WO2018025571A1 - パワー半導体装置 - Google Patents

パワー半導体装置 Download PDF

Info

Publication number
WO2018025571A1
WO2018025571A1 PCT/JP2017/024840 JP2017024840W WO2018025571A1 WO 2018025571 A1 WO2018025571 A1 WO 2018025571A1 JP 2017024840 W JP2017024840 W JP 2017024840W WO 2018025571 A1 WO2018025571 A1 WO 2018025571A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
semiconductor device
layer
sintered metal
stress relaxation
Prior art date
Application number
PCT/JP2017/024840
Other languages
English (en)
French (fr)
Inventor
真之介 曽田
吉典 横山
小林 浩
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780046968.XA priority Critical patent/CN109643661B/zh
Priority to US16/315,050 priority patent/US10727186B2/en
Priority to JP2018531792A priority patent/JP6765426B2/ja
Priority to DE112017003925.8T priority patent/DE112017003925B4/de
Publication of WO2018025571A1 publication Critical patent/WO2018025571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00012Relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Definitions

  • the present invention relates to a power semiconductor device, and more particularly to a power semiconductor device including a power semiconductor element operated at high temperature.
  • power semiconductor devices which are core components, are required to be smaller and lower in cost.
  • One way to achieve them is to increase the operable temperature of the power semiconductor element.
  • the current value per unit area that can be input to the element increases.
  • the power semiconductor element and the power semiconductor device can be reduced in size, and the manufacturing cost of the power semiconductor device can be reduced as the size is reduced.
  • the following techniques are known as techniques for improving the thermal fatigue durability of such on-chip joints.
  • Japanese Patent Application Laid-Open No. 2010-10502 discloses a semiconductor module in which an electrode of a power semiconductor element and a wiring portion are bonded with a silver (Ag) -based bonding layer.
  • Japanese Patent Application Laid-Open No. 2005-19694 discloses a power module in which a laminate is inserted between an electrode portion and a terminal portion (wiring portion) of a chip.
  • the laminate is disposed between two low deformation resistors that act as stress buffering materials and the two low deformation resistors, and has a low thermal expansion coefficient that is lower than that of the low deformation resistors. It consists of a body.
  • the electrode portion and one low deformation resistor of the laminate, and the other low deformation resistor and terminal portion of the laminate are joined via an intermetallic compound layer containing Sn and Ni as main components. Has been.
  • Each intermetallic compound layer has an equivalent configuration.
  • the thermal fatigue durability of a conventional power semiconductor device is not sufficient depending on the operating temperature of the power semiconductor element. Therefore, there is a problem that the conventional power semiconductor device does not have high reliability.
  • the electrode of the power semiconductor element is easily damaged when the operable temperature of the power semiconductor element is sufficiently increased based on the above-described downsizing.
  • an intermetallic compound layer that joins the electrode portion and the laminated body when the operable temperature of the power semiconductor element is sufficiently increased based on the above-described downsizing. Or an electrode part is easy to be damaged.
  • a main object of the present invention is to provide a power semiconductor device having high reliability even when the operable temperature of the power semiconductor element is sufficiently increased.
  • a power semiconductor device has a first surface, and includes a power semiconductor element including an electrode formed on the first surface, and a first stress relaxation connected to the electrode through a first junction. And a wiring part electrically connected via the first stress relaxation part and the second joint part.
  • the joint strength of the first joint is higher than the joint strength of the second joint.
  • FIG. 1 is a cross-sectional view showing a power semiconductor device according to a first embodiment.
  • FIG. 6 is a cross-sectional view showing a power semiconductor device according to a fourth embodiment.
  • FIG. 9 is a cross-sectional view showing a power semiconductor device according to a fifth embodiment.
  • FIG. 10 is a plan view for explaining an electrode and a first joint portion of a power semiconductor device according to a sixth embodiment.
  • FIG. 23 is a plan view for explaining an electrode and a first joint portion of a power semiconductor device according to a seventh embodiment.
  • FIG. 10 is a cross-sectional view showing a power semiconductor device according to an eighth embodiment.
  • FIG. 10 is a cross-sectional view showing a power semiconductor device according to a ninth embodiment.
  • FIG. 38 is a plan view for explaining an electrode and a first joint portion of the power semiconductor device according to the ninth embodiment.
  • FIG. 22 is a cross-sectional view showing a power semiconductor device according to a tenth embodiment.
  • FIG. 38 is a cross-sectional view showing a modification of the power semiconductor device according to the tenth embodiment.
  • FIG. 29 is a cross-sectional view showing another modification of the power semiconductor device according to the tenth embodiment.
  • FIG. 38 is a cross-sectional view showing still another modification of the power semiconductor device according to the tenth embodiment.
  • FIG. 38 is a cross-sectional view showing still another modification of the power semiconductor device according to the tenth embodiment.
  • FIG. 38 is a cross-sectional view showing still another modification of the power semiconductor device according to the tenth embodiment.
  • FIG. 38 is a cross-sectional view showing still another modification of the power semiconductor device according to the tenth embodiment.
  • FIG. 38 is a cross-sectional view showing still another modification of the power semiconductor device according to the tenth embodiment.
  • FIG. 38 is a cross-sectional view showing still another modification of the power semiconductor device according to the tenth embodiment.
  • FIG. 10 is a cross-sectional view showing a modification of the power semiconductor device according to the first embodiment.
  • a power semiconductor device 100 includes a power semiconductor element 1, an insulating substrate 3, a sintered metal layer 5 as a first joint portion, a stress relaxation portion 6, A solder layer 7 as a two-joint part and a bus bar 8 are mainly provided.
  • the power semiconductor element 1 may be any power semiconductor element, but is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the power semiconductor element 1 has a first surface 1A and a surface located on the opposite side to the first surface 1A.
  • the electrode 2 is formed on a part of the first surface 1A.
  • a surface of the power semiconductor element 1 located on the side opposite to the first surface 1A is bonded to the insulating substrate 3 through a die bond material 4, for example.
  • the power semiconductor element 1 can operate at a high temperature.
  • the operation limit temperature is, for example, 175 ° C. or higher, and preferably 200 ° C. or higher.
  • the material constituting the electrode 2 may be any material having conductivity, but includes at least one of aluminum (Al), nickel (Ni), copper (Cu), and gold (Au), for example. .
  • the planar shape of the electrode 2 may be any shape, for example, a rectangular shape.
  • the electrode 2 is, for example, as a stacked body of a first layer in contact with the first surface 1A, a second layer formed on the first layer, and a third layer formed on the second layer. Is formed.
  • the electrode 2 may not be comprised as a laminated body but may be formed as a single layer.
  • the material constituting the electrode 2 is, for example, Cu.
  • Such an electrode 2 can be formed by electrolytic plating using a Cu thin film formed on the first surface 1A of the power semiconductor element 1 as a seed layer.
  • the material constituting the first layer of the electrode 2 includes, for example, Al and may be pure aluminum or an aluminum alloy.
  • the material constituting the first layer is selected from the group such as silicon (Si), copper (Cu), manganese (Mn), magnesium (Mg), zinc (Zn), and nickel (Ni) in addition to Al. At least one may be included. If the first layer is made of an aluminum alloy, the strength of the first layer is increased, so that damage to the electrode 2 can be suppressed even during high-temperature operation.
  • the thickness of the first layer is, for example, 5 ⁇ m.
  • the material constituting the second layer of the electrode 2 includes, for example, Ni.
  • the second layer can be formed by, for example, electroless plating. In this case, a phosphorus (P) concentrated layer may be formed in the second layer. Moreover, the manufacturing cost of the power semiconductor device 100 can be reduced.
  • the second layer can be formed by, for example, electrolytic plating. In this case, formation of a phosphorus (P) concentrated layer in the second layer is suppressed.
  • the thickness of the second layer is, for example, 1 ⁇ m or more and 10 ⁇ m or less. As the thickness of the second layer increases, damage to the first layer tends to be suppressed.
  • the thickness of the second layer containing Ni as a constituent material is preferably 10 ⁇ m or less. More preferably, the thickness of the second layer is not less than 3 ⁇ m and not more than 7 ⁇ m, for example.
  • the material which comprises the 2nd layer of the electrode 2 contains Cu, for example.
  • a second layer can be formed, for example, by electroless plating.
  • the thickness of the second layer containing Cu as a constituent material is preferably 30 ⁇ m or less. More preferably, the thickness of the second layer is not less than 3 ⁇ m and not more than 10 ⁇ m, for example.
  • the material constituting the third layer of the electrode 2 includes, for example, Au.
  • the third layer can be formed by, for example, flash plating.
  • the thickness of the third layer is, for example, not less than 0.01 ⁇ m and not more than 1 ⁇ m, and more preferably not less than 0.05 ⁇ m and not more than 0.5 ⁇ m.
  • the thickness of the third layer is, for example, 0.1 ⁇ m.
  • the third layer may not be formed.
  • the bonding between the second layer of the electrode 2 and the sintered metal layer 5 as the first bonding portion described later is maintained even during high temperature operation, the reliability of the power semiconductor device 100 can be ensured. May not be formed.
  • the material constituting the third layer may contain Cu, for example.
  • the third layer can be formed, for example, by plating using a Cu thin film formed on the second layer as a seed layer.
  • the thickness of the third layer is, for example, not less than 1 ⁇ m and not more than 30 ⁇ m. In this way, damage to the electrode 2 can be suppressed. Since the film stress of the third layer made of Cu is smaller than the film stress of the second layer made of Ni, the thickness of the third layer can be made larger than the thickness of the second layer.
  • the insulating substrate 3 is configured by laminating a first conductor 31 and a second conductor 32 with an insulating ceramic plate 33 interposed therebetween.
  • the first conductor 31 carries the power semiconductor element 1.
  • the surface (entire surface) located on the opposite side to the surface bonded to the power semiconductor element 1 in the first conductor 31 is bonded to the insulating ceramic plate 33.
  • the surface of the insulating ceramic plate 33 that is located on the opposite side of the surface that is bonded to the first conductor 31 is electrically conductive.
  • the first conductor 31 that is bonded to the second conductor 32 and the material constituting the second conductor 32 are electrically conductive. For example, copper (Cu) or aluminum (Al) may be used.
  • the material constituting the insulating ceramic plate 33 may be any material having electrical insulation and high thermal conductivity.
  • the die bond material 4 may be any material that can join the power semiconductor element 1 and the first conductor 31, and is, for example, solder or a low-temperature sintered material using silver nanoparticles.
  • the sintered metal layer 5 is electrically connected between the electrode 2 of the power semiconductor element 1 and the stress relaxation portion 6.
  • the sintered metal layer 5 is bonded to, for example, the second layer or the third layer of the electrode 2 and is bonded to the stress relaxation portion 6.
  • the outline of the sintered metal layer 5 is formed so as to overlap the outline of the electrode 2 when the first surface 1A is viewed in plan.
  • the sintered metal layer 5 is bonded to, for example, the entire upper surface of the electrode 2 (a surface located on the side opposite to the surface in contact with the first surface 1A).
  • the planar shape of the sintered metal layer 5 may be any shape, but is rectangular, for example.
  • the material constituting the sintered metal layer 5 is a sintered metal.
  • the material constituting the sintered metal layer 5 includes, for example, at least one of silver (Ag) and Cu. If it says from a different viewpoint, the material which comprises the sintered metal layer 5 contains materials other than the material which comprises the electrode 2, and the material which comprises the stress relaxation part 6.
  • the sintered metal layer 5 is a sintered product obtained by heating and pressing a paste-like kneaded material in which a metal powder such as Ag or Cu is dispersed in a resin.
  • the particle size of the metal powder is, for example, from several nm to several ⁇ m.
  • the paste-like kneaded material can be applied onto the electrode 2 by, for example, a printing method using a dispenser.
  • the sintered metal layer 5 may be a product obtained by sintering the kneaded product previously formed into a sheet shape by being pressurized and heated.
  • a paste-like kneaded material is applied using a dispenser, the kneaded material spreads outside a predetermined region due to variations in the amount of application by the dispenser, and a metal residue is formed on the power semiconductor element 1. There is concern about being done.
  • the sintered metal layer 5 formed of the sheet-like material formed with the kneaded material is more stable than the sintered metal layer 5 formed of the kneaded material applied by a dispenser. Since the variation in the amount is suppressed, the formation of the metal residue can be suppressed.
  • the sintered metal layer 5 When the sintered metal layer 5 is heated to an operating temperature range when the power semiconductor element 1 is operated at a high temperature and a temperature range close to the melting point of the solder layer 7 described later, the sintered metal layer 5 has a hardness and shear that are higher than those of the solder layer 7. High strength and yield strength.
  • the temperature of the power semiconductor element 1 is one point in the temperature range (first temperature range) of 175 ° C. or higher and 230 ° C. or lower, the hardness, shear strength, and yield strength of the sintered metal layer 5 are: It is higher than the hardness, shear strength, and yield strength of the solder layer 7.
  • the temperature of the power semiconductor element 1 is 200 ° C., the hardness, shear strength, and yield strength of the sintered metal layer 5 are higher than the hardness, shear strength, and yield strength of the solder layer 7.
  • the hardness of the sintered metal layer 5 when the temperature of the sintered metal layer 5 is one point in the temperature range (first temperature range) of 175 ° C. or higher and 230 ° C. or lower is the temperature of the solder layer 7. It is higher than the hardness of the solder layer 7 when the temperature is at one point in the first temperature range.
  • the shear strength of the sintered metal layer 5 when the temperature of the sintered metal layer 5 is the temperature of one point in the first temperature range is that the temperature of the solder layer 7 is one point in the first temperature range. It is higher than the shear strength of the solder layer 7 when the temperature is.
  • the yield strength of the sintered metal layer 5 when the temperature of the sintered metal layer 5 is the temperature of one point in the first temperature range is that the temperature of the solder layer 7 is one point in the first temperature range. It is higher than the yield strength of the solder layer 7 when the temperature is.
  • the hardness of the sintered metal layer 5 when the temperature of the sintered metal layer 5 is in the temperature range (second temperature range) not lower than the room temperature and lower than the melting point of the solder layer 7 is such that the temperature of the solder layer 7 is the second temperature. It is higher than the hardness of the solder layer 7 in the temperature range.
  • the shear strength of the sintered metal layer 5 when the temperature of the sintered metal layer 5 is in the second temperature range is greater than the shear strength of the solder layer 7 when the temperature of the solder layer 7 is in the second temperature range. high.
  • the yield strength of the sintered metal layer 5 when the temperature of the sintered metal layer 5 is in the second temperature range is higher than the yield strength of the solder layer 7 when the temperature of the solder layer 7 is in the second temperature range. high.
  • the hardness of the sintered metal layer 5 and the solder layer 7 is such that, for example, the hardness of the sintered metal layer 5 and the solder layer 7 is less than that of the cross section exposed by polishing the power semiconductor device 100 in the direction perpendicular to the first surface 1A (the thickness direction of the sintered metal layer 5). It is measured using a denter.
  • the yield strength of the sintered metal layer 5 and the solder layer 7 is, for example, nanometer with respect to the cross section exposed by polishing the power semiconductor device 100 in the direction perpendicular to the first surface 1A (the thickness direction of the sintered metal layer 5). It is measured using an indenter.
  • the shear strength of the sintered metal layer 5 and the solder layer 7 is measured by, for example, a tensile shear test.
  • the measurement is performed by fixing the insulating substrate 3 of the power semiconductor device 100 and applying a shear load to the wiring portion 8 in the direction along the first surface 1A.
  • the insulating substrate 3 of the power semiconductor device 100 is disposed on a sample stage having a temperature control function, and the power semiconductor element 1 is heated to one temperature in the temperature range 1 by the sample stage. .
  • the temperature of the power semiconductor element 1 can be measured by an arbitrary thermometer.
  • the stress relaxation part 6 is formed between the electrode 2 of the power semiconductor element 1 and the bus bar 8.
  • the stress relaxation part 6 is connected to the electrode 2 through the sintered metal layer 5.
  • the coefficient of thermal expansion of the stress relaxation portion 6 is not less than the coefficient of thermal expansion of the power semiconductor element 1 and not more than the coefficient of thermal expansion of the bus bar 8, preferably exceeding the coefficient of thermal expansion of the power semiconductor element 1 and the coefficient of thermal expansion of the bus bar 8. It is less than the coefficient.
  • the thermal expansion coefficient ⁇ of the relaxing part 6 is 11 ppm / K, for example.
  • Such a stress relieving part 6 is, for example, a laminated body composed of an invar, a first Cu layer formed on one side of the invar, and a second Cu layer formed so as to sandwich the first Cu layer and the invar ( First Cu layer / Invar / Second Cu layer) (see FIG. 17).
  • the thickness in the stacking direction of the first Cu layer is equal to, for example, the thickness in the stacking direction of Invar and the thickness in the stacking direction of the second Cu layer.
  • the material which comprises the stress relaxation part 6 contains at least 1 selected from the group which consists of Cu, Al, Ag, Ni, and Cu, for example.
  • the stress relaxation part 6 may consist of Cu alloy or Al alloy, for example.
  • the stress relaxation part 6 may be configured as a clad material of, for example, invar containing iron (Fe) and Ni and Cu.
  • the outline of the stress relaxation portion 6 is formed to overlap the outline of the electrode 2 and the outline of the sintered metal layer 5.
  • the stress relaxation part 6 is joined to, for example, the entire upper surface of the sintered metal layer 5 (a surface located on the side opposite to the surface in contact with the electrode 2).
  • the planar shape of the stress relieving portion 6 may be any shape, for example, a rectangular shape.
  • the solder layer 7 is electrically connected between the stress relaxation portion 6 and the bus bar 8.
  • the material constituting the solder layer 7 includes Sn, and further includes, for example, Ag and Cu.
  • the bus bar 8 is electrically connected to the electrode 2 of the power semiconductor element 1 through the sintered metal layer 5, the stress relaxation portion 6, and the solder layer 7.
  • the bus bar 8 has a first region that overlaps the solder layer 7 and a second region that does not overlap the solder layer 7 when the first surface 1A is viewed in plan.
  • the material constituting the bus bar 8 includes, for example, at least one of Cu and Al.
  • the bus bar 8 may be made of, for example, a Cu alloy or an Al alloy.
  • the bus bar 8 may be configured as a clad material of invar containing, for example, iron (Fe) and Ni, and Cu.
  • the coefficient of thermal expansion of the bus bar 8 can be adjusted by adjusting the thicknesses of Cu and Invar, and damage to the solder layer 7 can be suppressed.
  • the first region overlapping the solder layer 7 is configured as the cladding material, and the second region not overlapping the solder layer 7 is at least Cu and Al. It is comprised by either. In this way, the rated current density of the bus bar 8 can be increased as compared with the case where the entire bus bar 8 is made of a clad material containing invar.
  • the manufacturing method of the power semiconductor device 100 includes, for example, a step of preparing the power semiconductor element 1 including the electrode 2, the insulating substrate 3, the stress relaxation part 6, and the bus bar 8, and the electrode 2 and the stress relaxation part 6 are sintered metal.
  • a step of bonding via the layer 5 first bonding step
  • a step of bonding the stress relaxation portion 6 and the bus bar 8 via the solder layer 7 second bonding step
  • insulation of the power semiconductor element 1 A step of bonding the substrate 3 to the substrate 3 via the die bonding material 4 (third bonding step).
  • the kneaded material is pressed and heated and sintered in a state where the electrode 2 and the stress relaxation portion 6 are laminated via the kneaded material. In this way, the power semiconductor device 100 is manufactured.
  • the power semiconductor device 100 has a first surface 1A, and includes a power semiconductor element 1 including an electrode 2 formed on the first surface 1A, and an electrode 2 and a sintered metal layer 5 as a first joint. And a bus bar 8 as a wiring portion electrically connected to the stress relaxation portion 6 via a solder layer 7 as a second joint portion.
  • the temperature of the power semiconductor element 1 is at least one temperature in a temperature range of 175 ° C. or higher and 230 ° C. or lower (for example, 200 ° C.)
  • at least one of the hardness, shear strength, and yield strength of the sintered metal layer 5 is higher than at least one of the hardness, shear strength and yield strength of the solder layer 7.
  • the thermal stress applied to the sintered metal layer 5 is larger than the thermal stress applied to the solder layer 7.
  • the temperature of the power semiconductor element 1 is at least one point in the temperature range of 175 ° C. or higher and 230 ° C. or lower, that is, when the power semiconductor element 1 operates at a high temperature, Compared with hardness, shear strength and yield strength. That is, according to the power semiconductor device 100, a thermal stress larger than the thermal stress applied to the solder layer 7 can be applied to the sintered metal layer 5 that is stronger than the solder layer 7.
  • the power semiconductor device 100 is compared with the conventional power semiconductor device in which the joint portion between the electrode of the power semiconductor element and the stress relaxation portion is configured by solder bonding similarly to the joint portion between the stress relaxation portion and the wiring portion.
  • the thermal fatigue durability is high, and damage to the sintered metal layer 5 and the solder layer 7 is suppressed even during high temperature operation. Therefore, the power semiconductor device 100 has high reliability compared to the conventional power semiconductor device.
  • the temperature of the power semiconductor element 1 is higher than the temperature of the sintered metal layer 5 and the temperature of the solder layer 7. Therefore, for example, when the temperature of the sintered metal layer 5 is in the second temperature range, the hardness, shear strength, and yield strength of the sintered metal layer 5 are when the temperature of the solder layer 7 is in the second temperature range. If the hardness, shear strength, and yield strength of the solder layer 7 are higher than those of the solder layer 7, the value of the first joint portion is determined for the hardness, shear strength, and yield strength when the temperature of the power semiconductor element 1 is 175 ° C. or higher and 230 ° C. or lower. Is higher than the value of the second joint.
  • the power semiconductor device 100 can prevent the concentration of thermal stress on the electrode 2 as compared with the conventional power semiconductor device in which the electrode of the power semiconductor element and the wiring portion are joined only by the sintered Ag layer. Therefore, damage to the electrode 2 can be suppressed. As a result, the power semiconductor device 100 has higher reliability than the conventional power semiconductor device.
  • the material constituting the electrode 2 preferably contains Cu.
  • the electrode 2 preferably includes a Cu plating layer. In this way, the electrode 2 is less likely to be damaged during high temperature operation because the film stress is small compared to the case where the material constituting the electrode 2 contains Ni but does not contain Cu. As a result, the power semiconductor device 100 has higher reliability than the conventional power semiconductor device described above.
  • the second joint portion is the solder layer 7.
  • the solder layer 7 can absorb variations in the relative position of the stress relaxation portion 6 with respect to the power semiconductor element 1 (position in the direction along the first surface 1A and in the direction perpendicular to the first surface 1A). Therefore, the productivity of the power semiconductor device 100 is equivalent to the productivity of the conventional power semiconductor device.
  • the coefficient of thermal expansion of the stress relaxation portion 6 is that each of the electrode 2, the sintered metal layer 5 as the first joint portion, and the solder layer 7 as the second joint portion is damaged during the high-temperature operation of the power semiconductor element 1. It can be adjusted according to the degree.
  • the thermal expansion coefficient coefficient of the stress relaxation portion 6 close to the thermal expansion coefficient coefficient of the power semiconductor element 1.
  • the solder layer 7 is greatly damaged during the high-temperature operation of the power semiconductor element 1, it is preferable to make the coefficient of thermal expansion of the stress relaxation portion 6 close to the coefficient of thermal expansion of the bus bar 8.
  • Embodiment 2 a power semiconductor device according to the second embodiment will be described.
  • the power semiconductor device according to the second embodiment basically has the same configuration as that of the power semiconductor device 100 according to the first embodiment, except that the second bonding portion is a second sintered metal layer instead of the solder layer 7. There are some differences.
  • the 1st junction part which joins the electrode 2 and the stress relaxation part 6 is a 1st sintered metal layer provided with the structure equivalent to the sintered metal layer 5 in the power semiconductor device 100.
  • the second sintered metal layer is a sintered product obtained by heating a paste-like kneaded material in which metal powder such as Ag or Cu is dispersed without being pressurized.
  • the porosity of the first sintered metal layer is lower than the porosity of the second sintered metal layer. That is, the sintered density of the first sintered metal layer is higher than the sintered density of the second sintered metal layer.
  • the first sintered metal layer has higher hardness, shear strength, and yield strength than the second sintered metal layer in a temperature range of 175 ° C. or higher and 230 ° C. or lower, that is, when the power semiconductor element 1 is operated at a high temperature.
  • the power semiconductor device according to the second embodiment can achieve the same effects as the power semiconductor device 100 according to the first embodiment.
  • the second sintered metal layer is formed by sintering the kneaded material without pressure. That is, in the method for manufacturing the power semiconductor device according to the second embodiment, instead of the second bonding step in the method for manufacturing the power semiconductor device 100, the stress relaxation portion 6 and the bus bar 8 are stacked via the kneaded material. In this state, the kneaded material is heated and sintered without being pressurized. Therefore, the productivity of the power semiconductor device according to the second embodiment is equivalent to the productivity of the power semiconductor device 100 and the conventional power semiconductor device.
  • the power semiconductor device according to the third embodiment basically has the same configuration as that of the power semiconductor device 100 according to the first embodiment, except that the first bonding portion replaces the sintered metal layer 5 with a liquid phase diffusion bonding layer. It is different in that.
  • the liquid phase diffusion bonding layer is a layer formed by liquid phase diffusion bonding. Specifically, first, a bonding material composed of a material having a melting point lower than that of the material constituting the electrode 2 and the stress relaxation portion 6 that are materials to be bonded is prepared. The material constituting the bonding material includes, for example, Sn. Next, the electrode 2 and the stress relaxation part 6 are laminated with the bonding material interposed therebetween. The bonding material is applied onto the electrode 2 by, for example, a reflow method. Next, the bonding material is heated to a temperature lower than the melting point of the material constituting the electrode 2 and the stress relaxation portion 6 and higher than the melting point of the material constituting the bonding material.
  • the liquid phase diffusion bonding layer includes, for example, Cu 3 Sn in which Sn in the bonding material and Cu in the electrode 2 or the stress relaxation portion 6 are alloyed, and Sn in the bonding material and the electrode 2 or in the stress relaxation portion 6. Ni 3 Sn 4 alloyed with Ni is included.
  • Such a liquid phase diffusion bonding layer has higher hardness, shear strength, and yield strength than the solder layer 7 formed by solder bonding in a temperature range of 175 ° C. or higher and 230 ° C. or lower.
  • the power semiconductor device according to the third embodiment can achieve the same effects as the power semiconductor device 100 according to the first embodiment.
  • the liquid phase diffusion bonding layer as described above has less heat generation than the sintered metal layer 5 in the power semiconductor device 100, and the generation of residual stress is suppressed. Has fatigue durability.
  • the power semiconductor device according to the third embodiment has higher reliability than the power semiconductor device 100.
  • the second bonding portion may be a liquid phase diffusion bonding layer.
  • Such a 2nd junction part can be formed without a pressure similarly to the solder layer 7 in the power semiconductor device 100 and the 2nd sintered metal layer in the power semiconductor device which concerns on Embodiment 2.
  • FIG. Therefore, the power semiconductor device according to the third embodiment is equivalent to the productivity of the power semiconductor device 100 and the conventional power semiconductor device.
  • the power semiconductor device 101 according to the fourth embodiment basically has the same configuration as that of the power semiconductor device 100 according to the first embodiment except that the electrode 2 and the stress relaxation portion 6 are directly bonded to each other in the first bonding portion. It is different in that it is an interface 9.
  • the interface 9 is compared with the solder layer 7 when heated to an operating temperature range when the power semiconductor element 1 is operated at a high temperature and a temperature range close to a melting point of the solder layer 7 described later. High shear strength.
  • the atoms or molecules constituting the electrode 2 and the atoms or molecules constituting the stress relaxation portion 6 are directly bonded (for example, covalently bonded).
  • Such an interface 9 can be formed by a known direct bonding method. For example, after the surface of the electrode 2 to be bonded to the stress relaxation portion 6 and the surface of the stress relaxation portion 6 to be bonded to the electrode 2 are cleaned, the surfaces 9 are brought into direct contact with each other, thereby bringing the interface 9 Is formed.
  • the power semiconductor device 101 can achieve the same effects as the power semiconductor device 100.
  • the level of the shear strength of the interface 9 and the shear strength of the solder layer 7 can be confirmed by, for example, a tensile shear test on the power semiconductor device 101.
  • the power semiconductor device 101 has improved short-circuit tolerance compared to the power semiconductor device 100 in which the electrode 2 and the stress relaxation portion 6 are connected via the sintered metal layer 5 in which a void is formed. .
  • the power semiconductor device 102 according to the fifth embodiment basically includes the same configuration as that of the power semiconductor device 100 according to the first embodiment, except for the second stress in addition to the stress relaxation portion 6 (first stress relaxation portion). The difference is that a relaxation portion 10 is further provided.
  • the second stress relaxation part 10 is connected to the first stress relaxation part 6 through a solder layer 7 as a second joint part.
  • the 2nd stress relaxation part 10 is connected with the bus-bar 8 via the solder layer 11 as a 3rd junction part.
  • the bus bar 8 is electrically connected to the electrode 2 through the sintered metal layer 5, the first stress relaxation part 6, the solder layer 7, the second stress relaxation part 10, and the solder layer 11.
  • the thermal expansion coefficient coefficient of the second stress relaxation section 10 is not less than the thermal expansion coefficient coefficient of the first stress relaxation section 6 and not more than the thermal expansion coefficient coefficient of the bus bar 8, and preferably the thermal expansion coefficient coefficient of the first stress relaxation section 6.
  • the coefficient of thermal expansion of the excess bus bar 8 is less than that. As described above, it is preferable that the coefficient of thermal expansion of the first stress relaxation portion 6 is greater than the coefficient of thermal expansion of the power semiconductor element 1 and less than the coefficient of thermal expansion of the bus bar 8.
  • the thermal expansion coefficient coefficient ⁇ of the first stress relaxation section 6 is, for example, 8 ppm / K
  • the thermal expansion coefficient coefficient ⁇ of the second stress relaxation section 10 is, for example, 12 ppm / K.
  • the first stress relaxation portion 6 having such a coefficient of thermal expansion is, for example, invar, a first Cu layer formed on one side of the invar, and a first Cu layer and the invar sandwiched between the first Cu layer and the invar. It is comprised as a laminated body (1st Cu layer / Invar / 2nd Cu layer) which consists of 2Cu layers.
  • the thickness in the stacking direction of the first Cu layer is equal to the thickness in the stacking direction of the second Cu layer.
  • the thickness of the invar in the stacking direction is equal to, for example, the sum of the thickness in the stacking direction of the first Cu layer and the thickness in the stacking direction of the second Cu layer.
  • the ratio of the thickness of the first Cu layer, the thickness of the invar, and the thickness of the second Cu layer is, for example, 1: 2: 1.
  • the second stress relaxation portion 10 having the above-described coefficient of thermal expansion includes, for example, a so-called 42 alloy (an alloy containing Ni and Fe as a constituent material) and a third Cu formed on one side of the 42 alloy. It is comprised as a laminated body (3rd Cu layer / invar / 4th Cu layer) which consists of a layer and the 4th Cu layer formed so that the 3rd Cu layer and 42 alloy may be inserted.
  • the thermal stress applied to the sintered metal layer 5 and the solder layer 7 can be reduced more than the thermal stress applied to the sintered metal layer 5 and the solder layer 7 in the power semiconductor device 100. . Therefore, the power semiconductor device 102 has higher reliability than the power semiconductor device 100.
  • the first bonding portion may be a liquid phase diffusion bonding layer
  • the second bonding portion may be a second sintered metal layer or a liquid phase diffusion bonding layer.
  • FIG. 4 is a plan view showing only members located on the power semiconductor element 1 side of the first bonding portion in the power semiconductor device 103.
  • the first joint is, for example, a sintered metal layer 5.
  • the planar shape of the sintered metal layer 5 is, for example, a rounded rectangular shape.
  • all corners of the outer shape of the first joint are curved.
  • the outer shape of the sintered metal layer 5 does not have an acute corner.
  • the power semiconductor device 103 has higher reliability than the power semiconductor device 100.
  • first bonding portion may be the liquid phase diffusion bonding layer described above.
  • first joint portion may be the interface 9.
  • the corner of the outer shape of at least one of the electrode 2 and the stress relaxation portion 6 is curved when the first surface 1A is viewed in plan.
  • Embodiment 7 the power semiconductor device 104 according to the seventh embodiment will be described with reference to FIG.
  • the power semiconductor device 104 according to the seventh embodiment basically has the same configuration as that of the power semiconductor device 100 according to the first embodiment, but the first bonding portion is dispersed when the first surface 1A is viewed in plan. It differs in that it includes a plurality of arranged parts.
  • FIG. 5 is a plan view showing only members located on the power semiconductor element 1 side of the first bonding portion in the power semiconductor device 104.
  • the first joint is, for example, a sintered metal layer 5.
  • the sintered metal layer 5 includes a plurality of portions 5A, 5B, 5C, and 5D that are dispersedly arranged.
  • the plurality of portions 5A, 5B, 5C, 5D are arranged, for example, at intervals in the first direction along the first surface 1A.
  • the sintered metal layer 5 is disposed, for example, at a distance from each of the plurality of portions 5A, 5B, 5C, and 5D in the second direction that intersects the first direction and extends along the first surface 1A.
  • the sintered metal layer 5 has a plurality of portions that are dispersedly arranged in, for example, the first direction and the second direction intersecting the first direction.
  • the planar shape of a region of the electrode 2 that is not joined to the sintered metal layer 5 is, for example, a lattice shape.
  • the planar shape of the plurality of portions may be any shape, but is, for example, a rectangular shape.
  • the upper surface of the electrode 2 (the surface located on the side opposite to the surface in contact with the first surface 1A) has a region that is not joined to the sintered metal layer 5. Further, the lower surface of the stress relieving portion 6 facing the upper surface of the electrode 2 has a region that is not joined to the sintered metal layer 5.
  • the plurality of portions of the sintered metal layer 5 are dispersedly arranged in the direction along the first surface 1A. Therefore, for example, even when a crack occurs in the sintered metal layer 5, the crack is suppressed from progressing in the direction along the first surface 1 ⁇ / b> A. Further, for example, when a crack extending in the first direction occurs in the sintered metal layer 5, the crack is suppressed from progressing in the second direction. As a result, the power semiconductor device 104 has higher reliability than the power semiconductor device 100.
  • the first bonding portion may be the liquid phase diffusion bonding layer described above.
  • planar shape of the plurality of portions when the first surface 1A is viewed in plan is not limited to a rectangular shape, and may be, for example, a circular shape or a polygonal shape having three or more vertices.
  • each outer peripheral end of a plurality of portions of the sintered metal layer 5 is joined to a region located inside the electrode 2 with respect to the outer peripheral end of the electrode 2.
  • a part of the outer peripheral end portion of the outermost portion of the plurality of portions of the sintered metal layer 5 may be formed so as to overlap the outer peripheral end portion of the electrode 2.
  • the power semiconductor device 105 according to the eighth embodiment basically has the same configuration as that of the power semiconductor device 100 according to the first embodiment, except that the stress relaxation section 6 (first stress relaxation section) is connected to the first joint section. It has 2nd surface 6A connected, and 3rd surface 6B located in the other side of 2nd surface 6A, and is connected with the 2nd junction part, The area of 3rd surface 6B is the 2nd surface 6A. It differs in that it is larger than the area.
  • the first joint is, for example, a sintered metal layer 5.
  • the second joint is, for example, a solder layer 7.
  • the second surface 6 ⁇ / b> A is connected to the electrode 2 through the sintered metal layer 5.
  • the third surface 6B is connected to the bus bar 8 via the solder layer 7.
  • the area of the second surface 6A is smaller than the area of the third surface 6B. That is, the area of the entire surface (third surface 6B) bonded to the solder layer 7 in the stress relaxation portion 6 is the entire surface (second surface) bonded to the sintered metal layer 5 in the stress relaxation portion 6. It is larger than the area of 6A).
  • the inventors of the present invention have made the area of the third surface 6B of the stress relaxation portion 6 larger than the area of the second surface 6A, thereby making the thermal fatigue life (thermal fatigue durability) of the second joint portion. It was found that can be improved. As a failure mode when the second joint portion is destroyed by thermal fatigue, the inventors have taken a direction along the first surface 1A from the outer peripheral end of the second joint portion when the first surface 1A is viewed in plan. It was confirmed that the fracture mode due to the crack extending in the direction is dominant. For this reason, the larger the area of the third surface 6B, the longer the time required for the crack generated in the second joint to progress to such an extent that the thermal fatigue life of the second joint is reduced. As a result, the power semiconductor device 105 has higher reliability than the power semiconductor device 100 because it can improve the thermal fatigue life of the second joint.
  • Embodiment 9 the power semiconductor device 106 according to the ninth embodiment will be described with reference to FIGS.
  • the power semiconductor device 106 has a configuration similar to that of the power semiconductor device 100 according to the first embodiment.
  • the outer peripheral end of the sintered metal layer 5 is an electrode. 2 in that it is joined to a region located on the inner side of the electrode 2 with respect to the outer peripheral end portion of the electrode 2.
  • FIG. 8 is a plan view showing only members located on the power semiconductor element 1 side of the first bonding portion in the power semiconductor device 106.
  • the design distance between the outer peripheral end of the electrode 2 and the outer peripheral end of the sintered metal layer 5 (first joint) is that the kneaded material to be the sintered metal layer 5 is applied on the electrode 2 ( For example, it can be determined according to the alignment accuracy when printing. For example, when the alignment accuracy is ⁇ 50 ⁇ m, the design distance between the outer peripheral end of the electrode 2 and the outer peripheral end of the sintered metal layer 5 (first joint portion) is preferably 100 ⁇ m. .
  • the outer peripheral edge of the electrode 2 and the sintered metal layer 5 (first The upper limit value of the design distance between the outer peripheral end of the joint portion can be determined.
  • the actual distance between the electrode 2 and the outer peripheral end of the sintered metal layer 5 in the power semiconductor device 106 is 50 ⁇ m or more and 150 ⁇ m or less.
  • each outer peripheral end of the plurality of portions of the sintered metal layer 5 is positioned on the inner side in the electrode 2 than the outer peripheral end of the electrode 2. It is joined with the area to be.
  • Power semiconductor device 107 basically has the same configuration as that of power semiconductor device 100 according to the first embodiment, except that at least a portion of the area in contact with the second joint portion in bus bar 8 is thicker than the thickness of other areas. Is also different in that it is thinly provided.
  • the bus bar 8 has a thin region 8A and a thick region 8B.
  • the thin region 8 ⁇ / b> A is at least a part of a region in contact with the solder layer 7 as the second joint portion in the bus bar 8.
  • thin region 8A is provided only in a region of bus bar 8 in contact with solder layer 7.
  • the outer shape of the thin region 8A is provided so as to coincide with the outer shape of the solder layer 7 when the first surface 1A is viewed in plan.
  • the thickness of the thin region 8A is less than the thickness of the thick region 8B, and is preferably set to be equal to or greater than the thickness that can suppress the occurrence of abnormality due to an increase in electrical resistance or a decrease in mechanical strength due to the thinning.
  • the thickness of thick region 8B is, for example, approximately the same as the thickness of bus bar 8 of each of semiconductor devices 100 to 106 according to Embodiments 1 to 9 described above.
  • the thin region 8A is disposed so as to be sandwiched between the plurality of thick regions 8B in the extending direction of the bus bar 8, for example.
  • the thin region 8A extends between both ends of the bus bar 8 in a direction along the first surface 1A and intersecting the extending direction of the bus bar 8 (a direction perpendicular to the paper surface of FIG. 9). Is provided.
  • the bus bar 8 having the thin region 8 ⁇ / b> A and the thick region 8 ⁇ / b> B is provided with a recess 8 ⁇ / b> C that is recessed with respect to a surface disposed facing the opposite side to the stress relaxation portion 6, for example.
  • the bottom surface of the recess 8 ⁇ / b> C is provided in parallel with, for example, a surface disposed facing the stress relaxation portion 6 side of the bus bar 8.
  • the side wall surface of the recess 8C is provided so as to connect, for example, a bottom surface of the recess 8C and a surface disposed facing the opposite side to the stress relaxation portion 6 of the thick region 8B.
  • the side wall surface of the concave portion 8C is provided in a tapered shape so as to form an obtuse angle with respect to the surface arranged facing the stress relaxation portion 6 in the thick region 8B.
  • the thin region 8A includes a portion having the bottom surface of the recess 8C and a portion having the side wall surface of the recess 8C.
  • the thickness of the portion having the bottom surface of the recess 8C of the thin region 8A is constant.
  • the thickness of the portion having the side wall surface of the recess 8C in the thin region 8A is provided so as to gradually decrease from the thick region 8B toward the bottom surface side of the recess 8C.
  • the material constituting the solder layer 7 as the second joint is, for example, Sn—Cu solder containing 5% or more and 10% or less of antimony (Sb).
  • the bus bar 8 has the thin region 8A and the thick region 8B, and the thin region 8A is joined to the solder layer 7. Therefore, the power semiconductor device 107 can reduce the thermal stress applied to the solder layer 7 as compared with the case where the entire bus bar 8 is provided as thick as the thick region 8B. 7 thermal fatigue life (thermal fatigue durability) can be improved. Further, the power semiconductor device 107 can increase the allowable current value of the bus bar 8 as compared with the case where the entire bus bar 8 is provided as thin as the thin region 8A.
  • the bus bar 8 is not limited to the configuration shown in FIG. 9, and may be configured as follows, for example.
  • the bus bar 8 may be provided so that the side wall surface of the recess 8C is orthogonal to the surface arranged facing the opposite side to the stress relaxation portion 6 of the thick region 8B.
  • the bus bar 8 in addition to the thin region 8 ⁇ / b> A, a part of the thick region 8 ⁇ / b> B located on the thin region 8 ⁇ / b> A side may be joined to the solder layer 7.
  • the bus bar 8 may further be provided with a recess 8D that is recessed with respect to the bottom surface of the recess 8C.
  • the side wall surface of the recess 8D is provided so as to be orthogonal to the bottom surface of the recess 8C, for example.
  • the side wall surface of the recess 8D may be provided in a tapered shape so as to form an obtuse angle with respect to the bottom surface of the recess 8C, for example.
  • the bus bar 8 may have a stepped shape constituted by an arbitrary number of recesses of 2 or more.
  • the thin region 8 ⁇ / b> A may be provided at one end in the extending direction of the bus bar 8.
  • the thick region 8B may be provided only on one side with respect to the thin region 8A in the extending direction of the bus bar 8.
  • the thin area 8A in the extending direction of the bus bar 8, from one end of the thin area 8A constituting one end of the bus bar 8 to the other end of the thin area 8A in contact with the thick area 8B, the thin area 8A It may be provided so that the thickness of the film gradually increases. Further, as shown in FIG. 13, only a relatively thin portion in the thin region 8 ⁇ / b> A may be joined to the solder layer 7.
  • each bus bar 8 shown in FIGS. 9 to 13 may have a configuration in which each bus bar 8 shown in FIGS. 9 to 13 is turned upside down, for example.
  • the bus bar 8 may be provided with a recess 8 ⁇ / b> E that is recessed with respect to a surface disposed facing the stress relaxation portion 6 side.
  • the bottom surface of the recess 8E may be bonded to the solder layer 7, or the bottom surface and the side wall surface of the recess 8E may be bonded to the solder layer 7.
  • the power semiconductor device 107 has a configuration in which, for example, one of the bus bars 8 shown in FIGS. 9 to 13 is combined with a configuration in which any of the bus bars 8 shown in FIGS. 9 to 13 is turned upside down. You may do it.
  • the recess 8C and the recess 8E may be provided so as to overlap each other.
  • the thin region 8A is disposed, for example, between the bottom surface and the side wall surface of the concave portion 8C and the bottom surface and the side wall surface of the concave portion 8E.
  • the bus bar 8 shown in FIGS. 9 to 15 can be formed by subjecting the plate-like member to be the bus bar 8 to arbitrary processing such as pressing, etching, or cutting on the portion to be the thin region 8A.
  • Each of the power semiconductor devices 107 shown in FIGS. 10 to 15 basically has the same configuration as that of the power semiconductor device 107 shown in FIG. 9, and therefore has the same effect as that of the power semiconductor device 107 shown in FIG. be able to.
  • the thin region 8A shown in FIGS. 9 to 15 is in the direction along the first surface 1A and intersecting the extending direction of the bus bar 8 (direction perpendicular to the paper surface of FIGS. 9 to 15). Although it is provided so as to extend between both ends of the bus bar 8, it is not limited to this. When only a part of the bus bar 8 is in contact with the solder layer 7 in the intersecting direction, only a part of the bus bar 8 may be configured as the thin region 8A in the intersecting direction. When the area of the bus bar 8 that is in contact with the solder layer 7 is arranged inside the both ends of the bus bar 8 in the intersecting direction, the thick area 8B is provided so as to surround the thin area 8A, for example. . Since such a power semiconductor device 107 basically has the same configuration as that of the power semiconductor device 107 shown in FIG. 9, the same effect as that of the power semiconductor device 107 shown in FIG. 9 can be obtained.
  • the power semiconductor device 107 includes the second stress relaxation unit 10 in addition to the stress relaxation unit 6 (first stress relaxation unit), similarly to the power semiconductor device 102 according to the fifth embodiment. May be further provided.
  • the thin region 8 ⁇ / b> A is at least a part of a region in contact with the solder layer 11 as the third joint portion in the bus bar 8. Such a power semiconductor device 107 can achieve the same effects as the power semiconductor device 107.
  • Embodiment 11 FIG. Next, a power semiconductor device according to the eleventh embodiment will be described.
  • the power semiconductor device according to the eleventh embodiment basically has the same configuration as that of the power semiconductor device 100 according to the first embodiment, but the second joint portion is made of sintered metal and resin instead of the solder layer. It differs in that it is a composite layer.
  • the materials constituting the composite layer are sintered metal and resin.
  • the material constituting the composite layer includes, for example, at least one of silver (Ag) and Cu and an epoxy resin. From a different point of view, the composite layer is different from the sintered metal layer 5 in that it includes a resin.
  • the sintered metal layer 5 is a sintered layer obtained by heating and pressing a paste-like kneaded material in which metal powder is dispersed in a resin.
  • the composite layer is a composite layer of a sintered metal and a resin obtained by heating a paste-like kneaded material in which metal powder is dispersed in a resin.
  • the composite layer can be formed by sintering the paste-like kneaded material without pressure.
  • the sintered density of the composite layer is lower than the sintered density of the sintered metal layer 5.
  • the space (gap) between the sintered metals is filled with resin. Therefore, the porosity of the composite layer is smaller than the porosity of the sintered metal layer 5.
  • the temperature of power semiconductor element 1 is at one temperature in the temperature range (first temperature range) of 175 ° C. or higher and 230 ° C. or lower.
  • the hardness, shear strength, and yield strength of the sintered metal layer 5 are higher than the hardness, shear strength, and yield strength of the solder layer 7.
  • the IGBT is cited as an example of the power semiconductor element 1, but the present invention is not limited to this.
  • the semiconductor material of the power semiconductor element 1 is not particularly limited.
  • SiC silicon carbide
  • the stress relaxation portion 6 of the power semiconductor devices 100 to 107 according to the first to eleventh embodiments can be configured as a clad material.
  • FIG. 17 is a partial cross-sectional view showing such a stress relaxation portion 6.
  • the stress relaxation portion 6 includes, for example, an invar 62 (second layer), a first Cu layer 61 (first layer) formed on one side of the invar 62, and a first Cu layer 61. And a second Cu layer 63 (third layer) formed so as to sandwich the invar 62 therebetween.
  • the power semiconductor devices 100 to 107 include the insulating substrate 3, the present invention is not limited to this.
  • the power semiconductor devices 100 to 107 include at least a power semiconductor element 1, a stress relaxation part 6 (first stress relaxation part) connected to the electrode 2 of the power semiconductor element 1 via a first joint, and a stress relaxation part 6 And the bus bar 8 (wiring part) connected via the second joint.
  • the present invention is particularly advantageously applied to power semiconductor devices used in power electronics equipment such as inverters for electric and hybrid vehicles and inverters for railway vehicles.
  • 1 power semiconductor element 1A, 1st surface, 2 electrodes, 3 insulating substrate, 4 die bond material, 5 sintered metal layer (first joint), 5A, 5B, 5C, 5D portion, 6 stress relaxation portion (1st stress) Relaxation part), 7 Solder layer (second joint part), 8 Busbar (wiring part), 8A Thin area, 8B Thick area, 8C, 8D, 8E Concave, 9 interface (first joint), 10 Second stress Relaxation part, 11 solder layer (third joint part), 100, 101, 102, 103, 104, 105, 106, 107 power semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Die Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

パワー半導体素子の動作可能温度が十分に高められた場合においても、高い信頼性を有しているパワー半導体装置を提供する。第1面(1A)上に形成されている電極(2)を含むパワー半導体素子(1)と、電極(2)と第1接合部(5)を介して接続されている第1応力緩和部(6)と、第1応力緩和部(6)と第2接合部(7)を介して電気的に接続されている配線部(8)とを備える。第1接合部(5)の接合強度は、第2接合部(7)の接合強度と比べて高い。

Description

パワー半導体装置
 本発明は、パワー半導体装置に関し、特に、高温動作されるパワー半導体素子を備えるパワー半導体装置に関する。
 電気自動車・ハイブリッド車向けインバータや鉄道車両用インバータ等のパワーエレクトロニクス機器において、中核部品であるパワー半導体装置(パワーモジュール)は小型化および低コスト化を求められている。それらを実現する方法の1つはパワー半導体素子の動作可能温度を高めることである。
 パワー半導体素子の動作可能温度を高めることにより、素子に投入できる単位面積あたりの電流値が増える。その結果、パワー半導体素子およびパワー半導体装置を小型化でき、また小型化に伴ってパワー半導体装置の製造コストを低減することができる。
 一方で、パワー半導体素子の動作可能温度を高めると、パワー半導体素子と配線部との熱膨張率係数の差に起因してパワー半導体装置内に生じる熱応力が増加する。その結果、パワー半導体素子と配線部との間を接続する接続部(チップ上接合部)に熱応力が集中して当該接続部の熱疲労耐久性が劣化するという問題がある。
 このようなチップ上接合部の熱疲労耐久性を向上するための技術として、例えば以下の技術が知られている。
 特開2010-10502号公報には、パワー半導体素子の電極と配線部とが銀(Ag)系接合層で接合された半導体モジュールが開示されている。
 特開2005-19694号公報には、チップの電極部と端子部(配線部)との間に積層体が挿入されたパワーモジュールが開示されている。当該積層体は、応力緩衝材として作用する2つの低変形抵抗体と、2つの低変形抵抗体同士の間に配設されており低変形抵抗体の熱膨張係数より低い熱膨張係数の低熱膨張体とからなる。電極部と当該積層体の一方の低変形抵抗体と、当該積層体の他方の低変形抵抗体と端子部とは、いずれもSn及びNiを主成分として含有する金属間化合物層を介して接合されている。各金属間化合物層は同等の構成を有している。
特開2010-10502号公報 特開2005-19694号公報
 しかしながら、従来のパワー半導体装置の熱疲労耐久性は、パワー半導体素子の動作温度によっては十分でない。そのため、従来のパワー半導体装置は、高い信頼性を有していないという問題がある。特開2010-10502号公報に記載の半導体モジュールは、上記小型化の観点に基づきパワー半導体素子の動作可能温度が十分に高められた場合、パワー半導体素子の電極が損傷し易い。特開2005-19694号公報に記載のパワーモジュールは、上記小型化の観点に基づきパワー半導体素子の動作可能温度が十分に高められた場合、電極部と当該積層体とを接合する金属間化合物層または電極部が損傷し易い。
 本発明は、上記のような課題を解決するためになされたものである。本発明の主たる目的は、パワー半導体素子の動作可能温度が十分に高められた場合においても、高い信頼性を有しているパワー半導体装置を提供することにある。
 本発明に係るパワー半導体装置は、第1面を有し、第1面上に形成されている電極を含むパワー半導体素子と、電極と第1接合部を介して接続されている第1応力緩和部と、第1応力緩和部と第2接合部を介して電気的に接続されている配線部とを備える。第1接合部の接合強度は第2接合部の接合強度と比べて高い。
 本発明によれば、パワー半導体素子の動作可能温度が十分に高められた場合においても、高い信頼性を有しているパワー半導体装置を提供することができる。
実施の形態1に係るパワー半導体装置を示す断面図である。 実施の形態4に係るパワー半導体装置を示す断面図である。 実施の形態5に係るパワー半導体装置を示す断面図である。 実施の形態6に係るパワー半導体装置の電極および第1接合部を説明するための平面図である。 実施の形態7に係るパワー半導体装置の電極および第1接合部を説明するための平面図である。 実施の形態8に係るパワー半導体装置を示す断面図である。 実施の形態9に係るパワー半導体装置を示す断面図である。 実施の形態9に係るパワー半導体装置の電極および第1接合部を説明するための平面図である。 実施の形態10に係るパワー半導体装置を示す断面図である。 実施の形態10に係るパワー半導体装置の変形例を示す断面図である。 実施の形態10に係るパワー半導体装置の他の変形例を示す断面図である。 実施の形態10に係るパワー半導体装置のさらに他の変形例を示す断面図である。 実施の形態10に係るパワー半導体装置のさらに他の変形例を示す断面図である。 実施の形態10に係るパワー半導体装置のさらに他の変形例を示す断面図である。 実施の形態10に係るパワー半導体装置のさらに他の変形例を示す断面図である。 実施の形態10に係るパワー半導体装置のさらに他の変形例を示す断面図である。 実施の形態1に係るパワー半導体装置の変形例を示す断面図である。
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 実施の形態1.
 <パワー半導体装置の構成>
 図1を参照して、実施の形態1に係るパワー半導体装置100は、パワー半導体素子1と、絶縁基板3と、第1接合部としての焼結金属層5と、応力緩和部6と、第2接合部としてのはんだ層7と、バスバー8とを主に備える。
 パワー半導体素子1は、任意のパワー半導体素子であればよいが、たとえばIGBT(Insulated Gate Bipolar Transitor)である。パワー半導体素子1は、第1面1Aと、第1面1Aと反対側に位置する面とを有している。パワー半導体素子1の第1面1A上には、電極2が形成されている。電極2は、第1面1Aの一部上に形成されている。パワー半導体素子1の第1面1Aと反対側に位置する面は、例えばダイボンド材4を介して絶縁基板3と接合されている。パワー半導体素子1は高温動作可能である。その動作限界温度は、例えば175℃以上であり、好ましくは200℃以上である。
 電極2を構成する材料は、導電性を有する任意の材料であればよいが、例えばアルミニウム(Al)、ニッケル(Ni)、銅(Cu)、および金(Au)のうちの少なくとも1つを含む。第1面1Aを平面視したときに、電極2の平面形状は任意の形状であればよいが、例えば矩形状である。電極2は、例えば、第1面1Aと接している第1層と、第1層上に形成されている第2層と、第2層上に形成されている第3層との積層体として形成されている。また、電極2は、積層体として構成されておらず単一層として形成されていてもよい。この場合、電極2を構成する材料は例えばCuである。このような電極2は、パワー半導体素子1の第1面1A上に形成されたCu薄膜をシード層とする電解メッキにより形成され得る。
 電極2の第1層を構成する材料は例えばAlを含み、純アルミニウムであってもよいし、アルミニウム合金であってもよい。第1層を構成する材料は、Alの他、ケイ素(Si)、銅(Cu)、マンガン(Mn)、マグネシウム(Mg)、亜鉛(Zn)、およびニッケル(Ni)などの群から選択される少なくとも1つを含んでいてもよい。第1層がアルミニウム合金で構成されていれば、第1層の強度が増すため、高温動作時においても電極2の損傷が抑制され得る。上記第1層の厚みは例えば5μmである。
 電極2の第2層を構成する材料は例えばNiを含む。第2層は、例えば無電解メッキにより形成され得る。この場合、第2層中にはリン(P)濃化層が形成され得る。また、パワー半導体装置100の製造コストは低減され得る。第2層は、例えば電解メッキにより形成され得る。この場合、第2層中においてリン(P)濃化層の形成が抑制される。上記第2層の厚みは例えば1μm以上10μm以下である。第2層の厚みが厚くなるほど、第1層の損傷は抑制される傾向にある。しかし、第2層の厚みが厚すぎると、第2層に生じる膜応力により電極2の剥離またはパワー半導体素子1の反りなどの異常が発生し易い。そのため、構成材料にNiを含む上記第2層の厚みは10μm以下であるのが好ましい。より好ましくは、上記第2層の厚みは例えば3μm以上7μm以下である。
 あるいは、電極2の第2層を構成する材料は例えばCuを含む。このような第2層は例えば無電解メッキにより形成され得る。構成材料にCuを含む第2層の厚みは30μm以下であるのが好ましい。より好ましくは、上記第2層の厚みは例えば3μm以上10μm以下である。
 電極2の第3層を構成する材料は例えばAuを含む。第3層は、例えばフラッシュメッキにより形成され得る。上記第3層の厚みは例えば0.01μm以上1μm以下であり、より好ましくは0.05μm以上0.5μm以下である。上記第3層の厚みは例えば0.1μmである。
 なお、第3層は形成されていなくてもよい。電極2の第2層と後述する第1接合部としての焼結金属層5との接合が高温動作時においても維持され、パワー半導体装置100の信頼性が担保され得る場合には、第3層は形成されていなくてもよい。
 また、第3層を構成する材料は例えばCuを含んでいてもよい。この場合、第3層は、例えば第2層上に形成されたCu薄膜をシード層とするメッキにより形成され得る。この場合の第3層の厚さは例えば1μm以上30μm以下である。このようにすれば、電極2の損傷を抑制することができる。Cuからなる第3層の膜応力はNiからなる第2層の膜応力よりも小さいため、当該第3層の厚さは、第2層の厚さよりも厚くすることができる。
 絶縁基板3は、第1導体31と第2導体32とを、絶縁セラミックス板33を挟んで積層して構成されている。第1導体31は、パワー半導体素子1を搭載している。第1導体31においてパワー半導体素子1と接合されている面と反対側に位置する面(全面)は絶縁セラミックス板33と接合されている。絶縁セラミックス板33において第1導体31と接合されている面と反対側に位置する面は第2導体32と接合されている第1導体31および第2導体32を構成する材料は、導電性を有し、高い熱伝導率を有する任意の材料とすればよいが、たとえば銅(Cu)またはアルミニウム(Al)である。絶縁セラミックス板33を構成する材料は、電気的絶縁性を有し、かつ高い熱伝導性を有する任意の材料であればよいが、たとえば窒化珪素(SiN)、窒化アルミニウム(AlN)、およびアルミナ(Al)の少なくともいずれか一つを含む材料である。
 ダイボンド材4は、パワー半導体素子1と第1導体31とを接合可能な任意の材料とすればよいが、たとえばはんだ、または銀ナノ粒子を用いた低温焼結材などである。
 焼結金属層5は、パワー半導体素子1の電極2と応力緩和部6との間を電気的に接続している。焼結金属層5は、例えば電極2の上記第2層または上記第3層と接合されており、かつ応力緩和部6と接合されている。上記第1面1Aを平面視したときに、焼結金属層5の外形線は、電極2の外形線と重なるように形成されている。焼結金属層5は、例えば電極2の上面(第1面1Aと接している面と反対側に位置する面)の全体と接合されている。第1面1Aを平面視したときに、焼結金属層5の平面形状は任意の形状であればよいが例えば矩形状である。
 焼結金属層5を構成する材料は、焼結金属である。焼結金属層5を構成する材料は、例えば銀(Ag)およびCuの少なくともいずかを含む。異なる観点から言えば、焼結金属層5を構成する材料は、電極2を構成する材料および応力緩和部6を構成する材料以外の他の材料を含む。焼結金属層5は、例えばAgまたはCuなどの金属粉末が樹脂中に分散されたペースト状の混練物が加熱および加圧されて得られた焼結物である。該金属粉の粒径は、例えば数nm以上数μm以下である。上記ペースト状の混練物は、例えばディスペンサを用いた印刷法により電極2上に塗布され得る。また、焼結金属層5は、予めシート状に成形された上記混練物が加圧および加熱されて焼結された物であってもよい。ペースト状の混練物をディスペンサを用いて塗布する場合、ディスペンサによる塗布量のバラつきなどに起因して当該混練物が所定の領域よりも外に濡れ広がり、パワー半導体素子1上に金属残差が形成されることが懸念される。これに対し、上記混練物が成形されたシート状材により形成された焼結金属層5は、ディスペンサにより塗布された上記混練物により形成された焼結金属層5と比べて、上記混練物の量のバラつきが抑制されているため、上記金属残差の形成が抑制され得る。
 焼結金属層5は、パワー半導体素子1が高温動作される際の動作温度域および後述するはんだ層7の融点に近い温度域に加熱されたときに、はんだ層7と比べて、硬度、せん断強度、および降伏強度が高い。パワー半導体素子1の温度が175℃以上230℃以下の温度域(第1温度域)のうちの1点の温度であるときに、焼結金属層5の硬度、せん断強度、および降伏強度は、はんだ層7の硬度、せん断強度、および降伏強度よりも高い。パワー半導体素子1の温度が200℃であるときに、焼結金属層5の硬度、せん断強度、および降伏強度は、はんだ層7の硬度、せん断強度、および降伏強度よりも高い。
 焼結金属層5の温度が175℃以上230℃以下の温度域(第1温度域)のうちの1点の温度であるときの焼結金属層5の硬度は、はんだ層7の温度が当該第1温度域のうちの1点の温度であるときのはんだ層7の硬度よりも高い。焼結金属層5の温度が上記第1温度域のうちの1点の温度であるときの焼結金属層5のせん断強度は、はんだ層7の温度が上記第1温度域のうちの1点の温度であるときのはんだ層7のせん断強度よりも高い。焼結金属層5の温度が上記第1温度域のうちの1点の温度であるときの焼結金属層5の降伏強度は、はんだ層7の温度が上記第1温度域のうちの1点の温度であるときのはんだ層7の降伏強度よりも高い。
 好ましくは、焼結金属層5の温度が室温以上はんだ層7の融点以下の温度域(第2温度域)にあるときの焼結金属層5の硬度は、はんだ層7の温度が当該第2温度域にあるときのはんだ層7の硬度よりも高い。焼結金属層5の温度が上記第2温度域にあるときの焼結金属層5のせん断強度は、はんだ層7の温度が上記第2温度域にあるときのはんだ層7のせん断強度よりも高い。焼結金属層5の温度が上記第2温度域にあるときの焼結金属層5の降伏強度は、はんだ層7の温度が上記第2温度域にあるときのはんだ層7の降伏強度よりも高い。
 焼結金属層5およびはんだ層7の硬度は、例えば第1面1Aに垂直な方向(焼結金属層5の厚み方向)にパワー半導体装置100を研磨することにより露出した断面に対し、ナノインデンターを用いて測定される。焼結金属層5およびはんだ層7の降伏強度は、例えば第1面1Aに垂直な方向(焼結金属層5の厚み方向)にパワー半導体装置100を研磨することにより露出した断面に対し、ナノインデンターを用いて測定される。焼結金属層5およびはんだ層7のせん断強度は、例えば引張せん断試験により測定される。例えば、パワー半導体装置100の絶縁基板3を固定し、配線部8を第1面1Aに沿った方向にせん断荷重を印加することにより測定される。これらの測定では、例えばパワー半導体装置100の絶縁基板3が温調機能を有するサンプルステージ上に配置され、サンプルステージによりパワー半導体素子1が上記温度域1のうちの1点の温度に加熱される。パワー半導体素子1の温度は、任意の温度計により測定され得る。
 応力緩和部6は、パワー半導体素子1の電極2とバスバー8との間に形成されている。応力緩和部6は、焼結金属層5を介して電極2と接続されている。応力緩和部6の熱膨張率係数は、パワー半導体素子1の熱膨張率係数以上バスバー8の熱膨張率係数以下であり、好ましくはパワー半導体素子1の熱膨張率係数超えバスバー8の熱膨張率係数未満である。例えば、パワー半導体素子1が主にSi(熱膨張率係数α=2ppm/K)で構成されており、バスバー8がCu(熱膨張率係数α=17ppm/K)で構成されている場合、応力緩和部6の熱膨張率係数αは例えば11ppm/Kである。
 このような応力緩和部6は、例えばインバーと、インバーの一方の側に形成されている第1Cu層と、第1Cu層とインバーを挟むように形成されている第2Cu層とからなる積層体(第1Cu層/インバー/第2Cu層)として構成されている(図17参照)。この場合、第1Cu層の積層方向における厚みは、例えばインバーの積層方向における厚み、および第2Cu層の積層方向における厚みと等しい。応力緩和部6を構成する材料は、例えばCu、Al、Ag、Ni、およびCuからなる群から選択される少なくとも1つを含む。応力緩和部6は、例えばCu合金またはAl合金からなっていてもよい。応力緩和部6は、例えば鉄(Fe)およびNiを含むインバーと、Cuとのクラッド材として構成されていてもよい。上記第1面1Aを平面視したときに、応力緩和部6の外形線は、電極2の外形線および焼結金属層5の外形線と重なるように形成されている。応力緩和部6は、例えば焼結金属層5の上面(電極2と接している面と反対側に位置する面)の全体と接合されている。第1面1Aを平面視したときに、応力緩和部6の平面形状は任意の形状であればよいが例えば矩形状である。
 はんだ層7は、応力緩和部6とバスバー8との間を電気的に接続されている。はんだ層7を構成する材料は、Snを含み、例えばAgおよびCuをさらに含む。
 バスバー8は、焼結金属層5、応力緩和部6、およびはんだ層7を介してパワー半導体素子1の電極2と電気的に接続されている。バスバー8は、第1面1Aを平面視したときに、はんだ層7と重なる第1領域と、はんだ層7と重ならない第2領域とを有している。バスバー8を構成する材料は、例えばCuおよびAlの少なくともいずれかを含む。バスバー8は、例えばCu合金またはAl合金からなっていてもよい。バスバー8は、例えば鉄(Fe)およびNiを含むインバーと、Cuとのクラッド材として構成されていてもよい。バスバー8が当該クラッド材として構成されていれば、例えばCuおよびインバーの厚みを調整することによりバスバー8の熱膨張率係数を調整することができ、はんだ層7の損傷を抑制することができる。好ましくは、上記第1面1Aを平面視したときに、はんだ層7と重なる上記第1領域が上記クラッド材として構成されており、はんだ層7と重ならない上記第2領域がCuおよびAlの少なくともいずれかにより構成されている。このようにすれば、バスバー8の全体がインバーを含むクラッド材により構成されている場合と比べて、バスバー8の定格電流密度を増すことができる。
 <パワー半導体装置100の製造方法>
 パワー半導体装置100の製造方法は、例えば、電極2を含むパワー半導体素子1、絶縁基板3、応力緩和部6、バスバー8が準備される工程と、電極2と応力緩和部6とが焼結金属層5を介して接合される工程(第1接合工程)と、応力緩和部6とバスバー8とがはんだ層7を介して接合される工程(第2接合工程)と、パワー半導体素子1と絶縁基板3とがダイボンド材4を介して接合される工程(第3接合工程)とを備える。第1接合工程では、電極2と応力緩和部6とが上記混練物を介して積層された状態において、混練物が加圧および加熱されて焼結される。このようにして、パワー半導体装置100が製造される。
 <パワー半導体装置100の作用効果>
 パワー半導体装置100は、第1面1Aを有し、第1面1A上に形成されている電極2を含むパワー半導体素子1と、電極2と第1接合部としての焼結金属層5を介して接続されている応力緩和部6と、応力緩和部6と第2接合部としてのはんだ層7を介して電気的に接続されている配線部としてのバスバー8とを備える。パワー半導体素子1の温度が175℃以上230℃以下の温度域のうちの少なくとも1点の温度(例えば200℃)であるときに、焼結金属層5の硬度、せん断強度および降伏強度の少なくともいずれか1つは、はんだ層7の硬度、せん断強度および降伏強度の少なくともいずれか1つと比べて高い。
 パワー半導体素子1の高温動作時において、焼結金属層5に印加される熱応力は、はんだ層7に印加される熱応力と比べて大きくなる。焼結金属層5は、パワー半導体素子1の温度が175℃以上230℃以下の温度域のうちの少なくとも1点の温度であるとき、すなわちパワー半導体素子1の高温動作時において、はんだ層7と比べて硬度、せん断強度および降伏強度が高い。つまり、パワー半導体装置100によれば、はんだ層7と比べて強固な焼結金属層5に、はんだ層7に印加される熱応力よりも大きな熱応力を印加させることができる。その結果、パワー半導体装置100は、パワー半導体素子の電極と応力緩和部との接合部が応力緩和部と配線部との接合部と同様にはんだ接合により構成されている従来のパワー半導体装置と比べて、熱疲労耐久性が高く、高温動作時においても焼結金属層5およびはんだ層7の損傷が抑制されている。そのため、パワー半導体装置100は、従来のパワー半導体装置と比べて、高い信頼性を有している。
 なお、パワー半導体装置100の動作時において、パワー半導体素子1の温度は、焼結金属層5の温度およびはんだ層7の温度よりも高い。そのため、例えば焼結金属層5の温度が上記第2温度域にあるときの焼結金属層5の硬度、せん断強度、および降伏強度が、はんだ層7の温度が当該第2温度域にあるときのはんだ層7の硬度、せん断強度、および降伏強度よりも高ければ、パワー半導体素子1の温度が175℃以上230℃以下であるときの硬度、せん断強度および降伏強度について、第1接合部の値は第2接合部の値と比べて高い。
 また、パワー半導体装置100は、パワー半導体素子の電極と配線部とが焼結Ag層のみによって接合されている従来のパワー半導体装置と比べて、電極2への熱応力の集中を防止することができるため、電極2の損傷を抑制することができる。その結果、パワー半導体装置100は、当該従来のパワー半導体装置と比べて、高い信頼性を有している。
 上記パワー半導体装置100において、電極2を構成する材料はCuを含むのが好ましい。電極2は、Cuメッキ層を含むのが好ましい。このようにすれば、電極2は、電極2を構成する材料がNiを含むがCuを含まない場合と比べて、その膜応力が小さいため、高温動作時においても損傷され難い。その結果、当該パワー半導体装置100は、上述した従来のパワー半導体装置と比べて、高い信頼性を有している。
 上記パワー半導体装置100において、第2接合部ははんだ層7である。はんだ層7は、パワー半導体素子1に対する応力緩和部6の相対的な位置(第1面1Aに沿った方向および第1面1Aに垂直な方向における位置)のバラつきを吸収し得る。そのため、パワー半導体装置100の生産性は、従来のパワー半導体装置の生産性と同等である。
 なお、応力緩和部6の熱膨張率係数は、パワー半導体素子1の高温動作時における電極2、第1接合部としての焼結金属層5および第2接合部としてのはんだ層7の各々の損傷の程度に応じて調整し得る。パワー半導体素子1の高温動作時において電極2または焼結金属層5が大きく損傷する場合には、応力緩和部6の熱膨張率係数をパワー半導体素子1の熱膨張率係数に近づけるのが好ましい。パワー半導体素子1の高温動作時においてはんだ層7が大きく損傷する場合には、応力緩和部6の熱膨張率係数をバスバー8の熱膨張率係数に近づけるのが好ましい。
 実施の形態2.
 次に、実施の形態2に係るパワー半導体装置について説明する。実施の形態2に係るパワー半導体装置は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、第2接合部がはんだ層7に代えて第2焼結金属層である点で異なる。
 電極2と応力緩和部6とを接合する第1接合部は、パワー半導体装置100における焼結金属層5と同等の構成を備える、第1焼結金属層である。すなわち、第1焼結金属層は、例えばAgまたはCuなどの金属粉末が分散されたペースト状の混練物が加熱および加圧されて得られた焼結物である。第2焼結金属層は、例えばAgまたはCuなどの金属粉末が分散されたペースト状の混練物が加圧されることなく加熱されて得られた焼結物である。第1焼結金属層の空孔率は、第2焼結金属層の空孔率よりも低い。すなわち、第1焼結金属層の焼結密度は、第2焼結金属層の焼結密度よりも高い。
 第1焼結金属層は、175℃以上230℃以下の温度域において、すなわち、パワー半導体素子1の高温動作時において、第2焼結金属層と比べて硬度、せん断強度および降伏強度が高い。その結果、実施の形態2に係るパワー半導体装置は、実施の形態1に係るパワー半導体装置100と同様の効果を奏することができる。
 第2焼結金属層は上記混練物が無加圧で焼結され形成されている。すなわち、実施の形態2に係るパワー半導体装置の製造方法では、上記パワー半導体装置100の製造方法における上記第2接合工程に代えて、応力緩和部6とバスバー8とが上記混練物を介して積層された状態において、混練物が加圧されることなく加熱されて焼結される。そのため、実施の形態2に係るパワー半導体装置の生産性は、パワー半導体装置100および従来のパワー半導体装置の生産性と同等である。
 実施の形態3.
 次に、実施の形態3に係るパワー半導体装置について説明する。実施の形態3に係るパワー半導体装置は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、第1接合部が焼結金属層5に代えて液相拡散接合層である点で異なる。
 液相拡散接合層は、液相拡散接合により形成された層である。具体的には、まず、被接合材である電極2および応力緩和部6を構成する材料よりも融点が低い材料で構成された接合材が準備される。接合材を構成する材料は、例えばSnを含む。次に、電極2と応力緩和部6とが当該接合材を挟んで積層される。接合材は、例えばリフロー法により電極2上に塗布される。次に、電極2および応力緩和部6を構成する材料の融点未満であって、接合材を構成する材料の融点以上の温度に接合材が加熱される。これにより、接合材のみが溶融され液相となる。接合材の温度は、液相の接合材が等温凝固するまで保持される。これにより、電極2と応力緩和部6とを接合する液相拡散接合層が形成される。液相拡散接合層は、例えば接合材中のSnと電極2または応力緩和部6中のCuとが合金化されたCuSn、および接合材中のSnと電極2または応力緩和部6中のNiとが合金化されたNiSnを含む。
 このような液相拡散接合層は、175℃以上230℃以下の温度域において、はんだ接合により形成されたはんだ層7と比べて硬度、せん断強度および降伏強度が高い。その結果、実施の形態3に係るパワー半導体装置は、実施の形態1に係るパワー半導体装置100と同様の効果を奏することができる。
 また、上記のような液相拡散接合層は、パワー半導体装置100における焼結金属層5と比べて、空隙の発生が抑制されており、また残留応力の発生が抑制されているため、高い熱疲労耐久性を有している。その結果、実施の形態3に係るパワー半導体装置は、パワー半導体装置100と比べて、高い信頼性を有している。
 なお、実施の形態3に係るパワー半導体装置において、第2接合部は液相拡散接合層であってもよい。このような第2接合部は、パワー半導体装置100におけるはんだ層7および実施の形態2に係るパワー半導体装置における第2焼結金属層と同様に、無加圧で形成され得る。そのため、実施の形態3に係るパワー半導体装置は、パワー半導体装置100および従来のパワー半導体装置の生産性と同等である。
 実施の形態4.
 次に、図2を参照して、実施の形態4に係るパワー半導体装置101について説明する。実施の形態4に係るパワー半導体装置101は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、第1接合部が電極2と応力緩和部6とが直接接合された界面9である点で異なる。
 すなわち、パワー半導体装置101において、界面9は、パワー半導体素子1が高温動作される際の動作温度域および後述するはんだ層7の融点に近い温度域に加熱されたときに、はんだ層7と比べて、せん断強度が高い。界面9では、電極2を構成する原子または分子と、応力緩和部6を構成する原子または分子とが直接結合(例えば共有結合)している。このような界面9は、公知の直接接合方法により形成され得る。例えば、電極2において応力緩和部6と接合されるべき面と、応力緩和部6において電極2と接合されるべき面とが清浄化された後、これらの面を直接接触させることにより、界面9が形成される。
 このようにすれば、上記温度域において、界面9のせん断強度ははんだ層7のせん断強度と比べて高い。そのため、パワー半導体装置101は、パワー半導体装置100と同様の効果を奏することができる。
 なお、界面9のせん断強度とはんだ層7のせん断強度との高低は、例えばパワー半導体装置101に対する引張せん断試験により確認され得る。
 また、パワー半導体装置101は、電極2と他の部材よりも熱容量の大きい応力緩和部6とが直接接合されており、界面9における空隙の発生が抑制されている。そのため、パワー半導体装置101は、電極2と応力緩和部6とが内部に空隙が形成された焼結金属層5介して接続されているパワー半導体装置100と比べて、短絡耐量が向上されている。
 実施の形態5.
 次に、図3を参照して、実施の形態5に係るパワー半導体装置102について説明する。実施の形態5に係るパワー半導体装置102は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、応力緩和部6(第1応力緩和部)の他に第2応力緩和部10をさらに備えている点で異なる。
 第2応力緩和部10は、第2接合部としてのはんだ層7を介して第1応力緩和部6と接続されている。第2応力緩和部10は、第3接合部としてのはんだ層11を介してバスバー8と接続されている。バスバー8は、焼結金属層5、第1応力緩和部6、はんだ層7、第2応力緩和部10、およびはんだ層11を介して電極2と電気的に接続されている。
 第2応力緩和部10の熱膨張率係数は、第1応力緩和部6の熱膨張率係数以上バスバー8の熱膨張率係数以下であり、好ましくは、第1応力緩和部6の熱膨張率係数超えバスバー8の熱膨張率係数未満である。第1応力緩和部6の熱膨張率係数は、上述のように、パワー半導体素子1の熱膨張率係数超えバスバー8の熱膨張率係数未満であるのが好ましい。例えば、パワー半導体素子1が主にSi(熱膨張率係数α=2ppm/K)で構成されており、バスバー8がCu(熱膨張率係数α=17ppm/K)で構成されている場合、第1応力緩和部6の熱膨張率係数αは例えば8ppm/Kであり、第2応力緩和部10の熱膨張率係数αは例えば12ppm/Kである。
 このような熱膨張率係数を有する第1応力緩和部6は、例えばインバーと、インバーの一方の側に形成されている第1Cu層と、第1Cu層とインバーを挟むように形成されている第2Cu層とからなる積層体(第1Cu層/インバー/第2Cu層)として構成されている。この場合、例えば第1Cu層の積層方向における厚みと第2Cu層の積層方向における厚みとが等しい。また、インバーの積層方向における厚みは、例えば第1Cu層の積層方向における厚みと第2Cu層の積層方向における厚みとの和に等しい。第1Cu層の上記厚み、インバーの上記厚み、および第2Cu層の上記厚みの比率は、例えば1:2:1である。
 また、上記のような熱膨張率係数を有する第2応力緩和部10は、例えばいわゆる42アロイ(構成材料にNiおよびFeを含む合金)と、42アロイの一方の側に形成されている第3Cu層と、第3Cu層と42アロイを挟むように形成されている第4Cu層とからなる積層体(第3Cu層/インバー/第4Cu層)として構成されている。
 このようなパワー半導体装置102において焼結金属層5およびはんだ層7に印加される熱応力は、パワー半導体装置100において焼結金属層5およびはんだ層7に印加される熱応力よりも低減され得る。そのため、パワー半導体装置102は、パワー半導体装置100と比べて、さらに高い信頼性を有している。
 なお、パワー半導体装置102において、第1接合部は液相拡散接合層であってもよく、第2接合部は第2焼結金属層または液相拡散接合層であってもよい。
 実施の形態6.
 次に、図4を参照して、実施の形態6に係るパワー半導体装置103について説明する。実施の形態6に係るパワー半導体装置103は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、第1面1Aを平面視したときに、第1接合部の外形の角部が曲線状である点で異なる。なお、図4は、パワー半導体装置103において第1接合部よりもパワー半導体素子1側に位置する部材のみを示す平面図である。
 第1接合部は、例えば焼結金属層5である。第1面1Aを平面視したときに、焼結金属層5の平面形状は例えば角丸矩形状である。第1面1Aを平面視したときに、第1接合部の外形の全ての角部は曲線状である。第1面1Aを平面視したときに、焼結金属層5の外形には、鋭角を成す角部が存在しない。
 このようにすれば、焼結金属層5の外形の角部に応力が集中することを防止することができる。そのため、パワー半導体素子1の高温動作時において、焼結金属層5の損傷を抑制することができる。その結果、パワー半導体装置103は、パワー半導体装置100と比べて、さらに高い信頼性を有している。
 なお、第1接合部は上述した液相拡散接合層であってもよい。また、第1接合部は界面9であってもよい。第1接合部が界面9である場合、第1面1Aを平面視したときに電極2および応力緩和部6の少なくともいずれかの外形の角部が曲線状であればよい。
 実施の形態7.
 次に、図5を参照して、実施の形態7に係るパワー半導体装置104について説明する。実施の形態7に係るパワー半導体装置104は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、第1面1Aを平面視したときに、第1接合部は分散配置された複数の部分を含む点で異なる。なお、図5は、パワー半導体装置104において第1接合部よりもパワー半導体素子1側に位置する部材のみを示す平面図である。
 第1接合部は、例えば焼結金属層5である。第1面1Aを平面視したときに、焼結金属層5は分散配置された複数の部分5A,5B,5C,5Dを含む。複数の部分5A,5B,5C,5Dは、例えば第1面1Aに沿った第1方向において互いに間隔を隔てて配置されている。焼結金属層5は、例えば、第1方向と交差しておりかつ第1面1Aに沿っている第2方向において、複数の部分5A,5B,5C,5Dの各々と互いに間隔を隔てて配置されている複数の部分をさらに含む。すなわち、焼結金属層5は、例えば第1方向および第1方向と交差する第2方向において、分散配置された複数の部分を有している。第1面1Aを平面視したときに、電極2において焼結金属層5と接合されていない領域の平面形状は、例えば格子状である。第1面1Aを平面視したときに、複数の部分の平面形状は任意の形状であればよいが、例えば矩形状である。
 電極2の上記上面(第1面1Aと接している面と反対側に位置する面)は、焼結金属層5と接合されていない領域を有している。また、応力緩和部6において電極2の上記上面と向かい合う下面は、焼結金属層5と接合されていない領域を有している。
 このようにすれば、焼結金属層5の複数の部分は、第1面1Aに沿った方向において分散配置されている。そのため、例えば焼結金属層5に割れが生じた場合にも当該割れが第1面1Aに沿った方向において進展することが抑制されている。また、例えば焼結金属層5において第1方向に延びる割れが生じた場合にも当該割れが第2方向に進展することが抑制されている。その結果、パワー半導体装置104は、パワー半導体装置100と比べて、さらに高い信頼性を有している。
 好ましくは、第1面1Aを平面視したときに、複数の部分の外形の角部は曲線状である。このようなパワー半導体装置104によれば、パワー半導体装置103と同様の効果を奏することができる。なお、第1接合部は上述した液相拡散接合層であってもよい。
 第1面1Aを平面視したときの複数の部分の平面形状は、矩形状に限られるものでは無く、例えば円形状、または頂点数が3以上の多角形状であってもよい。
 図5に示されているパワー半導体装置104は、焼結金属層5の複数の部分の各外周端部が電極2の外周端部よりも電極2において内側に位置する領域と接合されているが、これに限られるものではない。焼結金属層5の複数の部分のうち最も外側に位置する部分の外周端部の一部は電極2の外周端部と重なるように形成されていてもよい。
 実施の形態8.
 次に、図6を参照して、実施の形態8に係るパワー半導体装置105について説明する。実施の形態8に係るパワー半導体装置105は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、応力緩和部6(第1応力緩和部)が第1接合部と接続されている第2面6Aと、第2面6Aの反対側に位置し第2接合部と接続されている第3面6Bとを有し、第3面6Bの面積は第2面6Aの面積よりも大きい点で異なる。
 第1接合部は例えば焼結金属層5である。第2接合部は例えばはんだ層7である。第2面6Aは、焼結金属層5を介して電極2と接続されている。第3面6Bは、はんだ層7を介してバスバー8と接続されている。
 第2面6Aの面積は第3面6Bの面積よりも小さい。つまり、応力緩和部6においてはんだ層7と接合されている面の全体(第3面6B)の面積は、応力緩和部6において焼結金属層5と接合されている面の全体(第2面6A)の面積よりも大きい。
 本発明者らは、鋭意研究の結果、応力緩和部6の第3面6Bの面積を第2面6Aの面積よりも大きくすることにより、第2接合部の熱疲労寿命(熱疲労耐久性)を向上することができることを見出した。本発明者らは、第2接合部が熱疲労により破壊されるときの破壊モードとして、第1面1Aを平面視したときの第2接合部の外周端部から第1面1Aに沿った方向に延びるクラックによる破壊モードが支配的であることを確認した。そのため、第3面6Bの面積が大きいほど、第2接合部に生じた当該クラックが第2接合部の熱疲労寿命低下を引き起こす程度にまで進展するのに要する時間は長くなる。その結果、パワー半導体装置105は、パワー半導体装置100と比べて、第2接合部の熱疲労寿命を向上することができるため、高い信頼性を有している。
 実施の形態9.
 次に、図7および図8を参照して、実施の形態9に係るパワー半導体装置106について説明する。パワー半導体装置106は、本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、第1面1Aを平面視したときに、焼結金属層5の外周端部は、電極2の外周端部よりも電極2において内側に位置する領域と接合されている点で異なる。なお、図8は、パワー半導体装置106において第1接合部よりもパワー半導体素子1側に位置する部材のみを示す平面図である。
 このようにすれば、パワー半導体素子1の高温動作時においても、パワー半導体素子1とバスバー8との熱膨張率係数の差に起因して生じる応力が電極2の上記外周端部に集中することを防止することができる。そのため、電極2の上記外周端部において剥離、クラックなどの損傷の発生を抑制することができる。
 電極2の外周端部と焼結金属層5(第1接合部)の外周端部との間の設計上の距離は、焼結金属層5となるべき上記混練物が電極2上に塗布(例えば印刷)される際の位置合わせ精度に応じて決定され得る。例えば、この位置合わせ精度が±50μmである場合、電極2の外周端部と焼結金属層5(第1接合部)の外周端部との間の設計上の距離は100μmであるのが好ましい。電極2と焼結金属層5との接合面積の低下に伴う電気抵抗の増加または過電流破壊などの異常の発生を抑制する観点から、電極2の外周端部と焼結金属層5(第1接合部)の外周端部との間の設計上の距離の上限値が決定され得る。この場合、パワー半導体装置106において電極2と焼結金属層5の外周端部との間の実際の距離は、50μm以上150μm以下となる。
 なお、図5に示されている実施の形態7に係るパワー半導体装置104は、焼結金属層5の複数の部分の各外周端部が電極2の外周端部よりも電極2において内側に位置する領域と接合されている。
 実施の形態10.
 次に、図9を参照して、実施の形態10に係るパワー半導体装置107について説明する。パワー半導体装置107は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、バスバー8において第2接合部と接する領域の少なくとも一部の厚みが他の領域の厚みよりも薄く設けられている点で異なる。
 バスバー8は、薄肉領域8Aと厚肉領域8Bとを有している。薄肉領域8Aは、バスバー8において第2接合部としてのはんだ層7と接する領域の少なくとも一部である。好ましくは、薄肉領域8Aはバスバー8においてはんだ層7と接する領域内にのみ設けられている。より好ましくは、第1面1Aを平面視したときに、薄肉領域8Aの外形ははんだ層7の外形と一致するように設けられている。薄肉領域8Aの厚みは、厚肉領域8Bの厚み未満であり、好ましくは、薄肉化に起因した電気抵抗の増加または機械的強度の低下に伴う異常の発生を抑制し得る厚み以上に設定される。厚肉領域8Bの厚みは、例えば上述した実施の形態1~9に係る各半導体装置100~106のバスバー8の厚みと同程度である。
 上記薄肉領域8Aは、例えばバスバー8の延在方向において複数の上記厚肉領域8Bに挟まれるように配置されている。上記薄肉領域8Aは、例えば第1面1Aに沿った方向であってバスバー8の延在方向と交差する方向(図9の紙面に垂直な方向)において、バスバー8の両端部間に延びるように設けられている。
 薄肉領域8Aおよび厚肉領域8Bを有するバスバー8には、例えば応力緩和部6とは反対側を向いて配置される面に対して凹んでいる凹部8Cが設けられている。凹部8Cの底面は、例えばバスバー8の応力緩和部6側を向いて配置される面と平行に設けられている。凹部8Cの側壁面は、例えば凹部8Cの底面と、厚肉領域8Bの応力緩和部6とは反対側を向いて配置される面との間を接続するように設けられている。凹部8Cの側壁面は、厚肉領域8Bの応力緩和部6とは反対側を向いて配置される面に対し鈍角を成すように、テーパー状に設けられている。この場合、薄肉領域8Aは、凹部8Cの底面を有している部分と、凹部8Cの側壁面を有している部分とからなる。薄肉領域8Aの凹部8Cの底面を有している部分の厚みは、一定である。薄肉領域8Aの凹部8Cの側壁面を有している部分の厚みは、厚肉領域8Bから凹部8Cの底面側に向かうにつれて徐々に薄くなるように設けられている。
 第2接合部としてのはんだ層7を構成する材料は、例えばアンチモン(Sb)を5%以上10%以下含むSn-Cu系はんだである。
 このように、上記パワー半導体装置107ではバスバー8が薄肉領域8Aと厚肉領域8Bとを有し、かつ薄肉領域8Aがはんだ層7と接合されている。そのため、上記パワー半導体装置107は、バスバー8の全体が厚肉領域8Bと同程度に厚く設けられている場合と比べて、はんだ層7に印加される熱応力を低減することができ、はんだ層7の熱疲労寿命(熱疲労耐久性)を向上させることができる。また、上記パワー半導体装置107は、バスバー8の全体が薄肉領域8Aと同程度に薄く設けられている場合と比べて、バスバー8の許容電流値を増すことができる。
 パワー半導体装置107において、バスバー8は、図9に示される構成に限られるものではなく、例えば以下のように構成されていてもよい。図10に示されるように、バスバー8は、凹部8Cの側壁面が厚肉領域8Bの応力緩和部6とは反対側を向いて配置される面に直交するように、設けられていてもよい。また、図10に示されるように、薄肉領域8Aに加えて、厚肉領域8Bにおいて薄肉領域8A側に位置する一部も、はんだ層7と接合されていてもよい。
 図11に示されるように、バスバー8には、凹部8Cの底面に対して凹んでいる凹部8Dがさらに設けられていてもよい。凹部8Dの側壁面は、例えば凹部8Cの底面に直交するように設けられていてる。なお、凹部8Dの側壁面は、例えば凹部8Cの底面に対し鈍角を成すように、テーパー状に設けられていてもよい。バスバー8は、2以上の任意の数の凹部により構成された階段形状を有していてもよい。
 図12および図13に示されるように、上記薄肉領域8Aは、バスバー8の延在方向における一端に設けられていてもよい。上記厚肉領域8Bは、バスバー8の延在方向において、上記薄肉領域8Aに対して一方の側にのみ設けられていてもよい。図13に示されるように、バスバー8の延在方向において、バスバー8の一端を構成している薄肉領域8Aの一端から、厚肉領域8Bと接する上記薄肉領域8Aの他端まで、薄肉領域8Aの厚みが徐々に厚くなるように設けられていてもよい。また、図13に示されるように、薄肉領域8Aにおいて相対的に厚みが薄い部分のみがはんだ層7と接合されていてもよい。
 また、図9~図13に示されるパワー半導体装置107では、薄肉領域8Aおよび厚肉領域8Bの各々の応力緩和部6側を向いて配置される面が同一平面を成すように設けられているが、これに限られるものではない。パワー半導体装置107は、例えば図9~図13に示される各バスバー8が上下反転された構成を有していてもよい。例えば図14に示されるように、バスバー8には応力緩和部6側を向いて配置される面に対して凹んでいる凹部8Eが設けられていてもよい。この場合、凹部8Eの底面のみがはんだ層7と接合されていてもよいし、凹部8Eの底面および側壁面がはんだ層7と接合されていてもよい。
 また、パワー半導体装置107は、例えば図9~図13に示されるバスバー8のいずれかと、図9~図13に示されるバスバー8のいずれかが上下反転された構成とが組み合わせされた構成を有していてもよい。例えば図15に示されるように、第1面1Aを平面視したときに、上記凹部8Cと上記凹部8Eとが重なるように設けられていてもよい。薄肉領域8Aは、例えば上記凹部8Cの底面および側壁面と、上記凹部8Eの底面および側壁面との間に配置されている。
 図9~図15に示されるバスバー8は、バスバー8となるべき板状部材において、薄肉領域8Aとなるべき部分にプレス、エッチング、または切削等の任意の加工を施すことにより形成され得る。
 図10~図15に示される各パワー半導体装置107も、基本的に図9に示されるパワー半導体装置107と同様の構成を備えるため、図9に示されるパワー半導体装置107と同様の効果を奏することができる。
 また、図9~図15に示される上記薄肉領域8Aは、第1面1Aに沿った方向であってバスバー8の延在方向と交差する方向(図9~15の紙面に垂直な方向)において、バスバー8の両端部間に延びるように設けられているが、これに限られるものではない。上記交差する方向においてバスバー8の一部のみがはんだ層7に接するように設けられている場合には、上記交差する方向においてバスバー8の一部のみが薄肉領域8Aとして構成されていればよい。バスバー8においてはんだ層7に接する領域が上記交差する方向においてバスバー8の両端部よりも内側に配置されている場合、厚肉領域8Bは、例えば薄肉領域8Aの周囲を囲むように設けられている。このようなパワー半導体装置107も、基本的に図9に示されるパワー半導体装置107と同様の構成を備えるため、図9に示されるパワー半導体装置107と同様の効果を奏することができる。
 また、図16に示されるように、パワー半導体装置107は、実施の形態5に係るパワー半導体装置102と同様に、応力緩和部6(第1応力緩和部)の他に第2応力緩和部10をさらに備えていてもよい。薄肉領域8Aは、バスバー8において第3接合部としてのはんだ層11と接する領域の少なくとも一部である。このようなパワー半導体装置107も、上記パワー半導体装置107と同様の効果を奏することができる。
 実施の形態11.
 次に、実施の形態11に係るパワー半導体装置について説明する。実施の形態11に係るパワー半導体装置は、基本的に実施の形態1に係るパワー半導体装置100と同様の構成を備えるが、第2接合部がはんだ層に代えて焼結金属と樹脂とからなるコンポジット層である点で異なる。
 コンポジット層を構成する材料は、焼結金属および樹脂である。コンポジット層を構成する材料は、例えば、銀(Ag)およびCuの少なくともいずかと、エポキシ樹脂とを含む。異なる観点から言えば、コンポジット層は、樹脂を含む点で焼結金属層5と異なる。上述のように、焼結金属層5は、金属粉末が樹脂中に分散されたペースト状の混練物を加熱および加圧して得られた焼結層である。これに対し、コンポジット層は、金属粉末が樹脂中に分散されたペースト状の混練物を加熱して得られた焼結金属と樹脂の複合層である。コンポジット層は、上記ペースト状の混練物が無加圧で焼結されることにより、形成され得る。コンポジット層の焼結密度は、焼結金属層5の焼結密度と比べて低い。コンポジット層中において、焼結金属間の空間(隙間)には樹脂が充填されている。そのため、コンポジット層の空隙率は、焼結金属層5の空隙率と比べて少ない。
 実施の形態11に係るパワー半導体装置においても、パワー半導体装置100と同様に、パワー半導体素子1の温度が175℃以上230℃以下の温度域(第1温度域)のうちの1点の温度であるときに、焼結金属層5の硬度、せん断強度、および降伏強度は、はんだ層7の硬度、せん断強度、および降伏強度よりも高い。その結果、実施の形態11に係るパワー半導体装置は、実施の形態1に係るパワー半導体装置100と同様の効果を奏することができる。
 実施の形態1~11に係るパワー半導体装置100~107では、パワー半導体素子1の一例としてIGBTを挙げているが、これに限られるものではない。また、パワー半導体素子1の半導体材料は、特に制限されるものではない。一方で、パワー半導体装置100~107では、パワー半導体素子1の半導体材料の硬度が高いほど、パワー半導体素子1の電極2と応力緩和部6との接合部に印加される熱応力は大きくなる。そのため、パワー半導体装置100~107は、Siと比べて高硬度である炭化珪素(SiC)を半導体材料とするパワー半導体素子を備えるパワー半導体装置に、特に好適である。
 上述のように、実施の形態1~11に係るパワー半導体装置100~107の応力緩和部6は、クラッド材として構成され得る。図17は、このような応力緩和部6を示す部分断面図である。図17に示されるように、応力緩和部6は、例えばインバー62(第2層)と、インバー62の一方の側に形成されている第1Cu層61(第1層)と、第1Cu層61とインバー62を挟むように形成されている第2Cu層63(第3層)とからなる積層体として構成されていてもよい。
 また、実施の形態1~11に係るパワー半導体装置100~107は絶縁基板3を備えているが、これに限られるものでは無い。パワー半導体装置100~107は、少なくともパワー半導体素子1、パワー半導体素子1の電極2と第1接合部を介して接続されている応力緩和部6(第1応力緩和部)、および応力緩和部6と第2接合部を介して接続されているバスバー8(配線部)を備えていればよい。
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、上述の各実施の形態の構成を適宜組み合わせることも当初から予定している。例えば実施の形態5~10の各構成は、実施の形態1のみならず、実施の形態2~4および11のいずれかの構成と組み合され得る。本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
 本発明は、電気自動車・ハイブリッド車向けインバータや鉄道車両用インバータ等のパワーエレクトロニクス機器に使用されるパワー半導体装置に特に有利に適用される。
 1 パワー半導体素子、1A 第1面、2 電極、3 絶縁基板、4 ダイボンド材、5 焼結金属層(第1接合部)、5A,5B,5C,5D 部分、6 応力緩和部(第1応力緩和部)、7 はんだ層(第2接合部)、8 バスバー(配線部)、8A 薄肉領域、8B 厚肉領域、8C,8D,8E 凹部、9 界面(第1接合部)、10 第2応力緩和部、11 はんだ層(第3接合部)、100,101,102,103,104,105,106,107 パワー半導体装置。

Claims (15)

  1.  第1面を有し、前記第1面上に形成されている電極を含むパワー半導体素子と、
     前記電極と第1接合部を介して接続されている第1応力緩和部と、
     前記第1応力緩和部と第2接合部を介して接続されている配線部とを備え、
     前記第1接合部の接合強度は、前記第2接合部の接合強度と比べて高い、パワー半導体装置。
  2.  前記第1接合部は、前記電極および前記第1応力緩和部と接合されている接合層であり、
     前記パワー半導体素子の温度が175℃以上230℃以下の温度域のうちの1点の温度であるときの硬度、せん断強度および降伏強度の少なくともいずれか1つについて、前記第1接合部の値は前記第2接合部の値と比べて高い、請求項1に記載のパワー半導体装置。
  3.  前記第1接合部は焼結金属層であり、前記第2接合部ははんだ層である、請求項2に記載のパワー半導体装置。
  4.  前記第1接合部は第1焼結金属層であり、前記第2接合部は第2焼結金属層であり、
     前記第1焼結金属層の空孔率は前記第2焼結金属層の空孔率よりも低い、請求項2に記載のパワー半導体装置。
  5.  前記第1接合部は液相拡散接合層である、請求項2に記載のパワー半導体装置。
  6.  前記第1接合部は焼結金属層であり、
     前記第2接合部を構成する材料は焼結金属および樹脂を含む、請求項2に記載のパワー半導体装置。
  7.  前記第1接合部は、前記電極と前記第1応力緩和部とが直接接合されている界面であり、
     前記パワー半導体素子の温度が175℃以上230℃以下の温度域のうちの1点の温度であるときの硬度、せん断強度および降伏強度の少なくともいずれか1つについて、前記第1接合部の値は前記第2接合部の値と比べて高い、請求項1に記載のパワー半導体装置。
  8.  前記第1応力緩和部の熱膨張率は、前記パワー半導体素子の熱膨張率と前記配線部の熱膨張率の間にある、請求項1~7のいずれか1項に記載のパワー半導体装置。
  9.  前記電極を構成する材料は銅を含み、
     前記配線部を構成する材料は銅を含み、
     前記第1応力緩和部は、順次積層された第1層、第2層および第3層を含み、
     前記第1層および前記第3層を構成する材料は銅を含み、
     前記第2層を構成する材料はニッケルおよび鉄を含む、請求項8に記載のパワー半導体装置。
  10.  前記配線部において前記第2接合部に接する領域の厚みが、前記配線部における他の領域の厚みよりも薄い、請求項1~9のいずれか1項に記載のパワー半導体装置。
  11.  前記第1応力緩和部と前記第2接合部を介して接続されており、かつ、前記配線部と第3接合部を介して接続されている第2応力緩和部をさらに備え、
     前記配線部は、前記第1応力緩和部と、前記第2接合部、前記第2応力緩和部、および前記第3接合部を介して接続されている、請求項1~10のいずれか1項に記載のパワー半導体装置。
  12.  前記電極を構成する材料は銅を含む、請求項1~11のいずれか1項に記載のパワー半導体装置。
  13.  前記第1面を平面視したときに、前記第1接合部の外形の角部は曲線状である、請求項1~12のいずれか1項に記載のパワー半導体装置。
  14.  前記第1面を平面視したときに、前記第1接合部は分散配置された複数の部分を含む、請求項1~13のいずれか1項に記載のパワー半導体装置。
  15.  前記第1応力緩和部は、前記第1接合部と接続されている第2面と、前記第2面の反対側に位置し前記第2接合部と接続されている第3面とを有し、
     前記第3面の面積は前記第2面の面積よりも大きい、請求項1~14のいずれか1項に記載のパワー半導体装置。
PCT/JP2017/024840 2016-08-05 2017-07-06 パワー半導体装置 WO2018025571A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780046968.XA CN109643661B (zh) 2016-08-05 2017-07-06 功率半导体装置
US16/315,050 US10727186B2 (en) 2016-08-05 2017-07-06 Power semiconductor device
JP2018531792A JP6765426B2 (ja) 2016-08-05 2017-07-06 パワー半導体装置
DE112017003925.8T DE112017003925B4 (de) 2016-08-05 2017-07-06 Leistungs-Halbleiterelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-154316 2016-08-05
JP2016154316 2016-08-05

Publications (1)

Publication Number Publication Date
WO2018025571A1 true WO2018025571A1 (ja) 2018-02-08

Family

ID=61072668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024840 WO2018025571A1 (ja) 2016-08-05 2017-07-06 パワー半導体装置

Country Status (5)

Country Link
US (1) US10727186B2 (ja)
JP (1) JP6765426B2 (ja)
CN (1) CN109643661B (ja)
DE (1) DE112017003925B4 (ja)
WO (1) WO2018025571A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145691A (ja) * 2018-02-21 2019-08-29 株式会社豊田中央研究所 半導体装置およびその製造方法
KR20200077214A (ko) * 2018-12-20 2020-06-30 전자부품연구원 소자실장방법
JP2021019038A (ja) * 2019-07-18 2021-02-15 昭和電工マテリアルズ株式会社 半導体装置
WO2023119438A1 (ja) * 2021-12-21 2023-06-29 住友電気工業株式会社 半導体装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7180392B2 (ja) * 2019-01-11 2022-11-30 株式会社デンソー 半導体装置及びその製造方法
EP3923321A1 (de) * 2020-06-08 2021-12-15 CeramTec GmbH Modul mit anschlusslaschen für zuleitungen
JP7301805B2 (ja) 2020-09-24 2023-07-03 株式会社東芝 半導体モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211166A (ja) * 2007-01-31 2008-09-11 Shin Kobe Electric Mach Co Ltd 配線板
JP2011077225A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 半導体装置と接続構造及びその製造方法
JP2013070011A (ja) * 2011-09-06 2013-04-18 Honda Motor Co Ltd 半導体装置
JP2015023183A (ja) * 2013-07-19 2015-02-02 三菱電機株式会社 パワーモジュール
JP2015093295A (ja) * 2013-11-11 2015-05-18 新日鐵住金株式会社 金属ナノ粒子を用いた金属接合構造及び金属接合方法並びに金属接合材料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW525274B (en) * 2001-03-05 2003-03-21 Samsung Electronics Co Ltd Ultra thin semiconductor package having different thickness of die pad and leads, and method for manufacturing the same
JP4244723B2 (ja) * 2003-06-26 2009-03-25 三菱マテリアル株式会社 パワーモジュール及びその製造方法
JP4262672B2 (ja) * 2004-12-24 2009-05-13 株式会社ルネサステクノロジ 半導体装置およびその製造方法
JP4770533B2 (ja) 2005-05-16 2011-09-14 富士電機株式会社 半導体装置の製造方法および半導体装置
DE102005047566C5 (de) 2005-10-05 2011-06-09 Semikron Elektronik Gmbh & Co. Kg Anordnung mit einem Leistungshalbleiterbauelement und mit einem Gehäuse sowie Herstellungsverfahren hierzu
JP5135079B2 (ja) 2008-06-30 2013-01-30 株式会社日立製作所 半導体装置及び接合材料
JPWO2011007442A1 (ja) * 2009-07-16 2012-12-20 株式会社応用ナノ粒子研究所 2種金属成分型複合ナノ金属ペースト、接合方法及び電子部品
JP5316602B2 (ja) * 2010-12-16 2013-10-16 株式会社日本自動車部品総合研究所 熱拡散部材の接合構造、発熱体の冷却構造、及び熱拡散部材の接合方法
JP5729468B2 (ja) 2011-05-13 2015-06-03 富士電機株式会社 半導体装置
EP2816593B1 (en) * 2012-02-14 2020-01-15 Mitsubishi Materials Corporation Solder joint structure, power module, heat-sink-attached substrate for power module, method for producing said substrate, and paste for forming solder underlayer
DE112012007149B4 (de) * 2012-11-20 2020-07-09 Denso Corporation Halbleitervorrichtung
US8815648B1 (en) * 2013-04-01 2014-08-26 Texas Instruments Incorporated Multi-step sintering of metal paste for semiconductor device wire bonding
JP6120704B2 (ja) * 2013-07-03 2017-04-26 三菱電機株式会社 半導体装置
JP6287789B2 (ja) * 2014-12-03 2018-03-07 三菱電機株式会社 パワーモジュール及びその製造方法
CN106899379B (zh) * 2015-12-18 2020-01-17 华为技术有限公司 用于处理极化码的方法和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211166A (ja) * 2007-01-31 2008-09-11 Shin Kobe Electric Mach Co Ltd 配線板
JP2011077225A (ja) * 2009-09-30 2011-04-14 Hitachi Ltd 半導体装置と接続構造及びその製造方法
JP2013070011A (ja) * 2011-09-06 2013-04-18 Honda Motor Co Ltd 半導体装置
JP2015023183A (ja) * 2013-07-19 2015-02-02 三菱電機株式会社 パワーモジュール
JP2015093295A (ja) * 2013-11-11 2015-05-18 新日鐵住金株式会社 金属ナノ粒子を用いた金属接合構造及び金属接合方法並びに金属接合材料

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019145691A (ja) * 2018-02-21 2019-08-29 株式会社豊田中央研究所 半導体装置およびその製造方法
JP6991885B2 (ja) 2018-02-21 2022-01-13 株式会社豊田中央研究所 半導体装置およびその製造方法
KR20200077214A (ko) * 2018-12-20 2020-06-30 전자부품연구원 소자실장방법
KR102338480B1 (ko) * 2018-12-20 2021-12-13 한국전자기술연구원 소자실장방법
JP2021019038A (ja) * 2019-07-18 2021-02-15 昭和電工マテリアルズ株式会社 半導体装置
JP7484097B2 (ja) 2019-07-18 2024-05-16 株式会社レゾナック 半導体装置
WO2023119438A1 (ja) * 2021-12-21 2023-06-29 住友電気工業株式会社 半導体装置

Also Published As

Publication number Publication date
US20190279943A1 (en) 2019-09-12
CN109643661B (zh) 2022-09-09
DE112017003925B4 (de) 2022-12-22
JP6765426B2 (ja) 2020-10-07
JPWO2018025571A1 (ja) 2019-06-13
US10727186B2 (en) 2020-07-28
CN109643661A (zh) 2019-04-16
DE112017003925T5 (de) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2018025571A1 (ja) パワー半導体装置
JP4973761B2 (ja) 半導体装置
JP2011114176A (ja) パワー半導体装置
WO2012165045A1 (ja) 半導体装置及び配線基板
CN112753101B (zh) 半导体装置
JP6261642B2 (ja) 電力半導体装置
US20160152004A1 (en) Composite laminate and electronic device
JP2007059860A (ja) 半導体パッケージ及び半導体モジュール
JP2014017483A (ja) 応力を低減する適合要素を少なくとも1つ有するパワー半導体モジュール
JP2008198706A (ja) 回路基板、その製造方法およびそれを用いた半導体モジュール
JP2018110149A (ja) 半導体装置の製造方法
KR20140092774A (ko) 전력 반도체 모듈 및 전력 반도체 모듈의 제조 방법
CN109075159B (zh) 半导体装置及其制造方法
JP4073876B2 (ja) 半導体装置
CN100418216C (zh) 半导体封装及半导体模块
JP6881304B2 (ja) 半導体装置及び半導体装置の製造方法
JP2019149460A (ja) 絶縁回路基板及びその製造方法
US20210407954A1 (en) Semiconductor device
JP2010050364A (ja) 半導体装置
JP4917375B2 (ja) パワー半導体モジュールの製造方法
JP6586352B2 (ja) 半導体装置の製造方法
JP7419781B2 (ja) 半導体モジュール
JP2014072314A (ja) 半導体装置、及び半導体装置の製造方法
JP5418654B2 (ja) 半導体装置
CN109075135B (zh) 接合体、功率模块用基板、接合体的制造方法及功率模块用基板的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018531792

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17836678

Country of ref document: EP

Kind code of ref document: A1