18bとなる上記1枚の金属板を熱圧着で接着させ、樹脂基板17の下面217に放熱板14a、14bとなる上記1枚の金属板を熱圧着で接着させる。その後、放熱板14a、14bとなる上記1枚の金属板をエッチングすることで隙間16を形成し、放熱板18a、18bとなる上記1枚の金属板をエッチングすることで隙間19を形成する。これにより、樹脂基板17の下面217の両端部に放熱板14a、14bが形成され、樹脂基板17の上面117の両端部に放熱板18a、18bが形成される。
 次に、他の樹脂基板17aと樹脂基板13と抵抗体11とを貼り付けてプレスする。これにより、樹脂基板13と抵抗体11と放熱板14a、14bとを接着させることができる。このとき、隙間16は樹脂基板13で埋められ、隙間19は樹脂基板17aで埋められる。
 次に、抵抗体11が図1Aに示す蛇行形状を有するように抵抗体11をエッチングした後、抵抗体11の下面211の両端部にめっきにより下電極12a、12bを形成する。
 次に、抵抗体11にトリミング溝を形成して抵抗値を調整する。
 次に、抵抗体11の下面211の下電極12a、12b間にエポキシ樹脂またはシリコン樹脂を塗布、乾燥して保護膜20を形成する。
 最後に、抵抗体11、下電極12a、樹脂基板13、放熱板14a、樹脂基板17、放熱板18aの端に銅やニクロムをスパッタすることによって、端面電極15aを形成し、抵抗体11、下電極12b、樹脂基板13、放熱板14b、樹脂基板17、放熱板18bの端に銅やニクロムをスパッタすることによって、端面電極15bを形成する。その後、端面電極15a、15bの表面に銅層、ニッケルめっき層、または、すずめっき層を形成する。
 実施の形態1における抵抗器1001では、高熱伝導性を有する樹脂基板13がエポキシ樹脂(樹脂13r)とアルミナ粉末(セラミック粉末13p)の混合物で構成され、樹脂基板13と抵抗体11とが直接接触し、樹脂基板13が放熱板14a、14bと直接接触している。したがって、抵抗体11で発生した熱の多くが放熱板14a、14bを介して実装用基板2001に容易に逃げ、これにより、抵抗体11の温度を大幅に下げることができ、長期信頼性を向上させることができる。
 抵抗体と放熱板を接着剤で接着させた従来の抵抗器では、抵抗体で発生した熱が放熱板に伝導しにくい。この従来の抵抗器では、熱を伝導しやすくするために接着剤を薄くすると、絶縁性が保持できない。
 これに対し、実施の形態1における抵抗器1001では、放熱板14a、14bのそれぞれと抵抗体11との間に、エポキシ樹脂とアルミナ粉末との混合物で構成された高熱伝導性を有する樹脂基板13が形成されている。したがって、上述したように、樹脂基板13は高い熱伝導性と高い絶縁性を有し、抵抗体11と、放熱板14a、14bとに強固に接着できる。
 高熱伝導性を有する樹脂基板13は接着剤無しで抵抗体11と放熱板14a、14bとに接着することが好ましい。絶縁性を向上させるために樹脂基板13を厚くしても熱伝導性は保持されるが、接着剤を使用すると樹脂基板13を厚くすれば熱伝導性が低下する。
 樹脂基板17は、実装用基板2001に含有されるガラスエポキシで構成されているので、抵抗器1001の実装後の樹脂基板17と実装用基板2001の熱膨張率の違いによるはんだクラックを防止でき、さらに、耐熱性にも優れる。
 すなわち、エポキシ樹脂(樹脂13r)とアルミナ粉末(セラミック粉末13p)との混合物で構成された高熱伝導性を有する樹脂基板13と、ガラスエポキシで構成された樹脂基板17を積層することによって、抵抗器1001の長期信頼性の向上、定格電力の高電力化、はんだクラックの防止、耐熱性を実現できる。
 図1Cは抵抗器1001の放熱板14a、14b、18a、18bを示す上面図である。隙間16を介して互いに対向する放熱板14a、14bの端414a、314bは直線状に互いに平行に延び、隙間16は直線状に延びる。同様に、隙間19を介して互いに対向する放熱板18a、18bの端418a、318bは直線状に互いに平行に延び、隙間19は直線状に延びる。
 図1Cに示す実施の形態1における抵抗器1001では、上方から見て隙間16、19が同じ位置に設けられている。これにより、隙間19や高熱伝導性を有する樹脂基板13の形状等を上方から確認し易くなる。
 また、図1Cに示す抵抗器1001では、隙間16、19は、ともに上方から見て、抵抗器1001(抵抗体11)の長手方向DLの中心を通り抵抗体11の上面111に平行でかつ長手方向DLに直角の中心線LCに沿って設けられている。これにより、放熱板14a、14b、18a、18bは長手方向DLにおいてバランスよく抵抗体11を放熱できる。
 図1Dは実施の形態1における他の抵抗器1001aの放熱板14a、14b、18a、18bを示す上面図である。図1Dにおいて、図1Aから図1Cに示す抵抗器1001と同じ部分には同じ参照番号を付す。図1Dに示す抵抗器1001aでは、隙間16、19は、上方から見て同じ位置で、かつ抵抗器1001aの中心線LCからずれて配置されている。抵抗器1001aでは、抵抗体11のホットスポットの上方に放熱板14b、放熱板18bが設けられているので、放熱性が良くなり、さらに、機械的強度を向上させることができる。
 図2Aは実施の形態1におけるさらに他の抵抗器1001bの断面図である。図2Bは抵抗器1001bの放熱板14a、14b、18a、18bを示す上面図である。図2Aと図2Bにおいて、図1Aから図1Cに示す抵抗器1001と同じ部分には同じ参照番号を付す。図2Aと図2Bに示す抵抗器1001bでは、上方から見て、隙間16、19が互いに異なる位置に設けられている。これにより抵抗器1001bの機械的強度を向上させることができる。上方から見て、中心線LCと平行に直線状に延びる隙間16、19は中心線LCについて互いに対称に配置されている。これにより、応力によって最も変形し易い抵抗器1001bの中心部分を効率よく補強できる。
 隙間16、19は、上方から見てV字形状、L字形状、またはジグザグ形状を有していてもよい。上方から見て隙間16、19の少なくとも1つが中心線LCを通ることにより、実施の形態1における抵抗器の機械的強度を向上させることができる。これらの形状を有する隙間16、19を有する抵抗器を以下に説明する。
 図2Cは実施の形態1におけるさらに他の抵抗器1001cの放熱板14a、14b、18a、18bを示す上面図である。図2Cにおいて、図2Aと図2Bに示す抵抗器1001bと同じ部分には同じ参照番号を付す。
 図2Cに示す抵抗器1001cでは、放熱板14a、14bの端414a、314bは中心線LCと非平行である。具体的には、上方から見て、放熱板14aの端414aは長手方向DLと反対の方向に凹むV字形状を有し、放熱板14bの端314bは長手方向DLと反対の方向に突出するV字形状を有する。したがって、隙間16は長手方向DLに突出するV字形状を有し、上方から見て中心線LCを通って交差する。上方から見て、放熱板14a、14bの端414a、314bは中心線LCと交差する。上方から見て、放熱板14a、14bの端414a、314bの1つは中心線LCと交差していなくてもよく、すなわち、放熱板14a、14bの端414a、314bの少なくとも1つが中心線LCと交差している。これにより抵抗器1001cの機械的強度を向上させることができる。
 放熱板18a、18bの端418a、318bは中心線LCと非平行である。具体的には、上方から見て、放熱板18aの端418aは長手方向DLに凹むV字形状を有し、放熱板18bの端318bは長手方向DLに突出するV字形状を有する。したがって、隙間19は長手方向DLと反対の方向に突出するV字形状を有し、上方から見て中心線LCを通って交差する。上方から見て、放熱板18a、18bの端418a、318bは中心線LCと交差する。上方から見て、放熱板18a、18bの端418a、318bの1つは中心線LCと交差していなくてもよく、すなわち、放熱板18a、18bの端418a、318bの少なくとも1つが中心線LCと交差している。これにより抵抗器1001cの機械的強度を向上させることができる。
 図2Cに示す抵抗器1001cでは、上方から見て、長手方向DLにおいて隙間16が存在する範囲W16は、長手方向DLにおいて隙間19が存在する範囲W19に実質的に一致している。これにより抵抗器1001cの機械的強度を向上させることができる。上方から見て、長手方向DLにおいて範囲W16は範囲W19に一致していなくてもよい。
 図2Dは実施の形態1におけるさらに他の抵抗器1001dの放熱板14a、14b、18a、18bを示す上面図である。図2Dにおいて、図2Cに示す抵抗器1001cと同じ部分には同じ参照番号を付す。
 図2Dに示す抵抗器1001dでは、放熱板14a、14bの端414a、314bは中心線LCと非平行の部分を有する。具体的には、上方から見て、放熱板14aの端414aは中心線LCと平行に蛇行しながら延びるジグザグ形状を有し、長手方向DLに延びて中心線LCと交差する部分514aを有する。上方から見て、放熱板14bの端314bは中心線LCと平行に蛇行しながら延びるジグザグ形状を有し、長手方向DLに延びて中心線LCと交差する部分514bを有する。したがって、隙間16は中心線LCと平行に蛇行しながら延びるジグザグ形状を有し、長手方向DLに延びて中心線LCと交差する部分516を有する。これにより抵抗器1001dの機械的強度を向上させることができる。
 放熱板18a、18bの端418a、318bは中心線LCと非平行の部分を有する。具体的には、上方から見て、放熱板18aの端418aは中心線LCと平行に蛇行しながら延びるジグザグ形状を有し、長手方向DLに延びて中心線LCと交差する部分518aを有する。上方から見て、放熱板18bの端318bは中心線LCと平行に蛇行しながら延びるジグザグ形状を有し、長手方向DLに延びて中心線LCと交差する部分518bを有する。したがって、隙間19は中心線LCと平行に蛇行しながら延びるジグザグ形状を有し、長手方向DLに延びて中心線LCと交差する部分519を有する。これにより抵抗器1001dの機械的強度を向上させることができる。
 図2Dに示す抵抗器1001dでは、隙間16の部分516は隙間19の部分519の間に位置して、上方から見て隙間19の部分519と一致していない。これにより抵抗器1001dの機械的強度を向上させることができる。
 図1Aから図2Dに示す抵抗器1001、1001a~1001dは、樹脂基板17と、樹脂基板17の上面117に設けられた放熱板18a、18bとよりそれぞれなる複数の組を備えてもよい。このような抵抗器を以下に説明する。
 図3は実施の形態1におけるさらに他の抵抗器1001eの断面図である。図3において、図1Aに示す抵抗器1001と同じ部分には同じ参照番号を付す。抵抗器1001eは、図1Aに示す抵抗器1001の樹脂基板17の上面117に設けられた放熱板58a、58bと、放熱板58a、58bの上面に設けられた樹脂基板57とをさらに備える。樹脂基板17aは放熱板18a、18bの上面に設けられている。樹脂基板57は樹脂基板17と同様の材料よりなる。放熱板58a、58bは放熱板18a、18bと同様に、樹脂基板57で充填された隙間59を介して互いに離れており、端面電極15a、15bにそれぞれ接続されている。抵抗器1001eも図1Aに示す抵抗器1001と同様に高定格電力化、長期信頼性の向上が可能になる。
 図4は実施の形態1におけるさらに他の抵抗器1001fの放熱板14a~14c、18a~18cを示す上面図である。図4において、図1Aから図1Cに示す抵抗器1001と同じ部分には同じ参照番号を付す。図4に示す抵抗器1001fは、樹脂基板13の上面113に設けられた放熱板14cと、樹脂基板17の上面117に設けられた放熱板18cとをさらに備える。放熱板14cは放熱板14a、14b間の隙間16に設けられている。放熱板14a、14cは隙間16aを介して互いに離れており、放熱板14b、14cは隙間16bを介して互いに離れている。放熱板18cは放熱板18a、18b間の隙間19に設けられている。放熱板18a、18cは隙間19aを介して互いに離れており、放熱板18b、18cは隙間19bを介して互いに離れている。
 図1B、図2A、図3に示す保護膜20はシリカ、アルミナなどのセラミック粉で構成されたフィラーを含有することが好ましい。これにより抵抗体11で発生した熱を、保護膜20にも逃がすことができるので、抵抗体11の温度をより下げることができる。
 (実施の形態2)
 図5Aは実施の形態2における抵抗器1002の断面図である。図5Aにおいて、図1Aに示す実施の形態1における抵抗器1001と同じ部分には同じ符号を付す。実施の形態2における抵抗器1002は、実施の形態1における抵抗器1001の放熱板14b、18aを備えていない。
 図5Bは抵抗器1002の放熱板14a、18bを示す上面図である。上方から見て、放熱板14aは中心線LCを越えて長手方向DLに樹脂基板13の端413に達しないように端413の近くまで延びている。上方から見て、放熱板18bは中心線LCを越えて長手方向DLと反対の方向に樹脂基板13の端313に達しないように端313の近くまで延びている。上方から見て、放熱板14a、18bは重なっている。
 抵抗器1002では、抵抗体11を覆う放熱板14aが長くなるので、抵抗体11で発生した熱を効果的に逃がすことができる。
 実施の形態1、2において、「上面」「下面」「上方」等の方向を示す用語は、抵抗体11や放熱板14a、14b、18a、18b等の抵抗器の構成部材の相対的な位置関係でのみ決まる相対的な方向を示し、鉛直方向等の絶対的な方向を示すものではない。
 本発明に係る抵抗器は、長期信頼性を向上させることができ、特に各種電子機器の電流値検出等に使用される高電力で低い抵抗値の抵抗器等に適用することができる。
11  抵抗体
12a  下電極(第1の下電極)
12b  下電極(第2の下電極)
13  樹脂基板
14a  放熱板(第1の放熱板)
14b  放熱板(第2の放熱板)
15a  端面電極(第1の端面電極)
15b  端面電極(第2の端面電極)
16  隙間(第1の隙間)
17  樹脂基板
18a  放熱板(第3の放熱板)
18b  放熱板(第2の放熱板、第4の放熱板)
19  隙間(第2の隙間)

Claims (20)

  1. 上面と、下面と、前記上面と前記下面とに繋がる第1の端面と、前記上面と前記下面とに繋がる第2の端面とを有する金属で構成された抵抗体と、
    前記抵抗体の前記上面に設けられた高熱伝導性を有する第1の樹脂基板と、
    前記第1の樹脂基板の上面に設けられた金属よりなる第1の放熱板と、
    前記第1の放熱板から第1の隙間を介して離れるように前記第1の樹脂基板の前記上面に設けられた金属よりなる第2の放熱板と、
    前記抵抗体の前記第1の端面に設けられて前記第1の放熱板に接続された第1の端面電極と、
    前記抵抗体の前記第2の端面に設けられて前記第2の放熱板に接続された第2の端面電極と、
    を備えた抵抗器。
  2. 前記第1の樹脂基板は、樹脂と、前記樹脂に分散する熱伝導性粉末とを含有する、請求項1に記載の抵抗器。
  3. 前記熱伝導性粉末はアルミナ粉末またはシリカ粉末である、請求項2に記載の抵抗器。
  4. 前記第1の放熱板の上面と前記第2の放熱板の上面とに設けられた第2の樹脂基板と、
    前記第2の樹脂基板の上面に設けられた金属よりなりかつ前記第1の端面電極に接続された第3の放熱板と、
    前記第3の放熱板から第2の隙間を介して離れるように前記第2の樹脂基板の前記上面に設けられた金属よりなりかつ前記第2の端面電極に接続された第4の放熱板と、
    をさらに備えた、請求項1に記載の抵抗器。
  5. 上方から見て、前記第1の隙間と前記第2の隙間は互い異なる位置に設けられている、請求項4に記載の抵抗器。
  6. 上方から見て、前記第1の隙間と前記第2の隙間は前記抵抗体の前記上面に平行な基準線について互いに対称に配置されている、請求項5に記載の抵抗器。
  7. 前記抵抗体の前記第1の端面と前記第2の端面とは長手方向に配列されており、
    前記基準線は、前記抵抗器の前記長手方向での中心を通りかつ前記前記長手方向と直角の方向に延びる、請求項6に記載の抵抗器。
  8. 上方から見て前記第1の隙間と前記第2の隙間は同じ位置に設けられている、請求項4に記載の抵抗器。
  9. 前記抵抗体の前記第1の端面と前記第2の端面とは長手方向に配列されており、
    上方から見て、前記第1の隙間と前記第2の隙間とは、前記抵抗器の前記長手方向での中心を通りかつ前記長手方向と直角の中心線からずれて配置されている、請求項8に記載の抵抗器。
  10. 前記抵抗体の前記第1の端面と前記第2の端面とは長手方向に配列されており、
    前記第1の放熱板と前記第2の放熱板は、前記第1の隙間を介して互いに対向して延びる第1の端と第2の端をそれぞれ有し、
    上方から見て、前記第1の端と前記第2の端とは、前記抵抗器の前記長手方向での中心を通りかつ前記長手方向と直角の中心線と非平行の部分を有する、請求項4に記載の抵抗器。
  11. 上方から見て、前記第1の端と前記第2の端とのうちの少なくとも1つは前記中心線と交差している、請求項10に記載の抵抗器。
  12. 前記第3の放熱板と前記第4の放熱板は、前記第2の隙間を介して互いに対向して延びる第3の端と第4の端をそれぞれ有し、
    上方から見て、前記第3の端と前記第4の端とは前記中心線と非平行の部分を有する、請求項10に記載の抵抗器。
  13. 上方から見て、前記第1の端と前記第2の端と前記第3の端と前記第4の端とのうちの少なくとも1つは前記中心線と交差している、請求項12に記載の抵抗器。
  14. 前記抵抗体の前記第1の端面と前記第2の端面とは長手方向に配列されており、
    前記第3の放熱板と前記第4の放熱板は、前記第2の隙間を介して互いに対向して延びる第1の端と第2の端をそれぞれ有し、
    上方から見て、前記第1の端と前記第2の端とは、前記抵抗器の前記長手方向での中心を通りかつ前記長手方向と直角の中心線と非平行の部分を有する、請求項4に記載の抵抗器。
  15. 上方から見て、前記第1の端と前記第2の端とのうちの少なくとも1つは前記中心線と交差している、請求項14に記載の抵抗器。
  16. 前記抵抗器は実装用基板に実装されるように構成されており、
    前記第2の樹脂基板は前記実装用基板と同じ材料よりなる、請求項4に記載の抵抗器。
  17. 前記抵抗体の前記第1の端面に繋がる前記下面の第1の端部に設けられてかつ前記第1の端面電極に接続された第1の下電極と、
    前記抵抗体の前記第2の端面に繋がる前記下面の第2の端部に設けられてかつ前記第1の端面電極に接続された第2の下電極と、
    をさらに備えた、請求項1に記載の抵抗器。
  18. 上面と、下面と、前記上面と前記下面とに繋がる第1の端面と、前記上面と前記下面とに繋がる第2の端面とを有する金属で構成された抵抗体と、
    前記抵抗体の前記上面に設けられた高熱伝導性を有する樹脂基板と、
    前記樹脂基板の上面に設けられた金属で構成された第1の放熱板と、
    前記第1の放熱板の上面に設けられた樹脂基板と、
    前記樹脂基板の上面に設けられた金属で構成された第2の放熱板と、
    前記抵抗体の前記第1の端面に設けられてかつ前記第1の放熱板に接続された第1の端面電極と、
    前記抵抗体の前記第2の端面に設けられてかつ前記第2の放熱板に接続された第2の端面電極と、
    を備えた抵抗器。
  19. 上方から見て、前記第1の放熱板と前記第2の放熱板とは重なっている、請求項18に記載の抵抗器。
  20. 前記抵抗体の前記第1の端面に繋がる前記下面の第1の端部に設けられてかつ前記第1の端面電極に接続された第1の下電極と、
    前記抵抗体の前記第2の端面に繋がる前記下面の第2の端部に設けられてかつ前記第1の端面電極に接続された第2の下電極と、
    をさらに備えた、請求項18に記載の抵抗器。
PCT/JP2016/005177 2015-12-22 2016-12-19 抵抗器 WO2017110079A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680003998.8A CN107112099B (zh) 2015-12-22 2016-12-19 电阻器
JP2017521258A JPWO2017110079A1 (ja) 2015-12-22 2016-12-19 抵抗器
US15/527,319 US10141088B2 (en) 2015-12-22 2016-12-19 Resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-250143 2015-12-22
JP2015250143 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110079A1 true WO2017110079A1 (ja) 2017-06-29

Family

ID=59089921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005177 WO2017110079A1 (ja) 2015-12-22 2016-12-19 抵抗器

Country Status (4)

Country Link
US (1) US10141088B2 (ja)
JP (1) JPWO2017110079A1 (ja)
CN (1) CN107112099B (ja)
WO (1) WO2017110079A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031844A1 (ja) * 2018-08-10 2020-02-13 ローム株式会社 抵抗器
JPWO2019116814A1 (ja) * 2017-12-11 2020-12-17 パナソニックIpマネジメント株式会社 チップ抵抗器
JP2022074288A (ja) * 2020-11-04 2022-05-18 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
TW202234615A (zh) * 2021-02-23 2022-09-01 旺詮股份有限公司 高功率晶片電阻

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192902A (ja) * 1993-11-19 1995-07-28 Isabellenhuette Heusler Gmbh Kg Smd構造の抵抗器、その製造方法及びこの抵抗器を取り付けたプリント回路板
JP2000277301A (ja) * 1999-03-29 2000-10-06 Taiyo Yuden Co Ltd 伝熱層を有する絶縁基板及び抵抗器
WO2015129161A1 (ja) * 2014-02-27 2015-09-03 パナソニックIpマネジメント株式会社 チップ抵抗器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU46402A1 (ja) * 1964-06-26 1972-01-01
JPS4835868B1 (ja) * 1970-04-07 1973-10-31
US3909680A (en) * 1973-02-16 1975-09-30 Matsushita Electric Ind Co Ltd Printed circuit board with silver migration prevention
JP2925233B2 (ja) * 1990-04-18 1999-07-28 北陸電気工業株式会社 高圧用可変抵抗器
TW583080B (en) * 2001-03-07 2004-04-11 Protectronics Technology Corp Composite material for thermistor having positive temperature coefficient and manufacturing method thereof
CN1265400C (zh) * 2002-09-18 2006-07-19 乾坤科技股份有限公司 微型低电压低阻值电流感测器的制造方法
CN2586237Y (zh) * 2002-12-10 2003-11-12 久尹股份有限公司 一种半导化陶瓷元件的封装结构
JP4879276B2 (ja) * 2006-10-24 2012-02-22 パナソニック株式会社 3次元電子回路装置
DE102006060387A1 (de) 2006-12-20 2008-06-26 Isabellenhütte Heusler Gmbh & Co. Kg Widerstand, insbesondere SMD-Widerstand, und zugehöriges Herstellungsverfahren
CN101685694A (zh) * 2008-09-27 2010-03-31 华为技术有限公司 一种集成电阻器和具有集成电阻器的印刷电路板
CN101728037A (zh) * 2008-10-28 2010-06-09 信昌电子陶瓷股份有限公司 具有导热层结构的晶片电阻
CN104952569A (zh) * 2009-08-11 2015-09-30 釜屋电机株式会社 低电阻的片形电阻器及其制造方法
CN102354590B (zh) * 2011-09-15 2013-03-27 南京萨特科技发展有限公司 一种精密电流感测元件及制造方法
WO2013080560A1 (ja) * 2011-12-02 2013-06-06 パナソニック株式会社 無線モジュール
US9633768B2 (en) * 2013-06-13 2017-04-25 Rohm Co., Ltd. Chip resistor and mounting structure thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192902A (ja) * 1993-11-19 1995-07-28 Isabellenhuette Heusler Gmbh Kg Smd構造の抵抗器、その製造方法及びこの抵抗器を取り付けたプリント回路板
JP2000277301A (ja) * 1999-03-29 2000-10-06 Taiyo Yuden Co Ltd 伝熱層を有する絶縁基板及び抵抗器
WO2015129161A1 (ja) * 2014-02-27 2015-09-03 パナソニックIpマネジメント株式会社 チップ抵抗器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019116814A1 (ja) * 2017-12-11 2020-12-17 パナソニックIpマネジメント株式会社 チップ抵抗器
JP7336636B2 (ja) 2017-12-11 2023-09-01 パナソニックIpマネジメント株式会社 チップ抵抗器
WO2020031844A1 (ja) * 2018-08-10 2020-02-13 ローム株式会社 抵抗器
JPWO2020031844A1 (ja) * 2018-08-10 2021-04-30 ローム株式会社 抵抗器
US11335480B2 (en) 2018-08-10 2022-05-17 Rohm Co., Ltd. Resistor
US11823819B2 (en) 2018-08-10 2023-11-21 Rohm Co., Ltd. Resistor
JP7461996B2 (ja) 2018-08-10 2024-04-04 ローム株式会社 抵抗器
JP2022074288A (ja) * 2020-11-04 2022-05-18 プライムプラネットエナジー&ソリューションズ株式会社 二次電池
JP7285814B2 (ja) 2020-11-04 2023-06-02 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Also Published As

Publication number Publication date
US10141088B2 (en) 2018-11-27
JPWO2017110079A1 (ja) 2018-10-18
CN107112099A (zh) 2017-08-29
CN107112099B (zh) 2021-04-02
US20170365380A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
WO2017110079A1 (ja) 抵抗器
EP3240125B1 (en) Semiconductor device
JP2009302494A (ja) チップ抵抗器およびその製造方法
WO2018025571A1 (ja) パワー半導体装置
KR20140092774A (ko) 전력 반도체 모듈 및 전력 반도체 모듈의 제조 방법
CN106252332B (zh) 热敏电阻搭载装置及热敏电阻部件
KR100349780B1 (ko) 칩 서미스터
JP6572705B2 (ja) 抵抗器の製造方法、抵抗器
JP6500210B2 (ja) 金属板抵抗器
KR101075664B1 (ko) 칩 저항기 및 이의 제조 방법
JP4847357B2 (ja) 半導体装置の製造方法
JP6317178B2 (ja) 回路基板および電子装置
JP6927829B2 (ja) 接合構造および半導体パッケージ
JP2019016756A (ja) 抵抗器
JP6867263B2 (ja) 接合構造および半導体パッケージ
JP6927850B2 (ja) 接合構造および半導体パッケージ
JP7034121B2 (ja) 回路基板および電子装置
US20200343025A1 (en) Chip resistor
JP6538484B2 (ja) 回路基板および電子装置
WO2023053594A1 (ja) チップ抵抗器
WO2023079876A1 (ja) チップ抵抗器
JP6608728B2 (ja) 回路基板および電子装置
WO2015153903A1 (en) Heat management in electronics packaging
JP2019067966A (ja) チップ抵抗器
JP6150593B2 (ja) チップ抵抗器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017521258

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15527319

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877983

Country of ref document: EP

Kind code of ref document: A1