WO2017104461A1 - ポリアミドイミド樹脂及び塗料 - Google Patents

ポリアミドイミド樹脂及び塗料 Download PDF

Info

Publication number
WO2017104461A1
WO2017104461A1 PCT/JP2016/086036 JP2016086036W WO2017104461A1 WO 2017104461 A1 WO2017104461 A1 WO 2017104461A1 JP 2016086036 W JP2016086036 W JP 2016086036W WO 2017104461 A1 WO2017104461 A1 WO 2017104461A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polyamide
solvent
cyclic amine
imide resin
Prior art date
Application number
PCT/JP2016/086036
Other languages
English (en)
French (fr)
Inventor
康之 齊藤
高橋 篤
雄太 原田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US15/781,224 priority Critical patent/US11214709B2/en
Priority to JP2017555984A priority patent/JP6822416B2/ja
Publication of WO2017104461A1 publication Critical patent/WO2017104461A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/343Polycarboxylic acids having at least three carboxylic acid groups
    • C08G18/345Polycarboxylic acids having at least three carboxylic acid groups having three carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7685Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing two or more non-condensed aromatic rings directly linked to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular

Definitions

  • Embodiments of the present invention relate to a polyamide-imide resin and a paint using the resin.
  • Polyamideimide resin is widely used as a coating agent for various substrates because it is excellent in heat resistance, chemical resistance and solvent resistance. For example, it is used as a varnish for enameled wire, a heat resistant paint, and the like.
  • the polyamide-imide resin is obtained by reacting a diisocyanate compound with an acid component such as a tribasic acid anhydride, and the terminal isocyanate group can be blocked with a blocking agent such as alcohol, phenol, oxime, and stabilized.
  • a blocking agent such as alcohol, phenol, oxime, and stabilized.
  • Patent Document 1 Also known is a polyamideimide resin in which a lactam structure is added to a terminal with a blocking agent such as ⁇ -caprolactam (Patent Document 2).
  • An object of an embodiment of the present invention is to provide a polyamide-imide resin capable of forming a coating film having a high elastic modulus and a paint having high storage stability using the resin.
  • One embodiment of the present invention relates to a polyamide-imide resin having an isocyanate group at a terminal, and at least a part of the isocyanate group being blocked with an ether group-containing cyclic amine.
  • Another embodiment relates to a paint containing the polyamideimide resin of the above embodiment and a solvent.
  • Yet another embodiment relates to a method for producing a polyamideimide resin, which comprises a step of reacting a diisocyanate compound with a tribasic acid anhydride and / or a tribasic acid halide in a solvent containing an ether group-containing cyclic amine.
  • the polyamide-imide resin of this embodiment provides a coating having excellent storage stability by blocking the terminal isocyanate group with an ether group-containing cyclic amine, and a coating film having a high elastic modulus using the coating. Can be formed.
  • the ether group-containing cyclic amine has an advantage that it can be used as a polymerization solvent for a polyamideimide resin and a solvent for a coating material, according to the method for producing a polyamideimide resin of this embodiment, the ether group-containing cyclic amine is A polyamide-imide resin can be synthesized using a solvent containing it, and the obtained polyamide-imide resin solution can be used as it is for a paint or the like.
  • the polyamideimide resin is characterized in that at least a part of the terminal isocyanate groups are blocked with an ether group-containing cyclic amine.
  • the polyamideimide resin of one embodiment is a resin obtained by reacting a diisocyanate compound with a tribasic acid anhydride or tribasic acid halide as an acid component.
  • each raw material compound may be used in combination of any plural kinds.
  • a polyamideimide resin containing a structural unit represented by the following general formula and having an isocyanate group at the terminal can be used.
  • X represents a residue obtained by removing an acid anhydride group (or acid halide group) and a carboxyl group of an acid-base acid anhydride
  • R represents a residue obtained by removing an isocyanate group of diisocyanate.
  • the diisocyanate compound is not particularly limited, but 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, 3,3′-diphenylmethane diisocyanate, 3,3′-dimethoxybiphenyl-4,4′-diisocyanate, paraphenylene diisocyanate, hexa
  • Examples include methylene diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, and tolylene diisocyanate. From the viewpoint of reactivity, it is preferable to use 4,4'-diphenylmethane diisocyanate.
  • the polyamideimide resin according to an embodiment may partially use a diamine compound.
  • the diamine compound include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, xylylenediamine, and phenylenediamine.
  • the tribasic acid anhydride is not particularly limited, but preferably includes trimellitic anhydride, and the tribasic acid halide is also not particularly limited, but tribasic acid chloride is preferable, and trimellitic anhydride chloride (anhydrous anhydride). Trimellitic acid chloride) and the like. From the viewpoint of reducing the environmental load, it is preferable to use trimellitic anhydride or the like.
  • the acid component in addition to the above-mentioned tribasic acid anhydride (or tribasic acid halide), saturated or unsaturated polybasic acids such as dicarboxylic acid and tetracarboxylic dianhydride are used, and the properties of the polyamideimide resin are impaired. It can be used in a range that does not exist. Although it does not specifically limit as dicarboxylic acid, A terephthalic acid, isophthalic acid, adipic acid, sebacic acid, etc. are mentioned.
  • the tetracarboxylic dianhydride is not particularly limited, and examples thereof include pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and biphenyltetracarboxylic dianhydride. These may be used alone or in any combination of a plurality of types.
  • the total amount of carboxylic acids other than tribasic acids is preferably used in the range of 0 to 30 mol% in the total carboxylic acid from the viewpoint of maintaining the properties of the polyamideimide resin.
  • the polyamideimide resin has a structural unit represented by the following general formula (II).
  • R 3 represents a residue excluding the isocyanate group of diisocyanate (or the amino group of diamine optionally used).
  • the use ratio of diisocyanate and acid component is the molecular weight of the polyamideimide resin produced From the viewpoint of the degree of cross-linking, the diisocyanate compound (and optionally the diamine compound used) is preferably 0.8 to 1.1 mol, based on the total amount of 1.0 mol of the acid component, and preferably 0.95 to 1. The amount is more preferably 08 mol, and particularly preferably 1.0 to 1.08 mol.
  • Polyamideimide resin may be modified by reacting polyhydric alcohol and isocyanate.
  • polyhydric alcohol it is possible to use a dihydric alcohol such as ethylene glycol, diethylene glycol, triethylene glycol, or proylene glycol, or a polyhydric alcohol such as glycerin, trimethylolpropane, diglycerin, or triglycerin.
  • the ether group-containing cyclic amine which is a blocking agent for the terminal isocyanate group is a heterocyclic amine containing an ether group, and the ether group is preferably a cyclic ether. Therefore, the ether group-containing cyclic amine is preferably a saturated heterocyclic compound having nitrogen and oxygen as heteroatoms.
  • the ring is preferably a 4-membered ring to a 7-membered ring, more preferably a 5-membered ring or a 6-membered ring.
  • a compound having a tetrahydro-1,4-oxazine (morpholine) ring, a tetrahydro-1,3-oxazine ring, a tetrahydro-1,2-oxazine ring, or an oxazolidine ring is preferable.
  • These heterocyclic compounds may optionally have a substituent such as an alkyl group, a formyl group, and an acetyl group, and the substituent is preferably an N-hydrogen substitute.
  • the elastic modulus of the coating film is not changed by blocking, but the blocking agent of this embodiment can increase the elastic modulus of the coating film by blocking.
  • Preferred compounds include tetrahydro-1,4-oxazine (morpholine), 4-methylmorpholine, 4-ethylmorpholine, N-formylmorpholine, N-acetylmorpholine and the like. A plurality of these may be used in combination.
  • the blocking with the blocking agent is not particularly limited, but it is blocked with 0.05 mol or more of an ether group-containing cyclic amine to sufficiently obtain the blocking effect with respect to 1 mol of the polyamideimide resin. From the viewpoint of ensuring the heat resistance and curability of the resin, it is preferably blocked with 0.15 mol or less of an ether group-containing cyclic amine.
  • the conditions for synthesizing the polyamide-imide resin are various and cannot be generally specified, but the most typical method for reacting diisocyanate and tribasic acid anhydride is exemplified in, for example, JP-A-4-39323. .
  • the blocking method is also not particularly limited, and the blocking agent may be reacted during the synthesis of the resin or may be reacted after the synthesis of the resin.
  • an ether group-containing cyclic amine can be used as part or all of the polymerization solvent, as will be described later.
  • Use of an ether group-containing cyclic amine as a polymerization solvent is preferred in that the resin can be synthesized and blocked in one step, and can also be used as a coating solvent as it is.
  • the resin may be synthesized with no solvent or another polymerization solvent, and then the ether group-containing cyclic amine may be added and reacted.
  • Other polymerization solvents are not particularly limited, and include N-methyl-2-pyrrolidone, N, N′-dimethylethyleneurea, N, N-dimethylacetamide or N, N-dimethylformamide, and ⁇ -butyrolactone. Two or more of these may be used in combination as appropriate.
  • the number average molecular weight of the polyamide-imide resin is preferably 12,000 or more, more preferably 15,000 or more, from the viewpoint of ensuring the strength of the coating film.
  • the number average molecular weight is preferably 30,000 or less, more preferably 25,000 or less in order to facilitate the formation of a paint when used as a paint or the like and to obtain a viscosity suitable for application.
  • the number average molecular weight of the polyamide-imide resin is sampled during resin synthesis and measured using an analytical instrument such as a gel permeation chromatograph (GPC) (in the case of GPC, it is measured using a standard polystyrene calibration curve).
  • GPC gel permeation chromatograph
  • Polyamideimide resin can be used for various purposes.
  • it is used as a binder resin for various protective and coating materials, including paints or coating agents such as heat-resistant paints and sliding part coating paints, film resins that require slipperiness, intermediate transfer belts for copying machines, etc.
  • paints or coating agents such as heat-resistant paints and sliding part coating paints
  • film resins that require slipperiness film resins that require slipperiness
  • intermediate transfer belts for copying machines etc.
  • it can be preferably used for a molded product such as an annular belt.
  • the polyamideimide resin of this embodiment is blocked with a cyclic amine compound containing an ether group at the end, and this block is detached by heat.
  • the reaction temperature at the time of coating film formation is preferably 250 ° C. or higher.
  • the coating film is once cured at less than 250 ° C. Can be cured at 250 ° C. or higher to obtain a film with less shrinkage and excellent toughness.
  • the polyamide-imide resin paint contains at least the blocked polyamide-imide resin and a solvent. This solvent is also referred to as “paint solvent”.
  • the polyamide-imide resin is preferably contained in the paint in an amount of 10 to 50% by mass in order to sufficiently exert its function.
  • a plurality of types of polyamide-imide resins may be used in combination, and a non-blocked polyamide-imide resin may be included in part.
  • the solvent is not particularly limited as long as it dissolves or disperses the polyamideimide resin, but in one embodiment, an organic solvent is preferably used.
  • Solvents that can be preferably used include, for example, polar solvents such as N-methyl-2-pyrrolidone, N, N′-dimethylformamide, 1,3-dimethylimidazolidinone, 4-morpholinecarbaldehyde, and aromatics such as xylene and toluene. Group hydrocarbons; ketones such as methyl ethyl ketone, methyl isobutyl ketone, ⁇ -butyrolactone, and ⁇ -valerolactone. These may be used in appropriate combination.
  • the coating solvent preferably contains the ether group-containing cyclic amine. This is because an ether group-containing cyclic amine is added to the terminal of the polyamide-imide resin, so that a large amount of the same polarity solvent improves storage stability, and further increases crystallinity. This is because when the coating film is cured, the orientation of the polymer molecules is improved and the elastic modulus of the film is improved. From such a viewpoint, the amount of the ether group-containing cyclic amine in the coating solvent is preferably 50 to 100% by mass of the total solvent composition.
  • the coating solvent is composed only of ether group-containing cyclic amine (that is, 100% by mass)
  • the terminal of the polyamideimide resin and the polarity of the solvent are the same, which is most effective for improving the storage stability of the coating material and the elastic modulus of the coating film. preferable.
  • the polymerization solvent used for the production of the polyamideimide resin may be used as it is, or a solvent different from the polymerization solvent may be added to adjust the viscosity appropriately. That is, in preparing the coating material, the polyamide-imide resin solution obtained by synthesizing the polyamide-imide resin can be used as it is by adding a coating solvent as required.
  • the polyamide-imide resin paint can further contain a curing agent in addition to the above-mentioned polyamide-imide resin and solvent.
  • a curing agent An epoxy resin (epoxy compound), a phenol resin, a melamine resin (melamine compound), an isocyanate compound etc. can be used suitably, It is preferable to use an epoxy resin (epoxy compound) especially. .
  • an epoxy resin epoxy compound
  • an epoxy resin epoxy compound
  • a melamine resin melamine compound
  • an isocyanate compound can improve the adhesiveness of a coating film more, it is preferable.
  • a polyethersulfone resin, a polyimide resin, a polyamide resin, a fluororesin, or the like may be used alone or in admixture as necessary.
  • the epoxy resin is not particularly limited, but triglycidyl isocyanurate, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, brominated bisphenol A type epoxy resin, biphenyl type epoxy resin, Phenol novolac type epoxy resin, cresol novolac type epoxy resin, brominated phenol novolak type epoxy resin, bisphenol A novolak type epoxy resin, naphthalene skeleton containing epoxy resin, aralkylene skeleton containing epoxy resin, biphenyl-aralkylene skeleton epoxy resin, phenol salicylaldehyde novolak Type epoxy resin, lower alkyl group substituted phenol salicylaldehyde novolac type epoxy resin, dicyclopentadiene skeleton Yes epoxy resin, glycidyl amine type epoxy resins, alicyclic epoxy resins.
  • epoxy resins can be used alone or in admixture of two or more.
  • the epoxy resin may be added alone and allowed to react with the polyamide-imide resin, but may be added together with a curing agent or curing accelerator of the epoxy resin so that an unreacted product of the epoxy resin does not remain after curing. .
  • the melamine compound is not particularly limited, and examples thereof include a methylol group-containing compound obtained by reacting melamine with formaldehyde, paraformaldehyde or the like.
  • the methylol group is preferably etherified with an alcohol having 1 to 6 carbon atoms.
  • isocyanate compound examples include polyisocyanate of hexamethylene diisocyanate such as duranate, polyisocyanate synthesized from 4,4′-diphenylmethane diisocyanate, and the like.
  • the mass average molecular weight of these polyisocyanates is preferably 500 to 9000, more preferably 1000 to 5000.
  • Each compounding amount of the epoxy resin, isocyanate compound, and melamine compound added to the coating is 100 parts by mass of the polyamideimide resin, while ensuring the adhesion improvement effect by blending them, respectively. From the viewpoint of sufficiently exhibiting the characteristics, or in order not to cause phase separation while sufficiently curing the polyamideimide resin, it is preferably 1 to 40 parts by mass, and more preferably 5 to 15 parts by mass. .
  • Other resins may be mixed with the polyamideimide resin to form a polymer alloy.
  • the method for polymer alloying is not particularly limited, and a general mixing method such as a lab stirrer can be used. However, since there is a possibility of gelation depending on the time and temperature when mixing, it is preferable to complete the mixing within 2 hours at a temperature of 35 ° C. or lower.
  • the polyamide-imide resin paint may further contain other optional components.
  • a coating material such as a pigment, a filler, an antifoamer, antiseptic
  • the surfactant is not particularly limited, but the components for forming the coating film are uniformly mixed and do not separate until the coating film is dried (no separation occurs), and many after baking. Those in which no residue remains are preferred.
  • the content of the surfactant is not particularly limited, but is preferably 0.01% by mass or more in the coating material and 0.5% by mass or more in order to maintain a uniform mixed state. More preferred. On the other hand, the content of the surfactant is preferably 10% by mass or less in the paint so that a large amount of carbon remains during baking of the coating film and does not adversely affect the film forming property. It is more preferable that
  • the paint preferably contains a filler as necessary in order to improve the water resistance of the coating film.
  • the type of filler can be selected according to the application of the coating film in consideration of its water resistance, chemical resistance, etc., and is preferably one that does not dissolve in water.
  • the filler includes metal powder, metal oxide (aluminum oxide, zinc oxide, tin oxide, titanium oxide, etc.), glass beads, glass flakes, glass particles, ceramics, silicon carbide, silicon oxide, fluoride. Calcium, carbon black, graphite, mica, barium sulfate and the like can be mentioned. These may be used alone or in combination of two or more.
  • the coating method of the paint is not particularly limited, and known coating methods such as dipping coating, spray coating, and brush coating can be employed. It is preferable to dilute to an appropriate concentration by appropriately adjusting the amount of solvent according to the coating method.
  • the coating film is formed by drying (preliminary drying) and curing (firing).
  • the conditions for drying and curing are not particularly limited, and are preferably set as appropriate according to the heat resistance characteristics of the substrate to be used. In order to ensure the adhesion and toughness of the coating film, it is preferable to perform heating at 250 ° C. or higher.
  • a method for producing a polyamideimide resin of the present embodiment is a step of reacting a diisocyanate compound with a tribasic acid anhydride and / or a tribasic acid halide in a solvent containing an ether group-containing cyclic amine. It is characterized by including.
  • the raw material compound to be used is as described in the section of the polyamideimide resin.
  • the ether group-containing cyclic amine that is the polymerization solvent is also as described above.
  • resin synthesis and isocyanate group blocking can be performed in one step.
  • the ether group-containing cyclic amine is suitable as a solution polymerization solvent and a coating solvent for the polyamideimide resin, the obtained polymerization solution can be used as it is for a coating or the like.
  • the content of the ether group-containing cyclic amine in the polymerization solvent is preferably 50% by mass or more. In that case, the resin solution after polymerization can be preferably used as it is as a paint.
  • 3-alkyl-2-oxazolidinone may be used alone, or may be used by mixing with other polar solvents.
  • the polymerization solvent that can be used in combination include N-methyl-2-pyrrolidone, N, N′-dimethylethyleneurea, N, N-dimethylacetamide or N, N-dimethylformamide, and ⁇ -butyrolactone. Two or more species may be used in appropriate combination.
  • the reaction temperature is not particularly limited, and may be set as appropriate according to the boiling point of the polymerization solvent to be used.
  • the reaction is preferably performed at a temperature of 100 to 180 ° C.
  • the polymerization reaction is preferably performed in an atmosphere such as nitrogen in order to reduce the influence of moisture in the air.
  • the reaction of the acid component and the diisocyanate component can be performed, for example, by the following procedure.
  • (1) A method in which an acid component and a diisocyanate component are used at a time and reacted to synthesize a polyamideimide resin.
  • (2) After reacting an acid component with an excess amount of a diisocyanate component to synthesize an amide-imide oligomer having an isocyanate group at the terminal, an acid component is added to react with the terminal isocyanate group to obtain a polyamide-imide resin. How to synthesize.
  • the diisocyanate component After reacting the excess amount of the acid component with the diisocyanate component to synthesize an amide-imide oligomer having an acid or acid anhydride group at the terminal, the diisocyanate component is added to form the terminal acid or acid anhydride group.
  • Example 1 250.3 g (1.00 mol) of 4,4′-diphenylmethane diisocyanate, 192.1 g (1.00 mol) of trimellitic anhydride, and 660 g of 4-methylmorpholine were equipped with a thermometer, a stirrer, and a condenser. The mixture was charged in a 2 liter flask, heated to 110 ° C. with stirring in a dried nitrogen stream, reacted for about 4 hours, further held for 6 hours at 160 ° C., and a number average molecular weight of 19,000. A blocked polyamideimide resin solution (solid content concentration: about 40% by mass) was obtained.
  • the number average molecular weight of the polyamideimide resin was measured under the following conditions.
  • GPC model Hitachi L6000 Detector: Hitachi L4000 type UV Wavelength: 270nm
  • Data processor ATT 8
  • Solvent: DMF / THF 1/1 (liter) + phosphoric acid 0.06M + lithium bromide 0.06M
  • Injection volume 5 ⁇ l Pressure: 49 kgf / cm 2 (4.8 ⁇ 10 6 Pa)
  • Flow rate 1.0 ml / min
  • Example 4 254 g (1.02 mol) of 4,4'-diphenylmethane diisocyanate, 192.1 g (1.0 mol) of trimellitic anhydride, and 660 g of N-formylmorpholine were equipped with a thermometer, a stirrer, and a condenser. The mixture was charged into a 2 liter flask, heated to 110 ° C. with stirring in a dry nitrogen stream, reacted for about 4 hours, further maintained at 160 ° C. for 4 hours, and a number average molecular weight of 23,000. A blocked polyamideimide resin solution was obtained. It was confirmed by NMR measurement that the obtained polyamideimide resin was blocked with 0.06 mol of N-formylmorpholine with respect to 1 mol of the resin.
  • ⁇ Adhesion> The resin solutions obtained in the above examples and comparative examples were applied to a substrate (aluminum plate JIS H 4000, thickness 1 mm, unpolished), and then baked at 270 ° C. for 30 minutes to obtain a coating film plate having a thickness of about 20 ⁇ m.
  • the initial adhesion was measured.
  • the adhesion was measured according to the old JIS K 5400 (%, cross-cut residual rate). That is, using a cutter knife on the test surface, cuts of 1 ⁇ 1 mm square grids were made to form 100 grids.
  • Mending tape # 810 manufactured by 3M Co., Ltd.
  • the peel test was performed 5 times, and the number of cells was counted each time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

末端にイソシアネート基を有し、該イソシアネート基の少なくとも一部が、エーテル基含有環状アミンでブロックされた、ポリアミドイミド樹脂。

Description

ポリアミドイミド樹脂及び塗料
 本発明の実施形態は、ポリアミドイミド樹脂、及び該樹脂を用いた塗料に関する。
 ポリアミドイミド樹脂は、耐熱性、耐薬品性及び耐溶剤性に優れているため、各種の基材のコート剤として広く使用される。例えば、エナメル線用ワニス、耐熱塗料等として使用されている。
 ポリアミドイミド樹脂は、ジイソシアネート化合物と、三塩基酸無水物等の酸成分とを反応させることにより得られ、末端イソシアネート基をアルコール、フェノール、オキシム等のブロック剤によりブロック化して、安定化させることが知られている(特許文献1)。また、ε-カプロラクタム等のブロック剤により末端にラクタム構造を付加させたポリアミドイミド樹脂も知られている(特許文献2)。
特開2007-146101号公報 特開2014-240450号公報
 ポリアミドイミド樹脂を塗料等のコーティング用途に用いる場合は、応力を緩和できることから塗膜の弾性率が高いことが望まれている。
 本発明の実施形態は、高弾性率の塗膜を形成可能なポリアミドイミド樹脂と、該樹脂を用いた貯蔵安定性の高い塗料を提供することを課題とする。
 本発明者らは、特定のブロック剤を選択することにより、上記課題を共に解決できることを見いだした。
 本発明の一実施形態は、末端にイソシアネート基を有し、該イソシアネート基の少なくとも一部が、エーテル基含有環状アミンでブロックされた、ポリアミドイミド樹脂に関する。
 別の実施形態は、上記実施形態のポリアミドイミド樹脂、及び溶媒を含有する塗料に関する。
 さらに別の実施形態は、ジイソシアネート化合物と、三塩基酸無水物及び/又は三塩基酸ハライドとを、エーテル基含有環状アミンを含む溶媒中で反応させる工程を含む、ポリアミドイミド樹脂の製造方法に関する。
 本実施形態のポリアミドイミド樹脂は、末端のイソシアネート基がエーテル基含有環状アミンでブロックされていることにより、貯蔵安定性に優れた塗料を提供し、該塗料を用いて弾性率の高い塗膜を形成することができる。また、エーテル基含有環状アミンは、ポリアミドイミド樹脂の重合溶媒及び塗料の溶媒としても使用できるとの利点があるため、本実施形態のポリアミドイミド樹脂の製造方法によれば、エーテル基含有環状アミンを含む溶媒を用いてポリアミドイミド樹脂を合成することができ、得られたポリアミドイミド樹脂溶液をそのまま、塗料等に用いることができる。
 以下に、好ましい実施形態について説明する。
1.ポリアミドイミド樹脂
 ポリアミドイミド樹脂は、末端のイソシアネート基の少なくとも一部が、エーテル基含有環状アミンでブロックされていることを特徴とする。
 一実施形態のポリアミドイミド樹脂は、ジイソシアネート化合物と、酸成分としての三塩基酸無水物又は三塩基酸ハライドとを反応させて得られる樹脂である。ここで、各原料化合物は、各々、任意に複数種を組み合わせて使用してもよい。
 例えば、以下の一般式で示される構造単位を含み、末端にイソシアネート基を有するポリアミドイミド樹脂を用いることができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(I)中、Xは、酸塩基酸無水物の酸無水物基(又は酸ハライド基)及びカルボキシル基を除いた残基、Rは、ジイソシアネートのイソシアネート基を除いた残基を示す。
 ジイソシアネート化合物としては、特に限定されないが、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、3,3’-ジフェニルメタンジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、パラフェニレンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、トリレンジイソシアレート等が挙げられる。反応性の観点からは、4,4’-ジフェニルメタンジイソシアネートを用いることが好ましい。
 一実施形態のポリアミドイミド樹脂は、ジイソシアネートに加えてジアミン化合物を一部に使用してもよい。ジアミン化合物としては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、キシリレンジアミン、フェニレンジアミン等が挙げられる。
 三塩基酸無水物としては、特に限定されないが、好ましくはトリメリット酸無水物が挙げられ、三塩基酸ハライドも特に限定はされないが、三塩基酸クロライドが好ましく、トリメリット酸無水物クロライド(無水トリメリット酸クロリド)等が挙げられる。環境への負荷を軽減させる観点から、トリメリット酸無水物等を用いることが好ましい。
 酸成分としては、上記の三塩基酸無水物(又は三塩基酸ハライド)の他に、ジカルボン酸、テトラカルボン酸二無水物等の飽和又は不飽和多塩基酸を、ポリアミドイミド樹脂の特性を損なわない範囲で用いることができる。
 ジカルボン酸としては、特に限定されないが、テレフタル酸、イソフタル酸、アジピン酸、及びセバシン酸等が挙げられる。テトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、及びビフェニルテトラカルボン酸二無水物等が挙げられる。これらは、単独で用いられるほか、複数種を任意の組み合わせで使用してもよい。
 三塩基酸以外のカルボン酸(ジカルボン酸とテトラカルボン酸)の総量は、ポリアミドイミド樹脂の特性を保つ観点から、全カルボン酸中に0~30モル%の範囲で使用されるのが好ましい。
 好ましい一実施形態において、ポリアミドイミド樹脂は、次の一般式(II)に示される構造単位を有する。
Figure JPOXMLDOC01-appb-C000002
 一般式(II)中、Rは、ジイソシアネートのイソシアネート基(又は任意で使用したジアミンのアミノ基)を除いた残基を示す。
 ジイソシアネートと酸成分(三塩基酸無水物又は三塩基酸無水物ハライドと必要に応じて使用するジカルボン酸及びテトラカルボン酸二無水物の合計量)の使用比率は、生成されるポリアミドイミド樹脂の分子量及び架橋度の観点から、酸成分の総量1.0モルに対してジイソシアネート化合物(及び任意で使用するジアミン化合物)を0.8~1.1モルとすることが好ましく、0.95~1.08モルとすることがより好ましく、特に、1.0~1.08モルとすることが一層好ましい。
 ポリアミドイミド樹脂は、多価アルコールとイソシアネートを反応させて、変性してもよい。多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロリレングリコール等の二価アルコール、又は、グリセリン、トリメチロールプロパン、ジグリセリン、トリグリセリンなどの多価アルコールを使用できる。
 末端イソシアネート基のブロック剤であるエーテル基含有環状アミンは、エーテル基を含む複素環式アミンであり、エーテル基は環状エーテルであることが好ましい。したがって、エーテル基含有環状アミンは、窒素及び酸素をヘテロ原子とする飽和複素環式化合物であることが好ましい。
 環は、4員環~7員環であることが好ましく、5員環又は6員環であることがより好ましい。
 より詳細には、テトラヒドロ-1,4-オキサジン(モルホリン)環、テトラヒドロ-1,3-オキサジン環、テトラヒドロ-1,2-オキサジン環、又はオキサゾリジン環を有する化合物であることが好ましい。これらの複素環化合物は、アルキル基、ホルミル基、アセチル基等の置換基を任意に有していても良く、置換基は、N原子の水素の置換体であることが好ましい。
 従来のブロック剤では、ブロッキングにより塗膜の弾性率に変化を与えないが、本実施形態のブロック剤は、ブロッキングにより塗膜の弾性率を高めることができる。
 好ましい化合物としては、テトラヒドロ-1,4-オキサジン(モルホリン)、4-メチルモルホリン、4-エチルモルホリン、N-ホルミルモルホリン、N-アセチルモルホリン等が挙げられる。これらのうちの複数を組み合わせて使用してもよい。
 ブロック剤によるブロックは、特に限定はされないが、ポリアミドイミド樹脂1モルに対し、そのブロック化の効果を充分に得るために0.05モル以上のエーテル基含有環状アミンでブロックされたものであることが好ましく、樹脂の耐熱性及び硬化性を確保する観点から、0.15モル以下のエーテル基含有環状アミンでブロックされていることが好ましい。
 ポリアミドイミド樹脂の合成条件は多様であり、一概に特定できないが、ジイソシアネートと三塩基酸無水物を反応させる最も代表的な方法については、例えば、特開平4-39323号公報などに例示されている。また、ブロック化の方法も、特に限定はなく、ブロック剤を樹脂の合成中に反応させてもよいし、樹脂の合成後に反応させてもよい。
 ブロック剤を樹脂の合成中に反応させるときは、後述するとおり、エーテル基含有環状アミンを重合溶媒の一部又は全部として用いることができる。重合溶媒としてエーテル基含有環状アミンを用いることにより、樹脂の合成とブロック化を一段階で行うことができ、かつ、塗料の溶媒としてもそのまま使用することができる点で好ましい。
 ポリアミドイミド樹脂の合成後にブロック化する場合は、無溶媒又は他の重合溶媒で樹脂を合成した後に、エーテル基含有環状アミンを添加して反応させればよい。他の重合溶媒は、特に限定されないが、N-メチル-2-ピロリドン、N,N′-ジメチルエチレンウレア、N,N-ジメチルアセトアミド又はN,N-ジメチルホルムアミド、及びγ―ブチロラクトン等が挙げられ、これらの2種以上を適宜併用してもよい。
 ポリアミドイミド樹脂の数平均分子量は、塗膜の強度を確保する観点から12,000以上であることが好ましく、15,000以上であることがより好ましい。一方、塗料等として用いる際の塗料化を容易にし且つ塗布に適した粘度とするために、その数平均分子量は30,000以下であることが好ましく、25,000以下であることがより好ましい。
 ポリアミドイミド樹脂の数平均分子量は、樹脂合成時にサンプルリングして、ゲルパーミエーションクロマトグラフ(GPC)等の分析機器を用いて測定し(GPCの場合は標準ポリスチレンの検量線を用いて測定する)、目的とする数平均分子量になるまで合成を継続することにより、上記範囲に管理することができる。
 ポリアミドイミド樹脂は、様々な用途に用いることができる。例えば、耐熱性塗料、摺動部コーティング塗料等の塗料又はコーティング剤を含む、各種保護・被覆材等のバインダー樹脂、すべり性を必要とするフィルムの樹脂、複写機の中間転写ベルト等として利用される環状のベルト等の、ベルト状に成型する成型品用途に好ましく用いることができる。これらはいずれも、非粘着用途である。
 本実施形態のポリアミドイミド樹脂は、末端がエーテル基含有の環状アミン化合物でブロックされており、このブロックは熱により脱離する。靱性のある塗膜を得るために、また、アルミニウム基材、及び鉄基材等への密着性を確保するために、塗膜形成時の反応温度は250℃以上であることが好ましい。一方、フィルム用途で使用する場合は、ポリエチレンテレフタレート等の基材フィルムが高温により収縮するため、いったん250℃未満で塗膜を硬化させ、基材フィルムから塗膜を剥離させたのち、改めて塗膜を250℃以上で硬化させ、収縮の少ない靱性に優れたフィルムを得ることができる。
2.塗料
 ポリアミドイミド樹脂塗料は、上記ブロック化されたポリアミドイミド樹脂と、溶媒とを少なくとも含む。この溶媒を、「塗料溶媒」とも記す。
 ポリアミドイミド樹脂は、その機能を十分に発揮させるために、塗料中に10~50質量%含まれることが好ましい。複数種のポリアミドイミド樹脂を組み合わせて使用してもよく、ブロック化されていないポリアミドイミド樹脂を一部に含んでいてもよい。
<溶媒>
 溶媒は、ポリアミドイミド樹脂を溶解又は分散させるものであれば、特に限定はされないが、一実施形態においては有機溶媒を用いることが好ましい。
 好ましく使用できる溶媒としては、例えば、N-メチル-2-ピロリドン、N,N′-ジメチルホルムアミド、1,3-ジメチルイミダゾリジノン、4-モルホリンカルボアルデヒド等の極性溶媒;キシレン、トルエン等の芳香族炭化水素;メチルエチルケトン、メチルイソブチルケトン、γ-ブチロラクトン、δ-バレロラクトン等のケトン類などが挙げられる。これらを適宜組み合わせて使用してもよい。
 塗料溶媒として、上記のエーテル基含有環状アミンを含むことが好ましい。これは、ポリアミドイミド樹脂の末端にエーテル基含有の環状アミンが付加しているため、同じ極性の溶媒が多量に存在することにより、貯蔵安定性が向上し、さらには結晶性が増すことから、塗膜を硬化させた場合にポリマー分子の配向性が向上し、フィルムの弾性率が向上するためである。
 こうした観点から、塗料溶媒中のエーテル基含有環状アミンの量は、全溶媒組成の50~100質量%であることが好ましい。塗料溶媒がエーテル基含有環状アミンのみからなる(つまり100質量%)と、ポリアミドイミド樹脂末端と溶媒の極性が同じになるため、塗料の貯蔵安定性と塗膜の弾性率向上のためには最も好ましい。
 この塗料溶媒は、ポリアミドイミド樹脂の製造に使用された重合溶媒をそのまま使用してもよいし、重合溶媒とは別の溶媒を追加して、適宜粘度を調整してもよい。つまり、塗料の調製に際し、ポリアミドイミド樹脂の合成により得られたポリアミドイミド樹脂溶液を、必要に応じて塗料溶媒を追加して、そのまま使用することができる。
<その他の成分>
 ポリアミドイミド樹脂塗料は、上記のポリアミドイミド樹脂と溶媒に加え、さらに硬化剤を含むことができる。硬化剤としては、特に限定されないが、エポキシ樹脂(エポキシ化合物)、フェノール樹脂、メラミン樹脂(メラミン化合物)、イソシアネート化合物などを適宜用いることができ、なかでもエポキシ樹脂(エポキシ化合物)を用いることが好ましい。エポキシ樹脂を配合することにより、ポリアミドイミド樹脂の熱的、機械的、電気的特性をより向上させることができる。また、エポキシ樹脂(エポキシ化合物)、メラミン樹脂(メラミン化合物)、及びイソシアネート化合物は、塗膜の密着性をより向上させることができるために好ましい。
 硬化剤とは別に、必要に応じて、ポリエーテルスルホン樹脂、ポリイミド樹脂、ポリアミド樹脂、又はフッ素樹脂等を、単独で、又は混合して用いてもよい。
 エポキシ樹脂(エポキシ化合物)としては、特に限定されないが、トリグリシジルイソシアヌレート、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ナフタレン骨格含有エポキシ樹脂、アラルキレン骨格含有エポキシ樹脂、ビフェニル-アラルキレン骨格エポキシ樹脂、フェノールサリチルアルデヒドノボラック型エポキシ樹脂、低級アルキル基置換フェノールサリチルアルデヒドノボラック型エポキシ樹脂、ジシクロペンタジエン骨格含有エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は単独で、又は2種以上を混合して用いることができる。
 エポキシ樹脂は単独で添加してポリアミドイミド樹脂と反応させてもよいが、硬化後にエポキシ樹脂の未反応物が残留しにくいように、エポキシ樹脂の硬化剤又は硬化促進剤等と共に添加してもよい。
 メラミン化合物としては、特に制限はないが、例えば、メラミンにホルムアルデヒド、パラホルムアルデヒド等を反応させたメチロール基含有化合物等が挙げられる。このメチロール基は、炭素原子数1~6個のアルコールによりエーテル化されているものが好ましい。
 イソシアネート化合物としては、デュラネート等のヘキサメチレンジイソシアネートのポリイソシアネート、4,4′-ジフェニルメタンジイソシアネートから合成されるポリイソシアネート等が挙げられる。これらのポリイソシアネートの質量平均分子量は500~9000であることが好ましく、より好ましくは1000~5000である。
 塗料に添加されるエポキシ樹脂、イソシアネート化合物、及びメラミン化合物の各配合量は、ポリアミドイミド樹脂100質量部に対して、それぞれ、それらを配合することによる密着性向上効果を確保しつつポリアミドイミド樹脂の特性も十分に発揮させる観点から、あるいはポリアミドイミド樹脂を十分に硬化させつつ相分離を生じさせないために、例えば1~40質量部であることが好ましく、5~15質量部とすることがより好ましい。
 ポリアミドイミド樹脂にその他の樹脂を混合し、ポリマーアロイ化させてもよい。ポリマーアロイ化の方法は、特に制限はなく、ラボスターラーなど一般的な混合方法を用いることができる。ただし、混合する際は、時間と温度によってはゲル化する可能性があるので、例えば35℃以下の温度で2時間以内に混合を終了させることが好ましい。
 ポリアミドイミド樹脂塗料は、さらにその他の任意の成分を含んでいてもよい。例えば、顔料、充填材、消泡剤、防腐剤、潤滑剤、界面活性剤、酸化防止剤、紫外線吸収剤等の、一般的に塗料に用いられる公知の任意成分を添加してもよい。
 界面活性剤としては、特に制限されるものではないが、塗膜を形成するための成分が均一に混合して、塗膜が乾燥するまで分離せず(分層を起こさず)、焼付け後に多くの残留物が残らないものが好ましい。
 界面活性剤の含有量は、特に制限されるものではないが、均一な混合状態を保つために塗料中に0.01質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。一方、塗膜の焼付け時に炭化分が多く残留して成膜性に悪影響を与えることがないよう、界面活性剤の含有量は塗料中に10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
 塗料は、塗膜の耐水性等を向上させるために、必要に応じて充填材を含有することが好ましい。
 充填材の種類は、その耐水性や耐薬品性等を考慮し、塗膜の用途に応じて選択することができ、水に溶解しないものであることが好ましい。具体的には、充填材としては、金属粉、金属酸化物(酸化アルミ、酸化亜鉛、酸化スズ、酸化チタン等)、ガラスビーズ、ガラスフレーク、ガラス粒子、セラミックス、炭化珪素、酸化珪素、弗化カルシウム、カーボンブラック、グラフアイト、マイカ、及び硫酸バリウム等を挙げることができる。これらは、各々が単独で用いられるほか、複数種を組み合わせて使用してもよい。
 塗料の塗装方法は特に限定されず、公知の塗装方法、例えばディッピング塗装、スプレー塗装、及び刷毛塗り等を採用できる。塗装方法に応じて、溶媒の量を適宜調節して、適切な濃度に希釈することが好ましい。
 塗料を塗布した後は、乾燥(予備乾燥)及び硬化(焼成)させて塗膜を形成する。乾燥及び硬化の条件は、特に限定されず、使用する基材の耐熱特性に応じて適宜設定することが好ましい。塗膜の密着性と靱性を確保するためには、250℃以上の加熱を行うことが好ましい。
3.ポリアミドイミド樹脂の製造方法
 本実施形態のポリアミドイミド樹脂の製造方法は、ジイソシアネート化合物と、三塩基酸無水物及び/又は三塩基酸ハライドとを、エーテル基含有環状アミンを含む溶媒中で反応させる工程を含むことを特徴とする。
 使用する原料化合物については、上記ポリアミドイミド樹脂の項において説明したとおりである。
 重合溶媒であるエーテル基含有環状アミンについても、上記したとおりである。重合溶媒としてエーテル基含有環状アミンを用いることにより、樹脂の合成とイソシアネート基のブロック化を、一段階で行うことができる。さらに、エーテル基含有環状アミンは、ポリアミドイミド樹脂の溶液重合溶媒及び塗料溶媒としても適しているので、得られた重合溶液をそのまま塗料等に用いることができる。
 重合溶媒中のエーテル基含有環状アミンの含有量は、50質量%以上であることが好ましい。その場合には、重合後の樹脂溶液を、そのまま塗料として好ましく使用することもできる。
 すなわち、3-アルキル-2-オキサゾリジノンを単独で使用してもよいが、その他の極性溶媒と混合して使用してもよい。併用できる重合溶媒としては、N-メチル-2-ピロリドン、N,N′-ジメチルエチレンウレア、N,N-ジメチルアセトアミド又はN,N-ジメチルホルムアミド、及びγ―ブチロラクトン等が挙げられ、これらの2種以上を適宜組み合わせて併用してもよい。
 反応温度は、特に限定されず、使用する重合溶媒の沸点に応じて適宜設定すればよい。例えば、エーテル基含有環状アミンとしてN-アルキルモルホリンを重合溶媒として用いる場合、100~180℃の温度で反応させることが好ましい。
 重合反応は、空気中の水分の影響を低減するため、窒素等の雰囲気下で行うことが好ましい。
 酸成分とジイソシアネート成分の反応は、例えば次の手順で行うことができる。
(1)酸成分、及びジイソシアネート成分を一度に使用し、反応させてポリアミドイミド樹脂を合成する方法。
(2)酸成分と、ジイソシアネート成分の過剰量とを反応させて、末端にイソシアネート基を有するアミドイミドオリゴマーを合成した後、酸成分を追加して末端のイソシアネート基と反応させてポリアミドイミド樹脂を合成する方法。
(3)酸成分の過剰量と、ジイソシアネート成分を反応させて、末端に酸又は酸無水物基を有するアミドイミドオリゴマーを合成した後、ジイソシアネート成分を追加して末端の酸又は酸無水物基と反応させてポリアミドイミド樹脂を合成する方法。
 以下、様々な実施例について詳しく説明するが、好ましい実施形態はこれらに制限されるものではなく、発明の主旨に基づいたこれら以外の多くの実施態様を含むことは言うまでもない。
<実施例1>
 4,4′-ジフェニルメタンジイソシアネート250.3g(1.00モル)、無水トリメリット酸192.1g(1.00モル)、及び4-メチルモルホリン660gを、温度計、攪拌機、及び冷却管を備えた2リットルのフラスコに仕込み、乾燥させた窒素気流中で撹拌しながら110℃に昇温して約4時間反応させ、さらに160℃に保持して6時間反応させて、数平均分子量19,000のブロック化ポリアミドイミド樹脂溶液(固形分濃度:約40質量%)を得た。得られたポリアミドイミド樹脂は、NMR測定により、樹脂1モルに対し、0.02モルの4-メチルモルホリンでブロックされていることを確認した。
 NMRの測定は、Bruker社製1H-NMR装置を用い、以下の条件で行った。
 基準物質:テトラメチルシラン、0ppm
 溶媒:ジメチルスルホキシド-d6
 周波数:400MHz
 温度:23℃±3℃
 また、各合成樹脂は、アセトンを用いて再沈殿させたものを試料とした。
 ポリアミドイミド樹脂の数平均分子量は、次の条件で測定した。
 GPC機種:日立 L6000
 検出器:日立 L4000型UV
 波長:270nm
 データ処理機:ATT 8
 カラム:Gelpack GL-S300MDT-5×2
 カラムサイズ:8mmφ×300mm
 溶媒:DMF/THF=1/1(リットル)+リン酸0.06M+臭化リチウム0.06M
 試料濃度:5mg/1ml
 注入量:5μl
 圧力:49kgf/cm(4.8×106Pa)
 流量:1.0ml/min
<実施例2>
 4,4′-ジフェニルメタンジイソシアネート125.2g(0.5モル)、3,3′-ジメチル-4,4′-ジイソシアナトビフェニル132.2g(0.5モル)、無水トリメリット酸192.1g(1.0モル)、及び4-メチルモルホリン904gを、温度計、攪拌機、及び冷却管を備えた2リットルのフラスコに仕込み、乾燥させた窒素気流中で撹拌しながら110℃に昇温して約4時間反応させ、さらに160℃に保持して6時間反応させて、数平均分子量20,000のブロック化ポリアミドイミド樹脂溶液を得た。得られたポリアミドイミド樹脂は、NMR測定により、樹脂1モルに対し、0.11モルの4-メチルモルホリンでブロックされていることを確認した。
<実施例3>
 4,4′-ジフェニルメタンジイソシアネート125.2g(0.5モル)、3,3′-ジメチル-4,4′-ジイソシアナトビフェニル158.6g(0.6モル)、無水トリメリット酸192.1g(1.0モル)、及びN-ホルミルモルホリン904gを、温度計、攪拌機、及び冷却管を備えた2リットルのフラスコに仕込み、乾燥させた窒素気流中で撹拌しながら温度を110℃に昇温して約4時間反応させ、さらに160℃に保持して2時間反応させて、数平均分子量15,600のブロック化ポリアミドイミド樹脂溶液を得た。得られたポリアミドイミド樹脂は、NMR測定により、樹脂1モルに対し、0.15モルのN-ホルミルモルホリンでブロックされていることを確認した。
<実施例4>
 4,4′-ジフェニルメタンジイソシアネート257.5g(1.02モル)、無水トリメリット酸192.1g(1.0モル)、及びN-ホルミルモルホリン660gを、温度計、攪拌機、及び冷却管を備えた2リットルのフラスコに仕込み、乾燥させた窒素気流中で撹拌しながら110℃に昇温して約4時間反応させ、さらに160℃に保持して4時間反応させて、数平均分子量23,000のブロック化ポリアミドイミド樹脂溶液を得た。得られたポリアミドイミド樹脂は、NMR測定により、樹脂1モルに対し、0.06モルのN-ホルミルモルホリンでブロックされていることを確認した。
<比較例1>
 4,4′-ジフェニルメタンジイソシアネート250.3g(1.0モル)、無水トリメリット酸192.1g(1.0モル)、及びN-メチル-2-ピロリドン660gを、温度計、攪拌機、及び冷却管を備えた2リットルのフラスコに仕込み、乾燥させた窒素気流中で撹拌しながら140℃に昇温して約6時間反応させ、数平均分子量22,000のポリアミドイミド樹脂溶液を得た。
<密着性>
 上記実施例及び比較例で得られた樹脂溶液を、基材(アルミニウム板JIS H 4000、厚み1mm、未研摩)に塗布した後、270℃で30分間焼付けて、膜厚約20μmの塗膜板を作製し、初期の密着性を測定した。
 密着性は、旧JIS K 5400に準じて測定した(%、クロスカット残率)。すなわち、試験面にカッターナイフを用いて、1×1mm四方の碁盤目の切り傷を入れ、100個の碁盤目を形成した。碁盤目部分にメンディングテープ#810(スリーエム(株)製)を強く圧着させ、テープをゆっくりと引き剥がした後、碁盤目の状態を観察し、100マス中の残マス数を%で示した。剥離試験は5回行って、各回毎にマス目数を数えた。
<貯蔵安定性>
 得られた樹脂溶液を40℃で6ヶ月間放置し、貯蔵の前後で粘度を測定して、粘度変化率を調べた。粘度は、JIS C 2103 に準拠して、B型回転粘度計を用い、25℃、ローター4号、回転数12rpmで測定した。
<機械的特性>
 ガラス板上に上記各樹脂溶液を塗布し、270℃で30分加熱硬化した後、剥離して、膜厚約20μm、幅10mm、長さ60mmの塗膜を作製した。
 引張試験機は、(株)島津製作所製「オートグラフAGS-5kNG」を用い、チャック間長さ20mm、引張速度5mm/分の条件で引張試験を行って、引張強度、弾性率、及び伸び率を求めた。
 以上の結果を、表1に示す。密着性は、5回の試験で得られた平均値を示す。
Figure JPOXMLDOC01-appb-T000003
 表1から、実施例のブロック化ポリアミドイミド樹脂を用いて得られた塗膜は、ブロック化していない比較例のポリアミドイミド樹脂を用いた塗膜と比較して、高弾性率であることがわかる。また、実施例の樹脂溶液は、比較例の樹脂溶液に比べ、格段に貯蔵安定性が高いことも示された。
 本願の開示は、2015年12月14日に出願された特願2015-243133号に記載の主題と関連しており、それらのすべての開示内容は引用によりここに援用される。
 既に述べられたもの以外に、本発明の新規かつ有利な特徴から外れることなく、上記の実施形態に様々な修正や変更を加えてもよいことに注意すべきである。したがって、そのような全ての修正や変更は、添付の請求の範囲に含まれることが意図されている。

Claims (7)

  1.  末端にイソシアネート基を有し、該イソシアネート基の少なくとも一部が、エーテル基含有環状アミンでブロックされた、ポリアミドイミド樹脂。
  2.  前記ポリアミドイミド樹脂1モルに対し、0.05~0.15モルのエーテル基含有環状アミンでブロックされた、請求項1記載のポリアミドイミド樹脂。
  3.  数平均分子量が12,000~30,000である、請求項1又は2記載のポリアミドイミド樹脂。
  4.  請求項1~3のいずれか一項記載のポリアミドイミド樹脂、及び溶媒を含有する塗料。
  5.  前記溶媒中のエーテル基含有環状アミンの含有量が50質量%以上である、請求項4記載の塗料。
  6.  ジイソシアネート化合物と、三塩基酸無水物及び/又は三塩基酸ハライドとを、エーテル基含有環状アミンを含む溶媒中で反応させる工程を含む、ポリアミドイミド樹脂の製造方法。
  7.  前記溶媒中のエーテル基含有環状アミンの含有量が50質量%以上である、請求項6記載のポリアミドイミド樹脂の製造方法。
PCT/JP2016/086036 2015-12-14 2016-12-05 ポリアミドイミド樹脂及び塗料 WO2017104461A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/781,224 US11214709B2 (en) 2015-12-14 2016-12-05 Polyamideimide resin and coating material
JP2017555984A JP6822416B2 (ja) 2015-12-14 2016-12-05 ポリアミドイミド樹脂及び塗料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015243133 2015-12-14
JP2015-243133 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017104461A1 true WO2017104461A1 (ja) 2017-06-22

Family

ID=59056329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086036 WO2017104461A1 (ja) 2015-12-14 2016-12-05 ポリアミドイミド樹脂及び塗料

Country Status (3)

Country Link
US (1) US11214709B2 (ja)
JP (1) JP6822416B2 (ja)
WO (1) WO2017104461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578446A (en) * 2018-10-26 2020-05-13 Mahle Int Gmbh Bearing material, bearing and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880326A (ja) * 1981-11-06 1983-05-14 Hitachi Chem Co Ltd ポリアミドイミド樹脂の製造法
JPS58108268A (ja) * 1981-11-17 1983-06-28 エセツクス・グル−プ・インコ−ポレイテツド エナメル線用エナメル及びその製造方法
JPH08325344A (ja) * 1995-05-30 1996-12-10 Hitachi Chem Co Ltd 変性ポリアミドイミド樹脂の製造法、変性ポリアミドイミド樹脂及び変性ポリアミドイミド樹脂組成物
JP2007146101A (ja) * 2005-10-28 2007-06-14 Hitachi Chem Co Ltd 芳香族系樹脂組成物、該芳香族系樹脂組成物を塗料成分としてなる耐熱性塗料及び摺動部コーティング塗料バインダー
JP2010508427A (ja) * 2006-11-03 2010-03-18 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト キャップしたポリイミドまたはポリアミドイミドの溶液
JP2011256217A (ja) * 2010-06-04 2011-12-22 Asahi Kasei Chemicals Corp ブロックポリイソシアネート組成物
JP2014240450A (ja) * 2013-06-11 2014-12-25 日立化成株式会社 ポリアミドイミド樹脂

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156122A (ja) * 1985-12-27 1987-07-11 Hitachi Chem Co Ltd 耐熱性樹脂組成物
JPH0439323A (ja) 1990-06-01 1992-02-10 Hitachi Chem Co Ltd 耐熱性樹脂組成物
JP5205739B2 (ja) * 2005-10-28 2013-06-05 日立化成株式会社 ポリアミドイミド樹脂、ポリアミドイミド樹脂組成物、塗料、摺動部用塗料及び摺動部用塗膜
US9668360B2 (en) * 2009-10-29 2017-05-30 Sun Chemical Corporation Polyamideimide adhesives for printed circuit boards
US9182375B2 (en) * 2010-10-15 2015-11-10 Toshiba Mitsubishi-Electric Industrial Systems Corporation Measuring apparatus and measuring method for metallic microstructures or material properties
SG11201403244WA (en) * 2011-12-15 2014-07-30 Fujifilm Hunt Chemicals Us Inc Low toxicity solvent system for polyamideimide resins and solvent system manufacture
US9725617B2 (en) * 2014-04-17 2017-08-08 Fujifilm Hunt Chemicals U.S.A., Inc. Low toxicity solvent system for polyamideimide and polyamide amic acid resin coating
US9815941B2 (en) * 2014-04-17 2017-11-14 Cymer-Dayton, Llc Low toxicity solvent system for polyamdieimide and polyamide amic acid resin manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880326A (ja) * 1981-11-06 1983-05-14 Hitachi Chem Co Ltd ポリアミドイミド樹脂の製造法
JPS58108268A (ja) * 1981-11-17 1983-06-28 エセツクス・グル−プ・インコ−ポレイテツド エナメル線用エナメル及びその製造方法
JPH08325344A (ja) * 1995-05-30 1996-12-10 Hitachi Chem Co Ltd 変性ポリアミドイミド樹脂の製造法、変性ポリアミドイミド樹脂及び変性ポリアミドイミド樹脂組成物
JP2007146101A (ja) * 2005-10-28 2007-06-14 Hitachi Chem Co Ltd 芳香族系樹脂組成物、該芳香族系樹脂組成物を塗料成分としてなる耐熱性塗料及び摺動部コーティング塗料バインダー
JP2010508427A (ja) * 2006-11-03 2010-03-18 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト キャップしたポリイミドまたはポリアミドイミドの溶液
JP2011256217A (ja) * 2010-06-04 2011-12-22 Asahi Kasei Chemicals Corp ブロックポリイソシアネート組成物
JP2014240450A (ja) * 2013-06-11 2014-12-25 日立化成株式会社 ポリアミドイミド樹脂

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578446A (en) * 2018-10-26 2020-05-13 Mahle Int Gmbh Bearing material, bearing and method
GB2578446B (en) * 2018-10-26 2021-04-21 Mahle Int Gmbh Bearing material, bearing and method
US11739278B2 (en) 2018-10-26 2023-08-29 Mahle International Gmbh Bearing material, bearing and method for its manufacture

Also Published As

Publication number Publication date
US20180320022A1 (en) 2018-11-08
US11214709B2 (en) 2022-01-04
JPWO2017104461A1 (ja) 2018-09-27
JP6822416B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
TWI415879B (zh) 熱硬化性聚醯亞胺矽樹脂組成物
US11674039B2 (en) Polyamideimide resin composition and flourine-based coating material
JP2008285660A (ja) ポリアミドイミド樹脂、ポリアミドイミド樹脂組成物及び塗料組成物
JP7363945B2 (ja) 不織布製造用ポリアミドイミド樹脂組成物
JP6741020B2 (ja) ポリアミドイミド樹脂組成物及びフッ素塗料
JP5109374B2 (ja) ポリアミドイミド樹脂溶液とその製造方法、樹脂組成物及び塗料組成物
JP7021084B2 (ja) ポリアミドイミド樹脂組成物及び塗料
JP2017101197A (ja) ポリアミドイミド樹脂組成物及び塗料
JP6822416B2 (ja) ポリアミドイミド樹脂及び塗料
JP2009286826A (ja) 耐熱性樹脂組成物及びそれを塗料成分とする塗料
JP6915433B2 (ja) ポリアミドイミド樹脂液及びその製造方法
JP6789499B2 (ja) ポリアミドイミド樹脂及びその利用
JP5430948B2 (ja) ポリイミド硬化触媒
JP5176071B2 (ja) 耐熱性樹脂組成物及び塗料
JPS62270618A (ja) エポキシ樹脂組成物
JPH09302226A (ja) ポリアミドイミド樹脂組成物および低温硬化型高密着性耐熱塗料
JP7107838B2 (ja) ポリアミドイミド樹脂組成物及び塗料
JP2016017102A (ja) 耐熱性樹脂組成物
WO2020230330A1 (ja) ポリアミドイミド樹脂組成物及びポリアミドイミド樹脂の製造方法
JP2012241052A (ja) 耐熱樹脂組成物及びこれを用いたアルミニウム基材
JPH0912879A (ja) ポリアミドイミド樹脂組成物
JP2003342470A (ja) 耐熱性樹脂組成物および塗料
JPH0912880A (ja) ポリアミドイミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555984

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15781224

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875444

Country of ref document: EP

Kind code of ref document: A1