WO2017090377A1 - オレフィン類重合用触媒の製造方法 - Google Patents

オレフィン類重合用触媒の製造方法 Download PDF

Info

Publication number
WO2017090377A1
WO2017090377A1 PCT/JP2016/082094 JP2016082094W WO2017090377A1 WO 2017090377 A1 WO2017090377 A1 WO 2017090377A1 JP 2016082094 W JP2016082094 W JP 2016082094W WO 2017090377 A1 WO2017090377 A1 WO 2017090377A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
compound
catalyst
olefins
catalyst component
Prior art date
Application number
PCT/JP2016/082094
Other languages
English (en)
French (fr)
Inventor
浩之 河野
高廣 増山
新太 丸井
魚住 俊也
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to EP16868326.6A priority Critical patent/EP3381952B1/en
Priority to US15/773,278 priority patent/US20190023820A1/en
Priority to BR112018010449-3A priority patent/BR112018010449B1/pt
Priority to CN201680067198.2A priority patent/CN108290974B/zh
Priority to SG11201804025QA priority patent/SG11201804025QA/en
Priority to KR1020187016020A priority patent/KR20180086205A/ko
Publication of WO2017090377A1 publication Critical patent/WO2017090377A1/ja
Priority to SA518391579A priority patent/SA518391579B1/ar

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/12Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of boron, aluminium, gallium, indium, thallium or rare earths
    • C08F4/14Boron halides or aluminium halides; Complexes thereof with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst

Definitions

  • the present invention relates to a method for producing a catalyst for olefins polymerization.
  • Solid catalysts comprising a transition metal catalyst component such as titanium and a typical metal catalyst component such as aluminum are widely known as catalysts for olefins polymerization.
  • the polymerization activity of the olefin polymerization catalyst dramatically increases with the appearance of a supported catalyst using a magnesium compound as a carrier, and an electron donor such as an ester compound is further added to the catalyst to have 3 or more carbon atoms. It is also possible to produce highly stereoregular polymers from ⁇ -olefins.
  • Patent Document 1 JP-A-57-63310 discloses a solid titanium catalyst component on which an electron donating compound such as phthalic acid ester is supported, an organoaluminum compound as a co-catalyst component, and at least one A method of polymerizing propylene using an organosilicon compound having a Si-O-C bond has been proposed, and in many documents including the above-mentioned patent documents, phthalic acid ester is used as an electron donating compound and has high steric features. Methods have been proposed for obtaining regular polymers in high yields.
  • a solid catalyst component using an electron donor that is not subject to SVHC regulation is unlikely to exhibit the same performance as a solid catalyst component using a phthalate ester, and in particular, under an inert gas atmosphere such as a nitrogen atmosphere.
  • an inert gas atmosphere such as a nitrogen atmosphere.
  • the solid catalyst component using the electron donor compound which is not regarded as a SVHC regulated substance significantly reduces the activity. Due to the tendency, further improvement has been required.
  • the present invention is excellent at the time of polymerization treatment even if the polymerization catalyst is prepared in an inert gas atmosphere. It is an object of the present invention to provide a process for producing a catalyst for olefins polymerization which can produce a polymer which exhibits excellent catalytic activity and is excellent in stereoregularity, melt flowability and the like.
  • a solid catalyst component (A) containing an electron donating compound having no magnesium atom, titanium atom, halogen atom and phthalic acid ester structure A catalyst for olefins polymerization is subjected to a precontact treatment in which a specific organoaluminum compound (B) and an external electron donor compound (C) are brought into contact in the absence of olefins at a temperature of less than 15 ° C. for 30 minutes or less
  • the electron donating compound is a compound having one or more groups selected from an ester group, a carbonate group and an ether group
  • the electron donor compound is at least one selected from succinic acid diester, malonic acid diester, maleic acid diester, cyclohexene carboxylic acid diester, ether carboxylic acid ester, dicarbonate, carbonate-ether Process for producing a catalyst for olefins polymerization as described (4)
  • the electron donor compound is at least one selected from succinic acid diester, malonic acid diester, maleic acid diester, cyclohexene carboxylic acid diester, ether carboxylic acid ester, dicarbonate, carbonate-ether Process for producing a catalyst for olefins polymerization as described (5)
  • the present invention before contacting with the olefins under an inert gas atmosphere, it contains an electron donating compound having no magnesium atom, titanium atom, halogen atom and phthalic acid ester structure in the absence of the olefins.
  • Deactivation of the catalyst active site is suppressed by bringing the solid catalyst component (A) into contact with the specific organoaluminum compound (B) as a cocatalyst and the external electron donating compound (C) at a low temperature for a short time.
  • the specific organoaluminum compound (B) on the electron donating compound (c) can be improved, and the solid catalyst component can be activated optimally.
  • the process for producing a catalyst for olefins polymerization comprises a solid catalyst component (A) containing an electron donating compound not having a magnesium atom, a titanium atom, a halogen atom and a phthalic acid ester structure, the following general formula (I) ; R 1 p AlQ 3-p (I) (Wherein, R 1 is an alkyl group having 1 to 6 carbon atoms, Q is a hydrogen atom or a halogen atom, and p is a real number of 0 ⁇ p ⁇ 3).
  • An organoaluminum compound (B) and an external electron donor compound (C) represented by It is characterized in that it is subjected to a precontacting treatment in which it is brought into contact at a temperature of less than 15 ° C. for not more than 30 minutes in the absence of olefins.
  • the solid catalyst component (A) comprises a magnesium compound (a), a titanium halogen compound (b) and an electron donating compound (c) having no phthalic acid ester structure.
  • a magnesium compound (a) a titanium halogen compound (b) and an electron donating compound (c) having no phthalic acid ester structure.
  • c an electron donating compound having no phthalic acid ester structure.
  • magnesium compound (a) 1 or more types chosen from magnesium dihalide, dialkyl magnesium, halogenated alkyl magnesium, dialkoxy magnesium, diaryloxy magnesium, halogenated alkoxy magnesium, fatty-acid magnesium etc. are mentioned.
  • dihalogenated magnesium a mixture of dihalogenated magnesium and dialkoxymagnesium, and dialkoxymagnesium are preferable, and dialkoxymagnesium is particularly preferable.
  • dimethoxymagnesium, diethoxymagnesium, dipropoxymagnesium, dialkoxymagnesium are preferable. Examples thereof include butoxy magnesium, ethoxy methoxy magnesium, ethoxy propoxy magnesium, butoxy ethoxy magnesium and the like, and among these, diethoxy magnesium is particularly preferable.
  • the dialkoxymagnesium may be obtained by reacting metal magnesium with an alcohol in the presence of a halogen-containing organic metal or the like. Furthermore, as said dialkoxy magnesium, it is granular or powdery, and the shape may be amorphous or spherical. For example, when spherical dialkoxy magnesium is used, a polymer powder having a better particle shape and a narrow particle size distribution can be easily obtained, and the handling operability of the formed polymer powder at the time of the polymerization operation is improved, and the formed polymer powder Problems such as clogging of the filter in the separation device of the polymer due to the fine powder contained in are easily solved.
  • the above dialkoxy magnesium can be used alone or in combination of two or more.
  • the spherical dialkoxymagnesium does not necessarily have to be a spherical shape, and may have an elliptical shape or a potato shape.
  • the particle shape preferably has a ratio (L / W) of the major axis diameter L to the minor axis diameter W of 3 or less, more preferably 1 to 2, and more preferably 1 to 1.5. It is further preferred that
  • the above dialkoxy magnesium preferably has an average particle diameter of 1 to 200 ⁇ m, and more preferably 5 to 150 ⁇ m.
  • its average particle size is preferably 1 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, and still more preferably 10 to 60 ⁇ m.
  • the particle size of the said dialkoxy magnesium has few fine powder and coarse powder, and that with a narrow particle size distribution is preferable. Specifically, it is preferable that the particle size of 5 ⁇ m or less is 20% or less, and the particle size of 5 ⁇ m or less is 10% or less.
  • the particle size distribution is preferably 3 or less, preferably 2 or less, in terms of D90 / D10 (where D90 is the particle size at 90% in cumulative particle size and D10 is the particle size at 10% in cumulative particle size). Some are more preferred.
  • the titanium halogen compound (b) is not particularly limited, but one or more selected from titanium tetrahalides, alkoxy titanium halides and the like can be mentioned.
  • titanium halogen compound (b) As a titanium halogen compound (b), a general formula Ti (OR 2 ) i X 4-i (wherein, R 2 represents an alkyl group having 1 to 4 carbon atoms, X represents a halogen atom, and i is 0 or more) It is preferable that it is 1 type of compound selected from the titanium tetrahalide or alkoxy titanium halide group represented by 4 or less.
  • titanium halogen compound (b) examples include titanium tetrahalides such as titanium tetrachloride, titanium tetrabromide and titanium tetraiodide as titanium halides, and methoxy titanium trichloride and ethoxy titanium as alkoxy titanium halides.
  • Trichloride propoxytitanium trichloride, n-butoxytitanium trichloride, dimethoxytitanium dichloride, diethoxytitanium dichloride, dipropoxytitanium dichloride, di-n-butoxytitanium dichloride, trimethoxytitanium chloride, triethoxytitanium chloride, tripropoxytitanium Chloride, tri-n-butoxy titanium chloride and the like are exemplified.
  • titanium halogen compounds (b) titanium tetrahalides are preferred, and titanium tetrachloride is more preferred.
  • the electron donating compound (c) having no phthalic acid ester structure which is used as the electron donating compound in the solid catalyst component (A), has no phthalic acid ester structure, and has an ester group, a carbonate group and an ether group. It is preferable that it is an organic compound having one or more groups selected from
  • the electron donating compound (c) is a compound having an ester group
  • a compound having 1 to 3 ester residues is preferable, and a monocarboxylic acid ester having one ester residue, two ester residues Dicarboxylic acid diesters, polycarboxylic acid polyesters having three or more ester residues, ether-carboxylic acid esters having one ester residue and one alkoxy group, diol esters, polyol esters, substituted phenylene aromatic diesters, etc.
  • Succinic acid diesters, malonic acid diesters, maleic acid diesters and cyclohexene carboxylic acid diesters are preferred.
  • monocarboxylic acid esters such as acetic acid ester, propionic acid ester, benzoic acid ester, p-toluic acid ester, anisic acid ester, maleic acid diester, 2,3-dialkyl succinic acid diester, benzylidene malonic acid diester, cyclohexane -1,2-dicarboxylic acid diester, 1-cyclohexene-1,2-dicarboxylic acid diester, 4-methylcyclohexane-1,2-dicarboxylic acid diester, 3-methylcyclohexane-1,2-dicarboxylic acid diester 3,6 -Dicarboxylic acid diesters such as -diphenylcyclohexane-1,2-dicarboxylic acid diester, 3-methyl-6-n-propylcyclohexane-1,2-dicarboxylic acid diester, ethyl 3-ethoxy-2-isopropylpropionate, 3 Ethyl
  • -1,2-phenylene dibenzoate, 3,5-diisopropyl-1,2-phenylene dibenzoate and the like can be mentioned.
  • the electron donating compound (c) is a compound having a carbonate group
  • a compound having 1 to 3 carbonate groups is preferable, and a carbonate-ether having one carbonate group and one alkoxy group, and a carbonate group are preferable.
  • a carbonate-ester having one ester residue each, a compound having one carbonate group and one carboxyl group, a dicarbonate having two carbonate groups, a polycarbonate having three or more carbonate groups, etc. may be mentioned. .
  • carbonate-ethers, carbonate-esters and dicarbonates are preferred, and 2-ethoxyethyl methyl carbonate, 2-propoxyethyl methyl carbonate, 2-benzyloxyethyl phenyl carbonate, 5-t-butyl-1, particularly preferred are It is 2-phenylene diphenyl dicarbonate.
  • the electron donating compound (c) is a compound having an ether group, it is a compound having one ether group, a compound having a fluorene structure, or an alkyl or cycloalkyl group having 3 to 7 carbon atoms.
  • Preferred are compounds having a diether structure specifically, monoethers such as methyl ether, ethyl ether, propyl ether, butyl ether and amyle ether, diphenyl ether, 2,2-dialkyl-1,3-dialkoxypropane, 2
  • monoethers such as methyl ether, ethyl ether, propyl ether, butyl ether and amyle ether, diphenyl ether, 2,2-dialkyl-1,3-dialkoxypropane, 2
  • diethers such as 2-dicycloalkyl-1,3-dimethoxypropane and 9,9-bis (methoxymethyl) fluorene can be mentioned, with preference given to ether carboxylic acid esters and the like.
  • the electron donating compound (c) is preferably at least one selected from succinic acid diesters, malonic acid diesters, maleic acid diesters, cyclohexene carboxylic acid diesters, dicarbonates, carbonate-ethers and ether carboxylic acid esters.
  • the solid catalyst component (A) contains an electron donating compound (c) other than phthalic acid ester, but as described later, the specific organoaluminum compound (B) and the external electron donating compound (C) are olefins. It exhibits excellent catalytic activity at the time of polymerization treatment by preparing a catalyst for olefins polymerization by precontacting the catalyst in contact at a temperature of less than 15 ° C. for 30 minutes or less in the absence of A polymer excellent in melt flowability can be produced.
  • the solid catalyst component (A) may contain a polysiloxane.
  • a polysiloxane is further contacted together with the magnesium compound (a), the titanium halogen compound (b) and the electron donor compound (c) not having a phthalic acid ester structure as described above. It is possible to mention the ones that are made to
  • Polysiloxane is a polymer having a siloxane bond (-Si-O bond) in its main chain, but is also generically called silicone oil, and its viscosity at 25 ° C is 0.02 to 100 cm 2 / s (2 to 1000 centistokes). It means liquid or viscous chain-like, partially hydrogenated, cyclic or modified polysiloxane which is liquid or viscous at normal temperature.
  • linear polysiloxane dimethylpolysiloxane and methylphenylpolysiloxane are used.
  • partially hydrogenated polysiloxane methylhydrogenpolysiloxane having a hydrogenation rate of 10 to 80% is used.
  • cyclic polysiloxane hexamethylcyclotrisiloxane is used.
  • Examples include substituted dimethylsiloxane, epoxy group-substituted dimethylsiloxane, and polyoxyalkylene group-substituted dimethylsiloxane.
  • decamethylcyclopentasiloxane and dimethylpolysiloxane are preferable, and decamethylcyclopentasiloxane is particularly preferable.
  • the solid catalyst component (A) is brought into contact with the magnesium compound (a), the titanium halogen compound (b) and the electron donating compound (c) and, if necessary, the polysiloxane in the presence of an inert organic solvent. It is preferable that it is prepared by The inert organic solvent is preferably one which dissolves the titanium halogen compound (b) and does not dissolve the magnesium compound (a).
  • halogenated hydrocarbon compounds such as 2-dichlorobenzene, carbon tetrachloride and dichloroethane.
  • a saturated hydrocarbon compound or aromatic hydrocarbon compound having a boiling point of about 50 to 200 ° C. and liquid at normal temperature is preferably used, among which hexane, heptane, octane, ethylcyclohexane, mineral oil, One or more selected from toluene, xylene and ethylbenzene are preferred.
  • the magnesium compound (a) and the electron donating compound (c) are suspended in an inert organic solvent (aromatic hydrocarbon compound having a boiling point of 50 to 150.degree. C.)
  • an inert organic solvent aromatic hydrocarbon compound having a boiling point of 50 to 150.degree. C.
  • a suspension is formed, and a mixed solution formed from a titanium halide (b) and an inert organic solvent (such as an aromatic hydrocarbon compound) is brought into contact with the above suspension to cause a reaction. it can.
  • the magnesium compound (a) is suspended in a titanium halogen compound (b) or an inert organic solvent (aromatic hydrocarbon compound etc.), and then an electron donating compound
  • a preparation method in which (c) and, if necessary, a titanium halogen compound (b) are brought into contact with each other for reaction can be mentioned.
  • this preparation method by using a spherical magnesium compound as the magnesium compound (a), it is possible to obtain a spherical catalyst component having a sharp particle size distribution, and as a result, a solid catalyst component (A) having a similar form ) Can be obtained.
  • the particles are formed by the so-called spray drying method, for example, in which a solution or suspension is sprayed and dried using a spray device. Sharp solid catalyst components can be obtained.
  • each component can be prepared under an inert gas atmosphere. Specifically, each component can be brought into contact while being stirred in a container equipped with a stirrer under an inert gas atmosphere and under a condition where water and the like are removed.
  • the contact temperature may be a relatively low temperature range around room temperature when simply contacting and stirring and mixing, or dispersing or suspending and modifying it, but the reaction may be carried out after contact and the product When it is obtained, a temperature range of 40 to 130 ° C.
  • the reaction time is preferably 1 minute or more, more preferably 10 minutes or more, and still more preferably 30 minutes or more.
  • the ratio of the amount of each component used to prepare the solid catalyst component (A) varies depending on the preparation method, and may be appropriately determined.
  • 1 to 5 molar contact is more preferable.
  • polysiloxane when using a polysiloxane when preparing the catalyst component, 0.01 to 100 g of polysiloxane is preferably in contact with one mole of the magnesium compound (a), and more preferably 0.05 to 80 g, More preferably, 1 to 50 g contact is made.
  • the amount of the inert organic solvent such as the aromatic hydrocarbon compound used is preferably 0.001 to 500 moles per mole of the magnesium compound (a), preferably 0.001 to 500 moles. It is more preferable that the amount be 70 moles, further preferably 0.005 to 50 moles.
  • the content of the titanium atom, magnesium atom, halogen atom and electron donating compound constituting the solid catalyst component (A) is within the range where the effect of the present invention can be exhibited. Not specified in particular.
  • the solid catalyst component (A) preferably contains 1.0 to 10% by mass, more preferably 1.5 to 8% by mass, and still more preferably 1.5 to 5% by mass of titanium atoms. More preferable.
  • the solid catalyst component (A) preferably contains 10 to 70% by mass, more preferably 10 to 50% by mass, and still more preferably 15 to 40% by mass of magnesium atoms. It is more preferable to contain mass%.
  • the solid catalyst component (A) preferably contains 20 to 90% by mass, more preferably 30 to 85% by mass, and still more preferably 40 to 80% by mass, of halogen atoms. It is more preferable to contain mass%.
  • the solid catalyst component (A) preferably contains a total of 0.5 to 30% by mass of the electron donor compound (c), more preferably a total of 1 to 25% by mass, and a total of 2 to 20% by mass It is more preferable to contain.
  • the content of titanium atoms and the content of magnesium atoms contained in the solid catalyst component (A) are the methods described in JIS 8311-1997 “Method for determining titanium in titanium ore” (oxidation-reduction titration) Means the value measured according to
  • the content of halogen atoms constituting the solid catalyst component (A) of the present invention is prepared by treating the solid catalyst component with a mixed solution of sulfuric acid and pure water to obtain an aqueous solution, Means the value measured by the silver nitrate titration method of titrating a halogen atom with a silver nitrate standard solution, and the content of the electron donor compound extracts the internal electron donor using an aromatic solvent after hydrolysis of the solid catalyst This value means the value measured by gas chromatography FID (Flame Ionization Detector) method.
  • the magnesium compound (a) is suspended in an aromatic hydrocarbon compound having a boiling point of 50 to 150 ° C., and then the titanium halogen compound ( b) is brought into contact, reaction treatment is carried out, and before or after the titanium halide compound (b) is brought into contact with the above suspension, it is selected from electron donating compounds (c) having no phthalic acid ester structure
  • a method of preparation can be mentioned by contacting one or more at -20 to 130 ° C. and, if necessary, contacting with a polysiloxane for reaction treatment. In the above preparation method, it is desirable to carry out the aging reaction at a low temperature before or after contacting the electron donor compound (c).
  • R 1 is an alkyl group having 1 to 6 carbon atoms, and methyl group, ethyl group, propyl group, isopropyl group, isopropyl group, butyl group, isobutyl group, pentyl group And a group selected from isopentyl group, hexyl group and isohexyl group, and ethyl group and isobutyl group are preferable.
  • Q is a hydrogen atom or a halogen atom, preferably a hydrogen atom, a chlorine atom or a bromine atom.
  • p is a real number of 0 ⁇ p ⁇ 3, preferably 2 or 3, and more preferably 3.
  • organoaluminum compounds (B) include triethylaluminum, diethylaluminum chloride, triisobutylaluminum, diethylaluminum bromide and diethylaluminum hydride, and one or more kinds can be used. Preferred are triethylaluminum and triisobutylaluminum.
  • a specific organic to the electron donating compound constituting the solid catalyst component (A) It is believed that the action of the aluminum compound (B) can be improved and the solid catalyst component can be activated optimally, for this reason, in the case of using the solid catalyst component (A) containing an electron donating compound other than phthalic acid ester, Even when the polymerization catalyst is prepared in an inert gas atmosphere, it is considered that a polymer exhibiting excellent catalytic activity at the time of polymerization treatment can be produced, and a polymer excellent in stereoregularity, melt flowability, and the like can be produced.
  • the external electron donating compound (C) mention may be made of the same as the electron donating compound (c) constituting the above-mentioned solid catalyst component (A).
  • the electron donating compound (c) constituting the above-mentioned solid catalyst component (A).
  • one or more selected from carbonates, ethers, esters or organic silicon compounds are preferable.
  • the external electron donating compound is a carbonate
  • the carbonate one or more selected from 2-ethoxyethyl phenyl carbonate, 2-benzyloxyethyl phenyl carbonate and 2-ethoxyethyl-1-methyl carbonate is preferable.
  • the external electron donating compound is an ether
  • preferred ethers are 1,3 diethers, in particular, 9,9-bis (methoxymethyl) fluorene and 2-isopropyl-2-isopentyl-1,3-dimethoxy phthalate.
  • propane is preferred.
  • the external electron donating compound is an ester
  • one or more selected from methyl benzoate and ethyl benzoate is preferable as the ester.
  • the external electron donating compound is an organosilicon compound
  • one or more selected from an organosilicon compound containing a Si—O—C bond and an organosilicon compound containing a Si—N—C bond is preferable.
  • the above organosilicon compound the following general formula (II); R 3 r Si (NR 4 R 5 ) s (OR 6 ) 4- (r + s) (II) (Wherein, r and s are each independently an integer of 0 to 4, r + s is an integer of 0 to 4, and R 3 , R 4 or R 5 is a hydrogen atom or a straight chain having 1 to 12 carbon atoms A chain alkyl group, a branched alkyl group having 3 to 12 carbon atoms, a vinyl group, an allyl group, a substituted or unsubstituted cycloalkyl group, a phenyl group and an aralkyl group, which is a hetero atom R 4 and R 5 may be combined to form
  • R 6 may be an alkyl group having 1 to 4 carbon atoms, a vinyl group, an allyl group, a cycloalkyl group having 3 to 12 carbon atoms, a phenyl group having 6 to 12 carbon atoms and an aralkyl group Is any group selected from Compounds represented by may also be.) Which contained the like.
  • R 3 is preferably a linear alkyl group having 1 to 10 carbon atoms, a branched alkyl group having 3 to 10 carbon atoms or a cycloalkyl group having 5 to 8 carbon atoms,
  • the linear alkyl group of the number 1 to 8, the branched alkyl group having the carbon number 3 to 8 and the cycloalkyl group having the carbon number 5 to 8 are particularly preferable.
  • R 4 and R 5 a C 1-10 linear alkyl group, a C 3-10 branched alkyl group, or a C 5-8 cyclo An alkyl group is preferable, and a linear alkyl group having 1 to 8 carbon atoms, a branched alkyl group having 3 to 8 carbon atoms, or a cycloalkyl group having 5 to 7 carbon atoms is particularly preferable.
  • R 4 and R 5 may be combined to form a ring shape, and in this case, a group represented by (NR 4 R 5 ) forming a ring shape is a perhydroquinolino group, a perhydroisoquinolino group Groups are mentioned.
  • R 6 is any one selected from an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, a phenyl group, a vinyl group, an allyl group and an aralkyl group, and has 1 to 6 carbon atoms
  • the linear alkyl group or the branched alkyl group having 3 to 6 carbon atoms is preferable, and the linear alkyl group having 1 to 4 carbon atoms or the branched alkyl group having 3 to 4 carbon atoms is particularly preferable.
  • alkyl (alkylamino) alkoxysilanes, alkyl (alkylamino) silanes, alkylaminosilanes and the like can be mentioned.
  • dimethoxysilane bis (perhydroisoquinolino) dimethoxysilane
  • pre-contacting refers to contacting the solid catalyst component (A), the organoaluminum compound (B) represented by the general formula (I) and the external electron donating compound (C) with an olefin. , Means to contact.
  • the atmosphere at the time of the precontact is preferably an inert gas atmosphere, and as the inert gas, one or more selected from nitrogen gas, helium gas, neon gas, argon gas, methane gas, ethane gas, propane gas, etc. may be mentioned. Preferably, nitrogen gas or argon gas is used.
  • the above precontact may be carried out in the coexistence of an inert organic solvent, wherein the inert organic solvent is used as a medium for reacting each component, and the chain saturated hydrocarbon and It is preferable that it is 1 or more types chosen from an alicyclic hydrocarbon.
  • inert organic solvent specifically, saturated carbonization of pentane, hexane, heptane, octane, nonane, decane, cyclohexane, methylcyclohexane, ethylcyclohexane, 1,2-diethylcyclohexane, methylcyclohexene, decalin, mineral oil and the like
  • an aromatic hydrocarbon compound having a boiling point of about 50 to 200 ° C. and liquid at normal temperature specifically, one or more selected from hexane, heptane, octane, ethylcyclohexane, toluene, xylene, ethylbenzene Is preferred.
  • the contact amount of the organoaluminum compound (B) represented by the general formula (I) at the time of precontacting is 1 mole of titanium atoms in the solid catalyst component (A).
  • the amount is preferably 0.1 to 1000 mol, more preferably 1 to 800 mol, and still more preferably 20 to 600 mol.
  • the contact amount of the external electron donating compound (C) at the time of precontacting is 0 per mole of the organoaluminum compound (B) represented by the general formula (I)
  • the amount is preferably from .005 to 1 mol, more preferably from 0.08 to 0.5 mol, and even more preferably from 0.01 to 0.3 mol.
  • the solid catalyst component (A), the organoaluminum compound (B) represented by the general formula (I) and the external electron donating compound (C) In the absence of at a temperature of less than 15.degree. C. for up to 30 minutes.
  • the contact temperature at the time of the precontact is less than 15 ° C, preferably -15 to 10 ° C, and more preferably 0 to 10 ° C. Further, the contact time at the time of the preliminary contact is 30 minutes or less, preferably 5 seconds to 20 minutes, more preferably 30 seconds to 15 minutes, and still more preferably 1 to 10 minutes.
  • the reaction rapidly proceeds, and elimination of the electron donor compound constituting the solid catalyst component and the external electron donor compound And activation of the solid catalyst component by the co-catalyst organoaluminum compound, especially in the inert gas atmosphere, it is easy to cause deactivation of the catalytic active site (titanium active site) due to excessive reaction .
  • the excessive reaction to the titanium active site in the solid catalyst component by the organoaluminum compound is suppressed by pre-contact treatment at the above contact temperature and contact time. Deactivation of the catalyst active site can be effectively suppressed.
  • the target catalyst for olefins polymerization can be prepared by the above-mentioned preliminary contact treatment.
  • the polymerization catalyst is isolated after the precontacting treatment and contacted with the olefins or the olefin as it is after the precontacting treatment It can be subjected to polymerization treatment by contacting with a kind.
  • the polymerization of olefins may be homopolymerization or copolymerization of olefins, or may be random copolymerization or block copolymerization.
  • olefins one or more types selected from ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, vinylcyclohexane and the like can be mentioned, with preference given to propylene.
  • olefins are copolymerized, for example, when propylene and olefins other than propylene are copolymerized, ethylene, 1-butene, 1-pentene, 4-methyl-1- may be used as the olefin copolymerized with propylene.
  • ethylene, 1-butene, 1-pentene, 4-methyl-1- may be used as the olefin copolymerized with propylene.
  • pentene, vinylcyclohexane and the like can be mentioned, and ethylene and 1-butene are particularly preferable.
  • the polymerization temperature of the olefins is preferably from room temperature to 200 ° C., and more preferably from room temperature to 100 ° C.
  • the polymerization pressure of the olefins is preferably 10 MPa or less, more preferably 6 MPa or less.
  • the olefins may be polymerized by a continuous polymerization method or may be polymerized by a batch polymerization method. Furthermore, the polymerization reaction may be performed in one stage, or may be performed in two or more stages.
  • the polymerization atmosphere may be an inert gas atmosphere or a gas atmosphere of olefins to be polymerized, such as propylene.
  • the present invention before contacting with the olefins under an inert gas atmosphere, it contains an electron donating compound having no magnesium atom, titanium atom, halogen atom and phthalic acid ester structure in the absence of the olefins.
  • Deactivation of the catalyst active site is suppressed by bringing the solid catalyst component (A) into contact with the specific organoaluminum compound (B) as a cocatalyst and the external electron donating compound (C) at a low temperature for a short time.
  • the specific organoaluminum compound (B) on the electron donating compound (c) can be improved, and the solid catalyst component can be activated optimally.
  • Example 1 Preparation of Solid Catalyst Component> The inside of a 500 ml round bottom flask equipped with a stirrer was sufficiently replaced with nitrogen gas, and 20 g of diethoxymagnesium and 60 ml of toluene were charged to obtain a diethoxymagnesium-containing liquid in suspension. Then, the above diethoxymagnesium-containing solution is added to a mixed solution of 50 ml of toluene and 40 ml of titanium tetrachloride, which is preloaded in a 500 ml round-bottomed flask equipped with a stirrer and fully purged with nitrogen gas. It was a suspension.
  • Polymerization activity (kg-PP / g-cat) indicating the amount (F) of polymer formation per hour of polymerization time per 1 g of the solid catalyst component was calculated by the following equation.
  • Polymerization activity (kg-PP / g-cat) formed polymer (F) kg / solid catalyst component g / 1 hour
  • melt flowability (MFR) of polymer The melt flow rate (MFR) indicating the melt flowability of the polymer was measured according to ASTM D238 and JIS K 7210.
  • Example 2 The solid catalyst component was prepared in the same manner as in Example 1 except that the internal temperature was maintained at 10 ° C. for 20 minutes instead of maintaining the internal temperature at 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (at the time of preliminary contact). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 1 The solid catalyst component was prepared in the same manner as in Example 1 except that the internal temperature was maintained at 15 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (at the time of preliminary contact). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 2 The solid catalyst component was prepared in the same manner as in Example 1 except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 3 The solid catalyst component was prepared in the same manner as in Example 1 except that the internal temperature was maintained at 35 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 4 The solid catalyst component was prepared in the same manner as in Example 1 except that the internal temperature was maintained at 10 ° C. for 60 minutes instead of maintaining the internal temperature at 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (at the time of precontact). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 3 In place of 22.9 millimoles of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane, the same mole of 5-tert-butyl-1,2-phenylenediethyl carbonate is added, and when a polymerization catalyst is formed ( Preparation of solid catalyst component, formation of polymerization catalyst and olefin in the same manner as in Example 1 except that the internal temperature is maintained at 5 ° C. for 3 minutes instead of maintaining the internal temperature at 10 ° C. for 3 minutes. The polymerization was carried out.
  • Example 1 The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 4 A solid catalyst component in the same manner as in Example 1 except that 22.9 mmol of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane was replaced by the same molar amount of diethyl 2,3-diisopropylsuccinate. Preparation of the catalyst, formation of the polymerization catalyst and olefin polymerization. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 5 The solid catalyst component was prepared in the same manner as in Example 4, except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 5 In place of 22.9 millimoles of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane, the same molar amount of ethyl 3-ethoxy-2-tert-butylpropionate is added, and when the polymerization catalyst is formed (preliminary reaction) Preparation of a solid catalyst component, formation of a polymerization catalyst, and olefin polymerization in the same manner as in Example 1, except that the internal temperature is maintained at 10 ° C. for 3 minutes and the internal temperature is maintained at 5 ° C. for 3 minutes. Did.
  • Example 1 The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 6 The solid catalyst component was prepared in the same manner as in Example 5 except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 6 A solid catalyst component was prepared in the same manner as in Example 1 except that the same mole of 2-benzyloxyethylphenyl carbonate was used instead of 22.9 mmol of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane. Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 7 The solid catalyst component was prepared in the same manner as in Example 6 except that the internal temperature was maintained at 10 ° C. for 60 minutes instead of maintaining the internal temperature at 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (at the time of preliminary contact). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 7 Instead of 22.9 mmol of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane, 24 mmol of 2-ethoxyethyl-1-methyl carbonate and 6.0% of 2-isopropyl 2-isopentyl-1,3-dimethoxypropane
  • Example 7 In the same manner as in Example 1 except that millimoles were added and the internal temperature was maintained at 4 ° C. for 6 minutes instead of maintaining the internal temperature at 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). , Preparation of solid catalyst component, formation of polymerization catalyst and olefin polymerization were carried out.
  • Example 1 The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 8 The solid catalyst component was prepared in the same manner as in Example 7, except that the internal temperature was maintained at 10 ° C. for 3 minutes instead of maintaining the internal temperature 4 ° C. for 6 minutes at the time of formation of the polymerization catalyst (precontacting). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 9 The solid catalyst component was prepared in the same manner as in Example 7 except that the internal temperature was maintained at 13 ° C. for 3 minutes instead of maintaining the internal temperature 4 ° C. for 6 minutes at the time of formation of the polymerization catalyst (at the time of preliminary contact). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 10 The solid catalyst component was prepared in the same manner as in Example 7 except that the internal temperature was maintained at 10 ° C. for 20 minutes instead of maintaining the internal temperature 4 ° C. for 6 minutes at the time of formation of the polymerization catalyst (at the time of preliminary contact). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 8 The solid catalyst component was prepared in the same manner as in Example 7 except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 4 ° C. for 6 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 9 The solid catalyst component was prepared in the same manner as in Example 7, except that the internal temperature was maintained at 34 ° C. for 3 minutes instead of maintaining the internal temperature 4 ° C. for 6 minutes at the time of formation of the polymerization catalyst (at the time of preliminary contact). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 10 The solid catalyst component was prepared in the same manner as in Example 7 except that the internal temperature was maintained at 10 ° C. for 60 minutes instead of maintaining the internal temperature 4 ° C. for 6 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 11 Instead of 22.9 millimoles of 2-isopropyl 2-isopentyl-1,3-dimethoxypropane, 24 millimoles of 2-ethoxyethyl-1-ethyl carbonate and 6.0 millimoles of 2-isopropyl 2-isopentyl-1,3-dimethoxypropane
  • Preparation of a solid catalyst component, formation of a polymerization catalyst and olefin polymerization were carried out by treating in the same manner as in Example 1 except for adding.
  • the polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. .
  • the results are shown in Table 1.
  • Example 11 The solid catalyst component was prepared in the same manner as in Example 11 except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (at the time of preliminary contact). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 1.
  • Example 12 ⁇ Preparation of Solid Catalyst Component> The same treatment as in Example 1 is performed except that 22.9 mmol of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane is replaced by the same molar amount of diethyl 1-cyclohexene-1,2-dicarboxylate. Thus, a solid catalyst component (solid catalyst component (A2)) was obtained.
  • Example 2 The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • Example 12 The solid catalyst component was prepared in the same manner as in Example 12 except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • Example 13 In place of 22.9 mmol of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane, 24 mmol of diethyl benzylidene malonate and 6.0 mmol of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane were added.
  • a solid catalyst component solid catalyst component (A3)) was obtained by treating in the same manner as in Example 1 except the points.
  • Example 2 The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • Example 13 The solid catalyst component was prepared in the same manner as in Example 12 except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • Example 14 ⁇ Preparation of Solid Catalyst Component> Example except using 7.5 mmol of 2-ethoxyethyl-1-ethyl carbonate and 22 mmol of dimethyl diisobutyl malonate in place of 22.9 mmol of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane By treating in the same manner as in 1, a solid catalyst component (solid catalyst component (A4)) was obtained.
  • solid catalyst component (A4) solid catalyst component
  • Example 2 The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • Example 14 The solid catalyst component was prepared in the same manner as in Example 14 except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • Example 15 The solid catalyst component was prepared in the same manner as in Example 14 except that the internal temperature was maintained at 34 ° C. for 3 minutes instead of maintaining the internal temperature at 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • Example 15 In the same manner as in Example 1 except that 7.5 mmol of diethyl maleate and 22 mmol of dimethyl diisobutyl malonate were used in place of 22.9 mmol of 2-isopropyl-2-isopentyl-1,3-dimethoxypropane. Preparation of solid catalyst component, formation of polymerization catalyst and olefin polymerization were carried out. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • Example 17 The solid catalyst component was prepared in the same manner as in Example 15 except that the internal temperature was maintained at 20 ° C. for 3 minutes instead of maintaining the internal temperature 10 ° C. for 3 minutes at the time of formation of the polymerization catalyst (precontacting time). Preparation, formation of polymerization catalyst and olefin polymerization were performed. The polymerization activity of the above reaction was measured in the same manner as in Example 1, and the melt flowability (MFR) and the xylene solubles (XS) of the obtained polymer were measured in the same manner as in Example 1. . The results are shown in Table 2.
  • the catalyst for polymerizing olefins obtained in Examples 1 to 15 has a magnesium atom, a titanium atom, and a halogen atom in the absence of olefins before contacting with the olefins.
  • it is prepared by subjecting it to contact treatment at a temperature of 30 minutes or less, it is impossible to use a solid catalyst component containing an electron donor compound other than phthalic acid ester.
  • the solid catalyst component for olefins polymerization obtained in Comparative Example 1 to Comparative Example 17 comprises a solid catalyst component (A) and a specific organoaluminum compound (B) as a co-catalyst,
  • the contact temperature at the time of precontacting contacting with the external electron donor compound (C) is 15 ° C.
  • the present invention in the case of using a solid catalyst component containing an electron donating compound other than phthalic acid ester, even when the polymerization catalyst is prepared in an inert gas atmosphere, excellent catalyst activity can be obtained during polymerization treatment. It is possible to provide a method for producing a catalyst for olefins polymerization which can produce a polymer which is excellent in stereoregularity, melt flowability and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

フタル酸エステル以外の電子供与性化合物を含む固体触媒成分を用いる場合において、不活性ガス雰囲気中で重合触媒を調製した場合であっても、重合処理時に優れた触媒活性を示し、立体規則性、溶融流れ性等に優れる重合体を製造し得るオレフィン類重合用触媒の製造方法を提供する。 マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)、特定の有機アルミニウム化合物 (B)および外部電子供与性化合物(C)を、オレフィン類の非存在下、15℃未満の温度で30分間以下の時間接触させる予備接触処理を施すことを特徴とするオレフィン類重合用触媒の製造方法である。

Description

オレフィン類重合用触媒の製造方法
 本発明は、オレフィン類重合用触媒の製造方法に関する。
 従来より、オレフィン類重合用触媒として、チタンなどの遷移金属触媒成分とアルミニウムなどの典型金属触媒成分とからなる固体触媒が広く知られている。
 オレフィン類重合用触媒は、マグネシウム化合物を担体として用いた担持型触媒の登場により、重合活性が飛躍的に増大し、さらにエステル化合物などの電子供与体を添加することで、炭素原子数3以上のα-オレフィンから立体規則性の高い重合体を製造することも可能となっている。
 たとえば、特許文献1(特開昭57-63310号公報)には、フタル酸エステル等の電子供与性化合物が担持された固体状チタン触媒成分と、助触媒成分として有機アルミニウム化合物と、少なくとも一つのSi-O-C結合を有する有機ケイ素化合物とを用いて、プロピレンを重合させる方法が提案されており、上記特許文献を含め多くの文献において電子供与性化合物としてフタル酸エステルを使用し、高立体規則性ポリマーを高収率で得る方法が提案されている。
 しかしながら、フタル酸エステルの一種であるフタル酸ジ-n-ブチルやフタル酸ベンジルブチルは、欧州のRegistration,Evaluation,Authorization and Restriction of Chemicals(REACH)規制におけるSubstance of Very High Concern(SVHC)として特定されており、環境負荷低減の観点から、SVHC物質を使用しない触媒系への転換要求が高まっている。
 SVHC規制対象とされていない電子供与性化合物として、コハク酸エステル、マレイン酸エステル、マロン酸エステル、ジエーテル等を用いた固体触媒成分が知られている。
特開昭57-63310号公報
 しかしながら、SVHC規制対象とされていない電子供与性化合物を用いた固体触媒成分は、フタル酸エステルを用いた固体触媒成分と同等の性能を発揮し難く、特に、窒素雰囲気等の不活性ガス雰囲気下で固体触媒成分と有機アルミニウム化合物および外部電子供与性化合物を接触させるプロセスが存在する重合設備においては、SVHC規制対象物質とされていない電子供与性化合物を用いた固体触媒成分は著しく活性を低下させる傾向があることから、さらなる改良が求められるようになっていた。
 このような状況下、本発明は、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分を用いる場合において、不活性ガス雰囲気中で重合触媒を調製した場合であっても、重合処理時に優れた触媒活性を示し、立体規則性、溶融流れ性等に優れる重合体を製造し得るオレフィン類重合用触媒の製造方法を提供することを目的とするものである。
 上記技術課題を解決すべく、本発明者等が鋭意検討を重ねた結果、マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)、特定の有機アルミニウム化合物(B)および外部電子供与性化合物(C)を、オレフィン類の非存在下、15℃未満の温度で30分間以下の時間接触させる予備接触処理を施してオレフィン類重合用触媒を調製することにより、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。
 すなわち、本発明は、
(1)マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)、下記一般式(I);
 R AlQ3-p    (I)
(式中、Rは炭素数1~6のアルキル基であり、Qは水素原子またはハロゲン原子であり、pは0<p≦3の実数である。)
で表される有機アルミニウム化合物(B)および外部電子供与性化合物(C)を、
 オレフィン類の非存在下、15℃未満の温度で30分間以下の時間接触させる予備接触処理を施す
ことを特徴とするオレフィン類重合用触媒の製造方法、
(2)前記電子供与性化合物が、エステル基、カーボネート基およびエーテル基から選ばれる一種以上の基を有する化合物である上記(1)に記載のオレフィン類重合用触媒の製造方法、
(3)前記電子供与性化合物が、コハク酸ジエステル、マロン酸ジエステル、マレイン酸ジエステル、シクロヘキセンカルボン酸ジエステル、エーテルカルボン酸エステル、ジカーボネート、カーボネート-エーテルから選ばれる少なくとも一種である上記(1)に記載のオレフィン類重合用触媒の製造方法、
(4)前記電子供与性化合物が、コハク酸ジエステル、マロン酸ジエステル、マレイン酸ジエステル、シクロヘキセンカルボン酸ジエステル、エーテルカルボン酸エステル、ジカーボネート、カーボネート-エーテルから選ばれる少なくとも一種である上記(2)に記載のオレフィン類重合用触媒の製造方法、
(5)前記予備接触処理時の処理温度が-15℃~10℃である上記(1)に記載のオレフィン類重合用触媒の製造方法、
(6)前記予備接触処理時の処理温度が-15℃~10℃である上記(2)に記載のオレフィン類重合用触媒の製造方法、
(7)前記予備接触処理時の処理温度が-15℃~10℃である上記(3)に記載のオレフィン類重合用触媒の製造方法、
(8)前記予備接触処理時の処理温度が-15℃~10℃である上記(4)に記載のオレフィン類重合用触媒の製造方法、
(9)前記予備接触処理時の処理時間が5秒間~20分間である上記(1)~(8)のいずれかに記載のオレフィン類重合用触媒の製造方法、
を提供するものである。
 なお、以下、マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)を、適宜、固体触媒成分(A)または固体触媒成分と称するものとする。
 本発明によれば、不活性ガス雰囲気下においてオレフィン類と接触させる前に、オレフィン類の非存在下、マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)と、助触媒である特定の有機アルミニウム化合物(B)と、外部電子供与性化合物(C)とを低温でかつ短時間接触させることにより、触媒活性点の失活を抑制しつつ、電子供与性化合物(c)に対する特定の有機アルミニウム化合物(B)の作用を向上させ、固体触媒成分を最適に活性化し得ると考えられ、このために、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分を用いる場合において、不活性ガス雰囲気中で重合触媒を調製した場合であっても、重合処理時に優れた触媒活性を示し、立体規則性、溶融流れ性等に優れる重合体を製造し得るオレフィン類重合用触媒の製造方法を提供することができる。
 本発明に係るオレフィン類重合用触媒の製造方法は、マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)、下記一般式(I);
 R AlQ3-p    (I)
(式中、Rは炭素数1~6のアルキル基であり、Qは水素原子またはハロゲン原子であり、pは0<p≦3の実数である。)
で表される有機アルミニウム化合物(B)および外部電子供与性化合物(C)を、
 オレフィン類の非存在下、15℃未満の温度で30分間以下の時間接触させる予備接触処理を施す
ことを特徴とするものである。
 本発明に係るオレフィン類重合用触媒の製造方法において、固体触媒成分(A)は、マグネシウム化合物(a)、チタンハロゲン化合物(b)およびフタル酸エステル構造を有さない電子供与性化合物(c)を接触させて得られるものであることが好ましい。
 上記マグネシウム化合物(a)としては、ジハロゲン化マグネシウム、ジアルキルマグネシウム、ハロゲン化アルキルマグネシウム、ジアルコキシマグネシウム、ジアリールオキシマグネシウム、ハロゲン化アルコキシマグネシウムあるいは脂肪酸マグネシウム等から選ばれる一種以上が挙げられる。
 これらのマグネシウム化合物の中、ジハロゲン化マグネシウム、ジハロゲン化マグネシウムとジアルコキシマグネシウムの混合物、ジアルコキシマグネシウムが好ましく、特にジアルコキシマグネシウムが好ましく、具体的にはジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、エトキシメトキシマグネシウム、エトキシプロポキシマグネシウム、ブトキシエトキシマグネシウム等が挙げられ、これらのうち、ジエトキシマグネシウムが特に好ましい。
 また、上記ジアルコキシマグネシウムは、金属マグネシウムを、ハロゲン含有有機金属等の存在下にアルコールと反応させて得たものであってもよい。
 さらに、上記ジアルコキシマグネシウムとしては、顆粒状または粉末状であり、その形状は不定形あるいは球状のものであってもよい。例えば球状のジアルコキシマグネシウムを使用した場合、より良好な粒子形状と狭い粒度分布を有する重合体粉末が得られ易く、重合操作時の生成重合体粉末の取り扱い操作性が向上し、生成重合体粉末に含まれる微粉に起因する重合体の分離装置におけるフィルターの閉塞等の問題が容易に解決される。
 上記ジアルコキシマグネシウムは、単独あるいは2種以上併用することもできる。
 また、球状ジアルコキシマグネシウムは、必ずしも真球状である必要はなく、楕円形状あるいは馬鈴薯形状のものであってもよい。具体的には、粒子形状が、長軸径Lと短軸径Wとの比(L/W)が3以下であるものが好ましく、1~2であるものがより好ましく、1~1.5であるものがさらに好ましい。
 さらに、上記ジアルコキシマグネシウムは、平均粒径が1~200μmのものが好ましく、5~150μmのものがより好ましい。
 上記ジアルコキシマグネシウムが球状のものである場合、その平均粒径は1~100μmが好ましく、5~80μmがより好ましく、10~60μmがさらに好ましい。
 また、上記ジアルコキシマグネシウムの粒度は、微粉及び粗粉が少なく、かつ粒度分布の狭いものが好ましい。
 具体的には、5μm以下の粒子が20%以下であるものが好ましく、5μm以下の粒子が10%以下であるものがより好ましい。一方、100μm以上の粒子が10%以下であるものが好ましく、100μm以上の粒子が5%以下であるものがより好ましい。
 更にその粒度分布をD90/D10(ここで、D90は積算粒度で90%における粒径、D10は積算粒度で10%における粒度である。)で表すと3以下であるものが好ましく、2以下であるものがより好ましい。
 上記の如き球状のジアルコキシマグネシウムを製造する方法は、例えば、特開昭58-4132号公報、特開昭62-51633号公報、特開平3-74341号公報、特開平4-368391号公報、特開平8-73388号公報等に例示されている。
 上記、チタンハロゲン化合物(b)としては、特に制限されないが、チタンテトラハライドおよびアルコキシチタンハライド等から選ばれる一種以上を挙げることができる。
 チタンハロゲン化合物(b)としては、一般式Ti(OR4-i(式中、Rは炭素数1~4のアルキル基を示し、Xはハロゲン原子を示し、iは0以上4以下の整数である。)で表されるチタンテトラハライドもしくはアルコキシチタンハライド群から選択される一種の化合物であることが好ましい。
 チタンハロゲン化合物(b)として、具体的には、チタンハライドとして、チタンテトラクロライド、チタンテトラブロマイド、チタンテトラアイオダイド等のチタンテトラハライドが例示され、アルコキシチタンハライドとして、メトキシチタントリクロライド、エトキシチタントリクロライド、プロポキシチタントリクロライド、n-ブトキシチタントリクロライド、ジメトキシチタンジクロライド、ジエトキシチタンジクロライド、ジプロポキシチタンジクロライド、ジ-n-ブトキシチタンジクロライド、トリメトキシチタンクロライド、トリエトキシチタンクロライド、トリプロポキシチタンクロライド、トリ-n-ブトキシチタンクロライド等が例示される。
 チタンハロゲン化合物(b)のうち、チタンテトラハライドが好ましく、チタンテトラクロライドがより好ましい。
 固体触媒成分(A)において電子供与性化合物として使用される、フタル酸エステル構造を有さない電子供与性化合物(c)は、フタル酸エステル構造を有さず、エステル基、カーボネート基およびエーテル基から選ばれる一種以上の基を有する有機化合物であることが好ましい。
 電子供与性化合物(c)がエステル基を有する化合物である場合、1~3個のエステル残基を有する化合物が好ましく、エステル残基を1つ有するモノカルボン酸エステル、エステル残基を2つ有するジカルボン酸ジエステル、エステル残基を3つ以上有するポリカルボン酸ポリエステル、エステル残基とアルコキシ基を其々1個ずつ有するエーテル-カルボン酸エステル、ジオールエステル、ポリオールエステルおよび置換フェニレン芳香族ジエステル等を挙げることができ、コハク酸ジエステル、マロン酸ジエステル、マレイン酸ジエステルおよびシクロヘキセンカルボン酸ジエステル等が好適である。
 上記の中でも、酢酸エステル、プロピオン酸エステル、安息香酸エステル、p-トルイル酸エステル、アニス酸エステル等のモノカルボン酸エステル、マレイン酸ジエステル、2,3-ジアルキルコハク酸ジエステル、ベンジリデンマロン酸ジエステル、シクロヘキサン-1,2-ジカルボン酸ジエステル、1-シクロヘキセン-1,2-ジカルボン酸ジエステル、4-メチルシクロヘキサン-1,2-ジカルボン酸ジエステル、3-メチルシクロヘキサン-1,2-ジカルボン酸ジエステル、3,6-ジフェニルシクロヘキサン-1,2-ジカルボン酸ジエステル、3-メチル-6-n-プロピルシクロヘキサン-1,2-ジカルボン酸ジエステル等のジカルボン酸ジエステル類、3-エトキシ-2-イソプロピルプロピオン酸エチル、3-エトキシ-2-イソブチルプロピオン酸エチル、3-エトキシ-2-t-ブチルプロピオン酸エチル、3-エトキシ-2-t-ペンチルプロピオン酸エチル、3-エトキシ-2-シクロヘキシルプロピオン酸エチル、3-エトキシ-2-シクロペンチルプロピオン酸エチル等のエーテル-カルボン酸エステル類、および2,4-ペンタンジオールジベンゾエート、3-メチル-2,4-ペンタンジオールジベンゾエート、3-メチル-5-t-ブチル-1,2-フェニレンジベンゾアート、3,5-ジイソプロピル-1,2-フェニレンジベンゾアート等のジオールエステル類が好ましく、特に好ましいものは、マレイン酸ジエチル、ベンジリデンマロン酸ジエチル、2,3-ジイソプロピルコハク酸ジエチル、シクロヘキサン-1,2-ジカルボン酸ジエチル、シクロヘキサン-1,2-ジカルボン酸ジ-n-プロピル、シクロヘキサン-1,2-ジカルボン酸ジ-n-ブチル、3-エトキシ-2-イソプロピルプロピオン酸エチル、3-エトキシ-2-t-ブチルプロピオン酸エチル、3-エトキシ-2-t-ペンチルプロピオン酸エチル、2,4-ペンタンジオールジベンゾエート、3-メチル-2,4-ペンタンジオールジベンゾエート、3-メチル-5-t-ブチル-1,2-フェニレンジベンゾアート、3,5-ジイソプロピル-1,2-フェニレンジベンゾアート等から選ばれる一種以上を挙げることができる。
 電子供与性化合物(c)が、カーボネート基を有する化合物である場合、1~3個のカーボネート基を有する化合物が好ましく、カーボネート基とアルコキシ基を其々1個ずつ有するカーボネート-エーテル、カーボネート基とエステル残基を其々1個ずつ有するカーボネート-エステル、またはカーボネート基とカルボキシル基を其々1個ずつ有する化合物、カーボネート基を2個有するジカーボネート、カーボネート基を3個以上有するポリカーボネート等が挙げられる。中でも、カーボネート-エーテル、カーボネート-エステルおよびジカーボネートが好ましく、特に好ましいものは、2-エトキシエチルメチルカーボネート、2-プロポキシエチルメチルカーボネート、2-ベンジルオキシエチルフェニルカーボネート、5-t-ブチル-1,2-フェニレンジフェニルジカーボネートである。
 電子供与性化合物(c)が、エーテル基を有する化合物である場合、1個のエーテル基を有する化合物、フルオレン構造を有する化合物、あるいは炭素数3~7のアルキル基もしくはシクロアルキル基を1~2個有するジエーテル構造の化合物が好ましく、具体的には、メチルエーテル、エチルエーテル、プロピルエーテル、ブチルエーテル、アミールエーテル等のモノエーテル類、ジフェニルエーテル、2,2-ジアルキル-1,3-ジアルコキシプロパン、2,2-ジシクロアルキル-1,3-ジメトキシプロパン、および9,9-ビス(メトキシメチル)フルオレン等のジエーテル類から選ばれる一種以上を挙げることができ、エーテルカルボン酸エステル等が好適である。
 上記の中でも特に好ましいものは、2-イソプロピル-2-イソブチル-1,3-ジメトキシプロパン、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン、9,9-ビス(メトキシメチル)フルオレンである。
 電子供与性化合物(c)としては、コハク酸ジエステル、マロン酸ジエステル、マレイン酸ジエステル、シクロヘキセンカルボン酸ジエステル、ジカーボネート、カーボネート-エーテルおよびエーテルカルボン酸エステルから選ばれる少なくとも一種以上であることが好ましい。
 固体触媒成分(A)は、フタル酸エステル以外の電子供与性化合物(c)を含むものであるが、後述するように、特定の有機アルミニウム化合物(B)および外部電子供与性化合物(C)を、オレフィン類の非存在下、15℃未満の温度で30分間以下の時間接触させる予備接触処理を施してオレフィン類重合用触媒を調製することにより、重合処理時に優れた触媒活性を示し、立体規則性、溶融流れ性等に優れた重合体を製造することができる。
 固体触媒成分(A)は、ポリシロキサンを含むものであってもよい。
 この場合、固体触媒成分(A)としては、上述した、マグネシウム化合物(a)、チタンハロゲン化合物(b)およびとしてフタル酸エステル構造を有さない電子供与性化合物(c)とともにさらにポリシロキサンを接触させてなるものを挙げることができる。
 ポリシロキサンを接触させることにより、得られるポリマーの立体規則性あるいは結晶性を容易に向上させることができ、さらには得られるポリマーの微粉を容易に低減することができる。
 ポリシロキサンは、主鎖にシロキサン結合(-Si-O結合)を有する重合体であるが、シリコーンオイルとも総称され、25℃における粘度が0.02~100cm/s(2~1000センチストークス)を有する、常温で液状あるいは粘ちょう状の鎖状、部分水素化、環状あるいは変性ポリシロキサンを意味する。
 鎖状ポリシロキサンとしては、ジメチルポリシロキサン、メチルフェニルポリシロキサンが、部分水素化ポリシロキサンとしては、水素化率10~80%のメチルハイドロジェンポリシロキサンが、環状ポリシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルキクロテトラシロキサン、デカメチルシクロペンタンシロキサン、2,4,6-トリメチルシクロトリシロキサン、2,4,6,8-テトラメチルシクロテトラシロキサンが、また変性ポリシロキサンとしては、高級脂肪酸基置換ジメチルシロキサン、エポキシ基置換ジメチルシロキサン、ポリオキシアルキレン基置換ジメチルシロキサンが例示される。これらの中で、デカメチルシクロペンタシロキサン、及びジメチルポリシロキサンが好ましく、デカメチルシクロペンタシロキサンが特に好ましい。
 固体触媒成分(A)は、マグネシウム化合物(a)、チタンハロゲン化合物(b)および電子供与性化合物(c)と、さらに必要に応じてポリシロキサンとを、不活性有機溶媒の存在下に接触させることによって調製してなるものであることが好ましい。
 上記不活性有機溶媒としては、チタンハロゲン化合物(b)を溶解しかつマグネシウム化合物(a)は溶解しないものが好ましく、具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、1,2-ジエチルシクロヘキサン、メチルシクロヘキセン、デカリン、ミネラルオイル等の飽和炭化水素化合物、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素化合物、オルトジクロルベンゼン、塩化メチレン、1,2-ジクロロベンゼン、四塩化炭素、ジクロルエタン等のハロゲン化炭化水素化合物等から選ばれる一種以上を挙げることができる。
 上記不活性有機溶媒としては、沸点が50~200℃程度の、常温で液状の飽和炭化水素化合物あるいは芳香族炭化水素化合物が好ましく用いられ、中でも、ヘキサン、ヘプタン、オクタン、エチルシクロヘキサン、ミネラルオイル、トルエン、キシレン、エチルベンゼンから選ばれる一種以上が好ましい。
 固体触媒成分(A)の調製方法としては、例えば、マグネシウム化合物(a)および電子供与性化合物(c)を、不活性有機溶媒(沸点50~150℃の芳香族炭化水素化合物等)に懸濁させて懸濁液を形成し、チタンハロゲン化合物(b)および不活性有機溶媒(芳香族炭化水素化合物等)から形成した混合溶液を上記懸濁液に接触させ、反応させる調製方法を挙げることができる。
 また、固体触媒成分(A)の調製方法としては、マグネシウム化合物(a)を、チタンハロゲン化合物(b)または不活性有機溶媒(芳香族炭化水素化合物等)に懸濁させ、次いで電子供与性化合物(c)と、更に必要に応じてチタンハロゲン化合物(b)を接触させ、反応させる調製方法を挙げることができる。
 本調製方法においては、マグネシウム化合物(a)として、球状のマグネシウム化合物を用いることにより、球状でかつ粒度分布のシャープな触媒成分を得ることができ、結果として同様の形態を有する固体触媒成分(A)を得ることができる。また、球状のマグネシウム化合物(a)を用いなくとも、例えば噴霧装置を用いて溶液あるいは懸濁液を噴霧・乾燥させる、いわゆるスプレードライ法により粒子を形成させることにより、同様に球状でかつ粒度分布のシャープな固体触媒成分を得ることができる。
 マグネシウム化合物(a)、チタンハロゲン化合物(b)および電子供与性化合物(c)と、さらに必要に応じてポリシロキサン等とを接触して固体触媒成分(A)を調製する場合、各成分の接触は、不活性ガス雰囲気下で行うことができる。
 具体的には、不活性ガス雰囲気下、水分等を除去した状況下で、攪拌機を具備した容器中で、各成分を攪拌しながら接触させることができる。
 接触温度は、単に接触させて攪拌混合する場合や、分散あるいは懸濁させて変性処理する場合には、室温付近の比較的低温域であっても差し支えないが、接触後に反応させて生成物を得る場合には、40~130℃の温度域が好ましく、この場合、接触後に同温度で保持して反応させることが好ましい。
 上記温度が40℃未満の場合は十分に反応が進行せず、結果として得られる固体触媒成分が十分な性能を発揮し難くなり、130℃を超えると使用した溶媒の蒸発が顕著になるなどして、反応の制御が困難になる。
 反応時間は1分以上が好ましく、10分以上がより好ましく、30分以上がさらに好ましい。
 固体触媒成分(A)を調製する際の各成分の使用量比は、調製法により異なるため、適宜決定すればよい。
 固体触媒成分(A)を調製する際、マグネシウム化合物(a)1モルあたり、チタンハロゲン化合物(b)を0.5~100モル接触させることが好ましく、0.5~10モル接触させることがより好ましく、1~5モル接触させることがさらに好ましい。
 また、触媒成分を調製する際、マグネシウム化合物(a)1モルあたり、電子供与性化合物(c)を0.01~10モル接触させることが好ましく、0.01~1モル接触させることがより好ましく、0.02~0.6モル接触させることがさらに好ましい。
 触媒成分を調製する際、ポリシロキサンを使用する場合は、マグネシウム化合物(a)1モルあたり、ポリシロキサンを0.01~100g接触させることが好ましく、0.05~80g接触させることがより好ましく、1~50g接触させることがさらに好ましい。
 また、触媒成分を調製する際、芳香族炭化水素化合物等の不活性有機溶媒の使用量は、マグネシウム化合物(a)1モルあたり、0.001~500モルであることが好ましく、0.001~70モルであることがより好ましく、0.005~50モルであることがさらに好ましい。
 本発明に係るオレフィン類重合用触媒の製造方法において、固体触媒成分(A)を構成するチタン原子、マグネシウム原子、ハロゲン原子および電子供与性化合物の含有量は、本発明の効果を発揮し得る範囲において特に既定されない。
 固体触媒成分(A)は、チタン原子を、1.0~10質量%含有することが好ましく、1.5~8質量%含有することがより好ましく、1.5~5質量%含有することがさらに好ましい。
 固体触媒成分(A)は、マグネシウム原子を、10~70質量%含有することが好ましく、10~50質量%含有することがより好ましく、15~40質量%含有することがさらに好ましく、15~25質量%含有することが一層好ましい。
 固体触媒成分(A)は、ハロゲン原子を、20~90質量%含有することが好ましく、30~85質量%含有することがより好ましく、40~80質量%含有することがさらに好ましく、45~80質量%含有することが一層好ましい。
 固体触媒成分(A)は、電子供与性化合物(c)を、合計0.5~30質量%含有することが好ましく、合計1~25質量%含有することがより好ましく、合計2~20質量%含有することがさらに好ましい。
 本出願書類において、固体触媒成分(A)中に含まれるチタン原子の含有率およびマグネシウム原子の含有率は、JIS 8311-1997「チタン鉱石中のチタン定量方法」に記載の方法(酸化還元滴定)に準じて測定した値を意味する。
 本出願書類において、本発明の固体触媒成分(A)を構成するハロゲン原子の含有量は、固体触媒成分を硫酸と純水の混合溶液で処理して水溶液とした後、所定量を分取し、硝酸銀標準溶液でハロゲン原子を滴定する硝酸銀滴定法によって測定した値を意味し、電子供与体化合物の含有率は、固体触媒を加水分解した後、芳香族溶剤を用いて内部電子供与体を抽出し、この溶液をガスクロマトグラフィーFID(Flame Ionization Detector、水素炎イオン化型検出器)法によって測定した値を意味する。
 固体触媒成分(A)の特に好ましい調製方法としては、先ず、マグネシウム化合物(a)を沸点50~150℃の芳香族炭化水素化合物に懸濁させ、次いで得られた懸濁液にチタンハロゲン化合物(b)を接触させて、反応処理を行い、上記懸濁液にチタンハロゲン化合物(b)を接触させる前または接触した後に、フタル酸エステル構造を有さない電子供与性化合物(c)から選ばれる一種以上を-20~130℃で接触させ、さらに必要に応じてポリシロキサンを接触させて反応処理を行うことにより、調製する方法を挙げることができる。
 上記調製方法においては、電子供与性化合物(c)を接触させる前または後に、低温で熟成反応を行うことが望ましい。
 本発明に係るオレフィン類重合用触媒の製造方法においては、上記固体触媒成分(A)と、下記一般式(I);
 R AlQ3-p    (I)
(式中、Rは炭素数1~6のアルキル基であり、Qは水素原子またはハロゲン原子であり、pは0<p≦3の実数である。)
で表される有機アルミニウム化合物(B)および外部電子供与性化合物(C)を接触させる。
 上記一般式(I)で表される有機アルミニウム化合物において、Rは、炭素数1~6のアルキル基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ヘキシル基およびイソヘキシル基から選ばれる基を挙げることができ、エチル基またはイソブチル基が好ましい。
 上記一般式(I)で表される有機アルミニウム化合物において、Qは、水素原子またはハロゲン原子であり、水素原子、塩素原子、臭素原子が好ましい。
 また、上記一般式(I)で表される有機アルミニウム化合物において、pは0<p≦3の実数であり、2または3が好ましく、3がより好ましい。
 このような有機アルミニウム化合物(B)の具体例としては、トリエチルアルミニウム、ジエチルアルミニウムクロライド、トリイソブチルアルミニウム、ジエチルアルミニウムブロマイド、ジエチルアルミニウムハイドライドが挙げられ、1種あるいは2種以上が使用できる。好ましくは、トリエチルアルミニウム、トリイソブチルアルミニウムである。
 本発明に係るオレフィン類重合用触媒の製造方法において、上記一般式(I)で表される有機アルミニウム化合物を使用することにより、固体触媒成分(A)を構成する電子供与性化合物に対する特定の有機アルミニウム化合物(B)の作用を向上させ、固体触媒成分を最適に活性化し得ると考えられ、このために、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分(A)を用いる場合において、不活性ガス雰囲気中で重合触媒を調製した場合であっても、重合処理時に優れた触媒活性を示し、立体規則性、溶融流れ性等に優れる重合体を製造し得ると考えられる。
 本発明に係るオレフィン類重合用触媒の製造方法において、外部電子供与性化合物(C)としては、上述した固体触媒成分(A)を構成する電子供与性化合物(c)と同様のものを挙げることができ、その中でも、カーボネート類、エーテル類、エステル類又は有機ケイ素化合物から選ばれる一種以上が好ましい。
 外部電子供与性化合物がカーボネート類である場合、カーボネート類としては、2-エトキシエチルフェニルカーボネート、2-ベンジルオキシエチルフェニルカーボネートおよび2-エトキシエチル-1-メチルカーボネートから選ばれる一種以上が好ましい。
 外部電子供与性化合物がエーテル類である場合、エーテル類としては、1,3ジエーテルが好ましく、特に、9,9-ビス(メトキシメチル)フルオレンおよび2-イソプロピル-2-イソペンチル-1,3―ジメトキシプロパンから選ばれる一種以上が好ましい。
 外部電子供与性化合物がエステル類である場合、エステル類としては、安息香酸メチルおよび安息香酸エチルから選ばれる一種以上が好ましい。
 外部電子供与性化合物が有機ケイ素化合物である場合、Si-O-C結合を含む有機ケイ素化合物および、Si-N-C結合を含む有機ケイ素化合物から選ばれる一種以上が好ましい。
 上記有機ケイ素化合物としては、下記一般式(II);
 R Si(NR(OR4-(r+s)(II)
(式中、rおよびsはそれぞれ独立に0~4の整数であって、r+sは0~4の整数であり、R、R又はRは、水素原子または炭素数1~12の直鎖状アルキル基、炭素数3~12の分岐鎖状アルキル基、ビニル基、アリル基、置換又は未置換のシクロアルキル基、フェニル基およびアラルキル基から選ばれるいずれかの基であって、ヘテロ原子を含有していてもよく、互いに同一であっても異なっていてもよい。RとRは結合して環形状を成していてもよく、R、RおよびRは、同一であっても異なっていてもよい。Rは、炭素数1~4のアルキル基、ビニル基、アリル基、炭素数3~12のシクロアルキル基、炭素数6~12のフェニル基およびアラルキル基から選ばれるいずれかの基であって、ヘテロ原子を含有してもよい。)で表される化合物が挙げられる。
 上記一般式(II)中、Rとしては、炭素数1~10の直鎖状アルキル基、炭素数3~10の分岐鎖状アルキル基または炭素数5~8のシクロアルキル基が好ましく、炭素数1~8の直鎖状アルキル基、炭素数3~8の分岐鎖状アルキル基、炭素数5~8のシクロアルキル基が特に好ましい。
 また、上記一般式(II)中、RおよびRとしては、炭素数1~10の直鎖状アルキル基、炭素数3~10の分岐鎖状アルキル基、または炭素数5~8のシクロアルキル基が好ましく、炭素数1~8の直鎖状アルキル基、炭素数3~8の分岐鎖状のアルキル基、または炭素数5~7のシクロアルキル基が特に好ましい。なお、RとRは、結合して環形状を形成していてもよく、この場合、環形状を形成する(NR)として基は、パーヒドロキノリノ基、パーヒドロイソキノリノ基が挙げられる。
 上記一般式(II)中、Rとしては、炭素数1~4のアルキル基、シクロアルキル基、フェニル基、ビニル基、アリル基およびアラルキル基から選ばれるいずれかであり、炭素数1~6の直鎖状アルキル基、又は炭素数3~6の分岐鎖状アルキル基が好ましく、特に炭素数1~4の直鎖状アルキル基又は炭素数3~4の分岐鎖状アルキル基が好ましい。
 上記一般式(II)で示される外部電子供与性化合物としては、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニルアルキルアルコキシシラン、シクロアルキルアルコキシシラン、シクロアルキル(アルキル)アルコキシシラン、(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)シラン、アルキルアミノシラン等から選ばれる一種以上を挙げることができ、具体的には、フェニルトリメトキシシラン、t-ブチルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソプロピルイソブチルジメトキシシラン、ジイソペンチルジメトキシシラン、ビス(2-エチルヘキシル)ジメトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルエチルジメトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、ビス(エチルアミノ)メチルエチルシラン、t-ブチルメチルビス(エチルアミノ)シラン、ビス(エチルアミノ)ジシクロヘキシルシラン、ジシクロペンチルビス(エチルアミノ)シラン、ビス(メチルアミノ)(メチルシクロペンチルアミノ)メチルシラン、ジエチルアミノトリエトキシシラン、ビス(シクロヘキシルアミノ)ジメトキシシラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、ビス(パーヒドロキノリノ)ジメトキシシラン、エチル(イソキノリノ)ジメトキシシラン等から選ばれる一種以上が挙げられ、これらの中でも、フェニルトリメトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルエチルジメトキシシラン、ジイソプロピルジメトキシシラン、イソプロピルイソブチルジメトキシシラン、ジイソペンチルジメトキシシラン、ジフェニルジメトキシシラン、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、t-ブチルメチルビス(エチルアミノ)シラン、ビス(エチルアミノ)ジシクロヘキシルシラン、ジシクロペンチルビス(エチルアミノ)シラン、ビス(パーヒドロキノリノ)ジメトキシシラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、ジエチルアミノトリエトキシシラン等から選ばれる一種以上が好ましく用いられる。
 上記外部電子供与性化合物(C)は、一種または二種以上を組み合わせて用いることができる。
 本出願書類において、予備接触とは、固体触媒成分(A)、一般式(I)で表される有機アルミニウム化合物(B)および外部電子供与性化合物(C)を、オレフィン類と接触させる前に、接触させることを意味する。
 上記予備接触時の雰囲気は、不活性ガス雰囲気であることが好ましく、不活性ガスとしては、窒素ガス、ヘリウムガス、ネオンガス、アルゴンガス、メタンガス、エタンガスおよびプロパンガス等から選ばれる一種以上を挙げることができ、窒素ガスまたはアルゴンガスであることが好ましい。
 また、上記予備接触は、不活性有機溶媒の共存下で行ってもよく、ここで、不活性有機溶媒は、各成分を反応させる媒体として使用されるものであって、鎖式飽和炭化水素および脂環式炭化水素から選ばれる一種以上であることが好ましい。
 上記不活性有機溶媒として、具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、1,2‐ジエチルシクロヘキサン、メチルシクロヘキセン、デカリン、ミネラルオイル等の飽和炭化水素化合物、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素化合物、オルトジクロルベンゼン、塩化メチレン、1,2-ジクロロベンゼン、四塩化炭素、ジクロルエタン等のハロゲン化炭化水素化合物等から選ばれる一種以上を挙げることができる。
 上記不活性有機溶媒としては、沸点が50~200℃程度の、常温で液状の芳香族炭化水素化合物、具体的にはヘキサン、ヘプタン、オクタン、エチルシクロヘキサン、トルエン、キシレン、エチルベンゼンから選ばれる一種以上であることが好ましい。
 本発明に係るオレフィン類重合触媒の製造方法において、予備接触時における一般式(I)で表される有機アルミニウム化合物(B)の接触量は、固体触媒成分(A)中のチタン原子1モル当たり、0.1~1000モルであることが好ましく、1~800モルであることがより好ましく、20~600モルであることがさらに好ましい。
 本発明に係るオレフィン類重合触媒の製造方法において、予備接触時における外部電子供与性化合物(C)の接触量は、一般式(I)で表される有機アルミニウム化合物(B)1モル当たり、0.005~1モルであることが好ましく、0.08~0.5モルであることがより好ましく、0.01~0.3モルであることがさらに好ましい。
 本発明に係るオレフィン類重合用触媒の製造方法においては、固体触媒成分(A)、一般式(I)で表される有機アルミニウム化合物(B)および外部電子供与性化合物(C)を、オレフィン類の非存在下、15℃未満の温度で30分間以下の時間接触させる予備接触処理を施す。
 上記予備接触時の接触温度は、15℃未満であり、-15~10℃が好ましく、0~10℃がより好ましい。
 また、上記予備接触時の接触時間は、30分間以下であり、5秒間~20分間が好ましく、30秒間~15分間がより好ましく、1~10分間がさらに好ましい。
 通常、固体触媒成分に助触媒である有機アルミニウム化合物と外部電子供与性化合物とを接触させると急減に反応が進行し、固体触媒成分を構成する電子供与性化合物の脱離および外部電子供与性化合物との交換や、助触媒である有機アルミニウム化合物による固体触媒成分の活性化が生じ、特に不活性ガス雰囲気下においては、過剰な反応により触媒活性点(チタン活性点)の失活が生じ易くなる。
 本発明に係るオレフィン類重合用触媒の製造方法においては、上記接触温度および接触時間で予備接触処理することにより、有機アルミニウム化合物による固体触媒成分中のチタン活性点への過剰な反応を抑制して触媒活性点の失活を効果的に抑制することができる。 
 本発明に係る製造方法においては、上記予備接触処理により、目的とするオレフィン類重合用触媒を調製することができる。
 本発明に係る製造方法で得られた重合用触媒を用いてオレフィン類を重合する場合、上記予備接触処理後に重合用触媒を単離してオレフィン類と接触させるか、または上記予備接触処理後にそのままオレフィン類と接触させることにより重合処理に供することができる。
 オレフィン類の重合は、オレフィン類の単独重合であってもよいし共重合であってもよく、ランダム共重合であってもよいしブロック共重合であってもよい。
 上記オレフィン類としては、エチレン、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、ビニルシクロヘキサン等から選ばれる一種以上を挙げることができ、特にプロピレンが好適である。
 オレフィン類を共重合する場合、例えば、プロピレンとプロピレン以外のオレフィン類とを共重合する場合、プロピレンと共重合されるオレフィンとしては、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、ビニルシクロヘキサン等から選ばれる一種以上を挙げることができ、とりわけ、エチレン、1-ブテンが好適である。
 プロピレンと他のオレフィン類とを共重合させる場合、プロピレンと少量のエチレンをコモノマーとして1段で重合するランダム共重合と、第一段階(第一重合槽)で プロピレンの単独重合を行い、第二段階(第二重合槽)あるいはそれ以上の多段階(多段重合槽)でプロピレンとエチレンの共重合を行う、所謂プロピレン-エチレンブロック共重合を挙げることができる。
 オレフィン類の重合温度は、室温以上200℃以下であることが好ましく、室温以上100℃以下であることがより好ましい。
 オレフィン類の重合圧力は、10MPa以下であることが好ましく、6MPa以下であることがより好ましい。
 オレフィン類は、連続重合法で重合してもよいし、バッチ式重合法で重合してもよい。さらに、重合反応を1段で行ってもよいし、2段以上の多段で行ってもよい。
 上記オレフィン類の重合反応を行う場合、重合雰囲気としては、不活性ガス雰囲気あるいはプロピレンなどの重合対象となるオレフィン類のガス雰囲気の何れであってもよい。
 本発明によれば、不活性ガス雰囲気下においてオレフィン類と接触させる前に、オレフィン類の非存在下、マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)と、助触媒である特定の有機アルミニウム化合物(B)と、外部電子供与性化合物(C)とを低温でかつ短時間接触させることにより、触媒活性点の失活を抑制しつつ、電子供与性化合物(c)に対する特定の有機アルミニウム化合物(B)の作用を向上させ、固体触媒成分を最適に活性化し得ると考えられ、このために、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分を用いる場合において、不活性ガス雰囲気中で重合触媒を調製した場合であっても、重合処理時に優れた触媒活性を示し、立体規則性、溶融流れ性等に優れる重合体を製造し得るオレフィン類重合用触媒の製造方法を提供することができる。
(実施例1)
<固体触媒成分の調製>
 攪拌機を具備した容量500mlの丸底フラスコ内部を窒素ガスで充分に置換し、ジエトキシマグネシウム20g及びトルエン60mlを装入し、懸濁状のジエトキシマグネシウム含有液を得た。
 次いで、攪拌機を具備し、窒素ガスで充分に置換された容量500mlの丸底フラスコに予め装填された、トルエン50ml及び四塩化チタン40mlの混合溶液中に、上記ジエトキシマグネシウム含有液を添加し、懸濁液とした。
 次いで、得られた懸濁液を-6℃で1時間反応させた後、2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルを添加し、さらに100℃まで昇温した後、撹拌しながら2時間反応処理を行った。
 反応終了後、上澄みを抜き出し、90℃のトルエン150mlで4回洗浄した。得られた反応生成物に四塩化チタン20mlおよびトルエン100mlを加えて、100℃まで昇温し、15分反応させる処理を4回行った後、40℃のn-ヘプタン150mlで6回洗浄して固体触媒成分(固体触媒成分(A))を得た。
 固液分離後、得られた固体触媒成分中のチタン含有量を測定したところ3.2質量%であった。
<重合触媒の形成(予備接触)およびオレフィン重合>
 窒素ガスで完全に置換された内容積2.0リットルの撹拌機付オートクレーブに、n-ヘプタン7ml、トリエチルアルミニウム1.32ミリモル、シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルおよび、上記固体触媒成分(A1)をチタン原子として0.0026ミリモル装入し、窒素雰囲気下、内温10℃を3分間維持して重合用触媒を形成した。
 次いで、水素ガス1.5リットルおよび液化プロピレン1.4リットルを装入し、オートクレーブを20℃まで昇温し、内温20℃において5分間の予備重合を行なった後、オートクレーブを70℃まで昇温し、内温70℃で1時間の重合反応を行った。
 上記反応の重合活性を以下の方法で求めるとともに、得られた重合体について、下記の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
<重合活性>
 固体触媒成分1g当たり、重合時間1時間当たりの重合体生成量(F)kgを示す重合活性(kg-PP/g-cat)は、下式により算出した。
 重合活性(kg-PP/g-cat)=生成重合体(F)kg/固体触媒成分g/1時間
<重合体の溶融流れ性(MFR)>
 重合体の溶融流れ性を示すメルトフローレート(MFR)は、ASTM D238、JIS K 7210に準じて測定した。
<重合体のキシレン可溶分(XS)>
 攪拌装置を具備したフラスコ内に、4.0gの重合体(ポリプロピレン)と、200mlのp-キシレンを装入し、外部温度をキシレンの沸点以上(約150℃)とすることにより、フラスコ内部のp-キシレンの温度を沸点下(137~138℃)に維持しつつ、2時間かけて重合体を溶解した。その後1時間かけて液温を23℃まで冷却し、不溶解成分と溶解成分とを濾過分別した。上記溶解成分の溶液を採取し、加熱減圧乾燥によりp-キシレンを留去し、得られた残留物をキシレン可溶分(XS)とし、その質量を重合体(ポリプロピレン)に対する相対値(質量%)で求めた。
(実施例2)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温10℃を20分間維持した以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例1)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温15℃を3分間維持した以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例2)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温20℃を3分間維持した以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例3)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温35℃を3分間維持した以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例4)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温10℃を60分間維持した以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例3)
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、同モルの5-t-ブチル-1,2-フェニレンジエチルカーボネートを添加し、かつ、重合触媒の形成時(予備接触時)に内温10℃を3分間維持することに代えて内温5℃を3分間維持した以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例4)
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、同モルの2,3-ジイソプロピルコハク酸ジエチルを用いた以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例5)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温20℃を3分間維持した以外は、実施例4と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例5)
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、同モルの3-エトキシ-2-t-ブチルプロピオン酸エチルを添加し、かつ、重合触媒の形成時(予備接触時)に内温10℃を3分間維持することに代えて内温5℃を3分間維持した以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例6)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温20℃を3分間維持した以外は、実施例5と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例6)
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、同モルの2-ベンジルオキシエチルフェニルカーボネートを用いた以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例7)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温10℃を60分間維持した以外は、実施例6と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例7)
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、2-エトキシエチル-1-メチルカーボネート24ミリモルおよび2-イソプロピル2-イソペンチル-1,3-ジメトキシプロパン6.0ミリモルを添加し、かつ、重合触媒の形成時(予備接触時)に内温10℃を3分間維持することに代えて内温4℃を6分間維持した以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例8)
 重合触媒の形成時(予備接触時)において、内温4℃を6分間維持することに代えて、内温10℃を3分間維持した以外は、実施例7と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例9)
 重合触媒の形成時(予備接触時)において、内温4℃を6分間維持することに代えて、内温13℃を3分間維持した以外は、実施例7と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例10)
 重合触媒の形成時(予備接触時)において、内温4℃を6分間維持することに代えて、内温10℃を20分間維持した以外は、実施例7と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例8)
 重合触媒の形成時(予備接触時)において、内温4℃を6分間維持することに代えて、内温20℃を3分間維持した以外は、実施例7と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例9)
 重合触媒の形成時(予備接触時)において、内温4℃を6分間維持することに代えて、内温34℃を3分間維持した以外は、実施例7と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例10)
 重合触媒の形成時(予備接触時)において、内温4℃を6分間維持することに代えて、内温10℃を60分間維持した以外は、実施例7と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例11)
 2-イソプロピル2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、2-エトキシエチル-1-エチルカーボネート24ミリモルおよび2-イソプロピル2-イソペンチル-1,3-ジメトキシプロパン6.0ミリモルを添加した以外は、実施例1と同様に処理することにより、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(比較例11)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温20℃を3分間維持した以外は、実施例11と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表1に示す。
(実施例12)
<固体触媒成分の調製>
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、同モルの1-シクロヘキセン-1、2-ジカルボン酸ジエチルを用いた以外は、実施例1と同様に処理することにより、固体触媒成分(固体触媒成分(A2))を得た。
<重合触媒の形成(予備接触)およびオレフィン重合>
 固体触媒成分(A1)に代えて同モルの固体触媒成分(A2)を用いるとともに、シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルに代えて、ジイソペンチルジメトキシシラン(DIPDMS)0.13ミリモルを用いた以外は実施例1と同様にして、重合用触媒の形成(予備接触)および重合反応を行ってポリプロピレン重合体を得た。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(比較例12)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温20℃を3分間維持した以外は、実施例12と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(実施例13)
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、ベンジリデンマロン酸ジエチル24ミリモルおよび2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン6.0ミリモルを添加した以外は、実施例1と同様に処理することにより、固体触媒成分(固体触媒成分(A3))を得た。
<重合触媒の形成(予備接触)およびオレフィン重合>
 固体触媒成分(A1)に代えて同モルの固体触媒成分(A3)を用いるとともに、シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルに代えて、ジシクロペンチルジメトキシシラン(DCPDMS)0.13ミリモルを用いた以外は実施例1と同様にして、重合用触媒の形成(予備接触)および重合反応を行ってポリプロピレン重合体を得た。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(比較例13)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温20℃を3分間維持した以外は、実施例12と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(実施例14)
<固体触媒成分の調製>
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、2-エトキシエチル-1-エチルカーボネート7.5ミリモルおよびジイソブチルマロン酸ジメチル22ミリモルを用いた以外は、実施例1と同様に処理することによ
り、固体触媒成分(固体触媒成分(A4))を得た。
<重合触媒の形成(予備接触)およびオレフィン重合>
 固体触媒成分(A1)に代えて同モルの固体触媒成分(A4)を用いるとともに、シクロヘキシルメチルジメトキシシラン(CMDMS)0.13ミリモルに代えて、ジイソペンチルジメトキシシラン(DIPDMS)0.13ミリモルを用いた以外は実施例1と同様にして、重合用触媒の形成(予備接触)および重合反応を行ってポリプロピレン重合体を得た。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(比較例14)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温20℃を3分間維持した以外は、実施例14と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(比較例15)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温34℃を3分間維持した以外は、実施例14と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(比較例16)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて内温10℃を60分間維持した以外は、実施例14と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(実施例15)
 2-イソプロピル-2-イソペンチル-1,3-ジメトキシプロパン22.9ミリモルに代えて、マレイン酸ジエチル7.5ミリモルおよびジイソブチルマロン酸ジメチル22ミリモルを用いた以外は、実施例1と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
(比較例17)
 重合触媒の形成時(予備接触時)において、内温10℃を3分間維持することに代えて、内温20℃を3分間維持した以外は、実施例15と同様にして、固体触媒成分の調製、重合触媒の形成およびオレフィン重合を行った。
 上記反応の重合活性を実施例1と同様にして測定するとともに、得られた重合体について、実施例1と同様の方法により、溶融流れ性(MFR)およびキシレン可溶分(XS)を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1~表3の結果から、実施例1~実施例15で得られたオレフィン類重合用触媒は、オレフィン類と接触させる前に、オレフィン類の非存在下、マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)と、助触媒である特定の有機アルミニウム化合物(B)と、外部電子供与性化合物(C)とを15℃未満の温度で30分間以下の時間接触させる予備接触処理を施して調製されたものであるために、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分を用いるものであるにも拘わらず、不活性ガス雰囲気中で重合触媒を調製した場合であっても、重合処理時に優れた触媒活性を示し、立体規則性、溶融流れ性等に優れる重合体を製造し得るオレフィン類重合用触媒の製造方法を提供することができることが分かる。
 一方、表1の結果から、比較例1~比較例17で得られたオレフィン類重合用固体触媒成分は、固体触媒成分(A)と、助触媒である特定の有機アルミニウム化合物(B)と、外部電子供与性化合物(C)とを接触させる予備接触時の接触温度が15℃以上であったり(比較例1~比較例3、比較例5、比較例6、比較例8、比較例9、比較例11~比較例15、比較例17)、予備接触時の接触時間が30分を超えることにより(比較例4、比較例7、比較例10、比較例16)、得られるオレフィン類重合用触媒は、オレフィン類を重合した際の重合活性に劣るものであったり、重合体の溶融流れ性(MFR)に劣るものであったり、キシレン可溶分(XS)が低く立体規則性に劣るものであることが分かる。
 本発明によれば、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分を用いる場合において、不活性ガス雰囲気中で重合触媒を調製した場合であっても、重合処理時に優れた触媒活性を示し、立体規則性、溶融流れ性等に優れる重合体を製造し得るオレフィン類重合用触媒の製造方法を提供することができる。

Claims (9)

  1.  マグネシウム原子、チタン原子、ハロゲン原子およびフタル酸エステル構造を有さない電子供与性化合物を含む固体触媒成分(A)、下記一般式(I);
     R AlQ3-p    (I)
    (式中、Rは炭素数1~6のアルキル基であり、Qは水素原子またはハロゲン原子であり、pは0<p≦3の実数である。)
    で表される有機アルミニウム化合物(B)および外部電子供与性化合物(C)を、
     オレフィン類の非存在下、15℃未満の温度で30分間以下の時間接触させる予備接触処理を施す
    ことを特徴とするオレフィン類重合用触媒の製造方法。
  2.  前記電子供与性化合物が、エステル基、カーボネート基およびエーテル基から選ばれる一種以上の基を有する化合物である請求項1に記載のオレフィン類重合用触媒の製造方法。
  3.  前記電子供与性化合物が、コハク酸ジエステル、マロン酸ジエステル、マレイン酸ジエステル、シクロヘキセンカルボン酸ジエステル、エーテルカルボン酸エステル、ジカーボネート、カーボネート-エーテルから選ばれる少なくとも一種である請求項1に記載のオレフィン類重合用触媒の製造方法。
  4.  前記電子供与性化合物が、コハク酸ジエステル、マロン酸ジエステル、マレイン酸ジエステル、シクロヘキセンカルボン酸ジエステル、エーテルカルボン酸エステル、ジカーボネート、カーボネート-エーテルから選ばれる少なくとも一種である請求項2に記載のオレフィン類重合用触媒の製造方法。
  5.  前記予備接触処理時の処理温度が-15℃~10℃である請求項1に記載のオレフィン類重合用触媒の製造方法。
  6.  前記予備接触処理時の処理温度が-15℃~10℃である請求項2に記載のオレフィン類重合用触媒の製造方法。
  7.  前記予備接触処理時の処理温度が-15℃~10℃である請求項3に記載のオレフィン類重合用触媒の製造方法。
  8.  前記予備接触処理時の処理温度が-15℃~10℃である請求項4に記載のオレフィン類重合用触媒の製造方法。
  9.  前記予備接触処理時の処理時間が5秒間~20分間である請求項1~請求項8のいずれかに記載のオレフィン類重合用触媒の製造方法。
PCT/JP2016/082094 2015-11-24 2016-10-28 オレフィン類重合用触媒の製造方法 WO2017090377A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16868326.6A EP3381952B1 (en) 2015-11-24 2016-10-28 Method for producing catalyst for polymerization of olefins
US15/773,278 US20190023820A1 (en) 2015-11-24 2016-10-28 Method for producing catalyst for olefin polymerization
BR112018010449-3A BR112018010449B1 (pt) 2015-11-24 2016-10-28 Método para produzir catalisador para polimerização de olefina.
CN201680067198.2A CN108290974B (zh) 2015-11-24 2016-10-28 烯烃类聚合用催化剂的制造方法
SG11201804025QA SG11201804025QA (en) 2015-11-24 2016-10-28 Method for producing catalyst for olefin polymerization
KR1020187016020A KR20180086205A (ko) 2015-11-24 2016-10-28 올레핀류 중합용 촉매의 제조 방법
SA518391579A SA518391579B1 (ar) 2015-11-24 2018-05-15 طريقة لإنتاج محفز لبلمرة الأولفين

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228708A JP6670081B2 (ja) 2015-11-24 2015-11-24 オレフィン類重合用触媒の製造方法
JP2015-228708 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090377A1 true WO2017090377A1 (ja) 2017-06-01

Family

ID=58763162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082094 WO2017090377A1 (ja) 2015-11-24 2016-10-28 オレフィン類重合用触媒の製造方法

Country Status (10)

Country Link
US (1) US20190023820A1 (ja)
EP (1) EP3381952B1 (ja)
JP (1) JP6670081B2 (ja)
KR (1) KR20180086205A (ja)
CN (1) CN108290974B (ja)
BR (1) BR112018010449B1 (ja)
SA (1) SA518391579B1 (ja)
SG (2) SG10201912861YA (ja)
TW (1) TWI701263B (ja)
WO (1) WO2017090377A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021220645A1 (ja) * 2020-04-28 2021-11-04 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
US11219891B1 (en) * 2020-10-30 2022-01-11 Toho Titanium Co., Ltd. Method for manufacturing solid catalyst component for polymerization of olefin, method for manufacturing catalyst for polymerization of olefin, and method for manufacturing polymer of olefin
JP2023110425A (ja) * 2022-01-28 2023-08-09 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分及びその製造方法、オレフィン類重合用触媒の製造方法、並びにオレフィン類重合体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656924A (ja) * 1992-08-05 1994-03-01 Showa Denko Kk α−オレフィンの重合方法
JPH0680719A (ja) * 1992-09-02 1994-03-22 Showa Denko Kk α−オレフィンの重合方法
JPH08231633A (ja) * 1994-12-29 1996-09-10 Montell Technol Co Bv エチレンの(共)重合方法
JPH10120719A (ja) * 1996-10-15 1998-05-12 Idemitsu Petrochem Co Ltd プロピレンの連続重合方法
JP2000336130A (ja) * 1999-05-26 2000-12-05 Chisso Sekiyu Kagaku Kk プロピレン・エチレンブロックコポリマー及びその製造方法
JP2009167431A (ja) * 2009-05-07 2009-07-30 Sumitomo Chemical Co Ltd 予備重合触媒成分の製造方法、予備重合触媒成分および予備重合触媒成分を用いるプロピレン系重合体の製造方法
JP2012077276A (ja) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd オレフィン重合用の予備重合触媒、予備重合触媒の製造方法、及びオレフィン重合体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1209255B (it) 1980-08-13 1989-07-16 Montedison Spa Catalizzatori per la polimerizzazione di olefine.
EP1747249B1 (en) * 2004-05-21 2010-03-03 Basell Poliolefine Italia S.r.l. Impact resistant polyolefin compositions
JP5624680B2 (ja) * 2011-09-20 2014-11-12 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
EP2594593A1 (en) * 2011-11-17 2013-05-22 Basell Poliolefine Italia S.r.l. Process for the preparation of heterophasic propylene polymer compositions
CN103289210A (zh) * 2012-01-23 2013-09-11 住友化学株式会社 聚丙烯树脂组合物以及含有其的成型体
WO2014132759A1 (ja) * 2013-02-27 2014-09-04 東邦チタニウム株式会社 プロピレン系ブロック共重合体の製造方法
EP2829397A1 (en) * 2013-07-22 2015-01-28 Basell Poliolefine Italia S.r.l. Heat sealable polyolefin films and sheets
CN104558287B (zh) * 2013-10-24 2017-03-01 中国石油化工股份有限公司 烯烃聚合用催化剂组分及催化剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656924A (ja) * 1992-08-05 1994-03-01 Showa Denko Kk α−オレフィンの重合方法
JPH0680719A (ja) * 1992-09-02 1994-03-22 Showa Denko Kk α−オレフィンの重合方法
JPH08231633A (ja) * 1994-12-29 1996-09-10 Montell Technol Co Bv エチレンの(共)重合方法
JPH10120719A (ja) * 1996-10-15 1998-05-12 Idemitsu Petrochem Co Ltd プロピレンの連続重合方法
JP2000336130A (ja) * 1999-05-26 2000-12-05 Chisso Sekiyu Kagaku Kk プロピレン・エチレンブロックコポリマー及びその製造方法
JP2009167431A (ja) * 2009-05-07 2009-07-30 Sumitomo Chemical Co Ltd 予備重合触媒成分の製造方法、予備重合触媒成分および予備重合触媒成分を用いるプロピレン系重合体の製造方法
JP2012077276A (ja) * 2010-10-06 2012-04-19 Sumitomo Chemical Co Ltd オレフィン重合用の予備重合触媒、予備重合触媒の製造方法、及びオレフィン重合体の製造方法

Also Published As

Publication number Publication date
TW201738279A (zh) 2017-11-01
TWI701263B (zh) 2020-08-11
BR112018010449A2 (ja) 2018-11-21
BR112018010449B1 (pt) 2022-03-22
EP3381952A4 (en) 2019-07-31
BR112018010449A8 (pt) 2019-02-26
US20190023820A1 (en) 2019-01-24
EP3381952A1 (en) 2018-10-03
KR20180086205A (ko) 2018-07-30
JP6670081B2 (ja) 2020-03-18
SG11201804025QA (en) 2018-06-28
SA518391579B1 (ar) 2021-09-08
EP3381952B1 (en) 2022-04-13
CN108290974A (zh) 2018-07-17
SG10201912861YA (en) 2020-02-27
CN108290974B (zh) 2022-02-25
JP2017095581A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
CN107207645B (zh) 烯烃类聚合催化剂的制造方法和烯烃类聚合物的制造方法
US10472436B2 (en) Olefin-polymerization solid catalytic component, production method for olefin-polymerization catalyst, and production method for olefin polymer
WO2017090377A1 (ja) オレフィン類重合用触媒の製造方法
JP6847098B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP7023322B2 (ja) オレフィン類重合用触媒の製造方法
JP7162035B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合用触媒の製造方法及びオレフィン類重合体の製造方法
WO2021240955A1 (ja) オレフィン類重合用触媒の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
US11225536B1 (en) Method for producing solid catalyst component for polymerization of olefin, solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, method for producing catalyst for polymerization of olefin and method for producing polymer of olefin
WO2017122521A1 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP2023170983A (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用固体触媒の製造方法、及びオレフィン類重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201804025Q

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016020

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018010449

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 1020187016020

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016868326

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018010449

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180523