WO2017094485A1 - 複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置 - Google Patents

複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
WO2017094485A1
WO2017094485A1 PCT/JP2016/083718 JP2016083718W WO2017094485A1 WO 2017094485 A1 WO2017094485 A1 WO 2017094485A1 JP 2016083718 W JP2016083718 W JP 2016083718W WO 2017094485 A1 WO2017094485 A1 WO 2017094485A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
wave plate
layer
quarter
multilayer film
Prior art date
Application number
PCT/JP2016/083718
Other languages
English (en)
French (fr)
Inventor
弘昌 橋本
賢 菊川
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020187013837A priority Critical patent/KR20180088808A/ko
Priority to CN201680067871.2A priority patent/CN108291997B/zh
Priority to US15/776,575 priority patent/US10522793B2/en
Priority to JP2017553747A priority patent/JPWO2017094485A1/ja
Publication of WO2017094485A1 publication Critical patent/WO2017094485A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Definitions

  • the present invention relates to a multilayer film, a production method, a circularly polarizing plate, an antireflection film, and an organic electroluminescence display device.
  • an organic electroluminescence display device in order to prevent deterioration of the light emitting layer and its surrounding layers, a component for protecting them is provided.
  • a component for protecting them is provided in the case of a device having a substrate and a light-emitting layer formed thereon.
  • a sealing material layer is provided on the light-emitting layer, and a barrier layer that prevents transmission of moisture, oxygen, and the like is further provided thereon. It is known.
  • the barrier layer one having a multilayer structure with a base material for forming the barrier layer is known. That is, a barrier laminate including a base material and a barrier layer provided on the base material is prepared, and this is incorporated into an organic electroluminescence display device. Conventionally, a glass substrate is often used as the substrate of the barrier laminate, but recently, it has been proposed to use a resin-made substrate film as the substrate (see Patent Documents 1 to 3).
  • the organic electroluminescence display device may be provided with a circularly polarizing plate in order to reduce reflection of external light on the display surface.
  • a circularly polarizing plate a film in which a linear polarizer and a quarter-wave plate that is a retardation film are combined is generally used.
  • this quarter-wave plate a broadband quarter-wave plate combining a quarter-wave plate and a half-wave plate has been proposed (see Patent Documents 4 to 9).
  • a retardation of approximately 1 ⁇ 4 wavelength can be achieved with light in an ideal wide wavelength range, so that a circularly polarizing plate that can reduce reflection of external light in a wide wavelength range can be realized.
  • a retardation film technique in which the slow axis direction as in Patent Document 10 is an in-plane direction of a film and exists in an oblique direction that is neither orthogonal nor parallel to the width direction of the film is also known. .
  • an organic electroluminescence display device having a light, thin and large display surface can be obtained.
  • the organic electroluminescence display device is required to be further reduced in weight and thickness.
  • the components of the device are required to have flexibility, and further, curved surfaces It is also required that the optical properties are not impaired even when used in the above.
  • a barrier layer is formed using a film provided in an organic electroluminescence display device for other purposes than before, and the same as in the past with fewer components. It is conceivable to obtain a laminated structure having a function. For example, it is conceivable to use a multilayer film including a barrier layer and a retardation film provided in an organic electroluminescence display device for the purpose of preventing reflection.
  • the retardation film is easily denatured depending on conditions such as temperature in the formation of the barrier layer. As a result, deformation of the film surface such as wrinkles and undulations, curl of the film, barrier Problems such as insufficient adhesion between the layer and the retardation film and insufficient optical performance of the retardation film may occur.
  • the object of the present invention is useful as a component of a thin organic electroluminescence display device, does not cause defects such as surface deformation and curling, and has good adhesion between the barrier layer and the retardation film,
  • Another object of the present invention is to provide a multilayer film, a circularly polarizing plate, an antireflection film, and a method for producing the multilayer film, which can express optical performance well.
  • the present inventor has found that the above problems can be solved by adopting a specific material constituting the retardation film, and has completed the present invention. That is, the present invention is as follows.
  • a multilayer film for an organic electroluminescence display device A retardation film, and a barrier layer provided directly on the surface of the retardation film
  • the retardation film includes one or more resin A layers as a layer in direct contact with the barrier layer
  • the resin A includes a crystalline polymer A having a melting point of 250 ° C. or higher
  • the resin A layer has an in-plane retardation Re of 108 nm to 168 nm measured with light of a wavelength of 590 nm at 23 ° C., and an absolute value of a photoelastic coefficient of 2.0 ⁇ 10 ⁇ 11 Pa ⁇ 1 or less.
  • Multi-layer film Multi-layer film.
  • the polymer A is an alicyclic structure-containing polymer having a positive intrinsic birefringence value
  • the multilayer film according to [1] in which the absolute value of the thermal dimensional change rate in the film surface when the layer of the resin A is heated at 150 ° C. for 1 hour is 1% or less.
  • the multilayer film has a long shape
  • the retardation film includes a quarter wave plate as the resin A layer
  • the retardation film further includes a half-wave plate
  • the slow axis of the half-wave plate and the slow axis of the quarter-wave plate are both oblique to the longitudinal direction of the multilayer film,
  • the crossing angle between the slow axis of the half-wave plate and the slow axis of the quarter-wave plate is 55 ° or more and 65 ° or less.
  • the thickness dh of the half-wave plate and the thickness dq of the quarter-wave plate are both 10 ⁇ m or more and 50 ⁇ m or less, and these satisfy the relationship of dh ⁇ dq.
  • a circularly polarizing plate comprising a linear polarizer provided on a surface of the multilayer film opposite to the barrier layer.
  • An antireflection film comprising the circularly polarizing plate according to [10], The linear polarizer, a half-wave plate, a quarter-wave plate as a layer of the resin A, and the barrier layer in this order, The angle formed between the polarization transmission axis of the linear polarizer and the slow axis of the half-wave plate is 10 ° or more and 20 ° or less, or 70 ° or more and 80 ° or less, The ratio R 0 / R 10 ( 0 deg) between the reflectivity R 0 at an incident angle of 0 ° and the reflectivity R 10 (0 deg) at an azimuth angle of 0 ° and an incident angle of 10 °, and the reflectivity at an incident angle of 0 ° R 0 and the ratio R 0 / R 10 of the reflectance R 10 (180 deg) at an incident angle of 10 ° in azimuth 180 ° (180 deg) is 0.95 to 1.05, the antireflection film.
  • the multilayer film, circularly polarizing plate and antireflection film of the present invention are useful as constituent elements of a thin organic electroluminescence display device, do not cause defects such as surface deformation and curling, and have a barrier layer and a retardation film. Therefore, it is possible to exhibit good barrier performance and optical performance. Furthermore, an antireflection function with little difference in reflectance due to a difference in incident angle can be exhibited, and as a result, it can be usefully used in a display device having a curved display surface.
  • FIG. 1 is a cross-sectional view schematically showing an example of the multilayer film of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of an apparatus for forming an inorganic barrier layer by CVD in order to produce the multilayer film of the present invention shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing an example of the organic electroluminescence display device of the present invention.
  • the front direction of a surface means the normal direction of the surface, and specifically refers to the direction of the polar angle 0 ° and the azimuth angle 0 ° of the surface.
  • polarizing plate In the following description, “polarizing plate”, “1 ⁇ 4 wavelength plate”, and “1 ⁇ 2 wavelength plate” are not only rigid members, but are flexible like a resin film, unless otherwise specified. The member which has property is also included.
  • the angle formed by the optical axis (absorption axis, slow axis, etc.) of each layer in a member having a plurality of layers represents the angle when the film is viewed from the thickness direction unless otherwise noted.
  • the slow axis of the film represents the slow axis in the plane of the film.
  • the “orientation angle” of a long film refers to an angle formed by the slow axis of the film with respect to the width direction of the film unless otherwise specified.
  • the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll. A film having such a length that it can be wound up and stored or transported.
  • the upper limit of the ratio of the length to the width is not particularly limited, but may be, for example, 100,000 times or less.
  • the multilayer film of the present invention includes a retardation film and a barrier layer provided directly on the surface of the retardation film.
  • FIG. 1 is a cross-sectional view schematically showing an example of the multilayer film of the present invention.
  • a multilayer film 110 includes a retardation film 109 and a barrier layer 113 provided directly on the surface 114D.
  • the retardation film 109 includes a quarter-wave plate 114 as a layer of resin A, a half-wave plate 112 as an arbitrary layer, and an adhesive layer 111 interposed therebetween. .
  • the retardation film includes one or more resin A layers.
  • the resin A layer is a layer in direct contact with the barrier layer. That is, the surface of the retardation film on the side in contact with the barrier layer is made of resin A.
  • the layer is a layer of resin A.
  • the layer constituting the surface in contact with the barrier layer among them is the resin A layer.
  • each of the one or more layers other than the layer constituting the surface in contact with the barrier layer may be a resin A layer, or a resin other than the resin A. It may be a layer.
  • the resin A includes a crystalline polymer A having a specific melting point.
  • crystalline means that the polymer A has a melting point that can be observed with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • Examples of the crystalline polymer include a crystalline alicyclic structure-containing polymer and a crystalline polystyrene polymer (see JP 2011-118137 A).
  • a crystalline alicyclic structure-containing polymer is preferable because of excellent transparency, low hygroscopicity, dimensional stability, and lightness.
  • the alicyclic structure-containing polymer refers to a polymer having an alicyclic structure in the molecule, which can be obtained by a polymerization reaction using a cyclic olefin as a monomer, or a hydrogenated product thereof.
  • Examples of the alicyclic structure possessed by the alicyclic structure-containing polymer include a cycloalkane structure and a cycloalkene structure. Among these, a cycloalkane structure is preferable because a layer of the resin A having excellent characteristics such as thermal stability is easily obtained.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. is there. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
  • the ratio of the structural unit having an alicyclic structure to all the structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more.
  • Heat resistance can be improved by increasing the proportion of structural units having an alicyclic structure in the alicyclic structure-containing polymer as described above.
  • the remainder other than the structural unit having an alicyclic structure is not particularly limited and may be appropriately selected according to the purpose of use.
  • the melting point Tm of the polymer A such as a crystalline alicyclic structure-containing polymer is 250 ° C or higher, preferably 255 ° C or higher, more preferably 260 ° C or higher, and preferably 290 ° C or lower.
  • the weight average molecular weight (Mw) of the polymer A is preferably 1,000 or more, more preferably 2,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less.
  • the polymer A having such a weight average molecular weight is excellent in the balance between molding processability and heat resistance. In particular, when the polymer A is a crystalline alicyclic structure-containing polymer, such a tendency is remarkable.
  • the molecular weight distribution (Mw / Mn) of the polymer A is preferably 1.0 or more, more preferably 1.5 or more, preferably 4.0 or less, more preferably 3.5 or less.
  • Mn represents a number average molecular weight.
  • the polymer A having such a molecular weight distribution is excellent in molding processability. In particular, when the polymer A is a crystalline alicyclic structure-containing polymer, such a tendency is remarkable.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer A can be measured as a polystyrene equivalent value by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
  • the glass transition temperature Tg of the polymer A is not particularly limited, but is usually 85 ° C. or higher and usually 170 ° C. or lower.
  • polymer ( ⁇ ) A ring-opening polymer of a cyclic olefin monomer having crystallinity.
  • Polymer ( ⁇ ) A hydrogenated product of polymer ( ⁇ ) having crystallinity.
  • Polymer ( ⁇ ) An addition polymer of a cyclic olefin monomer having crystallinity.
  • Polymer ( ⁇ ) a hydrogenated product of polymer ( ⁇ ), etc., having crystallinity.
  • a ring-opening polymer of dicyclopentadiene having crystallinity and a hydrogenated product of a ring-opening polymer of dicyclopentadiene and crystallizing. More preferred is a hydrogenated product of a ring-opening polymer of dicyclopentadiene, and particularly preferred is a crystalline product having crystallinity.
  • the ring-opening polymer of dicyclopentadiene means that the proportion of structural units derived from dicyclopentadiene relative to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it refers to a polymer of 100% by weight.
  • the manufacturing method of a polymer ((alpha)) and a polymer ((beta)) is demonstrated.
  • the cyclic olefin monomer that can be used for the production of the polymer ( ⁇ ) and the polymer ( ⁇ ) is a compound having a ring structure formed of carbon atoms and having a carbon-carbon double bond in the ring. .
  • Examples of the cyclic olefin monomer include norbornene monomers.
  • a polymer ((alpha)) is a copolymer, you may use a monocyclic olefin as a cyclic olefin monomer.
  • the norbornene monomer is a monomer containing a norbornene ring.
  • Examples of norbornene monomers include bicyclo [2.2.1] hept-2-ene (common name: norbornene), 5-ethylidene-bicyclo [2.2.1] hept-2-ene (common name).
  • Ethylidene norbornene and derivatives thereof (for example, those having a substituent in the ring); tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (conventional Name: dicyclopentadiene) and its derivatives, etc., tricyclic monomers; 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene) : 1,4-methano-1,4,4a, 9a-tetrahydrofluorene) and its derivatives, tetracyclo [4.4.0.1 2,5 .
  • dodec-3-ene (common name: tetracyclododecene), 8-ethylidenetetracyclo [4.4.0.1 2,5 . 1 7,10 ] -3-dodecene and its derivatives, and the like.
  • substituent in the monomer examples include an alkyl group such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; an alkylidene group such as propane-2-ylidene; an aryl group such as a phenyl group; a hydroxy group; An acid anhydride group; a carboxyl group; an alkoxycarbonyl group such as a methoxycarbonyl group; and the like.
  • the said substituent may have 1 type independently and may have 2 or more types by arbitrary ratios.
  • Examples of the monocyclic olefin include cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, cyclooctene; cyclohexadiene, methylcyclohexadiene, cyclooctadiene, methylcyclooctadiene, phenylcyclohexane Cyclic diolefins such as octadiene; and the like.
  • cyclic monoolefins such as cyclobutene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, cycloheptene, cyclooctene
  • cyclohexadiene methylcyclohexadiene
  • cyclooctadiene methylcyclooctadiene
  • the cyclic olefin monomer one type may be used alone, or two or more types may be used in combination at any ratio.
  • the polymer ( ⁇ ) may be a block copolymer or a random copolymer.
  • the cyclic olefin monomer may include an endo isomer and an exo isomer.
  • an endo isomer or an exo isomer may be used.
  • only one isomer among the endo isomer and the exo isomer may be used alone, or an isomer mixture containing the endo isomer and the exo isomer in an arbitrary ratio may be used.
  • the crystallinity of the alicyclic structure-containing polymer is enhanced, and a resin A layer that is superior in heat resistance is easily obtained. Therefore, it is preferable to increase the ratio of one stereoisomer.
  • the ratio of endo-form or exo-form is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more. Moreover, since synthesis
  • a ring-opening polymerization catalyst is usually used for the synthesis of the polymer ( ⁇ ).
  • a ring-opening polymerization catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • As the ring-opening polymerization catalyst for synthesizing such a polymer ( ⁇ ) those capable of ring-opening polymerization of a cyclic olefin monomer to produce a ring-opening polymer having syndiotactic stereoregularity are preferable.
  • Preferred examples of the ring-opening polymerization catalyst include those containing a metal compound represented by the following formula (1).
  • M represents a metal atom selected from the group consisting of Group 6 transition metal atoms in the periodic table
  • R 1i is a phenyl group which may have a substituent at at least one of the 3-position, 4-position and 5-position, or —CH 2 R 3i (R 3i has a hydrogen atom or a substituent.
  • R 2i represents a group selected from the group consisting of an optionally substituted alkyl group and an optionally substituted aryl group
  • X i represents a group selected from the group consisting of a halogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, and an alkylsilyl group
  • L represents an electron-donating neutral ligand
  • a represents a number of 0 or 1
  • b represents an integer of 0-2.
  • M represents a metal atom selected from the group consisting of Group 6 transition metal atoms in the periodic table.
  • M chromium, molybdenum and tungsten are preferable, molybdenum and tungsten are more preferable, and tungsten is particularly preferable.
  • R 1i represents a phenyl group which may have a substituent at at least one of the 3-position, 4-position and 5-position, or a group represented by —CH 2 R 3i .
  • the number of carbon atoms of the phenyl group which may have a substituent at at least one of the 3-position, 4-position and 5-position of R 1i is preferably 6-20 , more preferably 6-15.
  • the substituent include alkyl groups such as methyl group and ethyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group, ethoxy group and isopropoxy group; It is done.
  • substituents may have one type independently, and may have two or more types in arbitrary ratios. Furthermore, in R 1i , substituents present in at least two positions of the 3-position, 4-position and 5-position may be bonded to each other to form a ring structure.
  • phenyl group optionally having a substituent at the 3-position, 4-position and 5-position examples include an unsubstituted phenyl group; a 4-methylphenyl group, a 4-chlorophenyl group, and 3-methoxyphenyl.
  • phenyl groups such as 4-cyclohexylphenyl group, 4-methoxyphenyl group; 3,5-dimethylphenyl group, 3,5-dichlorophenyl group, 3,4-dimethylphenyl group, 3,5-dimethoxyphenyl group Disubstituted phenyl group such as 3,4,5-trimethylphenyl group, 3,4,5-trichlorophenyl group and the like; 2-naphthyl group, 3-methyl-2-naphthyl group, 4-methyl -2-naphthyl group which may have a substituent such as -2-naphthyl group; and the like.
  • R 3i is composed of a hydrogen atom, an alkyl group which may have a substituent, and an aryl group which may have a substituent. Indicates a group selected from the group.
  • the number of carbon atoms of the alkyl group which may have a substituent of R 3i is preferably 1-20, more preferably 1-10. This alkyl group may be linear or branched.
  • examples of the substituent include a phenyl group which may have a substituent such as a phenyl group and a 4-methylphenyl group; an alkoxyl group such as a methoxy group and an ethoxy group; These substituents may be used alone or in combination of two or more at any ratio.
  • examples of the alkyl group which may have a substituent of R 3i include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, neopentyl group, benzyl Group, neophyll group and the like.
  • the number of carbon atoms of the aryl group which may have a substituent of R 3i is preferably 6 to 20, more preferably 6 to 15.
  • substituents include alkyl groups such as methyl group and ethyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group, ethoxy group and isopropoxy group; It is done. These substituents may be used alone or in combination of two or more at any ratio.
  • Examples of the aryl group which may have a substituent for R 3i include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 4-methylphenyl group, and a 2,6-dimethylphenyl group. .
  • the group represented by R 3i is preferably an alkyl group having 1 to 20 carbon atoms.
  • R 2i represents a group selected from the group consisting of an alkyl group which may have a substituent and an aryl group which may have a substituent.
  • an alkyl group which may have a substituent of R 2i and the aryl group which may have a substituent respectively, an alkyl group which may have a substituent of R 3i , And what was selected from the range shown as the aryl group which may have a substituent can be used arbitrarily.
  • X i is a group selected from the group consisting of a halogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, and an alkylsilyl group. Indicates.
  • the halogen atom of X i for example, a chlorine atom, a bromine atom, an iodine atom.
  • an alkyl group which may have a substituent of X i and the aryl group which may have a substituent an alkyl group which may have a substituent of R 3i , respectively, And what was selected from the range shown as the aryl group which may have a substituent can be used arbitrarily.
  • alkylsilyl group of X i for example, trimethylsilyl group, triethylsilyl group, t- butyl dimethyl silyl group and the like.
  • the metal compound represented by the formula (1) has two or more X i in one molecule, the X i may be the same as or different from each other. Further, two or more X i may be bonded to each other to form a ring structure.
  • L represents an electron-donating neutral ligand.
  • the electron donating neutral ligand of L include an electron donating compound containing an atom of Group 14 or Group 15 of the Periodic Table. Specific examples thereof include phosphines such as trimethylphosphine, triisopropylphosphine, tricyclohexylphosphine, and triphenylphosphine; ethers such as diethyl ether, dibutyl ether, 1,2-dimethoxyethane, and tetrahydrofuran; trimethylamine, triethylamine, pyridine, Amines such as lutidine; and the like. Among these, ethers are preferable. Moreover, when the metal compound shown by Formula (1) has 2 or more L in 1 molecule, those L may mutually be the same and may differ.
  • a tungsten compound having a phenylimide group is preferable. That is, in the formula (1), a compound in which M is a tungsten atom and R 1i is a phenyl group is preferable. Furthermore, among them, a tetrachlorotungsten phenylimide (tetrahydrofuran) complex is more preferable.
  • the method for producing the metal compound represented by the formula (1) is not particularly limited.
  • an oxyhalide of a Group 6 transition metal phenyl optionally having a substituent at at least one of the 3-position, 4-position and 5-position
  • an isocyanate or monosubstituted methyl isocyanate By mixing an isocyanate or monosubstituted methyl isocyanate; an electron-donating neutral ligand (L); and, if necessary, alcohols, metal alkoxides and metal aryloxides, the formula (1 ) Can be produced.
  • the metal compound represented by the formula (1) is usually obtained in a state of being contained in the reaction solution.
  • the reaction solution may be used as it is as a catalyst solution for the ring-opening polymerization reaction.
  • purification processes such as crystallization, you may use the obtained metal compound for ring-opening polymerization reaction.
  • the metal compound represented by the formula (1) may be used alone, or the metal compound represented by the formula (1) may be used in combination with other components.
  • the polymerization activity can be improved by using a combination of a metal compound represented by the formula (1) and an organometallic reducing agent.
  • organometallic reducing agent examples include organometallic compounds of Group 1, Group 2, Group 12, Group 13, or Group 14 having a hydrocarbon group having 1 to 20 carbon atoms.
  • organometallic compounds include organic lithium such as methyl lithium, n-butyl lithium and phenyl lithium; butyl ethyl magnesium, butyl octyl magnesium, dihexyl magnesium, ethyl magnesium chloride, n-butyl magnesium chloride, allyl magnesium bromide.
  • Organic magnesium such as dimethyl zinc, diethyl zinc, diphenyl zinc, etc .; Trimethylaluminum, triethylaluminum, triisobutylaluminum, diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum ethoxide, diisobutylaluminum isobutoxide , Ethylaluminum diethoxide, isobutylaluminum diisobutoxide Organoaluminum; tetramethyl tin, tetra (n- butyl) tin, organic tin such as tetraphenyl tin; and the like. Among these, organoaluminum or organotin is preferable. Further, one kind of organometallic reducing agent may be used alone, or two or more kinds may be used in combination at any ratio.
  • the ring-opening polymerization reaction is usually performed in an organic solvent.
  • an organic solvent a solvent that can dissolve or disperse the ring-opening polymer and its hydrogenated product under predetermined conditions and that does not inhibit the ring-opening polymerization reaction and the hydrogenation reaction can be used.
  • organic solvent examples include aliphatic hydrocarbon solvents such as pentane, hexane, and heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, Alicyclic hydrocarbon solvents such as tricyclodecane, hexahydroindene and cyclooctane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; halogenated aliphatic hydrocarbon solvents such as dichloromethane, chloroform and 1,2-dichloroethane Halogenated aromatic hydrocarbon solvents such as chlorobenzene and dichlorobenzene; nitrogen-containing hydrocarbon solvents such as nitromethane, nitrobenzene and aceton
  • the ring-opening polymerization reaction can be started, for example, by mixing a cyclic olefin monomer, a metal compound represented by the formula (1), and an organic metal reducing agent as necessary.
  • the order of mixing these components is not particularly limited.
  • a solution containing a metal compound represented by the formula (1) and an organometallic reducing agent may be mixed with a solution containing a cyclic olefin monomer.
  • the solution of the metal compound shown by Formula (1) may be mixed with the solution containing a cyclic olefin monomer and an organometallic reducing agent.
  • the whole quantity of each component may be mixed at once, and may be mixed in multiple times.
  • the concentration of the cyclic olefin monomer in the reaction solution at the start of the ring-opening polymerization reaction is preferably 1% by weight or more, more preferably 2% by weight or more, particularly preferably 3% by weight or more, preferably 50% by weight. % Or less, more preferably 45% by weight or less, and particularly preferably 40% by weight or less.
  • the amount of the metal compound represented by the formula (1) used in the ring-opening polymerization reaction is desirably set so that the molar ratio of “metal compound: cyclic olefin monomer” falls within a predetermined range.
  • the molar ratio is preferably 1: 100 to 1: 2,000,000, more preferably 1: 500 to 1,000,000, particularly preferably 1: 1,000 to 1: 500. , 000.
  • Sufficient polymerization activity can be obtained by setting the amount of the metal compound to be equal to or greater than the lower limit of the above range.
  • a metal compound can be easily removed after reaction by setting it as below an upper limit.
  • the amount of the organometallic reducing agent is preferably 0.1 mol or more, more preferably 0.2 mol or more, and particularly preferably 0.5 mol or more with respect to 1 mol of the metal compound represented by the formula (1).
  • the amount is preferably 100 mol or less, more preferably 50 mol or less, and particularly preferably 20 mol or less.
  • the polymerization reaction system of the polymer ( ⁇ ) may contain an activity regulator.
  • an activity regulator By using an activity regulator, the ring-opening polymerization catalyst can be stabilized, the reaction rate of the ring-opening polymerization reaction can be adjusted, and the molecular weight distribution of the polymer can be adjusted.
  • an organic compound having a functional group can be used as the activity regulator. Examples of such activity regulators include oxygen-containing compounds, nitrogen-containing compounds, and phosphorus-containing organic compounds.
  • oxygen-containing compound examples include ethers such as diethyl ether, diisopropyl ether, dibutyl ether, anisole, furan, and tetrahydrofuran; ketones such as acetone, benzophenone, and cyclohexanone; esters such as ethyl acetate;
  • nitrogen-containing compound examples include nitriles such as acetonitrile and benzonitrile; amines such as triethylamine, triisopropylamine, quinuclidine and N, N-diethylaniline; pyridine, 2,4-lutidine, 2,6-lutidine, Pyridines such as 2-t-butylpyridine; and the like.
  • Examples of the phosphorus-containing compound include phosphines such as triphenylphosphine, tricyclohexylphosphine, triphenylphosphate, and trimethylphosphate; phosphine oxides such as triphenylphosphine oxide; and the like.
  • An activity regulator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the amount of the activity regulator in the polymerization reaction system of the polymer ( ⁇ ) is preferably 0.01 mol% to 100 mol% with respect to 100 mol% of the metal compound represented by the formula (1).
  • the polymerization reaction system of the polymer ( ⁇ ) may contain a molecular weight modifier in order to adjust the molecular weight of the polymer ( ⁇ ).
  • the molecular weight modifier include ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene and 1-octene; aromatic vinyl compounds such as styrene and vinyltoluene; ethyl vinyl ether, isobutyl vinyl ether, allyl glycidyl ether Oxygen-containing vinyl compounds such as allyl acetate, allyl alcohol and glycidyl methacrylate; halogen-containing vinyl compounds such as allyl chloride; nitrogen-containing vinyl compounds such as acrylamide; 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene 1,6-heptadiene, 2-methyl-1,4-pentadiene, non-conjugated dienes such as 2,5-dimethyl-1,5-hexa
  • a molecular weight regulator may be used individually by 1 type, and may be used combining 2 or more types by arbitrary ratios.
  • the amount of the molecular weight modifier in the polymerization reaction system for polymerizing the polymer ( ⁇ ) can be appropriately determined according to the target molecular weight.
  • the specific amount of the molecular weight modifier is preferably in the range of 0.1 mol% to 50 mol% with respect to the cyclic olefin monomer.
  • the polymerization temperature is preferably ⁇ 78 ° C. or higher, more preferably ⁇ 30 ° C. or higher, preferably + 200 ° C. or lower, more preferably + 180 ° C. or lower.
  • the polymerization time can depend on the reaction scale.
  • the specific polymerization time is preferably in the range of 1 minute to 1000 hours.
  • a polymer ((alpha)) is obtained by the manufacturing method mentioned above.
  • the polymer ( ⁇ ) can be produced by hydrogenating the polymer ( ⁇ ).
  • Hydrogenation of a polymer ((alpha)) can be performed by supplying hydrogen in the reaction system containing a polymer ((alpha)) in presence of a hydrogenation catalyst according to a conventional method, for example. In this hydrogenation reaction, if the reaction conditions are appropriately set, the hydrogenation tacticity usually does not change due to the hydrogenation reaction.
  • homogeneous catalysts and heterogeneous catalysts can be used as hydrogenation catalysts for olefin compounds.
  • homogeneous catalysts include transition metals such as cobalt acetate / triethylaluminum, nickel acetylacetonate / triisobutylaluminum, titanocene dichloride / n-butyllithium, zirconocene dichloride / sec-butyllithium, and tetrabutoxytitanate / dimethylmagnesium.
  • Catalyst comprising a combination of a compound and an alkali metal compound; dichlorobis (triphenylphosphine) palladium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, chlorohydridocarbonylbis (tricyclohexylphosphine) ruthenium, bis (tricyclohexylphosphine) benzilidineruthenium (IV) Noble metal complex catalysts such as dichloride and chlorotris (triphenylphosphine) rhodium; It is.
  • heterogeneous catalysts include metal catalysts such as nickel, palladium, platinum, rhodium and ruthenium; nickel / silica, nickel / diatomaceous earth, nickel / alumina, palladium / carbon, palladium / silica, palladium / diatomaceous earth, palladium / Examples thereof include a solid catalyst obtained by supporting the metal such as alumina on a carrier such as carbon, silica, diatomaceous earth, alumina, and titanium oxide.
  • a hydrogenation catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the hydrogenation reaction is usually performed in an inert organic solvent.
  • the inert organic solvent include aromatic hydrocarbon solvents such as benzene and toluene; aliphatic hydrocarbon solvents such as pentane and hexane; alicyclic hydrocarbon solvents such as cyclohexane and decahydronaphthalene; tetrahydrofuran, ethylene glycol dimethyl ether, and the like. Ether solvents; and the like.
  • An inert organic solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Further, the inert organic solvent may be the same as or different from the organic solvent used in the ring-opening polymerization reaction.
  • the hydrogenation catalyst may be mixed with the reaction solution for the ring-opening polymerization reaction to perform the hydrogenation reaction.
  • the reaction conditions for the hydrogenation reaction usually vary depending on the hydrogenation catalyst used.
  • the reaction temperature of the hydrogenation reaction is preferably ⁇ 20 ° C. or higher, more preferably ⁇ 10 ° C. or higher, particularly preferably 0 ° C. or higher, preferably + 250 ° C. or lower, more preferably + 220 ° C. or lower, particularly preferably + 200 ° C. It is as follows. By setting the reaction temperature to be equal to or higher than the lower limit of the above range, the reaction rate can be increased. Moreover, by making it below an upper limit, generation
  • the hydrogen pressure is preferably 0.01 MPa or more, more preferably 0.05 MPa or more, particularly preferably 0.1 MPa or more, preferably 20 MPa or less, more preferably 15 MPa or less, and particularly preferably 10 MPa or less.
  • the reaction rate can be increased.
  • special apparatuses such as a high pressure
  • the reaction time of the hydrogenation reaction may be set to any time at which the desired hydrogenation rate is achieved, and is preferably 0.1 hour to 10 hours.
  • the polymer ( ⁇ ) which is a hydrogenated product of the polymer ( ⁇ ) is usually recovered according to a conventional method.
  • the hydrogenation rate (ratio of hydrogenated main chain double bonds) in the hydrogenation reaction is preferably 98% or more, more preferably 99% or more.
  • the hydrogenation rate of the polymer can be measured by 1 H-NMR measurement at 145 ° C. using orthodichlorobenzene-d 4 as a solvent.
  • the cyclic olefin monomer used for the production of the polymers ( ⁇ ) and ( ⁇ ) is selected from the range shown as the cyclic olefin monomer that can be used for the production of the polymer ( ⁇ ) and the polymer ( ⁇ ). Any can be used.
  • a cyclic olefin monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • any monomer that can be copolymerized with the cyclic olefin monomer in combination with the cyclic olefin monomer can be used as the monomer.
  • the optional monomer include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 1-pentene and 1-hexene; aromatic ring vinyl compounds such as styrene and ⁇ -methylstyrene
  • Non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene; and the like.
  • ⁇ -olefin is preferable, and ethylene is more preferable.
  • arbitrary monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the amount of the cyclic olefin monomer and the optional monomer is preferably 30:70 to 99: 1, more preferably 50: weight ratio (cyclic olefin monomer: optional monomer). 50 to 97: 3, particularly preferably 70:30 to 95: 5.
  • the polymer ( ⁇ ) may be a block copolymer or randomly. A copolymer may also be used.
  • an addition polymerization catalyst is usually used for the synthesis of the polymer ( ⁇ ).
  • an addition polymerization catalyst include a vanadium catalyst formed from a vanadium compound and an organoaluminum compound, a titanium catalyst formed from a titanium compound and an organoaluminum compound, a zirconium complex and a zirconium formed from an aluminoxane.
  • system catalysts include system catalysts.
  • an addition polymer catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the amount of the addition polymerization catalyst is preferably 0.000001 mol or more, more preferably 0.00001 mol or more, preferably 0.1 mol or less, more preferably 0.01 mol with respect to 1 mol of the monomer. It is as follows.
  • the addition polymerization of the cyclic olefin monomer is usually performed in an organic solvent.
  • an organic solvent what is selected from the range shown as the organic solvent which can be used for ring-opening polymerization of a cyclic olefin monomer can be used arbitrarily.
  • an organic solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polymerization temperature in the polymerization for producing the polymer ( ⁇ ) is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 30 ° C. or higher, particularly preferably ⁇ 20 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower.
  • the polymerization time is preferably 30 minutes or longer, more preferably 1 hour or longer, preferably 20 hours or shorter, more preferably 10 hours or shorter.
  • the polymer ( ⁇ ) is obtained by the production method described above.
  • the polymer ( ⁇ ) can be produced by hydrogenating the polymer ( ⁇ ).
  • the hydrogenation of the polymer ( ⁇ ) can be performed by the same method as described above as the method for hydrogenating the polymer ( ⁇ ).
  • the crystalline alicyclic structure-containing polymer preferably has a syndiotactic structure, and more preferably has a high degree of syndiotactic stereoregularity. Thereby, since the crystallinity of the alicyclic structure-containing polymer can be enhanced, the tensile modulus can be particularly increased.
  • the degree of syndiotactic stereoregularity of the alicyclic structure-containing polymer can be expressed by the ratio of racemo dyad of the alicyclic structure-containing polymer.
  • the specific ratio of racemo dyad in the alicyclic structure-containing polymer is preferably 51% or more, more preferably 60% or more, and particularly preferably 70% or more.
  • the proportion of racemo dyad can be determined by 13 C-NMR spectral analysis. Specifically, it can be measured by the following method. A polymer sample is subjected to 13 C-NMR measurement using ortho-dichlorobenzene-d 4 as a solvent at 200 ° C. by applying an inverse-gate decoupling method. From the result of 13 C-NMR measurement, the signal of 43.35 ppm derived from meso-dyad and the signal of 43.43 ppm derived from racemo-dyad were compared with the 127.5 ppm peak of orthodichlorobenzene-d 4 as a reference shift. Based on the intensity ratio, the ratio of the racemo dyad in the polymer sample can be determined.
  • the ratio of the polymer A in the resin A is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. By setting the ratio of the polymer A to the lower limit value or more of the above range, the heat resistance and tensile elastic modulus of the resin A layer can be increased.
  • the polymer A contained in the resin A layer may not be crystallized before the resin A layer is produced, but the polymer A is not crystallized after the resin A layer is produced. It is preferable that it has progressed sufficiently.
  • the specific crystallinity range of the polymer A contained in the resin A layer is preferably 10% or more, more preferably 15% or more, and particularly preferably 20% or more. By setting the crystallinity to the lower limit value or more of the above range, preferable properties such as high heat resistance, chemical resistance and tensile elastic modulus can be imparted to the resin A layer.
  • the layer of the resin A Preferably it is 70% or less, More preferably, it is 60% or less, Most preferably, it is 50% or less.
  • the crystallinity of the polymer can be measured by X-ray diffraction.
  • Resin as a material for the layer of resin A may contain any component in combination with the above-described polymer.
  • Optional components include, for example, antioxidants such as phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants; light stabilizers such as hindered amine light stabilizers; petroleum waxes, Fischer-Tropsch waxes, Waxes such as polyalkylene wax; sorbitol compounds, metal salts of organic phosphoric acid, metal salts of organic carboxylic acid, nucleating agents such as kaolin and talc; diaminostilbene derivatives, coumarin derivatives, azole derivatives (for example, benzoxazole derivatives, Fluorescent brighteners such as benzotriazole derivatives, benzimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone UV absorbers, salicylic acid UV absorbers, benzotriazo
  • Polymer A is preferably an alicyclic structure-containing polymer having a positive intrinsic birefringence value.
  • a resin having a positive intrinsic birefringence value means a resin having a refractive index in the stretching direction that is greater than a refractive index in a direction perpendicular thereto.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • the absolute value of the photoelastic coefficient of the resin A layer is 2.0 ⁇ 10 ⁇ 11 Pa ⁇ 1 or less, more preferably 1.0 ⁇ 10 ⁇ 11 Pa ⁇ 1 or less, and particularly preferably 6.0 ⁇ 10 ⁇ 12. Pa ⁇ 1 or less.
  • the absolute value of the photoelastic coefficient is less than or equal to the above upper limit, even if it is shocked or deformed to fit a display device having a curved display surface, it exhibits good optical performance. can do.
  • the photoelastic coefficient can be measured using a photoelastic constant measuring apparatus (PHEL-20A manufactured by UNIOPT Co., Ltd.) under the conditions of a temperature of 20 ° C. ⁇ 2 ° C. and a humidity of 60 ⁇ 5%.
  • a photoelastic constant measuring apparatus PEL-20A manufactured by UNIOPT Co., Ltd.
  • the in-plane retardation was measured using a retardation measuring device (“KOBRA-21ADH” manufactured by Oji Scientific Instruments), and the thickness of the film was measured.
  • KBRA-21ADH manufactured by Oji Scientific Instruments
  • the lower limit value of the photoelastic coefficient of the resin A layer is not particularly limited, but may be, for example, 0.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or more.
  • the resin A layer has a specific small value in the absolute value of the rate of thermal dimensional change in the film plane when heated.
  • the absolute value of the thermal dimensional change rate in the film surface when heated at 150 ° C. for 1 hour is preferably 1% or less, more preferably 0.5% or less, and even more preferably 0.1%. It is as follows.
  • the lower limit of the absolute value of the thermal dimensional change rate is not particularly limited, but can be ideally 0%. Since the layer of the resin A usually shrinks in a high temperature environment, the thermal dimensional change rate is usually a negative value.
  • the rate of thermal dimensional change of a film such as a layer of resin A can be measured by the following method.
  • the film is cut into a square having a size of 150 mm ⁇ 150 mm under a room temperature of 23 ° C. to obtain a sample film.
  • the sample film is heated in an oven at 150 ° C. for 60 minutes and cooled to 23 ° C. (room temperature), and then the length of four sides and the length of two diagonal lines of the sample film are measured. Based on the measured lengths of the four sides, the thermal dimensional change rate of the sample film is calculated based on the following formula (I).
  • L A denotes a length of the side sample film after heating.
  • Thermal dimensional change (%) [(L A -150) / 150] ⁇ 100 (I) Further, based on the measured lengths of the two diagonal lines, the thermal dimensional change rate of the sample film is calculated based on the following formula (II).
  • L D indicates the length of the diagonal line of the sample film after heating.
  • Thermal dimensional change rate (%) [(L D ⁇ 212.13) /212.13] ⁇ 100 (II)
  • the value from which the absolute value becomes the maximum among the calculated values of the obtained six thermal dimensional change rates is employ
  • the thermal dimensional change rate obtained by such a measurement can be substantially the maximum value of the thermal dimensional change rate measured in all in-plane directions.
  • the birefringence ⁇ n of the resin A layer is preferably 0.0010 or more, more preferably 0.003 or more.
  • the upper limit of birefringence (DELTA) n is not specifically limited, Usually, it is 0.1 or less.
  • the birefringence of the layer of the resin A is not less than the lower limit, a thin multilayer film can be obtained while having desired optical performance.
  • the multilayer film of the present invention is preferably formed as a film having a long shape from the viewpoint of production efficiency.
  • the multilayer film of the present invention is formed as a film having a long shape, and can be used by cutting it into a shape suitable for the shape of the display device as necessary.
  • the retardation film used for the production of the multilayer film is also preferably a film having a long shape.
  • the retardation film may consist of only the resin A layer, and may include an arbitrary layer in addition to the resin A layer.
  • the retardation film includes only a quarter wavelength plate that is a layer of resin A as a layer having a retardation, or includes a quarter wavelength plate as a layer of resin A, and Includes a two-wave plate.
  • the former may be referred to as “one-sheet type” and the latter as “two-sheet type”.
  • the thickness of the retardation film is usually preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, usually usually 500 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the half-wave plate may be a layer of resin A or a layer made of a material other than resin A.
  • a material constituting an arbitrary layer a material known as a material for an optical film can be appropriately selected and used.
  • the thickness of the two-phase retardation film refers to the total thickness of the quarter-wave plate and the half-wave plate. From the viewpoint of the optical properties and the ability of mechanical reinforcement of the single or double retardation film, a resin containing an alicyclic structure-containing polymer is preferred.
  • a resin containing an alicyclic structure-containing polymer commercially available products (for example, ZEON Corporation, trade name “ZEONOR”; JSR, trade name “ARTON”; Mitsui Chemicals, trade name “APEL”; Topas) Advanced Polymers, trade name “TOPAS”) may be used.
  • the preferable ranges of the photoelastic coefficient and birefringence of the half-wave plate in the two-phase retardation film can be the same as the ranges of the photoelastic coefficient and birefringence described above for the resin A layer.
  • the quarter-wave plate constituting the retardation film can be a layer having an in-plane retardation Re measured with light having a wavelength of 590 nm of 108 nm or more, preferably 116 nm or more, and 168 nm or less, preferably 156 nm or less.
  • the retardation film includes a half-wave plate
  • the half-wave plate has an in-plane retardation Re measured with light having a wavelength of 590 nm of 240 nm or more, preferably 250 nm or more, and 300 nm or less, preferably Can be a layer of 280 nm or less, more preferably 270 nm or less.
  • the 1 ⁇ 4 wavelength plate in a wide wavelength band can be formed.
  • a retardation film functioning as a plate can be obtained.
  • the retardation film itself can function as a quarter-wave plate, but in the following description of the retardation film in which a half-wave plate and a quarter-wave plate are combined. If the context clearly shows, the quarter-wave plate constituting the retardation film is simply referred to as “quarter-wave plate”.
  • both the slow axis of the half-wave plate and the slow axis of the quarter-wave plate are preferably oblique to the longitudinal direction of the multilayer film.
  • Many long linear polarizers that are easily available have a transmission axis in the width direction.
  • By using such a linear polarizer in combination with a retardation film having such a half-wave plate and a quarter-wave plate it functions as an ideal quarter-wave plate in a wide wavelength band.
  • the retardation film to be manufactured can be manufactured particularly easily.
  • the crossing angle between the slow axis of the half-wave plate and the slow axis of the quarter-wave plate is preferably 55 ° or more, more preferably 56 ° or more, and even more preferably. Is 57 ° or more, preferably 65 ° or less, more preferably 64 ° or less, and even more preferably 63 ° or less.
  • dh and dq of the retardation film can be easily formed while having desired optical properties.
  • the half-wave plate can also function as a layer that reinforces the quarter-wave plate, thereby improving the quality. This makes it possible to easily form a multilayer film.
  • the total light transmittance of the retardation film as a whole is preferably 85% or more, more preferably 92% or more. The upper limit is ideally 100%.
  • the total light transmittance can be measured according to JIS K7361-1997.
  • the retardation film preferably has a small haze.
  • the haze of the retardation film as a whole is usually 10% or less, preferably 5% or less, more preferably 1% or less.
  • the lower limit value is ideally zero, but is usually 0.1% or more.
  • the haze can be measured in accordance with JIS K7361-1997.
  • the retardation film preferably has a JIS pencil hardness of B or higher.
  • the control of the JIS pencil hardness can be performed, for example, by adjusting the material and thickness of the base material.
  • JIS pencil hardness is JIS K5600-5-4 in accordance with JIS K5600-5-4.
  • the retardation film can be produced by any production method.
  • the retardation film is composed only of the layer of the resin A, it can be manufactured by the manufacturing method of the resin A described below.
  • a retardation film contains the layer of resin A and arbitrary layers, a retardation film can be manufactured by preparing and bonding these layers separately. For example, in the case of a two-phase retardation film, a half-wave plate and a quarter-wave plate are separately prepared, and a retardation film including them can be produced by bonding them.
  • Bonding of the layers constituting the retardation film can be achieved by interposing an adhesive layer between them.
  • the adhesive that is the material of the adhesive layer is not only a narrowly defined adhesive (a so-called hot melt type adhesive having a shear storage elastic modulus of 1 to 500 MPa at 23 ° C. and not showing tackiness at room temperature), A pressure-sensitive adhesive having a shear storage modulus at 23 ° C. of less than 1 MPa is also included.
  • a material having a refractive index close to that of the substrate or the transparent resin layer and transparent can be used as appropriate. More specifically, an acrylic adhesive or a pressure-sensitive adhesive can be used.
  • the thickness of the adhesive layer is preferably 5 to 100 ⁇ m.
  • Both the half-wave plate and the quarter-wave plate are preferably stretched films that have been subjected to one or more oblique stretches. That is, it is preferable that the half-wave plate and the quarter-wave plate are produced by a production method including one or more oblique stretching. By this production method, a multilayer film having desired optical properties can be easily produced. And the retardation film containing a 1/2 wavelength plate and a 1/4 wavelength plate can be manufactured by bonding these.
  • the half-wave plate and the quarter-wave plate used in the method for producing a two-phase retardation film are each produced as a long film. These are manufactured as long films, and these are parallel to each other in the longitudinal direction, and are bonded by a roll-to-roll through an appropriate adhesive layer, so that a long retardation film can be efficiently produced.
  • the multilayer film can be efficiently produced using this.
  • the manufacturing method of the quarter wavelength plate in this example is a manufacturing method including the following steps (i) to (iii).
  • the manufacturing method in this example is Step (iv): After obtaining the stretched film, it is preferable to further include a step of promoting crystallization of the polymer A contained in the stretched film before relaxing the tension of the stretched film.
  • step (i) resin A is formed into a film by resin molding methods such as injection molding, extrusion molding, press molding, inflation molding, blow molding, calendar molding, casting molding, and compression molding. This can be done by molding. Among these, the extrusion molding method is preferable because a long unstretched film can be efficiently produced and the thickness can be easily controlled.
  • the production conditions in the extrusion method are preferably as follows.
  • the cylinder temperature (molten resin temperature) is preferably Tm or higher, more preferably Tm + 20 ° C or higher, preferably Tm + 100 ° C or lower, more preferably Tm + 50 ° C or lower.
  • the cast roll temperature is preferably Tg-50 ° C. or higher, preferably Tg + 70 ° C. or lower, more preferably Tg + 40 ° C. or lower.
  • the cooling roll temperature is preferably Tg ⁇ 70 ° C. or higher, more preferably Tg ⁇ 50 ° C. or higher, preferably Tg + 60 ° C. or lower, more preferably Tg + 30 ° C.
  • Tm represents the melting point of the polymer A
  • Tg represents the glass transition temperature of the polymer A.
  • the film before stretching produced by the step (i) is preferably a long film.
  • efficient production can be performed.
  • step (ii) the stretching direction can be appropriately set according to the desired orientation direction required for the retardation film.
  • stretching method there is no particular limitation on the stretching method, and any stretching method can be used.
  • stretching methods include uniaxial stretching methods such as a method of uniaxially stretching a pre-stretched film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the pre-stretched film in the width direction (lateral uniaxial stretching method); Biaxial stretching, such as a simultaneous biaxial stretching method in which the front film is stretched in the longitudinal direction and simultaneously in the width direction, and a sequential biaxial stretching method in which the pre-stretched film is stretched in one direction in the longitudinal direction and the width direction and then stretched in the other direction.
  • a method of stretching the film before stretching in an oblique direction which is neither parallel nor perpendicular to the width direction (an oblique stretching method); and combinations thereof.
  • stretching including one or more oblique stretching is preferable.
  • Examples of the longitudinal uniaxial stretching method include a stretching method using a difference in peripheral speed between rolls.
  • Examples of the horizontal uniaxial stretching method include a stretching method using a tenter stretching machine.
  • a tenter stretching machine provided with a plurality of clips provided so as to be movable along the guide rail and capable of fixing the film before stretching is used to widen the interval between the clips.
  • Examples of the stretching method include stretching the film before stretching in the longitudinal direction and simultaneously stretching the film before stretching in the width direction according to the spread angle of the guide rail.
  • the film before stretching is stretched in the longitudinal direction using the difference in peripheral speed between rolls, and then both ends of the film before stretching are gripped with clips.
  • the stretching method include stretching in the width direction by a tenter stretching machine.
  • the oblique stretching method for example, a film before stretching using a tenter stretching machine capable of adding a feeding force, a tensile force, or a pulling force at different speeds in the longitudinal direction or the width direction with respect to the film before stretching. Examples include a stretching method in which the film is continuously stretched in an oblique direction.
  • the stretching temperature is preferably (Tg ⁇ 30 ° C.) or higher, more preferably (Tg ⁇ 20 ° C.) or higher, particularly preferably (Tg ⁇ 10 ° C.) or higher, preferably (Tg + 60). ° C) or less, more preferably (Tg + 50 ° C) or less, and particularly preferably (Tg + 40 ° C) or less.
  • Tg represents the glass transition temperature of the polymer A.
  • the draw ratio is preferably 1.1 times or more, more preferably 1.2 times or more, particularly preferably 1.5 times or more, preferably 20 times or less, more preferably 10 times or less, particularly preferably 5 times. It is as follows.
  • stretching to several different directions like a biaxial stretching method for example, the said draw ratio shows the total draw ratio represented by the product of the draw ratio in each extending direction.
  • Step (iv) It is preferable to perform the crystallization promotion process of a process (iv) after a process (iii). By promoting crystallization, a retardation film having desired properties for constituting the multilayer film of the present invention can be obtained.
  • Acceleration of crystallization can be performed by adjusting the stretched film to a predetermined temperature.
  • the temperature range at the time of promoting crystallization can be arbitrarily set in the temperature range of the glass transition temperature Tg of the polymer A to the melting point Tm of the polymer A.
  • the temperature range is preferably set so that the rate of crystallization is increased.
  • the temperature range is preferably Tg + 20 ° C. or higher, more preferably Tg + 30 ° C. or higher, preferably Tm ⁇ 20 ° C. or lower. More preferably, it is Tm ⁇ 40 ° C. or lower. Crystallization can be effectively promoted by setting the temperature at the time of promoting crystallization to the lower limit value or more of the above range, and white turbidity of the quarter wavelength plate can be suppressed by setting the temperature to the upper limit value or less.
  • the stretched film When the stretched film is brought to the above temperature, the stretched film is usually heated.
  • a heating apparatus used in this case a heating apparatus that raises the ambient temperature of the stretched film is preferable.
  • suitable heating devices include ovens and furnaces. Since heating with such a heating device does not require contact with the stretched film, uniform heating can be performed.
  • Acceleration of crystallization is preferably performed in a stretched state while maintaining the shape of the stretched film.
  • the state in which the stretched film is tensioned refers to a state in which the stretched film is under tension.
  • the stretched film does not include a state in which the stretched film is substantially stretched. Further, being substantially stretched means that the stretch ratio in any direction of the stretched film is usually 1.1 times or more.
  • the holder When holding a stretched film, hold the stretched film with an appropriate holder.
  • the holder may be capable of continuously holding the stretched film or may be intermittently held at intervals.
  • the stretched film may be held intermittently by holders arranged at a predetermined interval.
  • the stretched film can be in a tensioned state, for example, by being held on two or more sides of the stretched film.
  • transformation by the heat shrink of a stretched film is prevented in the area
  • the stretched film is held by a side including two opposite sides and a region between the held sides is in a tensioned state.
  • the stretched film is held on two opposite sides (for example, long sides or short sides), and the region between the two sides is in a tensioned state. As a result, deformation is prevented on the entire surface of the single stretched film.
  • the stretched film is held by two sides (that is, the long side) at the end in the width direction, and the region between the two sides is in a tensioned state.
  • the deformation is hindered on the entire surface of the elongated stretched film.
  • the stretched film is held at sides including two sides orthogonal to the stretching direction (in the case of biaxial stretching, the direction in which the stretching ratio is large), whereby tension is applied in the stretching direction to tension the stretched film. And deformation is particularly effectively suppressed.
  • the stretched film is held at more sides. Therefore, for example, it is preferable that the single-wafer stretched film is held on all sides. When a specific example is given, it is preferable that the stretched film of a rectangular sheet is hold
  • a holder that can hold the stretched film by the side a holder that does not come into contact with the stretched film at a portion other than the side of the stretched film is preferable. By using such a holder, it is possible to obtain a quarter wavelength plate that is more excellent in smoothness.
  • a holder that can fix the relative position of the holders in the crystallization promoting step is preferable.
  • a holder since the positions of the holders do not move relatively in the crystallization promoting step, it is easy to suppress substantial stretching and shrinkage of the stretched film.
  • a suitable holder for example, as a holder for a rectangular stretched film, there is a gripper such as a clip which is provided at a predetermined interval on a mold and can grip a side of the stretched film.
  • a gripper provided in a tenter stretching machine and capable of gripping the sides of the stretched film can be mentioned.
  • a long stretched film may be held by the side (that is, the short side) at the longitudinal end of the stretched film, but instead of being held by the side, the stretched film promotes crystallization. For this reason, it may be held on both sides in the longitudinal direction of the processing region adjusted to a predetermined temperature.
  • maintenance apparatus which can be in the state which hold
  • Examples of such a holding device include a combination of two rolls and a combination of an extruder and a take-up roll.
  • the stretched film By applying a tension such as a transport tension to the stretched film by these combinations, thermal contraction of the stretched film can be suppressed in a processing region where crystallization is promoted. Therefore, if the above combination is used as a holding device, the stretched film can be held while transporting the stretched film in the longitudinal direction, so that a quarter-wave plate can be efficiently manufactured.
  • a tension such as a transport tension
  • the stress in the film which can cause dimensional changes in a high temperature environment, is eliminated by the crystallization promoting process. For this reason, a quarter-wave plate with a small thermal expansion and a small thermal dimensional change rate can be manufactured.
  • the treatment time for maintaining the stretched film at a predetermined temperature for promoting crystallization is preferably 1 second or more, more preferably 5 seconds or more, preferably 30 minutes or less, more preferably 10 minutes or less.
  • step (iii) After step (ii), step (iv) is performed as necessary, and then step (iii) is performed to remove residual stress from the stretched film.
  • the relaxation of the tension of the stretched film refers to releasing the stretched film from a tensioned state held by a stretching machine or a holding device for promoting stretching or crystallization, and if the stretched film is not tensioned, the stretched film May be held by a holding device.
  • tension tensile_strength
  • a stretched film will be in the state which can produce heat shrink.
  • heat shrinkage is caused in the stretched film, thereby eliminating the stress that may occur when the quarter-wave plate is heated. Therefore, since the heat shrinkage of the quarter-wave plate under a high temperature environment can be reduced, a quarter-wave plate excellent in dimensional stability under a high temperature environment can be obtained.
  • the relaxation of the tension of the stretched film may be performed at a time, or may be performed continuously or stepwise over time. However, in order to suppress the occurrence of deformation such as undulation and wrinkles of the quarter-wave plate obtained, it is preferable to relax the tension continuously or stepwise.
  • the relaxation of the stretched film is performed while keeping the stretched film flat.
  • keeping the stretched film flat means maintaining the stretched film in a planar shape so as not to cause deformation such as waving and wrinkles in the stretched film.
  • transformation such as a wave and wrinkles of the quarter wavelength plate obtained, can be suppressed.
  • the treatment temperature of the stretched film during relaxation of the tension can be set in a temperature range not lower than the glass transition temperature Tg of the polymer A and not higher than the melting point Tm of the polymer A.
  • the specific treatment temperature is preferably Tg + 20 ° C. or more, more preferably Tg + 30 ° C. or more, preferably Tm ⁇ 20 ° C. or less, more preferably Tm ⁇ 40 ° C. or less.
  • the treatment temperature of the stretched film in the relaxation step is preferably the same as the temperature in the crystallization promotion step. Thereby, the temperature nonuniformity of the stretched film in a relaxation process can be suppressed, or the productivity of a quarter wavelength plate can be improved.
  • the treatment time for maintaining the stretched film in the above temperature range is preferably 1 second or more, more preferably 5 seconds or more, and preferably 10 minutes or less.
  • the dimensional stability in the high temperature environment of a quarter wavelength plate can be improved effectively.
  • the dimensional stability of the quarter-wave plate in a high-temperature environment can be effectively improved, and the turbidity of the quarter-wave plate due to the progress of crystallization in the relaxation process. Can be suppressed.
  • the relaxation step when the tension of the stretched film of the single wafer is relaxed, for example, a method of narrowing the interval between the holding portions continuously or stepwise while holding the four sides of the stretched film can be adopted.
  • the intervals between the holding portions on the four sides of the stretched film may be simultaneously reduced.
  • the interval between the holding portions on another side may be reduced.
  • the interval between the holding portions of some of the sides may be narrowed continuously or stepwise, and the interval between the holding portions of some other sides may be narrowed at a time.
  • the distance between the guide rails that can guide the clip is narrowed in the transport direction of the stretched film, or adjacent.
  • a method of narrowing the interval between the matching clips can be adopted.
  • the degree of narrowing the interval depends on the magnitude of the stress remaining in the stretched film.
  • the specific degree of narrowing the holding interval in the relaxation step is preferably 0.1 S or more when the thermal shrinkage rate in a state where no tension is applied to the stretched film at the treatment temperature in the relaxation step is S (%), More preferably 0.5S or more, particularly preferably 0.7S or more, preferably 1.2S or less, more preferably 1.0S or less, and particularly preferably 0.95S or less.
  • the heat shrinkage rate S has anisotropy
  • the extent to which the holding interval is narrowed within the range can be determined for each direction. By setting it as such a range, the residual stress of a quarter wavelength plate can fully be removed, and flatness can be maintained.
  • the thermal contraction rate S can be measured by the following method.
  • the stretched film is cut into a square having a size of 150 mm ⁇ 150 mm under a room temperature of 23 ° C. to obtain a sample film.
  • the sample film is heated in an oven set at the same temperature as the treatment temperature of the relaxation step for 60 minutes and cooled to 23 ° C. (room temperature), and then the two sides parallel to the direction in which the thermal contraction rate S of the sample film is desired to be obtained. Measure the length.
  • the thermal contraction rate S of the sample film is calculated based on the following formula (A).
  • L 1 indicates the length of one side of the measured two sides of the sample film after heating, and L 2 indicates the length of the other side.
  • Thermal shrinkage S (%) [(300 ⁇ L 1 ⁇ L 2 ) / 300] ⁇ 100 (A)
  • layers other than the resin A layer can be produced by any method such as a known method.
  • the half-wave plate can be produced by stretching a resin film containing an alicyclic structure-containing polymer so that a desired retardation is developed.
  • the barrier layer is a layer directly provided on the resin A layer on the surface of the retardation film.
  • the barrier layer may be an organic barrier layer containing an organic material, an inorganic barrier layer containing an inorganic material, or a barrier layer combining these.
  • the barrier layer may be a single layer structure including only one layer, or may be a multilayer structure including two or more layers.
  • a layer having a multilayer structure in which organic barrier layers and inorganic barrier layers are alternately provided in the thickness direction can be used.
  • the barrier layer is preferably a layer including one or more inorganic barrier layers. Specifically, it is preferably composed of only one inorganic barrier layer, two or more inorganic barrier layers, or a combination of an inorganic barrier layer and an organic barrier layer.
  • inorganic barrier layers good barrier performance can be expressed, but there is a possibility that a resin film may be deformed depending on the conditions during the formation of the barrier layer. In this case, such a deformation can be reduced by adopting the above-mentioned specific retardation film.
  • organic material examples include resins containing a gas barrier polymer such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and vinylidene chloride. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • a gas barrier polymer such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and vinylidene chloride.
  • Such an organic barrier layer can be formed by, for example, applying a resin solution containing a gas barrier polymer and a solvent on a retardation film and drying it.
  • the organic barrier layer can be formed, for example, by forming a film containing a gas barrier polymer monomer on a retardation film and polymerizing the monomer in the film.
  • inorganic materials that can be included in the inorganic barrier layer include inorganic oxides.
  • the inorganic oxide include metal oxides, non-metal oxides, and sub-metal oxides. Specific examples include aluminum oxide, zinc oxide, antimony oxide, indium oxide, calcium oxide, cadmium oxide, silver oxide, gold oxide, chromium oxide, silicon oxide, cobalt oxide, zirconium oxide, tin oxide, titanium oxide, and oxidation. Examples thereof include iron, copper oxide, nickel oxide, platinum oxide, palladium oxide, bismuth oxide, magnesium oxide, manganese oxide, molybdenum oxide, vanadium oxide, and barium oxide. Among these, silicon oxide is particularly preferable.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • an inorganic material in combination with the above-mentioned inorganic oxide, for example, a metal, a nonmetal, a single metal, and their hydroxides; and carbon or fluorine for improving flexibility; An agent may be used.
  • the inorganic barrier layer can be formed, for example, by a method of depositing an inorganic oxide on the base film.
  • a vapor deposition method for example, a vacuum vapor deposition method, a vacuum sputtering method, an ion plating method, a CVD method, or the like can be used.
  • FIG. 2 is a cross-sectional view showing an example of an apparatus for forming an inorganic barrier layer by CVD in order to produce the multilayer film of the present invention shown in FIG.
  • a film forming apparatus 200 is a film-winding type plasma CVD apparatus, and an inorganic barrier layer is continuously applied to the retardation film 109 fed out from a roll body 201 of a long retardation film 109 by CVD.
  • the film is formed into a multilayer film 110, and a series of operations for winding it as a roll body 202 is performed.
  • the film forming apparatus 200 includes a guide roll 211, a can roll 212, and a guide roll 213, whereby the fed retardation film 109 can be guided in the direction indicated by the arrow A21 and used for the manufacturing process.
  • the retardation film 109 is placed on the can roll 212 while being guided by the can roll 212. It is in a close contact state.
  • the can roll 212 rotates in the direction indicated by the arrow A22, and the retardation film 109 on the can roll 212 is conveyed in a state of approaching the reaction tube 221.
  • power is applied from the power source 223 to the electrode 222, while the can roll 212 is grounded by an appropriate grounding device (not shown), and the gas of the inorganic barrier layer material from the gas inlet 224 in the direction of arrow A23. Is introduced.
  • an inorganic barrier layer can be continuously formed on the surface of the retardation film 109.
  • Such a series of operations is performed in a space surrounded by the vacuum chamber 290.
  • the pressure in the vacuum chamber 290 can be reduced by operating the vacuum exhaust device 230 and adjusted to a pressure suitable for CVD.
  • an inorganic barrier layer is formed on a base film by such a process, if such formation is performed at a high output, the base film tends to float from the can roll, and a continuous continuous inorganic barrier layer is formed. Formation is difficult. In particular, when a thin film is used as the base film, it is particularly difficult to form a high-output inorganic barrier layer at a high speed without deformation of the base film.
  • the retardation film by adopting a combination of a quarter-wave plate that is a layer of resin A and a half-wave plate as an additional layer, the heat resistance of resin A and that Due to the mechanical strength of the additional layer that reinforces, the retardation film can be used as a substrate for the continuous formation of the inorganic barrier layer.
  • a multilayer film having the same function and quality can be easily manufactured with fewer components than the combination of the conventional retardation film and the barrier laminate.
  • the total thickness of the barrier layer is preferably 1 nm or more, more preferably 5 nm or more, particularly preferably 10 nm or more, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the thickness of the organic barrier layer and the inorganic barrier layer is not particularly limited, but the thickness of each barrier layer is preferably 5 nm to 1000 nm, more preferably 10 nm to It is 1000 nm, particularly preferably 10 nm to 200 nm.
  • the thickness of each barrier layer is preferably 5 nm to 1000 nm, more preferably 10 nm to It is 1000 nm, particularly preferably 10 nm to 200 nm.
  • the thickness of the organic barrier layer equal to or more than the lower limit of the above range, the uniformity of the thickness can be easily increased, so that structural defects of the inorganic barrier layer can be efficiently filled with the organic barrier layer, Easy to obtain improved barrier properties. Moreover, since it can suppress that a crack arises in an organic barrier layer by external forces, such as a bending, by making thickness of an organic barrier layer below the upper limit of the said range, the fall of barrier property can be suppressed.
  • the manufacturing method of the multilayer film of this invention is not specifically limited, It can manufacture suitably with the manufacturing method which combined the known technique.
  • the multilayer film of the present invention when the retardation film includes a quarter-wave plate as a layer of the resin A, and further includes a half-wave plate, the multilayer film preferably has the following steps (a) and It can be manufactured by a manufacturing method including (b).
  • step (a) and the adhesive used in step (a) for example, those described above can be used.
  • step (b) can be performed, for example, by the barrier layer forming method described above.
  • the multilayer film of the present invention preferably has a low water vapor transmission rate.
  • the water vapor permeability is preferably 0.01g / (m 2 ⁇ day) or less, more preferably 0.005g / (m 2 ⁇ day) or less, still more preferably 0.003 g / (m 2 ⁇ Day)
  • the lower limit of the water vapor transmission rate is not particularly limited, but is ideally zero g / (m 2 ⁇ day).
  • Such a low water vapor transmission rate can be achieved by appropriately selecting a material of a layer constituting the multilayer film such as a barrier layer.
  • the water vapor transmission rate can be measured using a water vapor transmission rate measuring device (product name: “PERMATRAN-W”, manufactured by MOCON) under the conditions of a temperature of 40 ° C. and 90% RH according to JIS K 7129 B-1992. .
  • the in-plane retardation Re of the multilayer film of the present invention is preferably 140 nm or more, more preferably 145 nm or more, as measured with light having a wavelength of 590 nm at 23 ° C., while preferably 155 nm or less, more preferably 150 nm. It is as follows.
  • the value measured with light having a wavelength of 450 nm at 23 ° C. is preferably 108 nm or more, more preferably 110 nm or more, and preferably 115 nm or less, more preferably 113 nm or less. Further, the value measured with light having a wavelength of 650 nm at 23 ° C.
  • the multilayer film of the present invention is preferably 158 nm or more, more preferably 160 nm or more, and preferably 168 nm or less, more preferably 165 nm or less.
  • the multilayer film of the present invention is a multilayer film for an organic electroluminescence display device. Specifically, it can be used for various applications utilizing the barrier ability and optical properties of the multilayer film. Examples of preferable applications include applications as a circularly polarizing plate and an antireflection film described below.
  • the circularly-polarizing plate of this invention is equipped with the multilayer film of the said invention, and the linear polarizer provided in the surface on the opposite side to the barrier layer of a multilayer film.
  • linear polarizer known polarizers used in devices such as organic electroluminescence display devices, liquid crystal display devices, and other optical devices can be used.
  • linear polarizers are those obtained by adsorbing iodine or dichroic dye on a polyvinyl alcohol film and then uniaxially stretching in a boric acid bath, and iodine or dichroic dye on a polyvinyl alcohol film.
  • examples thereof include those obtained by adsorbing and stretching and further modifying a part of the polyvinyl alcohol unit in the molecular chain into a polyvinylene unit.
  • linear polarizer examples include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer, a multilayer polarizer, and a cholesteric liquid crystal polarizer.
  • a polarizer containing polyvinyl alcohol is preferred.
  • commercially available products for example, trade names “HLC2-5618S”, “LLC2-9218S”, “HLC2-2518” manufactured by Sanritz Corporation
  • product names “TEG1465DU”, “SEG1423DU” manufactured by Nitto Denko Corporation are used. ”,“ SEG 5425DU ”, etc.).
  • the polarization degree of the polarizer used for this invention is not specifically limited, Preferably it is 98% or more, More preferably, it is 99% or more.
  • the average thickness of the polarizer is preferably 5 to 80 ⁇ m.
  • the circularly polarizing plate of the present invention is preferably produced by laminating a long multilayer film and a long linear polarizer in a roll-to-roll manner with their longitudinal directions parallel to each other.
  • the roll-to-roll bonding means that the film is unwound from a long film roll, conveyed, and subjected to a bonding process with another film on the conveyance line. Refers to the bonding in the form of a take-up roll.
  • the multi-layer film is unwound from a roll of a long multi-layer film, transported, and the process of laminating with the linear polarizer on the transport line Performing and roll-to-roll bonding can be performed by using the obtained bonded product as a take-up roll.
  • the linear polarizer can also be fed from the roll and supplied to the bonding step.
  • the thing of the state of the multilayer structure previously bonded with the polarizer protective film may be used, and this may be bonded.
  • the multilayer film and the polarizer protective film of the present invention preferably have a rigidity of 300 kPa ⁇ m or less and a curvature of 10 mm or more and 50 mm or less.
  • the rigidity is a value calculated as the product of the tensile elastic modulus (Pa) of the film and the film thickness (m).
  • the difference in rigidity between the protective films on both sides of the linear polarizer is 20 to 200 kPa ⁇ m. More preferably.
  • the polarizer protective film that can be used in combination with the multilayer film of the present invention include ZEON Corporation; ZEONOR film, manufactured by Konica Minolta; TAC film for liquid crystal polarizing plate, manufactured by FUJIFILM; . It may be a single layer film or a multilayer film.
  • the multilayer film of the present invention When the multilayer film of the present invention has flexibility, it becomes a flexible polarizing plate having protective films on both sides of the polarizer, and a display device having a curved surface can be obtained.
  • a display device having a curved surface is, for example, excellent in decoration and design, and can be firmly held in the palm when the liquid crystal display device is a portable device such as a smartphone.
  • the antireflection film of the present invention includes the circularly polarizing plate of the present invention.
  • the antireflection film of the present invention may contain an arbitrary component such as a polarizer protective film in addition to the circularly polarizing plate, but may consist of only the circularly polarizing plate.
  • the antireflection film of the present invention comprises a linear polarizer, a half-wave plate, a quarter-wave plate as a layer of resin A, and a barrier layer in this order. Furthermore, in the antireflection film of the present invention, the angle formed by the polarization transmission axis of the linear polarizer and the slow axis of the half-wave plate is 10 ° or more and 20 ° or less, or 70 ° or more and 80 °. It is as follows. By providing the antireflection film having such an angular relationship on the display surface of the organic electroluminescence display device, glare on the display surface and reflection of external light can be effectively suppressed.
  • In-plane optical axes in certain products or components thereof according to the present invention (retardation film, multilayer film, circularly polarizing plate, antireflection film, display device, etc.)
  • the angular relationship between the direction and the geometric direction is defined as a positive shift in one direction and a negative shift in the other direction. Commonly defined for components within a product.
  • the direction of the slow axis of the half-wave plate with respect to the direction of the transmission axis of the linear polarizer is 15 °
  • the delay of the quarter-wave plate with respect to the direction of the transmission axis of the linear polarizer is “The direction of the phase axis is 75 °” means the following two cases: When the circularly polarizing plate is observed from one surface thereof, the slow axis direction of the half-wave plate is shifted 15 ° clockwise from the direction of the transmission axis of the linear polarizer, and 1/4. The direction of the slow axis of the wave plate is shifted by 75 ° clockwise from the direction of the transmission axis of the linear polarizer.
  • the direction of the slow axis of the half-wave plate is shifted 15 ° counterclockwise from the direction of the transmission axis of the linear polarizer, and 1 /
  • the direction of the slow axis of the four-wave plate is shifted by 75 ° counterclockwise from the direction of the transmission axis of the linear polarizer.
  • Preferred examples of the antireflection film of the present invention include the following examples (A) and (B).
  • Example (A) The direction of the slow axis of the half-wave plate with respect to the direction of the transmission axis of the linear polarizer is approximately 15 °, and the slow axis of the quarter-wave plate with respect to the direction of the transmission axis of the linear polarizer The direction is approximately 75 °.
  • substantially 15 ° means an angle of 15 ° or an angle close thereto, preferably 10 to 20 °, more preferably 11 to 19 °, and still more preferably 12 to 18 °.
  • substantially 75 ° is an angle of 75 ° or close thereto, preferably 70 to 80 °, more preferably 71 to 79 °, and still more preferably 72 to 78 °.
  • the antireflection film of the present invention the ratio R 0 / R 10 of the reflectance R 10 at an incident angle of 10 ° in the reflectance R 0 and azimuth 0 ° of the incident angle of 0 ° (0deg) (0deg) , and
  • the ratio R 0 / R 10 (180 deg) to the reflectance R 10 (180 deg) at an incident angle of 10 ° at an azimuth angle of 180 ° is 0.95 or more.
  • the reflectance R 0 , reflectance R 10 (0 deg) , and reflectance R 10 (180 deg) can be measured using a spectrophotometer V7200 and an absolute reflectance unit VAP7020 (manufactured by JASCO Corporation).
  • the antireflection film having such a reflectance ratio can be obtained by reducing the thickness of each member constituting the antireflection film and selecting a member having flexibility.
  • the direction serving as the reference for the azimuth angle (azimuth angle 0 °) for the measurement of the reflectance R 10 (0 deg) and the reflectance R 10 (180 deg) can be any direction in the film plane.
  • the antireflection film is It can be assumed that this reflectance requirement is met. In particular, it is preferable to satisfy the requirement when the direction of the absorption axis of the linear polarizer is used as a reference.
  • the organic electroluminescence display device of the present invention includes the antireflection film of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of the organic electroluminescence display device of the present invention.
  • the organic electroluminescence display device 10 includes a substrate 131, a light emitting element 132 formed on the substrate 131, and a sealing material layer 133 that seals the light emitting element 132.
  • the light-emitting element 132 includes an electrode for energization, a light-emitting layer containing a light-emitting material that can emit light when energized, and other components (all not shown).
  • the antireflection film 100 of the present invention is provided on the upper surface 133U of the sealing material layer 133.
  • the antireflection film 100 includes the multilayer film 110 of the present invention shown in FIG. 1 and a linear polarizer 121 provided on the upper surface (half wavelength plate 112 side) thereof.
  • the antireflection film 100 is in contact with the sealing material layer 133 on the lower surface (the barrier layer 113 side) 113D.
  • the organic electroluminescence display device 10 further includes a protective film 134 that protects the linear polarizer 121 on the upper surface of the antireflection film 100.
  • the upper surface 134U of the protective film 134 serves as a light exit surface from which light exits from the inside of the device.
  • the sealing material layer 133 when the sealing material layer 133 is sticky, the barrier layer 113 and the sealing material layer 133 can be directly bonded without using an adhesive layer or the like. An adhesive layer that intervenes and bonds them may be further provided. In addition, an adhesive layer for bonding these may be further provided between the linear polarizer 121 and the protective film 134 as necessary.
  • the adhesive layer is not particularly limited, and may be the same as the adhesive layer 111 interposed between the quarter-wave plate 114 and the half-wave plate 112, for example.
  • the organic electroluminescence display device 10 a part of the external light incident on the display surface 134U from the outside of the device can be reflected by components in the device such as the light emitting element 132 and can be emitted from the display surface 134U. Such reflected light is recognized by the observer as glare or reflection of external light.
  • the organic electroluminescence display device 10 of the present invention can suppress such glare or reflection of external light. Specifically, only a part of the linearly polarized light passes through the polarizing plate and then passes through the retardation film, and becomes circularly polarized light.
  • the circularly polarized light is reflected by the component that reflects the light in the display device, and passes through the retardation film again to become linearly polarized light having a polarization axis in a direction not parallel to the polarization axis of the incident linearly polarized light.
  • the amount of reflected light that is emitted to the outside of the apparatus is reduced, and an antireflection function is achieved.
  • % and “part” representing amounts are based on weight unless otherwise specified.
  • the operations described below were performed in a normal temperature and pressure atmosphere unless otherwise specified.
  • the film to be wound is bonded to a masking film (for example, FF1025, manufactured by Tredegar) as necessary, and the film is wound with the surface protected. I took it.
  • the masking film was peeled off at an appropriate stage of operation.
  • sccm is a unit of gas flow rate, and indicates the amount of gas flowing per minute as a volume (cm 3 ) when the gas is 25 ° C. and 1 atm.
  • ⁇ Evaluation methods (Photoelastic coefficient) The photoelastic coefficient was measured using a retardation measuring device (“KOBRA-21ADH” manufactured by Oji Scientific Instruments) while applying a load in the range of 50 to 150 g to the film. This was divided by the thickness of the film to obtain the birefringence value ⁇ n, ⁇ n was obtained while changing the load, a load- ⁇ n curve was created, and the photoelastic coefficient was obtained from the slope.
  • KOBRA-21ADH manufactured by Oji Scientific Instruments
  • Thermal dimensional change rate The film was cut into a square having a size of 150 mm ⁇ 150 mm under a room temperature of 23 ° C. to obtain a sample film.
  • the sample film was heated in an oven at 150 ° C. for 60 minutes and cooled to 23 ° C. (room temperature), and then the length of the four sides of the sample film and the length of two diagonal lines were measured. Based on the measured lengths of the four sides, the thermal dimensional change rate of the sample film was calculated based on the following formula (I).
  • LA represents the length of the side of the sample film after heating.
  • the multilayer film obtained by the Example and the comparative example was cut
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the resulting ring-opened polymer of dicyclopentadiene are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) determined from these. was 3.21.
  • a filter aid (“Radiolite (registered trademark) # 1500” manufactured by Showa Chemical Industry Co., Ltd.) was added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Co., Ltd.) was used. The solution was filtered off.
  • a filter aid (“Radiolite (registered trademark) # 1500” manufactured by Showa Chemical Industry Co., Ltd.) was added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Co., Ltd.) was used. The solution was filtered off.
  • the hydrogenated product and the solution contained in the reaction solution are separated using a centrifuge, dried under reduced pressure at 60 ° C. for 24 hours, and the hydrogenated product of a ring-opening polymer of dicyclopentadiene having crystallinity. 28.5 parts were obtained.
  • the hydrogenation rate of this hydrogenated product was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point (Tm) was 262 ° C., and the ratio of racemo dyad was 89%.
  • the crystalline resin was put into a twin screw extruder (“TEM-37B” manufactured by Toshiba Machine Co., Ltd.) equipped with four die holes with an inner diameter of 3 mm ⁇ .
  • the crystalline resin was formed into a strand-like formed body by hot melt extrusion.
  • the molded body was chopped with a strand cutter to obtain a crystalline resin pellet.
  • the operating conditions of the above twin screw extruder are shown below. ⁇ Barrel set temperature: 270 °C ⁇ 280 °C ⁇ Die setting temperature: 250 °C ⁇ Screw speed: 145rpm ⁇ Feeder rotation speed: 50 rpm
  • the obtained pellets were supplied to a hot melt extrusion film forming machine equipped with a T die.
  • the crystalline resin was molded by a method of winding it around a roll at a speed of 26.45 m / min.
  • a long original film A thickness 70 ⁇ m, width 750 mm
  • the operating conditions of the film forming machine are shown below. ⁇ Barrel temperature setting: 280 °C ⁇ 290 °C -Die temperature: 270 ° C -Screw rotation speed: 30rpm
  • the quarter-wave plate A1 has a thickness of 35 ⁇ m, an orientation angle with respect to the width direction of 45 °, an in-plane retardation Re of 136 nm, a photoelastic coefficient at 23 ° C. of 4 ⁇ 10 ⁇ 12 Pa ⁇ 1 , and a birefringence ⁇ n of At 0.0039, the crystallinity was 21%.
  • the quarter-wave plate A1 had a thermal dimensional change rate of 0.4% at a temperature of 150 ° C, a melting point of 262 ° C, and a water absorption rate of 0.009%.
  • the quarter-wave plate A2 had a thermal dimensional change rate of 0.3% at a temperature of 150 ° C, a melting point of 262 ° C, and a water absorption rate of 0.009%.
  • the stretching direction was the film longitudinal direction
  • the stretching ratio was 1.45 times
  • the stretching temperature was 122 ° C.
  • the stretched film was wound up to obtain a roll-shaped half-wave plate B1.
  • the half-wave plate B1 has a thickness of 50 ⁇ m, an orientation angle with respect to the width direction of 75 °, an in-plane retardation Re of 260 nm, a photoelastic coefficient of 6 ⁇ 10 ⁇ 12 Pa ⁇ 1 at 23 ° C., and a birefringence ⁇ n of It was 0.0054.
  • the thermal dimensional change rate at a temperature of 150 ° C. of the half-wave plate B1 was not able to be measured because it was wrinkled all over, the melting point could not be observed, the Tg was 126 ° C., and the water absorption was 0.009%. .
  • the stretching direction was the film longitudinal direction
  • the stretching ratio was 1.40 times
  • the stretching temperature was 133 ° C.
  • the stretched film was wound up to obtain a roll-shaped quarter wave plate B2.
  • the quarter-wave plate B2 has a thickness of 40 ⁇ m, an orientation angle with respect to the width direction of 75 °, an in-plane retardation Re of 130 nm, a photoelastic coefficient at 23 ° C. of 6 ⁇ 10 ⁇ 12 Pa ⁇ 1 and a birefringence ⁇ n of 0.0033.
  • the rate of thermal dimensional change at a temperature of 150 ° C. of the quarter-wave plate B2 was wrinkled on the entire surface, so that it could not be measured, the melting point could not be observed (that is, amorphous), the Tg was 126 ° C., and the water absorption The rate was 0.009%.
  • the rate of thermal dimensional change at a temperature of 150 ° C. of the half-wave plate B3 was not able to be measured because it was entirely wrinkled, the melting point could not be observed, the Tg was 126 ° C., and the water absorption was 0.009%. .
  • Production of quarter-wave plate B4 The raw film B produced in Production Example 2 was drawn from the roll and supplied to a tenter stretching machine. Then, at a stretching ratio of 1.50 times, a stretching temperature of 144 ° C., a stretching speed of 10 m / min, a uniaxial stretching process is performed in an oblique direction so that the orientation angle with respect to the width direction is 45 °, and the film is wound into a roll shape. A four-wave plate B4 was obtained.
  • the quarter-wave plate B4 has a thickness of 47 ⁇ m, an orientation angle with respect to the width direction of 45 °, an in-plane retardation Re of 140 nm, a photoelastic coefficient at 23 ° C.
  • the thermal dimensional change rate at a temperature of 150 ° C. of the quarter-wave plate B4 was wrinkled over the entire surface, so that the melting point could not be observed, the Tg was 126 ° C., and the water absorption rate was 0.009%. .
  • the quarter-wave plate A3 has a thickness of 13 ⁇ m, an orientation angle with respect to the width direction of 15 °, an in-plane retardation Re of 145 nm, a photoelastic coefficient at 23 ° C. of 4 ⁇ 10 ⁇ 12 Pa ⁇ 1 , and a birefringence ⁇ n of At 0.011, the crystallinity was 25%.
  • the quarter-wave plate A3 had a thermal dimensional change rate of 0.6% at a temperature of 150 ° C., a melting point of 262 ° C., and a water absorption rate of 0.009%.
  • Example 1 (1-1. Retardation film)
  • the quarter-wave plate A1 produced in Production Example 3 was pulled out from the roll and used as a quarter-wave plate.
  • the half-wave plate B1 obtained in Production Example 5 was pulled out from the roll and used as a half-wave plate.
  • These were pasted through an adhesive layer (“CS9621” manufactured by Nitto Denko) with their longitudinal directions parallel to each other.
  • the quarter-wave plate A1 was used in an inverted state (that is, the orientation angle with respect to the width direction was changed from 45 ° to 135 °).
  • the angle formed by the slow axis of the quarter-wave plate and the slow axis of the half-wave plate is set to be 60 ° when viewed from the thickness direction. Thereby, a retardation film (I-1) was obtained.
  • a barrier layer was formed by a CVD method on the surface of the retardation film (I-1) on the quarter wavelength plate side.
  • the film forming operation was performed using a film forming apparatus (film winding type plasma CVD apparatus) schematically shown in FIG.
  • the conditions for film formation are tetramethylsilane (TMS) flow rate 10 sccm, oxygen (O 2 ) flow rate 100 sccm, output 0.8 kW, total pressure 5 Pa, film transport speed 0.5 m / min, and RF plasma discharge is performed for film formation. went.
  • a barrier layer made of SiOx and having a thickness of 300 nm was formed, and a multilayer having a layer configuration of (1/2 wavelength plate) / (adhesive layer) / (1/4 wavelength plate) / (barrier layer) A film (I-2) was obtained.
  • a circularly polarizing plate having a layer configuration of (linear polarizer) / (adhesive layer) / (1/2 wavelength plate) / (adhesive layer) / (1 ⁇ 4 wavelength plate) / (barrier layer) is obtained. Obtained.
  • the angle formed by the polarization transmission axis of the linear polarizer and the slow axis of the half-wave plate is 15 °, and the polarization transmission axis of the linear polarizer and the retardation of the quarter-wave plate are slow.
  • the angle formed by the phase axis was 75 °.
  • the reflectance R 0 at an incident angle of 0 °, and the reflectance R 10 (0 deg) and the reflectance R 10 (180 deg) at an incident angle of 10 ° at an azimuth angle of 0 ° and an azimuth angle of 180 ° are The measurement was performed as follows.
  • the circularly polarizing plate is cut into an appropriate size, and the surface of the barrier layer of the circularly polarizing plate and the reflecting surface of the reflector (trade name “Metal Me TS50”, manufactured by Toray Industries, Inc., aluminum-deposited PET (polyethylene terephthalate) film) Pasted.
  • Pasting was performed via an adhesive layer (manufactured by Nitto Denko, trade name “CS9621”).
  • This obtained the laminated body for evaluation which has a layer structure of (circularly polarizing plate) / (adhesive layer) / (reflector).
  • the reflectance of the light which injected into the circularly-polarizing plate was measured.
  • a spectrophotometer V7200 and an absolute reflectance unit VAP7020 manufactured by JASCO Corporation
  • the azimuth angle is the reflectance at the incident angle of 0 ° at the azimuth angle of 0 °, and the azimuth with the direction of the polarization absorption axis of the linear polarizer as a reference when the evaluation laminate is observed from the circularly polarizing plate.
  • the reflectivity at an incident angle of 10 ° at an angle of 180 ° was measured. The results are shown in Table 1.
  • Example 2 (2-1. Retardation film)
  • the quarter-wave plate A2 produced in Production Example 4 was pulled out from the roll and used as a quarter-wave plate.
  • the half-wave plate B1 obtained in Production Example 5 was pulled out from the roll and used as a half-wave plate.
  • These were pasted through an adhesive layer (“CS9621” manufactured by Nitto Denko) with their longitudinal directions parallel to each other.
  • CS9621 manufactured by Nitto Denko
  • the relationship between these front and back was such that the angle formed by the slow axis of the quarter-wave plate and the slow axis of the half-wave plate was 60 ° when viewed from the thickness direction. Thereby, a retardation film (II-1) was obtained.
  • a thickness of SiOx was used in the same manner as in (1-2) to (1-3) of Example 1 except that the retardation film (II-1) was used instead of the retardation film (I-1).
  • a polarizing film was prepared as a linear polarizer.
  • This polarizing film and the multilayer film (II-2) were bonded via a layer of pressure-sensitive adhesive (“CS9621” manufactured by Nitto Denko) with their longitudinal directions parallel to each other.
  • the bonded product was cut into an A4 size rectangular shape having a polarization transmission axis in the direction of 0 ° with respect to the short side direction.
  • a circularly polarizing plate having a layer configuration of (linear polarizer) / (adhesive layer) / (1/2 wavelength plate) / (adhesive layer) / (1 ⁇ 4 wavelength plate) / (barrier layer) is obtained. Obtained.
  • the angle formed by the polarization transmission axis of the linear polarizer and the slow axis of the half-wave plate is 15 °, and the polarization transmission axis of the linear polarizer and the retardation of the quarter-wave plate are slow.
  • the angle formed by the phase axis was 75 °.
  • Example 3 (3-1. Production and evaluation of multilayer film) In the same manner as (1-2) to (1-3) of Example 1 except that the quarter wave plate A1 manufactured in Manufacturing Example 3 was used as it was instead of the retardation film (I-1). A barrier layer made of SiOx and having a thickness of 300 nm was formed, and a multilayer film (III-2) having a layer configuration of (1 ⁇ 4 wavelength plate) / (barrier layer) was obtained and evaluated.
  • a polarizing film was prepared as a linear polarizer.
  • the polarizing film and the multilayer film (III-2) were bonded via a layer of pressure-sensitive adhesive (“CS9621” manufactured by Nitto Denko) with their longitudinal directions parallel to each other.
  • the bonded product was cut into an A4 size rectangular shape having a polarization transmission axis in the direction of 0 ° with respect to the short side direction. This obtained the circularly-polarizing plate which has a layer structure of (linear polarizer) / (adhesive layer) / (1/4 wavelength plate) / (barrier layer).
  • the angle formed by the polarization transmission axis of the linear polarizer and the slow axis of the quarter-wave plate was 45 °.
  • reflectivity R 0 at an incident angle of 0 ° and reflectivity R 10 (0 deg) and reflectivity R 10 (180 deg) at an incident angle of 10 ° at an azimuth angle of 0 ° and an azimuth angle of 180 °. Measurement was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 (4-1. Production and evaluation of multilayer film) Instead of the quarter-wave plate A2 produced in Production Example 4, the quarter-wave plate A3 produced in Production Example 10 was used in the same manner as in Example 2 (1 / 2-wave plate) / A multilayer film (IV-2) having a layer structure of (adhesive layer) / (quarter wave plate) / (barrier layer), and (linear polarizer) / (adhesive layer) / (1/2 wavelength A circularly polarizing plate having a layer structure of (plate) / (adhesive layer) / (1 ⁇ 4 wavelength plate) / (barrier layer) was obtained and evaluated. The results are shown in Table 1.
  • a thickness composed of SiOx is the same as (1-2) to (1-3) of Example 1 except that the retardation film (CI-1) is used in place of the retardation film (I-1).
  • a polarizing film was prepared as a linear polarizer.
  • the polarizing film and the multilayer film (CI-2) were bonded to each other through a layer of pressure-sensitive adhesive (“CS9621” manufactured by Nitto Denko) with their longitudinal directions parallel to each other.
  • the bonded product was cut into an A4 size rectangular shape having a polarization transmission axis in the direction of 0 ° with respect to the short side direction.
  • a circularly polarizing plate having a layer configuration of (linear polarizer) / (adhesive layer) / (1/2 wavelength plate) / (adhesive layer) / (1 ⁇ 4 wavelength plate) / (barrier layer) is obtained. Obtained.
  • the angle formed between the polarization transmission axis of the linear polarizer and the slow axis of the half-wave plate is 75 °, and the polarization transmission axis of the linear polarizer and the retardation of the quarter-wave plate are slow.
  • the angle formed by the phase axis was 15 °.
  • a polarizing film was prepared as a linear polarizer.
  • the polarizing film and the multilayer film (CII-2) were bonded via a layer of an adhesive (“CS9621” manufactured by Nitto Denko Corporation) with the longitudinal directions thereof being parallel to each other.
  • the bonded product was cut into an A4 size rectangular shape having a polarization transmission axis in the direction of 0 ° with respect to the short side direction. This obtained the circularly-polarizing plate which has a layer structure of (linear polarizer) / (adhesive layer) / (1/4 wavelength plate) / (barrier layer).
  • the angle formed by the polarization transmission axis of the linear polarizer and the slow axis of the quarter-wave plate was 45 °.
  • reflectivity R 0 at an incident angle of 0 ° and reflectivity R 10 (0 deg) and reflectivity R 10 (180 deg) at an incident angle of 10 ° at an azimuth angle of 0 ° and an azimuth angle of 180 °. Measurement was performed in the same manner as in Example 1. The results are shown in Table 2.
  • Tables 1 and 2 show the results in Examples and Comparative Examples.

Abstract

有機エレクトロルミネッセンス表示装置用の複層フィルムであって、位相差フィルム、及び前記位相差フィルムの表面に直接設けられたバリア層を備え、前記位相差フィルムは、前記バリア層に直接接する層として、1層以上の樹脂Aの層を含み、前記樹脂Aは、融点が250℃以上で結晶性の重合体Aを含み、前記樹脂Aの層は、23℃における波長590nmの光で測定した面内レターデーションReが特定の値で、光弾性係数の絶対値が2.0×10-11Pa-1以下である複層フィルム;その製造方法;並びにその用途。

Description

複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置
 本発明は、複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置に関する。
 有機エレクトロルミネッセンス表示装置においては、その発光層及びその周辺の層の劣化を防止するため、それらを保護する構成要素を設けることが行われている。例えば、基板と、その上に形成された発光層とを有する装置の場合、発光層の上に封止材の層を設け、さらにその上に、水分や酸素等の透過を妨げるバリア層を設けることが知られている。
 バリア層としては、バリア層形成のための基材との複層構造を有するものが知られている。即ち、基材と、この基材上に設けられたバリア層とを含むバリア積層体を調製し、これを、有機エレクトロルミネッセンス表示装置に組み込むことが行われている。従来、バリア積層体の基材としてはガラス基材を用いることが多かったが、近年では、基材として樹脂製の基材フィルムを用いることが提案されている(特許文献1~3参照)。
 また、有機エレクトロルミネッセンス表示装置には、表示面における外光の反射を低減するため、円偏光板が設けられることがある。このような円偏光板としては、一般に、直線偏光子及び位相差フィルムである1/4波長板を組み合わせたフィルムが用いられる。この1/4波長板として、1/4波長板と1/2波長板とを組み合わせた広帯域1/4波長板が提案されている(特許文献4~9参照)。この広帯域1/4波長板によれば、理想的に広い波長範囲の光で略1/4波長のレターデーションを達成できるので、広い波長範囲において外光の反射を低減できる円偏光板を実現できる。さらに、特許文献10のような遅相軸方向がフィルムの面内方向であって、そのフィルムの幅方向に、直交でもなく平行でもない斜め方向に存在する位相差フィルムの技術も知られている。
特開2011-201043号公報 特開2009-190186号公報 特開2011-231269号公報 特許第4708787号公報(対応外国公報:欧州特許出願公開第1508823号明細書) 特開平05-100114号公報 特開2003-114325号公報(対応外国公報:米国特許出願公開第2003/067574号明細書) 特開平10-68816号公報 特開平11-183723号公報 特開平11-295526号公報 特開2012-25167号公報
 バリア積層体の基材として、ガラス基材に代えて樹脂製の基材フィルムを用いることにより、軽く、薄く、表示面が大きい有機エレクトロルミネッセンス表示装置を得ることができる。しかしながら、有機エレクトロルミネッセンス表示装置については、さらなる軽量化及び薄層化が求められている。加えて、有機エレクトロルミネッセンス表示装置として、従来の平面の表示面ではなく、曲面の表示面を有するものを構成する場合、装置の構成要素は、可撓性を有することが求められ、さらに、曲面において用いても光学的性質を損ねないことも求められる。
 そのような要求に応えるための手段としては、有機エレクトロルミネッセンス表示装置に設けられる他の層とバリア層とを一体化させることが考えられる。即ち、従来用いられていた基材フィルムに代えて、従来より他の目的で有機エレクトロルミネッセンス表示装置に設けられているフィルムを用いてバリア層の形成を行い、より少ない構成要素で従来と同等の機能を有する積層構造物を得ることが考えられる。例えば、バリア層と、反射防止等の目的で有機エレクトロルミネッセンス表示装置に設けられる位相差フィルムとを備える複層フィルムを用いることが考えられる。
 ところが、そのような複層フィルムを形成する場合、位相差フィルムが、バリア層の形成における温度等の条件により変性し易く、その結果、フィルム表面のシワ及び波打ち等の変形、フィルムのカール、バリア層と位相差フィルムとの密着性の不足、位相差フィルムの光学的性能の不足等の問題が生じることがあった。
 従って、本発明の目的は、薄型の有機エレクトロルミネッセンス表示装置の構成要素として有用であり、表面の変形、カール等の不具合を起こさず、バリア層と位相差フィルムとの密着性が良好であり、且つ光学的性能を良好に発現しうる、複層フィルム、円偏光板及び反射防止フィルム、並びに当該複層フィルムの製造方法を提供することにある。
 本発明者は前記の課題を解決するべく検討した結果、位相差フィルムを構成する材料として特定のものを採用することにより、前記課題を解決しうることを見出し、本発明を完成させた。
 すなわち、本発明は、下記の通りである。
 〔1〕 有機エレクトロルミネッセンス表示装置用の複層フィルムであって、
 位相差フィルム、及び前記位相差フィルムの表面に直接設けられたバリア層を備え、
 前記位相差フィルムは、前記バリア層に直接接する層として、1層以上の樹脂Aの層を含み、
 前記樹脂Aは、融点が250℃以上で結晶性の重合体Aを含み、
 前記樹脂Aの層は、23℃における波長590nmの光で測定した面内レターデーションReが108nm以上168nm以下で、光弾性係数の絶対値が2.0×10-11Pa-1以下である、
 複層フィルム。
 〔2〕 前記重合体Aが、固有複屈折値が正の脂環式構造含有重合体であり、
 前記樹脂Aの層の、150℃で1時間加熱した場合のフィルム面内の熱寸法変化率の絶対値が1%以下である、〔1〕に記載の複層フィルム。
 〔3〕 前記樹脂Aの層の複屈折Δnが0.0010以上である、〔1〕又は〔2〕に記載の複層フィルム。
 〔4〕 前記複層フィルムが長尺の形状を有し、
 前記位相差フィルムが、前記樹脂Aの層として、1/4波長板を含み、
 前記位相差フィルムが、さらに1/2波長板を含み、
 前記1/2波長板の遅相軸および前記1/4波長板の遅相軸が、いずれも、前記複層フィルムの長尺方向に対して斜め方向であり、
 前記1/2波長板の遅相軸と前記1/4波長板の遅相軸との交差角が55°以上65°以下である、
 〔1〕~〔3〕のいずれか1項に記載の複層フィルム。
 〔5〕 前記1/2波長板の厚さdh、及び前記1/4波長板の厚さdqが、いずれも10μm以上50μm以下であり、且つこれらがdh≧dqの関係を満たす、〔4〕に記載の複層フィルム。
 〔6〕 前記1/2波長板および前記1/4波長板がいずれも、1回以上の斜め延伸を施された延伸フィルムである、〔4〕又は〔5〕に記載の複層フィルム。
 〔7〕 水蒸気透過率が、0.01g/(m・日)以下である、〔1〕~〔6〕のいずれか1項に記載の複層フィルム。
 〔8〕 前記バリア層が、無機バリア層を1層以上含む、〔1〕~〔7〕のいずれか1項に記載の複層フィルム。
 〔9〕 〔4〕~〔8〕のいずれか1項に記載の複層フィルムの製造方法であって、
 前記1/2波長板と前記1/4波長板とを接着剤を介して貼合し、これらを含む位相差フィルムを形成する工程、及び
 前記位相差フィルムの、前記1/4波長板側の面に直接、前記バリア層を形成する工程、
 を含む製造方法。
 〔10〕 〔1〕~〔8〕のいずれか1項に記載の複層フィルムと、
 前記複層フィルムの前記バリア層とは反対側の面に設けられた直線偏光子とを備える円偏光板。
 〔11〕 〔10〕に記載の円偏光板を含む反射防止フィルムであって、
 前記直線偏光子、1/2波長板、前記樹脂Aの層としての1/4波長板、及び前記バリア層をこの順に備え、
 前記直線偏光子の偏光透過軸と、前記1/2波長板の遅相軸とがなす角度が、10°以上20°以下であるか、又は70°以上80°以下であり、
 入射角0°での反射率Rと方位角0°で入射角10°での反射率R10(0deg)との比R/R10(0deg)および、入射角0°での反射率Rと方位角180°で入射角10°での反射率R10(180deg)との比R/R10(180deg)が、0.95以上1.05以下である、反射防止フィルム。
 〔12〕 〔11〕に記載の反射防止フィルムを備える、有機エレクトロルミネッセンス表示装置。
 本発明の複層フィルム、円偏光板及び反射防止フィルムは、薄型の有機エレクトロルミネッセンス表示装置の構成要素として有用であり、表面の変形、カール等の不具合を起こさず、バリア層と位相差フィルムとの密着性が良好であり良好なバリア性能を発現でき、且つ光学的性能を良好に発現しうる。さらに、入射角の違いによる反射率の違いが少ない反射防止機能を発現ことができ、その結果、表示面が曲面である表示装置において有用に用いうる。
図1は、本発明の複層フィルムの一例を概略的に示す断面図である。 図2は、図1に示す本発明の複層フィルムを製造するために、無機バリア層をCVDにより成膜する装置の一例を示す断面図である。 図3は、本発明の有機エレクトロルミネッセンス表示装置の一例を概略的に示す断面図である。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、フィルムの面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値であり、フィルムの複屈折Δnは、「Δn=nx-ny」で表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、590nmである。
 以下の説明において、ある面の正面方向とは、別に断らない限り、当該面の法線方向を意味し、具体的には前記面の極角0°且つ方位角0°の方向を指す。
 以下の説明において、構成要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°好ましくは±3°、より好ましくは±1°の範囲内での誤差を含んでいてもよい。
 以下の説明において、「偏光板」、「1/4波長板」及び「1/2波長板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 以下の説明において、複数の層を備える部材における各層の光学軸(吸収軸、遅相軸等)がなす角度は、別に断らない限り、前記のフィルムを厚み方向から見たときの角度を表す。
 以下の説明において、フィルムの遅相軸とは、別に断らない限り、当該フィルムの面内における遅相軸を表す。
 以下の説明において、長尺のフィルムの「配向角」とは、別に断らない限り、そのフィルムの幅方向に対してそのフィルムの遅相軸がなす角度をいう。
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下としうる。
 〔1.複層フィルムの概要〕
 本発明の複層フィルムは、位相差フィルム、及び前記位相差フィルムの表面に直接設けられたバリア層を備える。
 図1は、本発明の複層フィルムの一例を概略的に示す断面図である。図1において、複層フィルム110は、位相差フィルム109と、その表面114Dに直接設けられたバリア層113を備える。この例において、位相差フィルム109は、樹脂Aの層としての1/4波長板114、任意の層である1/2波長板112、及びこれらの間に介在する接着剤層111を備えている。
 〔2.樹脂Aの層〕
 位相差フィルムは、1層以上の樹脂Aの層を含む。
 位相差フィルムにおいて、樹脂Aの層は、バリア層に直接接する層である。即ち、位相差フィルムの、バリア層に接する側の面は、樹脂Aで構成されている。具体的には、位相差フィルムが1の層のみからなる場合、当該層は樹脂Aの層である。位相差フィルムが2以上の層からなる場合、それらのうちバリア層に接する側の面を構成する層は、樹脂Aの層である。位相差フィルムが2以上の層からなる場合において、バリア層に接する側の面を構成する層以外の1以上の層のそれぞれは、樹脂Aの層であってもよく、樹脂A以外の樹脂の層であってもよい。
 樹脂Aは、特定の融点を有する結晶性の重合体Aを含む。
 重合体Aが「結晶性」であるとは、示差走査熱量計(DSC)で観測することができる融点を有する重合体であることをいう。重合体Aとして結晶性の重合体を用いることで、バリア層の形成時における位相差フィルムの変性を低減させることができ、その結果、表面の変形、カール等の不具合を起こさず、バリア層と位相差フィルムとの密着性が良好であり、且つ光学的性能を良好に発現しうる複層フィルムを得ることができる。なお、示差走査熱量計(DSC)で観測することができる融点がない場合は、「非結晶性」であるという。
 結晶性の重合体としては、結晶性の脂環式構造含有重合体、及び、結晶性のポリスチレン系重合体(特開2011-118137号公報参照)などが挙げられる。中でも、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、結晶性の脂環式構造含有重合体が好ましい。
 脂環式構造含有重合体とは、分子内に脂環式構造を有する重合体であって、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素添加物をいう。脂環式構造含有重合体が有する脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる樹脂Aの層が得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。
 脂環式構造含有重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造含有重合体における脂環式構造を有する構造単位の割合を前記のように多くすることにより、耐熱性を高めることができる。
 また、脂環式構造含有重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。
 結晶性の脂環式構造含有重合体等の重合体Aの融点Tmは、250℃以上であり、好ましくは255℃以上、より好ましくは260℃以上であり、好ましくは290℃以下である。このような融点Tmを有する重合体Aを用いることによって、成形性と耐熱性とのバランスに優れた樹脂Aの層を得ることができる。
 重合体Aの重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する重合体Aは、成形加工性と耐熱性とのバランスに優れる。特に、重合体Aが結晶性の脂環式構造含有重合体である場合、そのような傾向が顕著である。
 重合体Aの分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する重合体Aは、成形加工性に優れる。特に、重合体Aが結晶性の脂環式構造含有重合体である場合、そのような傾向が顕著である。
 重合体Aの重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。
 重合体Aのガラス転移温度Tgは、特に限定されないが、通常は85℃以上、通常170℃以下である。
 重合体Aとして結晶性の脂環式構造含有重合体を採用する場合、その具体例としては、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる樹脂Aの層が得られ易いことから、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素添加物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素添加物等であって、結晶性を有するもの。
 具体的には、脂環式構造含有重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものがより好ましく、ジシクロペンタジエンの開環重合体の水素添加物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは100重量%の重合体をいう。
 以下、重合体(α)及び重合体(β)の製造方法を説明する。
 重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体は、炭素原子で形成された環構造を有し、該環中に炭素-炭素二重結合を有する化合物である。環状オレフィン単量体の例としては、ノルボルネン系単量体等が挙げられる。また、重合体(α)が共重合体である場合には、環状オレフィン単量体として、単環の環状オレフィンを用いてもよい。
 ノルボルネン系単量体は、ノルボルネン環を含む単量体である。ノルボルネン系単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン(慣用名:エチリデンノルボルネン)及びその誘導体(例えば、環に置換基を有するもの)等の、2環式単量体;トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)及びその誘導体等の、3環式単量体;7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン:1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)及びその誘導体、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン及びその誘導体等の、4環式単量体;などが挙げられる。
 前記の単量体において置換基としては、例えば、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;プロパン-2-イリデン等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;などが挙げられる。また、前記の置換基は、1種類を単独で有していてもよく、2種類以上を任意の比率で有していてもよい。
 単環の環状オレフィンとしては、例えば、シクロブテン、シクロペンテン、メチルシクロペンテン、シクロヘキセン、メチルシクロヘキセン、シクロヘプテン、シクロオクテン等の環状モノオレフィン;シクロヘキサジエン、メチルシクロヘキサジエン、シクロオクタジエン、メチルシクロオクタジエン、フェニルシクロオクタジエン等の環状ジオレフィン;等が挙げられる。
 環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。環状オレフィン単量体を2種以上用いる場合、重合体(α)は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。
 環状オレフィン単量体には、エンド体及びエキソ体の立体異性体が存在するものがありうる。環状オレフィン単量体としては、エンド体及びエキソ体のいずれを用いてもよい。また、エンド体及びエキソ体のうち一方の異性体のみを単独で用いてもよく、エンド体及びエキソ体を任意の割合で含む異性体混合物を用いてもよい。中でも、脂環式構造含有重合体の結晶性が高まり、耐熱性により優れる樹脂Aの層が得られ易くなることから、一方の立体異性体の割合を高くすることが好ましい。例えば、エンド体又はエキソ体の割合が、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは95%以上である。また、合成が容易であることから、エンド体の割合が高いことが好ましい。
 重合体(α)の合成には、通常、開環重合触媒を用いる。開環重合触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。このような重合体(α)の合成用の開環重合触媒としては、環状オレフィン単量体を開環重合させ、シンジオタクチック立体規則性を有する開環重合体を生成させうるものが好ましい。好ましい開環重合触媒としては、下記式(1)で示される金属化合物を含むものが挙げられる。
 M(NR1i)X 4-a(OR2i・L (1)
 (式(1)において、
 Mは、周期律表第6族の遷移金属原子からなる群より選択される金属原子を示し、
 R1iは、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又は、-CH3i(R3iは、水素原子、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。)で表される基を示し、
 R2iは、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示し、
 Xは、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、及び、アルキルシリル基からなる群より選択される基を示し、
 Lは、電子供与性の中性配位子を示し、
 aは、0又は1の数を示し、
 bは、0~2の整数を示す。)
 式(1)において、Mは、周期律表第6族の遷移金属原子からなる群より選択される金属原子を示す。このMとしては、クロム、モリブデン及びタングステンが好ましく、モリブデン及びタングステンがより好ましく、タングステンが特に好ましい。
 式(1)において、R1iは、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基、又は、-CH3iで表される基を示す。
 R1iの、3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基の炭素原子数は、好ましくは6~20、より好ましくは6~15である。また、前記置換基としては、例えば、メチル基、エチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基;などが挙げられる。これらの置換基は、1種類を単独で有していてもよく、2種類以上を任意の比率で有していてもよい。さらに、R1iにおいて、3位、4位及び5位の少なくとも2つの位置に存在する置換基が互いに結合し、環構造を形成していてもよい。
 3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニル基としては、例えば、無置換フェニル基;4-メチルフェニル基、4-クロロフェニル基、3-メトキシフェニル基、4-シクロヘキシルフェニル基、4-メトキシフェニル基等の一置換フェニル基;3,5-ジメチルフェニル基、3,5-ジクロロフェニル基、3,4-ジメチルフェニル基、3,5-ジメトキシフェニル基等の二置換フェニル基;3,4,5-トリメチルフェニル基、3,4,5-トリクロロフェニル基等の三置換フェニル基;2-ナフチル基、3-メチル-2-ナフチル基、4-メチル-2-ナフチル基等の置換基を有していてもよい2-ナフチル基;等が挙げられる。
 R1iの、-CH3iで表される基において、R3iは、水素原子、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。
 R3iの、置換基を有していてもよいアルキル基の炭素原子数は、好ましくは1~20、より好ましくは1~10である。このアルキル基は、直鎖状であってもよく、分岐状であってもよい。さらに、前記置換基としては、例えば、フェニル基、4-メチルフェニル基等の置換基を有していてもよいフェニル基;メトキシ基、エトキシ基等のアルコキシル基;等が挙げられる。これらの置換基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 R3iの、置換基を有していてもよいアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ネオペンチル基、ベンジル基、ネオフィル基等が挙げられる。
 R3iの、置換基を有していてもよいアリール基の炭素原子数は、好ましくは6~20、より好ましくは6~15である。さらに、前記置換基としては、例えば、メチル基、エチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基;等が挙げられる。これらの置換基は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 R3iの、置換基を有していてもよいアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、4-メチルフェニル基、2,6-ジメチルフェニル基等が挙げられる。
 これらの中でも、R3iで表される基としては、炭素原子数が1~20のアルキル基が好ましい。
 式(1)において、R2iは、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基からなる群より選択される基を示す。R2iの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基としては、それぞれ、R3iの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基として示した範囲から選択されるものを任意に用いうる。
 式(1)において、Xは、ハロゲン原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、及び、アルキルシリル基からなる群より選択される基を示す。
 Xのハロゲン原子としては、例えば、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Xの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基としては、それぞれ、R3iの、置換基を有していてもよいアルキル基、及び、置換基を有していてもよいアリール基として示した範囲から選択されるものを任意に用いうる。
 Xのアルキルシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基等が挙げられる。
 式(1)で示される金属化合物が1分子中に2以上のXを有する場合、それらのXは、互いに同じでもよく、異なっていてもよい。さらに、2以上のXが互いに結合し、環構造を形成していてもよい。
 式(1)において、Lは、電子供与性の中性配位子を示す。
 Lの電子供与性の中性配位子としては、例えば、周期律表第14族又は第15族の原子を含有する電子供与性化合物が挙げられる。その具体例としては、トリメチルホスフィン、トリイソプロピルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン等のホスフィン類;ジエチルエーテル、ジブチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;トリメチルアミン、トリエチルアミン、ピリジン、ルチジン等のアミン類;等が挙げられる。これらの中でも、エーテル類が好ましい。また、式(1)で示される金属化合物が1分子中に2以上のLを有する場合、それらのLは、互いに同じでもよく、異なっていてもよい。
 式(1)で示される金属化合物としては、フェニルイミド基を有するタングステン化合物が好ましい。即ち、式(1)において、Mがタングステン原子であり、且つ、R1iがフェニル基である化合物が好ましい。さらに、その中でも、テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体がより好ましい。
 式(1)で示される金属化合物の製造方法は、特に限定されない。例えば、特開平5-345817号公報に記載されるように、第6族遷移金属のオキシハロゲン化物;3位、4位及び5位の少なくとも1つの位置に置換基を有していてもよいフェニルイソシアナート類又は一置換メチルイソシアナート類;電子供与性の中性配位子(L);並びに、必要に応じて、アルコール類、金属アルコキシド及び金属アリールオキシド;を混合することにより、式(1)で示される金属化合物を製造することができる。
 前記の製造方法では、式(1)で示される金属化合物は、通常、反応液に含まれた状態で得られる。金属化合物の製造後、前記の反応液をそのまま開環重合反応の触媒液として用いてもよい。また、結晶化等の精製処理により、金属化合物を反応液から単離及び精製した後、得られた金属化合物を開環重合反応に供してもよい。
 開環重合触媒は、式(1)で示される金属化合物を単独で用いてもよく、式(1)で示される金属化合物を他の成分と組み合わせて用いてもよい。例えば、式(1)で示される金属化合物と有機金属還元剤とを組み合わせて用いることで、重合活性を向上させることができる。
 有機金属還元剤としては、例えば、炭素原子数1~20の炭化水素基を有する周期律表第1族、第2族、第12族、第13族又は14族の有機金属化合物が挙げられる。このような有機金属化合物としては、例えば、メチルリチウム、n-ブチルリチウム、フェニルリチウム等の有機リチウム;ブチルエチルマグネシウム、ブチルオクチルマグネシウム、ジヘキシルマグネシウム、エチルマグネシウムクロリド、n-ブチルマグネシウムクロリド、アリルマグネシウムブロミド等の有機マグネシウム;ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛等の有機亜鉛;トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド、ジエチルアルミニウムエトキシド、ジイソブチルアルミニウムイソブトキシド、エチルアルミニウムジエトキシド、イソブチルアルミニウムジイソブトキシド等の有機アルミニウム;テトラメチルスズ、テトラ(n-ブチル)スズ、テトラフェニルスズ等の有機スズ;等が挙げられる。これらの中でも、有機アルミニウム又は有機スズが好ましい。また、有機金属還元剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 開環重合反応は、通常、有機溶媒中で行われる。有機溶媒は、開環重合体及びその水素添加物を、所定の条件で溶解もしくは分散させることが可能であり、かつ、開環重合反応及び水素化反応を阻害しないものを用いうる。このような有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタン等の脂環族炭化水素溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素溶媒;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素溶媒;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒;これらを組み合わせた混合溶媒;等が挙げられる。これらの中でも、有機溶媒としては、芳香族炭化水素溶媒、脂肪族炭化水素溶媒、脂環族炭化水素溶媒、エーテル溶媒が好ましい。
 開環重合反応は、例えば、環状オレフィン単量体と、式(1)で示される金属化合物と、必要に応じて有機金属還元剤とを混合することにより、開始させることができる。これらの成分を混合する順序は、特に限定されない。例えば、環状オレフィン単量体を含む溶液に、式(1)で示される金属化合物及び有機金属還元剤を含む溶液を混合してもよい。また、有機金属還元剤を含む溶液に、環状オレフィン単量体及び式(1)で示される金属化合物を含む溶液を混合してもよい。さらに、環状オレフィン単量体及び有機金属還元剤を含む溶液に、式(1)で示される金属化合物の溶液を混合してもよい。各成分を混合する際は、それぞれの成分の全量を一度に混合してもよいし、複数回に分けて混合してもよい。また、比較的に長い時間(例えば1分間以上)にわたって連続的に混合してもよい。
 開環重合反応の開始時における反応液中の環状オレフィン単量体の濃度は、好ましくは1重量%以上、より好ましくは2重量%以上、特に好ましくは3重量%以上であり、好ましくは50重量%以下、より好ましくは45重量%以下、特に好ましくは40重量%以下である。環状オレフィン単量体の濃度を前記範囲の下限値以上にすることにより、生産性を高くできる。また、上限値以下にすることにより、開環重合反応後の反応液の粘度を低くできるので、その後の水素化反応を容易に行うことができる。
 開環重合反応に用いる式(1)で示される金属化合物の量は、「金属化合物:環状オレフィン単量体」のモル比が、所定の範囲の収まるように設定することが望ましい。具体的には、前記のモル比は、好ましくは1:100~1:2,000,000、より好ましくは1:500~1,000,000、特に好ましくは1:1,000~1:500,000である。金属化合物の量を前記範囲の下限値以上にすることにより、十分な重合活性を得ることができる。また、上限値以下にすることにより、反応後に金属化合物を容易に除去できる。
 有機金属還元剤の量は、式(1)で示される金属化合物1モルに対して、好ましくは0.1モル以上、より好ましくは0.2モル以上、特に好ましくは0.5モル以上であり、好ましくは100モル以下、より好ましくは50モル以下、特に好ましくは20モル以下である。有機金属還元剤の量を前記範囲の下限値以上にすることにより、重合活性を十分に高くできる。また、上限値以下にすることにより、副反応の発生を抑制することができる。
 重合体(α)の重合反応系は、活性調整剤を含んでいてもよい。活性調整剤を用いることで、開環重合触媒を安定化したり、開環重合反応の反応速度を調整したり、重合体の分子量分布を調整したりできる。
 活性調整剤としては、官能基を有する有機化合物を用いうる。このような活性調整剤としては、例えば、含酸素化合物、含窒素化合物、含リン有機化合物等が挙げられる。
 含酸素化合物としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール、フラン、テトラヒドロフラン等のエーテル類;アセトン、ベンゾフェノン、シクロヘキサノンなどのケトン類;エチルアセテート等のエステル類;等が挙げられる。
 含窒素化合物としては、例えば、アセトニトリル、ベンゾニトリル等のニトリル類;トリエチルアミン、トリイソプロピルアミン、キヌクリジン、N,N-ジエチルアニリン等のアミン類;ピリジン、2,4-ルチジン、2,6-ルチジン、2-t-ブチルピリジン等のピリジン類;等が挙げられる。
 含リン化合物としては、例えば、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフェート、トリメチルホスフェート等のホスフィン類;トリフェニルホスフィンオキシド等のホスフィンオキシド類;等が挙げられる。
 活性調整剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 重合体(α)の重合反応系における活性調整剤の量は、式(1)で示される金属化合物100モル%に対して、好ましくは0.01モル%~100モル%である。
 重合体(α)の重合反応系は、重合体(α)の分子量を調整するために、分子量調整剤を含んでいてもよい。分子量調整剤としては、例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン類;スチレン、ビニルトルエン等の芳香族ビニル化合物;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル、酢酸アリル、アリルアルコール、グリシジルメタクリレート等の酸素含有ビニル化合物;アリルクロライド等のハロゲン含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエン等の非共役ジエン;1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン;等が挙げられる。
 分子量調整剤は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 重合体(α)を重合するための重合反応系における分子量調整剤の量は、目的とする分子量に応じて適切に決定しうる。分子量調整剤の具体的な量は、環状オレフィン単量体に対して、好ましくは0.1モル%~50モル%の範囲である。
 重合温度は、好ましくは-78℃以上、より好ましくは-30℃以上であり、好ましくは+200℃以下、より好ましくは+180℃以下である。
 重合時間は、反応規模に依存しうる。具体的な重合時間は、好ましくは1分間から1000時間の範囲である。
 上述した製造方法により、重合体(α)が得られる。この重合体(α)を水素化することにより、重合体(β)を製造することができる。
 重合体(α)の水素化は、例えば、常法に従って水素化触媒の存在下で、重合体(α)を含む反応系内に水素を供給することによって行うことができる。この水素化反応において、反応条件を適切に設定すれば、通常、水素化反応により水素添加物のタクチシチーが変化することはない。
 水素化触媒としては、オレフィン化合物の水素化触媒として公知の均一系触媒及び不均一触媒を用いうる。
 均一系触媒としては、例えば、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n-ブチルリチウム、ジルコノセンジクロリド/sec-ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウム等の、遷移金属化合物とアルカリ金属化合物の組み合わせからなる触媒;ジクロロビス(トリフェニルホスフィン)パラジウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、クロロヒドリドカルボニルビス(トリシクロヘキシルホスフィン)ルテニウム、ビス(トリシクロヘキシルホスフィン)ベンジリジンルテニウム(IV)ジクロリド、クロロトリス(トリフェニルホスフィン)ロジウム等の貴金属錯体触媒;等が挙げられる。
 不均一触媒としては、例えば、ニッケル、パラジウム、白金、ロジウム、ルテニウム等の金属触媒;ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナ等の、前記金属をカーボン、シリカ、ケイソウ土、アルミナ、酸化チタンなどの担体に担持させてなる固体触媒が挙げられる。
 水素化触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 水素化反応は、通常、不活性有機溶媒中で行われる。不活性有機溶媒としては、ベンゼン、トルエン等の芳香族炭化水素溶媒;ペンタン、ヘキサン等の脂肪族炭化水素溶媒;シクロヘキサン、デカヒドロナフタレンなどの脂環族炭化水素溶媒;テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル溶媒;等が挙げられる。不活性有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、不活性有機溶媒は、開環重合反応に用いた有機溶媒と同じものであってもよいし、異なるものであってもよい。さらに、開環重合反応の反応液に水素化触媒を混合して、水素化反応を行ってもよい。
 水素化反応の反応条件は、通常、用いる水素化触媒によっても異なる。
 水素化反応の反応温度は、好ましくは-20℃以上、より好ましくは-10℃以上、特に好ましくは0℃以上であり、好ましくは+250℃以下、より好ましくは+220℃以下、特に好ましくは+200℃以下である。反応温度を前記範囲の下限値以上にすることにより、反応速度を速くできる。また、上限値以下にすることにより、副反応の発生を抑制できる。
 水素圧力は、好ましくは0.01MPa以上、より好ましくは0.05MPa以上、特に好ましくは0.1MPa以上であり、好ましくは20MPa以下、より好ましくは15MPa以下、特に好ましくは10MPa以下である。水素圧力を前記範囲の下限値以上にすることにより、反応速度を速くできる。また、上限値以下にすることにより、高耐圧反応装置等の特別な装置が不要となり、設備コストを抑制できる。
 水素化反応の反応時間は、所望の水素添加率が達成される任意の時間に設定してもよく、好ましくは0.1時間~10時間である。
 水素化反応後は、通常、常法に従って、重合体(α)の水素添加物である重合体(β)を回収する。
 水素化反応における水素添加率(水素化された主鎖二重結合の割合)は、好ましくは98%以上、より好ましくは99%以上である。水素添加率が高くなるほど、脂環式構造含有重合体の耐熱性を良好にできる。
 ここで、重合体の水素添加率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMR測定により測定しうる。
 次に、重合体(γ)及び重合体(δ)の製造方法を説明する。
 重合体(γ)及び(δ)の製造に用いる環状オレフィン単量体としては、重合体(α)及び重合体(β)の製造に用いうる環状オレフィン単量体として示した範囲から選択されるものを任意に用いうる。また、環状オレフィン単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合体(γ)の製造においては、単量体として、環状オレフィン単量体に組み合わせて、環状オレフィン単量体と共重合可能な任意の単量体を用いうる。任意の単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素原子数2~20のα-オレフィン;スチレン、α-メチルスチレン等の芳香環ビニル化合物;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン;等が挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。また、任意の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 環状オレフィン単量体と任意の単量体との量の割合は、重量比(環状オレフィン単量体:任意の単量体)で、好ましくは30:70~99:1、より好ましくは50:50~97:3、特に好ましくは70:30~95:5である。
 環状オレフィン単量体を2種以上用いる場合、及び、環状オレフィン単量体と任意の単量体を組み合わせて用いる場合は、重合体(γ)は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
 重合体(γ)の合成には、通常、付加重合触媒を用いる。このような付加重合触媒としては、例えば、バナジウム化合物及び有機アルミニウム化合物から形成されるバナジウム系触媒、チタン化合物及び有機アルミニウム化合物から形成されるチタン系触媒、ジルコニウム錯体及びアルミノオキサンから形成されるジルコニウム系触媒等が挙げられる。また、付加重合体触媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 付加重合触媒の量は、単量体1モルに対して、好ましくは0.000001モル以上、より好ましくは0.00001モル以上であり、好ましくは0.1モル以下、より好ましくは0.01モル以下である。
 環状オレフィン単量体の付加重合は、通常、有機溶媒中で行われる。有機溶媒としては、環状オレフィン単量体の開環重合に用いうる有機溶媒として示した範囲から選択されるものを任意に用いうる。また、有機溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合体(γ)を製造するための重合における重合温度は、好ましくは-50℃以上、より好ましくは-30℃以上、特に好ましくは-20℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、特に好ましくは150℃以下である。また、重合時間は、好ましくは30分以上、より好ましくは1時間以上であり、好ましくは20時間以下、より好ましくは10時間以下である。
 上述した製造方法により、重合体(γ)が得られる。この重合体(γ)を水素化することにより、重合体(δ)を製造することができる。
 重合体(γ)の水素化は、重合体(α)を水素化する方法として先に示したものと同様の方法により、行いうる。
 結晶性の脂環式構造含有重合体は、シンジオタクチック構造を有することが好ましく、そのシンジオタクチック立体規則性の度合いが高いことがより好ましい。これにより、脂環式構造含有重合体の結晶性を高めることができるので、引張弾性率を特に大きくできる。脂環式構造含有重合体のシンジオタクチック立体規則性の度合いは、脂環式構造含有重合体のラセモ・ダイアッドの割合によって表しうる。脂環式構造含有重合体の具体的なラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは60%以上、特に好ましくは70%以上である。
 ラセモ・ダイアッドの割合は、13C-NMRスペクトル分析により、測定しうる。具体的には、下記の方法により測定しうる。
 オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体試料の13C-NMR測定を行う。この13C-NMR測定の結果から、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルの強度比に基づいて、重合体試料のラセモ・ダイアッドの割合を求めうる。
 樹脂Aにおける重合体Aの割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。重合体Aの割合を前記範囲の下限値以上にすることにより、樹脂Aの層の耐熱性及び引張弾性率を高めることができる。
 樹脂Aの層に含まれる重合体Aは、樹脂Aの層を製造するよりも前においては結晶化が進行していなくてもよいが、樹脂Aの層が製造された後においては結晶化が十分に進行していることが好ましい。樹脂Aの層に含まれる重合体Aの具体的な結晶化度の範囲は、好ましくは10%以上、より好ましくは15%以上、特に好ましくは20%以上である。結晶化度を前記範囲の下限値以上にすることにより、樹脂Aの層に高い耐熱性、耐薬品性及び引張弾性率等の好ましい性質を付与することができる。前記の結晶化度の上限に特に制限は無いが、樹脂Aの層の透明性の観点から、好ましくは70%以下、より好ましくは60%以下、特に好ましくは50%以下である。重合体の結晶化度は、X線回折法によって測定しうる。
 樹脂Aの層の材料としての樹脂は、上述した重合体に組み合わせて、任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;などが挙げられる。また、任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合体Aは、好ましくは、固有複屈折値が正の脂環式構造含有重合体である。固有複屈折値が正の樹脂とは、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる樹脂を意味する。固有複屈折値は、誘電率分布から計算しうる。重合体Aとして、固有複屈折値が正の脂環式構造含有重合体を採用することにより、配向規制力の高さ、強度の高さ、コストの低さ、低い熱寸法変化率等の良好な特性を備えた樹脂Aの層を、容易に得ることができる。
 樹脂Aの層の光弾性係数の絶対値は、2.0×10-11Pa-1以下、より好ましくは1.0×10-11Pa-1以下、特に好ましくは6.0×10-12Pa-1以下である。光弾性係数とは、応力を受けたときに生じる複屈折の応力依存性を示す値であり、屈折率の差Δnが、応力σと光弾性係数Cの積(Δn=C・σ)で求められる関係を有する。光弾性係数の絶対値が、前記上限以下であることにより、衝撃を与えたり、曲面の表示面を有する表示装置に適合させるために変形させたりした場合であっても、良好な光学性能を発揮することができる。光弾性係数の測定は、温度20℃±2℃、湿度60±5%の条件下で、光弾性定数測定装置(ユニオプト社製 PHEL-20A)を用いて測定することができる。また、フィルムに50~150gの範囲で荷重を加えながら、フィルム面内のレターデーションをレターデーション測定装置(王子計測機器社製、「KOBRA-21ADH」)を用いて測定し、これをフィルムの厚みで割って複屈折値Δnを求め、荷重を変えながらΔnを求め、荷重-Δn曲線を作成し、その傾きを光弾性係数とすることもできる。樹脂Aの層の光弾性係数の下限値は、特に限定されないが、例えば0.5×10-12Pa-1以上としうる。
 樹脂Aの層は、加熱した場合のフィルム面内の熱寸法変化率の絶対値が特定の小さい値であることが好ましい。具体的には、150℃で1時間加熱した場合のフィルム面内の熱寸法変化率の絶対値が、好ましくは1%以下、より好ましくは0.5%以下、さらにより好ましくは0.1%以下である。熱寸法変化率の絶対値の下限は、特に限定されないが、理想的には0%としうる。樹脂Aの層は、通常、高温環境下において収縮するので、前記の熱寸法変化率は通常は負の値となる。このような低い熱寸法変化率の絶対値を有することにより、バリア層の形成による不具合の発生が抑制され、高品質な複層フィルムを容易に製造することができる。また、複層フィルムを、有機エレクトロルミネッセンス表示装置の構成要素として用いた場合、高い耐久性と優れた光学的性能を発揮することができる。
 樹脂Aの層等のフィルムの熱寸法変化率は、下記の方法により測定しうる。
 室温23℃の環境下で、フィルムを150mm×150mmの大きさの正方形に切り出し、試料フィルムとする。この試料フィルムを、150℃のオーブン内で60分間加熱し、23℃(室温)まで冷却した後、試料フィルムの四辺の長さ及び2本の対角線の長さを測定する。
 測定された四辺それぞれの長さを基に、下記式(I)に基づいて、試料フィルムの熱寸法変化率を算出する。式(I)において、Lは、加熱後の試料フィルムの辺の長さを示す。
 熱寸法変化率(%)=[(L-150)/150]×100 (I)
 また、測定された2本の対角線の長さを基に、下記式(II)に基づいて、試料フィルムの熱寸法変化率を算出する。式(II)において、Lは、加熱後の試料フィルムの対角線の長さを示す。
 熱寸法変化率(%)=[(L-212.13)/212.13]×100 (II)
 そして、得られた6つの熱寸法変化率の計算値の中で絶対値が最大になる値を、フィルムの熱寸法変化率として採用する。このような測定により得られる熱寸法変化率は、実質的に、面内の全ての方向において測定した熱寸法変化率の最大値となりうる。
 樹脂Aの層の複屈折Δnは、好ましくは0.0010以上、より好ましくは0.003以上である。複屈折Δnの上限は、特に限定されないが、通常0.1以下である。樹脂Aの層の複屈折が、前記下限値以上であることにより、所望の光学的性能を有しながら薄い複層フィルムを得ることができる。
 〔3.位相差フィルムの層構成〕
 本発明の複層フィルムは、長尺の形状を有するフィルムとして形成されることが、製造の効率の点から好ましい。具体的には、本発明の複層フィルムは、長尺の形状を有するフィルムとして形成され、これを必要に応じて表示装置の形状に適合する形状に切断して用いうる。そのような複層フィルムを製造する観点から、複層フィルムの製造に用いる位相差フィルムも、長尺の形状を有するフィルムであることが好ましい。
 位相差フィルムは、樹脂Aの層のみからなってもよく、樹脂Aの層に加えて、任意の層を備えてもよい。好ましい態様において、位相差フィルムは、位相差を有する層として、樹脂Aの層である1/4波長板のみを含むか、又は、樹脂Aの層として1/4波長板を含み、さらに1/2波長板を含む。以下の説明においては、前者を「1枚型」、後者を「2枚型」という場合がある。位相差フィルムの厚さは、通常、好ましくは1μm以上、より好ましくは3μm以上、通常、好ましくは500μm以下、より好ましくは200μm以下、特に好ましくは100μm以下である。2枚型の位相差フィルムにおいて、1/2波長板は、樹脂Aの層であっても、樹脂A以外の材料からなる層であってもよい。任意の層を構成する材料としては、光学フィルムの材料として知られた材料を適宜選択して用いうる。2枚型の位相差フィルムの厚さは、1/4波長板と1/2波長板の厚さの合計をいう。光学的性質及び1枚型または2枚型の位相差フィルムの機械的な補強の能力の観点からは、脂環式構造含有重合体を含む樹脂が好ましい。脂環式構造含有重合体を含む樹脂としては、市販品(例えば日本ゼオン社製、商品名「ゼオノア」;JSR社製、商品名「アートン」;三井化学社製、商品名「アペル」;Topas Advanced Polymers社製、商品名「TOPAS」)を用いうる。2枚型の位相差フィルムにおける1/2波長板の光弾性係数及び複屈折の好ましい範囲は、樹脂Aの層について上に述べた光弾性係数及び複屈折の範囲と同様としうる。
 位相差フィルムを構成する1/4波長板は、波長590nmの光で測定した面内レターデーションReが108nm以上、好ましくは116nm以上であり、且つ168nm以下、好ましくは156nm以下の層としうる。また、位相差フィルムが1/2波長板を含む場合、1/2波長板は、波長590nmの光で測定した面内レターデーションReが240nm以上、好ましくは250nm以上であり、且つ300nm以下、好ましくは280nm以下、より好ましくは270nm以下の層としうる。このような1/4波長板及び1/2波長板を含み、且つ位相差フィルム全体として1/4波長板として機能しうるよう、これらを構成することにより、広範囲の波長帯域において1/4波長板として機能する位相差フィルムを得ることができる。本発明においては、位相差フィルムそれ自体も、1/4波長板として機能しうるものであるが、以下の、1/2波長板と1/4波長板とを組み合わせた位相差フィルムに関する説明においては、文脈上明らかな場合は、位相差フィルムを構成する1/4波長板を、単に「1/4波長板」と称する。
 2枚型の位相差フィルムにおいて、1/2波長板の遅相軸および1/4波長板の遅相軸は、いずれも、複層フィルムの長尺方向に対して斜め方向であることが好ましい。長尺の容易に入手しうる長尺の直線偏光子の多くは、その幅手方向に透過軸を有する。このような直線偏光子と、そのような1/2波長板及び1/4波長板を備える位相差フィルムを組み合わせて採用することにより、広範囲の波長帯域において理想的な1/4波長板として機能する位相差フィルムを、特に容易に製造することができる。
 2枚型の位相差フィルムにおいて、1/2波長板の遅相軸と1/4波長板の遅相軸との交差角は、好ましくは55°以上、より好ましくは56°以上、さらにより好ましくは57°以上であり、好ましくは65°以下、より好ましくは64°以下、さらにより好ましくは63°以下である。交差角をこのような特定の範囲とすることにより、広範囲の波長帯域において理想的な1/4波長板として機能する位相差フィルムを、特に容易に製造することができる。
 2枚型の位相差フィルムにおいて、1/2波長板の厚さdh、及び前記1/4波長板の厚さdqの値、及びこれらの関係は、所望の機械的性質及び光学的性質が得られるよう適宜調整しうる。dh及びdqは、いずれも10μm以上50μm以下であり、且つこれらがdh≧dqの関係を満たすことが好ましい。位相差フィルムのdh及びdqをこのような範囲とすることにより、所望の光学的性質を有しながら、且つ薄い複層フィルムを、容易に形成することができる。具体的には、1/4波長板の表面にバリア層を形成する際、1/2波長板が1/4波長板を補強する層としての機能をも発現することができ、それにより高品質な複層フィルムの容易な形成が可能となる。
 位相差フィルムの全体としての全光線透過率は、好ましくは85%以上、より好ましくは92%以上である。上限は理想的には100%である。ここで、全光線透過率は、JIS K7361-1997に準拠して測定しうる。
 位相差フィルムは、ヘイズが小さいことが好ましい。具体的には、位相差フィルム全体としてのヘイズが、通常10%以下、好ましくは5%以下、より好ましくは1%以下である。下限値は理想的にはゼロであるが、通常は0.1%以上である。ここで、ヘイズは、JIS K7361-1997に準拠して測定しうる。
 位相差フィルムは、JIS鉛筆硬度で、Bまたはそれ以上の硬さを有することが好ましい。このJIS鉛筆硬度の制御は、例えば、基材の材料及び厚みを調節することにより行うことができる。なお、JIS鉛筆硬度は、JIS K5600-5-4に準拠して、各種硬度の鉛筆を45°傾けて、上から500g重の荷重をかけてフィルム表面を引っ掻き、傷が付きはじめる鉛筆の硬さである。
 〔4.位相差フィルムの製造方法〕
 位相差フィルムは、任意の製造方法により製造しうる。位相差フィルムが、樹脂Aの層のみからなる場合は、以下に説明する樹脂Aの製造方法により製造しうる。位相差フィルムが、樹脂Aの層及び任意の層を含む場合、これらの層を別々に調製し、貼合することにより、位相差フィルムを製造しうる。例えば、2枚型の位相差フィルムの場合、1/2波長板及び1/4波長板を別々に調製し、これらを貼合することにより、これらを含む位相差フィルムを製造しうる。
 位相差フィルムを構成する層の貼合は、それらの間に接着剤層を介在させることにより達成しうる。接着剤層の材料である接着剤は、狭義の接着剤(23℃における剪断貯蔵弾性率が1~500MPaであり、常温で粘着性を示さない、いわゆるホットメルト型の接着剤)のみならず、23℃における剪断貯蔵弾性率が1MPa未満である粘着剤をも包含する。具体的には、基板あるいは透明樹脂層に近い屈折率を有し、且つ透明であるものを適宜用いることができる。より具体的には、アクリル系接着剤あるいは粘着剤が挙げられる。接着剤層の厚みは、5~100μmであることが好ましい。
 1/2波長板及び1/4波長板は、いずれも、1回以上の斜め延伸を施された延伸フィルムであることが好ましい。即ち、1/2波長板及び1/4波長板は、1回以上の斜め延伸を含む製造方法により製造されたものであることが好ましい。かかる製造方法により、所望の光学的性質を有する複層フィルムを容易に製造することができる。そして、これらを貼合することにより、1/2波長板及び1/4波長板を含む位相差フィルムを製造することができる。
 2枚型の位相差フィルムの製造方法に用いる1/2波長板及び1/4波長板は、それぞれ、長尺のフィルムとして製造することが好ましい。これらを長尺のフィルムとして製造し、これらを、互いの長手方向を平行にして、適切な接着剤の層を介してロールツーロールで貼合することにより、長尺の位相差フィルムを効率的に製造することができ、これを用いて複層フィルムを効率的に製造することができる。
 〔5.樹脂Aの層としての1/4波長板の製造方法〕
 以下において、樹脂Aの層としての1/4波長板の製造方法の例を具体的に説明する。この製造方法により得られた1/4波長板は、1枚型の位相差フィルム、又は2枚型の位相差フィルムの構成要素として用いうる。この例における1/4波長板の製造方法は、以下の工程(i)~(iii)を含む製造方法である。
 工程(i):樹脂Aからなる樹脂フィルムとしての延伸前フィルムを用意する工程。
 工程(ii):延伸前フィルムを延伸して延伸フィルムを得る工程。
 工程(iii):延伸フィルムを平坦に維持しながら延伸フィルムの緊張を緩和させて1/4波長板を得る工程。
 また、この例における製造方法は、
 工程(iv):延伸フィルムを得た後、当該延伸フィルムの緊張を緩和させる前に、延伸フィルムに含まれる重合体Aの結晶化を促進する工程
 をさらに含むことが好ましい。
 〔5.1.工程(i)〕
 工程(i)は、射出成形法、押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、圧縮成形法等の樹脂成型法によって樹脂Aをフィルム状に成形することにより行いうる。これらの中でも、長尺の延伸前フィルムを効率的に製造でき、且つ厚みの制御が容易であることから、押出成形法が好ましい。
 押出成形法によって延伸前フィルムを製造する場合、その押出成形法における製造条件は、好ましくは下記の通りである。シリンダー温度(溶融樹脂温度)は、好ましくはTm以上、より好ましくはTm+20℃以上であり、好ましくはTm+100℃以下、より好ましくはTm+50℃以下である。また、キャストロール温度は、好ましくはTg-50℃以上であり、好ましくはTg+70℃以下、より好ましくはTg+40℃以下である。さらに、冷却ロール温度は、好ましくはTg-70℃以上、より好ましくはTg-50℃以上であり、好ましくはTg+60℃以下、より好ましくはTg+30℃以下である。このような条件で延伸前フィルムを製造することにより、厚さ1μm~1mmといった所望の厚さの延伸前フィルムを容易に製造できる。ここで、「Tm」は重合体Aの融点を表し、「Tg」は重合体Aのガラス転移温度を表す。
 工程(i)により製造する延伸前フィルムは、好ましくは、長尺のフィルムである。長尺のフィルムをさらなる工程に用いることにより、効率的な製造を行うことができる。
 〔5.2.工程(ii)〕
 工程(ii)において、延伸の方向は、位相差フィルムに求められる所望の配向方向に応じて適宜設定しうる。
 延伸方法に格別な制限は無く、任意の延伸方法を用いうる。延伸方法の例としては、延伸前フィルムを長手方向に一軸延伸する方法(縦一軸延伸法)、延伸前フィルムを幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;延伸前フィルムを長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、延伸前フィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法などの二軸延伸法;延伸前フィルムを幅方向に平行でもなく垂直でもない斜め方向に延伸する方法(斜め延伸法);及びこれらの組み合わせが挙げられる。特に、上に述べた通り、1回以上の斜め延伸を含む延伸が好ましい。
 前記の縦一軸延伸法としては、例えば、ロール間の周速の差を利用した延伸方法などが挙げられる。
 また、前記の横一軸延伸法としては、例えば、テンター延伸機を用いた延伸方法などが挙げられる。
 さらに、前記の同時二軸延伸法としては、例えば、ガイドレールに沿って移動可能に設けられ且つ延伸前フィルムを固定しうる複数のクリップを備えたテンター延伸機を用いて、クリップの間隔を開いて延伸前フィルムを長手方向に延伸すると同時に、ガイドレールの広がり角度により延伸前フィルムを幅方向に延伸する延伸方法などが挙げられる。
 また、前記の逐次二軸延伸法としては、例えば、ロール間の周速の差を利用して延伸前フィルムを長手方向に延伸した後で、その延伸前フィルムの両端部をクリップで把持してテンター延伸機により幅方向に延伸する延伸方法などが挙げられる。
 さらに、前記の斜め延伸法としては、例えば、延伸前フィルムに対して長手方向又は幅方向に左右異なる速度の送り力、引張り力又は引取り力を付加しうるテンター延伸機を用いて延伸前フィルムを斜め方向に連続的に延伸する延伸方法などが挙げられる。
 延伸前フィルムを延伸する場合の延伸温度は、好ましくは(Tg-30℃)以上、より好ましくは(Tg-20℃)以上、特に好ましくは(Tg-10℃)以上であり、好ましくは(Tg+60℃)以下、より好ましくは(Tg+50℃)以下、特に好ましくは(Tg+40℃)以下である。ここで、「Tg」は重合体Aのガラス転移温度を表す。このような温度範囲で延伸を行うことにより、延伸フィルムに含まれる重合体分子を適切に配向させることができる。
 延伸前フィルムを延伸する場合の延伸倍率は、1/4波長板としての性質が発現するよう適宜調整しうる。延伸倍率は、好ましくは1.1倍以上、より好ましくは1.2倍以上、特に好ましくは1.5倍以上であり、好ましくは20倍以下、より好ましくは10倍以下、特に好ましくは5倍以下である。ここで、例えば二軸延伸法のように異なる複数の方向に延伸を行う場合、前記の延伸倍率は、各延伸方向における延伸倍率の積で表される総延伸倍率のことを示す。延伸倍率を前記範囲の上限値以下にすることにより、フィルムが破断する可能性を小さくできるので、1/4波長板の製造を容易に行うことができる。
 〔5.3.工程(iv)〕
 工程(iii)の後、工程(iv)の結晶化促進工程を行うことが好ましい。結晶化を促進することにより、本発明の複層フィルムを構成するための所望の性質を有する位相差フィルムを得ることができる。
 結晶化の促進は、延伸フィルムを所定の温度に調整することで行いうる。結晶化を促進する際の温度範囲は、重合体Aのガラス転移温度Tg以上、重合体Aの融点Tm以下の温度範囲において任意に設定しうる。中でも、前記の温度範囲は、結晶化の速度が大きくなるように設定することが好ましく、具体的には、好ましくはTg+20℃以上、より好ましくはTg+30℃以上であり、好ましくはTm-20℃以下、より好ましくはTm-40℃以下である。結晶化を促進する際の温度を前記範囲の下限値以上にすることにより結晶化を効果的に促進でき、また、上限値以下にすることにより1/4波長板の白濁を抑制できる。
 延伸フィルムを前記のような温度にする場合、通常、延伸フィルムの加熱を行う。この際に用いる加熱装置としては、延伸フィルムの雰囲気温度を上昇させる加熱装置が好ましい。好適な加熱装置の具体例を挙げると、オーブン及び加熱炉が挙げられる。そのような加熱装置による加熱では、延伸フィルムとの接触が不要であるため、均一な加熱を行うことができる。
 結晶化の促進は、延伸フィルムの形状を保持して緊張させた状態で行うことが好ましい。これにより、結晶化の促進時における延伸フィルムの熱収縮による変形を抑制できるので、延伸フィルムの平滑性を損なうことなく当該延伸フィルム中の重合体の結晶化を促進できる。ここで、延伸フィルムを緊張させた状態とは、延伸フィルムに張力がかかった状態をいう。ただし、この延伸フィルムを緊張させた状態には、延伸フィルムが実質的に延伸される状態を含まない。また、実質的に延伸されるとは、延伸フィルムのいずれかの方向への延伸倍率が通常1.1倍以上になることをいう。
 延伸フィルムを保持する場合、適切な保持具によって延伸フィルムを保持する。保持具は、延伸フィルムを連続的に保持しうるものでもよく、間隔を空けて間欠的に保持しうるものでもよい。例えば、所定の間隔で配列された保持具によって延伸フィルムを間欠的に保持してもよい。
 延伸フィルムは、例えば当該延伸フィルムの二辺以上で保持されることによって、緊張した状態にされうる。これにより、保持されて緊張した状態となった領域において延伸フィルムの熱収縮による変形が妨げられる。延伸フィルムの広い面積において変形を妨げるためには、延伸フィルムは、対向する二辺を含む辺で保持されて、その保持された辺の間の領域を緊張した状態にされることが好ましい。例えば、矩形の枚葉の延伸フィルムでは、その延伸フィルムの対向する二辺(例えば、長辺同士、又は、短辺同士)で保持されて、前記二辺の間の領域を緊張した状態にされることで、その枚葉の延伸フィルムの全面において変形が妨げられる。また、例えば、長尺の延伸フィルムでは、その延伸フィルムの幅方向の端部にある二辺(即ち、長辺)で保持されて前記二辺の間の領域を緊張した状態にされることで、その長尺の延伸フィルムの全面において変形が妨げられる。このように変形を妨げられた延伸フィルムは、熱収縮によってフィルム内に応力が生じても、シワ等の変形の発生が抑制される。この際、例えば延伸方向(二軸延伸の場合は延伸倍率が大きい方向)と直交する二辺を含む辺で延伸フィルムが保持されることにより延伸方向に張力が与えられて延伸フィルムが緊張させられると、変形が特に効果的に抑制される。
 結晶化の促進による変形を効果的に抑制するためには、より多くの辺で延伸フィルムが保持されることが好ましい。よって、例えば、枚葉の延伸フィルムは、その全ての辺で保持されることが好ましい。具体例を挙げると、矩形の枚葉の延伸フィルムは、四辺で保持されることが好ましい。
 延伸フィルムを辺で保持しうる保持具としては、延伸フィルムの辺以外の部分では延伸フィルムと接触しないものが好ましい。このような保持具を用いることにより、より平滑性に優れる1/4波長板を得ることができる。
 また、保持具としては、保持具同士の相対的な位置を結晶化促進工程においては固定しうるものが好ましい。このような保持具は、結晶化促進工程において保持具同士の位置が相対的に移動しないので、延伸フィルムの実質的な延伸及び収縮を抑制しやすい。
 好適な保持具としては、例えば、矩形の延伸フィルム用の保持具として、型枠に所定間隔で設けられ延伸フィルムの辺を把持しうるクリップ等の把持子が挙げられる。また、例えば、長尺の延伸フィルムの幅方向の端部にある二辺を保持するための保持具としては、テンター延伸機に設けられ延伸フィルムの辺を把持しうる把持子が挙げられる。
 長尺の延伸フィルムは、その延伸フィルムの長手方向の端部にある辺(即ち、短辺)で保持されてもよいが、前記の辺で保持される代わりに、延伸フィルムが結晶化の促進のために所定の温度に調整される処理領域の長手方向の両側で保持されてもよい。例えば、延伸フィルムの処理領域の長手方向の両側に、延伸フィルムを熱収縮しないように保持して緊張させた状態にしうる保持装置を設けてもよい。このような保持装置としては、例えば、2つのロールの組み合わせ、押出機と引き取りロールとの組み合わせ、などが挙げられる。これらの組み合わせによって延伸フィルムに搬送張力等の張力を加えることで、結晶化の促進が行われる処理領域において当該延伸フィルムの熱収縮を抑制できる。そのため、前記の組み合わせを保持装置として用いれば、延伸フィルムを長手方向に搬送しながら当該延伸フィルムを保持できるので、1/4波長板の効率的な製造ができる。
 また、結晶化促進化工程により、高温環境下における寸法変化の原因となり得るフィルム内の応力が解消されている。このために、熱膨張が小さく、熱寸法変化率が小さい1/4波長板の製造ができる。
 延伸フィルムを結晶化の促進のための所定の温度に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは10分以下である。処理時間を前記範囲の下限値以上にすることにより、延伸フィルムが含む重合体の結晶化を十分に進行させて、1/4波長板の耐熱性を効果的に高めることができる。また、処理時間を前記範囲の上限値以下にすることにより、1/4波長板の白濁を抑制できる。
 〔5.4.工程(iii)〕
 工程(ii)の後、必要に応じて工程(iv)を行った後で、延伸フィルムから残留応力を除去するために、工程(iii)を行う。
 延伸フィルムの緊張の緩和、とは、延伸又は結晶化促進のために延伸機又は保持装置によって保持されて緊張した状態から延伸フィルムを解放することをいい、延伸フィルムが緊張していなければ延伸フィルムが保持装置で保持されていてもよい。このように緊張が緩和されると、延伸フィルムは熱収縮を生じうる状態となる。緩和工程では、延伸フィルムに熱収縮を生じさせることによって、1/4波長板に加熱時において生じうる応力を解消している。そのため、1/4波長板の高温環境下での熱収縮を小さくできるので、高温環境下での寸法安定性に優れる1/4波長板が得られる。
 延伸フィルムの緊張の緩和は、一時に行ってもよく、時間をかけて連続的又は段階的に行ってもよい。ただし、得られる1/4波長板の波打ち及びシワ等の変形の発生を抑制するためには、緊張の緩和は、連続的又は段階的に行うことが好ましい。
 前記の延伸フィルムの緊張の緩和は、延伸フィルムを平坦に維持しながら行う。ここで延伸フィルムを平坦に維持する、とは、延伸フィルムに波打ち及びシワといった変形を生じないように延伸フィルムを平面形状に保つことをいう。これにより、得られる1/4波長板の波打ち及びシワ等の変形の発生を抑制できる。
 緊張の緩和の際の延伸フィルムの処理温度は、重合体Aのガラス転移温度Tg以上、重合体Aの融点Tm以下の温度範囲において設定しうる。具体的な処理温度は、好ましくはTg+20℃以上、より好ましくはTg+30℃以上であり、好ましくはTm-20℃以下、より好ましくはTm-40℃以下である。また、結晶化促進工程から冷却を経ずに引き続いて緩和工程を行う場合には、緩和工程における延伸フィルムの処理温度は、結晶化促進工程での温度と同じであることが好ましい。これにより、緩和工程における延伸フィルムの温度ムラを抑制したり、1/4波長板の生産性を高めたりできる。
 緩和工程において、延伸フィルムを前記の温度範囲に維持する処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは10分間以下である。処理時間を前記範囲の下限値以上にすることにより、1/4波長板の高温環境下での寸法安定性を効果的に高めることができる。また、上限値以下にすることにより、1/4波長板の高温環境下での寸法安定性を効果的に高めることができ、また、緩和工程における結晶化の進行による1/4波長板の白濁を抑制することができる。
 緩和工程において枚葉の延伸フィルムの緊張を緩和する場合、例えば、その延伸フィルムの四辺を保持しながら、保持部分の間隔を連続的又は段階的に狭める方法を採用しうる。この場合、延伸フィルムの四辺において保持部分の間隔を同時に狭めてもよい。また、一部の辺において保持部分の間隔を狭めた後で、別の一部の辺の保持部分の間隔を狭めてもよい。さらに、一部の辺の保持部分の間隔を狭めないで維持してもよい。また、一部の辺の保持部分の間隔は連続的又は段階的に狭め、別の一部の辺の保持部分の間隔を一時に狭めてもよい。
 また、前記のような緩和工程において長尺の延伸フィルムの緊張を緩和する場合、例えば、テンター延伸機を用いて、クリップを案内しうるガイドレールの間隔を延伸フィルムの搬送方向において狭めたり、隣り合うクリップの間隔を狭めたりする方法を採用しうる。
 前記のように、延伸フィルムを保持した状態で保持部分の間隔を狭めることで延伸フィルムの緊張の緩和を行う場合、間隔を狭める程度は、延伸フィルムに残留していた応力の大きさに応じて設定しうる。緩和工程において保持間隔を狭める具体的な程度は、緩和工程での処理温度において延伸フィルムに緊張を与えない状態での熱収縮率をS(%)とした場合に、好ましくは0.1S以上、より好ましくは0.5S以上、特に好ましくは0.7S以上であり、好ましくは1.2S以下、より好ましくは1.0S以下、特に好ましくは0.95S以下である。また、例えば直交する2方向で熱収縮率Sが異なる場合のように、前記熱収縮率Sに異方性がある場合は、各々の方向について前記範囲内で保持間隔を狭める程度を定めうる。このような範囲にすることで、1/4波長板の残留応力を十分に除去し、かつ平坦性を維持させることができる。
 前記の熱収縮率Sは、下記の方法により測定しうる。
 室温23℃の環境下で、延伸フィルムを150mm×150mmの大きさの正方形に切り出し、試料フィルムとする。この試料フィルムを、緩和工程の処理温度と同じ温度に設定したオーブン内で60分間加熱し、23℃(室温)まで冷却した後、試料フィルムの熱収縮率Sを求めたい方向に平行な二辺の長さを測定する。
 測定された二辺それぞれの長さを基に、下記式(A)に基づいて、試料フィルムの熱収縮率Sを算出する。式(A)において、Lは、加熱後の試料フィルムの測定した二辺の一方の辺の長さを示し、Lはもう一方の辺の長さを示す。
 熱収縮率S(%)=[(300-L-L)/300]×100 (A)
 〔6.位相差フィルムの、他の層の製造方法〕
 位相差フィルムを構成する層のうち、樹脂Aの層以外の層は、既知の方法等の任意の方法により製造しうる。例えば、1/2波長板は、脂環式構造含有重合体を含む樹脂のフィルムを、所望の位相差が発現するよう延伸することにより製造しうる。
 〔7.バリア層〕
 本発明の複層フィルムにおいて、バリア層は、前記位相差フィルムの表面の、樹脂Aの層上に直接設けられた層である。
 バリア層は、有機材料を含む有機バリア層であってもよく、無機材料を含む無機バリア層であってもよく、これらを組み合わせたバリア層であってもよい。また、バリア層は、1層のみを備える単層構造の層であってもよく、2層以上を備える複層構造の層であってもよい。例えば、有機バリア層及び無機バリア層を厚み方向において交互に備える複層構造の層としうる。
 本願においては、バリア層は、無機バリア層を1層以上含む層であることが好ましい。具体的には、1層の無機バリア層のみからなるか、2層以上の無機バリア層からなるか、又は、無機バリア層と有機バリア層との組み合わせであることが好ましい。一般的に、無機バリア層を1層以上含むことにより、良好なバリア性能を発現することができる一方、バリア層の形成の際の条件により樹脂製のフィルムを変形させる可能性があるところ、本願においては、位相差フィルムとして上に述べた特定のものを採用することにより、そのような変形を低減させることができる。
 有機バリア層に含まれうる有機材料としては、例えば、ポリビニルアルコール、エチレンービニルアルコール共重合体、塩化ビニリデン等の、ガスバリア性重合体を含む樹脂が挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 このような有機バリア層は、例えば、ガスバリア性重合体及び溶媒を含む樹脂溶液を位相差フィルム上に塗布し、乾燥させる方法により、形成しうる。また、有機バリア層は、例えば、ガスバリア性重合体の単量体を含む膜を位相差フィルム上に形成し、この膜において単量体を重合させる方法により、形成しうる。
 無機バリア層に含まれうる無機材料としては、例えば、無機酸化物が挙げられる。この無機酸化物としては、例えば、金属酸化物、非金属酸化物、亜金属酸化物等が挙げられる。その具体例を挙げると、酸化アルミニウム、酸化亜鉛、酸化アンチモン、酸化インジウム、酸化カルシウム、酸化カドミウム、酸化銀、酸化金、酸化クロム、酸化珪素、酸化コバルト、酸化ジルコニウム、酸化錫、酸化チタン、酸化鉄、酸化銅、酸化ニッケル、酸化白金、酸化パラジウム、酸化ビスマス、酸化マグネシウム、酸化マンガン、酸化モリブデン、酸化バナジウム、酸化バリウム等が挙げられ、中でも酸化珪素が特に好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。さらに、無機材料としては、前記の無機酸化物に組み合わせて、例えば、金属、非金属、亜金属単体及びそれらの水酸化物;並びに、可撓性を向上させるための炭素又はフッ素;などの配合剤を用いてもよい。
 無機バリア層は、例えば、無機酸化物を基材フィルム上に蒸着する方法により、形成しうる。蒸着方法としては、例えば、真空蒸着法、真空スパッタ法、イオンプレーティング法、CVD法等の方法を用いうる。
 無機バリア層の形成方法のより具体的な例を、それを行う装置の例を参照して説明する。図2は、図1に示す本発明の複層フィルムを製造するために、無機バリア層をCVDにより成膜する装置の一例を示す断面図である。図2において、成膜装置200は、フィルム巻き取り式のプラズマCVD装置であり、長尺の位相差フィルム109のロール体201から繰り出される位相差フィルム109に、CVDにて無機バリア層を連続的に成膜して複層フィルム110とし、これをロール体202として巻き取る一連の操作を行なう。
 成膜装置200は、ガイドロール211、キャンロール212、及びガイドロール213を有し、これにより、繰り出された位相差フィルム109を矢印A21で示される向きに導き、製造工程に供することができる。ガイドロール211、キャンロール212、及びガイドロール213の位置及びこれらが位相差フィルム109に賦与する張力を適宜調整することにより、位相差フィルム109は、キャンロール212により導かれる間、キャンロール212に密着した状態とされる。
 キャンロール212は、矢印A22で示す方向に回転し、その上の位相差フィルム109は、反応管221に近づいた状態で搬送される。その際、電源223から電極222に電力を印加し、一方、キャンロール212を適切な接地装置(不図示)により接地し、かつガス導入口224から矢印A23の方向に無機バリア層の材料のガスを導入する。これにより、位相差フィルム109の面上に無機バリア層を連続的に形成することができる。かかる一連の操作は、真空槽290で囲繞された空間内で行なわれる。真空槽290内の圧力は、真空排気装置230を操作することにより減圧し、CVDに適した圧力に調整しうる。
 一般に、基材フィルムにこのような工程により無機バリア層を形成する場合において、かかる形成を高出力で実施すると、キャンロールからの基材フィルムの浮きが発生し易く、良好な無機バリア層の連続的な形成が困難である。また、特に基材フィルムとして、膜厚の薄いものを用いた場合、基材フィルムの変形を伴わずに高出力の無機バリア層形成を高速で行うことが特に困難である。ここで、位相差フィルムとして、樹脂Aの層である1/4波長板と、追加の層としての1/2波長板とを組み合わせたものを採用することにより、樹脂Aの耐熱性と、それを補強する追加の層の機械的強度のために、位相差フィルムを、無機バリア層の連続的な形成の基材として用いることが可能となる。その結果、従来の位相差フィルムとバリア積層体との組み合わせよりも少ない構成要素で、同等の機能及び品質を有する複層フィルムを、容易に製造することができる。
 バリア層全体の厚みは、好ましくは1nm以上、より好ましくは5nm以上、特に好ましくは10nm以上であり、好ましくは30μm以下、より好ましくは10μm以下、特に好ましくは5μm以下である。バリア層の厚みを前記範囲の下限値以上にすることにより、バリア層のガスバリア性能を高めることができ、また、上限値以下にすることにより、バリア層の厚みを薄くできる。
 バリア層として、有機バリア層及び無機バリア層を組み合わせて設ける場合、有機バリア層および無機バリア層の厚みは特に限定されないが、各バリア層の厚みは、5nm~1000nmが好ましく、より好ましくは10nm~1000nmであり、特に好ましくは10nm~200nmである。各バリア層の厚みを前記範囲の下限値以上にすることにより、膜が島状に分布することを抑制して、水蒸気バリア性を向上させることができる。また、上限値以下にすることにより、曲げ応力によるクラックを抑制して、これによっても水蒸気バリア性を向上させることができる。特に、有機バリア層の厚みを前記範囲の下限値以上にすることにより、厚みの均一性を容易に高めることができるので、無機バリア層の構造欠陥を効率よく有機バリア層で埋めることができ、バリア性の向上を得やすい。また、有機バリア層の厚みを前記範囲の上限値以下にすることにより、曲げ等の外力により有機バリア層にクラックが発生することを抑制できるので、バリア性の低下を抑制できる。
 〔8.複層フィルムの製造方法〕
 本発明の複層フィルムの製造方法は、特に限定されず、既知の技術を組み合わせた製造方法により適宜製造しうる。
 本発明の複層フィルムにおいて、位相差フィルムが樹脂Aの層として1/4波長板を含み、さらに1/2波長板を含む場合、かかる複層フィルムは、好ましくは以下の工程(a)及び(b)を含む製造方法により製造しうる。
 工程(a):1/2波長板と1/4波長板とを、接着剤を介して貼合し、これらを含む位相差フィルムを形成する工程。
 工程(b):位相差フィルムの、1/4波長板側の面に直接、バリア層を形成する工程。
 工程(a)の具体的な操作、及び工程(a)において用いる接着剤としては、例えば上に述べたものを用いうる。また、工程(b)は、例えば、上に述べたバリア層の形成方法により行いうる。
 〔9.複層フィルムの物性〕
 本発明の複層フィルムは、その水蒸気透過率が低いことが好ましい。具体的には、水蒸気透過率は、好ましくは0.01g/(m・日)以下、より好ましくは0.005g/(m・日)以下、さらにより好ましくは0.003g/(m・日)以下である。水蒸気透過率の下限は特に限定されないが、理想的にはゼロg/(m・日)である。低い水蒸気透過率を有することにより、有機エレクトロルミネッセンス表示装置における発光層等の層の劣化を効果的に抑制することができ、表示装置のダークスポットの発生を抑制することができる。そのような低い水蒸気透過率は、バリア層等の、複層フィルムを構成する層の材料を適宜選択することにより達成しうる。水蒸気透過率は、水蒸気透過度測定装置(製品名:「PERMATRAN-W」、MOCON社製)を用い、JIS K 7129 B-1992に準じて温度40℃、90%RHの条件にて測定しうる。
 本発明の複層フィルムの面内レターデーションReは、23℃における波長590nmの光で測定した値として、好ましくは140nm以上、より好ましくは145nm以上であり、一方好ましくは155nm以下、より好ましくは150nm以下である。また、23℃における波長450nmの光で測定した値として、好ましくは108nm以上、より好ましくは110nm以上であり、一方好ましくは115nm以下、より好ましくは113nm以下である。さらに、23℃における波長650nmの光で測定した値として、好ましくは158nm以上、より好ましくは160nm以上であり、一方好ましくは168nm以下、より好ましくは165nm以下である。本発明の複層フィルムが、かかる面内レターデーションReを有することにより、有機エレクトロルミネッセンス表示装置において、反射防止等の機能を良好に発現することができる。
 〔10.複層フィルムの用途〕
 本発明の複層フィルムは、有機エレクトロルミネッセンス表示装置用の複層フィルムである。具体的には、複層フィルムのバリア能と、光学的性質を生かした各種の用途に用いうる。好ましい用途の例としては、以下に述べる円偏光板及び反射防止フィルムとしての用途が挙げられる。
 〔11.円偏光板〕
 本発明の円偏光板は、前記本発明の複層フィルムと、複層フィルムのバリア層とは反対側の面に設けられた直線偏光子とを備える。
 直線偏光子としては、有機エレクトロルミネッセンス表示装置、液晶表示装置、及びその他の光学装置等の装置に用いられている既知の偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるもの、及びポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるものが挙げられる。直線偏光子の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうちポリビニルアルコールを含有する偏光子が好ましい。また、直線偏光子としては、市販の製品(例えばサンリッツ社製、商品名「HLC2-5618S」、「LLC2-9218S」、「HLC2-2518)、日東電工社製、商品名「TEG1465DU」、「SEG1423DU」、「SEG5425DU」等)を用いうる。
 本発明に用いる偏光子に自然光を入射させると一方の偏光だけが透過する。本発明に用いる偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。偏光子の平均厚みは好ましくは5~80μmである。
 本発明の円偏光板は、長尺の複層フィルムと、長尺の直線偏光子とを、互いの長手方向を平行にして、ロールツーロールで貼合して製造することが好ましい。ロールツーロールでの貼合とは、長尺のフィルムのロールからフィルムを繰り出し、これを搬送し、搬送ライン上で他のフィルムとの貼合の工程を行い、さらに得られた貼合物を巻き取りロールとする態様の貼合をいう。例えば、直線偏光子と複層フィルムとを貼合する場合、長尺の複層フィルムのロールから複層フィルムを繰り出し、これを搬送し、搬送ライン上で直線偏光子との貼合の工程を行い、得られた貼合物を巻き取りロールとすることにより、ロールツーロールでの貼合を行いうる。この場合において、直線偏光子も、ロールから繰り出して貼合の工程に供給しうる。複層フィルムと貼合する直線偏光子としては、予め偏光子保護フィルムと貼合された複層構造の状態のものを用い、これを貼合してもよい。
 本発明の円偏光板においては、直線偏光子の複層フィルムが貼合されていない面に、別の偏光子保護フィルムが貼合されていることが好ましい。本発明の複層フィルムと偏光子保護フィルムの剛性はともに300kPa・m以下で、かつ湾曲性が10mm以上50mm以下であるものが好ましい。ここで剛性とはフィルムの引張り弾性率(Pa)とフィルム厚み(m)との積として算出される値である。直線偏光子両面の保護フィルム(即ち、直線偏光子の一方の面側に設けられた本発明の複層フィルムと、その反対側の偏光子保護フィルム)の剛性の差が20~200kPa・mであることがより好ましい。本発明の複層フィルムと組み合わせて用いうる偏光子保護フィルムの例としては、日本ゼオン社製;ゼオノアフィルム、コニカミノルタ社製;液晶偏光板用TACフィルム、富士フイルム社製;フジタックなどを用いうる。単層フィルムでも多層フィルムでもよい。本発明の複層フィルムが、湾曲性を有することで偏光子の両面に保護フィルムを有する可撓性のある偏光板となり、曲面を有する表示装置とすることができる。曲面を有する表示装置は、例えば、加飾性・デザイン性に優れ、また液晶表示装置がスマートフォンなどの携帯デバイスである場合、掌でしっかり持つことができる。
 〔12.反射防止フィルム〕
 本発明の反射防止フィルムは、前記本発明の円偏光板を含む。本発明の反射防止フィルムは、円偏光板に加えて、偏光子保護フィルム等の任意の構成要素を含んでもよいが、円偏光板のみからなっていてもよい。
 本発明の反射防止フィルムは、直線偏光子、1/2波長板、樹脂Aの層としての1/4波長板、及びバリア層をこの順に備える。さらに、本発明の反射防止フィルムにおいて、直線偏光子の偏光透過軸と、1/2波長板の遅相軸とがなす角度は、10°以上20°以下であるか、又は70°以上80°以下である。このような角度関係を有する反射防止フィルムを、有機エレクトロルミネッセンス表示装置の表示面に設けることにより、表示面におけるぎらつき及び外光の写り込みを効果的に抑制することができる。
 本発明にかかるある製品又はその構成要素(位相差フィルム、複層フィルム、円偏光板、反射防止フィルム及び表示装置等)において、面内の光学軸(遅相軸、透過軸、透過軸等)の方向及び幾何学的方向(フィルムの長手方向及び幅手方向等)の角度関係は、ある方向のシフトを正、他の方向のシフトを負として規定され、当該正及び負の方向は、当該製品内の構成要素において共通に規定される。例えば、ある円偏光板において、「直線偏光子の透過軸の方向に対する1/2波長板の遅相軸の方向が15°であり直線偏光子の透過軸の方向に対する1/4波長板の遅相軸の方向が75°である」とは、下記の2通りの場合を表す:
 ・当該円偏光板を、そのある一方の面から観察すると、1/2波長板の遅相軸の方向が、直線偏光子の透過軸の方向から時計周りに15°シフトし、且つ1/4波長板の遅相軸の方向が、直線偏光子の透過軸の方向から時計周りに75°シフトしている。
 ・当該円偏光板を、そのある一方の面から観察すると、1/2波長板の遅相軸の方向が、直線偏光子の透過軸の方向から反時計周りに15°シフトし、且つ1/4波長板の遅相軸の方向が、直線偏光子の透過軸の方向から反時計周りに75°シフトしている。
 本発明の反射防止フィルムの好ましい例としては、以下の例(A)及び例(B)が挙げられる。例(A)又は例(B)の構成を採用することにより、有機エレクトロルミネッセンス表示装置の表示面におけるぎらつき及び外光の写り込みを、さらに効果的に抑制することができる。
 例(A):直線偏光子の透過軸の方向に対する1/2波長板の遅相軸の方向が略15°であり直線偏光子の透過軸の方向に対する1/4波長板の遅相軸の方向が略75°である。
 例(B):直線偏光子の透過軸の方向に対する1/2波長板の遅相軸の方向が略75°であり直線偏光子の透過軸の方向に対する1/4波長板の遅相軸の方向が略15°である。
 本願において「略15°」とは、15°又はそれに近い角度であり、好ましくは10~20°、より好ましくは11~19°、さらにより好ましくは12~18°である。一方、「略75°」とは、75°又はそれに近い角度であり、好ましくは70~80°、より好ましくは71~79°、さらにより好ましくは72~78°である。
 本発明の反射防止フィルムは、入射角0°での反射率Rと方位角0°における入射角10°での反射率R10(0deg)との比R/R10(0deg)、および方位角180°における入射角10°での反射率R10(180deg)との比R/R10(180deg)が、いずれも0.95以上である。反射率R、反射率R10(0deg)、及び反射率R10(180deg)の測定は、分光光度計V7200と絶対反射率ユニットVAP7020(日本分光株式会社製)とを用いて測定しうる。このような反射率の比率を有することにより、正面方向及び方位角0°、180°における斜め方向の両方において均一性の高い反射防止効果が得られ、特に曲面を有する表示装置において優れた効果が得られる。このような反射率の比率を有する反射防止フィルムは、反射防止フィルムを構成する各部材の厚さを薄くすること、および、可撓性を有する部材を選定することにより得られる。反射率R10(0deg)及び反射率R10(180deg)の測定の方位角の基準(方位角0°)となる方向は、フィルム面内の任意の方向としうる。即ち、ある反射防止フィルム面内のいずれか一の方向を方位角の基準とした場合において、R、R10(0deg)及びR10(180deg)が前記要件を満たす場合、当該反射防止フィルムは、この反射率に関する要件を満たすものとしうる。特に、直線偏光子の吸収軸の方向を基準とした場合に当該要件を満たすことが好ましい。
 〔13.有機エレクトロルミネッセンス表示装置〕
 本発明の有機エレクトロルミネッセンス表示装置は、前記本発明の反射防止フィルムを備える。
 図3は、本発明の有機エレクトロルミネッセンス表示装置の一例を概略的に示す断面図である。図3において、有機エレクトロルミネッセンス表示装置10は、基板131と、基板131上に形成された発光素子132と、発光素子132を封止する封止材層133とを備える。発光素子132は、通電のための電極、通電されることにより発光しうる発光材料を含む発光層、及びその他の構成要素(いずれも不図示)を備える。封止材層133の上面133Uに、本発明の反射防止フィルム100が設けられる。反射防止フィルム100は、図1において示した本発明の複層フィルム110と、その上側(1/2波長板112側)の面に設けられた直線偏光子121とを含む。反射防止フィルム100は、その下側(バリア層113側)の面113Dにおいて、封止材層133に接している。有機エレクトロルミネッセンス表示装置10はさらに、反射防止フィルム100の上側の面に、直線偏光子121を保護する保護フィルム134を有する。有機エレクトロルミネッセンス表示装置10においては、保護フィルム134の上側の面134Uが、装置内から装置外へ光が出光する出光面となる。バリア層113と封止材層133は、例えば封止材層133に粘着性がある場合は、接着剤層等を介さず直接貼合することもできるが、必要に応じて、これらの間に介在しこれらを接着する接着剤層がさらに設けられていてもよい。また、直線偏光子121と保護フィルム134との間にも、必要に応じてこれらを接着する接着剤層がさらに設けられていてもよい。接着剤層は、特に限定されず、例えば1/4波長板114と1/2波長板112との間に介在する接着剤層111と同様のものとしうる。
 有機エレクトロルミネッセンス表示装置10において、装置外部から表示面134Uに入射した外光の一部は、発光素子132等の、装置内の構成要素において反射され、表示面134Uから出光しうる。そのような反射光は、観察者により、ぎらつき又は外光の写り込みとして認識される。本発明の有機エレクトロルミネッセンス表示装置10は、反射防止フィルム100を備えることにより、かかるぎらつき又は外光の写り込みを抑制することができる。具体的には、装置外部から入射した光は、その一部の直線偏光のみが偏光板を通過し、次にそれが位相差フィルムを通過することにより円偏光となる。円偏光は、表示装置内の光を反射する構成要素により反射され、再び位相差フィルムを通過することにより、入射した直線偏光の偏光軸と並行でない方向に偏光軸を有する直線偏光となる。この結果、装置外部へ出光する反射光が少なくなり、反射防止の機能が達成される。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
 以下の操作において、フィルムを巻き取りロールを形成する際には、必要に応じて、巻き取り対象のフィルムを、マスキングフィルム(例えばトレデガー社製、FF1025)と貼り合わせ、表面を保護した状態で巻き取りを行った。そしてそのフィルムの使用にあたっては、操作の適当な段階において、マスキングフィルムは剥離した。
 また、以下の説明において、「sccm」は気体の流量の単位であり、1分間当たりに流れる気体の量を、その気体が25℃、1atmである場合の体積(cm)で示す。
 〔評価方法〕
 (光弾性係数)
 光弾性係数の測定は、フィルムに50~150gの範囲で荷重を加えながら、フィルム面内のレターデーションをレターデーション測定装置(王子計測機器社製、「KOBRA-21ADH」)を用いて測定し、これをフィルムの厚みで割って複屈折値Δnを求め、荷重を変えながらΔnを求め、荷重-Δn曲線を作成し、その傾きから光弾性係数を求めた。
 (熱寸法変化率)
 室温23℃の環境下で、フィルムを150mm×150mmの大きさの正方形に切り出し、試料フィルムとした。この試料フィルムを、150℃のオーブン内で60分間加熱し、23℃(室温)まで冷却した後、試料フィルムの四辺の長さ及び2本の対角線の長さを測定した。
 測定された四辺それぞれの長さを基に、下記式(I)に基づいて、試料フィルムの熱寸法変化率を算出した。式(I)において、LAは、加熱後の試料フィルムの辺の長さを示す。
 熱寸法変化率(%)=[(LA-150)/150]×100 (I)
 また、測定された2本の対角線の長さを基に、下記式(II)に基づいて、試料フィルムの熱寸法変化率を算出した。式(II)において、LDは、加熱後の試料フィルムの対角線の長さを示す。
 熱寸法変化率(%)=[(LD-212.13)/212.13]×100 (II)
 そして、得られた6つの熱寸法変化率の計算値の中で絶対値が最大になる値を、フィルムの熱寸法変化率として採用した。
 (複層フィルムの水蒸気透過率)
 水蒸気透過度測定装置(製品名:「PERMATRAN-W」、MOCON社製)を用い、JIS K 7129 B-1992に準じて温度40℃、90%RHの条件にて水蒸気透過率を測定した。この測定器の検出限界値は0.01g/(m・日)である。
 (複層フィルムの面状)
 実施例及び比較例で得られた複層フィルムの面状を目視で観察し、下記の評価基準に従って評価した。
 良:フィルム面が平坦又は単純なカールのみで、シワ及び波打ちなどの変形がない。
 不良:フィルム面にシワ及び波打ちなどの変形を生じている。
 (複層フィルムのカール量)
 実施例及び比較例で得られた複層フィルムを切断し、5cm×5cmの矩形のサンプルを得た。このサンプルを平らなステージ上に、バリア層側を下にして載置した。ステージから浮き上がった複層フィルムの4隅の角の、ステージからの高さを測定した。測定された高さの測定値の平均を、カール量とした。サンプルが丸まってしまった場合、高さを測定することができないので、単に「不良」と評価した。
 (複層フィルムにおけるバリア層と1/4波長板との密着性)
 得られた複層フィルムのバリア層について、JIS K5400に準じて、1mm角100個の碁盤目試験を行い、セロハンテープ(JIS Z1522に規定されるもの)によりバリア層の剥離状態を確認した。この際、バリア層側に貼り付けたセロハンテープを剥離した時に、バリア層が樹脂フィルムから剥がれなかった碁盤目の数を数えた。バリア層が1/4波長板から剥がれなかった碁盤目の数が多いほど、バリア層と1/4波長板との密着性に優れることを示す。
 〔製造例1:原反フィルムAの製造〕
 (P1-1.ジシクロペンタジエンの開環重合体の水素添加物の製造工程)
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を入れ、53℃に加温した。
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解した溶液を用意した。この溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。
 この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、温度を53℃に保ち4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。
 得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素添加物を含む反応液が得られた。この反応液においては、水素添加物が析出しており、その結果反応液はスラリー溶液となっていた。
 前記の反応液に含まれる水素添加物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素添加物28.5部を得た。この水素添加物の水素添加率は99%以上、ガラス転移温度Tgは93℃、融点(Tm)は262℃、ラセモ・ダイアッドの割合は89%であった。
 (P1-2.原反フィルムAの製造工程)
 (P1-1)で得られたジシクロペンタジエンの開環重合体の水素添加物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合して、フィルムの材料となる結晶性樹脂を得た。
 前記の結晶性樹脂を、内径3mmΦのダイ穴を4つ備えた二軸押出機(東芝機械社製「TEM-37B」)に投入した。前記の二軸押出機によって、結晶性樹脂を熱溶融押出成形によりストランド状の成形体に成形した。この成形体をストランドカッターにて細断して、結晶性樹脂のペレットを得た。前記の二軸押出機の運転条件を、以下に示す。
 ・バレル設定温度:270℃~280℃
 ・ダイ設定温度:250℃
 ・スクリュー回転数:145rpm
 ・フィーダー回転数:50rpm
 引き続き、得られたペレットを、Tダイを備える熱溶融押出しフィルム成形機に供給した。このフィルム成形機を用いて、結晶性樹脂を、26.45m/分の速度でロールに巻き取る方法にて成形した。これにより、長尺の原反フィルムA(厚み70μm、幅750mm)を製造した。前記のフィルム成形機の運転条件を、以下に示す。
 ・バレル温度設定:280℃~290℃
 ・ダイ温度:270℃
 ・スクリュー回転数:30rpm
 〔製造例2:原反フィルムBの製造〕
 熱可塑性ノルボルネン樹脂のペレット(日本ゼオン株式会社製。ガラス転移温度126℃)を100℃で5時間乾燥させた。乾燥させたペレットを押出機に供給し、押出機内で溶融させた。そして、溶融した樹脂を、ポリマーパイプ及びポリマーフィルターを通し、Tダイからキャスティングドラム上にシート状に押し出し、冷却して、厚み80μm、幅1350mmの原反フィルムBを得た。この原反フィルムBを巻き取り、フィルムロールを得た。
 〔製造例3:1/4波長板A1の製造〕
 (P3-1.延伸工程)
 製造例1で製造した原反フィルムAを、ロールから引き出し、テンター延伸機に供給した。延伸機のクリップでフィルムの幅方向の端部の二辺を把持し、延伸倍率1.8倍、延伸温度130℃、延伸速度5m/分で、幅方向に対する配向角が45°になるように斜め方向に一軸延伸処理を施した。
 (P3-2.結晶化促進工程)
 (P3-1)の一軸延伸処理後、延伸機のクリップで、延伸終了時点のフィルムの幅寸法を保持したままフィルムを搬送し、それによりフィルムが緊張した状態を保った。この状態で、200℃で30秒間、オーブン内でフィルムを加熱処理し、これにより、フィルムに含まれるジシクロペンタジエンの開環重合体の水素添加物の結晶化を促進する結晶化促進工程を行った。加熱処理後のフィルムを巻き取り、ロール状の1/4波長板A1を得た。この1/4波長板A1の厚みは35μm、幅方向に対する配向角は45°、面内レターデーションReは136nm、23℃における光弾性係数は4×10-12Pa-1で、複屈折Δnは0.0039で、結晶化度は21%であった。また、1/4波長板A1の温度150℃での熱寸法変化率は0.4%、融点は262℃で、吸水率は0.009%であった。
 〔製造例4:1/4波長板A2の製造〕
 (P3-1)における延伸条件を変更し、延伸倍率を2.0倍とし、延伸方向を、幅方向に対する配向角が15°になるような斜め方向とした(延伸温度は130℃で変更なし、延伸速度は5m/分で変更なし)以外は、製造例3と同様にして1/4波長板A2を得た。
 この1/4波長板A2の厚みは30μm、幅方向に対する配向角は15°、面内レターデーションReは141nm、23℃における光弾性係数は4×10-12Pa-1で、複屈折Δnは0.0047で、結晶化度は20%であった。また、1/4波長板A2の温度150℃での熱寸法変化率は0.3%、融点は262℃で、吸水率は0.009%であった。
 〔製造例5:1/2波長板B1の製造〕
 製造例2で製造した原反フィルムBを、ロールから引き出し、テンター延伸機に供給した。そして、延伸倍率1.5倍、延伸温度140℃、延伸速度10m/分で、幅方向に対する配向角が45°になるように斜め方向に一軸延伸処理を施し、ロール状に巻き取り、中間フィルムを得た。得られた中間フィルムの配向角は幅方向に対して45°であり、面内レターデーションは190nmであった。
 次いで、得られた中間フィルムをロールから引き出し、さらに自由縦一軸延伸を施した。この延伸において、延伸方向はフィルム長手方向、延伸倍率は1.45倍、延伸温度は122℃とした。延伸されたフィルムを巻き取り、ロール状の1/2波長板B1を得た。
 この1/2波長板B1の厚みは50μm、幅方向に対する配向角は75°、面内レターデーションReは260nm、23℃における光弾性係数は6×10-12Pa-1で、複屈折Δnは0.0054であった。また、1/2波長板B1の温度150℃での熱寸法変化率は全面シワとなったため測定できず、融点は観測できず、Tgは126℃で、吸水率は0.009%であった。
 〔製造例6:1/4波長板B2の製造〕
 製造例2で製造した原反フィルムBを、ロールから引き出し、テンター延伸機に供給した。そして、延伸倍率1.25倍、延伸温度135℃、延伸速度10m/分で、幅方向に対する配向角が45°になるように斜め方向に一軸延伸処理を施し、ロール状に巻き取り、中間フィルムを得た。得られた中間フィルムの配向角は幅方向に対して45°であり、面内レターデーションは140nmであった。
 次いで、得られた中間フィルムをロールから引き出し、さらに自由縦一軸延伸を施した。この延伸において、延伸方向はフィルム長手方向、延伸倍率は1.40倍、延伸温度は133℃とした。延伸されたフィルムを巻き取り、ロール状の1/4波長板B2を得た。
 この1/4波長板B2の厚みは40μm、幅方向に対する配向角は75°、面内レターデーションReは130nm、23℃における光弾性係数は6×10-12Pa-1で、複屈折Δnは0.0033であった。また、1/4波長板B2の温度150℃での熱寸法変化率は全面シワとなったため測定できず、融点は観測できず(つまり、非晶性であり)、Tgは126℃で、吸水率は0.009%であった。
 〔製造例7:1/2波長板B3の製造〕
 製造例2で製造した原反フィルムBを、ロールから引き出し、テンター延伸機に供給した。そして、延伸倍率1.50倍、延伸温度142℃、延伸速度10m/分で、幅方向に対する配向角が15°になるように斜め方向に一軸延伸処理を施し、ロール状に巻き取り、1/2波長板B3を得た。
 この1/2波長板B3の厚みは22μm、幅方向に対する配向角は15°、面内レターデーションReは260nm、23℃における光弾性係数は6×10-12Pa-1で、複屈折Δnは0.0118であった。また、1/2波長板B3の温度150℃での熱寸法変化率は全面シワとなったため測定できず、融点は観測できず、Tgは126℃で、吸水率は0.009%であった。
 〔製造例8:1/4波長板B4の製造〕
 製造例2で製造した原反フィルムBを、ロールから引き出し、テンター延伸機に供給した。そして、延伸倍率1.50倍、延伸温度144℃、延伸速度10m/分で、幅方向に対する配向角が45°になるように斜め方向に一軸延伸処理を施し、ロール状に巻き取り、1/4波長板B4を得た。
 この1/4波長板B4の厚みは47μm、幅方向に対する配向角は45°、面内レターデーションReは140nm、23℃における光弾性係数は6×10-12Pa-1で、複屈折Δnは0.0030であった。また、1/4波長板B4の温度150℃での熱寸法変化率は全面シワとなったため測定できず、融点は観測できず、Tgは126℃で、吸水率は0.009%であった。
 〔製造例9:原反フィルムCの製造工程〕
 熱溶融押出しフィルム成形機による成形の条件を変更した他は、製造例1における原反フィルムAの製造工程と同様にして、長尺の原反フィルムC(厚み35μm、幅750mm)を製造した。
 〔製造例10:1/4波長板A3の製造〕
 (P10-1.延伸工程)
 製造例9で製造した原反フィルムCを、ロールから引き出し、テンター延伸機に供給した。延伸機のクリップでフィルムの幅方向の端部の二辺を把持し、延伸倍率2.5倍、延伸温度110℃、延伸速度5m/分で、幅方向に対する配向角が15°になるように斜め方向に一軸延伸処理を施した。
 (P10-2.結晶化促進工程)
 (P10-1)の一軸延伸処理後、延伸機のクリップで、延伸終了時点のフィルムの幅寸法を保持したままフィルムを搬送し、それによりフィルムが緊張した状態を保った。この状態で、200℃で30秒間、オーブン内でフィルムを加熱処理し、これにより、フィルムに含まれるジシクロペンタジエンの開環重合体の水素添加物の結晶化を促進する結晶化促進工程を行った。加熱処理後のフィルムを巻き取り、ロール状の1/4波長板A3を得た。この1/4波長板A3の厚みは13μm、幅方向に対する配向角は15°、面内レターデーションReは145nm、23℃における光弾性係数は4×10-12Pa-1で、複屈折Δnは0.011で、結晶化度は25%であった。また、1/4波長板A3の温度150℃での熱寸法変化率は0.6%、融点は262℃で、吸水率は0.009%であった。
 〔実施例1〕
 (1-1.位相差フィルム)
 製造例3で製造した1/4波長板A1をロールから引き出し、これを1/4波長板として用いた。一方、製造例5で得た1/2波長板B1をロールから引き出し、これを1/2波長板として用いた。これらを、互いの長手方向を平行にして、接着剤層(日東電工製「CS9621」)を介して貼合した。貼合に際し、1/4波長板A1は反転させた状態(即ち、幅方向に対する配向角を45°から135°に変更)で用いた。かかる反転により、1/4波長板の遅相軸と1/2波長板の遅相軸とがなす角が、厚み方向から見て60°となる向きとなった。これにより、位相差フィルム(I-1)を得た。
 (1-2.複層フィルム)
 位相差フィルム(I-1)の1/4波長板側の表面に、CVD法によりバリア層を成膜した。成膜の操作は、図2に概略的に示す成膜装置(フィルム巻き取り式プラズマCVD装置)を用いて行った。成膜の条件は、テトラメチルシラン(TMS)流量10sccm、酸素(O)流量100sccm、出力0.8kW、全圧5Pa、フィルム搬送速度0.5m/minとし、RFプラズマ放電させて成膜を行った。その結果、SiOxからなる厚さ300nmのバリア層を成膜し、(1/2波長板)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する複層フィルム(I-2)を得た。
 (1-3.複層フィルムの評価)
 得られた複層フィルムの面状及びカール量、並びに得られた複層フィルムにおけるバリア層と1/4波長板との密着性を評価した。
 (1-4.円偏光板の製造及び評価)
 直線偏光子として、偏光フィルム(サンリッツ社製「HLC2-5618S」、厚さ180μm、幅方向に対して0°の方向に偏光透過軸を有する長尺の偏光子、以下の他の実施例及び比較例においても同じ)を用意した。これを切断し、長辺方向に対して60°の方向に偏光透過軸を有するA4サイズの矩形の直線偏光子を得た。
 (1-2)で得た複層フィルム(I-2)を切断し、A4サイズの矩形のフィルムを得た。切断は、複層フィルム(I-2)の幅方向が、矩形のフィルムの長辺方向となるよう行った。この矩形のフィルムの1/2波長板側の面と、矩形の直線偏光子とを、粘着剤(日東電工製「CS9621」)の層を介して貼合した。これにより、(直線偏光子)/(粘着剤層)/(1/2波長板)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する円偏光板を得た。得られた円偏光板において、直線偏光子の偏光透過軸と1/2波長板の遅相軸とがなす角度は15°であり、直線偏光子の偏光透過軸と1/4波長板の遅相軸とがなす角度は75°であった。
 得られた円偏光板について、入射角0°における反射率R、並びに方位角0°および方位角180°における入射角10°における反射率R10(0deg)および反射率R10(180deg)は、以下のように測定した。
 円偏光板を適当な大きさに裁断し、円偏光板のバリア層の面と、反射板(商品名「メタルミーTS50」、東レ社製、アルミニウム蒸着PET(ポリエチレンテレフタレート)フィルム)の反射面とを貼合した。貼合は粘着剤層(日東電工製、商品名「CS9621」)を介して行った。これにより、(円偏光板)/(粘着剤層)/(反射板)の層構成を有する評価用積層体を得た。得られた評価用積層体について、円偏光板に入射した光の反射率を測定した。測定には、分光光度計V7200と絶対反射率ユニットVAP7020(日本分光株式会社製)とを用いた。測定に際して、方位角は、円偏光板から評価用積層体を観察した場合において、直線偏光子の偏光吸収軸の方向を基準とし、方位角0°での入射角0°における反射率、および方位角180°での入射角10°における反射率を測定した。その結果を表1に示す。
 (1-5.有機エレクトロルミネッセンス表示装置)
 市販のOLEDスマートフォン(LGエレクトロニクス社製、商品名「G Flex LGL23」)を分解して、(1-4)で得た円偏光板を実装し、円偏光板を含む有機エレクトロルミネッセンス表示装置を得た。この表示装置の黒表示時及び白表示時の輝度を測定したところ、それぞれ5.1cd/m及び300cd/mであった。
 晴れた日の外光下において、この表示装置を黒表示した状態で、表示面を正面方向から目視したところ、表示面の外光の反射は無く、表示面は黒色であった。さらに、表示面を斜め方向(極角45°、全方位)から目視したところ、方位角による反射率及び色味の変化は見られなかった。
 〔実施例2〕
 (2-1.位相差フィルム)
 製造例4で製造した1/4波長板A2をロールから引き出し、これを1/4波長板として用いた。一方、製造例5で得た1/2波長板B1をロールから引き出し、これを1/2波長板として用いた。これらを、互いの長手方向を平行にして、接着剤層(日東電工製「CS9621」)を介して貼合した。貼合に際し、これらの表裏の関係は、1/4波長板の遅相軸と1/2波長板の遅相軸とがなす角が、厚み方向から見て60°となる向きとした。これにより、位相差フィルム(II-1)を得た。
 (2-2.複層フィルムの製造及び評価)
 位相差フィルム(I-1)に代えて、位相差フィルム(II-1)を用いた他は、実施例1の(1-2)~(1-3)と同様にして、SiOxからなる厚さ300nmのバリア層を成膜し、(1/2波長板)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する複層フィルム(II-2)を得て評価した。
 (2-3.円偏光板の製造及び評価)
 直線偏光子として、偏光フィルムを用意した。
 この偏光フィルムと、複層フィルム(II-2)とを、互いの長手方向を平行にして、粘着剤(日東電工製「CS9621」)の層を介して貼合した。貼合物を切断して、短辺方向に対して0°の方向に偏光透過軸を有するA4サイズの矩形の形状とした。これにより、(直線偏光子)/(粘着剤層)/(1/2波長板)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する円偏光板を得た。得られた円偏光板において、直線偏光子の偏光透過軸と1/2波長板の遅相軸とがなす角度は15°であり、直線偏光子の偏光透過軸と1/4波長板の遅相軸とがなす角度は75°であった。
 得られた円偏光板について、入射角0°における反射率R、並びに方位角0°および方位角180°における入射角10°における反射率R10(0deg)および反射率R10(180deg)を実施例1と同様にして測定した。その結果を表1に示す。
 〔実施例3〕
 (3-1.複層フィルムの製造及び評価)
 位相差フィルム(I-1)に代えて、製造例3で製造した1/4波長板A1をそのまま用いた他は、実施例1の(1-2)~(1-3)と同様にして、SiOxからなる厚さ300nmのバリア層を成膜し、(1/4波長板)/(バリア層)の層構成を有する複層フィルム(III-2)を得て評価した。
 (3-2.円偏光板の製造及び評価)
 直線偏光子として、偏光フィルムを用意した。
 この偏光フィルムと、複層フィルム(III-2)とを、互いの長手方向を平行にして、粘着剤(日東電工製「CS9621」)の層を介して貼合した。貼合物を切断して、短辺方向に対して0°の方向に偏光透過軸を有するA4サイズの矩形の形状とした。これにより、(直線偏光子)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する円偏光板を得た。得られた円偏光板において、直線偏光子の偏光透過軸と1/4波長板の遅相軸とがなす角度は45°であった。
 得られた円偏光板について、入射角0°における反射率R、並びに方位角0°および方位角180°における入射角10°における反射率R10(0deg)および反射率R10(180deg)を実施例1と同様にして測定した。その結果を表1に示す。
 〔実施例4〕
 (4-1.複層フィルムの製造及び評価)
 製造例4で製造した1/4波長板A2に代えて、製造例10で製造した1/4波長板A3を用いた他は、実施例2と同様にして、(1/2波長板)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する複層フィルム(IV-2)、及び(直線偏光子)/(粘着剤層)/(1/2波長板)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する円偏光板を得て評価した。結果を表1に示す。
 〔比較例1〕
 (C1-1.位相差フィルム)
 製造例6で製造した1/4波長板B2をロールから引き出し、これを1/4波長板として用いた。一方、製造例7で得た1/2波長板B3をロールから引き出し、これを1/2波長板として用いた。これらを、互いの長手方向を平行にして、接着剤層(日東電工製「CS9621」)を介して貼合した。貼合に際し、これらの表裏の関係は、1/4波長板の遅相軸と1/2波長板の遅相軸とがなす角が、厚み方向から見て60°となる向きとした。これにより、位相差フィルム(CI-1)を得た。
 (C1-2.複層フィルムの製造及び評価)
 位相差フィルム(I-1)に代えて、位相差フィルム(CI-1)を用いた他は、実施例1の(1-2)~(1-3)と同様にして、SiOxからなる厚さ300nmのバリア層を成膜し、(1/2波長板)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する複層フィルム(CI-2)を得て評価した。
 (C1-3.円偏光板の製造及び評価)
 直線偏光子として、偏光フィルムを用意した。
 この偏光フィルムと、複層フィルム(CI-2)とを、互いの長手方向を平行にして、粘着剤(日東電工製「CS9621」)の層を介して貼合した。貼合物を切断して、短辺方向に対して0°の方向に偏光透過軸を有するA4サイズの矩形の形状とした。これにより、(直線偏光子)/(粘着剤層)/(1/2波長板)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する円偏光板を得た。得られた円偏光板において、直線偏光子の偏光透過軸と1/2波長板の遅相軸とがなす角度は75°であり、直線偏光子の偏光透過軸と1/4波長板の遅相軸とがなす角度は15°であった。
 得られた円偏光板について、入射角0°における反射率R、並びに方位角0°および方位角180°における入射角10°における反射率R10(0deg)および反射率R10(180deg)を実施例1と同様にして測定した。その結果を表2に示す。
 〔比較例2〕
 (C2-1.複層フィルムの製造及び評価)
 位相差フィルム(I-1)に代えて、製造例8で製造した1/4波長板B4をそのまま用いた他は、実施例1の(1-2)~(1-3)と同様にして、SiOxからなる厚さ300nmのバリア層を成膜し、(1/4波長板)/(バリア層)の層構成を有する複層フィルム(CII-2)を得て評価した。
 (C2-2.円偏光板の製造及び評価)
 直線偏光子として、偏光フィルムを用意した。
 この偏光フィルムと、複層フィルム(CII-2)とを、互いの長手方向を平行にして、粘着剤(日東電工製「CS9621」)の層を介して貼合した。貼合物を切断して、短辺方向に対して0°の方向に偏光透過軸を有するA4サイズの矩形の形状とした。これにより、(直線偏光子)/(粘着剤層)/(1/4波長板)/(バリア層)の層構成を有する円偏光板を得た。得られた円偏光板において、直線偏光子の偏光透過軸と1/4波長板の遅相軸とがなす角度は45°であった。
 得られた円偏光板について、入射角0°における反射率R、並びに方位角0°および方位角180°における入射角10°における反射率R10(0deg)および反射率R10(180deg)を実施例1と同様にして測定した。その結果を表2に示す。
 実施例及び比較例における結果を、表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示す結果より、位相差フィルムにおいて本願に規定する特定の樹脂Aの層を含む複層フィルムを用いた実施例においては、水蒸気透過率が良好であり、入射角0°反射率R及び入射角10°反射率R10の両方において優れることに加えて、フィルム面状、カール量、密着性等においても優れ、その結果、光学的な品質が高く且つ容易に製造しうる複層フィルムが得られたことが分かる。
 10:有機エレクトロルミネッセンス表示装置
 109:位相差フィルム
 110:複層フィルム
 100:反射防止フィルム
 110:複層フィルム
 111:接着剤層
 112:1/2波長板
 113:バリア層
 113D:反射防止フィルムの下側の面
 114:1/4波長板
 114D:位相差フィルム表面
 121:直線偏光子
 131:基板
 132:発光素子
 133:封止材層
 133U:封止材層の上面
 134:保護フィルム
 134U:保護フィルムの上側の面
 200:成膜装置
 201:位相差フィルムのロール体
 202:複層フィルムのロール体
 211:ガイドロール
 212:キャンロール
 213:ガイドロール
 221:反応管
 223:電源
 222:電極
 224:ガス導入口
 230:真空排気装置
 290:真空槽

Claims (12)

  1.  有機エレクトロルミネッセンス表示装置用の複層フィルムであって、
     位相差フィルム、及び前記位相差フィルムの表面に直接設けられたバリア層を備え、
     前記位相差フィルムは、前記バリア層に直接接する層として、1層以上の樹脂Aの層を含み、
     前記樹脂Aは、融点が250℃以上で結晶性の重合体Aを含み、
     前記樹脂Aの層は、23℃における波長590nmの光で測定した面内レターデーションReが108nm以上168nm以下で、光弾性係数の絶対値が2.0×10-11Pa-1以下である、
     複層フィルム。
  2.  前記重合体Aが、固有複屈折値が正の脂環式構造含有重合体であり、
     前記樹脂Aの層の、150℃で1時間加熱した場合のフィルム面内の熱寸法変化率の絶対値が1%以下である、請求項1に記載の複層フィルム。
  3.  前記樹脂Aの層の複屈折Δnが0.0010以上である、請求項1又は2に記載の複層フィルム。
  4.  前記複層フィルムが長尺の形状を有し、
     前記位相差フィルムが、前記樹脂Aの層として、1/4波長板を含み、
     前記位相差フィルムが、さらに1/2波長板を含み、
     前記1/2波長板の遅相軸および前記1/4波長板の遅相軸が、いずれも、前記複層フィルムの長尺方向に対して斜め方向であり、
     前記1/2波長板の遅相軸と前記1/4波長板の遅相軸との交差角が55°以上65°以下である、
     請求項1~3のいずれか1項に記載の複層フィルム。
  5.  前記1/2波長板の厚さdh、及び前記1/4波長板の厚さdqが、いずれも10μm以上50μm以下であり、且つこれらがdh≧dqの関係を満たす、請求項4に記載の複層フィルム。
  6.  前記1/2波長板および前記1/4波長板がいずれも、1回以上の斜め延伸を施された延伸フィルムである、請求項4又は5に記載の複層フィルム。
  7.  水蒸気透過率が、0.01g/(m・日)以下である、請求項1~6のいずれか1項に記載の複層フィルム。
  8.  前記バリア層が、無機バリア層を1層以上含む、請求項1~7のいずれか1項に記載の複層フィルム。
  9.  請求項4~8のいずれか1項に記載の複層フィルムの製造方法であって、
     前記1/2波長板と前記1/4波長板とを接着剤を介して貼合し、これらを含む位相差フィルムを形成する工程、及び
     前記位相差フィルムの、前記1/4波長板側の面に直接、前記バリア層を形成する工程、
     を含む製造方法。
  10.  請求項1~8のいずれか1項に記載の複層フィルムと、
     前記複層フィルムの前記バリア層とは反対側の面に設けられた直線偏光子とを備える円偏光板。
  11.  請求項10に記載の円偏光板を含む反射防止フィルムであって、
     前記直線偏光子、1/2波長板、前記樹脂Aの層としての1/4波長板、及び前記バリア層をこの順に備え、
     前記直線偏光子の偏光透過軸と、前記1/2波長板の遅相軸とがなす角度が、10°以上20°以下であるか、又は70°以上80°以下であり、
     入射角0°での反射率Rと方位角0°で入射角10°での反射率R10(0deg)との比R/R10(0deg)および、入射角0°での反射率Rと方位角180°で入射角10°での反射率R10(180deg)との比R/R10(180deg)が、0.95以上1.05以下である、反射防止フィルム。
  12.  請求項11に記載の反射防止フィルムを備える、有機エレクトロルミネッセンス表示装置。
PCT/JP2016/083718 2015-11-30 2016-11-14 複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置 WO2017094485A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187013837A KR20180088808A (ko) 2015-11-30 2016-11-14 복층 필름, 제조 방법, 원 편광판, 반사 방지 필름 및 유기 일렉트로루미네센스 표시 장치
CN201680067871.2A CN108291997B (zh) 2015-11-30 2016-11-14 多层膜、制造方法、圆偏振片、防反射膜以及有机电致发光显示装置
US15/776,575 US10522793B2 (en) 2015-11-30 2016-11-14 Multilayer film, manufacturing method, circular-polarizing plate, antireflective film, and organic electroluminescence display device
JP2017553747A JPWO2017094485A1 (ja) 2015-11-30 2016-11-14 複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-233317 2015-11-30
JP2015233317 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094485A1 true WO2017094485A1 (ja) 2017-06-08

Family

ID=58797281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083718 WO2017094485A1 (ja) 2015-11-30 2016-11-14 複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置

Country Status (5)

Country Link
US (1) US10522793B2 (ja)
JP (1) JPWO2017094485A1 (ja)
KR (1) KR20180088808A (ja)
CN (1) CN108291997B (ja)
WO (1) WO2017094485A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190086354A (ko) * 2018-01-12 2019-07-22 코니카 미놀타 가부시키가이샤 경사 연신 필름의 제조 방법
JP2019197168A (ja) * 2018-05-10 2019-11-14 住友化学株式会社 光学積層体および表示装置
JP2020049839A (ja) * 2018-09-27 2020-04-02 日本ゼオン株式会社 樹脂フィルムの製造方法、樹脂フィルム及び、複合フィルム
WO2022044415A1 (ja) * 2020-08-28 2022-03-03 日東電工株式会社 位相差フィルム、積層位相差フィルム、位相差層付偏光板および画像表示装置
JP2022046029A (ja) * 2020-09-10 2022-03-23 住友化学株式会社 光学積層体
WO2022210197A1 (ja) * 2021-03-30 2022-10-06 日本ゼオン株式会社 積層体及びその製造方法
WO2023210280A1 (ja) * 2022-04-27 2023-11-02 日本ゼオン株式会社 光学積層体及びそれを含む光学部材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3070095B1 (fr) * 2017-08-11 2019-09-06 Isorg Systeme d'affichage et de detection
US10490758B2 (en) * 2017-10-30 2019-11-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible OLED display panel and manufacturing method thereof
US20190334127A1 (en) * 2018-04-26 2019-10-31 Wuhan China Star Optoelectronics Technology Co., Ltd. Oled display device
KR102437157B1 (ko) * 2018-11-06 2022-08-26 주식회사 엘지화학 편광판

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194067A (ja) * 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
JP2003114325A (ja) * 2001-10-03 2003-04-18 Nitto Denko Corp 積層1/4波長板、円偏光板及びこれを用いた液晶表示装置、ならびにその製造方法
JP2009190186A (ja) * 2008-02-12 2009-08-27 Gunze Ltd ガスバリア層付フィルム
JP2010181561A (ja) * 2009-02-04 2010-08-19 Teijin Ltd 光学用ポリ乳酸フィルムおよびその製造方法
JP2010197776A (ja) * 2009-02-26 2010-09-09 Toray Ind Inc 延伸フィルムの製造方法および画像表示素子
JP4708787B2 (ja) * 2002-05-30 2011-06-22 日本ゼオン株式会社 光学積層体
JP2012099392A (ja) * 2010-11-04 2012-05-24 Canon Inc 表示装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194534A (en) 1991-09-24 1993-03-16 Hercules Incorporated Tungsten-imido catalysts for ring-opening metathesis polymerization of cycloolefins
JP3174367B2 (ja) 1991-10-07 2001-06-11 日東電工株式会社 積層波長板及び円偏光板
JPH1068816A (ja) 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
JPH11183723A (ja) 1997-12-22 1999-07-09 Sumitomo Chem Co Ltd 複合偏光板およびこれを用いた反射防止フィルターおよび反射防止機能付きタッチパネル
JPH11295526A (ja) 1998-04-08 1999-10-29 Sumitomo Chem Co Ltd 光拡散円偏光板及びこれを用いた液晶表示装置
US20060134400A1 (en) * 2004-12-17 2006-06-22 Nitto Denko Corporation Hard-coated film and method of manufacturing the same
JP2007226109A (ja) * 2006-02-27 2007-09-06 Nippon Zeon Co Ltd 光学フィルム、位相差板、偏光板、液晶表示素子用基板及び液晶表示素子
JP5130027B2 (ja) * 2006-11-21 2013-01-30 富士フイルム株式会社 セルロースエステルフィルムの製造方法
US20080252827A1 (en) * 2007-04-11 2008-10-16 Nitto Denko Corporation Laminated optical film and production method thereof
TW201030090A (en) 2008-09-29 2010-08-16 Teijin Ltd Polylactic acid film
JP2011118137A (ja) 2009-12-03 2011-06-16 Nippon Zeon Co Ltd 輝度向上フィルム、製造方法及び液晶表示装置
JP5418351B2 (ja) 2010-03-24 2014-02-19 日本ゼオン株式会社 ガスバリア積層体及び面光源装置
JP5449011B2 (ja) 2010-04-30 2014-03-19 三菱樹脂株式会社 バリア基材用ポリエステルフィルム
JP2013018895A (ja) * 2010-07-20 2013-01-31 Fujifilm Corp 光学フィルム、位相差フィルム、偏光板及び液晶表示装置
JP5553067B2 (ja) 2011-10-07 2014-07-16 日本ゼオン株式会社 長尺の延伸フィルム、長尺の積層フィルム、偏光板及び液晶表示装置
CN105829102B (zh) * 2013-12-27 2018-10-09 日本瑞翁株式会社 多层膜、偏振片、及多层膜的制造方法
JP6677722B2 (ja) * 2015-05-28 2020-04-08 富士フイルム株式会社 水平配向型液晶表示装置
JPWO2017170346A1 (ja) * 2016-03-30 2019-02-14 日本ゼオン株式会社 円偏光板及び画像表示装置
JP6969565B2 (ja) * 2016-09-30 2021-11-24 日本ゼオン株式会社 樹脂フィルム及び導電性フィルム、並びにそれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194067A (ja) * 2000-12-25 2002-07-10 Nippon Zeon Co Ltd フィルムおよびシート
JP2003114325A (ja) * 2001-10-03 2003-04-18 Nitto Denko Corp 積層1/4波長板、円偏光板及びこれを用いた液晶表示装置、ならびにその製造方法
JP4708787B2 (ja) * 2002-05-30 2011-06-22 日本ゼオン株式会社 光学積層体
JP2009190186A (ja) * 2008-02-12 2009-08-27 Gunze Ltd ガスバリア層付フィルム
JP2010181561A (ja) * 2009-02-04 2010-08-19 Teijin Ltd 光学用ポリ乳酸フィルムおよびその製造方法
JP2010197776A (ja) * 2009-02-26 2010-09-09 Toray Ind Inc 延伸フィルムの製造方法および画像表示素子
JP2012099392A (ja) * 2010-11-04 2012-05-24 Canon Inc 表示装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190086354A (ko) * 2018-01-12 2019-07-22 코니카 미놀타 가부시키가이샤 경사 연신 필름의 제조 방법
KR102177584B1 (ko) 2018-01-12 2020-11-11 코니카 미놀타 가부시키가이샤 경사 연신 필름의 제조 방법
JP2019197168A (ja) * 2018-05-10 2019-11-14 住友化学株式会社 光学積層体および表示装置
WO2019216076A1 (ja) * 2018-05-10 2019-11-14 住友化学株式会社 光学積層体および表示装置
JP2020049839A (ja) * 2018-09-27 2020-04-02 日本ゼオン株式会社 樹脂フィルムの製造方法、樹脂フィルム及び、複合フィルム
JP7103125B2 (ja) 2018-09-27 2022-07-20 日本ゼオン株式会社 樹脂フィルムの製造方法
WO2022044415A1 (ja) * 2020-08-28 2022-03-03 日東電工株式会社 位相差フィルム、積層位相差フィルム、位相差層付偏光板および画像表示装置
JP2022046029A (ja) * 2020-09-10 2022-03-23 住友化学株式会社 光学積層体
WO2022210197A1 (ja) * 2021-03-30 2022-10-06 日本ゼオン株式会社 積層体及びその製造方法
WO2023210280A1 (ja) * 2022-04-27 2023-11-02 日本ゼオン株式会社 光学積層体及びそれを含む光学部材

Also Published As

Publication number Publication date
JPWO2017094485A1 (ja) 2018-09-13
CN108291997B (zh) 2021-02-09
CN108291997A (zh) 2018-07-17
US10522793B2 (en) 2019-12-31
US20180375065A1 (en) 2018-12-27
KR20180088808A (ko) 2018-08-07

Similar Documents

Publication Publication Date Title
WO2017094485A1 (ja) 複層フィルム、製造方法、円偏光板、反射防止フィルム及び有機エレクトロルミネッセンス表示装置
US10619021B2 (en) Resin film, barrier film, electrically conductive film, and manufacturing method therefor
CN109074763B (zh) 膜传感器构件及其制造方法、圆偏振片及其制造方法、以及图像显示装置
JP6729550B2 (ja) 位相差板及び位相差板の製造方法
JP7184133B2 (ja) 位相差フィルム及びその製造方法
JP2018116543A (ja) タッチパネル用フィルム積層体
CN109715711B (zh) 树脂膜、隔离膜及导电性膜以及它们的制造方法
WO2016171169A1 (ja) 複層フィルム及びその製造方法、光学異方性転写体の製造方法、光学異方性層、光学異方性部材、及び光学積層体
JPWO2016067920A1 (ja) 樹脂フィルム、及び、樹脂フィルムの製造方法
JP6709637B2 (ja) 光学補償層付偏光板およびそれを用いた有機elパネル
KR102550087B1 (ko) 광학 적층체, 편광판 및 액정 표시 장치
WO2018079627A1 (ja) 光学フィルム、製造方法、及び多層フィルム
JP6777176B2 (ja) 光学積層体及びその製造方法、偏光板及び表示装置
TWI827659B (zh) 帶相位差層的偏光板及使用了該帶相位差層的偏光板的影像顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553747

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187013837

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870424

Country of ref document: EP

Kind code of ref document: A1