WO2017101532A1 - 一种热固性树脂组合物及其用途 - Google Patents
一种热固性树脂组合物及其用途 Download PDFInfo
- Publication number
- WO2017101532A1 WO2017101532A1 PCT/CN2016/098482 CN2016098482W WO2017101532A1 WO 2017101532 A1 WO2017101532 A1 WO 2017101532A1 CN 2016098482 W CN2016098482 W CN 2016098482W WO 2017101532 A1 WO2017101532 A1 WO 2017101532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nano
- inorganic powder
- thermosetting resin
- nano inorganic
- treatment agent
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/092—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/098—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/26—Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/42—Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/40—Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/101—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/107—Ceramic
- B32B2264/108—Carbon, e.g. graphite particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/12—Mixture of at least two particles made of different materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Definitions
- the invention belongs to the technical field of copper clad laminates, relates to a thermosetting resin composition and a use thereof, and particularly to a thermosetting resin composition and a prepreg, a laminate and a printed circuit board containing the same.
- CN 102040803A relates to an epoxy resin composition
- an epoxy resin composition comprising a solid epoxy resin, silica nanoparticles having an average particle diameter of from 1 nm to 100 nm, and an average particle diameter larger than an average particle diameter of the silica nanoparticles and being 0.1 ⁇ m.
- SiO particles of ⁇ 5.0 ⁇ m are used as the filling of the epoxy resin composition.
- Agent to improve the heat resistance, flame retardancy and adhesion of the product When the resin composition of the present invention is used in the field of a copper clad laminate, it is also necessary to add a curing agent such as a phenol.
- CN 102206399A discloses a composition for a low dielectric constant copper-clad laminate comprising: a thermosetting resin, 1 to 30 parts by weight of a hollow filler, 1 to 50 parts by weight of a low water absorption filler, and 0.5 to 5
- the treatment agent includes a silane coupling agent, a titanate coupling agent or a long-chain silicone treatment agent in parts by weight.
- hollow fillers and low water absorption fillers are used as fillers in order to reduce water absorption.
- a curing agent such as an amine.
- CN 102936397 A discloses a nanofiller modified epoxy resin which is composed of a nanofiller and an epoxy.
- the resin composition wherein the mass fraction ratio of the nano filler to the epoxy resin is (0.5-20):100.
- the prior art is surface-treated by using a nano-filler, and the epoxy resin is modified after mixing, and the crack can be passivated after the epoxy resin is cured, thereby improving the toughness of the epoxy resin and improving the epoxy after curing to some extent.
- the glass transition temperature of the resin When the nanofiller-modified epoxy resin of the invention is used in the field of copper clad laminates, an additional epoxy resin curing agent is required.
- CN 101837455 A discloses a method for producing a shell-core nanostructure by first providing a nanoparticle containing a metal, wherein the nanoparticle is adapted to convert light energy into thermal energy. The nanoparticles are then distributed over the first thermoset precursor. Next, a second thermoset precursor is applied to the first thermoset precursor to cover the nanoparticles. Then, the light source is irradiated to the nanoparticles to generate thermal energy, and the first thermosetting material precursor and the second thermosetting material precursor surrounding the nanoparticles are solidified to form a thermosetting material layer on the nanoparticles. Thereafter, the uncured portion of the first thermoset precursor and the uncured portion of the second thermoset precursor are removed.
- the invention mainly utilizes the photothermal effect of the nanoparticles to convert the light energy into heat energy, and the thermosetting material precursor around the nanoparticles solidifies after absorbing the heat energy to form a thermosetting material layer.
- the role of the nanoparticles is only to provide thermal energy, and the curing of the thermoset precursor is primarily dependent on self-crosslinking.
- the layer of thermoset material formed is a self-crosslinking product of a precursor of a thermoset material.
- the nanoparticles are used as a filler or provide thermal energy, and other uses for the nanoparticles have not been disclosed in the prior art.
- an object of the present invention is to provide a thermosetting resin composition in which a nano inorganic powder serves as both a curing agent and an inorganic filler.
- thermosetting resin composition comprising: a thermosetting resin and a nano inorganic powder, and does not include other curing agents.
- the nano inorganic powder is used as both an inorganic filler and a curing agent, and no other curing agent is added to the thermosetting resin composition of the present invention.
- the thermosetting resin composition includes a nano inorganic powder and a curing agent
- the present invention uses the nano inorganic powder as an inorganic filler and a curing agent on the basis of the prior art, and omits other curing agents.
- the present invention is an invention that is omitted from the prior art (e.g., 102040803A and CN 102206399A).
- the nano-inorganic powder does not need to be surface-treated, and the prior art, as shown in CN 102936397A, requires a surface treatment of the nano-filler, and the present invention omits the "surface treatment" with respect to the prior art.
- the "other curing agent" in the “excluding other curing agent” means a resin which can be cured in a curing reaction with a thermosetting resin such as an epoxy resin other than the nano inorganic powder of the present invention.
- the resin which undergoes a curing reaction of a thermosetting resin such as an epoxy resin belongs to the "other curing agent” of the present invention.
- the thermosetting resin is an epoxy resin
- the phenol resin and the benzoxazine resin are "other curing agents" of the present invention.
- the mechanism of the nano inorganic powder as a curing agent on the basis of the inorganic filler, this does not affect the practice of the present invention and the nano inorganic powder as an inorganic filler and a curing agent. use.
- the inventors of the present invention speculated that the mechanism by which the nano inorganic powder can be used as a curing agent is:
- the groups on the surface of the nano-inorganic powder especially the hydroxyl groups, easily react with the active groups of the thermosetting resin to form a protective layer with a strong repulsive force on the surface of the nanoparticles, which weakens the force between the nanoparticles, ie, enhances the nanoparticles.
- the interaction with the thermosetting resin reduces the steric hindrance between the molecular chains.
- the energy barrier of the curing reaction of the thermosetting resin is lowered, and finally the curing reaction of the thermosetting resin is promoted.
- the size of the nano inorganic powder is less than 100 nm. At this time, the nano inorganic powder exhibits a strong nano effect, the surface thereof has high activity, and the nanometer has a large specific surface area, and has more active groups per unit area, and is easier. Reacts with the reactive groups of the resin.
- the present invention uses a nano inorganic powder to cure a thermosetting resin, omitting the use of other curing agents. Further, as described above, since the nano inorganic powder acts as a curing agent, the energy barrier of the curing reaction of the thermosetting resin can be lowered, thereby achieving the effect of curing, and the heat resistance of the composite material can be remarkably improved. At the same time, since the nano inorganic powder is a toughening agent, as a curing agent curing resin, the toughness of the composite material is improved while the curing degree of the composite material and the rigidity of the sheet material are improved. In addition, due to its strong surface effect and adsorption capacity, the nano-inorganic powder can effectively capture the free radicals emitted by the combustion reaction and enhance the flame retardant properties of the material.
- the nano inorganic powder is used as an inorganic filler and a curing agent on the basis of the prior art, and other curing agents are omitted, which not only maintains the original curing function, but also improves the composite material.
- the heat resistance, toughness, and flame retardant properties give rise to technical effects unanticipated by those skilled in the art.
- the present invention pertains to the prior art and belongs to the invention omitted from the elements.
- thermosetting resin composition composed of a thermosetting resin and a nano inorganic powder.
- the thermosetting resin composition is composed only of a thermosetting resin and a nano inorganic powder, wherein the nano inorganic powder is used as an inorganic filler and a curing agent.
- the present invention omits the use of other curing agents, not only maintaining the original curing function, but also improving heat resistance, toughness and flame retardant performance, resulting in technical effects unpredictable by those skilled in the art.
- the present invention pertains to the prior art and belongs to the invention omitted from the elements.
- the nano inorganic powder is a nano inorganic powder having a hydroxyl group on its surface.
- the surface of the nano inorganic powder carries a hydroxyl group, such as nano silica, and the surface of the silicon alcohol It is easier to react with the reactive groups of the resin to form a protective layer with a strong repulsive force on the surface of the nanoparticles, which weakens the force between the particles, thereby enhancing the interaction between the nanoparticles and the resin, and reducing the molecular chain.
- the steric hindrance reduces the energy barrier of the curing reaction of the thermosetting resin and finally causes the curing reaction of the thermosetting resin.
- the nano inorganic powder with hydroxyl groups on the surface is nano SiO 2 , nano kaolin, nano TiO 2 , nano clay, nano boehmite, nano talc, nano mica, nano aluminum hydroxide, nano magnesium hydroxide, nanometer Any one or a mixture of at least two of zinc borate, zinc nanostannate, nanoglass micropowder, attapulgite, halloysite or nanocarbon black.
- the mixture is, for example, a mixture of nano-SiO 2 and nano-kaolin, a mixture of nano-TiO 2 and nano-aluminum hydroxide, a mixture of nano-clay and nano-magnesium hydroxide, a mixture of nano-boehmite and nano-alumina, nano-talc, nano-mica a mixture with nano-aluminum hydroxide, a mixture of nano-magnesium hydroxide, zinc nanoborate and zinc nanostannate, a mixture of nano-glass micropowder, attapulgite, halloysite and nano-carbon black, nano-SiO 2 , nano-kaolin and nano-TiO 2 a mixture of nano-boehmite, a mixture of nano-aluminum hydroxide and nano-talc, a mixture of nano-mica, nano-aluminum hydroxide, nano-magnesium hydroxide and zinc nanoborate.
- the nano inorganic powder has two or more groups on the surface, such as nano carbon black.
- the surface carries more than two groups, meaning that, in addition to the hydroxyl group, the surface carries at least one other group.
- the nano inorganic powder has an average particle diameter of 100 nm or less, preferably 50 nm or less.
- the nano-inorganic powder is a nano-inorganic powder in a solid, porous or hollow form, preferably a nano-inorganic powder in a porous form.
- the nano-inorganic powder in a porous form has a large specific surface area and a rich surface group, is advantageous for the adhesion of the nano-inorganic powder to the resin and provides a place for the reaction of the two, and is favorable for promoting the progress of the curing reaction.
- the nano inorganic powder is spherical, fibrous or has a shape of two or more faces, preferably Selected as a sphere.
- the nano inorganic powder accounts for 21 to 80%, such as 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70% of the total mass of the thermosetting resin composition. % or 75%, preferably 21 to 50%.
- the amount is less than 21%, the curing effect cannot be achieved.
- the amount is more than 80%, the viscosity of the system is high, and the filler is difficult to disperse and cannot be used normally.
- the mass ratio of the nano inorganic powder to the thermosetting resin at this time is from 1:4 to 4:1, preferably from 3:10 to 3:5.
- the surface-treated nano inorganic powder may also be selected, that is, the nano inorganic powder may also be subjected to surface treatment, and the surface treatment agent used includes a silane coupling agent, a titanate treatment agent, an aluminate, and zirconium.
- the nano inorganic powder is subjected to surface treatment, and the surface treatment agent used includes:
- Surface treatment agent B includes 2-3 hydrolyzable silicon functional organosilicon silane coupling agents at one end of the molecular chain, titanate treatment agent, aluminate, zirconate, cationic surface active Agent, anionic surfactant, amphoteric surfactant, nonionic surfactant, stearic acid, oleic acid, lauric acid, metal stearate, metal oleate, metal laurate, phenolic resin, organic Silicone oil or a combination of any one or at least two of a molecular weight of 300-1000 long chain treatment agents.
- Each of the two ends of the molecular chain has 2-3 hydrolyzable silicon functional silicone silane coupling agents, which have more reaction points than the general coupling agent, and can more effectively adhere and connect inorganic-inorganic substances. ,as well as The inorganic-organic matter promotes the reaction to proceed more easily and enhances the strength of the composite.
- the surface treatment agent A was used in combination with the surface treatment agent B, and the effect was more remarkable. It may be because the surface treatment agent A and the surface treatment agent B were combined to increase the treatment agent segment and increase the treatment agent.
- the reaction point makes the surface treatment agent, the nano inorganic powder, and the thermosetting resin have better contact, and the curing reaction proceeds.
- R is a non-reactive/reactive group, preferably an aryl group, a thio group, a hydrocarbon group or an amino group;
- X is a hydrolyzable silicon functional group;
- Y is a hydrolyzable silicon functional group or a non-hydrolyzable silicon functional group.
- n is an integer from 1 to 18, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17.
- the mass ratio of the surface treatment agent A to the surface treatment agent B is 3:7.
- the nano inorganic powder is uniformly mixed by physical means such as stirring, ball milling, sanding and high pressure homogenization.
- the thermosetting resin comprises any one of epoxy resin, silicone resin, phenolic resin, cyanate resin, benzoxazine resin or unsaturated polyester or a mixture of at least two, preferably epoxy resin .
- the thermosetting resin is selected on the basis that any one of the above thermosetting resins may be selected, or a mixture of at least two of the above thermosetting resins may be selected. When a mixture of at least two of the above thermosetting resins is selected, the selected thermosetting resins cannot undergo a chemical reaction with each other.
- thermosetting resin when the thermosetting resin is an epoxy resin, other thermosetting resins may be included in the thermosetting resin composition, but may not include reacting with the epoxy resin to make the ring An oxy resin-cured phenol resin and a benzoxazine resin, in which case the phenol resin and the benzoxazine resin are the aforementioned "other curing agents" of the present invention.
- thermosetting resin composition may further contain various additives, and specific examples thereof include a coupling agent, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a pigment, a colorant, or a lubricant. . These various additives may be used singly or in combination of two or more kinds.
- Another object of the present invention is to provide a prepreg made of a thermosetting resin composition comprising a reinforcing material and a thermosetting resin composition as described above adhered thereto by impregnation and drying.
- Another object of the present invention is to provide a laminate comprising at least one prepreg as described above.
- Another object of the present invention is to provide a printed circuit board comprising at least one prepreg as described above.
- the present invention also provides a use of a nano inorganic powder as an inorganic filler and a curing agent in a thermosetting resin composition, the thermosetting resin composition comprising a thermosetting resin and a nano inorganic powder, and excluding other curing agents. .
- the nano inorganic powder is used as a filler. Based on the prior art, the present invention finds that the nano inorganic powder can be used as an inorganic filler as a thermosetting property. A curing agent for the resin is used.
- the "other curing agent" in the “excluding other curing agent” means, in addition to the present Any resin other than the nano inorganic powder which can undergo a reverse curing reaction with a thermosetting resin such as an epoxy resin, and all resins which can undergo a curing reaction with a thermosetting resin such as an epoxy resin belong to the "other curing agent” of the present invention.
- the thermosetting resin is an epoxy resin
- the phenol resin and the benzoxazine resin are "other curing agents" of the present invention.
- the mechanism of the nano inorganic powder as a curing agent on the basis of the inorganic filler, this does not affect the practice of the present invention and the nano inorganic powder as an inorganic filler and a curing agent. use.
- the inventors of the present invention speculated that the mechanism by which the nano inorganic powder can be used as a curing agent is:
- the group on the surface of the nano inorganic powder easily reacts with the active group of the thermosetting resin to form a protective layer with a strong repulsive force on the surface of the nanoparticle, which weakens the force between the nanoparticles, that is, enhances the nanoparticle and the thermosetting resin.
- the force between them reduces the steric hindrance between the molecular chains, reduces the energy barrier of the curing reaction of the thermosetting resin, and finally promotes the curing reaction of the thermosetting resin.
- the size of the nano inorganic powder is less than 100 nm. At this time, the nano inorganic powder exhibits a strong nano effect, the surface thereof has high activity, and the nanometer has a large specific surface area, and has more active groups per unit area, and is easier. Reacts with the reactive groups of the resin.
- the present invention uses a nano inorganic powder to cure a thermosetting resin, omitting the use of other curing agents. Further, as described above, since the nano inorganic powder acts as a curing agent, the energy barrier of the curing reaction of the thermosetting resin can be lowered, and therefore, the heat resistance of the composite material can be remarkably improved by using the nano inorganic powder to cure the thermosetting resin. At the same time, since the nano inorganic powder is a toughening agent, as a curing agent curing resin, the toughness of the composite material is improved while the curing degree of the composite material and the rigidity of the sheet material are improved. In addition, due to its strong surface effect and adsorption capacity, the nano-inorganic powder can effectively capture the free radicals emitted by the combustion reaction and enhance the flame retardant properties of the material.
- thermosetting resin composition composed of a thermosetting resin and nano-nano Machine powder composition.
- the thermosetting resin composition is composed only of a thermosetting resin and a nano inorganic powder, wherein the nano inorganic powder is used as an inorganic filler and a curing agent.
- the nano inorganic powder is a nano inorganic powder having a hydroxyl group on its surface.
- the surface of the nano inorganic powder is provided with a hydroxyl group, such as nano silica, and the surface silanol reacts more easily with the reactive group of the resin, forming a protective layer with a strong repulsive force on the surface of the nanoparticle, which is weakened.
- the force between the particles enhances the interaction between the nanoparticles and the resin, reduces the steric hindrance between the molecular chains, reduces the energy barrier of the curing reaction of the thermosetting resin, and finally causes the curing reaction of the thermosetting resin.
- the nano inorganic powder with hydroxyl groups on the surface is nano SiO 2 , nano kaolin, nano TiO 2 , nano clay, nano boehmite, nano talc, nano mica, nano aluminum hydroxide, nano magnesium hydroxide, nanometer Any one or a mixture of at least two of zinc borate, zinc nanostannate, nanoglass micropowder, attapulgite, halloysite or nanocarbon black.
- the mixture is, for example, a mixture of nano-SiO 2 and nano-kaolin, a mixture of nano-TiO 2 and nano-aluminum hydroxide, a mixture of nano-clay and nano-magnesium hydroxide, a mixture of nano-boehmite and nano-alumina, nano-talc, nano-mica a mixture with nano-aluminum hydroxide, a mixture of nano-magnesium hydroxide, zinc nanoborate and zinc nanostannate, a mixture of nano-glass micropowder, attapulgite, halloysite and nano-carbon black, nano-SiO 2 , nano-kaolin and nano-TiO 2 a mixture of nano-boehmite, a mixture of nano-aluminum hydroxide and nano-talc, a mixture of nano-mica, nano-aluminum hydroxide, nano-magnesium hydroxide and zinc nanoborate.
- the nano inorganic powder has two or more groups on the surface, such as nano carbon black.
- the surface carries more than two groups, meaning that, in addition to the hydroxyl group, the surface carries at least one other group.
- the nano inorganic powder has an average particle diameter of 100 nm or less, preferably 50 nm or less.
- the nano inorganic powder is a nano inorganic powder in a solid, porous or hollow form, excellent Selected as a nano-inorganic powder in a porous form.
- the nano-inorganic powder in a porous form has a large specific surface area and a rich surface group, is advantageous for the adhesion of the nano-inorganic powder to the resin and provides a place for the reaction of the two, and is favorable for promoting the progress of the curing reaction.
- the nano-inorganic powder is spherical, fibrous or has a shape of more than two faces, preferably spherical.
- the nano inorganic powder accounts for 21 to 80%, such as 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70% of the total mass of the thermosetting resin composition. % or 75%, preferably 21 to 50%.
- the amount is less than 21%, the curing effect cannot be achieved.
- the amount is more than 80%, the viscosity of the system is high, and the filler is difficult to disperse and cannot be used normally.
- the mass ratio of the nano inorganic powder to the thermosetting resin at this time is from 1:4 to 4:1, preferably from 3:10 to 3:5.
- the surface-treated nano inorganic powder may also be selected, that is, the nano inorganic powder may also be subjected to surface treatment, and the surface treatment agent used includes a silane coupling agent, a titanate treatment agent, an aluminate, and zirconium.
- the nano inorganic powder is subjected to surface treatment, and the surface treatment agent used includes:
- Surface treatment agent B includes 2-3 hydrolyzable silicon functional organosilicon silane coupling agents at one end of the molecular chain, titanate treatment agent, aluminate, zirconate, cationic surface active Agent, anionic surfactant, amphoteric surfactant, nonionic surfactant, stearic acid, Any combination of oleic acid, lauric acid, metal stearate, metal oleate, metal laurate, phenolic resin, silicone oil or a molecular weight of 300-1000 long chain treatment agent or a combination of at least two.
- Each of the two ends of the molecular chain has 2-3 hydrolyzable silicon functional silicone silane coupling agents, which have more reaction points than the general coupling agent, and can more effectively adhere and connect inorganic-inorganic substances. , as well as inorganic-organic matter, to facilitate the reaction, and to enhance the strength of the composite.
- the surface treatment agent A was used in combination with the surface treatment agent B, and the effect was more remarkable. It may be because the surface treatment agent A and the surface treatment agent B were combined to increase the treatment agent segment and increase the treatment agent.
- the reaction point makes the surface treatment agent, the nano inorganic powder, and the thermosetting resin have better contact, and the curing reaction proceeds.
- R is a non-reactive/reactive group, preferably an aryl group, a thio group, a hydrocarbon group or an amino group;
- X is a hydrolyzable silicon functional group;
- Y is a hydrolyzable silicon functional group or a non-hydrolyzable silicon functional group.
- n is an integer from 1 to 18, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17.
- the mass ratio of the surface treatment agent A to the surface treatment agent B is 3:7.
- the nano inorganic powder is uniformly mixed by physical means such as stirring, ball milling, sanding, and high pressure homogenization.
- the thermosetting resin comprises any one of epoxy resin, silicone resin, phenolic resin, cyanate resin, benzoxazine resin or unsaturated polyester or a mixture of at least two, preferably epoxy resin .
- the basis for selecting the thermosetting resin is that the above thermosetting tree can be selected.
- a mixture of at least two of the above thermosetting resins may also be selected from any of the fats. When a mixture of at least two of the above thermosetting resins is selected, the selected thermosetting resins cannot undergo a chemical reaction with each other.
- thermosetting resin when the thermosetting resin is an epoxy resin, other thermosetting resins may be included in the thermosetting resin composition, but may not include a phenol resin and a benzoxazine which can react with the epoxy resin to cure the epoxy resin.
- Resin in which case the phenolic resin and the benzoxazine resin are the "other curing agents" mentioned hereinabove.
- the present invention has the following beneficial effects:
- the invention uses the nano inorganic powder as an inorganic filler and a curing agent on the basis of the prior art, and omits other curing agents, not only maintains the original curing function, but also improves the heat resistance, toughness and the composite material. Flame retardant properties.
- the laminate using the thermosetting resin composition can have a CTE% of 2.7 or less, a Td (5%) of 325 to 375 ° C, a flame retardancy of V-0, and a toughness of 176 to 306 mm 2 .
- the temperature is 202 to 265 ° C, which produces technical effects unpredictable by those skilled in the art.
- the brominated bisphenol A epoxy resin (Dow Chemical, epoxy equivalent 435, bromine content 19%, product name DER530), the nano inorganic powder is mixed in an organic solvent, mechanically stirred and emulsified to prepare 65 wt% of glue. Then, the glass fiber cloth is impregnated, and dried to form a prepreg, and copper foil is placed on both sides, and heated to form a copper clad laminate.
- the benzoxazine resin (Dongcai Technology, product name D125), nano inorganic powder is mixed in an organic solvent, mechanically stirred and emulsified to prepare 65 wt% of glue, then impregnated with glass fiber cloth, heated After drying, a prepreg is formed, copper foil is placed on both sides, and heated to form a copper clad laminate.
- the cyanate resin (Yangzhou Tianqi, product name CE01PS) and the nano inorganic powder are mixed in an organic solvent, mechanically stirred and emulsified to prepare 65 wt% of the glue, and then impregnated with a glass fiber cloth, and dried to form a prepreg by heating. ), copper foil is placed on both sides and heated to form a copper clad laminate.
- Phenolic resin (Mitu Chemical, product name 2812), nano inorganic powder organic solvent, mechanically stirred, emulsified to prepare 65wt% of glue, then impregnated glass fiber cloth, heated to form a prepreg, two sides The copper foil is placed and heated under pressure to form a copper clad laminate.
- Brominated bisphenol A type epoxy resin (Dow Chemical, epoxy equivalent 435, bromine content 19%, product name DER530), nano inorganic powder and 1% by weight (by weight of filler) of mixed treatment agent (hexafunctional couple)
- Binding agent: epoxy coupling agent 3:7) mixed in an organic solvent, mechanically stirred, emulsified to prepare 65wt% of glue, then impregnated with glass fiber cloth, dried by heating to form a prepreg, placed on both sides Copper foil, pressurized heating to form a copper clad laminate.
- Brominated bisphenol A type epoxy resin (Dow Chemical, epoxy equivalent 435, bromine content 19%, product DER530), nano inorganic powder and 1% (by weight of filler) of epoxy silane coupling agent mixed in organic solvent, mechanically stirred, emulsified to prepare 65wt% of glue, then impregnated glass fiber cloth, after heating and drying A prepreg is formed, copper foil is placed on both sides, and a copper clad laminate is formed by pressure heating.
- brominated bisphenol A epoxy resin (Dow Chemical, epoxy equivalent 435, bromine content 19%, product name DER530), nano inorganic powder and 1 wt% (by weight of the filler) of a hexafunctional coupling agent
- the organic solvent it is mechanically stirred and emulsified to prepare 65 wt% of glue, and then impregnated with a glass fiber cloth, and dried to form a prepreg by heating, and copper foil is placed on both sides, and heated to form a copper clad laminate.
- SIB1620 a tetrafunctional silane coupling agent, Gelest, USA;
- SIB1817 a hexafunctional silane coupling agent, Gelest, USA;
- a copper clad laminate using a resin composition was obtained in the same manner as in Example 2 except that silica (DQ1040, 4 ⁇ m, Donghai Lianrui) was used instead of the nano inorganic powder.
- silica DQ1040, 4 ⁇ m, Donghai Lianrui
- a copper clad laminate using a resin composition was obtained in the same manner as in Example 1 except that the amount of the nano inorganic powder was 11.1 parts. The measurement and evaluation results are shown in Table 2.
- a copper clad laminate using a resin composition was obtained in the same manner as in Example 1 except that the amount of the nano inorganic powder was 900 parts.
- the measurement and evaluation results are shown in Table 2.
- the brominated bisphenol A epoxy resin (Dow Chemical, epoxy equivalent 435, bromine content 19%, product name DER530), dicyandiamide mixed in an organic solvent, mechanically stirred, emulsified to prepare 65 wt% of glue, Then, the glass fiber cloth is impregnated, and dried to form a prepreg, and copper foil is placed on both sides, and heated to form a copper clad laminate.
- the measurement and evaluation results are shown in Table 2.
- the copper foil of the copper clad laminate was removed by an etching solution, and then cut into a size of 5 mm ⁇ 5 mm square to prepare a test piece.
- the average linear thermal expansion coefficient of the test piece in the Z-axis direction (the vertical direction of the glass cloth) at 30 ° C to 260 ° C was measured using a TMA test apparatus at a temperature increase rate of 10 ° C / min. The smaller the coefficient of thermal expansion, the better the effect.
- the 50 ⁇ 50mm plate is placed in the center of the base, and then the solid weight of a certain weight is impacted on the plate at a certain height at a certain speed.
- the area of the crack is observed and measured. The smaller the area, the better the toughness.
- the vertical combustion method was used and tested in accordance with the ANSI/UL-94-1985 standard.
- test was carried out using a thermogravimetric analyzer. Test conditions: nitrogen atmosphere, heating rate of 10 ° C / min, test temperature loss of 5%, test temperature range of 25-550 ° C, weight loss of 5% higher, indicating better heat resistance.
- Test conditions The heating rate was 5 ° C / min. The test range is 25-300 ° C, and the extrapolated initial curing temperature and peak temperature are measured. The lower the initial curing temperature and the peak temperature, the lower the curing temperature of the resin.
- the composite cured with carbon black having two functional groups on the surface is slightly better than the silica having only hydroxyl groups on the surface, and is significantly superior to the surface without functional groups.
- Group of magnesium oxide is slightly better than the silica having only hydroxyl groups on the surface, and is significantly superior to the surface without functional groups.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种热固性树脂组合物以及含有它的预浸料、层压板以及印制电路板。所述热固性树脂组合物,其包括:热固性树脂和纳米无机粉末,且不包括其他固化剂。在现有技术的基础上,将纳米无机粉末作为无机填充剂和固化剂使用,而省略了其他固化剂,不仅保持原有的固化功能,还可以显著提高复合材料的耐热性、韧性和阻燃性能,产生了本领域技术人员所不可预期的技术效果。
Description
本发明属于覆铜板技术领域,涉及一种热固性树脂组合物及其用途,具体涉及一种热固性树脂组合物以及含有它的预浸料、层压板和印制电路板。
近年来,随着电子信息技术的发展,电子设备安装的小型化、高密度化,信息的大容量化、传输信号的高频高速化,应用于高端的通讯网络硬件设备如路由器、交换机和服务器等所采用的电子电路板传输线路越来越长,要求电子电路基材具有优异的耐热性、韧性以及阻燃性。
CN 102040803A涉及一种环氧树脂组合物,包含固体环氧树脂、平均粒径为1nm~100nm的二氧化硅纳米粒子和平均粒径比前述二氧化硅纳米粒子的平均粒径大且为0.1μm~5.0μm的二氧化硅粒子。在该已有技术中,二氧化硅纳米粒子和平均粒径比前述二氧化硅纳米粒子的平均粒径大且为0.1μm~5.0μm的二氧化硅粒子均是作为环氧树脂组合物的填充剂,以提高产品的耐热性、阻燃性和粘结性。该发明的树脂组合物用于覆铜板领域时,还需要添加酚类等固化剂。
CN 102206399A公开了一种低介电常数的覆铜箔层压板用组合物,其包括:热固性树脂,1~30重量份的中空填料,1~50重量份的低吸水率填料,及0.5~5重量份的处理剂,该处理剂包括硅烷偶联剂、钛酸酯偶联剂或长链有机硅处理剂。在该已有技术中,中空填料以及低吸水率填料均是作为填充剂,以期降低吸水率。该发明的树脂组合物用于覆铜板领域时,还需要添加胺类等固化剂。
CN 102936397A公开了一种纳米填料改性环氧树脂,它由纳米填料和环氧
树脂组成,其中纳米填料与环氧树脂的质量分数比为(0.5~20)∶100。该已有技术通过采用纳米填料对其进行表面处理,混合后改性环氧树脂,在环氧树脂固化后可以钝化裂纹,在提高环氧树脂韧性的同时,一定程度上提高固化后环氧树脂的玻璃化转变温度。该发明的纳米填料改性环氧树脂用于覆铜板领域时,还需要额外添加环氧树脂的固化剂。
CN 101837455A公开了一种壳核型纳米结构的制造方法,此方法是先提供纳米粒子,此纳米粒子中含有金属,其中纳米粒子适于将光能转换为热能。然后,将纳米粒子分布于第一热固性材料前驱物上。接着,在第一热固性材料前驱物上涂布第二热固性材料前驱物,以覆盖纳米粒子。而后,将光源照射纳米粒子以产生热能,使纳米粒子周围的第一热固性材料前驱物与第二热固性材料前驱物固化,以在纳米粒子上形成热固性材料层。之后,移除第一热固性材料前驱物的未固化部分与第二热固性材料前驱物的未固化部分。由于热固性材料前驱物固化需要一定的反应温度,该发明主要是利用纳米粒子的光热效应,使光能转化为热能,纳米粒子周围的热固性材料前驱物在吸收该热能之后固化,形成热固性材料层。在该发明中,纳米粒子的作用仅在于提供热能,热固性材料前驱物的固化主要依赖自交联。而且,在形成的最终产品中,所形成的热固性材料层均为热固性材料前驱物的自交联产物。
在上述已有技术中,纳米粒子均是作为填充剂或者提供热能,关于纳米粒子的其他用途,已有技术并未有披露。
发明内容
基于此,第一方面,本发明的目的之一在于提供一种热固性树脂组合物,在该热固性树脂组合物中,纳米无机粉末同时作为固化剂和无机填充剂。
为了实现上述目的,本发明采用了如下技术方案:
一种热固性树脂组合物,其包括:热固性树脂和纳米无机粉末,且不包括其他固化剂。
在本发明中,纳米无机粉末同时作为无机填充剂和固化剂使用,本发明的热固性树脂组合物中不再添加其他固化剂。
在已有技术中,热固性树脂组合物均包括纳米无机粉末以及固化剂,而本发明在现有技术的基础上,将纳米无机粉末作为无机填充剂和固化剂使用,而省略了其他固化剂,本发明相对于现有技术(如102040803A和CN 102206399A)为要素省略的发明。
此外,在本发明中,所述纳米无机粉末不需要进行表面处理,而已有技术如CN 102936397A所示,其纳米填料需要进行表面处理,本发明相对于该已有技术,省略了“表面处理”要素,并实现其所不能实现的作为固化剂的作用。
在本发明中,所述“不包括其他固化剂”中的“其他固化剂”是指,除本发明的纳米无机粉末以外的能和环氧树脂等热固性树脂发生固化反应的树脂,所有能与环氧树脂等热固性树脂发生固化反应的树脂均属于本发明的“其他固化剂”。例如当热固性树脂为环氧树脂时,酚醛树脂和苯并噁嗪树脂即是本发明的“其他固化剂”。
本发明的发明人虽然不知晓纳米无机粉末在作为无机填充剂的基础上,还可以同时作为固化剂的机理,但是这并不影响本发明的实施和纳米无机粉末作为无机填充剂和固化剂的使用。本发明的发明人推测纳米无机粉末可以作为固化剂使用的机理为:
纳米无机粉末表面的基团尤其是羟基易与热固性树脂的活性基团反应,在纳米粒子表面形成一层排斥力较强的保护层,减弱了纳米粒子之间的作用力,即增强了纳米粒子与热固性树脂之间的作用力,减少了分子链间的空间位阻,
降低了热固性树脂固化反应的能垒,并最终促使热固性树脂的固化反应。此外,纳米无机粉末的尺寸为小于100nm,此时纳米无机粉末表现出强烈的纳米效应,其表面具有很高的活性,并且纳米粒子比表面积大,单位面积所具有的活性基团更多,更易与树脂的活性基团进行反应。
本发明在现有技术的基础上,采用纳米无机粉末固化热固性树脂,省略了其他固化剂的使用。而且,如前所述,由于纳米无机粉末作为固化剂可以降低热固性树脂固化反应的能垒,从而达到固化的作用,并且可以显著提高复合材料的耐热性。同时,由于纳米无机粉末是增韧剂,作为固化剂固化树脂,在提高复合材料的固化程度和板材刚性的同时,也提高了复合材料的韧性。另外,纳米无机粉末由于具有强烈的表面效应与吸附能力,能有效捕获燃烧反应放出的自由基,增强材料的阻燃性能。
据此可以得出,本发明在现有技术的基础上,将纳米无机粉末作为无机填充剂和固化剂使用,而省略了其他固化剂,不仅保持原有的固化功能,还可以提高复合材料的耐热性、韧性和阻燃性能,产生了本领域技术人员所不可预期的技术效果。本发明相对于现有技术,属于要素省略的发明。
优选地,在本发明中,一种热固性树脂组合物,其由热固性树脂和纳米无机粉末组成。在该优选技术方案中,所述热固性树脂组合物仅由热固性树脂和纳米无机粉末组成,其中,纳米无机粉末作为无机填充剂和固化剂使用。相对于现有技术,本发明省略了其他固化剂的使用,不仅保持原有的固化功能,还可以提高耐热性、韧性和阻燃性能,产生了本领域技术人员所不可预期的技术效果。本发明相对于现有技术,属于要素省略的发明。
优选地,在本发明中,所述纳米无机粉末为表面带有羟基的纳米无机粉末。在本发明中,纳米无机粉末表面带有羟基,例如纳米二氧化硅,其表面的硅醇
更易与树脂的活性基团反应,在纳米粒子表面形成一层排斥力较强的保护层,减弱了粒子之间的作用力,即增强了纳米粒子与树脂之间的作用力,减少分子链间的空间位阻,降低热固性树脂固化反应的能垒,并最终使热固性树脂的固化反应。
优选地,所述表面带有羟基的纳米无机粉末为纳米SiO2、纳米高岭土、纳米TiO2、纳米粘土、纳米勃姆石、纳米滑石、纳米云母、纳米氢氧化铝、纳米氢氧化镁、纳米硼酸锌、纳米锡酸锌、纳米玻璃微粉、凹凸棒、埃洛石或纳米炭黑中的任意一种或者至少两种的混合物。所述混合物例如:纳米SiO2和纳米高岭土的混合物,纳米TiO2和纳米氢氧化铝的混合物,纳米粘土和纳米氢氧化镁的混合物,纳米勃姆石和纳米氧化铝的混合物,纳米滑石、纳米云母和纳米氢氧化铝的混合物,纳米氢氧化镁、纳米硼酸锌和纳米锡酸锌的混合物,纳米玻璃微粉、凹凸棒、埃洛石和纳米炭黑的混合物,纳米SiO2、纳米高岭土和纳米TiO2的混合物,纳米勃姆石、纳米氢氧化铝和纳米滑石的混合物,纳米云母、纳米氢氧化铝、纳米氢氧化镁和纳米硼酸锌的混合物。
优选地,所述的纳米无机粉末为表面带有两种以上的基团,如纳米炭黑。所述表面带有两种以上的基团,意指,除羟基以外,表面还带有至少一种其它基团。
优选地,所述纳米无机粉末的平均粒径为100nm以下,优选50nm以下。
优选地,所述纳米无机粉末为实心、多孔或中空形式的纳米无机粉末,优选为多孔形式的纳米无机粉末。多孔形式的纳米无机粉末具有巨大的比表面积和丰富的表面基团,有利于纳米无机粉末对树脂的附着并且提供二者反应的场所,有利于促进固化反应的进行。
优选地,所述纳米无机粉末为球形、纤维状或具有两个面以上的形状,优
选为球形。
优选地,所述纳米无机粉末占热固性树脂组合物总质量的21~80%,例如25%、30%、35%、40%、45%、50%、55%、60%、65%、70%或75%,优选21~50%。当用量低于21%时,无法起到其固化的作用,当用量高于80%时,体系粘度较高,且填料较难分散,无法正常使用。
当所述热固性树脂组合物仅由热固性树脂和纳米无机粉末组成时,此时,即纳米无机粉末和热固性树脂的质量比为1∶4~4∶1,优选3∶10~3∶5。
在本发明中,也可以选择经过表面处理的纳米无机粉末,即纳米无机粉末也可以经过表面处理,所使用的表面处理剂包括硅烷偶联剂、钛酸酯类处理剂、铝酸盐、锆酸盐、阳离子型表面活性剂、阴离子型表面活性剂、两性表面活性剂、非离子型表面活性剂、硬脂酸、油酸、月桂酸、硬脂酸金属盐、油酸金属盐、月桂酸金属盐、酚醛树脂、有机硅油或分子量在300-1000长链处理剂中的任意一种或者至少两种的组合。
优选地,所述纳米无机粉末经过表面处理,所使用的表面处理剂包括:
表面处理剂A:分子链两端各具有2-3个可水解的硅官能基有机硅硅烷偶联剂,其结构式如式1所示;和,
表面处理剂B;表面处理剂B包括分子链一端具有2-3个可水解的硅官能基有机硅硅烷偶联剂、钛酸酯类处理剂、铝酸盐、锆酸盐、阳离子型表面活性剂、阴离子型表面活性剂、两性表面活性剂、非离子型表面活性剂、硬脂酸、油酸、月桂酸、硬脂酸金属盐、油酸金属盐、月桂酸金属盐、酚醛树脂、有机硅油或分子量在300-1000长链处理剂中的任意一种或者至少两种的组合。
分子链两端各具有2-3个可水解的硅官能基有机硅硅烷偶联剂与一般的偶联剂相比,具有更多的反应点,可以更有效的附着和连接无机物-无机物,以及
无机物-有机物,促使反应更容易进行,并且可以增强复合材料的强度。另外实验发现,表面处理剂A与表面处理剂B配合使用,其效果更为显著,可能是因为表面处理剂A与表面处理剂B配合使用后,增加了处理剂链段以及增加了处理剂的反应点,使表面处理剂、纳米无机粉末、热固性树脂有更好的接触,促使固化反应的进行。
其中,R为非反应性/可反应性基团,优选为芳基、硫基、烃基或氨基;X为可水解的硅官能基;Y为可水解的硅官能基或不可水解的硅官能基,n为1~18的整数,例如2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17。
优选地,所述表面处理剂A和表面处理剂B的质量比为3∶7。
所述的纳米无机粉末采用搅拌、球磨、砂磨和高压均质等物理方式进行混合均匀。
优选地,所述热固性树脂包括环氧树脂、有机硅树脂、酚醛树脂、氰酸酯树脂、苯并噁嗪树脂或不饱和聚酯中的任意一种或者至少两种的混合物,优选环氧树脂。在本发明中,选择热固性树脂的依据在于,可以选择上述热固性树脂中的任意一种,也可以选择上述热固性树脂中的至少两种的混合物。当选择上述热固性树脂中的至少两种的混合物时,所选择的热固性树脂相互之间不能发生化学反应。例如,当热固性树脂为环氧树脂时,则所述热固性树脂组合物中还可以包括其他热固性树脂,但是不能包括与环氧树脂可以发生反应,使环
氧树脂固化的酚醛树脂和苯并噁嗪树脂,此时酚醛树脂和苯并噁嗪树脂即是本发明前述提到的“其他固化剂”。
本发明所述的“包括”,意指其除所述组份外,还可以包括其他组份,但除本发明前述提到的“其他固化剂”外。除此之外,本发明所述的“包括”,还可以替换为封闭式的“为”或“由……组成”。
例如,所述热固性树脂组合物还可以含有各种添加剂,作为具体例,可以举出偶联剂、抗氧剂、热稳定剂、抗静电剂、紫外线吸收剂、颜料、着色剂或润滑剂等。这些各种添加剂可以单独使用,也可以两种或者两种以上混合使用。
本发明的另一目的在于提供一种用热固性树脂组合物制成的预浸料,其包括增强材料及通过含浸干燥后附着其上的如上所述的热固性树脂组合物。
本发明的另一目的在于提供一种层压板,其包括至少一张如上所述的预浸料。
本发明的另一目的在于提供一种印制电路板,其包括至少一张如上所述的预浸料。
本发明的又一目的在于提供一种覆铜箔层压板,其含有至少一张如上所述的预浸料以及覆于叠合后的预浸料一侧或两侧的金属箔。
第二方面,本发明还提供一种纳米无机粉末同时作为无机填充剂和固化剂在热固性树脂组合物中的应用,所述热固性树脂组合物包括热固性树脂和纳米无机粉末,且不包括其他固化剂。
在已有技术中,在热固性树脂组合物中,纳米无机粉末均是作为填充剂使用,本发明在现有技术的基础上,发现了纳米无机粉末除可以作为无机填充剂外,还可以作为热固性树脂的固化剂来使用。
在本发明中,所述“不包括其他固化剂”中的“其他固化剂”是指,除本
发明的纳米无机粉末以外的能和环氧树脂等热固性树脂发生反固化反应的树脂,所有能与环氧树脂等热固性树脂发生固化反应的树脂均属于本发明的“其他固化剂”。例如当热固性树脂为环氧树脂时,酚醛树脂和苯并噁嗪树脂即是本发明的“其他固化剂”。
本发明的发明人虽然不知晓纳米无机粉末在作为无机填充剂的基础上,还可以同时作为固化剂的机理,但是这并不影响本发明的实施和纳米无机粉末作为无机填充剂和固化剂的使用。本发明的发明人推测纳米无机粉末可以作为固化剂使用的机理为:
纳米无机粉末表面的基团易与热固性树脂的活性基团反应,在纳米粒子表面形成一层排斥力较强的保护层,减弱了纳米粒子之间的作用力,即增强了纳米粒子与热固性树脂之间的作用力,减少了分子链间的空间位阻,降低了热固性树脂固化反应的能垒,并最终促使热固性树脂的固化反应。此外,纳米无机粉末的尺寸为小于100nm,此时纳米无机粉末表现出强烈的纳米效应,其表面具有很高的活性,并且纳米粒子比表面积大,单位面积所具有的活性基团更多,更易与树脂的活性基团进行反应。
本发明在现有技术的基础上,采用纳米无机粉末固化热固性树脂,省略了其他固化剂的使用。而且,如前所述,由于纳米无机粉末作为固化剂可以降低热固性树脂固化反应的能垒,因此,使用纳米无机粉末固化热固性树脂,可以显著提高复合材料的耐热性。同时,由于纳米无机粉末是增韧剂,作为固化剂固化树脂,在提高复合材料的固化程度和板材刚性的同时,也提高了复合材料的韧性。另外,纳米无机粉末由于具有强烈的表面效应与吸附能力,能有效捕获燃烧反应放出的自由基,增强材料的阻燃性能。
优选地,在本发明中,一种热固性树脂组合物,其由热固性树脂和纳米无
机粉末组成。在该优选技术方案中,所述热固性树脂组合物仅由热固性树脂和纳米无机粉末组成,其中,纳米无机粉末作为无机填充剂和固化剂使用。
优选地,在本发明中,所述纳米无机粉末为表面带有羟基的纳米无机粉末。在本发明中,纳米无机粉末表面带有羟基,例如纳米二氧化硅,其表面的硅醇更易与树脂的活性基团反应,在纳米粒子表面形成一层排斥力较强的保护层,减弱了粒子之间的作用力,即增强了纳米粒子与树脂之间的作用力,减少分子链间的空间位阻,降低热固性树脂固化反应的能垒,并最终使热固性树脂的固化反应。
优选地,所述表面带有羟基的纳米无机粉末为纳米SiO2、纳米高岭土、纳米TiO2、纳米粘土、纳米勃姆石、纳米滑石、纳米云母、纳米氢氧化铝、纳米氢氧化镁、纳米硼酸锌、纳米锡酸锌、纳米玻璃微粉、凹凸棒、埃洛石或纳米炭黑中的任意一种或者至少两种的混合物。所述混合物例如:纳米SiO2和纳米高岭土的混合物,纳米TiO2和纳米氢氧化铝的混合物,纳米粘土和纳米氢氧化镁的混合物,纳米勃姆石和纳米氧化铝的混合物,纳米滑石、纳米云母和纳米氢氧化铝的混合物,纳米氢氧化镁、纳米硼酸锌和纳米锡酸锌的混合物,纳米玻璃微粉、凹凸棒、埃洛石和纳米炭黑的混合物,纳米SiO2、纳米高岭土和纳米TiO2的混合物,纳米勃姆石、纳米氢氧化铝和纳米滑石的混合物,纳米云母、纳米氢氧化铝、纳米氢氧化镁和纳米硼酸锌的混合物。
优选地,所述的纳米无机粉末为表面带有两种以上的基团,如纳米炭黑。所述表面带有两种以上的基团,意指,除羟基以外,表面还带有至少一种其它基团。
优选地,所述纳米无机粉末的平均粒径为100nm以下,优选50nm以下。
优选地,所述纳米无机粉末为实心、多孔或中空形式的纳米无机粉末,优
选为多孔形式的纳米无机粉末。多孔形式的纳米无机粉末具有巨大的比表面积和丰富的表面基团,有利于纳米无机粉末对树脂的附着并且提供二者反应的场所,有利于促进固化反应的进行。
优选地,所述纳米无机粉末为球形、纤维状或具有两个面以上的形状,优选为球形。
优选地,所述纳米无机粉末占热固性树脂组合物总质量的21~80%,例如25%、30%、35%、40%、45%、50%、55%、60%、65%、70%或75%,优选21~50%。当用量低于21%时,无法起到其固化的作用,当用量高于80%时,体系粘度较高,且填料较难分散,无法正常使用。
当所述热固性树脂组合物仅由热固性树脂和纳米无机粉末组成时,此时,即纳米无机粉末和热固性树脂的质量比为1∶4~4∶1,优选3∶10~3∶5。
在本发明中,也可以选择经过表面处理的纳米无机粉末,即纳米无机粉末也可以经过表面处理,所使用的表面处理剂包括硅烷偶联剂、钛酸酯类处理剂、铝酸盐、锆酸盐、阳离子型表面活性剂、阴离子型表面活性剂、两性表面活性剂、非离子型表面活性剂、硬脂酸、油酸、月桂酸、硬脂酸金属盐、油酸金属盐、月桂酸金属盐、酚醛树脂、有机硅油或分子量在300-1000长链处理剂中的任意一种或者至少两种的组合。
优选地,所述纳米无机粉末经过表面处理,所使用的表面处理剂包括:
表面处理剂A:分子链两端各具有2-3个可水解的硅官能基有机硅硅烷偶联剂,其结构式如式1所示;和,
表面处理剂B;表面处理剂B包括分子链一端具有2-3个可水解的硅官能基有机硅硅烷偶联剂、钛酸酯类处理剂、铝酸盐、锆酸盐、阳离子型表面活性剂、阴离子型表面活性剂、两性表面活性剂、非离子型表面活性剂、硬脂酸、
油酸、月桂酸、硬脂酸金属盐、油酸金属盐、月桂酸金属盐、酚醛树脂、有机硅油或分子量在300-1000长链处理剂中的任意一种或者至少两种的组合。
分子链两端各具有2-3个可水解的硅官能基有机硅硅烷偶联剂与一般的偶联剂相比,具有更多的反应点,可以更有效的附着和连接无机物-无机物,以及无机物-有机物,促使反应更容易进行,并且可以增强复合材料的强度。另外实验发现,表面处理剂A与表面处理剂B配合使用,其效果更为显著,可能是因为表面处理剂A与表面处理剂B配合使用后,增加了处理剂链段以及增加了处理剂的反应点,使表面处理剂、纳米无机粉末、热固性树脂有更好的接触,促使固化反应的进行。
其中,R为非反应性/可反应性基团,优选为芳基、硫基、烃基或氨基;X为可水解的硅官能基;Y为可水解的硅官能基或不可水解的硅官能基,n为1~18的整数,例如2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或17。
优选地,所述表面处理剂A和表面处理剂B的质量比为3∶7。
所述的纳米无机粉末采用搅拌、球磨、砂磨、高压均质等物理方式进行混合均匀。
优选地,所述热固性树脂包括环氧树脂、有机硅树脂、酚醛树脂、氰酸酯树脂、苯并噁嗪树脂或不饱和聚酯中的任意一种或者至少两种的混合物,优选环氧树脂。在本发明中,选择热固性树脂的依据在于,可以选择上述热固性树
脂中的任意一种,也可以选择上述热固性树脂中的至少两种的混合物。当选择上述热固性树脂中的至少两种的混合物时,所选择的热固性树脂相互之间不能发生化学反应。例如,当热固性树脂为环氧树脂时,则所述热固性树脂组合物中还可以包括其他热固性树脂,但是不能包括与环氧树脂可以发生反应,使环氧树脂固化的酚醛树脂和苯并噁嗪树脂,此时酚醛树脂和苯并噁嗪树脂即是本发明前述提到的“其他固化剂”。
与已有技术相比,本发明具有如下有益效果:
本发明在现有技术的基础上,将纳米无机粉末作为无机填充剂和固化剂使用,而省略了其他固化剂,不仅保持原有的固化功能,还可以提高复合材料的耐热性、韧性和阻燃性能。其中,采用该热固性树脂组合物的层压板的CTE%可达到2.7以下,Td(5%)为325~375℃,阻燃性可达到V-0级别,韧性可达到176~306mm2,固化峰温为202~265℃,产生了本领域技术人员所不可预期的技术效果。
下面通过具体实施方式来进一步说明本发明的技术方案。
实施例1-8
将溴化双酚A型环氧树脂(陶氏化学,环氧当量435,溴含量19%,产品名DER530),纳米无机粉末混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。
实施例9
将苯并噁嗪树脂(东材科技,产品名D125),纳米无机粉末混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热
干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。
实施例10
将氰酸酯树脂(扬州天启,产品名CE01PS),纳米无机粉末混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。
实施例11
将酚醛树脂(迈图化学,产品名2812),纳米无机粉末有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。
实施例12
将溴化双酚A型环氧树脂(陶氏化学,环氧当量435,溴含量19%,产品名DER530),纳米无机粉末以及1wt%(以填料重量计)的混合处理剂(六官能偶联剂∶环氧偶联剂=3∶7)混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。
实施例13
将溴化双酚A型环氧树脂(陶氏化学,环氧当量435,溴含量19%,产品名DER530),纳米无机粉末以及1wt%(以填料重量计)的混合处理剂(四官能偶联剂∶钛酸酯偶联剂=3∶7)混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。
实施例14
将溴化双酚A型环氧树脂(陶氏化学,环氧当量435,溴含量19%,产品
名DER530),纳米无机粉末以及1%(以填料重量计)的环氧硅烷偶联剂混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。
实施例15
将溴化双酚A型环氧树脂(陶氏化学,环氧当量435,溴含量19%,产品名DER530),纳米无机粉末以及1wt%(以填料重量计)的六官能偶联剂混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。
使用得到的覆铜板,用以下所示的方法,对凝胶点、热膨胀系数、耐热性、阻燃性、韧性效果进行测定和评价,结果见表1。
纳米无机粉末:
1)纳米二氧化硅,YA010(10nm),YA050(50nm),日本admatechs;
2)纳米二氧化硅,sciqas 0.1(100nm),日本堺化学;
3)纳米炭黑,COLOUR BLACK FW200(13nm)德固赛碳黑;
4)纳米氧化镁,VK-Mg30(30nm),宣城晶瑞新材料有限公司。
处理剂:
1)z-6040,环氧基硅烷偶联剂,美国道康宁公司;
2)SIB1620,四官能硅烷偶联剂,美国Gelest公司;
3)SIB1817,六官能硅烷偶联剂,美国Gelest公司;
4)PN-130,钛酸酯偶联剂,南京品宁偶联剂优选公司。
比较例1
除了使用二氧化硅(SFP30,0.5μm,日本电气化学)替代纳米无机粉末外,
用与实施例2同样的方法,得到使用树脂组合物的覆铜板。测定、评价结果示于表2。
比较例2
除了使用二氧化硅(DQ1040,4μm,东海联瑞)替代纳米无机粉末外,用与实施例2同样的方法,得到使用树脂组合物的覆铜板。测定、评价结果示于表2。
比较例3
除了纳米无机粉末的用量为11.1份外,用与实施例1同样的方法,得到使用树脂组合物的覆铜板。测定、评价结果示于表2。
比较例4
除了纳米无机粉末的用量为900份外,用与实施例1同样的方法,得到使用树脂组合物的覆铜板。测定、评价结果示于表2。
比较例5
将溴化双酚A型环氧树脂(陶氏化学,环氧当量435,溴含量19%,产品名DER530),双氰胺混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。测定、评价结果示于表2。
比较例6
将溴化双酚A型环氧树脂(陶氏化学,环氧当量435,溴含量19%,产品名DER530),双氰胺以及二氧化硅(DQ1040,4μm,东海联瑞)混合于有机溶剂中,机械搅拌、乳化配制成65wt%的胶水,然后含浸玻璃纤维布,经过加热干燥后形成预浸体(prepreg),两面放置铜箔,加压加热制成覆铜板。测定、评价结果示于表2。
1、热膨胀率的测定
利用蚀刻液去除覆铜层叠板的铜箔后,切成5mm×5mm见方的大小制作试验片。使用TMA试验装置以升温速度10℃/min,测定该试验片在30℃~260℃下的Z轴方向(玻璃布垂直方向)的平均线热膨胀率。热膨胀率越小,效果越好。
2、冲击韧性测试:
将50×50mm的板材置于底座中央,然后将一定重量的实心锤在一定的高度以一定的速度对板材进行冲击,观察并测量裂纹的面积,面积越小,韧性越好。
3、燃烧性测试
采用垂直燃烧法,按照ANSI/UL-94-1985标准进行测试。
4、耐热性测试
采用热重分析仪进行测试。测试条件:氮气氛围,升温速率为10℃/min,测试失重5%时的温度,测试温度范围为25-550℃,失重5%的温度越高,说明耐热性越好。
5、固化温度测试
采用差式扫描量热仪测试。测试条件:升温速率为5℃/min。测试范围为25-300℃,测量外推起始固化温度及峰值温度。起始固化温度及峰值温度越低,说明树脂的固化温度越低。
表1
表2
备注:“/”表示无法测试。
从表1和表2可以看出,使用纳米无机粉末固化的环氧树脂复合物的耐热
性、韧性和阻燃性等均比使用常规DICY固化的复合物要好,而且粒径越小,其性能越好。当粒子的粒径超过100nm后,对环氧树脂没有固化作用,其耐热性和阻燃性等性能均较差。另外,我们也可以看出,纳米无机粉末的用量越多,材料的CTE越小,阻燃性越好,Td越高,韧性越好,但同时这些指标均存在最佳添加量。另外,当用量少于21%或少于80%时,复合物的性能也明显下降,CTE明显增大,耐热性、阻燃性和韧性也明显变差。另外,从实施例2、7和8可以看出,使用表面带有两种官能团的炭黑固化的复合材料的性能稍胜于表面只带羟基的二氧化硅,且明显优于表面无官能基团的氧化镁。另外,从实施例2、12、13和实施例14、15可以看出,使用4/6官能硅烷偶联剂与其它类型偶联剂复配添加到体系中可促进固化反应的进行,同时对性能也有所提升,而单独添加这两种处理剂性能虽有提升,但不明显。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
Claims (10)
- 一种热固性树脂组合物,其包括:热固性树脂和纳米无机粉末,且不包括其他固化剂。
- 如权利要求1所述的热固性树脂组合物,其特征在于,一种热固性树脂组合物,其由热固性树脂和纳米无机粉末组成。
- 如权利要求1或2所述的热固性树脂组合物,其特征在于,所述纳米无机粉末为表面带有羟基的纳米无机粉末;优选地,所述表面带有羟基的纳米无机粉末为纳米SiO2、纳米高岭土、纳米TiO2、纳米粘土、纳米勃姆石、纳米滑石、纳米云母、纳米氢氧化铝、纳米氢氧化镁、纳米硼酸锌、纳米锡酸锌、纳米玻璃微粉、凹凸棒、埃洛石或纳米炭黑中的任意一种或者至少两种的混合物;优选地,所述的纳米无机粉末为表面带有两种以上的基团;优选地,所述纳米无机粉末的平均粒径为100nm以下,优选50nm以下;优选地,所述纳米无机粉末为实心、多孔或中空形式的纳米无机粉末,优选多孔形式的纳米无机粉末;优选地,所述纳米无机粉末为球形、纤维状或具有两个面以上的形状;优选地,所述纳米无机粉末占热固性树脂组合物总质量的21~80%,优选30~60%;优选地,所述纳米无机粉末经过表面处理,所使用的表面处理剂包括硅烷偶联剂、钛酸酯类处理剂、铝酸盐、锆酸盐、阳离子型表面活性剂、阴离子型表面活性剂、两性表面活性剂、非离子型表面活性剂、硬脂酸、油酸、月桂酸、硬脂酸金属盐、油酸金属盐、月桂酸金属盐、酚醛树脂、有机硅油或分子量在300-1000长链处理剂中的任意一种或者至少两种的组合;优选地,所述表面处理剂包括:表面处理剂A:分子链两端各具有2-3个可水解的硅官能基有机硅硅烷偶联剂,其结构式如式1所示;和,表面处理剂B:分子链一端具有2-3个可水解的硅官能基有机硅硅烷偶联剂、钛酸酯类处理剂、铝酸盐、锆酸盐、阳离子型表面活性剂、阴离子型表面活性剂、两性表面活性剂、非离子型表面活性剂、硬脂酸、油酸、月桂酸、硬脂酸金属盐、油酸金属盐、月桂酸金属盐、酚醛树脂、有机硅油或分子量在300-1000长链处理剂中的任意一种或者至少两种的组合;其中,R为非反应性/可反应性基团,优选为芳基、硫基、烃基、氨基;X为可水解的硅官能基;Y为可水解的硅官能基或不可水解的硅官能基;n为1-18的整数;优选地,所述表面处理剂A和表面处理剂B的质量比为3∶7;优选地,所述热固性树脂包括环氧树脂、有机硅树脂、酚醛树脂、氰酸酯树脂、苯并噁嗪树脂或不饱和聚酯中的任意一种或者至少两种的混合物,优选环氧树脂。
- 一种预浸料,其包括增强材料及通过含浸干燥后附着其上的如权利要求1-3之一所述的热固性树脂组合物。
- 一种层压板,其包括至少一张如权利要求4所述的预浸料。
- 一种印制电路板,其包括至少一张如权利要求4所述的预浸料。
- 一种纳米无机粉末同时作为无机填充剂和固化剂在热固性树脂组合物中的应用,所述热固性树脂组合物包括热固性树脂和纳米无机粉末,且不包括其他固化剂。
- 如权利要求7所述的应用,其特征在于,所述热固性树脂组合物,其由热固性树脂和纳米无机粉末组成。
- 如权利要求7或8所述的应用,其特征在于,所述纳米无机粉末为表面带有羟基的纳米无机粉末;优选地,所述表面带有羟基的纳米无机粉末为纳米SiO2、纳米高岭土、纳米TiO2、纳米粘土、纳米勃姆石、纳米滑石、纳米云母、纳米氢氧化铝、纳米氢氧化镁、纳米硼酸锌、纳米锡酸锌、纳米玻璃微粉、凹凸棒、埃洛石或纳米炭黑中的任意一种或者至少两种的混合物。
- 如权利要求7-9之一所述的应用,其特征在于,所述纳米无机粉末的平均粒径为100nm以下,优选50nm以下;优选地,所述纳米无机粉末为实心、多孔或中空形式的纳米无机粉末,优选多孔形式的纳米无机粉末;优选地,所述纳米无机粉末为球形、纤维状或具有两个面以上的形状,优选为球形;优选地,所述纳米无机粉末占热固性树脂组合物总质量的21~80%,优选30-60%;优选地,所述纳米无机粉末经过表面处理,所使用的表面处理剂包括硅烷偶联剂、钛酸酯类处理剂、铝酸盐、锆酸盐、阳离子型表面活性剂、阴离子型表面活性剂、两性表面活性剂、非离子型表面活性剂、硬脂酸、油酸、月桂酸、硬脂酸金属盐、油酸金属盐、月桂酸金属盐、酚醛树脂、有机硅油或分子量在 300-1000长链处理剂中的任意一种或者至少两种的组合;优选地,所述表面处理剂包括:表面处理剂A:分子链两端各具有2-3个可水解的硅官能基有机硅硅烷偶联剂,其结构式如式1所示;和,表面处理剂B:分子链一端具有2-3个可水解的硅官能基有机硅硅烷偶联剂、钛酸酯类处理剂、铝酸盐、锆酸盐、阳离子型表面活性剂、阴离子型表面活性剂、两性表面活性剂、非离子型表面活性剂、硬脂酸、油酸、月桂酸、硬脂酸金属盐、油酸金属盐、月桂酸金属盐、酚醛树脂、有机硅油或分子量在300-1000长链处理剂中的任意一种或者至少两种的组合;其中,R为非反应性/可反应性基团,优选为芳基、硫基、烃基、氨基;X为可水解的硅官能基;Y为可水解的硅官能基或不可水解的硅官能基;n为1-18的整数;优选地,所述表面处理剂A和表面处理剂B的质量比为3∶7;优选地,所述热固性树脂包括环氧树脂、有机硅树脂、酚醛树脂、氰酸酯树脂、苯并噁嗪树脂或不饱和聚酯中的任意一种或者至少两种的混合物,优选环氧树脂。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510958047.3A CN106893259B (zh) | 2015-12-17 | 2015-12-17 | 一种热固性树脂组合物及其用途 |
CN201510958047.3 | 2015-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017101532A1 true WO2017101532A1 (zh) | 2017-06-22 |
Family
ID=59055690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/098482 WO2017101532A1 (zh) | 2015-12-17 | 2016-09-08 | 一种热固性树脂组合物及其用途 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN106893259B (zh) |
TW (1) | TW201723052A (zh) |
WO (1) | WO2017101532A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115746582A (zh) * | 2022-11-30 | 2023-03-07 | 攀钢集团研究院有限公司 | 一种降低钛白粉吸油量的方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107266855A (zh) * | 2017-08-14 | 2017-10-20 | 芜湖乾凯材料科技有限公司 | 基于纳米二氧化硅改性的环保阻燃材料及其制备方法 |
CN107513200A (zh) * | 2017-09-07 | 2017-12-26 | 浙江大学宁波理工学院 | 聚乙烯/金属氢氧化物/纳米炭黑阻燃材料及其制备方法 |
CN109837006A (zh) * | 2017-09-19 | 2019-06-04 | 南京加瑞尔自动化设备有限公司 | 一种用于自动装盒机的耐磨传送带 |
CN109837007A (zh) * | 2017-09-19 | 2019-06-04 | 南京加瑞尔自动化设备有限公司 | 一种用于自动装盒机的耐磨传送带的制备方法 |
CN109251481A (zh) * | 2018-08-27 | 2019-01-22 | 张玉锦 | 一种散热性好的电路板基板及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102206399A (zh) * | 2011-04-15 | 2011-10-05 | 广东生益科技股份有限公司 | 低介电常数的覆铜箔层压板用组合物及使用其制作的覆铜箔层压板 |
CN102936397A (zh) * | 2012-11-28 | 2013-02-20 | 山东大学 | 一种纳米填料改性环氧树脂 |
CN102985486A (zh) * | 2010-10-01 | 2013-03-20 | 富士电机株式会社 | 树脂组合物 |
CN104194277A (zh) * | 2014-09-25 | 2014-12-10 | 鄂尔多斯市君实科技有限责任公司 | 一种环氧树脂纳米复合材料及其制备方法 |
JP2015040274A (ja) * | 2013-08-23 | 2015-03-02 | 株式会社東芝 | 電力機器用エポキシ樹脂組成物 |
KR20150088521A (ko) * | 2014-01-24 | 2015-08-03 | 엘지이노텍 주식회사 | 수지 조성물 및 이를 포함하는 절연층을 포함하는 led 패키지 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IS1537B (is) * | 1988-08-02 | 1994-01-28 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Útþanið tilbúið viðarkvoðufrauð (gerviresínfroða)og aðferð við framleiðslu þess |
US6797762B2 (en) * | 2001-03-16 | 2004-09-28 | The Goodyear Tire & Rubber Company | Rubber composite containing in situ formed filler reinforcement, article and tire comprising thereof |
US20130196019A1 (en) * | 2010-03-18 | 2013-08-01 | National University Of Sinapore | Silicon-containing block co-polymers, methods for synthesis and use |
-
2015
- 2015-12-17 CN CN201510958047.3A patent/CN106893259B/zh not_active Expired - Fee Related
-
2016
- 2016-09-08 WO PCT/CN2016/098482 patent/WO2017101532A1/zh active Application Filing
- 2016-10-06 TW TW105132389A patent/TW201723052A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102985486A (zh) * | 2010-10-01 | 2013-03-20 | 富士电机株式会社 | 树脂组合物 |
CN102206399A (zh) * | 2011-04-15 | 2011-10-05 | 广东生益科技股份有限公司 | 低介电常数的覆铜箔层压板用组合物及使用其制作的覆铜箔层压板 |
CN102936397A (zh) * | 2012-11-28 | 2013-02-20 | 山东大学 | 一种纳米填料改性环氧树脂 |
JP2015040274A (ja) * | 2013-08-23 | 2015-03-02 | 株式会社東芝 | 電力機器用エポキシ樹脂組成物 |
KR20150088521A (ko) * | 2014-01-24 | 2015-08-03 | 엘지이노텍 주식회사 | 수지 조성물 및 이를 포함하는 절연층을 포함하는 led 패키지 |
CN104194277A (zh) * | 2014-09-25 | 2014-12-10 | 鄂尔多斯市君实科技有限责任公司 | 一种环氧树脂纳米复合材料及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115746582A (zh) * | 2022-11-30 | 2023-03-07 | 攀钢集团研究院有限公司 | 一种降低钛白粉吸油量的方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201723052A (zh) | 2017-07-01 |
CN106893259A (zh) | 2017-06-27 |
CN106893259B (zh) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017101532A1 (zh) | 一种热固性树脂组合物及其用途 | |
TWI597325B (zh) | A ceramifying silicone resin composition and prepreg and laminate using the same | |
US10414136B2 (en) | Halogen-free and phosphorus-free silicone resin composition, prepreg, laminate board, copper-clad plate using the same, and printed circuit board | |
US11161979B2 (en) | Resin composition, prepreg, metallic foil-clad laminate, and printed wiring board | |
CN100340604C (zh) | 高速传输电路板用热固性树脂组合物 | |
JP2010100803A (ja) | エポキシ系樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板及び多層積層板 | |
Luo et al. | Simultaneous optimization of the thermal conductivity and mechanical properties of epoxy resin composites through PES and AgNP functionalized BNs | |
JP6118466B2 (ja) | 熱硬化性樹脂組成物及びその用途 | |
TWI790989B (zh) | 纖維強化塑膠前驅物、積層板、覆金屬積層板、印刷線路板、半導體封裝體、及該等的製造方法 | |
Shepelev et al. | Nanotechnology based thermosets | |
JP6405981B2 (ja) | 樹脂組成物、プリプレグ、金属箔張積層板及びプリント配線板 | |
WO2023124484A1 (zh) | 一种树脂组合物及其应用 | |
Wang et al. | Modification mechanism of modified diatomite with flexible amine‐based structure as a filler of epoxy resin and mechanical properties and curing kinetic of composites | |
TWI699392B (zh) | 高導熱半固化片及其應用 | |
Wang et al. | Noncovalent functionalization of boron nitride via chelation of tannic acid with Fe ions for constructing high thermally conductive polymeric composites | |
Chen et al. | The improved thermal conductivity and heat dissipation capacity of elastomer‐based thermal interface materials through promoting the surface interactions and complete networks | |
JP2009173846A (ja) | 有機修飾無機酸化物微粒子、その製造方法、その分散スラリ及び樹脂組成物 | |
CN111757911B (zh) | 树脂组合物、预浸料、层压板、覆金属箔层压板和印刷线路板 | |
KR20170123394A (ko) | 방열 특성이 향상된 코팅 조성물 및 이를 이용한 도막의 형성 방법 | |
TW202026355A (zh) | 樹脂組合物、預浸料、層壓板、覆金屬箔層壓板和印刷電路板 | |
CN217671525U (zh) | 一种低介电常数、高导热型高频覆金属箔层压板 | |
JP6436378B2 (ja) | プリント配線板用樹脂組成物、プリプレグ、積層板及びプリント配線板 | |
TWI753194B (zh) | 樹脂組合物、印刷電路用預浸片及覆金屬層壓板 | |
Xie et al. | Co-dispersion and co-deposition of clay/MoS2 and its application on epoxy nanocomposites | |
TW201331541A (zh) | 散熱材料、散熱結構及其製備方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16874592 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16874592 Country of ref document: EP Kind code of ref document: A1 |