WO2017098840A1 - 電動パワーステアリング装置の制御方法及び制御装置 - Google Patents
電動パワーステアリング装置の制御方法及び制御装置 Download PDFInfo
- Publication number
- WO2017098840A1 WO2017098840A1 PCT/JP2016/082751 JP2016082751W WO2017098840A1 WO 2017098840 A1 WO2017098840 A1 WO 2017098840A1 JP 2016082751 W JP2016082751 W JP 2016082751W WO 2017098840 A1 WO2017098840 A1 WO 2017098840A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- command value
- phase
- phase command
- axis
- sector
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
- B62D5/0463—Controlling the motor calculating assisting torque from the motor based on driver input
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/0481—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/002—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/02—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
Definitions
- the present invention relates to a control method and a control device for an electric power steering apparatus that controls driving of a motor based on a current command value and applies assist force to a steering mechanism of a vehicle by the motor, and is particularly executed when driving control of the motor.
- the present invention relates to a control method and a control device for an electric power steering apparatus that enables conversion from a two-phase current command value or voltage command value to a three-phase current command value or voltage command value with a small amount of calculation.
- An electric power steering device that assists and controls the steering system of a vehicle with the rotational force of a motor uses a driving force of the motor to transmit a steering assist force to a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a speed reducer.
- EPS electric power steering device
- Such a conventional electric power steering apparatus performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
- the motor applied voltage is adjusted so that the difference between the steering assist command value (current command value) and the motor current detection value is small.
- the adjustment of the motor applied voltage is generally performed by PWM (pulse width). This is done by adjusting the duty of modulation) control.
- the general configuration of the electric power steering apparatus will be described with reference to FIG. 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b.
- the column shaft 2 is provided with a torque sensor 10 for detecting the steering torque of the handle 1 and a steering angle sensor 14 for detecting the steering angle ⁇ , and the motor 20 for assisting the steering force of the handle 1 is provided with the reduction gear 3.
- the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
- the control unit 30 calculates a current command value of an assist (steering assist) command based on the steering torque Ts detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and compensates the current command value.
- the current supplied to the EPS motor 20 is controlled by the voltage control command value Vref subjected to.
- the steering angle sensor 14 is not essential and may not be provided, and the steering angle can be acquired from a rotational position sensor such as a resolver connected to the motor 20.
- the control unit 30 is connected to a CAN (Controller Area Network) 40 that exchanges various vehicle information, and the vehicle speed Vs can be received from the CAN 40.
- the control unit 30 can be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
- the control unit 30 is mainly composed of an MCU (including a CPU, MPU, etc.), and FIG. 2 shows general functions executed by a program inside the MCU.
- the function and operation of the control unit 30 will be described with reference to FIG. 2.
- the steering torque Ts detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12 (or from the CAN 40) are represented by the current command value Iref1.
- the current command value calculation unit 31 to be calculated is input.
- the current command value calculation unit 31 calculates a current command value Iref1, which is a control target value of the current supplied to the motor 20, using an assist map or the like based on the input steering torque Ts and vehicle speed Vs.
- the current command value Iref1 is input to the current limiter 33 through the adder 32A, and the current command value Irefm whose maximum current is limited is input to the subtractor 32B, and the deviation I (Irefm) from the fed back motor current value Im. -Im) is calculated, and the deviation I is input to a PI (proportional integration) control unit 35 for improving the characteristics of the steering operation.
- the voltage control command value Vref whose characteristics are improved by the PI control unit 35 is input to the PWM control unit 36, and the motor 20 is PWM driven via an inverter 37 as a drive unit.
- the current value Im of the motor 20 is detected by the motor current detector 38 and fed back to the subtraction unit 32B.
- the inverter 37 uses a field effect transistor (FET) as a drive element, and is configured by a bridge circuit of the FET.
- FET field effect transistor
- a compensation signal CM from the compensation signal generator 34 is added to the adder 32A, and the compensation of the steering system system is performed by adding the compensation signal CM to improve the convergence and inertia characteristics.
- Compensation signal generation unit 34 adds self-aligning torque (SAT) 34-3 and inertia 34-2 by addition unit 34-4, and further adds convergence 34-1 to the addition result by addition unit 34-5.
- the addition result of the adder 34-5 is used as the compensation signal CM.
- a brushless motor that is excellent in durability and maintainability, and has less noise and noise is generally used as a motor.
- motor current control is often realized in a dq rotation coordinate system defined by the d-axis and the q-axis.
- conversion from the dq rotation coordinate system to the UVW fixed coordinate system defined by the U phase, the V phase, and the W phase is executed.
- Patent Document 1 that corrects a three-phase voltage command value in order to make maximum use of a power supply voltage, a three-phase detection current is detected by a d-axis and a q-axis.
- the dq coordinate conversion for converting to current and the dq coordinate reverse conversion for converting the three-phase voltage command value into the d-axis and q-axis voltage command values are performed.
- Patent Document 1 uses a trigonometric function and a square root that impose a processing load in an operation for performing dq coordinate transformation and dq coordinate inverse transformation. Therefore, when these calculations are executed by a microcomputer or the like, a lot of calculation time is required. When the logic design of a circuit or the like is used, the cost increases and the design change can be flexibly handled. It becomes difficult.
- the present invention has been made under the circumstances as described above, and an object of the present invention is to provide a two-phase command value that is executed when driving a motor mounted on an electric power steering device, particularly a three-phase brushless motor.
- Control of an electric power steering device that can be installed in a microcomputer, etc. by simplifying the calculation in conversion from (current command value or voltage command value) to a three-phase command value and reducing the load of the calculation amount It is to provide a method and a control device.
- the present invention relates to a control method for an electric power steering apparatus that controls driving of a motor based on a current command value and applies an assist force to a steering mechanism of a vehicle by the motor.
- the object of the present invention is based on the current command value.
- the present invention also relates to a control device for an electric power steering device that controls driving of a motor based on a current command value and applies an assist force to a steering mechanism of a vehicle by the motor, and the object of the present invention is the current command A conversion unit that converts a two-phase command value calculated from a value into a three-phase command value, wherein the conversion unit divides an area for a vector composed of the two-phase command value into six sectors, and This is achieved by converting the two-phase command value into the three-phase command value by a simplified calculation method predefined for each sector, and driving the motor with the three-phase command value.
- each sector is divided at an equal angle around the origin, or the conversion step includes the sign of the two-phase command value and the magnitude of the two-phase command value.
- a space defined in sector units for conversion from a two-phase command value to a three-phase command value in drive control of a three-phase brushless motor or the like is possible to reduce the calculation that requires a processing load such as a trigonometric function and to improve the calculation amount load.
- the calculation for conversion is simplified in order to reduce the calculation load of the conversion from the two-phase command value for controlling the motor to the three-phase command value.
- the conversion from the two-phase command value to the three-phase command value is performed by space vector modulation, and this space vector modulation is performed by a simple calculation method that reduces calculations that require processing load such as trigonometric functions. Since the simple calculation method is defined on a sector-by-sector basis, it is necessary to specify a sector for conversion, but this sector is also specified by a method that does not impose a processing load.
- voltage command values (d-axis voltage command value, q-axis voltage command value) for the d-axis and q-axis that are the rotation coordinate system are set as the two-phase voltage command values that are assist (steering assistance) commands.
- the rotating coordinate system is a coordinate system that rotates together with the rotor that rotates in the motor. In this coordinate system, the two-phase current on the rotor appears to stop and the current that appears stationary can be treated as a direct current. Therefore, it becomes easy to set the voltage command value which is the target value.
- the d-axis voltage command value and the q-axis voltage command value are the voltage command values ( ⁇ -axis voltage command Value, ⁇ -axis voltage command value).
- This conversion requires the rotation angle (electrical angle) of the rotor, and the rotation angle of the rotor can be obtained from a rotation position sensor such as a resolver connected to the motor.
- a rotation position sensor such as a resolver connected to the motor.
- the ⁇ -axis voltage command value V ⁇ and The ⁇ -axis voltage command value V ⁇ is calculated from the following equation 1 using the d-axis voltage command value Vd, the q-axis voltage command value Vq, and the rotation angle ⁇ e.
- the ⁇ -axis voltage command value and the ⁇ -axis voltage command value are the voltage command values (U-phase) for the U-phase, V-phase, and W-phase of the three-phase motor. It is converted into a voltage command value, a V-phase voltage command value, and a W-phase voltage command value) by space vector modulation (space vector conversion). Since a sinusoidal alternating current with a phase shift of 120 degrees ((2/3) ⁇ radians) flows through the U phase, V phase, and W phase, in space vector modulation, first, the U phase, V phase, and W phase Three axes shifted by 120 degrees corresponding to are prepared.
- Each axis is expressed as V100, V010, and V001.
- V100 corresponds to the U phase
- V010 corresponds to the V phase
- V001 corresponds to the W phase.
- each axis is extended in the opposite direction with the origin as the center, the extension line of V100 that is in the middle of V010 and V001 is V011, the extension line of V010 that is in the middle of V001 and V100 is in the middle of V101, V100, and V010
- the extension line of the coming V001 is V110, as shown in FIG. 4, six quadrants (sectors) are formed around the origin at intervals of 60 degrees ((1/3) ⁇ radians).
- the sector divided by V100 and V110 is sector 0, and sector 1, sector 2, sector 3, sector 4, and sector 5 are sequentially counterclockwise from sector 0. Then, the ⁇ axis of the ⁇ fixed coordinate system is matched with V100, and the ⁇ axis is matched with the bisector of the angle formed by V110 and V010.
- phase voltage command value (hereinafter, these three are collectively referred to as “phase voltage command value”) is calculated.
- command value vector a vector having the ⁇ -axis voltage command value V ⁇ and the ⁇ -axis voltage command value V ⁇ as elements
- arctan () is an arc tangent function.
- the U-phase voltage command value Vu, the V-phase voltage command value Vv, and the W-phase voltage command value Vw use Eamp and Ephase according to the conversion formula shown in Table 1 below according to the sector where the command value vector is located. Is calculated.
- the both end axes are two axes constituting each sector. Further, when all of the U-phase voltage command value Vu, the V-phase voltage command value Vv, and the W-phase voltage command value Vw are added, the current command value of the phase for which the conversion formula is not shown in each sector is Using the two-phase current command value, it is calculated from the following equation (3).
- the sector where the command value vector is located is specified, and this calculation also reduces the computational load. That is, the sector in which the command value vector is located can be identified from the ⁇ angle Ephase of the command value vector, but in order to calculate Ephase, the arc tangent function that imposes a processing load as shown in Equation 2 above must be used. I must. Therefore, in the present embodiment, the sector to be located is specified by comparing the signs of the ⁇ -axis voltage command value V ⁇ and ⁇ -axis voltage command value V ⁇ , which are elements of the command value vector, and the magnitudes of both command values.
- the command value vector is located in any of the four quadrants divided by the ⁇ -axis and ⁇ -axis. Is identified. Since each of the four quadrants includes two sectors, as shown in FIG. 7, by comparing the absolute value of ⁇ 3V ⁇ and the absolute value of V ⁇ , which sector the command value vector is located in Is identified. By arranging these two conditions, the sector where the command value vector is located can be specified according to the conditions shown in Table 2 below.
- the sector where the command value vector is located is sector 0, and the absolute value of ⁇ 3V ⁇ is greater than the absolute value of V ⁇ . If it is small and the sign of V ⁇ is positive (the sign of V ⁇ is not important), the sector where the command value vector is located is sector 1.
- the sector specification may be performed by comparing the absolute value of V ⁇ and the absolute value of V ⁇ / ⁇ 3 instead of comparing the absolute value of ⁇ 3V ⁇ and the absolute value of V ⁇ .
- variable X calculated by the following equation 4 is used in order to share the calculation.
- the V-phase voltage command value and the W-phase voltage command value in sector 4 are derived.
- the ⁇ -phase voltage command value and the ⁇ -axis voltage command value which are two-phase command values
- the U-phase voltage command value, the V-phase voltage command value, and the W-phase voltage which are three-phase command values.
- Conversion to the command value is performed by a simple calculation using X, which is a common variable as shown in Table 3, and the sector identification is also performed with the ⁇ -axis voltage command value and ⁇ -axis voltage command as shown in Table 2. Since the calculation is performed by comparing the sign and size of the value, the amount of calculation can be reduced.
- FIG. 10 shows a configuration example (first embodiment) of the present invention, which is a part of the functional configuration in the control unit (ECU) 30 in the configuration shown in FIG.
- the current command value calculation unit 31 is the same as the current command value calculation unit 31 in the configuration shown in FIG.
- the motor angular speed calculation unit 50 calculates the motor angular speed ⁇ e from the rotational angle (electrical angle) ⁇ e of the rotor acquired from a rotational position sensor (not shown) connected to the motor.
- the dq-axis current command value calculation unit 60 receives the current command value Iref1 output from the current command value calculation unit 31 and the motor angular velocity ⁇ e calculated by the motor angular velocity calculation unit 50, and receives the d-axis current command value Idref and the q-axis. A current command value Iqref is calculated.
- the d-axis current command value Idref and the q-axis current command value Iqref are calculated by, for example, a method executed by a dq-axis current command value calculation unit described in Japanese Patent No. 5282376. At this time, if the motor angular velocity with respect to the mechanical angle of the motor is necessary, the motor angular velocity ⁇ e with respect to the electrical angle is calculated.
- the three-phase / two-phase conversion unit 70 uses the rotation angle ⁇ e to detect a motor current detection value of each phase detected by a motor current detector or the like, that is, a motor current detection value in the U phase (hereinafter referred to as “U phase current detection”).
- U phase current detection a motor current detection value in the U phase
- the subtraction unit 120 calculates a deviation ⁇ Id (Idref ⁇ Id) between the d-axis current command value Idref and the d-axis current detection value Id.
- the subtraction unit 121 calculates a deviation ⁇ Iq (Iqref ⁇ Iq) between the q-axis current command value Iqref and the q-axis current detection value Iq.
- the PI control unit 80 inputs the deviation ⁇ Id and outputs a d-axis voltage command value Vd with improved characteristics.
- the PI control unit 90 receives the deviation ⁇ Iq and outputs a q-axis voltage command value Vq with improved characteristics.
- the ⁇ coordinate conversion unit 100 receives the d-axis voltage command value Vd, the q-axis voltage command value Vq, and the rotation angle ⁇ e, and calculates the ⁇ -axis voltage command value V ⁇ and the ⁇ -axis voltage command value V ⁇ using Equation 1. In calculating, in order to reduce the amount of calculation, first, sin ( ⁇ e) and cos ( ⁇ e) are obtained, and the ⁇ -axis voltage command value V ⁇ and the ⁇ -axis voltage command value V ⁇ are calculated by sharing these values. Also good.
- the conversion unit 110 receives the ⁇ -axis voltage command value V ⁇ and the ⁇ -axis voltage command value V ⁇ calculated by the ⁇ coordinate conversion unit 100, and inputs the U-phase voltage command value Vu, the V-phase voltage command value Vv, and the W-phase voltage command value. Convert to Vw.
- the conversion unit 110 first compares
- the sector in which the command value vector having the ⁇ -axis voltage command value V ⁇ and the ⁇ -axis voltage command value V ⁇ as elements is located according to Table 2 from the sign of the value V ⁇ . Then, the variable X is calculated from the ⁇ -axis voltage command value V ⁇ according to Equation 4, and the phase voltage command value is calculated using the conversion formula set in the specified sector according to Table 3. The voltage command value of the phase whose conversion formula is not shown in Table 3 is calculated from Equation 3 using the voltage command value of the other two phases. Note that Table 2 for sector identification may be held by the conversion unit 110 as a table, or may be incorporated in a program or the like as condition determination logic.
- the calculated phase voltage command values (U-phase voltage command value Vu, V-phase voltage command value Vv, W-phase voltage command value Vw) are voltage control command values output by the PI control unit 35 in the configuration shown in FIG. It corresponds to Vref and is used for PWM drive of the motor.
- the steering torque Ts detected by the torque sensor or the like and the vehicle speed Vs detected by the vehicle speed sensor or the like are input to the current command value calculation unit 31, and the rotation angle ⁇ e detected by the rotational position sensor or the like is used as the motor angular velocity.
- the data is input to the calculation unit 50 (step S10).
- the rotation angle ⁇ e is also input to the three-phase / two-phase converter 70 and the ⁇ coordinate converter 100.
- the current command value calculation unit 31 calculates the current command value Iref1 using an assist map or the like based on the steering torque Ts and the vehicle speed Vs (step S20).
- the motor angular velocity calculation unit 50 calculates the motor angular velocity ⁇ e from the rotation angle ⁇ e (step S30). The order of calculation of the current command value Iref1 and calculation of the motor angular velocity ⁇ e may be reversed.
- the current command value Iref1 and the motor angular velocity ⁇ e are input to the dq-axis current command value calculation unit 60.
- the dq-axis current command value calculation unit 60 calculates the d-axis current command value Idref and the q-axis current command value Iqref based on the current command value Iref1 and the motor angular velocity ⁇ e (step S40).
- the 3-phase / 2-phase conversion unit 70 receives the rotation angle ⁇ e and the U-phase current detection value Iud, the V-phase current detection value Ivd, and the W-phase current detection value Iwd detected by the motor current detector or the like (step S50). ) Conversion into a d-axis current detection value Id and a q-axis current detection value Iq by three-phase / two-phase conversion (step S60).
- the subtractor 120 adds and inputs the d-axis current command value Idref, subtracts and inputs the d-axis current detection value Id to calculate the deviation ⁇ Id, the subtractor 121 adds and inputs the q-axis current command value Iqref, and q-axis
- the deviation ⁇ Iq is calculated by subtracting the current detection value Iq (step S70).
- the deviations ⁇ Id and ⁇ Iq are input to the PI control units 80 and 90, respectively, and the d-axis voltage command value Vd and the q-axis voltage command value Vq are generated by the PI control (step S80).
- the d-axis voltage command value Vd and the q-axis voltage command value Vq are input to the ⁇ coordinate conversion unit 100 together with the rotation angle ⁇ e.
- the ⁇ coordinate conversion unit 100 calculates the ⁇ -axis voltage command value V ⁇ and the ⁇ -axis voltage command value V ⁇ using Equation 1 from the d-axis voltage command value Vd, the q-axis voltage command value Vq, and the rotation angle ⁇ e, and the conversion unit 110 (step S90).
- the conversion unit 110 calculates
- the phase voltage command value that did not exist is calculated from Equation 3, and the calculated U phase voltage command value Vu, V phase voltage command value Vv, and W phase voltage command value Vw are output (step S110).
- the sector where the command value vector is located is sector 0
- the U-phase voltage command value Vu, the V-phase voltage command value Vv, and the W-phase voltage command value Vw are used for motor PWM drive.
- FIG. 12 shows another configuration example (second embodiment) of the present invention.
- the ⁇ coordinate conversion unit 100 and the conversion unit 110 in the first embodiment shown in FIG. 111 receives the d-axis voltage command value Vd, the q-axis voltage command value Vq, and the rotation angle ⁇ e, and outputs the U-phase voltage command value Vu, the V-phase voltage command value Vv, and the W-phase voltage command value Vw.
- Other configurations are the same as those of the first embodiment.
- the conversion unit 110 executes the conversion from the ⁇ fixed coordinate system to the UVW fixed coordinate system.
- both conversions may be integrated, and for example, the variable X may be calculated by the following equation (6).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Control Of Ac Motors In General (AREA)
- Power Steering Mechanism (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
例えば、√3Vαの絶対値がVβの絶対値以上で、Vα及びVβの符号が共に正の場合、指令値ベクトルが位置するセクタはセクタ0であり、√3Vαの絶対値がVβの絶対値より小さく、Vβの符号が正の場合(Vαの符号は不問)、指令値ベクトルが位置するセクタはセクタ1である。
2 コラム軸(ステアリングシャフト、ハンドル軸)
10 トルクセンサ
12 車速センサ
14 舵角センサ
20 モータ
30 コントロールユニット(ECU)
31 電流指令値演算部
50 モータ角速度演算部
60 dq軸電流指令値算出部
70 3相/2相変換部
80、90 PI制御部
100 αβ座標変換部
110、111 変換部
Claims (10)
- 電流指令値に基づいてモータを駆動制御し、前記モータにより車両のステアリング機構にアシスト力を付与する電動パワーステアリング装置の制御方法において、
前記電流指令値より演算される2相の指令値を3相の指令値に変換する変換ステップを有し、
前記変換ステップは、前記2相の指令値から成るベクトルに対する領域を6つのセクタに分割し、前記セクタ毎に予め定義された簡略化された演算方法により、前記2相の指令値を前記3相の指令値に変換し、
前記3相の指令値により前記モータを駆動することを特徴とする電動パワーステアリング装置の制御方法。 - 前記各セクタは原点の周りを等角度で区切られている請求項1に記載の電動パワーステアリング装置の制御方法。
- 前記変換ステップは、
前記2相の指令値の符号及び前記2相の指令値の大きさの比較から前記ベクトルが位置するセクタを特定し、
前記特定されたセクタに定義された前記演算方法により前記2相の指令値を前記3相の指令値に変換する請求項2に記載の電動パワーステアリング装置の制御方法。 - 前記2相の指令値はα軸及びβ軸の固定座標に対するデータであり、
前記3相の指令値はU相、V相及びW相に対するデータである請求項2又は3に記載の電動パワーステアリング装置の制御方法。 - 前記演算方法では、前記2相の指令値のうちの前記β軸に対するデータの絶対値を3の平方根で除算したデータを共通して使用することにより演算を簡略化する請求項4に記載の電動パワーステアリング装置の制御方法。
- 電流指令値に基づいてモータを駆動制御し、前記モータにより車両のステアリング機構にアシスト力を付与する電動パワーステアリング装置の制御装置において、
前記電流指令値より演算される2相の指令値を3相の指令値に変換する変換部を有し、
前記変換部は、前記2相の指令値から成るベクトルに対する領域を6つのセクタに分割し、前記セクタ毎に予め定義された簡略化された演算方法により、前記2相の指令値を前記3相の指令値に変換し、
前記3相の指令値により前記モータを駆動することを特徴とする電動パワーステアリング装置の制御装置。 - 前記各セクタは原点の周りを等角度で区切られている請求項6に記載の電動パワーステアリング装置の制御装置。
- 前記変換部は、
前記2相の指令値の符号及び前記2相の指令値の大きさの比較から前記ベクトルが位置するセクタを特定し、
前記特定されたセクタに定義された前記演算方法により前記2相の指令値を前記3相の指令値に変換する請求項7に記載の電動パワーステアリング装置の制御装置。 - 前記2相の指令値はα軸及びβ軸の固定座標に対するデータであり、
前記3相の指令値はU相、V相及びW相に対するデータである請求項7又は8に記載の電動パワーステアリング装置の制御装置。 - 前記演算方法では、前記2相の指令値のうちの前記β軸に対するデータの絶対値を3の平方根で除算したデータを共通して使用することにより、演算を簡略化する請求項9に記載の電動パワーステアリング装置の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16872740.2A EP3388310B1 (en) | 2015-12-09 | 2016-11-04 | Electric power steering device control method and control device |
US15/780,502 US20180354550A1 (en) | 2015-12-09 | 2016-11-04 | Control method and control unit of electric power steering apparatus |
BR112018011815-0A BR112018011815A2 (ja) | 2015-12-09 | 2016-11-04 | A control method and a control device of an electric power steering device |
CN201680068905.XA CN108602528A (zh) | 2015-12-09 | 2016-11-04 | 电动助力转向装置的控制方法以及控制装置 |
JP2017554975A JP6406460B2 (ja) | 2015-12-09 | 2016-11-04 | 電動パワーステアリング装置の制御方法及び制御装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015239898 | 2015-12-09 | ||
JP2015-239898 | 2015-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017098840A1 true WO2017098840A1 (ja) | 2017-06-15 |
Family
ID=59014009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/082751 WO2017098840A1 (ja) | 2015-12-09 | 2016-11-04 | 電動パワーステアリング装置の制御方法及び制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180354550A1 (ja) |
EP (1) | EP3388310B1 (ja) |
JP (5) | JP6406460B2 (ja) |
CN (1) | CN108602528A (ja) |
BR (1) | BR112018011815A2 (ja) |
WO (1) | WO2017098840A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018016437A1 (ja) | 2016-07-20 | 2018-01-25 | 日本精工株式会社 | 電動パワーステアリング装置 |
WO2018016476A1 (ja) | 2016-07-20 | 2018-01-25 | 日本精工株式会社 | 電動パワーステアリング装置 |
WO2018147465A1 (ja) | 2017-02-13 | 2018-08-16 | 日本精工株式会社 | 電動パワーステアリング装置 |
WO2018230542A1 (ja) | 2017-06-16 | 2018-12-20 | 日本精工株式会社 | モータ制御装置及びそれを搭載した電動パワーステアリング装置 |
WO2018230541A1 (ja) | 2017-06-16 | 2018-12-20 | 日本精工株式会社 | モータ制御装置及びそれを搭載した電動パワーステアリング装置 |
WO2019083015A1 (ja) | 2017-10-26 | 2019-05-02 | 日本精工株式会社 | モータ制御装置、モータ制御方法および電動パワーステアリング装置 |
WO2019151200A1 (ja) | 2018-01-31 | 2019-08-08 | 日本精工株式会社 | モータ制御装置及びそれを搭載した電動パワーステアリング装置 |
WO2019150945A1 (ja) | 2018-01-30 | 2019-08-08 | 日本精工株式会社 | 電動パワーステアリング装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001359282A (ja) * | 2001-05-21 | 2001-12-26 | Hitachi Ltd | 電力変換装置 |
JP3480843B2 (ja) | 2001-09-04 | 2003-12-22 | 三菱電機株式会社 | 電動パワーステアリング制御装置及び制御方法 |
JP5282376B2 (ja) | 2007-06-29 | 2013-09-04 | 日本精工株式会社 | 電動パワーステアリング装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3236983B2 (ja) * | 1995-04-17 | 2001-12-10 | 株式会社日立製作所 | 電力変換装置 |
JP3259626B2 (ja) * | 1996-02-29 | 2002-02-25 | 株式会社日立製作所 | インバータ装置および電気車制御装置 |
JP3155238B2 (ja) * | 1997-12-26 | 2001-04-09 | 春日電機株式会社 | インバータ装置 |
JP2001112282A (ja) * | 1999-10-01 | 2001-04-20 | Matsushita Electric Ind Co Ltd | モータ制御装置 |
JP2003009598A (ja) * | 2001-04-16 | 2003-01-10 | Sanken Electric Co Ltd | 交流電動機のベクトル制御装置及び制御方法 |
JP5034375B2 (ja) * | 2006-08-25 | 2012-09-26 | 日本精工株式会社 | 電動パワーステアリング装置 |
JP2009044821A (ja) * | 2007-08-07 | 2009-02-26 | Jtekt Corp | モータ制御装置 |
WO2009145270A1 (ja) * | 2008-05-28 | 2009-12-03 | 本田技研工業株式会社 | モータの制御装置および電動ステアリング装置 |
JP5614583B2 (ja) * | 2009-11-17 | 2014-10-29 | 株式会社ジェイテクト | モータ制御装置および車両用操舵装置 |
JP5365701B2 (ja) * | 2009-12-25 | 2013-12-11 | トヨタ自動車株式会社 | 電動パワーステアリング装置 |
US9219432B2 (en) * | 2012-07-25 | 2015-12-22 | System General Corporation | Control systems and methods for angle estimation of permanent magnet motors |
JP6022951B2 (ja) * | 2013-01-18 | 2016-11-09 | トヨタ自動車株式会社 | 電動パワーステアリング装置 |
-
2016
- 2016-11-04 JP JP2017554975A patent/JP6406460B2/ja active Active
- 2016-11-04 CN CN201680068905.XA patent/CN108602528A/zh active Pending
- 2016-11-04 WO PCT/JP2016/082751 patent/WO2017098840A1/ja unknown
- 2016-11-04 EP EP16872740.2A patent/EP3388310B1/en active Active
- 2016-11-04 BR BR112018011815-0A patent/BR112018011815A2/ja not_active Application Discontinuation
- 2016-11-04 US US15/780,502 patent/US20180354550A1/en not_active Abandoned
-
2018
- 2018-09-12 JP JP2018170264A patent/JP2019024309A/ja active Pending
- 2018-09-12 JP JP2018170261A patent/JP6635159B2/ja active Active
- 2018-09-12 JP JP2018170263A patent/JP2019050725A/ja active Pending
- 2018-09-12 JP JP2018170262A patent/JP6658830B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001359282A (ja) * | 2001-05-21 | 2001-12-26 | Hitachi Ltd | 電力変換装置 |
JP3480843B2 (ja) | 2001-09-04 | 2003-12-22 | 三菱電機株式会社 | 電動パワーステアリング制御装置及び制御方法 |
JP5282376B2 (ja) | 2007-06-29 | 2013-09-04 | 日本精工株式会社 | 電動パワーステアリング装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018016437A1 (ja) | 2016-07-20 | 2018-01-25 | 日本精工株式会社 | 電動パワーステアリング装置 |
WO2018016476A1 (ja) | 2016-07-20 | 2018-01-25 | 日本精工株式会社 | 電動パワーステアリング装置 |
WO2018147465A1 (ja) | 2017-02-13 | 2018-08-16 | 日本精工株式会社 | 電動パワーステアリング装置 |
WO2018230542A1 (ja) | 2017-06-16 | 2018-12-20 | 日本精工株式会社 | モータ制御装置及びそれを搭載した電動パワーステアリング装置 |
WO2018230541A1 (ja) | 2017-06-16 | 2018-12-20 | 日本精工株式会社 | モータ制御装置及びそれを搭載した電動パワーステアリング装置 |
WO2019083015A1 (ja) | 2017-10-26 | 2019-05-02 | 日本精工株式会社 | モータ制御装置、モータ制御方法および電動パワーステアリング装置 |
WO2019150945A1 (ja) | 2018-01-30 | 2019-08-08 | 日本精工株式会社 | 電動パワーステアリング装置 |
WO2019151200A1 (ja) | 2018-01-31 | 2019-08-08 | 日本精工株式会社 | モータ制御装置及びそれを搭載した電動パワーステアリング装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017098840A1 (ja) | 2018-11-01 |
JP6406460B2 (ja) | 2018-10-24 |
EP3388310A1 (en) | 2018-10-17 |
EP3388310A4 (en) | 2019-09-18 |
JP2019024309A (ja) | 2019-02-14 |
CN108602528A (zh) | 2018-09-28 |
JP2019024308A (ja) | 2019-02-14 |
JP2019050724A (ja) | 2019-03-28 |
EP3388310B1 (en) | 2020-07-15 |
US20180354550A1 (en) | 2018-12-13 |
JP2019050725A (ja) | 2019-03-28 |
JP6635159B2 (ja) | 2020-01-22 |
JP6658830B2 (ja) | 2020-03-04 |
BR112018011815A2 (ja) | 2018-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6406460B2 (ja) | 電動パワーステアリング装置の制御方法及び制御装置 | |
JP3480843B2 (ja) | 電動パワーステアリング制御装置及び制御方法 | |
JP6338030B1 (ja) | 電動パワーステアリング装置 | |
US8890459B2 (en) | Motor control device and electric power steering system | |
US8874316B2 (en) | Vehicle steering system | |
JP4168730B2 (ja) | 3相交流電動機の制御装置 | |
WO2018230541A1 (ja) | モータ制御装置及びそれを搭載した電動パワーステアリング装置 | |
EP2015443B1 (en) | Motor control device | |
JP6512372B2 (ja) | 電動パワーステアリング装置 | |
WO2018230542A1 (ja) | モータ制御装置及びそれを搭載した電動パワーステアリング装置 | |
EP3790186A1 (en) | Motor controller and motor control method | |
JP2009044821A (ja) | モータ制御装置 | |
JP2017127066A (ja) | モータ制御装置及びそれを搭載した電動パワーステアリング装置 | |
JP5013185B2 (ja) | モータ制御装置 | |
JP3793733B2 (ja) | 三相モータの制御装置 | |
JP2014060922A (ja) | モータ制御装置 | |
JP7091669B2 (ja) | 電動車両 | |
US10577014B2 (en) | Steering control apparatus | |
JP2010098809A (ja) | モータ制御装置 | |
JP2017127053A (ja) | モータ制御装置及びそれを搭載した電動パワーステアリング装置 | |
JP2012191780A (ja) | モータ制御装置 | |
JP2013005486A (ja) | モータ制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16872740 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017554975 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018011815 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112018011815 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180611 |