WO2017104823A1 - プリプレグテープ及びその利用 - Google Patents

プリプレグテープ及びその利用 Download PDF

Info

Publication number
WO2017104823A1
WO2017104823A1 PCT/JP2016/087616 JP2016087616W WO2017104823A1 WO 2017104823 A1 WO2017104823 A1 WO 2017104823A1 JP 2016087616 W JP2016087616 W JP 2016087616W WO 2017104823 A1 WO2017104823 A1 WO 2017104823A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg tape
epoxy resin
resin composition
prepreg
tape according
Prior art date
Application number
PCT/JP2016/087616
Other languages
English (en)
French (fr)
Inventor
岡本 敏
行弘 原田
敦 野原
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN201680073334.9A priority Critical patent/CN108368282B/zh
Priority to KR1020187019675A priority patent/KR102127106B1/ko
Priority to JP2017501421A priority patent/JP6414315B2/ja
Priority to EP16875797.9A priority patent/EP3392297A4/en
Publication of WO2017104823A1 publication Critical patent/WO2017104823A1/ja
Priority to US16/004,475 priority patent/US10934406B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/386Automated tape laying [ATL]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4064Curing agents not provided for by the groups C08G59/42 - C08G59/66 sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/245Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using natural fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • B29K2105/0881Prepregs unidirectional
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/20Polymers characterized by their physical structure
    • C08J2300/204Supramolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity

Definitions

  • the present invention relates to the use of a prepreg tape such as a prepreg tape used for aircraft members, automobile members, and the like, and a method for producing a fiber-reinforced composite material using the prepreg tape.
  • the prepreg for fiber reinforced composite material composed of reinforced fiber and matrix resin is widely used in sports, aerospace and general industrial applications because its cured product (fiber reinforced composite material) is lightweight and has excellent mechanical properties.
  • a fiber reinforced composite material is manufactured by heat-pressing a prepreg laminate formed by laminating a plurality of prepreg layers using an autoclave or a press molding machine.
  • the prepreg Since the prepreg is usually a wide sheet, a large amount of scrap material is generated when it is cut into a desired shape. On the other hand, if a long and narrow tape-shaped prepreg (prepreg tape) is laminated in a shape close to a desired shape, the end material can be reduced. In addition, when the prepreg is manually laminated, the lamination position and the lamination angle are disturbed, and the molded product may be defective. On the other hand, when the prepreg is laminated using an automatic laminating apparatus, the position and angle can be laminated with high accuracy and high speed. From these points, if the prepreg tape is laminated using an automatic laminating apparatus, a high-quality molded article can be produced at a low cost.
  • a member having excellent mechanical properties and heat resistance can be produced at low cost by automatically laminating prepreg tapes and then press-molding in a mold. For further cost reduction, it is necessary to perform automatic lamination at high speed.
  • prepreg tape to laminate at high speed ⁇ Low adhesion at room temperature to enable high-speed unwinding from the bobbin and prevent winding around the compaction roll (lamination roll) of guide rolls and auto tape placement equipment.
  • ⁇ Appropriate hardness at room temperature that can be fed to the lamination head of the auto tape placement device, -It is necessary to have adhesiveness that easily sticks to a molding jig such as a molding die or a lower layer (laminated first) prepreg tape by being heated at a lamination head portion of about 30 to 60 ° C.
  • Patent Document 1 discloses a yarn containing a cationic polymerizable resin composition having a viscosity at 30 ° C. of 1 ⁇ 10 4 to 1 ⁇ 10 6 Pa ⁇ s and a viscosity at 80 ° C. of 1 to 300 Pa ⁇ s.
  • a technique is disclosed in which a prepreg (synonymous with tow prepreg) is used to cure a resin by irradiation with active energy rays or heating during or after molding.
  • the tow prepreg disclosed in this document has low tackiness when unwound from the bobbin, but the tow prepreg itself is very hard and has low drape, so it is difficult to wind it on the bobbin.
  • the tackiness of the tow prepreg heated to about 30 to 60 ° C. is not considered.
  • a special apparatus is required for curing the resin.
  • the present inventors have intensively studied, and as a result, by controlling the tack value at 23 ° C. and 45 ° C. and the drape value at 23 ° C. within a specific range, a prepreg tape that can be automatically laminated at high speed is obtained. As a result, they have reached the present invention.
  • one aspect of the present invention is as follows.
  • room temperature in the present invention means a temperature in a normal working environment in the preparation / molding work of the prepreg tape, and is about 23 ° C.
  • the invention according to one aspect of the present invention relates to a prepreg tape in which a reinforcing fiber bundle is impregnated with a thermosetting resin composition, the tack value measured at 23 ° C. and a plunger pressing pressure of 90 kPa is 5 to 40 kPa, Unidirectional fibers arrayed along the length direction of the prepreg tape, having a tack value of 35 to 100 kPa measured at 45 ° C. and a plunger pressing pressure of 150 kPa, and a drape value at 23 ° C. of 10 to 40 ° It is characterized by including.
  • the prepreg tape described in the present specification may be a tow prepreg which is a tape-like intermediate material obtained by impregnating a continuous reinforcing fiber bundle with a matrix resin composition, and pulls the reinforcing fiber bundle in one direction.
  • a slit tape obtained by slitting a sheet-like prepreg impregnated with the thermosetting resin composition in an aligned state may be used.
  • the prepreg tape according to one aspect of the present invention is a laminated head having excellent unwinding property due to low adhesiveness at room temperature, prevention of winding around a guide roll or compaction roll, and moderate hardness at room temperature. It has excellent shape retention at the part and moderate stickiness of the heated part by a laminated head of about 30 to 60 ° C. due to increased adhesiveness at high temperature. For this reason, the prepreg tape which concerns on 1 aspect of this invention can become a prepreg tape suitable for the automatic lamination process in an auto tape placement apparatus.
  • a tow prepreg is obtained by impregnating a matrix fiber composition into a reinforcing fiber bundle in which filaments of several thousand to several tens of thousands of reinforcing fibers are arranged in one direction, and then winding the bundle on a bobbin such as a paper tube.
  • a bobbin such as a paper tube.
  • the reinforcing fiber bundle in one embodiment of the present invention is used for ordinary fiber-reinforced composite materials such as glass fibers, carbon fibers (in the present invention, graphite fibers are also included in the carbon fibers), aramid fibers, boron fibers, and the like. Reinforced fibers can be used.
  • carbon fiber is preferable because it is lightweight, has high strength, has a high elastic modulus, and is excellent in heat resistance and chemical resistance.
  • Examples of the carbon fiber include pitch type, polyacrylonitrile (PAN type), rayon type and the like, and any carbon fiber may be used, but PAN type carbon fiber is more preferable from the viewpoint of carbon fiber productivity. .
  • a high-strength carbon fiber having a strand tensile strength of 4 GPa or more, preferably 4.6 GPa or more and a tensile elongation of 1.5% or more is suitable for expressing the strength of the fiber-reinforced composite material.
  • the strand tensile strength refers to a strength measured by a strand tensile test based on JIS R7601 (1986).
  • the number of filaments of the reinforcing fiber bundle used in one embodiment of the present invention is preferably 1000 to 60000, more preferably 3000 to 50000.
  • productivity when automatically laminating as a tow prepreg can be enhanced.
  • the number 60000 or less the impregnation of the thermosetting resin composition into the reinforcing fiber bundle can be facilitated.
  • the thickness of the reinforcing fiber is preferably such that the filament diameter is in the range of 1 to 20 ⁇ m, more preferably in the range of 3 to 10 ⁇ m.
  • the tack value of tow prepreg can be measured by a probe tack test method using an adhesive force measuring machine.
  • the probe tack test method is a method of measuring a force required to peel off at a constant speed after pressing a measuring element (plunger) having a constant contact area with a constant pressure for a certain time.
  • the tack value of toe prepreg can be expressed as an average maximum stress value.
  • the stress value means a tensile stress generated on the contact surface between the plunger and the sample, and the average maximum stress value is a value obtained by a probe tack test performed under the conditions described below.
  • the tack value of the tow prepreg according to one embodiment of the present invention at 23 ° C. is 5 to 40 kPa, preferably 20 to 40 kPa, when measured at a plunger pressing pressure of 90 kPa.
  • the tack value of the tow prepreg at 23 ° C. is 5 to 40 kPa, preferably 20 to 40 kPa, when measured at a plunger pressing pressure of 90 kPa.
  • the tack value at 45 ° C. of the tow prepreg according to one embodiment of the present invention is 35 to 100 kPa, preferably 40 to 80 kPa, when measured at a plunger pressing pressure of 150 kPa.
  • the tack value at 45 ° C. of the tow prepreg is 35 to 100 kPa, preferably 40 to 80 kPa, when measured at a plunger pressing pressure of 150 kPa.
  • laminated portion means a portion of the tow prepreg that is pressed against a forming jig or another tow prepreg by the laminating head of the auto tape placement device.
  • the drape value at 23 ° C. is a value obtained by the following method.
  • a tow prepreg cut to a length of 250 mm is placed on the upper surface of a horizontal test bench, and a 200 mm portion is projected into the air from the tip of the tow prepreg.
  • an aluminum plate is placed on the remaining 50 mm portion and a weight of about 100 g is placed and fixed so as not to move during measurement.
  • the angle between the test stand and the tumbled tow prepreg is defined as a drape value ⁇ (°).
  • the angle between the test table and the suspended toe prepreg is the horizontal line on the upper surface of the test table as line 1, the tip of the test table, and the "point where the circle with a radius of 90 mm centered on the tip of the test table intersects with the toe prep"
  • line 1 the angle formed by the line 1 and the line 2 is assumed.
  • the temperature at the time of measurement is 23 ° C.
  • the drape value at 23 ° C. of the tow prepreg according to one embodiment of the present invention is 10 ° to 40 °, preferably 20 ° to 35 °.
  • thermosetting resin composition used in one embodiment of the present invention preferably has a viscosity at 30 ° C. of 1.0 ⁇ 10 4 to 1.0 ⁇ 10 5 Pa ⁇ s.
  • a tough prepreg having an appropriate hardness can be obtained.
  • the viscosity By setting the viscosity to 1.0 ⁇ 10 5 Pa ⁇ s or less, the tow prepreg Can be smoothly wound on the bobbin. More preferably, it is 1.0 ⁇ 10 4 to 8.0 ⁇ 10 4 Pa ⁇ s, and still more preferably 1.0 ⁇ 10 4 to 5.0 ⁇ 10 4 Pa ⁇ s.
  • the viscosity at 45 ° C. is preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 3 Pa ⁇ s.
  • the viscosity at 45 ° C. is preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 3 Pa ⁇ s.
  • it is possible to prevent the tow width from fluctuating when the tow prep is automatically laminated.
  • it is possible to impart appropriate drape and tack when the tow prepreg is automatically laminated. More preferably, it is 1.0 ⁇ 10 2 to 8.0 ⁇ 10 2 Pa ⁇ s, and still more preferably 1.0 ⁇ 10 2 to 6.0 ⁇ 10 2 Pa ⁇ s.
  • the minimum viscosity is preferably 0.3 to 20 Pa ⁇ s. More preferably, it is 5 to 20 Pa ⁇ s.
  • the minimum viscosity By controlling the minimum viscosity to 0.5 Pa ⁇ s or more, the amount of resin flow at the time of press molding using the tow prepreg is further suppressed, and appearance defects such as irregularities on the surface of the resulting fiber-reinforced composite material are further prevented. Can do.
  • the minimum viscosity By making the minimum viscosity lower than 20 Pa ⁇ s, the amount of resin flow can be increased, and the occurrence of defects in which the resin composition is not filled to every corner in the mold can be prevented during press molding using the tow prepreg.
  • the temperature range showing the minimum viscosity is preferably 100 to 120 ° C. If the temperature range which shows the said minimum viscosity is 100 degreeC or more, it can prevent that the flow amount at the time of press molding becomes low too much, and resin does not spread over a molded object. Moreover, if the temperature range which shows the said minimum viscosity is 120 degrees C or less, the flow amount at the time of press molding can be suppressed.
  • thermosetting resin composition used in one embodiment of the present invention preferably has a curing completion time at 140 ° C. of 2.0 to 15.0 minutes as measured with a curastometer, More preferably, it is 0.0 minutes, and more preferably 2.0 to 8.0 minutes.
  • ⁇ Evaluation and evaluation method> The measurement with a curast meter is performed based on the industrial standard JIS K6300 for rubber vulcanization tests. At this time, the vibration frequency is 100 cpm, the amplitude angle is ⁇ 1/4 °, and the die shape is WP-100.
  • the torque-time curve of the curast meter is a curve obtained with the measured torque as the vertical axis and the horizontal axis as the time. Usually, the torque increases as the curing reaction of the resin proceeds, and the torque reaches saturation when the curing reaction approaches the end.
  • the curing completion time in the present invention is a time in which the slope becomes 1/20 of the maximum value after the slope of the tangent line of the torque-time curve reaches the maximum value.
  • the thermosetting resin composition used in one embodiment of the present invention is excellent in curability, so press molding The occupying time of the press die can be shortened, and the molding cycle can be rotated quickly. Further, if the curing completion time at 140 ° C. when measured with a curast meter is 2.0 minutes or more, the resin can be sufficiently distributed to the molded body because there is a time for the resin to flow.
  • the resin content of tow prepreg is preferably 20 to 45% by mass, more preferably 25 to 40% by mass. By setting it as 20 mass% or more, the void in the fiber reinforced composite material obtained can be reduced, and the mechanical property of the fiber reinforced composite material obtained by making it 45 mass% or less is increased, and It is possible to prevent the tack from becoming too strong.
  • the tow prepreg in one embodiment of the present invention has an average width of preferably 2 to 30 mm, more preferably 4 to 28 mm, although it depends on the number of filaments of the reinforcing fiber bundle.
  • the thickness is preferably 0.10 to 0.70 mm, more preferably 0.15 to 0.50 mm.
  • thermosetting resin composition used in one embodiment of the present invention is such that the tack value at 23 ° C. and 45 ° C. and the drape value at 23 ° C. of the tow prepreg produced using the same satisfy the above-mentioned ranges. These may be appropriately selected from known materials and used in combination.
  • Thermosetting resins should be made from the usual resins used as matrix resins for fiber-reinforced composite materials, such as unsaturated polyester resins, vinyl ester resins, phenol resins, epoxy resins, polyimide resins, and bismaleimide resins.
  • an epoxy resin is preferable because a fiber-reinforced composite material having particularly excellent mechanical properties can be obtained and moldability is also good.
  • thermosetting resin composition containing an epoxy resin as a thermosetting resin (hereinafter simply referred to as “epoxy resin composition”) will be described.
  • the epoxy resin composition contains at least (A) an epoxy resin and (B) a curing agent.
  • Epoxy resin includes glycidyl ether type, glycidyl amine type, glycidyl ester type, and alicyclic epoxy type, etc., but glycidyl ether type or glycidyl amine from the point of being inexpensive and easy to obtain and excellent in reactivity. Preferably it includes a mold.
  • epoxy resins may be used alone or in combination of two or more.
  • a tow prepreg having both low adhesiveness at room temperature, moderate hardness that can be fed to the laminated head, and sufficient adhesiveness when heated to about 30 to 60 ° C. is obtained. It is preferable to use a combination of a liquid epoxy resin and a solid epoxy resin at room temperature.
  • the content of the epoxy resin that is liquid at room temperature is preferably 10 to 70 parts by mass, more preferably 10 to 60 parts by mass, and more preferably 10 to 50 parts by mass in 100 parts by mass of the (A) epoxy resin. More preferred is 15 to 50 parts by mass.
  • epoxy resin that is liquid at room temperature a bisphenol A type epoxy resin and a phenol novolac type epoxy resin are preferable from the viewpoint of excellent balance between toughness and heat resistance of the cured product.
  • the content of the phenol novolac type epoxy resin is preferably 10 to 60 parts by mass in 100 parts by mass of (A) the epoxy resin, and 20 to 60 More preferably, it is part by mass.
  • hardenability of an epoxy resin composition can be made favorable and the heat resistance of hardened
  • it can prevent that hardened
  • the epoxy resin that is solid at room temperature refers to an epoxy resin that is solid at room temperature and an epoxy resin that is semisolid at room temperature.
  • a semi-solid epoxy resin at room temperature refers to an epoxy resin that is solid at 20 ° C. and liquid at 40 ° C.
  • the epoxy resin that is solid at room temperature may be used alone or in combination of two or more.
  • the content of the epoxy resin solid at room temperature is more preferably 30 to 90 parts by mass, more preferably 40 to 90 parts by mass, and more preferably 50 to 90 parts by mass in 100 parts by mass of the (A) epoxy resin. More preferred is 50 to 85 parts by mass.
  • epoxy resins that are solid at room temperature include, for example, jER154, 157S70 (above, manufactured by Mitsubishi Chemical Corporation), Epicron N-770, Epicron N-740, Epicron N-775 (above, manufactured by DIC Corporation).
  • Phenol novolac epoxy resin such as; Epicron N-660, Epicron N-665, Epicron N-670, Epicron N-673, Epicron N-695 (above DIC Corporation), EOCN-1020, EOCN-102S, EOCN-104S (above, Nippon Kayaku) Cresol novolac type epoxy resin such as Yakuhin Co., Ltd .; bisphenol A type epoxy resin such as jER1001, 1002, 1003 (manufactured by Mitsubishi Chemical Corporation); bisphenol F type epoxy resin such as jER4004P, 4005P (Mitsubishi Chemical Corporation); Biphenyl type epoxy resins such as YX4000 and YL6121H (above, manufactured by Mitsubishi Chemical Corporation); Naphthalene type epoxy resins such
  • the content of the oxazolidone ring-containing epoxy resin is preferably 10 to 90 parts by mass in 100 parts by mass of (A) epoxy resin, and 20 to 70 More preferably, it is part by mass.
  • the balance between the heat resistance and toughness of the cured product can be improved by setting it to 10 parts by mass or more, and the decrease in the heat resistance of the cured product can be prevented by setting it to 90 parts by mass or less.
  • an epoxy resin that is solid at room temperature an epoxy resin including a structure represented by the following formulas (1) and (2) may be used.
  • examples of such an epoxy resin include a pre-reacted product of bisphenol A type epoxy resin and 4,4′-diaminodiphenyl sulfone.
  • reaction between the bisphenol A type epoxy resin and 4,4′-diaminodiphenyl sulfone may be performed according to the description in, for example, PCT Publication Pamphlet WO2013 / 081060.
  • the pre-reaction product When a pre-reaction product of bisphenol A type epoxy resin and 4,4′-diaminodiphenyl sulfone is included as a solid epoxy resin at room temperature, the pre-reaction product is 10 to 90 parts by mass in 100 parts by mass of (A) epoxy resin. Parts, preferably 20 to 70 parts by mass. By setting it as 10 mass parts or more, the sclerosis
  • a pre-reacted product of urethane and isocyanate-modified epoxy resin or bisphenol A type epoxy resin and 4,4′-diaminodiphenylsulfone is preferable from the viewpoint of excellent balance between heat resistance and toughness of the cured product.
  • a pre-reacted product of bisphenol A type epoxy resin and 4,4′-diaminodiphenyl sulfone is more preferable because the curing reaction proceeds rapidly.
  • Examples of the curing agent include amine type, amine adduct type, acid anhydride type (carboxylic acid anhydride, etc.), phenol type (phenol novolac resin, etc.), mercaptan type, Lewis acid amine complex type, onium salt type, etc.
  • any structure may be used as long as the epoxy resin can be cured.
  • amine type and amine adduct type curing agents are preferred from the viewpoint of excellent physical properties of the cured product. These curing agents may be used alone or in combination of two or more.
  • amine-type curing agents examples include aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, dicyandiamide, tetramethylguanidine, thiourea-added amines, and isomers and modified products thereof.
  • aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • aliphatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • aliphatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • aliphatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • aliphatic amines such as diaminodiphenylmethane and diaminodiphenyls
  • Examples of commercially available amine adduct type curing agents include Amicure PN-23 and PN-50 (above, manufactured by Ajinomoto Fine Techno Co., Ltd.).
  • the content of the curing agent is preferably 3 to 10 parts by weight, more preferably 3 to 8 parts by weight, and still more preferably 4 to 8 parts by weight with respect to 100 parts by weight of the (A) epoxy resin.
  • curing agent is 3 mass parts or more, the epoxy resin contained in an epoxy resin composition can fully be hardened
  • a curing aid may be used to increase the curing activity of the curing agent.
  • the curing aid is preferably a urea derivative or an imidazole derivative.
  • these curing aids may be used in combination of two or more.
  • Examples of compounds used as urea derivatives include 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 3- (3-chloro-4 Urea derivatives such as -methylphenyl) -1,1-dimethylurea and toluenebisdimethylurea (TBDMU) are preferred. Of these, toluenebisdimethylurea (TBDMU) is particularly preferable from the viewpoint of improving the curing rate. As a commercially available product of TBDMU, for example, Omicure 24 (manufactured by PTI Japan) is exemplified.
  • the imidazole derivative has a nitrogen atom having an unshared electron pair in its structure, and this activates the epoxy group and dicyandiamide as the component (A) to promote curing.
  • the imidazole derivative is not particularly limited, but refers to a compound in which the 1-position, 2-position, 4-position, and 5-position of 1H-imidazole are substituted with arbitrary substituents.
  • the imidazole derivative may be unsubstituted, may be substituted with one substituent, or may be substituted with a plurality of substituents.
  • 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine commercially available products include, for example, 2MZA-PW (manufactured by Shikoku Chemicals Co., Ltd.)), 2-Phenyl-4,5-dihydroxymethylimidazole (commercially available products include, for example, 2PHZ-PW (manufactured by Shikoku Chemicals Co., Ltd.)).
  • the content of the curing aid is preferably 0.5 to 10 parts by mass and more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the (A) epoxy resin. If the content of the curing aid is 0.5 parts by mass or more, the effect of increasing the curing rate can be sufficiently expressed, and if it is 10 parts by mass or less, a cured resin product having high toughness is obtained. Is preferable.
  • the epoxy resin composition may contain a thermoplastic resin for improving the toughness of the fiber-reinforced composite material obtained by using the epoxy resin composition.
  • thermoplastic resin examples include polyvinyl formal (PVF), polymethyl methacrylate (PMMA), polyethersulfone (PES), polyetherimide (PEI), and the like.
  • PVF or PES is preferable because it improves the toughness of the fiber-reinforced composite material and is excellent in heat resistance.
  • thermoplastic resins are preferably 0.2 to 45 parts by mass, more preferably 0.5 to 25 parts by mass with respect to 100 parts by mass of (A) the epoxy resin. If the content of the thermoplastic resin is 0.2 parts by mass or more, the effect of improving the toughness of the fiber-reinforced composite material can be sufficiently exerted, and if it is 45 parts by mass or less, an appropriate tack is obtained.
  • the tow prepreg is obtained, and an epoxy resin composition having an appropriate viscosity temperature dependency is obtained.
  • polyamide (PA) particles polyamide (PA) particles
  • thermoplastic resin particles such as acrylic polymers
  • inorganic fillers such as powdered silica
  • liquid rubber such as carboxy-terminated butadiene acrylonitrile copolymer rubber
  • Solid rubbers such as nitrile rubber, rubber particles, core-shell type elastomer particles, phosphorus compounds, flame retardants such as defoaming agents, and the like can also be included.
  • thermosetting resin composition may include a vinyl ester resin or an unsaturated polyester resin as the thermosetting resin.
  • the liquid vinyl ester resin and the solid vinyl ester resin, or the liquid polyester unsaturated polyester and the solid unsaturated polyester are used in combination to prepare a thermosetting resin composition having the above-mentioned viscosity.
  • a tow prepreg showing a tack value and a drape value according to one aspect can be suitably obtained.
  • thermosetting resin composition according to one embodiment of the present invention can be produced by a conventionally used general method as long as each component is kneaded and uniformly dispersed or dissolved.
  • each component constituting the resin composition may be prepared by mixing at the same time, or a curing agent and other additives are appropriately dispersed in a thermosetting resin such as an epoxy resin as necessary.
  • a master batch may be prepared and used to prepare.
  • a mixer such as a three-roll mill, a planetary mixer, a kneader, a universal stirrer, a homogenizer, or a homodispenser can be used.
  • the tow prepreg according to one embodiment of the present invention can be produced by impregnating a reinforcing fiber bundle with a thermosetting resin composition.
  • thermosetting resin composition As a method for supplying the thermosetting resin composition to the reinforcing fiber bundle, after passing the reinforcing fiber bundle (tow) through a resin bath and impregnating the thermosetting resin composition, an excess matrix is formed by an orifice, a roll or the like.
  • Resin bath method in which the resin composition is squeezed out and the resin content is adjusted; a transfer roll type impregnation method (for example, doctor blade) in which a thermosetting resin composition layer is formed on a rotating roll and transferred to a tow
  • Rotating roll method which is an impregnation method using a rotating drum having a magnetic property
  • the on-paper transfer method in which a thermosetting resin layer is formed on paper and transferred onto tow
  • the rotating roll method is preferable in terms of control of the supply amount of the thermosetting resin composition and ease of implementation.
  • thermosetting resin composition is uniformly impregnated into the reinforcing fiber bundle.
  • the thermosetting resin composition is uniformly impregnated, it is possible to prevent the thermosetting resin composition from being unevenly distributed on the surface and thereby preventing a partial increase in tack and difficulty in unraveling, and voids in the produced fiber-reinforced composite material.
  • the mechanical properties can be improved.
  • a plastic backing film is attached to at least one surface.
  • the width is an average width of the tow prepreg +4 to 10 mm, preferably +3 to 8 mm, and the thickness is preferably 0.02 to 0.07 mm.
  • the material of the backing film is not particularly limited as long as it has adequate adhesion to the tow prepreg and releasability, but a stretchable plastic film such as polyethylene or polypropylene is suitable.
  • a known apparatus can be used as an apparatus for automatically laminating tow prepregs (auto tape placement apparatus).
  • an automatic laminating apparatus as shown in JP-A-4-62142, a tow prepreg drawn out from a supply apparatus is wound around a laminating roll, and the laminating roll is rolled along the mold while being pressed against the mold. It is preferable to have a laminated structure. Furthermore, it is preferable that the laminated portion has a function of heating so that peeling after the lamination does not occur.
  • the tow prepreg according to one embodiment of the present invention can be suitably used for an automatic lamination apparatus.
  • an automatic laminate molding method in which the tow prepreg is heated and laminated while having adhesiveness is also an embodiment of the present invention.
  • the “automatic lamination molding method” refers to a molding method using an automatic lamination apparatus.
  • stacked the tow prepreg is also 1 aspect of this invention.
  • the prepreg sheet according to an aspect of the present invention can be suitably manufactured by performing an automatic lamination molding method using, for example, an automatic lamination apparatus.
  • the fiber-reinforced composite material according to one embodiment of the present invention is obtained by press-molding the above-described laminated body of tow prepregs according to one embodiment of the present invention in a mold.
  • any mold can be used as long as the tow prepreg according to one embodiment of the present invention can be cured under high temperature and high pressure.
  • airtight means that an epoxy resin composition constituting the molding material is substantially leaked from the mold even when a sufficient amount of the molding material is filled in the mold and pressed. Say nothing.
  • a mold that keeps the inside airtight is a mold that employs a shear edge structure or a rubber seal structure where the upper mold / lower mold (male mold / female mold) come into contact when the mold is tightened. Further, a mold using any known structure may be used as long as the inside of the mold is kept airtight.
  • the slit tape is a narrow intermediate substrate obtained by slitting a normal unidirectional prepreg into a strip shape with a slitter and winding it on a bobbin such as a paper tube.
  • the difference between the above-described tow prepreg and slit tape is that the former is manufactured by impregnating a resin in a unit of reinforcing fiber bundle and winding it with a constant width, whereas the latter is a single reinforcing fiber bundle.
  • a sheet-shaped unidirectional prepreg impregnated with a thermosetting resin composition in a state of being aligned in the direction is produced, and it is manufactured by slitting it to a predetermined width along the arrangement direction of the reinforcing fiber bundle. is there. Therefore, only matters relating to such differences will be described below. Except for what will be described below, the description of the above-described tow prepreg can be applied to the slit tape, so the description will not be repeated.
  • the slit tape can be produced by slitting a sheet-like unidirectional prepreg impregnated with the thermosetting resin composition in a state where the reinforcing fiber bundles are aligned in one direction with a dedicated slitter.
  • Examples of the method for producing the unidirectional prepreg include a hot melt method in which a film formed from a thermosetting resin composition is attached to a carbon fiber bundle aligned in one direction and then impregnated with heat. .
  • thermosetting resin composition has a curing completion time of 2.0 to 15.0 minutes at 140 ° C. as measured with a curast meter.
  • thermosetting resin composition has a viscosity at 30 ° C. of 1.0 ⁇ 10 4 to 1.0 ⁇ 10 5 Pa ⁇ s and a viscosity at 45 ° C. of 1.0 ⁇ 10 2 to 1
  • thermosetting resin composition has a minimum viscosity of 0.3 to 20 Pa ⁇ s when the viscosity is measured at a heating rate of 2.0 ° C./min, and a temperature range indicating the minimum viscosity is 100 to 100
  • the prepreg tape according to any one of [1] to [3], which is 120 ° C.
  • thermosetting resin composition includes (A) an epoxy resin and (B) a curing agent.
  • thermosetting resin composition further includes (C) a curing aid.
  • thermosetting resin composition the content of the (B) curing agent is 3 to 10 parts by mass with respect to 100 parts by mass of the (A) epoxy resin, and the (C) curing aid
  • the (B) curing agent is at least one compound selected from the group consisting of an amine type curing agent and an amine adduct type curing agent, and the (C) curing auxiliary agent is selected from a urea derivative and an imidazole derivative.
  • a fiber-reinforced composite material obtained by curing the prepreg tape according to any one of [1] to [14].
  • [18] A method for producing a fiber-reinforced composite material by heating and pressing a prepreg tape according to any one of [1] to [14] in a mold.
  • DER858 Oxazolidone ring-containing epoxy resin (manufactured by Dow Chemical Company, trade name “DER858”)
  • jER152 Phenol novolac type epoxy resin (product name “jER152” manufactured by Mitsubishi Chemical Corporation)
  • jER828 bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, trade name “jER828”)
  • Pre-reacted epoxy resin 1: jER828 and Seikacure S (4,4′-diaminodiphenylsulfone, manufactured by Wakayama Seika Co., Ltd.) are mixed at 100: 9 (unit: parts by mass), heated at 150 ° C., and 90 ° C.
  • Pre-reacted epoxy resin 2 jER828 and Seika Cure S (4,4′-diaminodiphenyl sulfone, manufactured by Wakayama Seika Co., Ltd.) 100: 9 (unit: part by mass), heated at 150 ° C., and prereacted so that the viscosity measured with a B-type viscometer at 90 ° C.
  • EXA-1514 Bisphenol S type epoxy resin (manufactured by DIC Corporation, trade name “Epiclon EXA-1514”)
  • TSR-400 Epoxy resin having an oxazolidone ring skeleton (manufactured by DIC Corporation, trade name “Epicron TSR-400”)
  • N-740 Phenol novolac type epoxy resin (manufactured by DIC Corporation, trade name “Epicron N-740”) (Curing agent / Curing aid)
  • DICY7 Dicyandiamide (Mitsubishi Chemical Corporation, trade name “jER Cure DICY7”)
  • Omicure 24 Toluene bis (dimethylurea) (product name “Omicure 24” manufactured by PTI Japan Ltd.)
  • 2MZA-PW 2,4-diamino-6- [2′-methylimidazoly
  • thermosetting resin composition 1 a thermosetting resin composition 1 was obtained.
  • a tow prepreg was prepared using 34-700 24K (tensile strength 4830 MPa, tensile elastic modulus 234 GPa) manufactured by Mitsubishi Rayon Carbon Fiber and Composites having 24,000 filaments as the reinforcing fiber bundle.
  • the reinforcing fiber bundle was sent out from the creel and passed through an opening bar heated to a surface temperature of about 110 ° C., and widened from 11 to 15 mm in width.
  • the widened reinforcing fiber bundle was brought into contact with a touch roll to which the thermosetting resin composition 1 heated to about 60 ° C. was applied, and the thermosetting resin composition 1 was adhered to the reinforcing fiber bundle.
  • the groove was adjusted to about 6 mm by passing a roll with a mark, and the tow prepreg was wound around a paper tube with a winder.
  • the adhesion amount namely, resin content rate of a tow prepreg
  • the adhesion amount with respect to the reinforced fiber bundle was adjusted to 34 mass% by adjusting the clearance between a doctor blade and a touch roll.
  • Example 2 (Preparation of thermosetting resin composition) jER828 and DICY7 were mixed at a mass ratio of 1: 1 and uniformly dispersed using a three roll mill to obtain a paste-like masterbatch. Similarly, jER828 and Omicure 24 were mixed at a mass ratio of 1: 1, and uniformly dispersed using a three roll to obtain a paste-like masterbatch.
  • thermosetting resin composition 2 The pre-reacted epoxy resin 1 and jER828 excluding the amount used for the master batch were weighed in a flask so as to have the ratio shown in Table 1, and uniformly dissolved at 80 ° C. The obtained melt was cooled to about 60 ° C., the above-mentioned master batch was added, and the mixture was stirred until it was uniform to obtain a thermosetting resin composition 2.
  • thermosetting resin composition 2 was used.
  • Example 3 (Preparation of thermosetting resin composition) jER828 and DICY7 were mixed at a mass ratio of 1: 1 and uniformly dispersed using a three roll mill to obtain a paste-like masterbatch. Similarly, jER828 and Omicure 24 were mixed at a mass ratio of 1: 1, and uniformly dispersed using a three roll to obtain a paste-like masterbatch.
  • JER828 and VW-10700 were weighed into a flask at a mass ratio of 11: 1 and dissolved at 150 ° C. until uniform.
  • thermosetting resin composition 3 was obtained.
  • thermosetting resin composition 3 was used.
  • thermosetting resin composition jER828 and DICY7 were mixed at a mass ratio of 1: 1 and uniformly dispersed using a three roll mill to obtain a paste-like masterbatch.
  • jER828 and 2MZA-PW were mixed at a mass ratio of 1: 1, and uniformly dispersed using a three roll to obtain a paste-like masterbatch.
  • thermosetting resin composition 4 TSR-400, N-740, and jER828 excluding the amount used for the master batch were weighed in a flask so as to have the ratio shown in Table 1, and uniformly dissolved at 120 ° C. The obtained melt was cooled to about 60 ° C., the above-mentioned master batch was added, and the mixture was stirred until it became uniform to obtain a thermosetting resin composition 4.
  • thermosetting resin composition 4 was used.
  • thermosetting resin composition jER828 and DICY7 were mixed at a mass ratio of 1: 1 and uniformly dispersed using a three roll mill to obtain a paste-like masterbatch.
  • jER828 and 2MZA-PW were mixed at a mass ratio of 1: 1, and uniformly dispersed using a three roll to obtain a paste-like masterbatch.
  • JER828 and LP-3202 were mixed at a mass ratio of 1: 1 and dispersed uniformly using a three-roll mill to obtain a paste-like masterbatch.
  • thermosetting resin composition 5 TSR-400, N-740, and jER828 excluding the amount used for the master batch were weighed in a flask so as to have the ratio shown in Table 1, and uniformly dissolved at 120 ° C. The obtained melt was cooled to about 60 ° C., the above-described master batch was added, and the mixture was stirred until it became uniform to obtain a thermosetting resin composition 5.
  • thermosetting resin composition 5 was used.
  • thermosetting resin composition jER828 and DICY7 were mixed at a mass ratio of 1: 1 and uniformly dispersed using a three roll mill to obtain a paste-like masterbatch.
  • jER828 and 2MZA-PW were mixed at a mass ratio of 1: 1, and uniformly dispersed using a three roll to obtain a paste-like masterbatch.
  • thermosetting resin composition 6 was obtained.
  • thermosetting resin composition 6 was used, and as a reinforcing fiber bundle, PYROFIL TM TRW40 50L (tensile strength 4120 MPa, tensile elastic modulus 240 GPa) manufactured by Mitsubishi Rayon Co., Ltd. having 50,000 filaments was used, and the width of the tow prepreg A tow prepreg was produced in the same manner as in Example 1 except that was adjusted to about 12 mm.
  • thermosetting resin composition jER828 and DICY7 were mixed at a mass ratio of 1: 1 and uniformly dispersed using a three roll mill to obtain a paste-like masterbatch.
  • jER828 and Omicure 24 were mixed at a mass ratio of 1: 1, and uniformly dispersed using a three roll to obtain a paste-like masterbatch.
  • thermosetting resin composition 7 was obtained.
  • thermosetting resin composition 7 was used.
  • thermosetting resin composition Preparation of thermosetting resin composition
  • the raw materials were weighed into a flask so as to have the ratio shown in Table 1, and dissolved at 150 ° C. until uniform, to obtain a thermosetting resin composition 8.
  • thermosetting resin composition 8 was used, the temperature of the touch roll was 80 ° C., and the temperature of the impregnation roll was 100 ° C.
  • the prepared tow prepreg was too hard, it was difficult to wind it around a paper tube, and a tow prepreg having a sufficient length for passing through an automatic laminating apparatus could not be prepared.
  • thermosetting resin composition jER828 and Vestosint 2159 were mixed at a mass ratio of 3: 1 and dispersed uniformly using a three-roll mill to obtain a paste-like masterbatch.
  • JER828 and E2020P were weighed into a flask at a mass ratio of 2: 1 and dissolved at 150 ° C. until uniform.
  • thermosetting resin composition 9 Preliminary reaction epoxy resin 1, dissolved product of jER828 and E2020P, and the above master batch were weighed in a flask and uniformly dissolved at 80 ° C. to obtain a thermosetting resin composition 9.
  • thermosetting resin composition 9 was used.
  • thermosetting resin composition characteristics ⁇ Evaluation of thermosetting resin composition characteristics> (Viscosity measurement) About the thermosetting resin composition prepared by each Example and the comparative example, the temperature rising viscosity measurement was performed as follows. In the obtained measurement results, the viscosity at 30 ° C. and 45 ° C. was read. Moreover, the viscosity which became the minimum in the temperature rising process was read.
  • Measuring instrument JSR Trading Co., Ltd. Curast Meter 7 TypeP Frequency: 100 cpm Amplitude angle: ⁇ 1/4 ° Die shape: WP-100 ⁇ Evaluation of toe prepreg characteristics> The 23 ° C. tack value, 45 ° C. tack value, and 23 ° C. drape value were measured by the following methods, respectively.
  • the angle formed by the test stand and the tow prepreg that was hung was defined as a drape value ⁇ (°).
  • the angle formed between the test table and the suspended toe prepreg is the horizontal line on the top surface of the test table, line 1, the tip of the test table, and the “point where the circle with a radius of 90 mm centered on the tip of the test table intersects the tow prep” Is the angle formed by line 1 and line 2 when line 2 is defined as line 2.
  • the temperature during measurement was 23 ° C.
  • the automatic laminating device passability is good, it is marked as ⁇ , when the tow prepreg is unwound from the paper tube, thread breakage and fluffing occur, winding while passing through the roll in the automatic laminating device, and When the tow prepreg in the laminate was displaced or peeled off, the automatic laminating device passability was evaluated as x.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Robotics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

強化繊維束に熱硬化性樹脂組成物が含浸しているプリプレグテープであって、23℃、プランジャー押付圧力90kPaで測定したタック値が5~40kPaであり、45℃、プランジャー押付圧力150kPaで測定したタック値が35~100kPaであり、且つ23℃におけるドレープ値が10~40°であり、前記プリプレグテープの長さ方向に沿って配列された一方向繊維を含むプリプレグテープ。

Description

プリプレグテープ及びその利用
 本発明は、航空機部材、自動車部材等に用いられるプリプレグテープ、及びこれを用いた繊維強化複合材料の製造方法等のプリプレグテープの利用に関する。
 強化繊維とマトリックス樹脂とからなる繊維強化複合材料用プリプレグは、その硬化物(繊維強化複合材料)が軽量で優れた機械特性を有するため、スポーツ、航空宇宙、一般産業用途に広く用いられている。繊維強化複合材料は、プリプレグを複数層積層して形成したプリプレグ積層体を、オートクレーブやプレス成形機を用いて加熱加圧成形して製造する。
 プリプレグは通常幅広いシート状であるため、所望の形状に裁断する際に多量の端材が発生する。これに対し、細長いテープ状のプリプレグ(プリプレグテープ)を所望の形状に近い形状に積層すれば、端材を削減することができる。また、プリプレグを手作業で積層すると、積層位置や積層角度に乱れが生じ、成形品に不具合が生じることがある。これに対し、プリプレグを自動積層装置を用いて積層した場合、位置や角度を精度良く、かつ高速で積層できる。これらの点より、プリプレグテープを自動積層装置を用いて積層すれば、高品位の成形体を低コストで製造できる。
日本国公開特許公報「特開2007-297487号公報(公開日:2007年11月15日)」
 上述したように、プリプレグテープを自動積層したのち成形型内でプレス成形することにより、優れた機械物性や耐熱性を有する部材を低コストで作製することが可能となる。更なる低コスト化のためには、高速で自動積層する必要がある。高速で積層するためにプリプレグテープに求められる要件として、
・ボビンからの高速解舒を可能とし、ガイドロールやオートテーププレースメント装置のコンパクションロール(積層ロール)への巻き付きを防止するための、室温での低粘着性、
・オートテーププレースメント装置の積層ヘッドへのフィード可能な室温での適度な硬さ、
・30~60℃程度の積層ヘッド部で加熱されることにより、成形型などの成形治具や下層の(先に積層した)プリプレグテープに容易に貼りつく粘着性
を有する必要がある。
 プリプレグテープの一例として、特許文献1には30℃における粘度が1×10~1×10Pa・s、80℃における粘度が1~300Pa・sであるカチオン重合性樹脂組成物を含むヤーンプリプレグ(トウプリプレグと同義)を用い、成形中あるいは成形後に、活性エネルギー線の照射又は加熱により樹脂を硬化させる技術が開示されている。該文献に開示されたトウプリプレグは、ボビンから巻き出す際の粘着性は小さいが、トウプリプレグ自体が非常に硬く、ドレープ性が低いため、ボビンに巻き取ることが困難である。また30~60℃程度に加熱されたトウプリプレグの粘着性は考慮されていない。さらにこの技術によれば、樹脂の硬化に特別な装置が必要である。
 すなわち、室温での低粘着性、積層ヘッドへのフィード可能な室温での適度な硬さ、及び30~60℃程度に加熱された部分における粘着性をすべて満たしたトウプリプレグを提供することができていなかった。
 上記課題に鑑み、本発明者らは鋭意検討した結果、23℃及び45℃におけるタック値と23℃におけるドレープ値を特定の範囲に制御することにより、高速で自動積層可能なプリプレグテープが得られることを見出し、本発明に至った。
 すなわち本発明の一態様は以下に存する。
 〔1〕 強化繊維束に熱硬化性樹脂組成物が含浸しているプリプレグテープであって、23℃、プランジャー押付圧力90kPaで測定したタック値が5~40kPaであり、45℃、プランジャー押付圧力150kPaで測定したタック値が35~100kPaであり、且つ23℃におけるドレープ値が10~40°であり、前記プリプレグテープの長さ方向に沿って配列された一方向繊維を含むプリプレグテープ。
 本発明の一態様に係る発明によれば、室温で低粘着性であることによる優れた解舒性とガイドロールやコンパクションロールへの巻き付きの防止性、室温で適度な硬さを持つことによる積層ヘッド部での優れた形状保持性、及び高温で粘着性が増すことによる30~60℃程度の積層ヘッドによる被加熱部分の適度な貼り付き性を有し、オートテーププレースメント装置での自動積層プロセスに好適なプリプレグテープを提供することができる。また、本発明に係るプリプレグテープを用いた繊維強化複合材料を提供することができる。
 なお、本発明における「室温」とは、プリプレグテープの作製・成形作業における通常の作業環境の温度を意味し、23℃程度である。
本発明におけるドレープ値の測定方法を表す模式図である。
 本発明の一態様に係る発明は、強化繊維束に熱硬化性樹脂組成物が含浸しているプリプレグテープに関し、その23℃、プランジャー押付圧力90kPaで測定したタック値が5~40kPaであり、45℃、プランジャー押付圧力150kPaで測定したタック値が35~100kPaであり、且つ23℃におけるドレープ値が10~40°であり、前記プリプレグテープの長さ方向に沿って配列された一方向繊維を含んでいることを特徴とする。
 以下詳細に説明する。
 <プリプレグテープ>
 本明細書中に記載するプリプレグテープとしては、連続した強化繊維束にマトリックス樹脂組成物を含浸させてなるテープ状の中間材料であるトウプリプレグであってもよく、強化繊維束を一方向に引き揃えた状態で熱硬化性樹脂組成物を含浸させたシート状のプリプレグを細長くスリットしたスリットテープであってもよい。
 本発明の一態様に係るプリプレグテープは、室温で低粘着性であることによる優れた解舒性とガイドロールやコンパクションロールへの巻き付きの防止性、室温で適度な硬さを持つことによる積層ヘッド部での優れた形状保持性、及び高温で粘着性が増すことによる30~60℃程度の積層ヘッドによる被加熱部分の適度な貼り付き性を有している。このため、本発明の一態様に係るプリプレグテープは、オートテーププレースメント装置での自動積層プロセスに好適なプリプレグテープとなり得る。
  <トウプリプレグ>
 以下、本発明の一態様において、プリプレグテープがトウプリプレグである場合について説明する。
 トウプリプレグとは、例えば、数千~数万本の強化繊維のフィラメントが一方向に配列した強化繊維束に、マトリックス樹脂組成物を含浸させた後、これを紙管等のボビンに巻き取ることにより得られる細幅の中間基材である。
 本発明の一態様における強化繊維束としてはガラス繊維、炭素繊維(なお本発明では、黒鉛繊維も炭素繊維に含まれるものとして扱う)、アラミド繊維、ボロン繊維等、通常の繊維強化複合材料に使用される強化繊維を使用することができる。なかでも軽量かつ高強度で高弾性率を有し、耐熱性、耐薬品性にも優れる点から、炭素繊維が好ましい。炭素繊維としては、ピッチ系、ポリアクリロニトリル(PAN系)、レーヨン系等の種類が挙げられ、いずれの炭素繊維を用いてもよいが、炭素繊維の生産性の面からPAN系炭素繊維がより好ましい。
 炭素繊維としては、ストランド引張強度が4GPa以上、好ましくは4.6GPa以上、引張伸度1.5%以上の高強度炭素繊維が、繊維強化複合材料の強度発現に適している。ここで、ストランド引張強度とは、JIS R7601(1986) に基づいて行うストランド引張試験で測定される強度をいう。
 本発明の一態様で使用する強化繊維束のフィラメント数は、好ましくは1000~60000本、より好ましくは3000~50000本である。フィラメント数を1000本以上とすることによりトウプリプレグとして自動積層する際の生産性を高めることができる。60000本以下とすることにより強化繊維束への熱硬化性樹脂組成物の含浸を容易にすることができる。
 強化繊維の太さは、フィラメント径が1~20μmの範囲であることが好ましく、より好ましくは3~10μmの範囲である。強化繊維の太さを20μm以下とすることにより、引張強度や引張弾性率を高くすることができる。また、強化繊維の太さを1μm以上とすることにより、強化繊束の生産性を高くすることができ製造コストを安くすることができる。
 <23℃におけるタック値>
 トウプリプレグのタック値は、粘着力測定機を用いたプローブタック試験法により測定することができる。プローブタック試験法とは、一定の接地面積を持つ測定子(プランジャー)を一定の圧力で一定の時間押し付けた後、一定の速度で引き剥がすのに必要な力を測定する方法である。
 トウプリプレグのタック値は平均最大ストレス値で表すことができる。なおストレス値とは、プランジャーと試料の接触面に生じる引張応力を意味し、平均最大ストレス値とは、以下に述べる条件で行うプローブタック試験により得られる値である。
 (プローブタック試験条件)
  プランジャーの試料との接触面積:3.1cm
  プランジャー押付時間:10秒
  プランジャー押付圧力:90kPa
  プランジャー上昇速度:1mm/秒
  試料台温度:23℃
 手順:
1)トウプリプレグを試料台にプランジャーとの接地面積以上になるように並べ、測定中にはがれないように固定する。
2)プランジャーを、トウプリプレグに90kPaの下方向の圧力をかけ10秒間押し当てる。
3)プランジャーを1mm/秒で上昇させる。
4)プランジャーを上昇させる間のストレス値の最大値を最大ストレス値とし、合計3回測定して、得られた最大ストレス値の平均値を平均最大ストレス値とする。
 本発明の一態様に係るトウプリプレグの23℃におけるタック値は、プランジャー押付圧力90kPaで測定した場合に、5~40kPaであり、好ましくは20~40kPaである。5kPa以上とすることで、ボビンへの巻き取りが容易にできる。また40kPa以下とすることで、ボビン巻きからの高速解舒が可能になり、また、ガイドロール等への巻き付きを防止できる。
 <45℃におけるタック値>
 45℃におけるタック値は、試料台温度を45℃、プランジャー押付圧力を150kPaとする以外は23℃におけるタック値と同様の測定方法で測定する。
 本発明の一態様に係るトウプリプレグの45℃におけるタック値は、プランジャー押付圧力150kPaで測定した場合に、35~100kPaであり、40~80kPaとすることが好ましい。35kPa以上とすることで、積層部での粘着性を高めることができる。100kPa以下とすることで、積層部のコンパクションロールに巻き付くことを防ぐことができる。
 ここで「積層部」とは、トウプリプレグにおける、オートテーププレースメント装置の積層ヘッドによって成形治具や他のトウプリプレグに押し付けられる部分を意味する。
 <23℃におけるドレープ値>
 23℃におけるドレープ値は以下の方法により得られる値である。
 まず長さ250mmに切り取ったトウプリプレグを水平な試験台の上面に置き、トウプリプレグの先端から200mmの部分を空中に突き出す。残りの50mmの部分にはアルミプレートを載せた上に100g程度の重りを載せ、測定中動かないように固定する。水平になるようにトウプリプレグを保持した後、保持を外して垂下させてから30秒後に、試験台と垂下したトウプリプレグとでなす角度をドレープ値θ(°)とする。試験台と垂下したトウプリプレグとでなす角度とは、試験台上面の水平線を線1、試験台の先端点と「試験台の先端を中心とする半径90mmの円とトウプレグが交わる点」とを結んだ線を線2とした際に、線1と線2がなす角度のことをいうものとする。測定時の温度は23℃である。
 本発明の一態様に係るトウプリプレグの23℃におけるドレープ値は、10°~40°であり、好ましくは20°~35°である。10°以上とすることにより、トウプリプレグをボビンに巻き取る際にスムーズに巻き取ることができる。40°以下とすることにより積層ヘッド部へスムーズにトウプリプレグを供給することができる。
 <熱硬化性樹脂組成物の粘度>
 本発明の一態様に用いる熱硬化性樹脂組成物は、30℃における粘度が1.0×10~1.0×10Pa・sであることが好ましい。30℃における粘度を1.0×10Pa・s以上とすることにより、適度な硬さのトウプリプレグを得ることができ、1.0×10Pa・s以下とすることにより、トウプリプレグをスムーズにボビンに巻き取ることができる。より好ましくは1.0×10~8.0×10Pa・sであり、更に好ましくは1.0×10~5.0×10Pa・sである。
 また45℃における粘度は1.0×10~1.0×10Pa・sであることが好ましい。45℃における粘度を1.0×10Pa・s以上とすることにより、トウプレグを自動積層する際にトウ幅が変動することを防ぐことができる。1.0×10Pa・s以下とすることにより、トウプリプレグを自動積層する際に適切なドレープ性とタックを付与することができる。より好ましくは1.0×10~8.0×10Pa・sであり、更に好ましくは1.0×10~6.0×10Pa・sである。
 また、本発明の一態様に用いる熱硬化性樹脂組成物を2.0℃/分で昇温した昇温粘度測定において、最低粘度は0.3~20Pa・sであることが好ましく、0.5~20Pa・sであることがより好ましい。最低粘度を0.3Pa・s以上とすることにより該トウプリプレグを用いたプレス成形時の樹脂フロー量を抑え、得られる繊維強化複合材料の表面に凹凸が生じるなどの外観不良を防ぐことができる。最低粘度を0.5Pa・s以上とすることにより該トウプリプレグを用いたプレス成形時の樹脂フロー量をさらに抑え、得られる繊維強化複合材料の表面に凹凸が生じるなどの外観不良をさらに防ぐことができる。最低粘度を20Pa・sより低くすることにより樹脂フロー量を増やし、該トウプリプレグを用いたプレス成形の際に、樹脂組成物が金型内の隅々まで充填されない不良発生を防ぐことができる。
 前記最低粘度を示す温度範囲は100~120℃であることが好ましい。前記最低粘度を示す温度範囲が100℃以上であれば、プレス成形時のフロー量が低くなりすぎて、成形体に樹脂が行き渡らないことを防ぐことができる。また、前記最低粘度を示す温度範囲が120℃以下であれば、プレス成形時のフロー量を抑えることができる。
 <熱硬化性樹脂組成物の硬化性>
 本発明の一態様に用いる熱硬化性樹脂組成物は、キュラストメーターで測定した際の140℃における硬化完了時間が、2.0~15.0分であることが好ましく、2.0~10.0分であることがより好ましく、2.0~8.0分であることがさらに好ましい。
 <評価および評価方法>
 キュラストメーターによる測定は、ゴム加硫試験の工業規格JIS K6300に基づいて試験を行う。この時、振動数は100cpm、振幅角度は±1/4°、ダイス形状はWP-100とする。
 キュラストメーターのトルク-時間曲線は、測定されたトルクを縦軸とし、横軸を時間として得られる曲線である。通常、樹脂の硬化反応が進むに従いトルクは上昇し、硬化反応が終わりに近づくとトルクは飽和を迎える。
 本発明における硬化完了時間は、トルク-時間曲線の接線の傾きが最大値となった後、その傾きが最大値の1/20となる時間とする。
 キュラストメーターで測定した際の140℃における硬化完了時間が、15.0分以内であれば、本発明の一態様に用いる熱硬化性樹脂組成物は、硬化性に優れているため、プレス成形におけるプレス型の占有時間を短くすることができ、成形サイクルを早く回すことができる。また、キュラストメーターで測定した際の140℃における硬化完了時間が、2.0分以上であれば、樹脂がフローする時間があるため成形体に樹脂を十分に行き渡らせることができる。
 <樹脂含有率>
 トウプリプレグの樹脂含有率は20~45質量%が好ましく、25~40質量%がさらに好ましい。20質量%以上とすることにより、得られる繊維強化複合材料中のボイドを低減させることができ、45質量%以下とすることにより得られる繊維強化複合材料の機械物性を高くするとともに、トウプリプレグのタックが強くなりすぎることを防ぐことができる。
 <トウプリプレグ幅>
 本発明の一態様におけるトウプリプレグは、強化繊維束のフィラメント数にもよるが、その平均幅が好ましくは2~30mmであり、より好ましくは4~28mmである。また厚みは0.10~0.70mmが好ましく、より好ましくは0.15~0.50mmである。
 <熱硬化性樹脂組成物>
 本発明の一態様に使用する熱硬化性樹脂組成物は、これを用いて作製されるトウプリプレグの23℃及び45℃におけるタック値、並びに23℃におけるドレープ値が、各々前述の範囲を満たすよう、公知の材料から適宜選択し、組み合わせて使用すればよい。
 熱硬化性樹脂は、繊維強化複合材料のマトリックス樹脂として使われている通常の樹脂、例えば不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂を主成分として用いることができるが、特に優れた機械的特性を有する繊維強化複合材料が得られ、成形性も良好なことからエポキシ樹脂が好ましい。
 以下、熱硬化性樹脂としてエポキシ樹脂を含有する熱硬化性樹脂組成物(以下、単に「エポキシ樹脂組成物」と称す)について説明する。
 エポキシ樹脂組成物は、少なくとも(A)エポキシ樹脂、及び(B)硬化剤を含有する。
 (A)エポキシ樹脂としては、グリシジルエーテル型、グリシジルアミン型、グリシジルエステル型、及び脂環式エポキシ型等が挙げられるが、安価で入手しやすく、反応性に優れる点からグリシジルエーテル型またはグリシジルアミン型を含むことが好ましい。
 これらのエポキシ樹脂は1種を単独で使用してもよいし、2種以上を併用してもよい。
 2種以上を併用する場合、室温での低粘着性及び積層ヘッドへのフィード可能な適度な硬さ、更に30~60℃程度に加熱された場合の十分な粘着性を併せ持つトウプリプレグを得るには、室温で液状のエポキシ樹脂と固形のエポキシ樹脂を組み合わせて使用することが好ましい。
 室温で液状のエポキシ樹脂の含有量は、(A)エポキシ樹脂100質量部中10~70質量部であることが好ましく、10~60質量部であることがより好ましく、10~50質量部であることがより好ましく、15~50質量部であることがさらに好ましい。10質量部以上とすることにより、トウプリプレグに適度なドレープ性を与え、70質量部以下とすることにより、トウプリプレグに室温における適度な硬さを与えることができ、60質量部以下とすることにより、トウプリプレグに室温におけるより適度な硬さを与えることができる。
 室温で液状のエポキシ樹脂の市販品としては、例えばjER825、826、827、828、834(以上、三菱化学(株)製)、エピクロン850(DIC(株)製)、エポトートYD-128(新日鉄住金化学(株)製)、DER-331、DER-332(ダウケミカル社製)、ARALDITE LY556(ハンツマン・アドバンスト・マテリアル社製)などのビスフェノールA型エポキシ樹脂;
jER806、807、1750(以上、三菱化学(株)製)、エピクロン830(DIC(株)製)、エポトートYD-170、エポトートYD-175(以上、新日鉄住金化学(株)製)などのビスフェノールF型エポキシ樹脂;
jER152(三菱化学(株)製)、エピクロンN-730A(DIC(株)製)、DEN-425(ダウケミカル社製)などのフェノールノボラック型エポキシ樹脂;
jER604、630(以上、三菱化学(株)製)、MY0600、MY0500(以上、ハンツマン・アドバンスト・マテリアル社製)等のアミン型エポキシ樹脂;セロキサイド2021P、セロキサイド8000((株)ダイセル製)等の脂環式エポキシ樹脂;等が挙げられる。これらの室温で液状のエポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 室温で液状のエポキシ樹脂としては、硬化物の靱性と耐熱性のバランスに優れる点からビスフェノールA型エポキシ樹脂及びフェノールノボラック型エポキシ樹脂が好ましい。
 室温で液状のエポキシ樹脂として、フェノールノボラック型エポキシ樹脂を含む場合、フェノールノボラック型エポキシ樹脂の含有量は、(A)エポキシ樹脂100質量部中10~60質量部であることが好ましく、20~60質量部であることがより好ましい。10質量部以上とすることによりエポキシ樹脂組成物の硬化性を良好とすることができ、硬化物の耐熱性を良好とすることができる。また、60質量部以下とすることにより硬化物が脆くなることを防ぐことができる。
 室温で固形のエポキシ樹脂は、室温で固形のエポキシ樹脂及び室温で半固形のエポキシ樹脂を指す。室温で半固形のエポキシ樹脂とは、20℃で固形であり、40℃で液状であるエポキシ樹脂を指す。
 室温で固形のエポキシ樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 室温で固形のエポキシ樹脂の含有量は、(A)エポキシ樹脂100質量部中30~90質量部であることがより好ましく、40~90質量部であることがより好ましく、50~90質量部であることがより好ましく、50~85質量部であることがさらに好ましい。30質量部以上とすることにより、トウプリプレグに室温における適度な硬さと適度なタックを与え、40質量部以上とすることにより、トウプリプレグに室温におけるより適度な硬さとより適度なタックを与え、90質量部以下とすることにより、トウプリプレグに適度なドレープ性を与えることができる。
 室温で固形のエポキシ樹脂の市販品としては、例えばjER154、157S70(以上、三菱化学(株)製)、エピクロンN-770、エピクロンN-740、エピクロンN-775(以上、DIC(株)製)などのフェノールノボラック型エポキシ樹脂;
エピクロンN-660、エピクロンN-665、エピクロンN-670、エピクロンN-673、エピクロンN-695(以上、DIC(株)製)、EOCN-1020、EOCN-102S、EOCN-104S(以上、日本化薬(株)製)などのクレゾールノボラック型エポキシ樹脂;
jER1001、1002、1003(以上、三菱化学(株)製)などのビスフェノールA型エポキシ樹脂;
jER4004P、4005P(以上、三菱化学(株)製)などのビスフェノールF型エポキシ樹脂;
YX4000、YL6121H(以上、三菱化学(株)製)などのビフェニル型エポキシ樹脂;
HP4700(DIC(株)製)などのナフタレン型エポキシ樹脂;
HP7200(DIC(株)製)などのジシクロペンタジエン型エポキシ樹脂;
TSR-400(DIC(株)製)、DER858(ダウケミカル社製)、AER 4152(旭化成イーマテリアルズ(株)製)などのオキサゾリドン環骨格を有するエポキシ樹脂;
EXA-1514、EXA-1517(DIC(株)製)などのビスフェノールS型エポキシ樹脂;
等が挙げられる。
 室温で固形のエポキシ樹脂として、オキサゾリドン環含有エポキシ樹脂を含む場合、オキサゾリドン環含有エポキシ樹脂の含有量は、(A)エポキシ樹脂100質量部中10~90質量部であることが好ましく、20~70質量部であることがより好ましい。10質量部以上とすることにより硬化物の耐熱性と靱性のバランスを良好にすることができ、90質量部以下とすることにより硬化物の耐熱性の低下を防ぐことができる。
 また室温で固形のエポキシ樹脂としては、下記式(1)及び(2)で表される構造を含むエポキシ樹脂を用いてもよい。このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂と4,4’-ジアミノジフェニルスルホンとの予備反応物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 ビスフェノールA型エポキシ樹脂と4,4’-ジアミノジフェニルスルホンとの反応は、例えばPCT公開パンフレットWO2013/081060などの記載に準じて行えばよい。
 室温で固形のエポキシ樹脂として、ビスフェノールA型エポキシ樹脂と4、4’-ジアミノジフェニルスルホンとの予備反応物を含む場合、当該予備反応物は、(A)エポキシ樹脂100質量部中10~90質量部であることが好ましく、20~70質量部であることがより好ましい。10質量部以上とすることによりエポキシ樹脂組成物の硬化性を良好にすることができ、90質量部以下とすることにより硬化物が脆くなることを防ぐことができる。
 室温で固形のエポキシ樹脂としては、硬化物の耐熱性と靱性のバランスに優れる点からウレタン及びイソシアネート変性エポキシ樹脂またはビスフェノールA型エポキシ樹脂と4,4’-ジアミノジフェニルスルホンとの予備反応物が好ましく、硬化反応が速やかに進行する点からビスフェノールA型エポキシ樹脂と4,4’-ジアミノジフェニルスルホンとの予備反応物がより好ましい。
 (B)硬化剤としては、例えばアミン型、アミンアダクト型、酸無水物型(カルボン酸無水物等)、フェノール型(フェノールノボラック樹脂等)、メルカプタン型、ルイス酸アミン錯体型、オニウム塩型などが挙げられるが、エポキシ樹脂を硬化させうるものであればどのような構造のものでもよい。これらの中でも、硬化物の物性に優れる点からアミン型及びアミンアダクト型の硬化剤が好ましい。これら硬化剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 アミン型の硬化剤としては、例えばジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン、脂肪族アミン、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、及びこれらの異性体、変成体などがある。これらの中でも、トウプリプレグの保存安定性に優れる点ではジシアンジアミドが好ましい。ジシアンジアミドの市販品としては、例えば、jERキュアDICY7(三菱化学(株)製)等が挙げられる。
 アミンアダクト型の硬化剤の市販品としては、例えば、アミキュアPN-23、PN-50(以上、味の素ファインテクノ(株)製)等が挙げられる。
 (B)硬化剤の含有量は、(A)エポキシ樹脂100質量部に対し、3~10質量部が好ましく、3~8質量部がより好ましく、4~8質量部がさらに好ましい。(B)硬化剤の含有量が3質量部以上であれば、エポキシ樹脂組成物中に含まれるエポキシ樹脂を十分に硬化することができる。一方、10質量部以下であれば、靱性の高い樹脂硬化物を得ることができる。
 (B)硬化剤の硬化活性を高めるために、硬化助剤を用いてもよい。
 例えば硬化剤がジシアンジアミドである場合、硬化助剤としては尿素誘導体又はイミダゾール誘導体が好ましい。また、これら硬化助剤は2種類以上を組み合わせて用いてもよい。
 尿素誘導体として用いられる化合物の例としては、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素(DCMU)、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、トルエンビスジメチルウレア(TBDMU)等の尿素誘導体が好ましい。中でも硬化速度向上の観点からトルエンビスジメチルウレア(TBDMU)が特に好ましい。TBDMUの市販品としては、例えば、Omicure24(ピイ・ティ・アイ・ジャパン(株)製)が挙げられる。
 イミダゾール誘導体は、その構造の中に非共有電子対を有する窒素原子を有し、これが(A)成分のエポキシ基やジシアンジアミドを活性化し、硬化を促進する。イミダゾール誘導体としては、特に限定されないが、1H-イミダゾールの1位、2位、4位、5位を任意の置換基に置換した化合物を指す。イミダゾール誘導体は、無置換であってもよく、1つの置換基で置換されていてもよく、複数の置換基で置換されていてもよい。例えば、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(市販品としては、例えば、2MZA-PW(四国化成工業(株)製))、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(市販品としては、例えば、2PHZ-PW(四国化成工業(株)製))等を挙げることができる。
 硬化助剤の含有量は、(A)エポキシ樹脂100質量部に対し、0.5~10質量部が好ましく、1~8質量部がより好ましい。硬化助剤の含有量が0.5質量部以上であれば、硬化速度を高める効果を十分に発現させることができるため好ましく、10質量部以下であれば、靱性の高い樹脂硬化物を得ることができるため好ましい。
 その他の成分として、前記エポキシ樹脂組成物は、これを用いて得られる繊維強化複合材料の靱性向上のため熱可塑性樹脂を含むことができる。熱可塑性樹脂としては、例えば、ポリビニルホルマール(PVF)、ポリメチルメタクリレート(PMMA)、ポリエーテルスルホン(PES)、ポリエーテルイミド(PEI)等が挙げられる。中でも繊維強化複合材料の靱性を向上させ、耐熱性に優れることから、PVFまたはPESが好ましい。
 これらの熱可塑性樹脂の含有量は、(A)エポキシ樹脂100質量部に対し、0.2~45質量部が好ましく、0.5~25質量部がより好ましい。熱可塑性樹脂の含有量が0.2質量部以上であれば、繊維強化複合材料の靱性を向上させる効果を十分に発揮させることができるため好ましく、45質量部以下であれば、適度なタックを有するトウプリプレグが得られ、また粘度の温度依存性が適切なエポキシ樹脂組成物が得られるため好ましい。また作製する繊維強化複合材料の用途に応じ、ポリアミド(PA)粒子、アクリル系重合体等の熱可塑性樹脂粒子、粉末状シリカ等の無機充填材、カルボキシ末端ブタジエンアクリロニトリル共重合ゴム等の液状ゴム、ニトリルゴム等の固形ゴム、ゴム粒子、コアシェル型エラストマー粒子、リン化合物、脱泡剤等の難燃剤等も含むことができる。
 なお、本発明の一態様に係る熱硬化性樹脂組成物は、前述のように、熱硬化性樹脂としてビニルエステル樹脂や不飽和ポリエステル樹脂を含むものであってもよく、これらの場合も、室温で液状のビニルエステル樹脂と固形のビニルエステル樹脂、或いは室温で液状の不飽和ポリエステルと固形の不飽和ポリエステルを併用し、前述した粘度の熱硬化性樹脂組成物を調製することにより、本発明の一態様に係るタック値及びドレープ値を示すトウプリプレグを好適に得ることができる。
 本発明の一態様に係る熱硬化性樹脂組成物は、各成分が混練され、均一に分散または溶解する限り、従来から用いられる一般的な方法にて製造することができる。
 例えば、該樹脂組成物を構成する各成分を同時に混合して調製してもよく、あるいは、必要に応じて予めエポキシ樹脂等の熱硬化性樹脂に、硬化剤やその他添加物を適宜分散させたマスターバッチを調製し、これを用いて調製してもよい。混合操作には、三本ロールミル、プラネタリミキサー、ニーダー、万能攪拌機、ホモジナイザー、ホモディスペンサー等の混合機を用いることができる。
 <トウプリプレグの製造方法>
 本発明の一態様に係るトウプリプレグは熱硬化性樹脂組成物を強化繊維束に含浸させることにより作製することができる。
 強化繊維束への熱硬化性樹脂組成物の供給方法としては、強化繊維束(トウ)をレジンバス内に通過させて熱硬化性樹脂組成物を含浸させた後、オリフィス、ロール等によって余剰のマトリックス樹脂組成物を搾り取り樹脂含有量を調整する「レジンバス法」;回転ロール上に熱硬化性樹脂組成物層を形成し、これをトウに転写するような転写ロール式の含浸法(例えばドクターブレードを持つ回転ドラムによる含浸法)である「回転ロール法」;紙上に熱硬化性樹脂層を形成し、トウに転写する「紙上転写法」;特開平09-176346号公報、特開2005-335296号公報、特開2006-063173号公報等に記載された「ノズル滴下法」などが挙げられる。これらの中でも、熱硬化性樹脂組成物の供給量の制御や実施の容易さの点で、回転ロール法が好ましい。
 熱硬化性樹脂組成物は強化繊維束に均一に含浸されていることが好ましい。均一に含浸されていることにより、表面に熱硬化性樹脂組成物が偏在することで部分的にタックが増し解舒が困難になることを防止できるとともに、作製した繊維強化複合材料中のボイドを低減させることができ機械的特性が向上する。
 <バッキングフィルム>
 また、本発明の一態様に係るトウプリプレグには、巻き取った後にトウプリプレグ同士が貼り付くことを防ぐため、少なくとも片面にプラスチック製バッキングフィルムが貼付されていることが好ましい。その幅はトウプリプレグの平均幅+4~10mm、好ましくは+3~8mmであり、厚みは0.02~0.07mmが好ましい。バッキングフィルムの材質は、トウプリプレグとの密着性及び離型性を適度に有していれば特に制限されないが、ポリエチレン、ポリプロピレンなどの伸縮性のあるプラスチックフィルムが好適である。
 <自動積層装置>
 トウプリプレグを自動積層する装置(オートテーププレースメント装置)としては公知の装置を用いることができる。自動積層装置としては特開平4-62142号公報に示されるように、供給装置から引き出されたトウプリプレグを積層ロールに巻きかけ、型に押圧しつつ型に沿って積層ロールを転動させることによって積層する構成を有することが好ましい。さらに、積層後の剥がれが生じないように、積層部において加熱を行える機能を有していることが好ましい。本発明の一態様に係るトウプリプレグは、自動積層装置に好適に用いることができる。換言すれば、トウプリプレグを加熱し粘着性を持たせて積層する、自動積層成形方法も本発明の一態様である。本明細書において「自動積層成形方法」とは、自動積層装置を用いる成形方法をいう。また、トウプリプレグを積層したプリプレグシート(積層体)も本発明の一態様である。本発明の一態様に係るプリプレグシートは、例えば、自動積層装置を用いて自動積層成形方法を行なうことで好適に製造することができる。
 <繊維強化複合材料の製造>
 本発明の一態様に係る繊維強化複合材料は、上述した本発明の一態様に係るトウプリプレグの積層体を金型内でプレス成形することにより得られる。
 プレス成形に用いられる金型に特に制限は無く、本発明の一態様に係るトウプリプレグを高温高圧下で硬化させることのできる金型であればよく、金型を閉じた時に該金型の内部を気密に保つことのできる構造を有する金型を用いることが好ましい。ここで、気密とは、金型を満たすのに十分な量の成形材料を金型内に入れ、加圧した際にも成形材料を構成するエポキシ樹脂組成物が金型から実質的に漏れ出さないことをいう。
 内部を気密に保つ金型としては、金型を締めた時に上型・下型(雄型・雌型)が接触する部分にシアエッジ構造やゴムシール構造を採用した金型が挙げられる。また、金型の内部を気密に保つものであれば公知のいかなる構造を採用した金型であってもよい。
  <スリットテープ>
 以下プリプレグテープがスリットテープである場合について詳細に説明する。
 スリットテープは、通常の一方向プリプレグをスリッターで短冊状にスリットした後、これを紙管等のボビンに巻き取ることにより得られる細幅の中間基材である。
 尚、上述したトウプリプレグとスリットテープとの相違点は、前者は強化繊維束単位で樹脂を含浸させ幅を一定にして巻き取ることによって製造されるのに対して、後者は強化繊維束を一方向に引き揃えた状態で熱硬化性樹脂組成物を含浸させたシート状の一方向プリプレグを作製し、それを強化繊維束の配列方向に沿って所定の幅にスリットして製造される点である。そこで、かかる相違点に関連する事項のみを以下に説明する。以下に説明すること以外については、上述したトウプリプレグについての説明を、スリットテープにも適用できるので説明を繰り返さない。
 <スリットテープの製造方法>
 スリットテープは、強化繊維束を一方向に引き揃えた状態で熱硬化性樹脂組成物を含浸させたシート状の一方向プリプレグを、専用スリッターで短冊状にスリットすることにより作製することができる。前記一方向プリプレグの製造方法としては、熱硬化性樹脂組成物をフィルム化したものを、一方向に引き揃えた炭素繊維束に貼り付けてから熱をかけて含浸させるホットメルト方式などが挙げられる。
 〔まとめ〕
 〔1〕 強化繊維束に熱硬化性樹脂組成物が含浸しているプリプレグテープであって、23℃、プランジャー押付圧力90kPaで測定したタック値が5~40kPaであり、45℃、プランジャー押付圧力150kPaで測定したタック値が35~100kPaであり、且つ23℃におけるドレープ値が10~40°であり、前記プリプレグテープの長さ方向に沿って配列された一方向繊維を含むプリプレグテープ。
 〔2〕 前記熱硬化性樹脂組成物は、キュラストメーターで測定した際の硬化完了時間が140℃で2.0~15.0分である、〔1〕に記載のプリプレグテープ。
 〔3〕 前記熱硬化性樹脂組成物は、30℃における粘度が1.0×10~1.0×10Pa・sであり、且つ45℃における粘度が1.0×10~1.0×10Pa・sである、〔1〕または〔2〕に記載のプリプレグテープ。
 〔4〕 前記熱硬化性樹脂組成物は、昇温速度2.0℃/分で粘度測定した際の最低粘度が0.3~20Pa・sであり、前記最低粘度を示す温度範囲が100~120℃である、〔1〕~〔3〕のいずれか一つに記載のプリプレグテープ。
 〔5〕 前記プリプレグテープの質量に対する前記熱硬化性樹脂組成物の含有率が20~45質量%である、〔1〕~〔4〕のいずれか一つに記載のプリプレグテープ。
 〔6〕 前記プリプレグテープの平均幅が2~30mmである、〔1〕~〔5〕のいずれか一つに記載のプリプレグテープ。
 〔7〕 前記強化繊維束のフィラメント数が1000~60000本である、〔1〕~〔6〕のいずれか一つに記載のプリプレグテープ。
 〔8〕 前記熱硬化性樹脂組成物が、(A)エポキシ樹脂、及び(B)硬化剤を含む、〔1〕~〔7〕のいずれか一つに記載のプリプレグテープ。
 〔9〕 前記熱硬化性樹脂組成物が、更に(C)硬化助剤を含む、〔8〕に記載のプリプレグテープ。
 〔10〕 前記(A)エポキシ樹脂が、室温で固形のエポキシ樹脂と室温で液状のエポキシ樹脂とを含む、〔8〕または〔9〕に記載のプリプレグテープ。
 〔11〕 前記室温で固形のエポキシ樹脂が、ビスフェノールA型エポキシ樹脂と4、4’-ジアミノジフェニルスルホンとの予備反応物を含む、〔8〕~〔10〕のいずれか一つに記載のプリプレグテープ。
 〔12〕 前記室温で液状のエポキシ樹脂がフェノールノボラック型エポキシ樹脂又はビスフェノールA型エポキシ樹脂を含む、〔8〕~〔11〕のいずれか一つに記載のプリプレグテープ。
 〔13〕 前記熱硬化性樹脂組成物中、前記(A)エポキシ樹脂100質量部に対して、前記(B)硬化剤の含有量が3~10質量部であり、且つ前記(C)硬化助剤の含有量が0.5~10質量部である、〔8〕~〔12〕のいずれか一つに記載のプリプレグテープ。
 〔14〕 前記(B)硬化剤が、アミン型硬化剤およびアミンアダクト型硬化剤から成る群から選ばれる少なくとも1種の化合物であり、前記(C)硬化助剤が、尿素誘導体およびイミダゾール誘導体から成る群から選ばれる少なくとも1種の化合物である、〔8〕~〔13〕のいずれか一つに記載のプリプレグテープ。
 〔15〕 〔1〕~〔14〕のいずれか一つに記載のプリプレグテープを硬化させた繊維強化複合材料。
 〔16〕 〔1〕~〔14〕のいずれか一つに記載のプリプレグテープを加熱し粘着性をもたせて積層する、自動積層成形方法。
 〔17〕 〔1〕~〔14〕のいずれか一つに記載のプリプレグテープを積層した積層体。
 〔18〕 〔1〕~〔14〕のいずれか一つに記載のプリプレグテープを積層したものを、金型内にて加熱加圧することによる繊維強化複合材料の製造方法。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。特に断りが無い限り、材料(原料)の配合比率は全て質量部で表すものとする。
 実施例で用いた樹脂原料を以下に示す。
 (エポキシ樹脂)
DER858:オキサゾリドン環含有エポキシ樹脂(ダウケミカル社製、商品名「DER858」)
jER152:フェノールノボラック型エポキシ樹脂(三菱化学(株)製、商品名「jER152」)
jER828:ビスフェノールA型エポキシ樹脂(三菱化学(株)製、商品名「jER828」)
予備反応エポキシ樹脂1:jER828とセイカキュアS(4、4‘-ジアミノジフェニルスルホン、和歌山精化(株)製)を100:9(単位:質量部)で混合し、150℃で加熱し、90℃においてB型粘度計で測定した粘度が9Pa・sとなるように予備反応させたもの
予備反応エポキシ樹脂2:jER828とセイカキュアS(4、4‘-ジアミノジフェニルスルホン、和歌山精化(株)製)を100:9(単位:質量部)で混合し、150℃で加熱し、90℃においてB型粘度計で測定した粘度が3Pa・sとなるように予備反応させたもの
2021P:脂環式エポキシ樹脂((株)ダイセル製、製品名「セロキサイド2021P」)
EXA-1514:ビスフェノールS型エポキシ樹脂(DIC(株)製、商品名「エピクロンEXA-1514」)
TSR-400:オキサゾリドン環骨格を有するエポキシ樹脂(DIC(株)製、商品名「エピクロン TSR-400」)
N-740:フェノールノボラック型エポキシ樹脂(DIC(株)製、商品名「エピクロン N-740」)
 (硬化剤・硬化助剤)
DICY7:ジシアンジアミド(三菱化学(株)製、商品名「jERキュアDICY7」)
Omicure24:トルエンビスジメチルウレア(ピイ・ティ・アイ・ジャパン(株)製、商品名「Omicure24」)
2MZA-PW:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(四国化成工業(株)製、商品名「2MZA-PW」)
 (熱可塑性樹脂)
VW-10700:ポリエーテルスルホン(ソルベイ社製、商品名「Virantage
 VW-17000」)
スミカエクセル5003P:ポリエーテルスルホン(住友化学(株)製、商品名「スミカエクセル5003P」)
E2020P:ポリエーテルスルホン(BASF社製、商品名「ULTRASON E2020P」)
 (熱可塑性樹脂粒子)
Vestosint2159:ポリアミド12粒子(エボニク社製、商品名「Vestosint 2159」)
LP-3202:アクリル系重合体(三菱レイヨン(株)製、商品名「ダイヤナールLP-3202」)
 [実施例1]
 (熱硬化性樹脂組成物の調製)
 jER152とDICY7を質量比1:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。同様に、jER152とOmicure24を質量比1:1で混合し、三本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。
 表1に示す比率となるように、DER858と、マスターバッチに用いた量を除いたjER152をフラスコに秤量し、120℃にて均一に溶解した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、熱硬化性樹脂組成物1を得た。
 (トウプリプレグの作製)
 強化繊維束として、フィラメント数24,000本のMitsubishi Rayon Carbon Fiber and Composites社製の34-700 24K(引張強度4830MPa、引張弾性率234GPa)を用いてトウプリプレグを作製した。
 具体的には、クリールから強化繊維束を送り出し、表面温度が110℃程度に加温された開繊バーを通し、幅11から15mmに拡幅させた。拡幅された強化繊維束を、60℃程度に加温された熱硬化性樹脂組成物1が塗布されたタッチロールに接触させ、強化繊維束に熱硬化性樹脂組成物1を付着させた。熱硬化性樹脂組成物1が付着した強化繊維束を、80℃程度に加温された含浸ロールを通過させることにより、熱硬化性樹脂組成物1を強化繊維束内部まで含浸させた後、溝のついたロールを通すことによりトウ幅を6mm程度に調整してから、ワインダーにて紙管に巻き取りトウプリプレグを作製した。なお、ドクターブレードとタッチロール間のクリアランスを調整することによって、強化繊維束に対する熱硬化性樹脂組成物1の付着量(即ちトウプリプレグの樹脂含有率)を34質量%に調整した。
 [実施例2]
 (熱硬化性樹脂組成物の調製)
 jER828とDICY7を質量比1:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。同様に、jER828とOmicure24を質量比1:1で混合し、三本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。
 表1に示す比率となるように、予備反応エポキシ樹脂1と、マスターバッチに用いた量を除いたjER828をフラスコに秤量し、80℃にて均一に溶解した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、熱硬化性樹脂組成物2を得た。
 (トウプリプレグの作製)
 熱硬化性樹脂組成物2を用いた以外は実施例1と同様にして、トウプリプレグを作製した。
 [実施例3]
 (熱硬化性樹脂組成物の調製)
 jER828とDICY7を質量比1:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。同様に、jER828とOmicure24を質量比1:1で混合し、三本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。
 jER828とVW-10700を質量比11:1でフラスコに秤量し、150℃にて均一になるまで溶解した。
 予備反応エポキシ樹脂2と、jER828とVW-10700の溶解物をフラスコに秤量し、80℃にて均一に溶解した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、熱硬化性樹脂組成物3を得た。
 (トウプリプレグの作製)
 熱硬化性樹脂組成物3を用いた以外は実施例1と同様にして、トウプリプレグを作製した。
 [実施例4]
 (熱硬化性樹脂組成物の調製)
 jER828とDICY7を質量比1:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。同様に、jER828と2MZA-PWを質量比1:1で混合し、三本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。
 表1に示す比率となるように、TSR-400と、N-740と、マスターバッチに用いた量を除いたjER828をフラスコに秤量し、120℃にて均一に溶解した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、熱硬化性樹脂組成物4を得た。
 (トウプリプレグの作製)
 熱硬化性樹脂組成物4を用いた以外は実施例1と同様にして、トウプリプレグを作製した。
 [実施例5]
 (熱硬化性樹脂組成物の調製)
 jER828とDICY7を質量比1:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。同様に、jER828と2MZA-PWを質量比1:1で混合し、三本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。
 jER828とLP-3202を質量比1:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。
 表1に示す比率となるように、TSR-400と、N-740と、マスターバッチに用いた量を除いたjER828をフラスコに秤量し、120℃にて均一に溶解した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、熱硬化性樹脂組成物5を得た。
 (トウプリプレグの作製)
 熱硬化性樹脂組成物5を用いた以外は実施例1と同様にして、トウプリプレグを作製した。
 [実施例6]
 (熱硬化性樹脂組成物の調製)
 jER828とDICY7を質量比1:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。同様に、jER828と2MZA-PWを質量比1:1で混合し、三本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。
 表1に示す比率となるように、TSR-400と、N-740と、マスターバッチに用いた量を除いたjER828をフラスコに秤量し、120℃にて均一に溶解した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、熱硬化性樹脂組成物6を得た。
 (トウプリプレグの作製)
 熱硬化性樹脂組成物6を用い、強化繊維束として、フィラメント数50,000本の三菱レイヨン(株)製のPYROFILTM TRW40 50L(引張強度4120MPa、引張弾性率240GPa)を用い、トウプリプレグの幅を12mm程度に調整した以外は実施例1と同様にして、トウプリプレグを作製した。
 [比較例1]
 (熱硬化性樹脂組成物の調製)
 jER828とDICY7を質量比1:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。同様に、jER828とOmicure24を質量比1:1の比率で混合し、三本ロールを用いて均一に分散させてペースト状のマスターバッチを得た。
 表1に示す比率となるように、予備反応エポキシ樹脂1と、マスターバッチに用いた量を除いたjER828をフラスコに秤量し、80℃にて均一に溶解した。得られた溶解物を60℃程度まで降温させ、上述のマスターバッチを加え、均一になるまで撹拌し、熱硬化性樹脂組成物7を得た。
 (トウプリプレグの作製)
 熱硬化性樹脂組成物7を用いた以外は実施例1と同様にして、トウプリプレグを作製した。
 [比較例2]
 (熱硬化性樹脂組成物の調製)
 表1に示す比率となるように原料をフラスコに秤量し、150℃にて均一になるまで溶解し、熱硬化性樹脂組成物8を得た。
 (トウプリプレグの作製)
 熱硬化性樹脂組成物8を用い、タッチロールの温度を80℃、含浸ロールの温度を100℃とした以外は実施例1と同様にして、トウプリプレグを作製した。
 作製したトウプリプレグは硬すぎたため、紙管に巻き付けることが困難であり、自動積層装置に通すための十分な長さのトウプリプレグを作製することができなかった。
 [比較例3]
 (熱硬化性樹脂組成物の調製)
 jER828とVestosint2159を質量比3:1で混合し、三本ロールミルを用いて均一に分散させてペースト状のマスターバッチを得た。
 jER828とE2020Pを質量比2:1でフラスコに秤量し、150℃にて均一になるまで溶解した。
 予備反応エポキシ樹脂1と、jER828とE2020Pの溶解物、上述のマスターバッチをフラスコに秤量し、80℃にて均一に溶解し、熱硬化性樹脂組成物9を得た。
 (トウプリプレグの作製)
 熱硬化性樹脂組成物9を用いた以外は比較例2と同様にして、トウプリプレグを作製した。
 なお、比較例2と比較例3はタック・ドレープ性、自動積層装置通過性の確認だけのためにトウプリプレグを作製しており、熱硬化性樹脂組成物8と熱硬化性樹脂組成物9に硬化剤は含まれていない。比較例2はトウプリプレグのドレープ性が低すぎたためボビンに巻き取ることが困難であったため、自動積層装置通過性の評価は行っていない。
 <熱硬化性樹脂組成物特性の評価>
 (粘度測定)
 各実施例及び比較例で調製した熱硬化性樹脂組成物につき、以下の通り昇温粘度測定を行った。得られた測定結果において30℃、45℃における粘度を読み取った。また、昇温過程で最低となる粘度を読み取った。
 装置:AR-G2(ティー・エー・インスツルメント社製)
 使用プレート:直径25mmのパラレルプレート
 プレートギャップ:0.5mm
 測定周波数:10rad/sec
 昇温速度:2.0℃/min
 ストレス:300Pa
 (熱硬化性樹脂組成物の硬化完了時間)
 以下の条件で、JIS K6300に準じた140℃における硬化完了時間を測定した。なお、硬化完了時間は、トルク-時間曲線の接線の傾きが最大値となった後、その傾きが最大値の1/20となる時間とした。
  測定機器:JSRトレーディング株式会社製 キュラストメーター7TypeP
  振動数:100cpm
  振幅角度:±1/4°
  ダイス形状:WP-100
 <トウプリプレグ特性の評価>
 23℃タック値、45℃タック値、23℃ドレープ値はそれぞれ以下の方法で測定した。
 〔23℃におけるタック値〕
 以下の条件下で行ったプローブタック試験により得られる平均最大ストレス値を、23℃におけるタック値とした。
 (プローブタック試験条件)
 装置:タックテスターTA-500(株式会社ユービーエム製)
 プランジャーの試料との接触面積:3.1cm2
 プランジャー押付時間:10秒
 プランジャー押付圧力:90kPa
 プランジャー上昇速度:1mm/秒
 試料台温度:23℃
 手順:
1)トウプリプレグを試料台に置き固定した。
2)プランジャーを、トウプリプレグに90kPaの下方向の圧力をかけ10秒間押し当てた。
3)プランジャーを1mm/秒で上昇させた。
4)プランジャーを上昇させる間のストレス値の最大値を最大ストレス値とし、合計3回測定して、得られた最大ストレス値の平均値を平均最大ストレス値とした。
 〔45℃におけるタック値〕
 45℃におけるタック値は、試料台温度を45℃、プランジャー押付圧力を150kPaとした以外は23℃におけるタック値と同様の測定方法で測定した。
 〔23℃におけるドレープ値〕
 長さ250mmに切り取ったトウプリプレグを水平な試験台の上面に置き、トウプリプレグの先端から200mmの部分を空中に突き出した。残りの50mmの部分にはアルミプレートを載せた上に100g程度の重りを載せ、測定中動かないように固定した。
 水平になるようにトウプリプレグを保持した後、保持を外して垂下させてから30秒後に、試験台と垂下したトウプリプレグとでなす角度をドレープ値θ(°)とした。なお、試験台と垂下したトウプリプレグとでなす角度とは、試験台上面の水平線を線1、試験台の先端点と「試験台の先端を中心とする半径90mmの円とトウプレグが交わる点」とを結んだ線を線2とした際に、線1と線2がなす角度のことをいう。測定時の温度は23℃とした。
 <自動積層装置通過性>
 トウプリプレグをBA Composites社、STAXX Compact 1700にてプレースメントテストを行った。巻出し速度は13m/分、積層ロールの温度は40℃とした。トウプリプレグが紙管からスムーズに解舒できたかどうか、自動積層装置内のロールを通過中に巻き付きが起きたかどうか、積層体におけるトウプリプレグのずれや剥がれが生じたかどうかをそれぞれ判定した。総合評価として、自動積層装置通過性が良好であった場合○とし、トウプリプレグを紙管から解舒する際に糸切れ及び毛羽立ちが生じたり、自動積層装置内のロールを通過中の巻き付き、及び、積層体中のトウプリプレグにずれや剥がれが生じたりした場合は自動積層装置通過性が×とした。
Figure JPOXMLDOC01-appb-T000003

Claims (18)

  1.  強化繊維束に熱硬化性樹脂組成物が含浸しているプリプレグテープであって、
     23℃、プランジャー押付圧力90kPaで測定したタック値が5~40kPaであり、
     45℃、プランジャー押付圧力150kPaで測定したタック値が35~100kPaであり、且つ
     23℃におけるドレープ値が10~40°であり、
     前記プリプレグテープの長さ方向に沿って配列された一方向繊維を含むプリプレグテープ。
  2.  前記熱硬化性樹脂組成物は、
     キュラストメーターで測定した際の硬化完了時間が140℃で2.0~15.0分である、
    請求項1に記載のプリプレグテープ。
  3.  前記熱硬化性樹脂組成物は、
     30℃における粘度が1.0×10~1.0×10Pa・sであり、且つ
     45℃における粘度が1.0×10~1.0×10Pa・sである、
    請求項1または2に記載のプリプレグテープ。
  4.  前記熱硬化性樹脂組成物は、
     昇温速度2.0℃/分で粘度測定した際の最低粘度が0.3~20Pa・sであり、
     前記最低粘度を示す温度範囲が100~120℃である、
    請求項1~3のいずれか一項に記載のプリプレグテープ。
  5.  前記プリプレグテープの質量に対する前記熱硬化性樹脂組成物の含有率が20~45質量%である、
    請求項1~4のいずれか一項に記載のプリプレグテープ。
  6.  前記プリプレグテープの平均幅が2~30mmである、
    請求項1~5のいずれか一項に記載のプリプレグテープ。
  7.  前記強化繊維束のフィラメント数が1000~60000本である、
    請求項1~6のいずれか一項に記載のプリプレグテープ。
  8.  前記熱硬化性樹脂組成物が、
     (A)エポキシ樹脂、及び(B)硬化剤を含む、
    請求項1~7のいずれか一項に記載のプリプレグテープ。
  9.  前記熱硬化性樹脂組成物が、
     更に(C)硬化助剤を含む、
    請求項8に記載のプリプレグテープ。
  10.  前記(A)エポキシ樹脂が、
     室温で固形のエポキシ樹脂と室温で液状のエポキシ樹脂とを含む、
    請求項8または9に記載のプリプレグテープ。
  11.  前記室温で固形のエポキシ樹脂が、
     ビスフェノールA型エポキシ樹脂と4、4’-ジアミノジフェニルスルホンとの予備反応物を含む、
    請求項10に記載のプリプレグテープ。
  12.  前記室温で液状のエポキシ樹脂が
     フェノールノボラック型エポキシ樹脂又はビスフェノールA型エポキシ樹脂を含む、
    請求項10または11に記載のプリプレグテープ。
  13.  前記熱硬化性樹脂組成物中、前記(A)エポキシ樹脂100質量部に対して、
     前記(B)硬化剤の含有量が3~10質量部であり、且つ
     前記(C)硬化助剤の含有量が0.5~10質量部である、
     請求項9に記載のプリプレグテープ。
  14.  前記(B)硬化剤が、アミン型硬化剤およびアミンアダクト型硬化剤から成る群から選ばれる少なくとも1種の化合物であり、
     前記(C)硬化助剤が、尿素誘導体およびイミダゾール誘導体から成る群から選ばれる少なくとも1種の化合物である、
    請求項9または13に記載のプリプレグテープ。
  15.  請求項1~14のいずれか一項に記載のプリプレグテープを硬化させた繊維強化複合材料。
  16.  請求項1~14のいずれか一項に記載のプリプレグテープを加熱し粘着性をもたせて積層する、自動積層成形方法。
  17.  請求項1~14のいずれか一項に記載のプリプレグテープを積層した積層体。
  18.  請求項1~14のいずれか一項に記載のプリプレグテープを積層したものを、金型内にて加熱加圧することによる繊維強化複合材料の製造方法。
PCT/JP2016/087616 2015-12-16 2016-12-16 プリプレグテープ及びその利用 WO2017104823A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680073334.9A CN108368282B (zh) 2015-12-16 2016-12-16 预浸带及其利用
KR1020187019675A KR102127106B1 (ko) 2015-12-16 2016-12-16 프리프레그 테이프 및 그의 이용
JP2017501421A JP6414315B2 (ja) 2015-12-16 2016-12-16 プリプレグテープ及びその利用
EP16875797.9A EP3392297A4 (en) 2015-12-16 2016-12-16 PREPREG BAND AND ITS USE
US16/004,475 US10934406B2 (en) 2015-12-16 2018-06-11 Prepreg tape and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-244811 2015-12-16
JP2015244811 2015-12-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/004,475 Continuation US10934406B2 (en) 2015-12-16 2018-06-11 Prepreg tape and use thereof

Publications (1)

Publication Number Publication Date
WO2017104823A1 true WO2017104823A1 (ja) 2017-06-22

Family

ID=59056619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087616 WO2017104823A1 (ja) 2015-12-16 2016-12-16 プリプレグテープ及びその利用

Country Status (6)

Country Link
US (1) US10934406B2 (ja)
EP (1) EP3392297A4 (ja)
JP (1) JP6414315B2 (ja)
KR (1) KR102127106B1 (ja)
CN (1) CN108368282B (ja)
WO (1) WO2017104823A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019202762A1 (ja) * 2018-04-20 2019-10-24 Jnc株式会社 プリプレグ、およびそれを用いた繊維強化複合材料
JP2019210487A (ja) * 2017-04-25 2019-12-12 三菱ケミカル株式会社 繊維強化樹脂成形材料及びその製造方法、並びに繊維強化樹脂成形品
JP2019218483A (ja) * 2018-06-20 2019-12-26 三菱ケミカル株式会社 トウプリプレグ、積層体、及び繊維強化複合材料
WO2020003662A1 (ja) 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
WO2020004421A1 (ja) 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
WO2020067478A1 (ja) * 2018-09-27 2020-04-02 三菱ケミカル株式会社 テーププリプレグ、テーププリプレグの配置方法、繊維強化複合材料及び繊維強化複合材料の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663338A4 (en) * 2017-07-31 2021-07-07 Toray Industries, Inc. BLEND FOR SHEET MOLDING, PRE-IMPREGNATE AND FIBER REINFORCED COMPOSITE MATERIAL
KR20200115452A (ko) * 2018-01-31 2020-10-07 도레이 카부시키가이샤 낮은 공공률의 섬유 보강 복합 재료를 제조하는데 유용한 프리프레그 시트 및 프리프레그 스택
KR102108014B1 (ko) 2018-11-22 2020-05-07 재단법인 한국탄소융합기술원 프리프레그의 점착력 분석용 지그
JPWO2021200453A1 (ja) * 2020-03-31 2021-10-07
CN114076719A (zh) * 2021-03-15 2022-02-22 亨弗劳恩(江苏)复合材料研发有限公司 一种预浸料用树脂胶膜中挥发份含量的测试方法
CN115466415B (zh) * 2022-08-24 2023-08-08 武汉理工大学 一种玻璃纤维增强树脂基复合材料及其制备方法与应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462142A (ja) 1990-06-27 1992-02-27 Kawasaki Heavy Ind Ltd ロービング材自動積層装置
JPH06166765A (ja) * 1992-11-30 1994-06-14 Mitsubishi Rayon Co Ltd プリプレグ
JPH072975A (ja) * 1993-06-16 1995-01-06 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物及びプリプレグ
JPH09176346A (ja) 1995-12-27 1997-07-08 Nippon Oil Co Ltd トウプリプレグの製造方法
JP2005335296A (ja) 2004-05-28 2005-12-08 Nippon Oil Corp トウプリプレグの製造方法
JP2006063173A (ja) 2004-08-26 2006-03-09 Nippon Oil Corp 繊維強化複合材料の製造法及び繊維強化複合材料の製造装置
JP2007297487A (ja) 2006-04-28 2007-11-15 Fuji Heavy Ind Ltd ヤーンプリプレグ、繊維強化複合材料、自動積層成形方法及び繊維強化複合材料の製造方法
JP2011157491A (ja) * 2010-02-02 2011-08-18 Toray Ind Inc トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ
JP2013060515A (ja) * 2011-09-13 2013-04-04 Mitsubishi Rayon Co Ltd プリプレグの製造方法
WO2013081060A1 (ja) 2011-11-29 2013-06-06 三菱レイヨン株式会社 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料とその製造方法
JP2014015563A (ja) * 2012-07-10 2014-01-30 Mitsubishi Rayon Co Ltd 一方向プリプレグの製造方法
WO2014030636A1 (ja) * 2012-08-20 2014-02-27 三菱レイヨン株式会社 エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
WO2014030638A1 (ja) * 2012-08-20 2014-02-27 三菱レイヨン株式会社 エポキシ樹脂組成物、及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
WO2015060299A1 (ja) * 2013-10-22 2015-04-30 三菱レイヨン株式会社 プリプレグの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278389B2 (en) * 2007-05-16 2012-10-02 Toray Industries, Ltd. Epoxy resin composition, prepreg, fiber-reinforced composite material
US8658736B2 (en) * 2008-09-29 2014-02-25 Toray Industries, Inc. Epoxy resin composition, prepreg and fiber-reinforced composite material
US9074064B2 (en) * 2010-12-13 2015-07-07 Toray Industries, Inc. Carbon fiber prepreg, method for producing same and carbon fiber reinforced composite material
BR112013022040B1 (pt) * 2011-03-03 2020-12-01 Mitsubishi Chemical Corporation método para produzir um pré-impregnado
KR101829593B1 (ko) * 2012-09-06 2018-03-29 미쯔비시 케미컬 주식회사 프리프레그 및 그의 제조 방법
CN106471047B (zh) * 2014-06-30 2019-02-22 三菱化学株式会社 丝束预浸料、以及复合材料压力容器及其制造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462142A (ja) 1990-06-27 1992-02-27 Kawasaki Heavy Ind Ltd ロービング材自動積層装置
JPH06166765A (ja) * 1992-11-30 1994-06-14 Mitsubishi Rayon Co Ltd プリプレグ
JPH072975A (ja) * 1993-06-16 1995-01-06 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物及びプリプレグ
JPH09176346A (ja) 1995-12-27 1997-07-08 Nippon Oil Co Ltd トウプリプレグの製造方法
JP2005335296A (ja) 2004-05-28 2005-12-08 Nippon Oil Corp トウプリプレグの製造方法
JP2006063173A (ja) 2004-08-26 2006-03-09 Nippon Oil Corp 繊維強化複合材料の製造法及び繊維強化複合材料の製造装置
JP2007297487A (ja) 2006-04-28 2007-11-15 Fuji Heavy Ind Ltd ヤーンプリプレグ、繊維強化複合材料、自動積層成形方法及び繊維強化複合材料の製造方法
JP2011157491A (ja) * 2010-02-02 2011-08-18 Toray Ind Inc トウプリプレグ用エポキシ樹脂組成物およびトウプリプレグ
JP2013060515A (ja) * 2011-09-13 2013-04-04 Mitsubishi Rayon Co Ltd プリプレグの製造方法
WO2013081060A1 (ja) 2011-11-29 2013-06-06 三菱レイヨン株式会社 エポキシ樹脂組成物、プリプレグ、繊維強化複合材料とその製造方法
JP2014015563A (ja) * 2012-07-10 2014-01-30 Mitsubishi Rayon Co Ltd 一方向プリプレグの製造方法
WO2014030636A1 (ja) * 2012-08-20 2014-02-27 三菱レイヨン株式会社 エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
WO2014030638A1 (ja) * 2012-08-20 2014-02-27 三菱レイヨン株式会社 エポキシ樹脂組成物、及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
WO2015060299A1 (ja) * 2013-10-22 2015-04-30 三菱レイヨン株式会社 プリプレグの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392297A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210487A (ja) * 2017-04-25 2019-12-12 三菱ケミカル株式会社 繊維強化樹脂成形材料及びその製造方法、並びに繊維強化樹脂成形品
JP6996535B2 (ja) 2017-04-25 2022-01-17 三菱ケミカル株式会社 繊維強化樹脂成形材料及びその製造方法、並びに繊維強化樹脂成形品
WO2019202762A1 (ja) * 2018-04-20 2019-10-24 Jnc株式会社 プリプレグ、およびそれを用いた繊維強化複合材料
JP2019218483A (ja) * 2018-06-20 2019-12-26 三菱ケミカル株式会社 トウプリプレグ、積層体、及び繊維強化複合材料
WO2020003662A1 (ja) 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
WO2020004421A1 (ja) 2018-06-26 2020-01-02 東レ株式会社 プリプレグおよびその製造方法、スリットテーププリプレグ、炭素繊維強化複合材料
KR20210022664A (ko) 2018-06-26 2021-03-03 도레이 카부시키가이샤 프리프레그 및 그 제조 방법, 슬릿 테이프 프리프레그, 탄소섬유강화 복합재료
KR20210022661A (ko) 2018-06-26 2021-03-03 도레이 카부시키가이샤 프리프레그 및 그 제조 방법, 슬릿 테이프 프리프레그, 탄소섬유강화 복합재료
US11939465B2 (en) 2018-06-26 2024-03-26 Toray Industries, Inc. Prepreg and production method therefor, slit tape prepreg, carbon fiber-reinforced composite material
WO2020067478A1 (ja) * 2018-09-27 2020-04-02 三菱ケミカル株式会社 テーププリプレグ、テーププリプレグの配置方法、繊維強化複合材料及び繊維強化複合材料の製造方法
JPWO2020067478A1 (ja) * 2018-09-27 2021-08-30 三菱ケミカル株式会社 テーププリプレグ、テーププリプレグの配置方法、繊維強化複合材料及び繊維強化複合材料の製造方法

Also Published As

Publication number Publication date
KR102127106B1 (ko) 2020-06-26
EP3392297A4 (en) 2019-01-23
CN108368282B (zh) 2021-11-30
US10934406B2 (en) 2021-03-02
KR20180093035A (ko) 2018-08-20
JPWO2017104823A1 (ja) 2017-12-28
JP6414315B2 (ja) 2018-10-31
CN108368282A (zh) 2018-08-03
US20180291165A1 (en) 2018-10-11
EP3392297A1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6414315B2 (ja) プリプレグテープ及びその利用
JP6222387B1 (ja) トウプリプレグ、複合材料補強圧力容器および複合材料補強圧力容器の製造方法
JP6856157B2 (ja) シートモールディングコンパウンド、および繊維強化複合材料
US9988508B2 (en) Epoxy-resin composition and film, prepreg, and fiber-reinforced plastic using same
JP5768893B2 (ja) エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
US10053575B2 (en) Binder resin composition for preform, binder particle, preform, and fiber-reinforced composite material
JP7206993B2 (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP6854880B2 (ja) 自己接着性プリプレグ、及びその製造方法
JP2019167429A (ja) エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料及びこれらの製造方法
JP2010229211A (ja) 繊維強化複合材料用プリプレグおよびその成形体
JP2022191471A (ja) 複合材料およびその製造方法、成形品並びに中間基材
JP6094792B2 (ja) プリプレグの製造方法
JP2020012065A (ja) 熱硬化性樹脂組成物およびこれを用いたプリプレグ
JP2019089951A (ja) トウプリプレグ、繊維強化複合材料及び複合材料補強圧力容器とその製造方法
JP7167976B2 (ja) エポキシ樹脂組成物、成形材料の製造方法、及び繊維強化複合材料の製造方法
JP5930293B2 (ja) プリプレグ
JP2019189750A (ja) エポキシ樹脂組成物、エポキシ樹脂組成物を含むプリプレグおよびその硬化物
JP2017203142A (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料およびその製造方法
JP2023147223A (ja) 離型シート付きプリプレグおよび繊維強化複合材料
JP2020147876A (ja) 炭素繊維用サイジング剤、その水分散液、サイジング剤付着炭素繊維、及び炭素繊維強化複合材料の製造方法。
JP2012167229A (ja) プリプレグの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017501421

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019675

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019675

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016875797

Country of ref document: EP