WO2017094431A1 - バッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法 - Google Patents
バッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法 Download PDFInfo
- Publication number
- WO2017094431A1 WO2017094431A1 PCT/JP2016/082664 JP2016082664W WO2017094431A1 WO 2017094431 A1 WO2017094431 A1 WO 2017094431A1 JP 2016082664 W JP2016082664 W JP 2016082664W WO 2017094431 A1 WO2017094431 A1 WO 2017094431A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- charging
- target
- charge
- state
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/12—Recording operating variables ; Monitoring of operating variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/80—Exchanging energy storage elements, e.g. removable batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/005—Testing of electric installations on transport means
- G01R31/006—Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3828—Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00036—Charger exchanging data with battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
- H02J7/0045—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
- H02J7/0049—Detection of fully charged condition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/12—Bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/54—Energy consumption estimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/40—Control modes
- B60L2260/50—Control modes by future state prediction
- B60L2260/58—Departure time prediction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M10/4257—Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/20—The network being internal to a load
- H02J2310/22—The load being a portable electronic device
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00034—Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to a battery charging device, a battery charging system, and a battery charging method.
- a charging system has been proposed in which a plurality of battery packs are prepared for one electric worker, and the battery packs that are installed are replaced with pre-charged battery packs when the installed battery packs run out (for example, , See Patent Document 1).
- the remaining battery levels of a plurality of work vehicles are taken in, and the expected power consumption until a predetermined time has elapsed is calculated.
- an index value for determining the battery replacement priority order of the plurality of work vehicles is calculated from the difference between the remaining amount and the predicted power consumption, and a feedback command is issued to the work vehicle based on the index value and the allowable amount of battery charge. It is done.
- An object of the present invention is to provide a battery charging device, a battery charging system, and a battery charging method capable of reducing the standing time in the vicinity of full charge.
- a battery charging apparatus is a battery charging apparatus that charges a battery used by a power consumer, and includes a battery pair setting unit, a used battery state acquisition unit, and a charging current determination unit.
- the battery pair setting unit sets a charge target battery to be paired with the battery in use.
- the used battery status acquisition unit acquires the usage status of the used battery.
- the charging current determination unit determines the charging current of the charging target battery based on the usage state acquired by the used battery state acquisition unit.
- the charging capacity of the charging battery can be increased in accordance with a decrease in the remaining capacity of the battery used. For this reason, the remaining capacity of the battery in use is reduced, and the target charge amount (for example, full charge) can be achieved for the charging battery so as to match the timing of battery replacement. For this reason, the leaving time in the state near the target charge amount (for example, full charge) can be suppressed. Further, it is not necessary to input an extra charging current in order to maintain the target charging power amount, so that energy saving can be achieved.
- the charging battery can be controlled to be charged, and can be used with simpler control than in the past. Control of the battery and the rechargeable battery can be performed.
- a battery charging device is the battery charging device according to the first aspect of the present invention, further comprising a charging battery state acquiring unit, wherein the charging battery state acquiring unit includes the charging target battery set in a pair. Get charge status.
- the charging current determination unit determines the charging current of the charging target battery based on the usage state acquired by the used battery state acquisition unit and the charging state acquired by the charging battery state acquisition unit.
- a battery charging device is the battery charging device according to the first aspect of the present invention, further comprising a target charging power amount acquisition unit and a target return capacity acquisition unit.
- the target charging power amount acquisition unit acquires the target charging power amount of the battery to be charged.
- the target return capacity acquisition unit acquires the target return capacity of the used battery.
- the charging current determination unit determines the charging current so that the remaining capacity of the battery to be charged reaches the target charging power amount when the remaining capacity of the battery used reaches the target return capacity.
- the charging current so that the charge amount of the battery to be charged reaches the target charge power amount when the used battery reaches the target return capacity, the leaving time of the battery that has reached the vicinity of the target charge power amount is determined. Can be suppressed.
- the arrival timing to the target return capacity and the arrival timing to the target charging power amount are not required to be strictly matched and may be within an allowable range.
- a battery charging device is the battery charging device according to the first aspect of the present invention, wherein the charging current determination unit has a decrease amount calculation unit.
- the decrease amount calculation unit calculates a decrease amount of the used battery in a predetermined time based on the use state acquired by the use battery state acquisition unit.
- the charging current determination unit determines the charging current based on the decrease amount in the predetermined time calculated by the decrease amount calculation unit.
- a battery charging device is the battery charging device according to the third aspect of the present invention, further comprising a charging battery state acquisition unit.
- a charge battery state acquisition part acquires the charge state of the charge object battery set to the pair.
- the charging current determination unit includes a charge / discharge ratio calculation unit, a decrease amount calculation unit, and a charge amount calculation unit.
- the charging battery state acquisition unit acquires the initial capacity of the charging target battery.
- the used battery state acquisition unit acquires the initial capacity of the used battery.
- the charge / discharge ratio calculation unit calculates a charge / discharge ratio that is a ratio of the difference between the target charge power amount of the battery to be charged and the initial capacity with respect to the difference between the initial capacity of the battery used and the target return capacity.
- the decrease amount calculation unit calculates a decrease amount of the used battery in a predetermined time based on the use state acquired by the use battery state acquisition unit.
- the charge amount calculation unit calculates a charge amount in a predetermined time by calculating a product of the decrease amount and the charge / discharge ratio.
- the charging current determination unit determines the charging current based on the calculated charge amount. Thereby, when the used battery reaches the target return capacity, the charging current can be determined so that the charging amount of the charging target battery reaches the target charging power amount.
- a battery charging device is the battery charging device according to the second aspect of the present invention, further comprising a target charging power amount acquisition unit and a notification unit.
- the target charging power amount acquisition unit acquires the target charging power amount of the battery to be charged.
- the notification unit notifies the user of the power consumer that the charge amount of the charge target battery has reached the target charge power amount. Thereby, the user of an electric power consumer can confirm that the charge amount of the charge object battery has reached the target charge power amount.
- a battery charger according to a seventh aspect is the battery charger according to the first aspect, wherein the power consumer is an electric motorcycle, an electric bicycle, an electric assist bicycle, an electric vehicle, an automatic guided vehicle, or an electric tool.
- the power consumer is an electric motorcycle, an electric bicycle, an electric assist bicycle, an electric vehicle, an automatic guided vehicle, or an electric tool.
- mobility including an electric motorcycle, an electric bicycle, an electric assist bicycle, an electric vehicle, and an automated guided vehicle is used as a power consumer.
- the automatic guided vehicle is, for example, an AGV (Automatic Guided Vehicle) and is used in a warehouse or the like.
- the power consumer also includes an electric tool such as an electric drill.
- a battery charging system is a battery charging system that charges a battery used by a power consumer, and includes a battery pair setting unit, a used battery status transmission unit, a used battery status acquisition unit, and a charging current.
- a determination unit sets a charge target battery to be paired with the battery in use.
- the used battery status transmission unit transmits the usage status of the used battery.
- the used battery status acquisition unit acquires the usage status transmitted by the used battery status transmission unit.
- the charging current determination unit determines the charging current of the charging target battery based on the usage state acquired by the used battery state acquisition unit.
- the charging capacity of the charging battery can be increased in accordance with a decrease in the remaining capacity of the battery used. For this reason, the remaining capacity of the battery in use is reduced, and the charging battery can be fully charged so as to match the timing of battery replacement. For this reason, the leaving time in the state near the target charge amount (for example, full charge) can be suppressed. Further, it is not necessary to input an extra charging current in order to maintain the target charging power amount, so that energy saving can be achieved.
- the charging battery can be controlled to be charged, and can be used with simpler control than in the past. Control of the battery and the charging battery can be performed.
- a battery charging method is a battery charging method for charging a battery used by a power consumer, and includes a battery pair setting step, a used battery state acquisition step, and a charging current determination step.
- a charging target battery to be paired with the battery in use is set.
- the used battery status acquisition step acquires the usage status of the used battery.
- the charging current determination step the charging current of the charging target battery is determined based on the usage state acquired in the usage battery state acquisition step.
- the leaving time in the state near the target charge amount (for example, full charge) can be suppressed. Further, it is not necessary to input an extra charging current in order to maintain the target charging power amount, so that energy saving can be achieved. Further, when the user reaches the charging device, the amount of charge of the battery has reached the target charge power amount, so that the user does not have to wait until the charging is completed, and the convenience of the user is not impaired.
- the charging battery can be controlled to be charged, and can be used with simpler control than in the past. Control of the battery and the rechargeable battery can be performed. (The invention's effect) According to the present invention, it is possible to provide a battery charging device, a battery charging system, and a battery charging method capable of reducing the neglect time in the vicinity of full charge.
- the figure which shows the battery charge system in embodiment concerning this invention The block diagram which shows the structure of the battery charging system of FIG.
- the figure which shows the table of the example of the pair setting in the battery charging device of FIG. The figure for demonstrating charge of the battery in the battery charging device of FIG.
- movement of the battery charging device of FIG. The figure which shows an example in the flow of FIG.
- the block diagram which shows the structure of the battery charging device in the modification of embodiment concerning this invention. The block diagram which shows the structure of the battery charging device in the modification of embodiment concerning this invention.
- the battery charging system 1 is a system that charges the battery 10 in order to replace the battery 10 mounted in the mobility 20 in the battery charging device 30.
- the battery charging system 1 according to the present embodiment includes a battery charging device 30 and a plurality of batteries 10 as shown in FIGS. 1 and 2.
- the mobility 20 can travel when electric power is supplied from one battery 10 mounted in a space under the seat 20a to the motor 21 and the rear wheels (drive wheels) 22 are driven to rotate.
- the front wheels 23 are steering wheels provided between the front part of the mobility 20 and the road surface, and the direction of travel can be switched by changing the direction in conjunction with the direction of the handle 20b.
- the mobility 20 can use a so-called battery swap that is used while replacing the battery 10 whose remaining capacity has decreased due to traveling, natural discharge, or the like with a charged battery 10 in a predetermined battery charging device 30. is there.
- the battery 10 In order to supply power to the mobility 20, one battery 10 is mounted so as to be exchangeable for the mobility 20. As illustrated in FIG. 2, the battery 10 includes a state transmission unit 11 that transmits state information of the battery 10 to the battery charging device 30.
- the state transmission unit 11 transmits state information including a remaining capacity (SOC (State Of Charge)) charge / discharge current, voltage, temperature, used device, battery ID, model, and the like of the battery 10 to the battery charging device 30.
- SOC State Of Charge
- the state transmission unit 11 communicates with the battery charging device 30 via a wired or wireless communication chip.
- the state information is transmitted to the battery charging device 30 by the wireless communication chip mounted on the state transmission unit 11.
- Wifi, Wi-SUN, Zigbee (registered trademark), or the like can be used as wireless communication.
- the battery charging device 30 charges the battery 10 used in the mobility 20. As shown in FIG. 1, the battery charger 30 has a plurality of rechargeable battery holes 31 into which the battery 10 is inserted. The battery 10 is stored in the rechargeable battery hole 31. The battery 10 is accommodated in these rechargeable battery holes 31, and the battery 10 is charged.
- the battery charging device 30 includes a battery pair setting unit 32, a used battery state acquisition unit 33, a charging battery state acquisition unit 34, a target charging power amount acquisition unit 35, and a target return capacity acquisition unit. 36, a charging current determination unit 37, a charging current operation unit 38, a memory 39, and an AC / DC conversion unit 40.
- the battery pair setting unit 32 sets a pair of the battery 10 used in the mobility 20 and the battery 10 charged by the battery charging device 30.
- the battery 10 mounted in each of the two mobility 20 is defined as 10 (A-1) and 10 (B-1), and the three charged by the battery charging device 30 Assume that the battery 10 is 10 (A-2), 10 (B-2), 10 (C-2).
- the battery pair setting unit 32 sets the battery 10 (A-1) and the battery 10 (A-2) as a pair, and sets the battery 10 (B-1) and the battery 10 (B-2) as a pair.
- the battery pair setting unit 32 sets a pair of the battery 10 used in the mobility 20 and the battery 10 charged by the battery charger 30 in a state where the plurality of batteries 10 are present. This pair may be fixed in advance, or may be dynamically changed each time the battery 10 is replaced.
- the used battery status acquisition unit 33 acquires status information of the battery 10 (batteries 10 (A-1) and 10 (B-1)) mounted and used in the mobility 20. As described above, the used battery state acquisition unit 33 and the state transmission unit 11 of the battery 10 mounted on the mobility 20 communicate wirelessly.
- the acquired state information includes remaining capacity (SOC (State Of Charge)) charge / discharge current, voltage, temperature, equipment used, battery ID, model, and the like.
- the charging battery state acquisition unit 34 acquires state information of the battery 10 set as a pair with the battery 10 to be used among the batteries 10 charged in the battery charging device 30. For example, when the battery 10 (A-2) and the battery 10 (A-1) are set as a pair, the charging battery state acquisition unit 34 displays the state information of the battery 10 (A-2) as the battery 10 (A -2) from the state transmission unit 11. When battery 10 (B-2) is set as a pair with battery 10 (B-1), charging battery state acquisition unit 34 also acquires state information of battery 10 (B-2).
- the target charge power amount acquisition unit 35 acquires the target charge amount of the battery 10 set in a pair with the battery 10 used in the mobility 20.
- the target charge amount is set to 80% of the total chargeable capacity of the battery 10, for example. As will be described later with reference to FIG. 4, this is because the target charge energy is set within the range of CC charging so that the charge rate can be controlled by changing the charge current.
- the target charging power amount of 80% is stored in the memory 39, and the target charging power amount acquisition unit 35 reads the value from the memory 39. Moreover, not only this but a user sets a value and the target charge electric energy acquisition part 35 may acquire the value.
- the target return capacity acquisition unit 36 acquires the target remaining capacity of the battery 10 used in the mobility 20.
- the target remaining capacity is set to 20% of the total chargeable capacity, for example.
- the target return capacity of 20% is stored in the memory 39, and the target return capacity acquisition unit 36 reads the value.
- a user sets a value and the target return capacity
- the user of the mobility 20 may set in the mobility 20 and the target return capacity acquisition unit 36 may acquire the value by communication.
- the charging current determination unit 37 determines the charging current based on the state information of the battery 10 used in the mobility 20, the state information of the charged battery 10, the target charging power amount, and the target return capacity. To do. For example, as shown in FIG. 3, the charging current determination unit 37 has SOC and capacity data as a table for each pair of the battery 10 being used and the battery 10 being charged, and is updated as needed. . In addition, when the target charge electric energy and the target return capacity are set for each pair, the target charge electric energy and the target return capacity may be added to the table shown in FIG. In FIG. 3, the battery 10 with the ID number A-1 and the battery 10 with the A-2 are set as a pair, and the battery 10 with the ID number B-1 and the battery 10 with the B-2 are set as a pair.
- the battery 10 with the ID number C-1 and the battery 10 with the C-2 are set as a pair.
- the battery 10 (C-1) is not shown.
- the pair is dynamically determined, for example, the battery 10 with the ID number A-1 and the battery 10 with the C-2 may be set as a pair.
- the charging current determination unit 37 includes a charge / discharge ratio calculation unit 41, a decrease amount calculation unit 42, and a charge amount calculation unit 43.
- the charge / discharge ratio calculation unit 41 calculates the charge / discharge ratio using the following (formula 1) to (formula 3).
- Forma 3) Required charge amount / Assumed discharge amount Charge / discharge ratio
- the return capacity is the capacity when the battery 10 charged in the battery charging device 30 is returned, and can be said to be the initial capacity of the charged battery 10 and is acquired by the charged battery state acquisition unit 34.
- the capacity at the time of replacement is the capacity when the battery 10 used in the mobility 20 is replaced, and can be said to be the initial capacity of the battery 10 being used, and is acquired by the used battery state acquisition unit 33.
- the decrease amount calculation unit 42 calculates the amount of decrease in capacity per predetermined time from the state information every predetermined time acquired by the charging battery state acquisition unit 34.
- the charge amount calculation unit 43 calculates the charge amount in a predetermined time by calculating the product of the decrease amount and the charge / discharge ratio.
- the charging current determination unit 37 determines the charging current so that the charging amount calculated by the charging amount calculation unit 43 is obtained.
- the battery charging device 30 of the present embodiment performs CV (Constant voltage) charging after performing CC (Constant current) charging.
- the solid line L ⁇ b> 1 indicates a change in current
- the dotted line L ⁇ b> 2 indicates a change in capacity of the battery 10.
- the battery charging device 30 can control the charging time by changing the charging current in the CC charging section.
- the CC charging section is a section up to about 80% of the total chargeable capacity. Therefore, in the interval up to about 80% of the total chargeable capacity, the charging time can be shortened by increasing the charging current, and the charging time can be delayed by decreasing the charging current.
- the charging current operation unit 38 has a variable current device, and controls the charging current to the battery 10 so as to be the charging current determined by the charging current determination unit 37.
- the memory 39 has a target remaining capacity (target return capacity) of the battery 10 used in the mobility 20 and a target charge amount (target charge power) of the battery 10 set in a pair with the battery 10 used in the mobility 20. Memory).
- the AC / DC conversion unit 40 is connected to the external power supply 50, converts alternating current into direct current, and supplies the charging current to the battery 10 via the charging current operation unit 38.
- step S ⁇ b> 11 the battery pair setting unit 32 sets the battery 10 to be paired with the battery 10 used in the mobility 20 among the batteries 10 charged in the battery charging device 30. For example, as shown in FIGS. 2 and 3, when the battery 10 (B-2) charged by the battery charger 30 is set in a pair with the battery 10 (B-1) used in the mobility 20. To do.
- the used battery state acquisition unit 33 acquires the initial capacity of the battery 10 used in the mobility 20 from the state transmission unit 11.
- the initial capacity of the battery 10 (B-1) in use is set to 80% (0.8 kwh) as shown in FIG. 6, for example.
- the initial capacity may be 80% or more. However, it is treated as 80% in the calculation.
- step S ⁇ b> 13 the charging battery state acquisition unit 34 acquires the initial capacity of the battery 10 set as a pair from the state transmission unit 11.
- the initial capacity of the battery 10 to be used described above is 80% because it is fully charged when it has been charged, but the initial capacity of the battery 10 to be charged depends on the state at the time of return. Vary.
- the initial capacity of the battery 10 (B-2) set as a pair with the battery 10 (B-1) is set to 30% (0.3 kwh) as shown in FIG. 6, for example.
- step S ⁇ b> 14 the target charging power amount acquisition unit 35 acquires the target charging power amount from the memory 39. As shown in FIG. 6, the target charging power amount is set to 80% (0.8 kwh), for example.
- step S ⁇ b> 15 the target return capacity acquisition unit 36 acquires the target return capacity from the memory 39. As shown in FIG. 6, the target return capacity is set to 20% (0.2 kwh), for example.
- step S16 the charge / discharge ratio calculation unit 41 calculates the charge / discharge ratio using (Equation 1) to (Equation 3) described above.
- the charge / discharge ratio is calculated as 0.83 ( ⁇ 500wh / 600wh).
- step S ⁇ b> 17 the used battery state acquisition unit 33 acquires state information of the battery 10 used in the mobility 20 from the state transmission unit 11 every predetermined time.
- the predetermined time can be set to 1 minute, for example.
- step S ⁇ b> 18 the charging battery state acquisition unit 34 acquires the state information of the battery 10 set as a pair being charged by the battery charging device 30 from the state transmission unit 11 every predetermined time.
- step S19 the reduction amount calculation unit 42 calculates the reduction capacity of the battery 10 in a predetermined time. That is, the decrease amount calculation unit 42 can calculate the decrease capacity by comparing the capacity before a predetermined time (for example, one minute before) with the current capacity.
- step S ⁇ b> 21 the charging current determination unit 37 determines a charging current that realizes the charging amount calculated by the charging amount calculation unit 43. As described above, since the determination of the charging current is performed within the range of CC charging, the current value and the charging capacity are substantially proportional.
- step S22 the charging current operation unit 38 controls the charging current by operating the variable current device so as to realize the determined charging current.
- step S23 steps S17 to S22 are repeated until the battery charger 30 detects that the battery 10 (B-1) and the battery 10 (B-2) have been exchanged. That is, until the battery 10 is replaced, the state information of the battery 10 (B-1) that is used is acquired every predetermined time (for example, one minute), and the battery 10 (B-1) is decreased in minutes.
- the charging speed of the battery 10 (B-2) can be adjusted in minutes according to the capacity.
- the timing to reach the target return capacity and the timing to reach the target charging energy amount are not exactly the same because the charging speed is adjusted with a delay of every minute with respect to the decreased capacity, and within the allowable range. I just need it. Note that, for example, the timing deviation can be reduced by shortening the interval for acquiring the state information in units of minutes.
- the battery charging device 30 is a battery charging device that charges the battery 10 used in the mobility 20 (an example of a power consumer), and includes a battery pair setting unit 32, a used battery state acquisition unit 33, A charging current determination unit 37.
- the battery pair setting unit 32 sets the charging target battery 10 to be paired with the used battery 10.
- the used battery status acquisition unit 33 acquires status information (an example of a usage status) of the used battery 10.
- the charging current determination unit 37 determines the charging current of the charging target battery 10 based on the state information acquired by the used battery state acquisition unit 33.
- the charging capacity of the charging battery can be increased in accordance with a decrease in the remaining capacity of the used battery. .
- the remaining capacity of the battery in use is reduced, and the target charge amount (for example, full charge) can be achieved for the charging battery so as to match the timing of battery replacement.
- the leaving time in the state near the target charge amount (for example, full charge) can be suppressed.
- the user when the user reaches the battery charging device 30, since the amount of charge of the battery has reached the target charge power amount, the user does not have to wait until the charging is completed, and the convenience for the user is impaired. Absent.
- the charging current is determined based on the state information of the used battery 10, for example, as the remaining capacity of the used battery 10 decreases, it is possible to control the charging target battery 10 to be charged. Thus, it is possible to control the used battery and the rechargeable battery with simple control.
- the battery charging device 30 further includes a charging battery state acquisition unit 34.
- the charging battery state acquisition unit 34 acquires state information (an example of a charging state) of the charging target battery 10 set as a pair.
- the charging current determination unit 37 is based on the state information (an example of the usage state) acquired by the used battery state acquisition unit 33 and the state information (an example of the charging state) acquired by the charging battery state acquisition unit 34. Determine the charging current.
- the charging battery is adjusted to match the timing of exchanging the used battery 10 and the charging target battery 10.
- the battery charging device 30 further includes a target charging power amount acquisition unit 35 and a target return capacity acquisition unit 36.
- the target charging power amount acquisition unit 35 acquires the target charging power amount of the battery 10 to be charged.
- the target return capacity acquisition unit 36 acquires the target return capacity of the used battery 10.
- the charging current determination unit 37 determines the charging current so that the remaining capacity of the battery to be charged reaches the target charging power amount when the remaining capacity of the used battery 10 reaches the target return capacity.
- the battery 10 that has reached the vicinity of the target charging power amount is determined by determining the charging current so that the charging amount of the charging target battery 10 reaches the target charging power amount when the used battery 10 reaches the target return capacity. Can be kept for a long time.
- the arrival timing to the target return capacity and the arrival timing to the target charging power amount are not required to be strictly matched and may be within an allowable range.
- the charging current determination unit 37 includes a decrease amount calculation unit 42.
- the decrease amount calculation unit 42 calculates the decrease amount of the used battery 10 in a predetermined time based on the use state acquired by the use battery state acquisition unit 33.
- the charging current determination unit 37 determines the charging current based on the decrease amount in the predetermined time calculated by the decrease amount calculation unit 42.
- the charging current determination unit 37 includes a charge / discharge ratio calculation unit 41, a decrease amount calculation unit 42, and a charge amount calculation unit 43.
- the charging battery state acquisition unit 34 acquires the initial capacity of the charging target battery 10.
- the used battery state acquisition unit 33 acquires the initial capacity of the used battery 10.
- the charge / discharge ratio calculation unit 41 calculates a charge / discharge ratio that is a ratio of the difference between the target charge power amount of the battery 10 to be charged and the initial capacity with respect to the difference between the initial capacity and the target return capacity of the battery 10 being used.
- the decrease amount calculation unit 42 calculates the decrease amount of the used battery 10 in a predetermined time based on the use state acquired by the use battery state acquisition unit 33.
- the charging current determination unit 37 determines the charging current by obtaining the product of the reduction amount and the charge / discharge ratio.
- the charge amount calculation unit 43 calculates the charge amount in a predetermined time by calculating the product of the decrease amount and the charge / discharge ratio. Thereby, when the used battery 10 reaches the target return capacity, the charging current can be determined so that the charging amount of the charging target battery 10 reaches the target charging power amount.
- the battery charging system 1 is a battery charging system that charges a battery 10 used in mobility 20 (an example of a power consumer), and includes a battery pair setting unit 32 and a state transmission unit 11 (used battery state). An example of a transmission unit), a used battery state acquisition unit 33, and a charging current determination unit 37.
- the battery pair setting unit 32 sets the charging target battery 10 to be paired with the used battery 10.
- the state transmission unit 11 transmits the usage state of the used battery 10.
- the used battery status acquisition unit 33 acquires the usage status transmitted by the status transmission unit 11.
- the charging current determination unit 37 determines the charging current of the charging target battery 10 based on the usage state acquired by the used battery state acquisition unit 33 and the charging state acquired by the charging battery state acquisition unit 34.
- An example of the used battery status transmission unit is the status transmission unit 11 of each of the batteries 10 (A-1), 10 (B-1), and 10 (C-1) shown in FIG. 3 in detail.
- an example of the charging battery state transmission unit is the state transmission unit 11 of each of the batteries 10 (A-2), (B-2), and (C-2) illustrated in FIG.
- the battery charging method of the present embodiment is a battery charging method for charging the battery 10 used in the mobility 20 (an example of a power consumer), and includes step S11 (an example of a battery pair setting step) and a step S17 (use) An example of a battery state acquisition step) and steps S19 to S21 (an example of a charging current determination step).
- Step S11 an example of a battery pair setting step
- Step S17 an example of a used battery state acquisition step
- Steps S19 to S21 determine the charging current of the battery 10 to be charged based on the state information (an example of a usage state) acquired in step S17 (an example of a used battery state acquisition step).
- the standing time in the vicinity of the target charge amount (for example, full charge) can be suppressed. Further, it is not necessary to input an extra charging current in order to maintain the target charging power amount, so that energy saving can be achieved.
- the battery charging device 30 notifies that the charging of the battery 10 that is paired with the battery 10 used in the mobility 20 has reached the target charging power amount.
- a notification unit 51 may be provided.
- the notification unit 51 determines that the charge amount of the battery 10 is the target charge based on the target charge power amount acquired via the target charge power amount acquisition unit 35 and the charge power amount included in the state information acquired by the charge battery state acquisition unit 34. It detects that the amount of power has been reached and notifies the mobility 20.
- the mobility 20 includes a receiving unit 24 and a display unit 25.
- the receiving unit 24 receives a notification from the notification unit 51, and causes the display unit 25 to display the notification content.
- the display unit 25 may be a display mounted on the mobility 20 or may be a simple lamp.
- the receiving unit 24 and the display unit 25 may not be provided in the mobility 20 but may be provided in a portable information terminal such as a mobile phone or a smartphone possessed by the user of the mobility 20.
- the battery charging device 30 may acquire the capacity in the AC / DC conversion unit 40 and determine the charging current based on the capacity.
- the battery charging device 30 illustrated in FIG. 8 further includes a power upper limit setting unit 52.
- the power upper limit setting unit 52 sets the upper limit of the electric energy of the AC / DC conversion unit 40.
- the charging current determination unit 37 is set by the power upper limit setting unit 52 in addition to the state information of the battery 10 being used (an example of usage information) and the state information of the battery 10 being charged (an example of charging information) The charging current is determined based on the upper limit of the electric energy of the AC / DC conversion unit 40.
- AC / DC conversion capacity can be saved by appropriately setting the upper limit value of the electric energy.
- the battery charging device 30 charges a plurality of batteries 10 by setting the upper limit value of the electric energy to the contract power, and the battery 10 is likely to exceed the contract power, the battery 10 having a low priority is set. Control is performed so as not to exceed the contract power by reducing the charging current. Thereby, the battery charger 30 can be controlled so as not to exceed the contract power.
- the power consumer may be an electric tool such as an electric drill.
- the power tool may be used within a limited range such as in a factory, for example.
- an electric motorcycle is used as the mobility 20.
- the mobility may be an electric motorcycle, an electric bicycle, an electric assist bicycle, an electric vehicle, an automatic guided vehicle, or the like.
- the automatic guided vehicle is, for example, an AGV (Automatic Guided Vehicle) and is used in a warehouse or the like.
- the target charge power amount is set to 80% of the total chargeable capacity, and the target return capacity is set to 20% of the total capacity.
- the present invention is not limited to this, and may be set as appropriate. .
- a lamp as an example of a display unit may be turned on to notify the user.
- the battery charging device 30 shown in FIG. 9 detects that the state information (particularly the remaining capacity) acquired from the used battery state acquisition unit 33 has reached the target return capacity acquired via the target return capacity acquisition unit 36.
- a notification unit 53 for notifying that effect is provided.
- the mobility 20 includes a receiving unit 24 that receives a notification from the notification unit 53 and a display unit 25 that displays the notification.
- the display unit 25 may be a display mounted on the mobility 20.
- the receiving unit 24 and the display unit 25 may not be provided in the mobility 20 but may be provided in a portable information terminal such as a mobile phone or a smartphone possessed by the user of the mobility 20.
- the charging battery state acquisition unit 34 is provided, but the charging battery state acquisition unit 34 may not be provided.
- the charge capacity of the charging target battery 10 is set to a predetermined rate (for example, the same 1 as the decrease rate). %), Control may be performed so as to increase.
- one battery 10 is provided in the mobility 20, but the number is not limited to one and may be two or more.
- a plurality of battery charging devices 30 may be arranged.
- the charging station provided with the 1 or several battery charging device 30 may be installed in several places.
- Battery Charging System 10 Battery 11: Status Transmitter 20: Mobility 20a: Seat 20b: Handle 21: Motor 23: Front Wheel 24: Receiver 25: Display Unit 30: Battery Charging Device 31: Rechargeable Battery Hole 32: Battery Pair Setting unit 33: Use battery state acquisition unit 34: Charge battery state acquisition unit 35: Target charge power amount acquisition unit 36: Target return capacity acquisition unit 37: Charge current determination unit 38: Charge current operation unit 39: Memory 40: AC / DC conversion unit 41: charge / discharge ratio calculation unit 42: reduction amount calculation unit 43: charge amount calculation unit 50: external power supply 51: notification unit 52: power upper limit setting unit 53: notification unit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
バッテリ充電装置(30)は、モビリティ(20)で使用するバッテリ(10)を充電する、バッテリ充電装置であって、バッテリペア設定部(32)と、使用バッテリ状態取得部(33)と、充電電流決定部(37)と、を備える。バッテリペア設定部(32)は、使用バッテリ(10)とペアにする充電対象バッテリ(10)を設定する。使用バッテリ状態取得部(33)は、使用バッテリ(10)の状態情報を取得する。充電電流決定部(37)は、使用バッテリ状態取得部(33)によって取得した状態情報に基づいて充電対象バッテリ(10)の充電電流を決定する。
Description
本発明は、バッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法に関する。
従来、1台の電気作業者に対して複数の電池パックを用意し、搭載している電池パックの電池残量がなくなると、予め充電した電池パックに交換する充電システムが提案されている(例えば、特許文献1参照)。
特許文献1に示す充電システムでは、複数の作業車の電池の残量が取り込まれ、所定時間経過後までの予想消費電力が演算される。そして、残量と予想消費電力の差から複数の作業車の電池交換優先順位を定める指標値が演算され、指標値および電池の充電受け入れ可能な許容量に基づき作業車に対して帰還命令が発せられる。
特許文献1に示す充電システムでは、複数の作業車の電池の残量が取り込まれ、所定時間経過後までの予想消費電力が演算される。そして、残量と予想消費電力の差から複数の作業車の電池交換優先順位を定める指標値が演算され、指標値および電池の充電受け入れ可能な許容量に基づき作業車に対して帰還命令が発せられる。
しかしながら、特許文献1に示すシステムでは、以下のような問題点が発生することが考えられる。
すなわち、上記のような充電システムでは、充電中のバッテリの充電速度の制御は行っておらず、バッテリの交換に対応できるように出来るだけ早くバッテリの充電が行われる。しかしながら、作業車のバッテリの容量が残っている場合、充電しているバッテリが満充電状態になっても作業車がバッテリの交換にすぐには来ず、満充電近辺の状態のまま長時間放置される場合がある。このように満充電近辺の状態で長時間放置されると、バッテリの劣化が進み易い。
すなわち、上記のような充電システムでは、充電中のバッテリの充電速度の制御は行っておらず、バッテリの交換に対応できるように出来るだけ早くバッテリの充電が行われる。しかしながら、作業車のバッテリの容量が残っている場合、充電しているバッテリが満充電状態になっても作業車がバッテリの交換にすぐには来ず、満充電近辺の状態のまま長時間放置される場合がある。このように満充電近辺の状態で長時間放置されると、バッテリの劣化が進み易い。
本発明の目的は、満充電近辺での放置時間を低減可能なバッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法を提供することである。
第1の発明に係るバッテリ充電装置は、電力消費体で使用するバッテリを充電するバッテリ充電装置であって、バッテリペア設定部と、使用バッテリ状態取得部と、充電電流決定部と、を備える。バッテリペア設定部は、使用バッテリとペアにする充電対象バッテリを設定する。使用バッテリ状態取得部は、使用バッテリの使用状態を取得する。充電電流決定部は、使用バッテリ状態取得部によって取得した使用状態に基づいて充電対象バッテリの充電電流を決定する。
このように、使用しているバッテリの使用状態を取得することによって、例えば、使用バッテリの残容量の減少に従って、充電バッテリの充電容量を増加させるようにすることができる。このため、使用しているバッテリの残容量が減りバッテリを交換するタイミングに合わせるように充電バッテリを目標とする充電量(例えば、満充電)にすることができる。このため、目標とする充電量(例えば、満充電)近辺の状態での放置時間を抑制することができる。また、目標充電電力量を維持するために余分に充電電流を入力する必要がないため、省エネルギー化を図ることができる。
また、使用者が充電装置に到達したときには、バッテリの充電量が目標充電電力量に達しているため、充電が完了するまで使用者が待つ必要がなく、使用者の利便性が損なわれない。
また、使用状態に基づいて充電電流を決定するため、例えば、使用バッテリの残容量が減少するに従って、充電バッテリを充電するように制御を行うことができ、従来と比較して簡易な制御で使用バッテリおよび充電バッテリの制御を行うことができる。
また、使用状態に基づいて充電電流を決定するため、例えば、使用バッテリの残容量が減少するに従って、充電バッテリを充電するように制御を行うことができ、従来と比較して簡易な制御で使用バッテリおよび充電バッテリの制御を行うことができる。
第2の発明に係るバッテリ充電装置は、第1の発明に係るバッテリ充電装置であって、充電バッテリ状態取得部を更に備える、充電バッテリ状態取得部は、ペアに設定された前記充電対象バッテリの充電状態を取得する。充電電流決定部は、使用バッテリ状態取得部によって取得した使用状態と充電バッテリ状態取得部によって取得した充電状態に基づいて充電対象バッテリの充電電流を決定する。
このように、使用しているバッテリの使用状態と充電しているバッテリの充電状態とを取得することによって、例えば、使用バッテリと充電バッテリを交換するタイミングに合わせるように充電バッテリを目標とする充電量(例えば、満充電)にすることができる。このため、目標とする充電量(例えば、満充電)近辺の状態での放置時間を抑制することができる。
第3の発明に係るバッテリ充電装置は、第1の発明に係るバッテリ充電装置であって、目標充電電力量取得部と、目標返却容量取得部と、を更に備える。目標充電電力量取得部は、充電対象バッテリの目標充電電力量を取得する。目標返却容量取得部は、使用バッテリの目標返却容量を取得する。充電電流決定部は、使用バッテリの残容量が目標返却容量に達するときに、充電対象バッテリの残容量が目標充電電力量に達するように、充電電流を決定する。
このように、使用バッテリが目標返却容量に達したときに充電対象バッテリの充電量が目標充電電力量に達するように充電電流を決定することにより、目標充電電力量近辺に達したバッテリの放置時間を抑制できる。
なお、目標返却容量への到達タイミングと目標充電電力量への到達タイミングは厳密な一致を要求されるものでなく許容範囲内であればよい。
なお、目標返却容量への到達タイミングと目標充電電力量への到達タイミングは厳密な一致を要求されるものでなく許容範囲内であればよい。
第4の発明に係るバッテリ充電装置は、第1の発明に係るバッテリ充電装置であって、充電電流決定部は、減少量算出部を有する。減少量算出部は、使用バッテリ状態取得部によって取得した使用状態に基づいて使用バッテリの所定時間における減少量を算出する。充電電流決定部は、減少量算出部によって算出された所定時間における減少量に基づいて充電電流を決定する。
このように、使用バッテリの所定時間における減少量に基づいて、充電対象バッテリの充電量を制御するため、使用バッテリおよび充電バッテリの制御を簡易に行うことができる。
このように、使用バッテリの所定時間における減少量に基づいて、充電対象バッテリの充電量を制御するため、使用バッテリおよび充電バッテリの制御を簡易に行うことができる。
第5の発明に係るバッテリ充電装置は、第3の発明に係るバッテリ充電装置であって、充電バッテリ状態取得部を更に備える。充電バッテリ状態取得部は、ペアに設定された充電対象バッテリの充電状態を取得する。充電電流決定部は、充放電比算出部と、減少量算出部と、充電量算出部と、を有する。充電バッテリ状態取得部は、充電対象バッテリの初期容量を取得する。使用バッテリ状態取得部は、使用バッテリの初期容量を取得する。充放電比算出部は、使用バッテリの初期容量と目標返却容量の差に対する、充電対象バッテリの目標充電電力量と初期容量の差の比である充放電比を算出する。減少量算出部は、使用バッテリ状態取得部によって取得した使用状態に基づいて使用バッテリの所定時間における減少量を算出する。充電量算出部は、減少量と充放電比の積を演算して所定時間における充電量を算出する。充電電流決定部は、算出された充電量に基づいて充電電流を決定する。
これにより、使用バッテリが目標返却容量に達したときに充電対象バッテリの充電量が目標充電電力量に達するように充電電流を決定することができる。
これにより、使用バッテリが目標返却容量に達したときに充電対象バッテリの充電量が目標充電電力量に達するように充電電流を決定することができる。
第6の発明に係るバッテリ充電装置は、第2の発明に係るバッテリ充電装置であって、目標充電電力量取得部と、通知部と、を更に備える。目標充電電力量取得部は、充電対象バッテリの目標充電電力量を取得する。通知部は、充電対象バッテリの充電量が目標充電電力量に達したことを電力消費体の使用者に通知する。
これにより、電力消費体の使用者は、充電対象バッテリの充電量が目標充電電力量に達したことを確認できる。
これにより、電力消費体の使用者は、充電対象バッテリの充電量が目標充電電力量に達したことを確認できる。
第7の発明に係るバッテリ充電装置は、第1の発明に係るバッテリ充電装置であって、電力消費体は、電動自動二輪車、電動自転車、電動アシスト自転車、電気自動車、無人搬送車または電動工具である。
ここでは、電力消費体として、電動自動二輪車、電動自転車、電動アシスト自転車、電気自動車、無人搬送車を含むモビリティを用いている。また、無人搬送車は、例えば、AGV(Automatic Guided Vehicle)であって、倉庫内などで用いられる。なお、電力消費体としては、電動ドリル等の電動工具も含まれる。
ここでは、電力消費体として、電動自動二輪車、電動自転車、電動アシスト自転車、電気自動車、無人搬送車を含むモビリティを用いている。また、無人搬送車は、例えば、AGV(Automatic Guided Vehicle)であって、倉庫内などで用いられる。なお、電力消費体としては、電動ドリル等の電動工具も含まれる。
第8の発明に係るバッテリ充電システムは、電力消費体で使用するバッテリを充電するバッテリ充電システムであって、バッテリペア設定部と、使用バッテリ状態送信部と、使用バッテリ状態取得部と、充電電流決定部と、を備える。バッテリペア設定部は、使用バッテリとペアにする充電対象バッテリを設定する。使用バッテリ状態送信部は、使用バッテリの使用状態を送信する。使用バッテリ状態取得部は、使用バッテリ状態送信部によって送信される前記使用状態を取得する。充電電流決定部は、使用バッテリ状態取得部によって取得した使用状態に基づいて充電対象バッテリの充電電流を決定する。
このように、使用しているバッテリの使用状態を取得することによって、例えば、使用バッテリの残容量の減少に従って、充電バッテリの充電容量を増加させるようにすることができる。このため、使用しているバッテリの残容量が減りバッテリを交換するタイミングに合わせるように充電バッテリを満充電にすることができる。このため、目標とする充電量(例えば、満充電)近辺の状態での放置時間を抑制することができる。また、目標充電電力量を維持するために余分に充電電流を入力する必要がないため、省エネルギー化を図ることができる。
また、使用者が充電装置に到達したときには、バッテリの充電量が目標充電電力量に達しているため、充電が完了するまで使用者が待つ必要がなく、使用者の利便性が損なわれない。
また、使用状態に基づいて充電電流を決定するため、例えば、使用バッテリの残容量が減少するに従って、充電バッテリを充電するように制御を行うことができ、従来と比較して簡易な制御で使用バッテリおよび充電バッテリの制御を行うことができる。
また、使用状態に基づいて充電電流を決定するため、例えば、使用バッテリの残容量が減少するに従って、充電バッテリを充電するように制御を行うことができ、従来と比較して簡易な制御で使用バッテリおよび充電バッテリの制御を行うことができる。
第9の発明に係るバッテリ充電方法は、電力消費体で使用するバッテリを充電するバッテリ充電方法であって、バッテリペア設定ステップと、使用バッテリ状態取得ステップと、充電電流決定ステップと、を備える。バッテリペア設定ステップは、使用バッテリとペアにする充電対象バッテリを設定する。使用バッテリ状態取得ステップは、使用バッテリの使用状態を取得する。充電電流決定ステップは、使用バッテリ状態取得ステップによって取得した使用状態に基づいて充電対象バッテリの充電電流を決定する。
このため、目標とする充電量(例えば、満充電)近辺の状態での放置時間を抑制することができる。また、目標充電電力量を維持するために余分に充電電流を入力する必要がないため、省エネルギー化を図ることができる。
また、使用者が充電装置に到達したときには、バッテリの充電量が目標充電電力量に達しているため、充電が完了するまで使用者が待つ必要がなく、使用者の利便性が損なわれない。
また、使用者が充電装置に到達したときには、バッテリの充電量が目標充電電力量に達しているため、充電が完了するまで使用者が待つ必要がなく、使用者の利便性が損なわれない。
また、使用状態に基づいて充電電流を決定するため、例えば、使用バッテリの残容量が減少するに従って、充電バッテリを充電するように制御を行うことができ、従来と比較して簡易な制御で使用バッテリおよび充電バッテリの制御を行うことができる。
(発明の効果)
本発明によれば、満充電近辺での放置時間を低減可能なバッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法を提供することが出来る。
(発明の効果)
本発明によれば、満充電近辺での放置時間を低減可能なバッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法を提供することが出来る。
以下に、本発明の実施の形態に係るバッテリ充電装置、バッテリ充電システム、およびバッテリ充電方法について図面を参照しながら説明する。
(実施の形態)
<1.構成>
本実施形態のバッテリ充電システム1は、モビリティ20が搭載しているバッテリ10をバッテリ充電装置30において交換するために、バッテリ10の充電を行うシステムである。本実施の形態のバッテリ充電システム1は、図1および図2に示すように、バッテリ充電装置30と、複数のバッテリ10とを備える。
(実施の形態)
<1.構成>
本実施形態のバッテリ充電システム1は、モビリティ20が搭載しているバッテリ10をバッテリ充電装置30において交換するために、バッテリ10の充電を行うシステムである。本実施の形態のバッテリ充電システム1は、図1および図2に示すように、バッテリ充電装置30と、複数のバッテリ10とを備える。
(1-1.モビリティ20)
はじめにバッテリ10を搭載するモビリティ20について説明する。
モビリティ20は、シート20aの下の空間に搭載された1本のバッテリ10からモータ21に電力が供給されて、後輪(駆動輪)22が回転駆動されることにより、走行可能となる。前輪23は、モビリティ20の前部と路面との間に設けられた操舵輪であって、ハンドル20bの向きに連動して向きを変えることで、走行方向を切り替えることができる。
はじめにバッテリ10を搭載するモビリティ20について説明する。
モビリティ20は、シート20aの下の空間に搭載された1本のバッテリ10からモータ21に電力が供給されて、後輪(駆動輪)22が回転駆動されることにより、走行可能となる。前輪23は、モビリティ20の前部と路面との間に設けられた操舵輪であって、ハンドル20bの向きに連動して向きを変えることで、走行方向を切り替えることができる。
また、モビリティ20は、走行や自然放電等によって残容量が少なくなったバッテリ10を、所定のバッテリ充電装置30において、充電済みのバッテリ10と交換しながら使用される、いわゆるバッテリスワップを利用可能である。
(1-2.バッテリ10)
バッテリ10は、モビリティ20に対して電力を供給するために、モビリティ20に対して交換可能な状態で1本搭載されている。
バッテリ10は、図2に示すように、バッテリ充電装置30にバッテリ10の状態情報を送信する状態送信部11を有している。状態送信部11は、バッテリ10の残容量(SOC(State Of Charge))充放電電流、電圧、温度、使用機器、バッテリID、型式などを含む状態情報をバッテリ充電装置30に送信する。なお、バッテリ10がバッテリ充電装置30に充電されている状態では、状態送信部11は、バッテリ充電装置30と有線または無線通信チップによって通信を行う。また、バッテリ10がモビリティ20に搭載されている状態では、状態送信部11に搭載された無線通信チップによって状態情報をバッテリ充電装置30に送信する。例えば、モビリティ20が屋内用である場合には、無線通信として、Wifi, Wi-SUN, Zigbee(登録商標)等を用いることが出来る。
バッテリ10は、モビリティ20に対して電力を供給するために、モビリティ20に対して交換可能な状態で1本搭載されている。
バッテリ10は、図2に示すように、バッテリ充電装置30にバッテリ10の状態情報を送信する状態送信部11を有している。状態送信部11は、バッテリ10の残容量(SOC(State Of Charge))充放電電流、電圧、温度、使用機器、バッテリID、型式などを含む状態情報をバッテリ充電装置30に送信する。なお、バッテリ10がバッテリ充電装置30に充電されている状態では、状態送信部11は、バッテリ充電装置30と有線または無線通信チップによって通信を行う。また、バッテリ10がモビリティ20に搭載されている状態では、状態送信部11に搭載された無線通信チップによって状態情報をバッテリ充電装置30に送信する。例えば、モビリティ20が屋内用である場合には、無線通信として、Wifi, Wi-SUN, Zigbee(登録商標)等を用いることが出来る。
(1-3.バッテリ充電装置30)
バッテリ充電装置30は、モビリティ20で使用されるバッテリ10の充電を行う。バッテリ充電装置30は、図1に示すように、バッテリ10が挿入される充電池穴31を複数有している。充電池穴31は、バッテリ10が収納される。これらの充電池穴31にバッテリ10が収納されてバッテリ10の充電が行われる。
バッテリ充電装置30は、モビリティ20で使用されるバッテリ10の充電を行う。バッテリ充電装置30は、図1に示すように、バッテリ10が挿入される充電池穴31を複数有している。充電池穴31は、バッテリ10が収納される。これらの充電池穴31にバッテリ10が収納されてバッテリ10の充電が行われる。
図2に示すように、バッテリ充電装置30は、バッテリペア設定部32と、使用バッテリ状態取得部33と、充電バッテリ状態取得部34と、目標充電電力量取得部35と、目標返却容量取得部36と、充電電流決定部37と、充電電流操作部38と、メモリ39と、AC/DC変換部40と、を有する。
バッテリペア設定部32は、モビリティ20で使用されているバッテリ10と、バッテリ充電装置30で充電されているバッテリ10のペアを設定する。ここで、図2に示すように、2つのモビリティ20のそれぞれに搭載されているバッテリ10を10(A-1)、10(B-1)とし、バッテリ充電装置30で充電されている3つのバッテリ10を10(A-2)、10(B-2)、10(C-2)とする。バッテリペア設定部32は、例えば、バッテリ10(A-1)とバッテリ10(A-2)をペアとし、バッテリ10(B-1)とバッテリ10(B-2)をペアに設定する。このように、バッテリペア設定部32は、複数のバッテリ10が存在する状態において、モビリティ20で使用されるバッテリ10とバッテリ充電装置30で充電されるバッテリ10のペアを設定する。このペアは予め固定されていてもよいし、バッテリ10の交換ごとに動的に変更してもよい。
バッテリペア設定部32は、モビリティ20で使用されているバッテリ10と、バッテリ充電装置30で充電されているバッテリ10のペアを設定する。ここで、図2に示すように、2つのモビリティ20のそれぞれに搭載されているバッテリ10を10(A-1)、10(B-1)とし、バッテリ充電装置30で充電されている3つのバッテリ10を10(A-2)、10(B-2)、10(C-2)とする。バッテリペア設定部32は、例えば、バッテリ10(A-1)とバッテリ10(A-2)をペアとし、バッテリ10(B-1)とバッテリ10(B-2)をペアに設定する。このように、バッテリペア設定部32は、複数のバッテリ10が存在する状態において、モビリティ20で使用されるバッテリ10とバッテリ充電装置30で充電されるバッテリ10のペアを設定する。このペアは予め固定されていてもよいし、バッテリ10の交換ごとに動的に変更してもよい。
使用バッテリ状態取得部33は、モビリティ20に搭載され使用されているバッテリ10(バッテリ10(A-1),10(B-1))の状態情報を取得する。上述したように、使用バッテリ状態取得部33とモビリティ20に搭載されているバッテリ10の状態送信部11は、無線によって通信を行う。また、取得する状態情報は、残容量(SOC(State Of Charge))充放電電流、電圧、温度、使用機器、バッテリID、型式などを含む。
充電バッテリ状態取得部34は、バッテリ充電装置30において充電しているバッテリ10のうち使用するバッテリ10とペアとして設定されたバッテリ10の状態情報を取得する。例えば、バッテリ10(A-2)とバッテリ10(A-1)がペアとして設定されている場合は、充電バッテリ状態取得部34は、バッテリ10(A-2)の状態情報をバッテリ10(A-2)の状態送信部11から受信する。なお、バッテリ10(B-2)がバッテリ10(B-1)とペアに設定されている場合には、充電バッテリ状態取得部34は、バッテリ10(B-2)の状態情報も取得する。
目標充電電力量取得部35は、モビリティ20において使用するバッテリ10とペアに設定されているバッテリ10の目標とする充電量を取得する。目標とする充電量は、例えば、バッテリ10の充電可能な全容量の80%に設定されている。これは、図4を用いて後述するが、充電電流を変更することによって充電速度を制御可能とするために、目標充電電力量をCC充電の範囲内に設定しているためである。なお、例えば80%という目標充電電力量は、メモリ39に記憶されており、目標充電電力量取得部35がメモリ39からその値を読み出す。また、これに限らず、使用者が値を設定し、その値を目標充電電力量取得部35が取得しても良い。
目標返却容量取得部36は、モビリティ20において使用するバッテリ10の目標とする残容量を取得する。ここで、目標とする残容量は、例えば充電可能な全容量の20%に設定されている。なお、例えば20%という目標返却容量は、メモリ39に記憶されており、その値を目標返却容量取得部36が読み出す。また、これに限らず、使用者が値を設定し、その値を目標返却容量取得部36が取得しても良い。さらに、モビリティ20の使用者がモビリティ20において設定し、その値を通信によって目標返却容量取得部36が取得しても良い。
充電電流決定部37は、モビリティ20で使用されているバッテリ10の状態情報と、充電されているバッテリ10の状態情報と、目標充電電力量と、目標返却容量とに基づいて、充電電流を決定する。例えば、充電電流決定部37は、図3に示すように、使用中のバッテリ10と充電中のバッテリ10のペアごとにSOCと、容量などのデータをテーブルとして有しており、随時更新される。なお、ペアごとに目標充電電力量と目標返却容量が設定されている場合には、図3に示すテーブルに目標充電電力量と目標返却容量が追加されていればよい。図3では、ID番号がA-1のバッテリ10とA-2のバッテリ10がペアに設定されており、ID番号がB-1のバッテリ10とB-2のバッテリ10がペアに設定されており、ID番号がC-1のバッテリ10とC-2のバッテリ10がペアに設定されている。なお、図2では、バッテリ10(C-1)は記載を省略している。また、ペアが動的に決定される場合、例えばID番号がA-1のバッテリ10とC-2のバッテリ10がペアに設定されていてもよい。
充電電流決定部37は、充放電比算出部41と、減少量算出部42と、充電量算出部43と、を有する。
充放電比算出部41は、以下の(式1)~(式3)を用いて充放電比を算出する。
(式1)(目標充電電力量―返却時容量)=必要充電量
(式2)(目標返却容量―交換時容量)=想定放電量
(式3)必要充電量/想定放電量=充放電比
返却時用容量は、バッテリ充電装置30において充電されているバッテリ10の返却時の容量であり、充電されているバッテリ10の初期容量ともいえ、充電バッテリ状態取得部34によって取得される。
充放電比算出部41は、以下の(式1)~(式3)を用いて充放電比を算出する。
(式1)(目標充電電力量―返却時容量)=必要充電量
(式2)(目標返却容量―交換時容量)=想定放電量
(式3)必要充電量/想定放電量=充放電比
返却時用容量は、バッテリ充電装置30において充電されているバッテリ10の返却時の容量であり、充電されているバッテリ10の初期容量ともいえ、充電バッテリ状態取得部34によって取得される。
交換時容量は、モビリティ20で使用するバッテリ10の交換したときの容量であり、使用されているバッテリ10の初期容量ともいえ、使用バッテリ状態取得部33によって取得される。
減少量算出部42は、充電バッテリ状態取得部34によって取得される所定時間ごとの状態情報から、所定時間ごとにおける容量の減少量を算出する。
減少量算出部42は、充電バッテリ状態取得部34によって取得される所定時間ごとの状態情報から、所定時間ごとにおける容量の減少量を算出する。
充電量算出部43は、減少量と充放電比の積を演算して所定時間における充電量を算出する。
充電電流決定部37は、充電量算出部43によって算出された充電量になるように充電電流を決定する。
ここで、図4に示すように、本実施の形態のバッテリ充電装置30は、CC(Constant current)充電を行った後にCV(Constant voltage)充電を行う。図4では、実線L1が電流の変化を示し、点線L2がバッテリ10の容量の変化を示す。
充電電流決定部37は、充電量算出部43によって算出された充電量になるように充電電流を決定する。
ここで、図4に示すように、本実施の形態のバッテリ充電装置30は、CC(Constant current)充電を行った後にCV(Constant voltage)充電を行う。図4では、実線L1が電流の変化を示し、点線L2がバッテリ10の容量の変化を示す。
バッテリ充電装置30は、CC充電の区間では、充電電流を変えることによって充電時間を制御することが出来る。CC充電の区間は、充電可能な全容量の約80%までの区間である。そのため、充電可能な全容量の約80%までの区間では、充電電流を大きくすると充電時間を速くすることができ、充電電流を小さくすることで充電時間を遅くすることができる。
充電電流操作部38は、可変電流器を有しており、充電電流決定部37によって決定された充電電流になるようにバッテリ10への充電電流を制御する。
メモリ39は、モビリティ20において使用するバッテリ10の目標とする残容量(目標返却容量)と、モビリティ20において使用するバッテリ10とペアに設定されているバッテリ10の目標とする充電量(目標充電電力量)を記憶する。
メモリ39は、モビリティ20において使用するバッテリ10の目標とする残容量(目標返却容量)と、モビリティ20において使用するバッテリ10とペアに設定されているバッテリ10の目標とする充電量(目標充電電力量)を記憶する。
AC/DC変換部40は、外部電源50と接続されており、交流を直流に変換し、充電電流操作部38を介してバッテリ10に充電電流を供給する。
<2.動作>
次に、本発明にかかるバッテリ充電装置の動作について説明するとともに、本発明のバッテリ充電方法の一例についても同時に述べる。
ステップS11において、バッテリペア設定部32は、バッテリ充電装置30において充電されるバッテリ10のうち、モビリティ20で使用するバッテリ10とペアにするバッテリ10を設定する。例えば、図2および図3に示すように、バッテリ充電装置30で充電されているバッテリ10(B-2)が、モビリティ20で使用されるバッテリ10(B-1)とペアに設定されるとする。
次に、本発明にかかるバッテリ充電装置の動作について説明するとともに、本発明のバッテリ充電方法の一例についても同時に述べる。
ステップS11において、バッテリペア設定部32は、バッテリ充電装置30において充電されるバッテリ10のうち、モビリティ20で使用するバッテリ10とペアにするバッテリ10を設定する。例えば、図2および図3に示すように、バッテリ充電装置30で充電されているバッテリ10(B-2)が、モビリティ20で使用されるバッテリ10(B-1)とペアに設定されるとする。
次に、ステップS12において、使用バッテリ状態取得部33は、モビリティ20で使用するバッテリ10の初期容量を状態送信部11から取得する。ここで、使用中のバッテリ10(B-1)の初期容量を、例えば図6に示すように80%(0.8kwh)とする。本実施の形態では、使用するバッテリ10は図4に示すようにCC充電で充電された充電容量(約80%)を満充電とするため、初期容量は80%以上となっている場合もあるが、計算上は80%として扱う。
次に、ステップS13において、充電バッテリ状態取得部34は、ペアに設定されたバッテリ10の初期容量を状態送信部11から取得する。上述した使用するバッテリ10の初期容量は、充電済みの場合には満充電となっているため、80%となるが、充電するバッテリ10の初期容量は返却時の状態に依存するため、初期容量はばらつきがある。ここで、バッテリ10(B-1)とペアに設定されたバッテリ10(B-2)の初期容量を例えば図6に示すように30%(0.3kwh)とする。
次に、ステップS14において、目標充電電力量取得部35が、メモリ39から目標充電電力量を取得する。図6に示すように、目標充電電力量を例えば80%(0.8kwh)に設定する。
次に、ステップS15において、目標返却容量取得部36が、メモリ39から目標返却容量を取得する。図6に示すように、目標返却容量を例えば20%(0.2kwh)に設定する。
次に、ステップS15において、目標返却容量取得部36が、メモリ39から目標返却容量を取得する。図6に示すように、目標返却容量を例えば20%(0.2kwh)に設定する。
次に、ステップS16において、充放電比算出部41が、上述した(式1)~(式3)を用いて充放電比を算出する。図6の例では、(式1)を用いて計算することによって、必要電力量は、500wh(=800wh-300wh)と算出される。また(式2)を用いて計算することによって、想定放電量は、600wh(=800wh-200wh)と算出される。そして、(式3)を用いて計算することによって、充放電比は、0.83(≒500wh/600wh)と算出される。
次に、ステップS17において、使用バッテリ状態取得部33は、モビリティ20で使用しているバッテリ10の状態情報を所定時間ごとに状態送信部11から取得する。所定時間とは、例えば、1分間に設定できる。
次に、ステップS18において、充電バッテリ状態取得部34は、バッテリ充電装置30で充電中のペアに設定されたバッテリ10の状態情報を所定時間ごとに状態送信部11から取得する。
次に、ステップS18において、充電バッテリ状態取得部34は、バッテリ充電装置30で充電中のペアに設定されたバッテリ10の状態情報を所定時間ごとに状態送信部11から取得する。
次に、ステップS19において、減少量算出部42は、所定時間におけるバッテリ10の減少容量を算出する。すなわち、減少量算出部42は、所定時間前(例えば、1分前)の容量と現在の容量を比較することによって減少容量を算出できる。
次に、ステップS20において、充電量算出部43は、減少容量に対して充放電比(上記例では0.83)を乗じ、充電量を算出する。すなわち、充電量算出部43は、所定時間において増加させる充電量を算出する。例えば、使用しているバッテリ10(B-1)が一分間に5wh減少したとすると、バッテリ10(B-2)を一分間に4.15wh(=5×0.83)増加させる。
次に、ステップS20において、充電量算出部43は、減少容量に対して充放電比(上記例では0.83)を乗じ、充電量を算出する。すなわち、充電量算出部43は、所定時間において増加させる充電量を算出する。例えば、使用しているバッテリ10(B-1)が一分間に5wh減少したとすると、バッテリ10(B-2)を一分間に4.15wh(=5×0.83)増加させる。
次に、ステップS21において、充電電流決定部37は、充電量算出部43によって算出された充電量を実現する充電電流を決定する。なお、上述したように充電電流の決定は、CC充電の範囲で実施するため、ほぼ電流値と充電容量は比例する。
次に、ステップS22において、充電電流操作部38は、決定された充電電流を実現するように、可変電流器を操作して充電電流を制御する。
次に、ステップS22において、充電電流操作部38は、決定された充電電流を実現するように、可変電流器を操作して充電電流を制御する。
そして、ステップS23において、バッテリ充電装置30が、バッテリ10(B-1)とバッテリ10(B-2)の交換が行われたことを検出するまで、上記ステップS17~S22が繰り返される。すなわち、バッテリ10の交換が行われるまで、所定時間(例えば1分間)ごとに使用しているバッテリ10(B-1)の状態情報を取得し、分単位におけるバッテリ10(B-1)の減少容量に合わせて、バッテリ10(B-2)の充電速度を分単位で調整できる。
このため、使用しているバッテリ10(B-1)が目標返却容量に達したときに、ペアに設定された充電しているバッテリ10(B-2)が目標充電電力量に達する。ここで、目標返却容量に達するタイミングと、目標充電電力量に達するタイミングは、減少容量に対して一分ごとに遅れて充電速度が調整されるため厳密に一致するものではなく、許容範囲内であればよい。なお、例えば、分単位のように状態情報を取得する間隔を短くすることによってタイミングのずれを小さくできる。
<3.特徴等>
(3-1)
本実施の形態のバッテリ充電装置30は、モビリティ20(電力消費体の一例)で使用するバッテリ10を充電するバッテリ充電装置であって、バッテリペア設定部32と、使用バッテリ状態取得部33と、充電電流決定部37と、を備える。バッテリペア設定部32は、使用バッテリ10とペアにする充電対象バッテリ10を設定する。使用バッテリ状態取得部33は、使用バッテリ10の状態情報(使用状態の一例)を取得する。充電電流決定部37は、使用バッテリ状態取得部33によって取得した状態情報に基づいて充電対象バッテリ10の充電電流を決定する。
(3-1)
本実施の形態のバッテリ充電装置30は、モビリティ20(電力消費体の一例)で使用するバッテリ10を充電するバッテリ充電装置であって、バッテリペア設定部32と、使用バッテリ状態取得部33と、充電電流決定部37と、を備える。バッテリペア設定部32は、使用バッテリ10とペアにする充電対象バッテリ10を設定する。使用バッテリ状態取得部33は、使用バッテリ10の状態情報(使用状態の一例)を取得する。充電電流決定部37は、使用バッテリ状態取得部33によって取得した状態情報に基づいて充電対象バッテリ10の充電電流を決定する。
このように、使用しているバッテリ10の状態情報(使用状態の一例)を取得することによって、例えば、使用バッテリの残容量の減少に従って、充電バッテリの充電容量を増加させるようにすることができる。このため、使用しているバッテリの残容量が減りバッテリを交換するタイミングに合わせるように充電バッテリを目標とする充電量(例えば、満充電)にすることができる。このため、目標とする充電量(例えば、満充電)近辺の状態での放置時間を抑制することができる。また、目標充電電力量を維持するために余分に充電電流を入力する必要がないため、省エネルギー化を図ることができる。
また、使用者がバッテリ充電装置30に到達したときには、バッテリの充電量が目標充電電力量に達しているため、充電が完了するまで使用者が待つ必要がなく、使用者の利便性が損なわれない。
また、使用バッテリ10の状態情報に基づいて充電電流を決定するため、例えば、使用バッテリ10の残容量が減少するに従って、充電対象バッテリ10を充電するように制御を行うことができ、従来と比較して簡易な制御で使用バッテリおよび充電バッテリの制御を行うことができる。
また、使用バッテリ10の状態情報に基づいて充電電流を決定するため、例えば、使用バッテリ10の残容量が減少するに従って、充電対象バッテリ10を充電するように制御を行うことができ、従来と比較して簡易な制御で使用バッテリおよび充電バッテリの制御を行うことができる。
(3-2)
本実施の形態のバッテリ充電装置30は、充電バッテリ状態取得部34を更に備える。充電バッテリ状態取得部34は、ペアに設定された充電対象バッテリ10の状態情報(充電状態の一例)を取得する。充電電流決定部37は、使用バッテリ状態取得部33によって取得した状態情報(使用状態の一例)と充電バッテリ状態取得部34によって取得した状態情報(充電状態の一例)に基づいて充電対象バッテリ10の充電電流を決定する。
本実施の形態のバッテリ充電装置30は、充電バッテリ状態取得部34を更に備える。充電バッテリ状態取得部34は、ペアに設定された充電対象バッテリ10の状態情報(充電状態の一例)を取得する。充電電流決定部37は、使用バッテリ状態取得部33によって取得した状態情報(使用状態の一例)と充電バッテリ状態取得部34によって取得した状態情報(充電状態の一例)に基づいて充電対象バッテリ10の充電電流を決定する。
このように、使用しているバッテリ10の状態情報と充電しているバッテリ10の状態情報とを取得することによって、例えば、使用バッテリ10と充電対象バッテリ10を交換するタイミングに合わせるように充電バッテリを目標とする充電量(例えば、満充電)にすることができる。このため、目標とする充電量(例えば、満充電)近辺の状態での放置時間を抑制することができる。
(3-3)
本実施の形態のバッテリ充電装置30は、目標充電電力量取得部35と、目標返却容量取得部36と、を更に備える。目標充電電力量取得部35は、充電対象バッテリ10の目標充電電力量を取得する。目標返却容量取得部36は、使用バッテリ10の目標返却容量を取得する。充電電流決定部37は、使用バッテリ10の残容量が目標返却容量に達するときに、充電対象バッテリの残容量が目標充電電力量に達するように、充電電流を決定する。
本実施の形態のバッテリ充電装置30は、目標充電電力量取得部35と、目標返却容量取得部36と、を更に備える。目標充電電力量取得部35は、充電対象バッテリ10の目標充電電力量を取得する。目標返却容量取得部36は、使用バッテリ10の目標返却容量を取得する。充電電流決定部37は、使用バッテリ10の残容量が目標返却容量に達するときに、充電対象バッテリの残容量が目標充電電力量に達するように、充電電流を決定する。
このように、使用バッテリ10が目標返却容量に達したときに充電対象バッテリ10の充電量が目標充電電力量に達するように充電電流を決定することにより、目標充電電力量近辺に達したバッテリ10の放置時間を抑制できる。
なお、目標返却容量への到達タイミングと目標充電電力量への到達タイミングは厳密な一致を要求されるものでなく許容範囲内であればよい。
なお、目標返却容量への到達タイミングと目標充電電力量への到達タイミングは厳密な一致を要求されるものでなく許容範囲内であればよい。
(3-4)
本実施の形態のバッテリ充電装置30では、充電電流決定部37は、減少量算出部42を有する。減少量算出部42は、使用バッテリ状態取得部33によって取得した使用状態に基づいて使用バッテリ10の所定時間における減少量を算出する。充電電流決定部37は、減少量算出部42によって算出された所定時間における減少量に基づいて充電電流を決定する。
このように、使用バッテリ10の所定時間における減少量に基づいて、充電対象バッテリ10の充電量を制御するため、使用バッテリ10および充電対象バッテリ10の制御を簡易に行うことができる。
本実施の形態のバッテリ充電装置30では、充電電流決定部37は、減少量算出部42を有する。減少量算出部42は、使用バッテリ状態取得部33によって取得した使用状態に基づいて使用バッテリ10の所定時間における減少量を算出する。充電電流決定部37は、減少量算出部42によって算出された所定時間における減少量に基づいて充電電流を決定する。
このように、使用バッテリ10の所定時間における減少量に基づいて、充電対象バッテリ10の充電量を制御するため、使用バッテリ10および充電対象バッテリ10の制御を簡易に行うことができる。
(3-5)
本実施の形態のバッテリ充電装置30では、充電電流決定部37は、充放電比算出部41と、減少量算出部42と、充電量算出部43と、を有する。充電バッテリ状態取得部34は、充電対象バッテリ10の初期容量を取得する。使用バッテリ状態取得部33は、使用バッテリ10の初期容量を取得する。充放電比算出部41は、使用バッテリ10の初期容量と目標返却容量の差に対する、充電対象バッテリ10の目標充電電力量と初期容量の差の比である充放電比を算出する。減少量算出部42は、使用バッテリ状態取得部33によって取得した使用状態に基づいて使用バッテリ10の所定時間における減少量を算出する。充電電流決定部37は、減少量と充放電比の積を求めることによって充電電流を決定する。充電量算出部43は、減少量と充放電比の積を演算して所定時間における充電量を算出する。
これにより、使用バッテリ10が目標返却容量に達したときに充電対象バッテリ10の充電量が目標充電電力量に達するように充電電流を決定することができる。
本実施の形態のバッテリ充電装置30では、充電電流決定部37は、充放電比算出部41と、減少量算出部42と、充電量算出部43と、を有する。充電バッテリ状態取得部34は、充電対象バッテリ10の初期容量を取得する。使用バッテリ状態取得部33は、使用バッテリ10の初期容量を取得する。充放電比算出部41は、使用バッテリ10の初期容量と目標返却容量の差に対する、充電対象バッテリ10の目標充電電力量と初期容量の差の比である充放電比を算出する。減少量算出部42は、使用バッテリ状態取得部33によって取得した使用状態に基づいて使用バッテリ10の所定時間における減少量を算出する。充電電流決定部37は、減少量と充放電比の積を求めることによって充電電流を決定する。充電量算出部43は、減少量と充放電比の積を演算して所定時間における充電量を算出する。
これにより、使用バッテリ10が目標返却容量に達したときに充電対象バッテリ10の充電量が目標充電電力量に達するように充電電流を決定することができる。
(3-6)
本実施の形態のバッテリ充電システム1は、モビリティ20(電力消費体の一例)で使用するバッテリ10を充電するバッテリ充電システムであって、バッテリペア設定部32と、状態送信部11(使用バッテリ状態送信部の一例)と、使用バッテリ状態取得部33と、充電電流決定部37と、を備える。バッテリペア設定部32は、使用バッテリ10とペアにする充電対象バッテリ10を設定する。状態送信部11は、使用バッテリ10の使用状態を送信する。使用バッテリ状態取得部33は、状態送信部11によって送信される使用状態を取得する。充電電流決定部37は、使用バッテリ状態取得部33によって取得した使用状態と充電バッテリ状態取得部34によって取得した充電状態に基づいて充電対象バッテリ10の充電電流を決定する。
本実施の形態のバッテリ充電システム1は、モビリティ20(電力消費体の一例)で使用するバッテリ10を充電するバッテリ充電システムであって、バッテリペア設定部32と、状態送信部11(使用バッテリ状態送信部の一例)と、使用バッテリ状態取得部33と、充電電流決定部37と、を備える。バッテリペア設定部32は、使用バッテリ10とペアにする充電対象バッテリ10を設定する。状態送信部11は、使用バッテリ10の使用状態を送信する。使用バッテリ状態取得部33は、状態送信部11によって送信される使用状態を取得する。充電電流決定部37は、使用バッテリ状態取得部33によって取得した使用状態と充電バッテリ状態取得部34によって取得した充電状態に基づいて充電対象バッテリ10の充電電流を決定する。
これにより、目標とする充電量(例えば、満充電)近辺の状態での放置時間を抑制することができる。また、目標充電電力量を維持するために余分に充電電流を入力する必要がないため、省エネルギー化を図ることができる。
なお、使用バッテリ状態送信部の一例は、詳細には、図3に示すバッテリ10(A-1)、10(B-1)、10(C-1)のそれぞれの状態送信部11である。また、充電バッテリ状態送信部の一例は、詳細には、図3に示すバッテリ10(A-2)、(B-2)、(C-2)のそれぞれの状態送信部11である。
なお、使用バッテリ状態送信部の一例は、詳細には、図3に示すバッテリ10(A-1)、10(B-1)、10(C-1)のそれぞれの状態送信部11である。また、充電バッテリ状態送信部の一例は、詳細には、図3に示すバッテリ10(A-2)、(B-2)、(C-2)のそれぞれの状態送信部11である。
(3-7)
本実施の形態のバッテリ充電方法は、モビリティ20(電力消費体の一例)で使用するバッテリ10を充電するバッテリ充電方法であって、ステップS11(バッテリペア設定ステップの一例)と、ステップS17(使用バッテリ状態取得ステップの一例)と、ステップS19~S21(充電電流決定ステップの一例)と、を備える。ステップS11(バッテリペア設定ステップの一例)は、使用バッテリ10とペアにする充電対象バッテリ10を設定する。ステップS17(使用バッテリ状態取得ステップの一例)は、使用バッテリ10の使用状態を取得する。ステップS19~S21(充電電流決定ステップの一例)は、ステップS17(使用バッテリ状態取得ステップの一例)によって取得した状態情報(使用状態の一例)に基づいて充電対象バッテリ10の充電電流を決定する。
本実施の形態のバッテリ充電方法は、モビリティ20(電力消費体の一例)で使用するバッテリ10を充電するバッテリ充電方法であって、ステップS11(バッテリペア設定ステップの一例)と、ステップS17(使用バッテリ状態取得ステップの一例)と、ステップS19~S21(充電電流決定ステップの一例)と、を備える。ステップS11(バッテリペア設定ステップの一例)は、使用バッテリ10とペアにする充電対象バッテリ10を設定する。ステップS17(使用バッテリ状態取得ステップの一例)は、使用バッテリ10の使用状態を取得する。ステップS19~S21(充電電流決定ステップの一例)は、ステップS17(使用バッテリ状態取得ステップの一例)によって取得した状態情報(使用状態の一例)に基づいて充電対象バッテリ10の充電電流を決定する。
これにより、目標とする充電量(例えば、満充電)近辺の状態での放置時間を抑制することができる。また、目標充電電力量を維持するために余分に充電電流を入力する必要がないため、省エネルギー化を図ることができる。
<4.他の実施形態>
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施の形態のバッテリ充電装置30は、図7に示すように、モビリティ20において使用されているバッテリ10とペアに設定されているバッテリ10の充電が目標充電電力量に達したことを通知する通知部51を備えていてもよい。通知部51は、目標充電電力量取得部35を介して取得した目標充電電力量と、充電バッテリ状態取得部34が取得する状態情報に含まれる充電電力量から、バッテリ10の充電量が目標充電電力量に達したことを検出し、モビリティ20に通知する。モビリティ20は、受信部24および表示部25を備えており、通知部51からの通知を受信部24で受信し、表示部25に通知内容を表示させる。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施の形態のバッテリ充電装置30は、図7に示すように、モビリティ20において使用されているバッテリ10とペアに設定されているバッテリ10の充電が目標充電電力量に達したことを通知する通知部51を備えていてもよい。通知部51は、目標充電電力量取得部35を介して取得した目標充電電力量と、充電バッテリ状態取得部34が取得する状態情報に含まれる充電電力量から、バッテリ10の充電量が目標充電電力量に達したことを検出し、モビリティ20に通知する。モビリティ20は、受信部24および表示部25を備えており、通知部51からの通知を受信部24で受信し、表示部25に通知内容を表示させる。
これにより、モビリティ20の使用者は、充電対象バッテリ10の充電量が目標充電電力量に達したことを確認できる。
なお、表示部25は、モビリティ20に搭載されているディスプレイ等であってよく、単なるランプなどであってもよい。
また、受信部24および表示部25は、モビリティ20に設けられておらず、モビリティ20の使用者が所持する携帯電話、スマートフォンなどの携帯情報端末に設けられていてもよい。
なお、表示部25は、モビリティ20に搭載されているディスプレイ等であってよく、単なるランプなどであってもよい。
また、受信部24および表示部25は、モビリティ20に設けられておらず、モビリティ20の使用者が所持する携帯電話、スマートフォンなどの携帯情報端末に設けられていてもよい。
(B)
上記実施の形態のバッテリ充電装置30は、AC/DC変換部40における容量を取得し、その容量に基づいて充電電流を決定してもよい。図8に示すバッテリ充電装置30は、電力上限設定部52を更に備える。電力上限設定部52は、AC/DC変換部40の電力量の上限を設定する。充電電流決定部37は、使用しているバッテリ10の状態情報(使用情報の一例)と充電しているバッテリ10の状態情報(充電情報の一例)に加え、電力上限設定部52によって設定されたAC/DC変換部40の電力量の上限に基づいて、充電電流を決定する。
上記実施の形態のバッテリ充電装置30は、AC/DC変換部40における容量を取得し、その容量に基づいて充電電流を決定してもよい。図8に示すバッテリ充電装置30は、電力上限設定部52を更に備える。電力上限設定部52は、AC/DC変換部40の電力量の上限を設定する。充電電流決定部37は、使用しているバッテリ10の状態情報(使用情報の一例)と充電しているバッテリ10の状態情報(充電情報の一例)に加え、電力上限設定部52によって設定されたAC/DC変換部40の電力量の上限に基づいて、充電電流を決定する。
電力量の上限値を適宜設定することにより、AC/DC変換容量の節約を行うことができる。
また、例えば、電力量の上限値を契約電力に設定することにより、バッテリ充電装置30が複数のバッテリ10の充電を行っており、契約電力を超えそうな場合には、優先度の低いバッテリ10の充電電流を小さくすることによって、契約電力を超えないように制御が行われる。これによって、契約電力を超えないようにバッテリ充電装置30を制御できる。
また、例えば、電力量の上限値を契約電力に設定することにより、バッテリ充電装置30が複数のバッテリ10の充電を行っており、契約電力を超えそうな場合には、優先度の低いバッテリ10の充電電流を小さくすることによって、契約電力を超えないように制御が行われる。これによって、契約電力を超えないようにバッテリ充電装置30を制御できる。
(C)
上記実施の形態では、バッテリ10を搭載する対象である電力消費体の一例としてモビリティ20を用いて説明したが、これに限られるものではない。電力消費体は、電動ドリル等の電動工具であってもよい。なお、電動工具は、例えば、工場内などの限られた範囲内で用いられてもよい。
また、上記実施の形態では、モビリティ20として電動自動二輪車を用いて説明したが、モビリティとしては、電動自動二輪車、電動自転車、電動アシスト自転車、電気自動車、または無人搬送車などであってもよい。また、無人搬送車は、例えば、AGV(Automatic Guided Vehicle)であって、倉庫内などで用いられる。
上記実施の形態では、バッテリ10を搭載する対象である電力消費体の一例としてモビリティ20を用いて説明したが、これに限られるものではない。電力消費体は、電動ドリル等の電動工具であってもよい。なお、電動工具は、例えば、工場内などの限られた範囲内で用いられてもよい。
また、上記実施の形態では、モビリティ20として電動自動二輪車を用いて説明したが、モビリティとしては、電動自動二輪車、電動自転車、電動アシスト自転車、電気自動車、または無人搬送車などであってもよい。また、無人搬送車は、例えば、AGV(Automatic Guided Vehicle)であって、倉庫内などで用いられる。
(D)
上記実施の形態では、目標充電電力量として充電可能な全容量の80%に設定し、目標返却容量として全容量の20%に設定したが、これに限られるものではなく、適宜設定すればよい。
上記実施の形態では、目標充電電力量として充電可能な全容量の80%に設定し、目標返却容量として全容量の20%に設定したが、これに限られるものではなく、適宜設定すればよい。
(E)
また、使用しているバッテリ10の残容量が目標返却容量に達したときに表示部の一例としてのランプが点灯し、使用者に知らせても良い。図9に示すバッテリ充電装置30は、使用バッテリ状態取得部33から取得した状態情報(特に、残容量)が、目標返却容量取得部36を介して取得した目標返却容量に達したことを検出し、その旨を通知する通知部53を備えている。モビリティ20は、通知部53からの通知を受信する受信部24と、通知を表示する表示部25とを備えている。
また、使用しているバッテリ10の残容量が目標返却容量に達したときに表示部の一例としてのランプが点灯し、使用者に知らせても良い。図9に示すバッテリ充電装置30は、使用バッテリ状態取得部33から取得した状態情報(特に、残容量)が、目標返却容量取得部36を介して取得した目標返却容量に達したことを検出し、その旨を通知する通知部53を備えている。モビリティ20は、通知部53からの通知を受信する受信部24と、通知を表示する表示部25とを備えている。
この表示部25のランプの点灯によって、使用者は、ペアに設定されているバッテリ10と交換するためにバッテリ充電装置30に向かって移動を開始できる。
なお、表示部25は、モビリティ20に搭載されているディスプレイ等であってよい。
また、受信部24および表示部25は、モビリティ20に設けられておらず、モビリティ20の使用者が所持する携帯電話、スマートフォンなどの携帯情報端末に設けられていてもよい。
なお、表示部25は、モビリティ20に搭載されているディスプレイ等であってよい。
また、受信部24および表示部25は、モビリティ20に設けられておらず、モビリティ20の使用者が所持する携帯電話、スマートフォンなどの携帯情報端末に設けられていてもよい。
(F)
上記実施の形態のバッテリ充電装置30では、充電バッテリ状態取得部34が設けられているが、充電バッテリ状態取得部34が設けられていなくてもよい。この場合、使用バッテリ状態取得部33によって取得される使用バッテリ10の残容量の減少割合(例えば、1%)に基づいて、充電対象バッテリ10の充電容量を所定割合(例えば、減少割合と同じ1%)、増加させるよう制御が行われても良い。
上記実施の形態のバッテリ充電装置30では、充電バッテリ状態取得部34が設けられているが、充電バッテリ状態取得部34が設けられていなくてもよい。この場合、使用バッテリ状態取得部33によって取得される使用バッテリ10の残容量の減少割合(例えば、1%)に基づいて、充電対象バッテリ10の充電容量を所定割合(例えば、減少割合と同じ1%)、増加させるよう制御が行われても良い。
(G)
また、上記実施の形態では、バッテリ10の状態情報を送信する状態送信部11が、バッテリ10に設けられているが、バッテリ10が状態送信部11を持っておらず、モビリティ20が持っていてもよい。この場合、モビリティ20に搭載された無線通信チップを用いてバッテリ充電装置30と通信を行うことができる。
また、上記実施の形態では、バッテリ10の状態情報を送信する状態送信部11が、バッテリ10に設けられているが、バッテリ10が状態送信部11を持っておらず、モビリティ20が持っていてもよい。この場合、モビリティ20に搭載された無線通信チップを用いてバッテリ充電装置30と通信を行うことができる。
(H)
上記実施の形態では、モビリティ20に1つのバッテリ10が設けられているが、1つに限られず、2つ以上であってもよい。
(I)
上記実施の形態では、バッテリ充電装置30は、1つのみ記載しているが、複数配置されていてもよい。また、1つまたは複数のバッテリ充電装置30が設けられた充電ステーションが複数の場所に設置されていてもよい。
上記実施の形態では、モビリティ20に1つのバッテリ10が設けられているが、1つに限られず、2つ以上であってもよい。
(I)
上記実施の形態では、バッテリ充電装置30は、1つのみ記載しているが、複数配置されていてもよい。また、1つまたは複数のバッテリ充電装置30が設けられた充電ステーションが複数の場所に設置されていてもよい。
本発明のバッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法によれば、満充電近辺での放置時間を低減できる効果を有し、交換可能なバッテリによって駆動されるモビリティなどに対して広く適用可能である。
1 :バッテリ充電システム
10 :バッテリ
11 :状態送信部
20 :モビリティ
20a :シート
20b :ハンドル
21 :モータ
23 :前輪
24 :受信部
25 :表示部
30 :バッテリ充電装置
31 :充電池穴
32 :バッテリペア設定部
33 :使用バッテリ状態取得部
34 :充電バッテリ状態取得部
35 :目標充電電力量取得部
36 :目標返却容量取得部
37 :充電電流決定部
38 :充電電流操作部
39 :メモリ
40 :AC/DC変換部
41 :充放電比算出部
42 :減少量算出部
43 :充電量算出部
50 :外部電源
51 :通知部
52 :電力上限設定部
53 :通知部
10 :バッテリ
11 :状態送信部
20 :モビリティ
20a :シート
20b :ハンドル
21 :モータ
23 :前輪
24 :受信部
25 :表示部
30 :バッテリ充電装置
31 :充電池穴
32 :バッテリペア設定部
33 :使用バッテリ状態取得部
34 :充電バッテリ状態取得部
35 :目標充電電力量取得部
36 :目標返却容量取得部
37 :充電電流決定部
38 :充電電流操作部
39 :メモリ
40 :AC/DC変換部
41 :充放電比算出部
42 :減少量算出部
43 :充電量算出部
50 :外部電源
51 :通知部
52 :電力上限設定部
53 :通知部
Claims (9)
- 電力消費体で使用するバッテリを充電するバッテリ充電装置であって、
使用バッテリとペアにする充電対象バッテリを設定するバッテリペア設定部と、
前記使用バッテリの使用状態を取得する使用バッテリ状態取得部と、
前記使用バッテリ状態取得部によって取得した前記使用状態に基づいて前記充電対象バッテリの充電電流を決定する充電電流決定部と、を備える、
バッテリ充電装置。 - 前記ペアに設定された前記充電対象バッテリの充電状態を取得する充電バッテリ状態取得部を更に備え、
前記充電電流決定部は、前記使用バッテリ状態取得部によって取得した前記使用状態と前記充電バッテリ状態取得部によって取得した前記充電状態に基づいて前記充電対象バッテリの充電電流を決定する、
請求項1に記載のバッテリ充電装置。 - 前記充電対象バッテリの目標充電電力量を取得する目標充電電力量取得部と、
前記使用バッテリの目標返却容量を取得する目標返却容量取得部と、を更に備え、
前記充電電流決定部は、前記使用バッテリの残容量が前記目標返却容量に達するときに、前記充電対象バッテリの充電量が前記目標充電電力量に達するように、前記充電電流を決定する、
請求項1に記載のバッテリ充電装置。 - 前記充電電流決定部は、
前記使用バッテリ状態取得部によって取得した前記使用状態に基づいて前記使用バッテリの所定時間における減少量を算出する減少量算出部を有し、
前記減少量算出部によって算出された前記所定時間における減少量に基づいて前記充電電流を決定する、
請求項1に記載のバッテリ充電装置。 - 前記ペアに設定された前記充電対象バッテリの充電状態を取得する充電バッテリ状態取得部を更に備え、
前記充電バッテリ状態取得部は、前記充電対象バッテリの初期容量を取得し、
前記使用バッテリ状態取得部は、前記使用バッテリの初期容量を取得し、
前記充電電流決定部は、
前記使用バッテリの前記初期容量と前記目標返却容量の差に対する、前記充電対象バッテリの前記目標充電電力量と前記初期容量の差の比である充放電比を算出する充放電比算出部と、
前記使用バッテリ状態取得部によって取得した前記使用状態に基づいて前記使用バッテリの所定時間における減少量を算出する減少量算出部と、
前記減少量と前記充放電比の積を演算して所定時間における充電量を算出する充電量算出部とを有し、
算出された前記充電量に基づいて前記充電電流を決定する、
請求項3に記載のバッテリ充電装置。 - 前記充電対象バッテリの目標充電電力量を取得する目標充電電力量取得部と、
前記充電対象バッテリの充電量が前記目標充電電力量に達したことを前記電力消費体の使用者に通知する通知部と、を更に備えた、
請求項2に記載のバッテリ充電装置。 - 前記電力消費体は、電動自動二輪車、電動自転車、電動アシスト自転車、電気自動車、無人搬送車または電動工具である、
請求項1に記載のバッテリ充電装置。 - 電力消費体で使用するバッテリを充電するバッテリ充電システムであって、
使用バッテリとペアにする充電対象バッテリを設定するバッテリペア設定部と、
前記使用バッテリの使用状態を送信する使用バッテリ状態送信部と、
前記使用バッテリ状態送信部によって送信される前記使用状態を取得する使用バッテリ状態取得部と、
前記使用バッテリ状態取得部によって取得した前記使用状態に基づいて前記充電対象バッテリの充電電流を決定する充電電流決定部と、を備える、
バッテリ充電システム。 - 電力消費体で使用するバッテリを充電するバッテリ充電方法であって、
使用バッテリとペアにする充電対象バッテリを設定するバッテリペア設定ステップと、
前記使用バッテリの使用状態を取得する使用バッテリ状態取得ステップと、
前記使用バッテリ状態取得ステップによって取得した前記使用状態に基づいて前記充電対象バッテリの充電電流を決定する充電電流決定ステップと、を備える、
バッテリ充電方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16870371.8A EP3386061B1 (en) | 2015-12-01 | 2016-11-02 | Battery charging device, battery charging system and battery charging method |
MYPI2018700914A MY187558A (en) | 2015-12-01 | 2016-11-02 | Battery charging device, battery charging system and battery charging method |
US15/759,224 US10688876B2 (en) | 2015-12-01 | 2016-11-02 | Battery charging device, battery charging system, and battery charging method |
PH12018500466A PH12018500466A1 (en) | 2015-12-01 | 2018-03-02 | Battery charging device, battery charging system and battery charging method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015234858A JP6686395B2 (ja) | 2015-12-01 | 2015-12-01 | バッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法 |
JP2015-234858 | 2015-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017094431A1 true WO2017094431A1 (ja) | 2017-06-08 |
Family
ID=58797073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/082664 WO2017094431A1 (ja) | 2015-12-01 | 2016-11-02 | バッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10688876B2 (ja) |
EP (1) | EP3386061B1 (ja) |
JP (1) | JP6686395B2 (ja) |
MY (1) | MY187558A (ja) |
PH (1) | PH12018500466A1 (ja) |
TW (1) | TWI629848B (ja) |
WO (1) | WO2017094431A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11552507B2 (en) | 2020-03-17 | 2023-01-10 | Toyota Motor North America, Inc. | Wirelessly notifying a transport to provide a portion of energy |
US11571983B2 (en) | 2020-03-17 | 2023-02-07 | Toyota Motor North America, Inc. | Distance-based energy transfer from a transport |
US11618329B2 (en) | 2020-03-17 | 2023-04-04 | Toyota Motor North America, Inc. | Executing an energy transfer directive for an idle transport |
US11685283B2 (en) | 2020-03-17 | 2023-06-27 | Toyota Motor North America, Inc. | Transport-based energy allocation |
US11890952B2 (en) | 2020-03-17 | 2024-02-06 | Toyot Motor North America, Inc. | Mobile transport for extracting and depositing energy |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6286083B1 (ja) * | 2017-03-23 | 2018-02-28 | 本田技研工業株式会社 | 収容装置 |
JP6286084B1 (ja) * | 2017-03-24 | 2018-02-28 | 本田技研工業株式会社 | 収容装置 |
JP2019009911A (ja) * | 2017-06-26 | 2019-01-17 | トヨタ自動車株式会社 | 自律移動車両の自動充電システム |
TWI648696B (zh) * | 2017-08-08 | 2019-01-21 | 鼎岳科技股份有限公司 | 電池管理方法 |
TWI740082B (zh) * | 2017-12-29 | 2021-09-21 | 英屬開曼群島商睿能創意公司 | 對置於裝置交換站的複數個可交換式能源儲存裝置的充電方法、伺服器、裝置交換站的管理方法 |
JP6820905B2 (ja) * | 2017-12-29 | 2021-01-27 | ゴゴロ インク | 交換可能エネルギー貯蔵装置ステーションを管理するためのシステムおよび方法 |
US11447105B2 (en) * | 2018-03-29 | 2022-09-20 | Gogoro Inc. | Systems and methods for managing batteries in a battery exchange station |
WO2020027199A1 (ja) * | 2018-07-31 | 2020-02-06 | 本田技研工業株式会社 | 充電システム、充電装置、充電方法、及びプログラム |
JP7019827B2 (ja) * | 2018-09-13 | 2022-02-15 | 本田技研工業株式会社 | 配置計画装置 |
CN111106635B (zh) * | 2018-10-26 | 2024-01-30 | 上海汽车集团股份有限公司 | 一种充电方式的确定方法和装置 |
KR20210120989A (ko) | 2018-12-05 | 2021-10-07 | 뉴트론 홀딩스, 인크., 디비에이 라임 | 사용 데이터를 기반으로 충전식 배터리의 충전 속도를 동적으로 변경하는 충전식 배터리 키오스크 |
RU190210U1 (ru) * | 2019-03-11 | 2019-06-24 | Филипп Николаевич НИКОЛЬСКИЙ | Электросистема автомобиля |
JPWO2021241744A1 (ja) * | 2020-05-29 | 2021-12-02 | ||
US11964584B2 (en) | 2020-09-16 | 2024-04-23 | Apple Inc. | Accessory power pack |
CN112677804B (zh) * | 2020-12-11 | 2021-10-29 | 深圳易马达科技有限公司 | 一种充电功率分配方法、充电功率分配装置及换电柜 |
US20230112784A1 (en) * | 2021-10-08 | 2023-04-13 | Lenovo (Singapore) Pet. Ltd. | Apparatus, methods, and program products for managing power sharing in electronic devices |
JP7436592B2 (ja) * | 2021-11-02 | 2024-02-21 | マクセル株式会社 | ウェアラブル装置およびこれに用いるバッテリーと給電システム |
CN115473314B (zh) * | 2022-09-30 | 2023-04-18 | 宁波翠科机械有限公司 | 一种割草机的充电控制方法、系统以及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08130833A (ja) * | 1994-11-04 | 1996-05-21 | Fujitsu Ltd | 電力供給装置 |
JP2003344096A (ja) * | 2002-05-23 | 2003-12-03 | Hioki Ee Corp | 電気測定器 |
JP2011151891A (ja) * | 2010-01-19 | 2011-08-04 | Sony Corp | 二次電池の充電方法および充電装置 |
WO2011161780A1 (ja) * | 2010-06-23 | 2011-12-29 | トヨタ自動車株式会社 | 車両用制御装置および車両用制御方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084599A1 (ja) * | 2009-01-23 | 2010-07-29 | トヨタ自動車株式会社 | 充電制御装置 |
BR112012002579A2 (pt) * | 2009-08-11 | 2016-03-15 | Sony Corp | dispositivo eletrônico, método para carregar um dispositivo eletrônico, programa, e, aparelho e método de controle de carga. |
CN102117939B (zh) * | 2009-12-31 | 2013-10-30 | 联想(北京)有限公司 | 一种电池管理装置及便携式电脑 |
JP2011142704A (ja) | 2010-01-05 | 2011-07-21 | Mitsubishi Heavy Ind Ltd | 作業車の二次電池充電マネージメント方法及び充電システム |
NL2004350C2 (en) * | 2010-03-05 | 2011-09-06 | Epyon B V | System, devices and method for charging a battery of an electric vehicle. |
JP5407945B2 (ja) * | 2010-03-05 | 2014-02-05 | 株式会社デンソー | 充電制御システム |
US8853997B2 (en) * | 2010-07-20 | 2014-10-07 | Superior Electron Llc | Apparatus, system and method for charging batteries |
CN103222147B (zh) * | 2010-11-25 | 2017-04-19 | 诺基亚技术有限公司 | 情境感知电池充电 |
JP5891441B2 (ja) | 2010-12-13 | 2016-03-23 | パナソニックIpマネジメント株式会社 | 充電装置、電力貯蔵装置、および電源装置 |
EP2662949A4 (en) * | 2011-01-06 | 2017-04-19 | Nec Corporation | Charging control device, charging control method, and program |
IL218213A0 (en) * | 2012-02-20 | 2012-07-31 | Better Place GmbH | Charging management method and system |
WO2013186895A1 (ja) * | 2012-06-14 | 2013-12-19 | 三菱電機株式会社 | 車両の発電装置および発電制御方法 |
US20150165918A1 (en) * | 2012-07-04 | 2015-06-18 | Nec Corporation | Charging system control apparatus, program, and control method |
JP5931644B2 (ja) * | 2012-08-17 | 2016-06-08 | 株式会社東芝 | 充電管理システム |
JP6322979B2 (ja) * | 2012-12-28 | 2018-05-16 | 株式会社リコー | 充電装置及び充電システム |
JP5362930B1 (ja) * | 2013-07-04 | 2013-12-11 | レスク株式会社 | 電動車両用バッテリ交換システム及びプログラム |
KR102170700B1 (ko) * | 2014-12-30 | 2020-10-27 | 한화디펜스 주식회사 | 차량 제어 장치 및 차량 제어 방법 |
-
2015
- 2015-12-01 JP JP2015234858A patent/JP6686395B2/ja active Active
-
2016
- 2016-11-02 WO PCT/JP2016/082664 patent/WO2017094431A1/ja active Application Filing
- 2016-11-02 US US15/759,224 patent/US10688876B2/en active Active
- 2016-11-02 EP EP16870371.8A patent/EP3386061B1/en active Active
- 2016-11-02 MY MYPI2018700914A patent/MY187558A/en unknown
- 2016-11-14 TW TW105136982A patent/TWI629848B/zh active
-
2018
- 2018-03-02 PH PH12018500466A patent/PH12018500466A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08130833A (ja) * | 1994-11-04 | 1996-05-21 | Fujitsu Ltd | 電力供給装置 |
JP2003344096A (ja) * | 2002-05-23 | 2003-12-03 | Hioki Ee Corp | 電気測定器 |
JP2011151891A (ja) * | 2010-01-19 | 2011-08-04 | Sony Corp | 二次電池の充電方法および充電装置 |
WO2011161780A1 (ja) * | 2010-06-23 | 2011-12-29 | トヨタ自動車株式会社 | 車両用制御装置および車両用制御方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11552507B2 (en) | 2020-03-17 | 2023-01-10 | Toyota Motor North America, Inc. | Wirelessly notifying a transport to provide a portion of energy |
US11571983B2 (en) | 2020-03-17 | 2023-02-07 | Toyota Motor North America, Inc. | Distance-based energy transfer from a transport |
US11618329B2 (en) | 2020-03-17 | 2023-04-04 | Toyota Motor North America, Inc. | Executing an energy transfer directive for an idle transport |
US11685283B2 (en) | 2020-03-17 | 2023-06-27 | Toyota Motor North America, Inc. | Transport-based energy allocation |
US11890952B2 (en) | 2020-03-17 | 2024-02-06 | Toyot Motor North America, Inc. | Mobile transport for extracting and depositing energy |
US11993170B2 (en) | 2020-03-17 | 2024-05-28 | Toyota Motor North America, Inc. | Distance-based energy transfer from a transport |
Also Published As
Publication number | Publication date |
---|---|
MY187558A (en) | 2021-09-29 |
US10688876B2 (en) | 2020-06-23 |
EP3386061A4 (en) | 2019-01-16 |
US20180257505A1 (en) | 2018-09-13 |
TW201722025A (zh) | 2017-06-16 |
JP2017103897A (ja) | 2017-06-08 |
EP3386061B1 (en) | 2020-08-26 |
JP6686395B2 (ja) | 2020-04-22 |
PH12018500466A1 (en) | 2018-09-10 |
TWI629848B (zh) | 2018-07-11 |
EP3386061A1 (en) | 2018-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017094431A1 (ja) | バッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法 | |
US10946750B2 (en) | Charge/discharge control device, charge/discharge control system, and charge/discharge control method | |
JP6657828B2 (ja) | 誘導装置、誘導システムおよび誘導方法 | |
JP6003930B2 (ja) | 電源システム | |
US10875415B2 (en) | Method of charging electric autonomous moving body | |
WO2012010955A3 (en) | Vehicle control device and vehicle control method | |
CN102315668A (zh) | 充电控制系统 | |
US20170151882A1 (en) | Self-propelled battery module and electric vehicle | |
JP6565625B2 (ja) | 充放電制御装置、充放電制御システムおよびバッテリ残容量調整方法 | |
JP2020072581A (ja) | 移動可能距離算出装置 | |
EP2645514A1 (en) | Method and apparatus for controlling battery chargers | |
JP5817556B2 (ja) | 充電システム | |
KR20210083716A (ko) | 전기차 충전 제어 시스템 및 그 방법 | |
JP2015171197A (ja) | 二次電池の管理装置 | |
JP7014591B2 (ja) | 移動体 | |
JP7506141B2 (ja) | 充電管理装置、充電管理方法、およびコンピュータ読み取り可能な記録媒体 | |
JP2018057073A (ja) | 車両用受電装置 | |
CN104085492B (zh) | 一种电动车电源的处理方法、系统及电动车 | |
JP2010288432A (ja) | 複数電池充電装置 | |
JP2015123859A (ja) | バッテリの満充電容量の算出方法 | |
JP2017175794A (ja) | 車両用受電装置 | |
KR20170054034A (ko) | 양방향 무선 전력전송 장치 및 제어방법 | |
JP2018061339A (ja) | 車両用受電装置 | |
JP2015112896A (ja) | 倒立二輪車 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16870371 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12018500466 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15759224 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |