WO2021220645A1 - オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法 - Google Patents

オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法 Download PDF

Info

Publication number
WO2021220645A1
WO2021220645A1 PCT/JP2021/010320 JP2021010320W WO2021220645A1 WO 2021220645 A1 WO2021220645 A1 WO 2021220645A1 JP 2021010320 W JP2021010320 W JP 2021010320W WO 2021220645 A1 WO2021220645 A1 WO 2021220645A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
halogen
compound
olefin polymerization
Prior art date
Application number
PCT/JP2021/010320
Other languages
English (en)
French (fr)
Inventor
浩之 河野
江美子 和田
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to JP2021538004A priority Critical patent/JP7036995B1/ja
Priority to EP21795462.7A priority patent/EP4144767A4/en
Priority to US17/921,666 priority patent/US20230174684A1/en
Priority to CN202180031370.XA priority patent/CN115515988A/zh
Priority to KR1020227041475A priority patent/KR20230003087A/ko
Publication of WO2021220645A1 publication Critical patent/WO2021220645A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • C08F297/083Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins the monomers being ethylene or propylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a solid catalyst component for olefin polymerization, a catalyst for olefin polymerization, and a method for producing an olefin polymer.
  • a solid catalyst composed of a transition metal catalyst component such as titanium and a typical metal catalyst component such as aluminum has been widely known.
  • a solid catalyst component containing a magnesium atom, a titanium atom, a halogen atom and an electron donating compound as essential components is known. Further, many methods for polymerizing or copolymerizing olefins in the presence of a catalyst for polymerizing olefins composed of the solid catalyst component, an organoaluminum compound and an organosilicon compound have been proposed.
  • Patent Document 1 describes a solid titanium catalyst component carrying an electron-donating compound such as a phthalate ester, an organoaluminum compound as a co-catalyst component, and an organosilicon having at least one Si—OC bond.
  • an electron-donating compound such as a phthalate ester, an organoaluminum compound as a co-catalyst component, and an organosilicon having at least one Si—OC bond.
  • a method of polymerizing propylene using a catalyst for polymerizing olefins containing a compound has been proposed.
  • a phthalate ester is used as an electron donating compound under high polymerization activity.
  • a method for obtaining a highly stereoregular polymer has been proposed.
  • di-n-butyl phthalate and benzyl butyl phthalate which are a type of phthalate ester, are specified as Substance of Very High Concern (Substance of Very High Concern) in the regulation of Restriction of Chemicals (REACH) in Europe. From the viewpoint of reducing the environmental load, there is an increasing demand for conversion to a catalytic system that does not use SVHC substances.
  • solid catalyst components prepared by using electron-donating compounds other than phthalates such as alkoxyalkyl esters, maleic acid esters, and cyclohexene dicarboxylic acid diesters, which are not subject to REACH regulation, are known. ing.
  • a solid catalyst component using an electron-donating compound other than the above-mentioned phthalate ester is difficult to exhibit the same performance as the solid catalyst component using a phthalate ester when subjected to polymerization, and is particularly obtained. Further improvement is required because the polymer tends to be inferior in primary physical properties such as stereoregularity, and in terms of copolymerization activity when copolymerizing olefins and the block ratio of the obtained copolymer. Was supposed to be. Further, in order to improve the rigidity and impact strength of the obtained polymer, there is a demand for a solid catalyst component for olein polymerization capable of obtaining a polymer having a wide molecular weight distribution.
  • a solid catalyst component containing an alkoxyalkyl ester as an electron-donating compound other than a phthalate ester tends to have a slightly inferior polymerization activity to a solid catalyst component using a phthalate ester when used for olefin polymerization. It is hard to say that the stereoregularity of the obtained polymer is also at a high level.
  • a solid catalyst component containing a cyclohexene dicarboxylic acid diester as an electron-donating compound other than a phthalate ester has a stereoregularity of the obtained polymer when used for olefin polymerization as a solid catalyst using a phthalate ester. While reaching the same level as the components, it cannot be said that the copolymerization activity at the time of copolymerization and the blocking ratio of the obtained copolymer are at a high level.
  • the present invention is a solid catalyst component containing an electron-donating compound other than the phthalate ester, which is not subject to REACH regulation, and is a solid catalyst component containing an electron-donating compound other than the phthalate ester. Therefore, a solid catalyst component for olefin polymerization that can be realized in a well-balanced manner while satisfying a practically sufficient level for the stereoregularity of the obtained polymer, the breadth of the molecular weight distribution, the copolymerization activity, and the blocking ratio of the obtained polymer. It is an object of the present invention to provide a catalyst for olefin polymerization and a method for producing an olefin polymer using the solid catalyst component for olefin polymerization.
  • a solid catalyst component for olefin polymerization in which the content of A) has a specific amount ratio relationship with the content of the succinic acid diester compound (B). Based on this, the present invention has been completed.
  • the present invention (1) Containing magnesium, titanium, halogen, ether carbonate compound (A) and succinic acid diester compound (B), the following formula (content of ether carbonate compound (A) / content of succinic acid diester compound (B)) A solid catalyst component for olefin polymerization, wherein the molar ratio represented by is 0.01 to 1.00.
  • the oxygen atom-containing hydrocarbon group having 2 to 24 carbon atoms has a carbonyl bond end.
  • Z is a bonding group bonded via a carbon atom or a carbon chain.
  • the succinic acid ester compound (B) has the following general formula (2); (In the formula, R 3 and R 4 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms and may be the same or different from each other, and R 5 and R 6 have 2 to 4 carbon atoms. It may be a linear alkyl group or a branched alkyl group and may be the same as or different from each other.)
  • R 7 p AlQ 3-p (3) (Wherein, R 7 is an alkyl group having 1 to 6 carbon atoms, Q is hydrogen atom or halogen, p is 0 ⁇ a real number p ⁇ 3, if R 7 there are a plurality, Each R 7 may be the same or different from each other, and when a plurality of Qs are present, each Q may be the same or different from each other), and (III).
  • the present invention provides a method for producing an olefin polymer, which comprises polymerizing olefins in the presence of the catalyst for olefin polymerization according to (4) or (5) above.
  • the present invention although it contains an electron-donating compound other than the phthalate ester, the stereoregularity and the breadth of the molecular weight distribution of the obtained polymer, the copolymerization activity and the blocking ratio of the obtained polymer are obtained.
  • a solid catalyst component for olefin polymerization that can be realized in a well-balanced manner while satisfying a practically sufficient level, and also provides a catalyst for olefin polymerization and a method for producing an olefin polymer using the solid catalyst component for olefin polymerization. can do.
  • the solid catalyst component for olefin polymerization according to the present invention contains magnesium, titanium, halogen, an ether carbonate compound (A) and a succinic acid diester compound (B), and has the following formula (content of ether carbonate compound (A) / succinic acid). Content of acid diester compound (B)) The molar ratio represented by is 0.01 to 1.00.
  • halogen contained in the solid catalyst component for olefin polymerization of the present invention for example, one or more atoms selected from fluorine atom, chlorine atom, bromine atom and iodine atom are preferable, and selected from chlorine atom, bromine atom and iodine atom. It is more preferable to use one or more, and more preferably one or more selected from chlorine atom and iodine atom.
  • the oxygen atom-containing hydrocarbon group having 2 to 24 carbon atoms has a carbonyl bond end.
  • Z is a bonding group bonded via a carbon atom or a carbon chain. show.) It is preferable that the compound is one or more selected from the compounds represented by.
  • Examples of the linear alkyl group having 1 to 20 carbon atoms of R 1 and R 2 in the general formula (1) include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and an n-pentyl group. Examples thereof include an n-hexyl group, an n-pentyl group, an n-octyl group, an n-nonyl group and an n-decyl group. It is preferably a linear alkyl group having 1 to 12 carbon atoms.
  • branched alkyl group having 3 to 20 carbon atoms of R 1 and R 2 for example, an alkyl having a secondary carbon or a tertiary carbon such as an isopropyl group, an isobutyl group, a t-butyl group, an isopentyl group and a neopentyl group.
  • the group is mentioned. It is preferably a branched alkyl group having 3 to 12 carbon atoms.
  • the linear alkenyl groups having 3 to 20 carbon atoms of R 1 and R 2 include an allyl group, a 3-butenyl group, a 4-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and a 10-dodecenyl group. And so on. It is preferably a linear alkenyl group having 3 to 12 carbon atoms.
  • Examples of the branched alkenyl group having 3 to 20 carbon atoms include an isopropenyl group, an isobutenyl group, an isopentenyl group, a 2-ethyl group and a 3-hexenyl group. It is preferably a branched alkenyl group having 3 to 12 carbon atoms.
  • Examples of the linear halogen-substituted alkyl group having 1 to 20 carbon atoms of R 1 and R 2 include a methyl halide group, an ethyl halide group, an n-propyl halogenated group, and an n-butyl halogenated group.
  • a linear halogen-substituted alkyl group having 1 to 12 carbon atoms is preferable.
  • the branched halogen-substituted alkyl group having 3 to 20 carbon atoms include an isopropyl halogenated group, an isobutyl halogenated group, a 2-ethylhexyl halogenated group, and a neopentyl halogenated group.
  • a branched halogen-substituted alkyl group having 3 to 12 carbon atoms is preferable.
  • R 1, R 2 Examples of the linear halogen-substituted alkenyl group having 2 to 20 carbon atoms, 2-vinyl halide group, 3-halogenated allyl group, 3-halogenated-2-butenyl group, Examples thereof include 4-halogenated-3-butenyl group, perhalogenated-2-butenyl group, 6-halogenated-4-hexenyl group, 3-trihalogenated methyl-2-propenyl group and the like. It is preferably a halogen-substituted alkenyl group having 2 to 12 carbon atoms.
  • branched halogen-substituted alkenyl group having 3 to 20 carbon atoms 3-trihalogenated-2-butenyl group, 2-pentahalogenated ethyl-3-hexenyl group, 6-halogenated-3-ethyl-4- Examples thereof include a hexenyl group and a 3-halogenated isobutenyl group. It is preferably a branched halogen-substituted alkenyl group having 3 to 12 carbon atoms.
  • the cycloalkyl groups of R 1 and R 2 having 3 to 20 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a tetramethylcyclopentyl group, a cyclohexyl group, a methylcyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the cycloalkenyl group having 3 to 20 carbon atoms include a cyclopropenyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclooctenyl group, a norbornene group and the like. It is preferably a cycloalkenyl group having 3 to 12 carbon atoms.
  • halogen-substituted cycloalkyl group having 3 to 20 carbon atoms of R 1 and R 2 examples include a halogen-substituted cyclopropyl group, a halogen-substituted cyclobutyl group, a halogen-substituted cyclopentyl group, a halogen-substituted trimethylcyclopentyl group, and a halogen-substituted cyclohexyl group.
  • Examples thereof include a halogen-substituted methylcyclohexyl group, a halogen-substituted cycloheptyl group, a halogen-substituted cyclooctyl group, a halogen-substituted cyclononyl group, a halogen-substituted cyclodecyl group, and a halogen-substituted butylcyclopentyl group. It is preferably a halogen-substituted cycloalkyl group having 3 to 12 carbon atoms.
  • the halogen-substituted cycloalkenyl groups having 3 to 20 carbon atoms of R 1 and R 2 include a halogen-substituted cyclopropenyl group, a halogen-substituted cyclobutenyl group, a halogen-substituted cyclopentenyl group, a halogen-substituted trimethylcyclopentenyl group, and a halogen-substituted cyclohexyl group.
  • Examples thereof include a denyl group, a halogen-substituted methylcyclohexenyl group, a halogen-substituted cycloheptenyl group, a halogen-substituted cyclooctenyl group, a halogen-substituted cyclononenyl group, a halogen-substituted cyclodecenyl group, a halogen-substituted butylcyclopentenyl and the like. It is preferably a halogen-substituted cycloalkenyl group having 3 to 12 carbon atoms.
  • the aromatic hydrocarbon groups of R 1 and R 2 having 6 to 24 carbon atoms include a phenyl group, a methylphenyl group, a dimethylphenyl group, an ethylphenyl group, a benzyl group, a 1-phenylethyl group and a 2-phenyl group. Examples thereof include ethyl group, 2-phenylpropyl group, 1-phenylbutyl group, 4-phenylbutyl group, 2-phenylheptyl group, trill group, xsilyl group, naphthyl group, 1,8-dimethylnaphthyl group and the like. It is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • the halogen species include fluorine and chlorine. Examples include bromine or iodine, preferably fluorine, chlorine or bromine.
  • the nitrogen atom-containing hydrocarbon groups having 2 to 24 carbon atoms are groups having a carbon atom at the bond end, for example, methylamino.
  • oxygen atom-containing hydrocarbon group having 2 to 24 carbon atoms excluding the one in which the bond end of R 1 and R 2 is a carbonyl group, is a group having a carbon atom at the bond end, for example, a methoxymethyl group.
  • Ethers such as ethoxymethyl group, propoxymethyl group, butoxymethyl group, isopropoxymethyl group, isobutoxymethyl group, methoxyethyl group, ethoxyethyl group, propoxyethyl group, butoxyethyl group, isopropoxyethyl group, isobutoxyethyl group
  • Group-containing hydrocarbon groups phenoxymethyl groups, methylphenoxymethyl groups, dimethylphenokimethyl groups, naphthoxymethyl groups and other allyloxyalkyl groups, methoxyphenyl groups, etoxphenyl groups and other alkoxyaryl groups, acetoxymethyl groups, etc.
  • It is preferably an oxygen atom-containing hydrocarbon group having 2 to 12 carbon atoms.
  • the bond end refers to an atom or group on the oxygen atom side to which R 1 and R 2 are bonded.
  • the phosphorus-containing hydrocarbon groups other than those in which the bond ends of R 1 and R 2 having 2 to 24 carbon atoms are C P groups are groups whose bond ends are carbon atoms, for example, dimethylphos.
  • Dialkylphosphinoalkyl groups such as finomethyl group, dibutylphosphinomethyl group, dicyclohexylphosphinomethyl group, dimethylphosphinoethyl group, dibutylphosphinoethyl group, dicyclohexylphosphinoethyl group, diphenylphosphinomethyl group, ditrilphos
  • Examples thereof include a diarylphosphinoalkyl group such as a finomethyl group, a phosphino group substituted aryl group such as a dimethylphosphinophenyl group and a diethylphosphinophenyl group. It is preferably a phosphorus-containing hydrocarbon group having 2 to 12 carbon atoms.
  • R 2 are a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms having a bond end of ⁇ CH 2 ⁇ , a vinyl group, and a direct group having 3 to 12 carbon atoms.
  • coupling terminal is -CH2- branched alkenyl group having 3 to 12 carbon atoms, straight-chain halogen-substituted alkyl group having 1 to 12 carbon atoms, bond terminal -CH 2 - carbon atoms is 3 to 12 branched halogen substituted alkyl group, linear halogen-substituted alkenyl group having 3 to 12 carbon atoms, bond terminal -CH 2 - in which the branch halogen substituted alkenyl group having 3 to 12 carbon atoms, bonds end -CH 2 - a cycloalkyl group having a carbon number of 4-12 is, coupling terminal -CH 2 - carbon atoms is 4 to 12 cycloalkenyl group, coupling terminal -CH 2 - in which halogen substituted cycloalkyl group having 4 to 12 carbon atoms, bonds end -CH 2 - and is halogen-substituted cycloalkenyl group having 4
  • Z is a divalent bonding group that bonds a carbonate group and an ether group (OR 2 groups), and preferably, the two oxygen atoms to which Z is bonded are bonded by a carbon chain.
  • the carbon chain is a bonding group composed of two carbon atoms.
  • Z is two groups in which Z is bonded in a cyclic group such as a cycloalkylene group, a cycloalkenylene group, a halogen-substituted cycloalkylene group, a halogen-substituted cycloalkenylene group, an aromatic hydrocarbon group or a halogen-substituted aromatic hydrocarbon group.
  • the oxygen atoms are bonded by a carbon chain, and the bonding group in which the carbon chain is composed of two carbon atoms means that the two adjacent carbon chains in the cyclic carbon chain are the Z. Means that is a carbon chain between the two oxygen atoms to which it is bonded.
  • the preferred group of Z is a linear alkylene group having 1 to 20 carbon atoms, a branched alkylene group having 3 to 20 carbon atoms, a vinylene group, a linear alkenylene group having 3 to 20 carbon atoms or a branched alkenylene group, and a branched alkenylene group having 3 to 20 carbon atoms.
  • Cycloalkylene group cycloalkenylene group having 3 to 20 carbon atoms, halogen-substituted cycloalkylene group having 3 to 20 carbon atoms, halogen-substituted cycloalkenylene group having 3 to 20 carbon atoms, aromatic hydrocarbon group having 6 to 24 carbon atoms, 6 to 6 carbon atoms It is a halogen-substituted aromatic hydrocarbon group having 24 carbon atoms, a nitrogen atom-containing hydrocarbon group having 1 to 24 carbon atoms, an oxygen atom-containing hydrocarbon group having 1 to 24 carbon atoms, or a phosphorus-containing hydrocarbon group having 1 to 24 carbon atoms.
  • Z are a linear alkylene group having 2 carbon atoms, a branched alkylene group having 3 to 12 carbon atoms, a vinylene group, a linear alkenylene group having 3 to 12 carbon atoms, a branched alkylene group, and carbon.
  • Cycloalkylene group cycloalkenylene group having 3 to 12 carbon atoms, halogen-substituted cycloalkylene group having 3 to 12 carbon atoms, halogen-substituted cycloalkenylene group having 3 to 12 carbon atoms, aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • Examples of the linear alkylene group having 1 to 20 carbon atoms in Z include an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, and an ethylene group.
  • Examples thereof include a decamethylene group, a dodecamethylene group, a tridecamethylene group, and a tetradecamethylene group. It is preferably a linear alkylene group having 2 to 12 carbon atoms.
  • Examples of the branched alkylene group having 3 to 20 carbon atoms of Z include a 1-methylethylene group, a 2-methyltrimethylene group, a 2-methyltetramethylene group, a 2-methylpentamethylene group, a 3-methylhexamethylene group, and 4 -Methylheptamethylene group, 4-methyloctamethylene group, 5-methylnonamethylene group, 5-methyldecamethylene group, 6-methylundecamethylene group, 7-methyldodecamethylene group, 7-methyltridecamethylene group, etc. Can be mentioned. It is preferably a branched alkylene group having 3 to 12 carbon atoms.
  • linear alkenylene group having 3 to 20 carbon atoms of Z examples include a propenylene group, a butenylene group, a hexenylene group, an octenylene group, and an octadecenylene group. It is preferably a linear alkenylene group having 3 to 12 carbon atoms.
  • Examples of the branched alkenylene group having 3 to 20 carbon atoms of Z include a 2-methylpropenylene group, a 2,2-dimethylbutenylene group, a 3-methyl-2-butenylene group, and a 3-ethyl-2-butenylene group. Examples thereof include a 2-methyloctenylene group and a 2,4-dimethyl-2-butenylene group. It is preferably a branched alkenylene group having 3 to 12 carbon atoms.
  • Examples of the linear halogen-substituted alkylene group having 1 to 20 carbon atoms of Z include a dichloromethylene group, a chloromethylene group, a dichloromethylene group, and a tetrachloroethylene group.
  • a linear halogen-substituted alkylene group having 3 to 12 carbon atoms is preferable.
  • Examples of the branched halogen-substituted alkylene group having 1 to 20 carbon atoms of Z include a 1,2-bischloromethylethylene group, a 2,2-bis (chloromethyl) propylene group, a 1,2-bisdichloromethylethylene group, and 1 , 2-Bis (trichloromethyl) ethylene group, 2,2-dichloropropylene group, 1,1,2,2-tetrachloroethylene group, 1-trifluoromethylethylene group, 1-pentafluorophenylethylene group and the like.
  • a branched halogen-substituted alkylene group having 3 to 12 carbon atoms is preferable.
  • linear halogen-substituted alkenylene group having 1 to 20 carbon atoms of Z examples include a dichloroethenylene group, a difluoroethenylene group, a 3,3-dichloropropenylene group, a 1,2-difluoropropenylene group and the like. ..
  • a linear halogen-substituted alkenylene group having 3 to 12 carbon atoms is preferable.
  • Examples of the branched halogen-substituted alkylene group having 1 to 20 carbon atoms of Z include a 3,4-dichloro-1,2-butylene group, a 2,2-dichloro-1,3-butylene group, and a 1,2-difluoro-1. , 2-Propylene group and the like.
  • a branched halogen-substituted alkylene group having 3 to 12 carbon atoms is preferable.
  • Examples of the cycloalkylene group having 3 to 20 carbon atoms of Z include a cyclopentylene group, a cyclohexylene group, a cyclopropylene group, a 2-methylcyclopropylene group, a cyclobutylene group, a 2,2-dimethylcyclobutylene group, and 2, Examples thereof include a 3-dimethylcyclopentylene group, a 1,3,3-trimethylcyclohexylene group and a cyclooctylene group. It is preferably a cycloalkylene group having 3 to 12 carbon atoms.
  • Examples of the cycloalkenylene group having 3 to 20 carbon atoms in Z include a cyclopentenylene group, a 2,4-cyclopentadienylene group, a cyclohexenylene group, a 1,4-cyclohexadienylene group, and a cycloheptenylene. Examples thereof include a group, a methylcyclopentenylene group, a methylcyclohexenylene group, a methylcycloheptenylene group, a dicyclodecylene group, a tricyclodecylene group and the like. It is preferably a cycloalkenylene group having 3 to 12 carbon atoms.
  • Examples of the halogen-substituted cycloalkylene group having 3 to 20 carbon atoms of Z include a 3-chloro-1,2-cyclopentylene group, a 3,4,5,6-tetrachloro-1,2-cyclohexylene group, and 3 , 3-Dichloro-1,2-cyclopropylene group, 2-chloromethylcyclopropylene group, 3,4-dichloro-1,2-cyclobutylene group, 3,3-bis (dichloromethyl) -1,2-cyclo Butylene group, 2,3-bis (dichloromethyl) cyclopentylene group, 1,3,3-tris (fluoromethyl) -1,2-cyclohexylene group, 3-trichloromethyl-1,2-cyclooctylene group And so on.
  • a halogen-substituted cycloalkylene group having 3 to 12 carbon atoms is preferable.
  • Examples of the halogen-substituted cycloalkenylene group having 3 to 20 carbon atoms in Z include a 5-chloro-1,2-cyclo-4-hexenylene group and a 3,3,4,5-tetrafluoro-1,2-cyclo-6. -Examples include octenylene groups. A halogen-substituted cycloalkenylene group having 3 to 12 carbon atoms is preferable.
  • Examples of the aromatic hydrocarbon group having 6 to 24 carbon atoms of Z include 1,2-phenylene, 3-methyl-1,2-phenylene, 3,6-dimethyl-1,2-phenylene, and 1,2-naphthylene. , 2,3-naphthylene, 5-methyl-1,2-naphthylene, 9,10-phenylene, 1,2-anthracenylene and the like. It is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • halogen-substituted aromatic hydrocarbon group having 6 to 24 carbon atoms of Z examples include 3-chloro-1,2-phenylene, 3-chloromethyl-1,2-phenylene, and 3,6-dichloro-1,2-.
  • Examples of the nitrogen atom-containing hydrocarbon group having 1 to 24 carbon atoms in Z include a 1-dimethylaminoethylene group, a 1,2-bisdimethylminoethylene group, a 1-diethylaminoethylene group, and a 2-diethylamino-1,3-propylene. Examples thereof include a group, a 2-ethylamino-1,3-propylene group, a 4-dimethylamino-1,2-phenylene group, a 4,5-bis (dimethylamino) phenylene group and the like.
  • a nitrogen atom-containing hydrocarbon group having 2 to 12 carbon atoms is preferable.
  • Examples of the oxygen atom-containing hydrocarbon group having 1 to 24 carbon atoms in Z include a 1-methoxyethylene group, a 2,2-dimethoxy-1,3-propanol group, a 2-ethoxy-1,3-propanol group and a 2-methoxyethylene group. Examples thereof include a t-butoxy-1,3-propanol group, a 2,3-dimethoxy-2,3-butylene group, a 4-methoxy-1,2-phenylene group and the like. It is preferably an oxygen atom-containing hydrocarbon group having 2 to 12 carbon atoms.
  • Examples of the phosphorus-containing hydrocarbon group having 1 to 24 carbon atoms in Z include a 1-dimethylphosphinoethylene group, a 2,2-bis (dimethylphosphino) -1,3-propanol group, and a 2-diethylphosphino-1. , 3-Propanylene group, 2-t-butokimethylphosphino-1,3-Propanylene group, 2,3-bis (diphenylphosphino) -2,3-butylene group, 4-methylphosphate-1,2- Examples include a phenylene group. A phosphorus-containing hydrocarbon group having 1 to 12 carbon atoms is preferable.
  • (2-ethoxyethyl) methyl carbonate, (2-ethoxyethyl) ethyl carbonate, and (2-ethoxyethyl) phenyl carbonate are particularly preferable.
  • the succinic acid diester compound (B) is referred to as the following general formula (2);
  • R 3 and R 4 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms and may be the same or different from each other, and R 5 and R 6 have 2 to 4 carbon atoms. It may be a linear alkyl group or a branched alkyl group and may be the same as or different from each other.
  • R 3 and R 4 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms and may be the same as or different from each other.
  • R 3 or R 4 is an alkyl group having 1 to 4 carbon atoms, specific examples thereof include a methyl group, an ethyl, an n-propyl group, an isopropyl group, an n-butyl group or an isobutyl group.
  • R 5 and R 6 are linear alkyl groups or branched alkyl groups having 2 to 4 carbon atoms and may be the same as or different from each other.
  • R 5 and R 6 are linear alkyl groups or branched alkyl groups having 2 to 4 carbon atoms, specific examples thereof include ethyl, n-propyl group, isopropyl group, n-butyl group and isobutyl group. can.
  • the succinic acid diester compound (B) is not particularly limited as long as it is a succinic acid dialkyl ester represented by the general formula (2).
  • the solid catalyst component for olefin polymerization according to the present invention contains an ether carbonate compound (A) and a succinic acid diester compound (B) as essential components as electron-donating compounds, but in addition to these electron-donating compounds, Further, other electron donating compounds (hereinafter, appropriately referred to as “electron donating compound (D)”) may be contained.
  • Examples of such other electron donating compounds (D) include acid halides, acid amides, nitriles, acid anhydrides, diether compounds, and diester compounds (B) represented by the general formula (1). Examples thereof include carboxylic acid esters.
  • Such an electron-donating compound (D) include carboxylic acid diesters such as cycloalkandicarboxylic acid diesters, cycloalkendicarboxylic acid diesters, malonic acid diesters, alkyl-substituted malonic acid diesters, and maleic acid diesters, and diethers.
  • carboxylic acid diesters such as cycloalkandicarboxylic acid diesters, cycloalkendicarboxylic acid diesters, malonic acid diesters, alkyl-substituted malonic acid diesters, and maleic acid diesters, and diethers.
  • carboxylic acid diesters such as cycloalkandicarboxylic acid diesters, cycloalkendicarboxylic acid diesters, malonic acid diesters, alkyl-substituted malonic acid diesters, and maleic acid diesters, and diethers.
  • carboxylic acid diesters such as cycloal
  • dialkylmalonic acid diesters such as dimethyl diisobutylmalonate and diethyl diisobutylmalonate
  • cycloalkanedicarboxylic acid diesters such as dimethylcyclohexane-1,2-dicarboxylic acid
  • 1,3-diethers such as -dimethoxypropane and 9,9-bis (methoxymethyl) fluorene.
  • the solid catalyst component for olefin polymerization according to the present invention has the ether carbonate compound (A) and the succinic acid diester compound (B) as well as other electron-donating compounds, so that the olefin weight obtained at the time of polymerization is obtained.
  • the stereoregularity of the coalescence can be easily improved, and the molecular weight distribution and hydrogen responsiveness are within the same range as the polymer produced by using a solid catalyst containing a conventional phthalate ester as an electron donating compound. It can be easily controlled.
  • the solid catalyst component for olefin polymerization according to the present invention may contain a plurality of electron-donating compounds, but the following formula ⁇ (content of ether carbonate compound (A) (g) + Content of succinic acid diester compound (B) (g)) / Total content of electron-donating compound (g)) ⁇ ⁇ 100
  • the ratio of the total content of the ether carbonate compound (A) and the succinic acid diester compound (B) to the total content of the electron donating compound shown in (1) is preferably 50 to 100% by mass, preferably 80 to 80 to 100% by mass. It is more preferably 100% by mass, and even more preferably 90 to 100% by mass.
  • the total content ratio of the ether carbonate compound (A) and the succinic acid diester compound (B) in the total content of the electron-donating compound in the solid catalyst component for olefin polymerization according to the present invention is within the above range. It is easy to obtain a solid catalyst component for olefin polymerization that can be realized in a well-balanced manner while satisfying practically sufficient levels for the stereoregularity and wide molecular weight distribution of the obtained polymer, the copolymerization activity, and the blocking ratio of the obtained polymer. Can be provided.
  • the solid catalyst component for olefin polymerization according to the present invention contains an ether carbonate compound (A) and a succinic acid diester compound (B) in the following formula (content of ether carbonate compound (A) / succinic acid diester compound (B)). Content)
  • the molar ratio represented by (1) is 0.01 to 1.00, preferably 0.05 to 1.00, and 0.10 to 1.00. It is more preferable that the mixture is contained as such.
  • the solid catalyst component for olefin polymerization according to the present invention contains an ether carbonate compound (A) and a succinic acid diester compound (B) in the above ratio, and thus contains an electron donating compound other than the phthalate ester.
  • a solid for olefin polymerization that is a component and can be realized in a well-balanced manner while satisfying practically sufficient levels for the stereoregularity of the obtained polymer, the breadth of the molecular weight distribution, the copolymerization activity, and the blocking ratio of the obtained polymer.
  • the catalytic component can be easily provided.
  • the solid catalyst component for olefin polymerization in the present invention may contain polysiloxane (hereinafter, appropriately referred to as “polysiloxane (E)").
  • the solid catalyst component for olefin polymerization in the present invention contains polysiloxane (E), the stereoregularity or crystallinity of the obtained polymer can be easily improved when the olefins are polymerized. Furthermore, the fine powder of the produced polymer can be easily reduced.
  • Polysiloxane is a polymer having a siloxane bond (-Si-O- bond) in the main chain, but it is also called silicone oil and has a viscosity at 25 ° C. of 0.02 to 100 cm 2 / s (2 to 10000 cm Stokes). ), More preferably 0.03 to 5 cm 2 / s (3 to 500 cm Stokes), liquid or viscous chain, partially hydrogenated, cyclic or modified polysiloxane at room temperature.
  • chain polysiloxane dimethylpolysiloxane and methylphenylpolysiloxane
  • methylhydrogenpolysiloxane having a hydrogenation rate of 10 to 80%
  • cyclic polysiloxane hexamethylcyclotri.
  • examples thereof include one or more selected from siloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, 2,4,6-trimethylcyclotrisiloxane and 2,4,6,8-tetramethylcyclotetrasiloxane.
  • the solid catalyst component for olefin polymerization according to the present invention contains a magnesium compound (C), a titanium halogen compound (F), an ether carbonate compound (A) and a succinic acid diester compound (B), that is, mutual compounds thereof. It is preferably obtained by contact.
  • magnesium compound (C) examples include one or more selected from dihalogenated magnesium, dialkylmagnesium, halogenated alkylmagnesium, dialkoxymagnesium, diaryloxymagnesium, halogenated alkoxymagnesium, fatty acid magnesium and the like.
  • magnesium dihalogenate, a mixture of magnesium dihalogenate and dialkoxymagnesium, and dialkoxymagnesium are preferable, and dialkoxymagnesium is particularly preferable, and specifically, dimethoxymagnesium, diethoxymagnesium, dipropoxymagnesium, and dialkoxymagnesium are preferable.
  • One or more selected from butoxymagnesium, ethoxymethoxymagnesium, ethoxypropoxymagnesium, butoxyethoxymagnesium and the like can be mentioned, and among these, diethoxymagnesium is particularly preferable.
  • the dialkoxymagnesium may be obtained by reacting metallic magnesium with an alcohol in the presence of a halogen-containing organic metal or the like. Further, the dialkoxymagnesium may be in the form of granules or powder, and the shape may be amorphous or spherical. For example, when spherical dialkoxymagnesium is used, a polymer powder having a better particle shape and a narrow particle size distribution can be easily obtained, the handling operability of the produced polymer powder during the polymerization operation is improved, and the produced polymer powder is improved. Problems such as blockage of the filter in the polymer separator due to the fine powder contained in the above can be easily solved.
  • the dialkoxymagnesium can be used alone or in combination of two or more.
  • Examples of the method for producing spherical dialkoxymagnesium as described above include JP-A-58-4132, JP-A-62-51633, JP-A-3-74341, and JP-A-4-368391. It is exemplified in JP-A-8-73388.
  • the magnesium compound (C) may be either a solution magnesium compound or a magnesium compound suspension.
  • the magnesium compound (C) is a solid, it is dissolved in a solvent having a solubilizing ability of the magnesium compound (C) to obtain a solution magnesium compound, or has a solubilizing ability of the magnesium compound (C). Suspend in no solvent and use as a magnesium compound suspension.
  • the magnesium compound (C) is a liquid, it can be used as it is as a solution magnesium compound, or it can be dissolved in a solvent having a solubilizing ability of the magnesium compound and used as a solution magnesium compound. ..
  • the titanium halogen compound (F) is not particularly limited, and examples thereof include one or more selected from titanium tetrahalides, alkoxy titanium halides and the like.
  • the titanium halogen compound (F) the general formula Ti (OR 8 ) i X 4-i (In the formula, R 8 represents a hydrocarbon group having 1 to 10 carbon atoms, X represents a halogen atom, and when a plurality of X's are present, each X may be the same or different, and i is 0. It is an integer of ⁇ 4. It is preferable that it is a kind of compound selected from the titanium tetrahalide or alkoxy titanium halide group represented by.
  • titanium halogen compound (F) examples include titanium tetrahalides such as titanium tetrafluoride, titanium tetrachloride, titanium tetrabromide, and titanium tetraiodide, and methoxy titanium trichloride and ethoxy titanium trichloride as alkoxy titanium halides.
  • Alkoxytitanium trihalide such as propoxytitanium trichloride, n-butoxytitanium trichloride, dimethoxytitanium dichloride, diethoxytitanium dichloride, dipropoxytitanium dichloride, dialkoxytitanium dihalide such as di-n-butoxytitanium dichloride, trimethoxytitanium Examples thereof include one or more selected from trialkoxytitanium halides such as chloride, triethoxytitanium chloride, tripropoxytitanium chloride, and tri-n-butoxytitanium chloride.
  • titanium tetrahalide such as titanium tetrachloride, titanium tetrabromide, and titanium tetraiodide is preferable, and titanium tetrachloride is more preferable.
  • titanium compounds may be diluted with a hydrocarbon compound, a halogenated hydrocarbon compound, or the like before use.
  • the solid catalyst component for olefin polymerization according to the present invention may be formed by contacting a halogen compound other than the titanium halogen compound (F), if necessary.
  • halogen compounds include tetravalent halogen-containing silicon compounds, and more specifically, silanetetrahalide such as tetrachlorosilane (kei tetrachloride) and tetrabromosilane, methoxytrichlorosilane, and ethoxytri.
  • the solid catalyst component for olefin polymerization according to the present invention comprises the above magnesium compound (C), titanium halogen compound (F), ether carbonate compound (A) and succinic acid diester compound (B) in the presence of an inert organic solvent. It is preferably prepared by contacting with.
  • the inert organic solvent preferably dissolves the titanium halogen compound (F) and does not dissolve the magnesium compound (C), and specifically, pentane, hexane, heptane, octane, nonane, and the like.
  • Saturated hydrocarbon compounds such as decane, cyclohexane, methylcyclohexane, ethylcyclohexane, 1,2-diethylcyclohexane, methylcyclohexene, decalin, mineral oil, aromatic hydrocarbon compounds such as benzene, toluene, xylene, ethylbenzene, orthodichlorobenzene , Methylene chloride, 1,2-dichlorobenzene, carbon tetrachloride, dichloroethane and other halogenated hydrocarbon compounds.
  • saturated hydrocarbon compounds or aromatic hydrocarbon compounds having a boiling point of about 50 to 200 ° C.
  • liquid at room temperature preferably used, and among them, hexane, heptane, octane, ethylcyclohexane, mineral oil, and the like.
  • hexane, heptane, octane, ethylcyclohexane, mineral oil, and the like are preferable, and one or more selected from hexane, heptane, ethylcyclohexane and toluene are particularly preferable.
  • a solid magnesium compound having no reducing property for example, an ether carbonate compound (A), a succinate diester compound (B) and titanium halide are used together.
  • a method of pulverizing a method of contacting a magnesium halide compound having an additive such as alcohol, an ether carbonate compound (A), a succinic acid diester compound (B) and titanium halide in the coexistence of an inert hydrocarbon solvent, A method of contacting dialkoxymagnesium, ether carbonate compound (A), succinic acid diester compound (B) and titanium halide in the presence of an inert hydrocarbon solvent, a reducing magnesium compound, ether carbonate compound (A), Examples thereof include a method in which the succinic acid diester compound (B) and titanium halide are brought into contact with each other to precipitate a solid catalyst.
  • a magnesium compound (C), a titanium halogen compound (F), an ether carbonate compound (A) and a succinic acid diester compound (B) are used as a hydrocarbon solvent.
  • a titanium halogen compound (F) is further added to the obtained suspension and contacted while heating to obtain a solid product, and the solid product is brought into a hydrocarbon.
  • examples thereof include a method of obtaining a desired solid catalyst component for olefin polymerization by washing with a solvent.
  • the heating temperature is preferably 70 to 150 ° C., more preferably 80 to 120 ° C., and even more preferably 90 to 110 ° C.
  • the heating time is preferably 30 to 240 minutes, more preferably 60 to 180 minutes, and even more preferably 60 to 120 minutes.
  • the number of times the titanium halogen compound (F) is added to the suspension is not particularly limited. When the titanium halogen compound (F) is added to the suspension a plurality of times, the heating temperature should be within the above range, and the heating time for each addition should be within the above range. good.
  • other electron-donating compounds may be used in combination. Further, the contact may be carried out in the coexistence of other reaction reagents such as silicon, phosphorus and aluminum and a surfactant.
  • the content of the titanium atom, magnesium atom, halogen atom, ether carbonate compound (A), and succinic acid diester compound (B) contained in the solid catalyst component for olefin polymerization according to the present invention is (ether carbonate compound (A). ) / Content of the succinic acid diester compound (B)) is not particularly limited as long as it is contained so as to be within the above range.
  • the solid catalyst component for olefin polymerization according to the present invention preferably contains the ether carbonate compound (A) in an amount of 0.2 to 10.0% by mass, preferably 0.5 to 10. Those containing 0% by mass are more preferable, and those containing 1.0 to 8.0% by mass are further preferable.
  • the solid catalyst component for olefin polymerization according to the present invention preferably contains the succinic acid diester compound (B) in an amount of 0.2 to 20.0% by mass within the above content ratio range. Those containing ⁇ 20.0% by mass are more preferable, and those containing 5.0 to 18.0% by mass are further preferable.
  • the solid catalyst component for olefin polymerization according to the present invention preferably contains titanium in an atomic weight equivalent of 0.1 to 10% by mass, more preferably 0.5 to 8.0% by mass, and 1.0. Those containing ⁇ 8.0% by mass are more preferable.
  • the solid catalyst component for olefin polymerization according to the present invention preferably contains magnesium in an atomic weight of 10 to 70% by mass, more preferably 710 to 50% by mass, and further preferably 15 to 40% by mass. It is preferable, and the one containing 15 to 25% by mass is more preferable.
  • the solid catalyst component for olefin polymerization according to the present invention preferably contains halogen in an atomic weight of 20 to 90% by mass, more preferably 30 to 85% by mass, and further containing 40 to 80% by mass. It is preferable, and the one containing 45 to 75% by mass is more preferable.
  • the solid catalyst component for olefin polymerization according to the present invention preferably contains the ether carbonate compound (A) and the succinic acid diester compound (B) in a total amount of 5 to 30% by mass, preferably 5 to 25% by mass. More preferably, those containing 5 to 20% by mass are further preferable.
  • the total amount of the ether carbonate compound (A) and the succinic acid diester compound (B) is less than 5% by mass, it becomes difficult to improve the polymerization activity and the stereoregularity of the obtained polymer, and if it exceeds 30% by mass, it is obtained. It becomes difficult to widen the molecular weight distribution of the polymer.
  • the content of titanium and the content of magnesium contained in the solid catalyst component for olefin polymerization are as described in JIS 8311-1997 "Method for quantifying titanium in titanium ore" (oxidation-reduction titration). It means the value measured according to the above.
  • the content of halogen contained in the solid catalyst component for olefin polymerization is a predetermined amount after treating the solid catalyst component with a mixed solution of sulfuric acid and pure water to obtain an aqueous solution.
  • the content of the electron-donating compound such as the ether carbonate compound (A) and the succinic acid diester compound (B) contained in the solid catalyst component for olefin polymerization is determined after the solid catalyst is hydrolyzed.
  • An internal electron donating compound is extracted using an aromatic solvent, and this solution is measured by a gas chromatography FID (Flame Ionization Detector) method.
  • the present invention is a solid catalyst component containing an electron-donating compound other than a phthalate, and has a stereoregularity and a wide molecular weight distribution of the obtained polymer, a copolymerization activity, and a block of the obtained copolymer. It is possible to easily provide a solid catalyst component for olefin polymerization that can be realized in a well-balanced manner while satisfying a practically sufficient level for the ratio.
  • the catalyst for olefin polymerization according to the present invention is (I) The solid catalyst component for olefin polymerization according to any one of claims 1 to 3, and (II) the following general formula (3); R 7 p AlQ 3-p (3) (Wherein, R 7 is an alkyl group having 1 to 6 carbon atoms, Q is hydrogen atom or halogen, p is 0 ⁇ a real number p ⁇ 3, if R 7 there are a plurality, Each R 7 may be the same or different from each other, and when a plurality of Q's are present, each Q may be the same as or different from each other). Is to be.
  • the catalyst for olefin polymerization according to the present invention includes (I) Solid catalyst component for olefin polymerization according to the present invention, (II) The following general formula (3); R 7 p AlQ 3-p (3) (In the formula, R 7 is an alkyl group having 1 to 6 carbon atoms, Q is a hydrogen atom or a halogen atom, p is a real number of 0 ⁇ p ⁇ 3, and each R is when a plurality of R 7s are present. 7 may be the same or different from each other, and when a plurality of Qs are present, each Q may be the same or different from each other), and (III) external electron donation. It preferably contains a sex compound.
  • the (II) organoaluminum compound is The following general formula (3); R 7 p AlQ 3-p (3) (In the formula, R 7 is an alkyl group having 1 to 6 carbon atoms, Q is a hydrogen atom or a halogen atom, p is a real number of 0 ⁇ p ⁇ 3, and each R is when a plurality of R 7s are present. 7 may be the same or different from each other, and when a plurality of Qs exist, each Q may be the same or different from each other).
  • organic aluminum compound examples include trialkylaluminum such as triethylaluminum, triisopropylaluminum, tri-n-butylaluminum, tri-n-hexylaluminum, and triisobutylaluminum, diethylaluminum chloride, and diethyl.
  • alkylaluminum halides such as aluminum bromide, diethylaluminum hydride and the like
  • alkylaluminum halides such as diethylaluminum chloride, triethylaluminum, tri-n-butylaluminum, trialkylaluminum such as triisobutylaluminum and the like.
  • alkylaluminum halides such as aluminum bromide, diethylaluminum hydride and the like
  • alkylaluminum halides such as diethylaluminum chloride, triethylaluminum, tri-n-butylaluminum, trialkyla
  • Examples of the (III) external electron donating compound constituting the catalyst for olefin polymerization of the present invention include the following general formula (4).
  • r is an integer of 0 or 1-2
  • s is an integer of 0 or 1-2
  • r + s is an integer of 0 or 1-4
  • R 9 , R 10 or R 11 are hydrogen atoms or carbon atoms 1 to 1.
  • R 10 and R 11 may be combined to form a ring shape, and R 9 , R 10 and R 11 may be the same or different.
  • R 12 is any group selected from an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, a phenyl group, a vinyl group, an allyl group and an aralkyl group, and may contain a hetero atom. ) Examples thereof include compounds represented by.
  • R 9 is a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted cycloalkyl group, a phenyl group, an allyl group and the like. Any group selected from the aralkyl group may contain a heteroatom.
  • R 9 a linear or branched alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 5 to 8 carbon atoms is preferable, and a linear or branched alkyl group having 1 to 8 carbon atoms is particularly preferable.
  • a cycloalkyl group having 5 to 8 carbon atoms is preferable.
  • R 10 or R 11 is a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted cycloalkyl group, a phenyl group, and the like. It is any group selected from an allyl group and an aralkyl group, and may contain a hetero atom.
  • R 10 or R 11 a linear or branched alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 5 to 8 carbon atoms are preferable, and a linear or branched alkyl group having 1 to 8 carbon atoms is particularly preferable.
  • Alkyl group and cycloalkyl group having 5 to 8 carbon atoms are preferable. Further, R 10 and R 11 may be bonded to form a ring shape. In this case, a perhydroquinolino group or a perhydroisoquinolino group is preferable for forming the ring shape (NR 6 R 7). ..
  • R 9 , R 10 and R 11 may be the same or different.
  • R 12 is any group selected from an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, a phenyl group, an allyl group and an aralkyl group, and is a heteroatom. May be contained.
  • R 12 a linear or branched alkyl group having 1 to 4 carbon atoms is preferable.
  • Specific examples of the compound represented by the general formula (4) include phenylalkoxysilane, alkylalkoxysilane, phenylalkylalkoxysilane, cycloalkylalkoxysilane, cycloalkylalkylalkoxysilane, and (alkylamino) alkoxysilane.
  • One or more organic silicon compounds selected from alkyl (alkylamino) alkoxysilanes, alkyl (alkylamino) silanes, alkylaminosilanes and the like can be mentioned.
  • the compound having s of 0 in the general formula (4) particularly preferably, di-n-propyldimethoxysilane, diisopropyldimethoxysilane, di-n-butyldimethoxysilane, diisobutyldimethoxysilane, di-t-butyldimethoxysilane, t.
  • Examples of the compound having s of 1 or 2 in the general formula (4) include di (alkylamino) dialkoxysilane, (alkylamino) (cycloalkylamino) dialkoxysilane, (alkylamino) (alkyl) dialkoxysilane, and dialkoxysilane.
  • Examples thereof include (cyclohexylamino) dimethoxysilane, bis (perhydroisoquinolino) dimethoxysilane, bis (perhydroquinolino) dimethoxysilane, ethyl (isoquinolino) dimethoxysilane, diethylaminotrimethoxysilane, diethylaminotriethoxysilane, and the like.
  • One or more organic silicon compounds selected from bis (perhydroisoquinolino) dimethoxysilane, diethylaminotrimethoxysilane, or diethylaminotriethoxysilane.
  • the compound represented by the above general formula (4) may be used in combination of two or more.
  • the catalyst for olefin polymerization according to the present invention includes (I) a solid catalyst component for olefin polymerization according to the present invention, (II) an organoaluminum compound represented by the general formula (3), and (III) an external electron donating compound. Including, i.e., these contacts.
  • the olefin polymerization catalyst according to the present invention comprises (I) a solid catalyst component for olefin polymerization according to the present invention, (II) an organoaluminum compound represented by the general formula (3), and (III) an external electron donating compound. It may be prepared by contacting in the absence of olefins, or may be contacted (in the polymerization system) in the presence of olefins as described below. ..
  • the content ratio of each component is arbitrary as long as it does not affect the effect of the present invention, and is not particularly limited.
  • the organic aluminum compound (II) is preferably contained in an amount of 1 to 2000 mol, more preferably 50 to 1000 mol, per 1 mol of the titanium atom in the solid catalyst component for polymerization.
  • the catalyst for olefin polymerization according to the present invention preferably contains 0.002 to 10 mol of the (III) external electron donating compound per 1 mol of the (II) organoaluminum compound, preferably 0.01. It is more preferably contained in an amount of about 2 mol, and further preferably contained in an amount of 0.01 to 0.5 mol.
  • the ether carbonate compound (A) and the succinic acid diester compound (B) exhibit their performance by containing the ether carbonate compound (A) and the succinic acid diester compound (B) in a constant amount ratio. It is selectively adsorbed on the optimum surface site that is easy to facilitate, and the performance of both of the two types of internal electron donating compounds is effectively exhibited, and the activity of the site where these two types of internal electron donating compounds are adsorbed. From the point of view, it is considered that the compound grows at a different growth rate.
  • the polymer contains an electron-donating compound other than the phthalate ester
  • the resulting polymer has a three-dimensional regularity, a wide molecular weight distribution, a copolymerization activity, and the obtained copolymer. It is considered that it is possible to provide an olefin polymerization catalyst that can achieve a well-balanced block ratio while satisfying a practically sufficient level.
  • the method for producing an olefin polymer according to the present invention is characterized in that the olefins are polymerized in the presence of the olefin polymerization catalyst according to the present invention.
  • the polymerization of olefins may be homopolymerization or copolymerization with other ⁇ -olefins.
  • the olefins to be polymerized include one or more selected from ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, vinylcyclohexane and the like. Among them, one or more selected from ethylene, propylene and 1-butene is preferable, and propylene is more preferable.
  • the olefins When the olefins are propylene, they may be homopolymerized with propylene, or may be copolymerized with other ⁇ -olefins.
  • the olefins copolymerized with propylene include one or more selected from ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, vinylcyclohexane and the like.
  • the usage ratio of each component does not affect the effect of the present invention.
  • the above-mentioned (II) organoaluminum compound is contacted with 1 to 2000 mol per 1 mol of titanium atoms in the above-mentioned (I) solid catalyst component for olefin polymerization. It is preferable to bring them into contact with each other, and it is more preferable to bring them into contact with each other in an amount of 50 to 1000 mol.
  • the above-mentioned (III) external electron donating compound is preferably brought into contact with 0.002 to 10 mol, more preferably 0.01 to 2 mol, per 1 mol of the above-mentioned (II) organoaluminum compound. It is more preferable to make contact with 0.01 to 0.5 mol.
  • each component constituting the olefin polymerization catalyst is arbitrary, but the above (II) organoaluminum compound is first charged into the polymerization system, and then the above (III) external electron donating compound is charged. After the contact, it is desirable to charge and contact the above-mentioned (I) solid catalyst component for olefin polymerization.
  • the method for producing an olefin polymer according to the present invention may be carried out in the presence or absence of an organic solvent.
  • the olefin monomer such as propylene can be used in either a gas state or a liquid state.
  • the polymerization temperature is preferably 200 ° C. or lower, more preferably 100 ° C. or lower, and the polymerization pressure is preferably 10 MPa or less, more preferably 5 MPa or less.
  • the polymerization of olefins can be carried out by either a continuous polymerization method or a batch polymerization method. Further, the polymerization reaction may be carried out in one stage or in two or more stages.
  • the olefin polymerization catalyst according to the present invention in order to further improve the catalytic activity, stereoregularity, particle properties of the polymer to be produced, and the like. It is preferable to carry out the prepolymerization prior to the main polymerization, and at the time of the prepolymerization, a monomer such as olefins or styrene similar to the main polymerization can be used.
  • the contact order of each component and the monomer (olefins) constituting the catalyst for olefin polymerization is arbitrary, but preferably in the prepolymerization system set to an inert gas atmosphere or an olefin gas atmosphere.
  • an organic aluminum compound is charged, and then (I) a solid catalyst component for olefin polymerization according to the present invention is charged and contacted, and then olefins such as propylene are charged alone or propylene or the like. It is preferable to bring a mixture of one or more of the above olefins and other olefins into contact with each other.
  • the (III) external electron donating compound when the (III) external electron donating compound is further charged into the prepolymerization system, the (II) organic aluminum compound is first placed in the prepolymerization system set to an inert gas atmosphere or an olefin gas atmosphere. After charging, (III) an external electron donating compound is charged and contacted, and (I) a solid catalyst component for olefin polymerization according to the present invention is contacted, and then olefins such as propylene are used alone. Alternatively, it is preferable to contact a mixture of one or more olefins such as propylene and other olefins.
  • the polymerization method includes a slurry polymerization method using a solvent of an inert hydrocarbon compound such as cyclohexane and heptane, a bulk polymerization method using a solvent such as liquefied propylene, and a bulk polymerization method.
  • a vapor phase polymerization method that does not substantially use a solvent can be mentioned, and a bulk polymerization method or a gas phase polymerization method is preferable.
  • the block copolymer obtained by block copolymerization is a polymer containing segments in which two or more kinds of monomer compositions change continuously, and is a monomer type, a comonomer type, a comonomer composition, a comonomer content, a comonomer arrangement, and a conformational rule. It refers to a form in which two or more types of polymer chains (segments) having different primary structures such as sex are connected in one molecular chain.
  • the block copolymerization reaction between propylene and other ⁇ -olefins is usually carried out by propylene alone or in the preceding stage in the presence of the olefin polymerization catalyst according to the present invention. This can be carried out by contacting propylene with a small amount of ⁇ -olefin (ethylene or the like) and then contacting propylene with ⁇ -olefin (ethylene or the like) in the subsequent stage.
  • the polymerization reaction in the first stage may be repeated a plurality of times, or the polymerization reaction in the second stage may be repeated a plurality of times by a multi-step reaction.
  • the block copolymerization reaction between propylene and other ⁇ -olefins is polymerized so that the proportion of the polypropylene portion (in the finally obtained copolymer) is 20 to 90% by mass in the previous stage.
  • Polymerization is carried out by adjusting the temperature and time, and then propylene and ethylene or other ⁇ -olefins are introduced in the subsequent stage, and rubbers such as ethylene-propylene rubber (EPR) (occupying the finally obtained copolymer) are introduced. It is preferable to polymerize so that the part ratio is 10 to 80% by mass.
  • the polymerization temperature in both the first stage and the second stage is preferably 200 ° C. or lower, more preferably 100 ° C.
  • the polymerization pressure is preferably 10 MPa or less, more preferably 6 MPa or less, further preferably 5 MPa or less. ..
  • the polymerization time is preferably 1 minute to 5 hours at each polymerization step of each polymerization step of the first stage or the second stage, or even during continuous polymerization.
  • Examples of the polymerization method include a slurry polymerization method using a solvent of an inert hydrocarbon compound such as cyclohexane and heptane, a bulk polymerization method using a solvent such as liquefied propylene, and a vapor phase polymerization method using substantially no solvent.
  • Bulk polymerization method or gas phase polymerization method is preferable, and the reaction in the latter stage is generally preferable to be a gas phase polymerization reaction for the purpose of suppressing elution of EPR from PP particles.
  • Example 1 Synthesis of solid catalyst components
  • 10 g (87.4 mmol) of diethoxymagnesium and 3.0 ml (11) of diethyl 2,3-diisopropylsuccinate. .2 mmol) and 50 ml of toluene were charged to make a suspension.
  • the suspension was then added to a mixed solution of 70 ml of toluene and 30 ml of titanium tetrachloride pre-loaded in a 500 ml round bottom flask equipped with a stirrer and well replaced with nitrogen gas.
  • (2-ethoxyethyl) ethyl carbonate (molecular weight 162.18, specific density 1.011) 0.25 ml (1.6 mmol) and diethyl 2,3-diisopropylsuccinate (molecular weight 258.35, specific density 0.963). 3.0 ml (11.2 mmol) was added, the temperature was raised to 100 ° C. with stirring, the suspension was heated to 100 ° C., and then reacted at 100 ° C. for 90 minutes with stirring, and then the reaction was carried out. The product was washed 4 times with 75 ml of toluene at 100 ° C.
  • the titanium content in the solid content, the content of (2-ethoxyethyl) ethyl carbonate corresponding to the ether carbonate compound (A), and the content of diisopropyl succinate corresponding to the succinic acid diester compound (B) are as follows. It was measured as follows. ⁇ Titanium content in solids> The titanium content in the solid content was measured according to the method of JIS M 8301. ⁇ Contents of electron-donating compounds (ether carbonate compound (A), succinic acid diester compound (B)) in the solid content> The content of the electron-donating compound was determined by measuring under the following conditions using gas chromatography (manufactured by Shimadzu Corporation, GC-14B).
  • BD Polymer bulk density
  • melt flow rate (MFR) (g / 10 minutes) indicating the melt flow property of the polymer was measured according to ASTM D 1238 and JIS K 7210.
  • ⁇ Percentage of p-xylene-soluble component of polymer (XS)> By charging 4.0 g of the polymer (polypropylene) and 200 ml of p-xylene into a flask equipped with a stirrer and setting the external temperature to the boiling point of xylene or higher (about 150 ° C.), the inside of the flask The polymer was dissolved over 2 hours while maintaining the temperature of p-xylene below the boiling point (137-138 ° C.). After that, the liquid temperature was cooled to 23 ° C. over 1 hour, and the insoluble component and the dissolved component were separated by filtration.
  • the homopropylene (homostage) polymerization reaction of the eyes was carried out. After the completion of the homostage polymerization, the monomer was purged while lowering the temperature of the reactor to room temperature, and then the weight of the entire autoclave was weighed. .. After sampling some polymers for MFR measurement under nitrogen, connect the monomer supply line etc. again so that the molar ratio of ethylene / propylene / hydrogen becomes 1.0 / 1.0 / 0.043 respectively.
  • F is the mass of the autoclave (g)
  • I is the mass of the autoclave after the completion of the copolymerization reaction (g)
  • J is the amount of the polymer partially extracted after the homopolymerization (g).
  • Block ratio (CV) The block ratio (CV) of the ethylene-propylene copolymer was calculated by the following formula.
  • Block ratio (mass%) ⁇ (IG + J) ⁇ (IF) ⁇ x 100
  • F is the autoclave mass (g)
  • G is the autoclave mass (g) after the completion of the first-stage polymerization (homogeneous polymerization) and the unreacted monomer is removed
  • I is the autoclave after the completion of the copolymerization reaction.
  • Mass (g) and J are the amount of polymer (g) partially extracted after homopolymerization.)
  • Example 2 In "1. Synthesis of solid catalyst component" of Example 1, instead of charging 10 g (87.4 mmol) of diethoxymagnesium, 3 ml (11.2 mmol) of diethyl 2,3-diisopropylsuccinate, and 50 ml of toluene. , Diethoxymagnesium 10 g (87.4 mmol), diethyl 2,3-diisopropylsuccinate (molecular weight 258.35, specific gravity 0.963) 2.0 ml (7.3 mmol) and toluene 50 ml, and further charged.
  • the titanium content, the content of (2-ethoxyethyl) ethyl carbonate, and the content of diethyl 2,3-diisopropylsuccinate in the obtained solid solid catalyst component were measured and found to be 3.26 mass, respectively. %, 5.46% by mass, and 12.65% by mass.
  • the molar ratio represented by the content of (2-ethoxyethyl) ethyl carbonate / the content of diethyl 2,3-diisopropylsuccinate was 0.69.
  • a polymerization catalyst was formed and polymerized in the same manner as in "2. Formation and polymerization of polymerization catalyst" of Example 1 except that the above solid catalyst component was used.
  • the polymerization activity per 1 g of the solid catalyst component was measured in the same manner as in Example 1. The results are shown in Table 1. Further, the copolymerization reaction was carried out in the same manner as in "3. Copolymerization reaction" of Example 1.
  • the ethylene-propylene block copolymerization activity (ICP activity), block ratio (CV) and EPR content at this time were measured by the same method as in Example 1. The results are shown in Table 1.
  • Example 3 In “1. Synthesis of solid catalyst component" of Example 1, instead of charging 10 g (87.4 mmol) of diethoxymagnesium, 3 ml (11.2 mmol) of diethyl 2,3-diisopropylsuccinate, and 50 ml of toluene. , Diethoxymagnesium 10 g (87.4 mmol), diethyl 2,3-diisopropylsuccinate (molecular weight 258.35, specific gravity 0.963) 2.8 ml (10.2 mmol) and toluene 50 ml, and further charged.
  • the titanium content, the content of (2-ethoxyethyl) ethyl carbonate, and the content of diethyl 2,3-diisopropylsuccinate in the obtained solid solid catalyst component were measured and found to be 3.60 mass, respectively. %, 7.18% by mass, and 14.17% by mass.
  • the molar ratio represented by the content of (2-ethoxyethyl) ethyl carbonate / the content of diethyl 2,3-diisopropylsuccinate was 0.81.
  • a polymerization catalyst was formed and polymerized in the same manner as in "2. Formation and polymerization of polymerization catalyst" of Example 1 except that the above solid catalyst component was used.
  • the polymerization activity per 1 g of the solid catalyst component was measured in the same manner as in Example 1. The results are shown in Table 1. Further, the copolymerization reaction was carried out in the same manner as in "3. Copolymerization reaction" of Example 1.
  • the ethylene-propylene block copolymerization activity (ICP activity), block ratio (CV) and EPR content at this time were measured by the same method as in Example 1. The results are shown in Table 1.
  • Example 1 The solid catalyst component was the same as in Example 1 except that 0.25 ml (1.6 mmol) of (2-ethoxyethyl) ethyl carbonate was not added in "1.
  • Synthesis of solid catalyst component" of Example 1. was prepared.
  • the titanium content and the content of diethyl 2,3-diisopropylsuccinate in the obtained solid solid catalyst component were measured and found to be 3.91% by mass and 16.36% by mass, respectively.
  • the molar ratio represented by the content of (2-ethoxyethyl) ethyl carbonate / the content of diethyl 2,3-diisopropylsuccinate was 0.
  • a polymerization catalyst was formed and polymerized in the same manner as in "2.
  • Example 1 Formation and polymerization of polymerization catalyst" of Example 1 except that the above solid catalyst component was used. At this time, the polymerization activity per 1 g of the solid catalyst component, the bulk density of the polymer (BD), the ratio of the p-xylene-soluble component of the polymer (XS), the melt flow property of the polymer (MFR), and the molecular weight of the polymer. The distribution (Mw / Mn) was measured in the same manner as in Example 1. The results are shown in Table 1. Further, the copolymerization reaction was carried out in the same manner as in "3. Copolymerization reaction" of Example 1. The ethylene-propylene block copolymerization activity (ICP activity), block ratio (CV) and EPR content at this time were measured by the same method as in Example 1. The results are shown in Table 1.
  • the polymerization activity per 1 g of the solid catalyst component was measured in the same manner as in Example 1. The results are shown in Table 1. Further, the copolymerization reaction was carried out in the same manner as in "3. Copolymerization reaction" of Example 1.
  • the ethylene-propylene block copolymerization activity (ICP activity), block ratio (CV) and EPR content at this time were measured by the same method as in Example 1. The results are shown in Table 1.
  • the present invention although it contains an electron-donating compound other than the phthalate ester, the stereoregularity and the breadth of the molecular weight distribution of the obtained polymer, the copolymerization activity and the blocking ratio of the obtained polymer are obtained.
  • a solid catalyst component for olefin polymerization that can be realized in a well-balanced manner while satisfying a practically sufficient level, and also provides a catalyst for olefin polymerization and a method for producing an olefin polymer using the solid catalyst component for olefin polymerization. can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

フタル酸エステル以外の電子供与性化合物を含むものであるにも拘わらず、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上十分な水準を満たしつつバランスよく実現し得るオレフィン重合用固体触媒成分を提供する。 マグネシウム、チタン、ハロゲン、エーテルカーボネート化合物(A)及び コハク酸ジエステル化合物(B)を含み、下記式(エーテルカーボネート化合物(A)の含有量/コハク酸ジエステル化合物(B)の含有量)で表されるモル比が、0.01~1.00であることを特徴とするオレフィン類重合用固体触媒成分である。

Description

[規則26に基づく補充 26.03.2021] オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
 本発明は、オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法に関する。
 従来より、オレフィン類重合用触媒として、チタンなどの遷移金属触媒成分とアルミニウムなどの典型金属触媒成分とからなる固体触媒が広く知られている。
 プロピレンなどのオレフィン類の重合においては、マグネシウム原子、チタン原子、ハロゲン原子及び電子供与性化合物を必須成分として含む固体触媒成分が知られている。また該固体触媒成分、有機アルミニウム化合物及び有機ケイ素化合物から成るオレフィン類重合用触媒の存在下に、オレフィン類を重合もしくは共重合させる方法が数多く提案されている。
 たとえば、特許文献1には、フタル酸エステル等の電子供与性化合物が担持された固体状チタン触媒成分と、助触媒成分として有機アルミニウム化合物と、少なくとも一つのSi-O-C結合を有する有機ケイ素化合物とを含むオレフィン類重合用触媒を用いてプロピレンを重合させる方法が提案されており、上記特許文献を含め多くの文献において電子供与性化合物としてフタル酸エステルを使用し、高い重合活性の下、高立体規則性ポリマーを得る方法が提案されている。
 しかしながら、フタル酸エステルの一種であるフタル酸ジ-n-ブチルやフタル酸ベンジルブチルは、欧州のRegistration,Evaluation,Authorization and Restriction of Chemicals(REACH)規制におけるSubstance of Very High Concern(SVHC)物質として特定されており、環境負荷低減の観点から、SVHC物質を使用しない触媒系への転換要求が高まっている。
 このような状況下、REACH規制対象とされていない、アルコキシアルキルエステル、マレイン酸エステル、シクロヘキセンジカルボン酸ジエステル等のフタル酸エステル以外の電子供与性化合物を使用して調製される固体触媒成分が知られている。
特開昭57-63310号公報
 しかしながら、上記の如きフタル酸エステル以外の電子供与性化合物を用いた固体触媒成分は、重合に供した際、フタル酸エステルを用いた固体触媒成分と同等の性能を発揮し難く、特に、得られる重合体において立体規則性等の一次物性に劣っていたり、オレフィン類を共重合した際の共重合活性や得られる共重合体のブロック率等の点で劣る傾向があることから、さらなる改良が求められるようになっていた。さらに、得られる重合体の剛性や耐衝撃強度などを向上させるため、分子量分布が広い重合体を得ることが可能なオレィン類重合用固体触媒成分が求められている。
 例えば、フタル酸エステル以外の電子供与性化合物としてアルコキシアルキルエステルを含有する固体触媒成分は、オレフィン重合に用いた場合に、重合活性がフタル酸エステルを用いた固体触媒成分に対しやや劣る傾向にあり、得られる重合体の立体規則性も、高いレベルにあるとは言い難い。
 また、例えばフタル酸エステル以外の電子供与性化合物としてマレイン酸エステルを含有する固体触媒成分は、オレフィン重合に用いた場合、得られる重合体の立体規則性は高いレベルにあるとは言い難い。
 さらに、例えばフタル酸エステル以外の電子供与性化合物としてシクロヘキセンジカルボン酸ジエステルを含有する固体触媒成分は、オレフィン重合に用いた場合に、得られる重合体の立体規則性がフタル酸エステルを用いた固体触媒成分と同等の水準に達する一方で、共重合時の共重合活性や得られる共重合体のブロック率は高いレベルにあるとは言い難い。
 このように、フタル酸エステル以外の電子供与性化合物を用いた場合に、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上バランスよく実現し得る固体触媒成分は知られていなかった。
 このような状況下、本発明は、フタル酸エステル以外のREACH規制対象とされていない電子供与性化合物を含む固体触媒成分であって、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分であって、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上十分な水準を満たしつつバランスよく実現し得るオレフィン重合用固体触媒成分を提供するとともに、係るオレフィン類重合用固体触媒成分を用いたオレフィン重合用触媒及びオレフィン類重合体の製造方法を提供することを目的とするものである。
 上記技術課題を解決すべく、本発明者等が鋭意検討を重ねた結果、マグネシウム原子、チタン原子、ハロゲン原子、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を含み、エーテルカーボネート化合物(A)の含有量が、コハク酸ジエステル化合物(B)の含有量に対し、特定の量比関係にあるオレフィン類重合用固体触媒成分により、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。
 すなわち、本発明は、
(1)マグネシウム、チタン、ハロゲン、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を含み、下記式
(エーテルカーボネート化合物(A)の含有量/コハク酸ジエステル化合物(B)の含有量)
で表されるモル比が、0.01~1.00である
ことを特徴とするオレフィン類重合用固体触媒成分、
(2)前記エーテルカーボネート化合物(A)が、下記一般式(1);
  R-O-C(=O)-O-Z-O-R  (1)
(式中、R及びRは、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐アルキル基、ビニル基、炭素数3~20の直鎖状アルケニル基又は分岐アルケニル基、炭素数1~20の直鎖状ハロゲン置換アルキル基、炭素数3~20の分岐ハロゲン置換アルキル基、炭素数2~20の直鎖状ハロゲン置換アルケニル基、炭素数3~20の分岐ハロゲン置換アルケニル基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルケニル基、炭素数3~20のハロゲン置換シクロアルキル基、炭素数3~20のハロゲン置換シクロアルケニル基、炭素数6~24の芳香族炭化水素基、炭素数6~24のハロゲン置換芳香族炭化水素基、結合末端が炭素原子である炭素数2~24の窒素原子含有炭化水素基、結合末端が炭素原子である炭素数2~24の酸素原子含有炭化水素基又は結合末端が炭素原子である炭素数2~24のリン含有炭化水素基を示し、R及びRは互いに同一であっても異なっていてもよく、但し、該炭素数2~24の窒素原子含有炭化水素基は、結合末端がC=N基であるもの、該炭素数2~24の酸素原子含有炭化水素基は、結合末端がカルボニル基であるもの、該炭素数2~24のリン含有炭化水素基は、結合末端がC=P基であるものをそれぞれ除く。Zは、炭素原子又は炭素鎖を介して結合する結合性基を示す。)で表される化合物から選ばれる一種以上である上記(1)に記載のオレフィン類重合用固体触媒成分、
(3)前記コハク酸エステル化合物(B)が、下記一般式(2);
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは水素原子又は炭素数1~4のアルキル基であって互いに同一であってもよいし異なっていてもよく、R及びRは炭素数2~4の直鎖アルキル基又は分岐アルキル基であって互いに同一であってもよいし異なっていてもよい。)
で表される化合物から選ばれる一種以上である上記(1)又は(2)に記載のオレフィン類重合用固体触媒成分、
(4)(I)上記(1)~(3)のいずれかに記載のオレフィン類重合用固体触媒成分、及び(II)下記一般式(3);
   R AlQ3-p (3)
(式中、Rは、炭素数1~6のアルキル基であり、Qは、水素原子あるいはハロゲンであり、pは、0<p≦3の実数であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは互いに同一であっても異なっていてもよい。)で表わされる有機アルミニウム化合物
を含むことを特徴とするオレフィン類重合用触媒、
(5)(I)上記(1)~(3)のいずれかに記載のオレフィン類重合用固体触媒成分、
(II)下記一般式(3);
    R AlQ3-p (3)
(式中、Rは、炭素数1~6のアルキル基であり、Qは、水素原子あるいはハロゲンであり、pは、0<p≦3の実数であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは互いに同一であっても異なっていてもよい。)で表わされる有機アルミニウム化合物、及び
(III)外部電子供与性化合物
を含むことを特徴とする上記(4)に記載のオレフィン類重合用触媒、
(6)上記(4)又は(5)に記載のオレフィン重合用触媒の存在下にオレフィン類の重合を行うことを特徴とするオレフィン類重合体の製造方法
を提供するものである。
 本発明によれば、フタル酸エステル以外の電子供与性化合物を含むものであるにも拘わらず、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上十分な水準を満たしつつバランスよく実現し得るオレフィン重合用固体触媒成分を提供するとともに、係るオレフィン類重合用固体触媒成分を用いたオレフィン重合用触媒及びオレフィン類重合体の製造方法を提供することができる。
 先ず、本発明に係るオレフィン類重合用固体触媒成分について説明する。
 本発明に係るオレフィン類重合用固体触媒成分は、マグネシウム、チタン、ハロゲン、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を含み、下記式
(エーテルカーボネート化合物(A)の含有量/コハク酸ジエステル化合物(B)の含有量)
で表されるモル比が、0.01~1.00である
ことを特徴とするものである。
 本発明のオレフィン類重合用固体触媒成分に含まれるハロゲンとしては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子から選ばれる一種以上の原子が好ましく、塩素原子、臭素原子及びヨウ素原子から選ばれる一種以上がより好ましく、塩素原子及びヨウ素原子から選ばれる一種以上がさらに好ましい。
 本発明のオレフィン類重合用固体触媒成分に含まれるエーテルカーボネート化合物(A)としては、下記一般式(1);
 R-O-C(=O)-O-Z-O-R  (1)
(式中、R及びRは、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐アルキル基、ビニル基、炭素数3~20の直鎖状アルケニル基又は分岐アルケニル基、炭素数1~20の直鎖状ハロゲン置換アルキル基、炭素数3~20の分岐ハロゲン置換アルキル基、炭素数2~20の直鎖状ハロゲン置換アルケニル基、炭素数3~20の分岐ハロゲン置換アルケニル基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルケニル基、炭素数3~20のハロゲン置換シクロアルキル基、炭素数3~20のハロゲン置換シクロアルケニル基、炭素数6~24の芳香族炭化水素基、炭素数6~24のハロゲン置換芳香族炭化水素基、結合末端が炭素原子である炭素数2~24の窒素原子含有炭化水素基、結合末端が炭素原子である炭素数2~24の酸素原子含有炭化水素基又は結合末端が炭素原子である炭素数2~24のリン含有炭化水素基を示し、R及びRは互いに同一であっても異なっていてもよく、但し、該炭素数2~24の窒素原子含有炭化水素基は、結合末端がC=N基であるもの、該炭素数2~24の酸素原子含有炭化水素基は、結合末端がカルボニル基であるもの、該炭素数2~24のリン含有炭化水素基は、結合末端がC=P基であるものをそれぞれ除く。Zは、炭素原子又は炭素鎖を介して結合する結合性基を示す。)
で表される化合物から選ばれる一種以上であることが好ましい。
 上記一般式(1)中のR、Rの炭素数1~20の直鎖状アルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ペンチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。好ましくは炭素数1~12の直鎖状アルキル基である。
 また、前記R、Rの炭素数3~20の分岐アルキル基としては、例えばイソプロピル基、イソブチル基、t-ブチル基、イソペンチル基、ネオペンチル基などの2級炭素又は3級炭素を有するアルキル基が挙げられる。好ましくは炭素数3~12の分岐アルキル基である。
 また、前記R、Rの炭素数3~20の直鎖状アルケニル基としては、アリル基、3-ブテニル基、4-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、10-ドデセニル基等が挙げられる。好ましくは炭素数3~12の直鎖状アルケニル基である。炭素数3~20の分岐アルケニル基としては、イソプロペニル基、イソブテニル基、イソペンテニル基、2-エチル,3-ヘキセニル基等が挙げられる。好ましくは炭素数3~12の分岐アルケニル基である。
 また、前記R、Rの炭素数1~20の直鎖状ハロゲン置換アルキル基としては、例えばハロゲン化メチル基、ハロゲン化エチル基、ハロゲン化n-プロピル基、ハロゲン化n-ブチル基、ハロゲン化n-ペンチル基、ハロゲン化n-ヘキシル基、ハロゲン化n-ペンチル基、ハロゲン化n-オクチル基、ハロゲン化ノニル基、ハロゲン化デシル基、ハロゲン置換ウンデシル基、ハロゲン置換ドデシル基等が挙げられる。好ましくは、炭素数1~12の直鎖状ハロゲン置換アルキル基である。また、炭素数3~20の分岐ハロゲン置換アルキル基としては、ハロゲン化イソプロピル基、ハロゲン化イソブチル基、ハロゲン化2-エチルヘキシル基、ハロゲン化ネオペンチル基等が挙げられる。好ましくは、炭素数3~12の分岐ハロゲン置換アルキル基である。
 また、前記R、Rの、炭素数2~20の直鎖状ハロゲン置換アルケニル基としては、2-ハロゲン化ビニル基,3-ハロゲン化アリル基、3-ハロゲン化-2-ブテニル基、4-ハロゲン化-3-ブテニル基、パーハロゲン化-2-ブテニル基、6-ハロゲン化-4-ヘキセニル基、3-トリハロゲン化メチル-2-プロペニル基等が挙げられる。好ましくは炭素数2~12のハロゲン置換アルケニル基である。また、炭素数3~20の分岐ハロゲン置換アルケニル基としては、3-トリハロゲン化-2-ブテニル基、2-ペンタハロゲン化エチル-3-ヘキセニル基、6-ハロゲン化-3-エチル-4-ヘキセニル基、3-ハロゲン化イソブテニル基等が挙げられる。好ましくは炭素数3~12の分岐ハロゲン置換アルケニル基である。
 また、前記R、Rの炭素数3~20のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、テトラメチルシクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ブチルシクロペンチル基等が挙げられる。好ましくは炭素数3~12のシクロアルキル基である。また、炭素数3~20のシクロアルケニル基としては、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基、ノルボルネン基、等が挙げられる。好ましくは炭素数3~12のシクロアルケニル基である。
 また、前記R、Rの炭素数3~20のハロゲン置換シクロアルキル基としては、ハロゲン置換シクロプロピル基、ハロゲン置換シクロブチル基、ハロゲン置換シクロペンチル基、ハロゲン置換トリメチルシクロペンチル基、ハロゲン置換シクロヘキシル基、ハロゲン置換メチルシクロヘキシル基、ハロゲン置換シクロヘプチル基、ハロゲン置換シクロオクチル基、ハロゲン置換シクロノニル基、ハロゲン置換シクロデシル基、ハロゲン置換ブチルシクロペンチル等が挙げられる。好ましくは炭素数3~12のハロゲン置換シクロアルキル基である。
 また、前記R、Rの炭素数3~20のハロゲン置換シクロアルケニル基としては、ハロゲン置換シクロプロペニル基、ハロゲン置換シクロブテニル基、ハロゲン置換シクロペンテニル基、ハロゲン置換トリメチルシクロペンテニル基、ハロゲン置換シクロヘキデニル基、ハロゲン置換メチルシクロヘキセニル基、ハロゲン置換シクロヘプテニル基、ハロゲン置換シクロオクテニル基、ハロゲン置換シクロノネニル基、ハロゲン置換シクロデセニル基、ハロゲン置換ブチルシクロペンテニル等が挙げられる。好ましくは炭素数3~12のハロゲン置換シクロアルケニル基である。
 また、前記R、Rの炭素数6~24の芳香族炭化水素基としては、フェニル基、メチルフェニル基、ジメチルフェニル基、エチルフェニル基、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、2-フェニルプロピル基、1-フェニルブチル基、4-フェニルブチル基、2-フェニルヘプチル基、トリル基、キシリル基、ナフチル基、1,8-ジメチルナフチル基等が挙げられる。好ましくは炭素数6~12の芳香族炭化水素基である。
 また、前記R、Rの炭素数6~24のハロゲン置換芳香族炭化水素基としては、ハロゲン化フェニル基、ハロゲン化メチルフェニル基、トリハロゲン化メチルフェニル基、パーハロゲン化ベンジル基、パーハロゲン化フェニル基、2-フェニル-2-ハロゲン化エチル基、パーハロゲン化ナフチル基、4-フェニル-2,3-ジハロゲン化ブチル基等が挙げられる。好ましくは炭素数6~12のハロゲン置換芳香族炭化水素基である。
 なお、前記R、Rのハロゲン置換アルキル基、ハロゲン置換アルケニル基、ハロゲン置換シクロアルキル基、ハロゲン置換シクロアルケニル基、及びハロゲン置換芳香族炭化水素基において、ハロゲン種としては、フッ素、塩素、臭素又はヨウ素が挙げられ、好ましくはフッ素、塩素又は臭素である。
 また、前記R、Rの結合末端がC=N基であるものを除く炭素数2~24の窒素原子含有炭化水素基は、結合末端が炭素原子である基であり、例えば、メチルアミノメチル基、ジメチルアミノメチル基、エチルアミノメチル基、ジエチルアミノメチル基、プロピルアミノメチル基、ジプロピルアミノメチル基、メチルアミノエチル基、ジメチルアミノエチル基、エチルアミノエチル基、ジエチルアミノエチル基、プロピルアミノエチル基、ジプロピルアミノエチル基、ブチルアミノエチル基、ジブチルアミノエチル基、ペンチルアミノエチル基、ジペンチルアミノエチル基、ヘキシルアミノエチル基、ヘキシルメチルアミノエチル基、ヘプチルメチルアミノエチル基、ジヘプチルアミノメチル基、オクチルメチルアミノメチル基、ジオクチルアミノエチル基、ノニルアミノメチル基、ジノニルアミノメチル基、デシルアミノメチル基、ジデシルアミノ基、シクロヘキシルアミノメチル基、ジシクロヘキシルアミノメチル基などのアルキルアミノアルキル基、フェニルアミノメチル基、ジフェニルアミノメチル基、ジトリルアミノメチル基、ジナフチルアミノ基メチル、メチルフェニルアミノエチル基などのアリールアミノアルキル基又はアルキルアリールアミノアルキル基、多環状アミノアルキル基、アニリノ基、ジメチルアミノフェニル基、ビスジメチルアミノフェニル基等のアミノ基含有芳香族炭化水素基、メチルイミノメチル、エチルイミノエチル、プロピルイミノ、ブチルイミノ、フェニルイミノなどのイミノアルキル基等が挙げられる。好ましくは炭素数2~12の窒素原子含有炭化水素基である。なお、結合末端とは、R、Rが結合する酸素原子側の原子又は基を言う。
 また、前記R、Rの結合末端がカルボニル基であるものを除く炭素数2~24の酸素原子含有炭化水素基としては、結合末端が炭素原子である基であり、例えばメトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、イソプロポキシメチル基、イソブトキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、イソプロポキシエチル基、イソブトキシエチル基などのエーテル基含有炭化水素基、フェノキシメチル基、メチルフェノキシメチル基、ジメチルフェノキメチル基、ナフトキシメチル基などのアリーロキシアルキル基、メトキシフェニル基、エトキスフェニル基などのアルコキシアリール基、アセトキシメチル基などが挙げられる。好ましくは炭素数2~12の酸素原子含有炭化水素基である。
 なお、結合末端とは、R、Rが結合する酸素原子側の原子又は基を言う。
 また、前記R、Rの炭素数2~24の結合末端がC=P基であるものを除くリン含有炭化水素基としては、結合末端が炭素原子である基であり、例えば、ジメチルホスフィノメチル基、ジブチルホスフィノメチル基、ジシクロヘキシルホスフィノメチル基、ジメチルホスフィノエチル基、ジブチルホスフィノエチル基、ジシクロヘキシルホスフィノエチル基などのジアルキルホスフィノアルキル基、ジフェニルホスフィノメチル基、ジトリルホスフィノメチル基などのジアリールホスフィノアルキル基、ジメチルホスフィノフェニル基、ジエチルホスフィノフェニル基等のホスフィノ基置換アリール基などが挙げられ
る。好ましくは炭素数2~12のリン含有炭化水素基である。なお、結合末端とは、R、Rが結合する酸素原子側の原子又は基を言う。
 前記Rの特に好ましい基は、炭素数1~12の直鎖状アルキル基、結合末端が-CH-である炭素数3~12の分岐アルキル基、ビニル基、炭素数3~12の直鎖状アルケニル基、結合末端が-CH2-である炭素数3~12の分岐アルケニル基、炭素数1~12の直鎖状ハロゲン置換アルキル基、結合末端が-CH-である炭素数3~12の分岐ハロゲン置換アルキル基、炭素数3~12の直鎖状ハロゲン置換アルケニル基、結合末端が-CH-である炭素数3~12の分岐ハロゲン置換アルケニル基、結合末端が-CH-である炭素数4~12のシクロアルキル基、結合末端が-CH-である炭素数4~
12のシクロアルケニル基、結合末端が-CH-である炭素数4~12のハロゲン置換シクロアルキル基、結合末端が-CH-である炭素数4~12のハロゲン置換シクロアルケニル基、又は結合末端が-CH-である炭素数7~12の芳香族炭化水素基である。なお、Rにおける当該結合末端とは、Rが結合する酸素原子側の基を言う。
 一般式(1)中、Zはカーボネート基とエーテル基(OR基)を結合する二価の結合性基であり、好ましくは、Zが結合する2つの酸素原子間は炭素鎖で結合され、該炭素鎖が2個の炭素原子で構成されている結合性基である。なお、Zがシクロアルキレン基、シクロアルケニレン基、ハロゲン置換シクロアルキレン基、ハロゲン置換シクロアルケニレン基、芳香族炭化水素基又はハロゲン置換芳香族炭化水素基のような環状の基におけるZが結合する2つの酸素原子間は炭素鎖で結合され、該炭素鎖が2個の炭素原子で構成されている結合性基とは、環状を構成する炭素鎖の中の隣接する2個の炭素鎖が、当該Zが結
合する2つの酸素原子間にある炭素鎖であることを意味する。
 前記Zの好ましい基は、炭素数1~20の直鎖状アルキレン基、炭素数3~20の分岐アルキレン基、ビニレン基、炭素数3~20の直鎖状アルケニレン基又は分岐アルケニレン基、炭素数1~20の直鎖状ハロゲン置換アルキレン基、炭素数3~20の分岐ハロゲン置換アルキレン基、炭素数3~20の直鎖状ハロゲン置換アルケニレン基また分岐ハロゲン置換アルケニレン基、炭素数3~20のシクロアルキレン基、炭素数3~20のシクロアルケニレン基、炭素数3~20のハロゲン置換シクロアルキレン基、炭素数3~20のハロゲン置換シクロアルケニレン基、炭素数6~24の芳香族炭化水素基、炭素数6~
24のハロゲン置換芳香族炭化水素基、炭素数1~24の窒素原子含有炭化水素基、炭素数1~24の酸素原子含有炭化水素基又は炭素数1~24のリン含有炭化水素基である。
 また、前記Zの特に好ましい基は、炭素数2の直鎖状アルキレン基、炭素数3~12の分岐アルキレン基、ビニレン基、炭素数3~12の直鎖状アルケニレン基又は分岐アルケニレン基、炭素数2~12の直鎖状ハロゲン置換アルキレン基、炭素数3~12の分岐ハロゲン置換アルキレン基、炭素数3~12の直鎖状ハロゲン置換アルケニレン基又は分岐ハロゲン置換アルケニレン基、炭素数3~12のシクロアルキレン基、炭素数3~12のシクロアルケニレン基、炭素数3~12のハロゲン置換シクロアルキレン基、炭素数3~12のハロゲン置換シクロアルケニレン基、炭素数6~12の芳香族炭化水素基、炭素数6~12のハロゲン置換芳香族炭化水素基、炭素数2~12の窒素原子含有炭化水素基、炭素数2~12の酸素原子含有炭化水素基又は炭素数2~12のリン含有炭化水素基であり、Zが結合する2つの酸素原子間は炭素鎖で結合され、当該炭素鎖が2個の炭素原子で構成されているものである。
 前記Zの炭素数1~20の直鎖状アルキレン基としては、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基など挙げられる。好ましくは、炭素数2~12の直鎖状アルキレン基である。
 前記Zの炭素数3~20の分岐アルキレン基としては、1-メチルエチレン基、2-メチルトリメチレン基、2-メチルテトラメチレン基、2-メチルペンタメチレン基、3-メチルヘキサメチレン基、4-メチルヘプタメチレン基、4-メチルオクタメチレン基、5-メチルノナメチレン基、5-メチルデカメチレン基、6-メチルウンデカメチレン基、7-メチルドデカメチレン基、7-メチルトリデカメチレン基などが挙げられる。好ましくは、炭素数3~12の分岐アルキレン基である。
 前記Zの炭素数3~20の直鎖状アルケニレン基としては、プロペニレン基、ブテニレン基、ヘキセニレン基、オクテニレン基、オクタデセニレン基などが挙げられる。好ましくは、炭素数3~12の直鎖状アルケニレン基である。
 前記Zの炭素数3~20の分岐アルケニレン基としては、2-メチルプロペニレン基、2,2-ジメチルブテニレン基、3-メチル-2-ブテニレン基、3-エチル-2-ブテニレン基、2-メチルオクテニレン基、2,4-ジメチル-2-ブテニレン基などが挙げられる。好ましくは、炭素数3~12の分岐アルケニレン基である。
 前記Zの炭素数1~20の直鎖状ハロゲン置換アルキレン基としては、ジクロロンメチレン基、クロロメチレン基、ジクロロメチレン基、テトラクロロエチレン基などが挙げられる。好ましくは、炭素数3~12の直鎖状ハロゲン置換アルキレン基である。
 前記Zの炭素数1~20の分岐ハロゲン置換アルキレン基としては、1,2-ビスクロロメチルエチレン基、2,2-ビス(クロロメチル)プロピレン基、1,2-ビスジクロロメチルエチレン基、1,2-ビス(トリクロロメチル)エチレン基、2,2-ジクロロプロピレン基、1,1,2,2-テトラクロロエチレン基、1-トリフルオロメチルエチレン基、1-ペンタフルオロフェニルエチレン基等が挙げられる。好ましくは、炭素数3~12の分岐ハロゲン置換アルキレン基である。
 前記Zの炭素数1~20の直鎖状ハロゲン置換アルケニレン基としては、ジクロロエテニレン基、ジフルオロエテニレン基、3,3-ジクロロプロペニレン基、1,2-ジフルオロプロペニレン基などが挙げられる。好ましくは、炭素数3~12の直鎖状ハロゲン置換アルケニレン基である。
 前記Zの炭素数1~20の分岐ハロゲン置換アルキレン基としては、3,4-ジクロロ-1,2-ブチレン基、2,2-ジクロロ-1,3-ブチレン基、1,2-ジフルオロ-1,2-プロピレン基などが挙げられる。好ましくは、炭素数3~12の分岐ハロゲン置換アルキレン基である。
 前記Zの炭素数3~20のシクロアルキレン基としては、シクロペンチレン基、シクロヘキシレン基、シクロプロピレン基、2-メチルシクロプロピレン基、シクロブチレン基、2,2-ジメチルシクロブチレン基、2,3-ジメチルシクロペンチレン基、1,3,3-トリメチルシクロヘキシレン基、シクロオクチレン基などが挙げられる。好ましくは、炭素数3~12のシクロアルキレン基である。
 前記Zの炭素数3~20のシクロアルケニレン基としては、シクロペンテニレン基、2,4-シクロペンタジエニレン基、シクロヘキセニレン基、1,4-シクロヘキサジエニレン基、シクロヘプテニレン基、メチルシクロペンテニレン基、メチルシクロヘキセニレン基、メチルシクロヘプテニレン基、ジシクロデシレン基、トリシクロデシレン基などが挙げられる。好ましくは、炭素数3~12のシクロアルケニレン基である。
 前記Zの炭素数3~20のハロゲン置換シクロアルキレン基としては、3-クロロ-1,2-シクロペンチレン基、3,4,5,6-テトラクロロ-1,2-シクロヘキシレン基、3,3-ジクロロ-1,2-シクロプロピレン基、2-クロロメチルシクロプロピレン基、3,4-ジクロロ-1,2-シクロブチレン基、3,3-ビス(ジクロロメチル)-1,2-シクロブチレン基、2,3-ビス(ジクロロメチル)シクロペンチレン基、1,3,3-トリス(フルオロメチル)-1,2-シクロヘキシレン基、3-トリクロロメチル-1,2-シクロオクチレン基などが挙げられる。好ましくは、炭素数3~12のハロゲン置換シクロアルキレン基である。
 前記Zの炭素数3~20のハロゲン置換シクロアルケニレン基としては、5-クロロ-1,2-シクロ-4-ヘキセニレン基、3,3,4,4-テトラフルオロ-1,2-シクロ-6-オクテニレン基などが挙げられる。好ましくは、炭素数3~12のハロゲン置換シクロアルケニレン基である。
 前記Zの炭素数6~24の芳香族炭化水素基としては、1,2-フェニレン、3-メチル-1,2-フェニレン、3,6-ジメチル-1,2-フェニレン、1,2-ナフチレン、2,3-ナフチレン、5-メチル-1,2-ナフチレン、9,10-フェナンスリレン、1,2-アントラセニレン等が挙げられる。好ましくは、炭素数6~12の芳香族炭化水素基である。
 前記Zの炭素数6~24のハロゲン置換芳香族炭化水素基としては、3-クロロ-1,2-フェニレン、3-クロロメチル-1,2-フェニレン、3,6-ジクロロ-1,2-フェニレン、3,6-ジクロロ-4,5-ジメチル-1,2-フェニレン、3-クロロ-1,2-ナフチレン、3-フルオロ-1,2-ナフチレン、3,6-ジクロロ-1,2-フェニレン、3,6-ジフルオロ-1,2-フェニレン、3,6-ジブロモ-1,2-フェニレン、1-クロロ-2,3-ナフチレン、5-クロロ-1,2-ナフチレン、2,6-ジクロロ-9,10-フェナンスリレン、5,6-ジクロロ-1,2-アントラセニレン、5,6-ジフルオロ-1,2-アントラセニレン等が挙げられる。好ましくは、炭素数6~12のハロゲン置換芳香族炭化水素基である。
 前記Zの炭素数1~24の窒素原子含有炭化水素基としては、1-ジメチルアミノエチレン基、1,2-ビスジメチルミノエチレン基、1-ジエチルアミノエチレン基、2-ジエチルアミノ-1,3-プロピレン基、2-エチルアミノ-1,3-プロピレン基、4-ジメチルアミノ-1,2-フェニレン基、4,5-ビス(ジメチルアミノ)フェニレン基等が挙げられる。好ましくは、炭素数2~12の窒素原子含有炭化水素基である。
 前記Zの炭素数1~24の酸素原子含有炭化水素基としては、1-メトキシエチレン基、2,2-ジメトキシ-1,3-プロパニレン基、2-エトキシ-1,3-プロパニレン基、2-t-ブトキシ-1,3-プロパニレン基、2,3-ジメトキシ-2,3-ブチレン基、4-メトキシ-1,2-フェニレン基等が挙げられる。好ましくは、炭素数2~12の酸素原子含有炭化水素基である。
 前記Zの炭素数1~24のリン含有炭化水素基としては、1-ジメチルホスフィノエチレン基、2,2-ビス(ジメチルホスフィノ)-1,3-プロパニレン基、2-ジエチルホスフィノ-1,3-プロパニレン基、2-t-ブトキメチルホスフィノ-1,3-プロパニレン基、2,3-ビス(ジフェニルホスフィノ)-2,3-ブチレン基、4-メチルホスフェート-1,2-フェニレン基等が挙げられる。好ましくは、炭素数1~12のリン含有炭化水素基である。
 一般式(1)で表される化合物の具体例としては、(2-エトキシエチル)メチルカーボネート、(2-エトキシエチル)エチルカーボネート、(2-エトキシエチル)フェニルカーボネートが特に好ましい。
 本発明に係るオレフィン類重合用固体触媒成分において、コハク酸ジエステル化合物(B)としては、下記一般式(2);
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRは水素原子又は炭素数1~4のアルキル基であって互いに同一であってもよいし異なっていてもよく、R及びRは炭素数2~4の直鎖アルキル基又は分岐アルキル基であって互いに同一であってもよいし異なっていてもよい。)
で表される化合物から選ばれる一種以上を挙げることができる。
 一般式(2)で表される化合物において、R及びRは水素原子又は炭素数1~4のアルキル基であって互いに同一であってもよいし異なっていてもよい。
 RまたはRが炭素数1~4のアルキル基である場合、具体的には、メチル基、エチル、n-プロピル基、イソプロピル基、n-ブチル基またはイソブチル基を挙げることができる。
 一般式(2)で表される化合物において、R及びRは炭素数2~4の直鎖アルキル基又は分岐アルキル基であって互いに同一であってもよいし異なっていてもよい。
 R及びRが炭素数2~4の直鎖アルキル基又は分岐アルキル基である場合、具体的には、エチル、n-プロピル基、イソプロピル基、n-ブチル基またはイソブチル基を挙げることができる。
 本発明に係るオレフィン類重合用固体触媒成分において、コハク酸ジエステル化合物(B)としては、前記一般式(2)で示されるコハク酸ジアルキルエステルであれば特に制限されず、例えば、
 コハク酸ジエチル、2,3-ジメチルコハク酸ジエチル、2,3-ジエチルコハク酸ジエチル、2,3-ジ-n-プロピルコハク酸ジエチル、2,3-ジイソプロピルコハク酸ジエチル、2,3-ジ-n-ブチルコハク酸ジエチル、2,3-ジイソブチルコハク酸ジエチル;
 コハク酸ジ-n-プロピル、2,3-ジメチルコハク酸ジ-n-プロピル、2,3-ジエチルコハク酸ジ-n-プロピル、2,3-ジ-n-プロピルコハク酸ジ-n-プロピル、2,3-ジイソプロピルコハク酸ジ-n-プロピル、2,3-ジ-n-ブチルコハク酸ジ-n-プロピル、2,3-ジイソブチルコハク酸ジ-n-プロピル;
 コハク酸ジイソプロピル、2,3-ジメチルコハク酸ジイソプロピル、2,3-ジエチルコハク酸ジイソプロピル、2,3-ジ-n-プロピルコハク酸ジイソプロピル、2,3-ジイソプロピルコハク酸ジイソプロピル、2,3-ジ-n-ブチルコハク酸ジイソプロピル、2,3-ジイソブチルコハク酸ジイソプロピル;
 コハク酸ジ-n-ブチル、2,3-ジメチルコハク酸ジ-n-ブチル、2,3-ジエチルコハク酸ジ-n-ブチル、2,3-ジ-n-プロピルコハク酸ジ-n-ブチル、2,3-ジイソプロピルコハク酸ジ-n-ブチル、2,3-ジ-n-ブチルコハク酸ジ-n-ブチル、2,3-ジイソブチルコハク酸ジ-n-ブチル;
 コハク酸ジイソブチル、2,3-ジメチルコハク酸ジイソブチル、2,3-ジエチルコハク酸ジイソブチル、2,3-ジ-n-プロピルコハク酸ジイソブチル、2,3-ジイソプロピルコハク酸ジイソブチル、2,3-ジ-n-ブチルコハク酸ジイソブチル、2,3-ジイソブチルコハク酸ジイソブチル;
から選ばれる一種以上を挙げることができる。
 中でも、コハク酸ジエチル、コハク酸ジ-n-プロピル、コハク酸ジ-n-ブチル、コハク酸ジイソブチル、2,3-ジ-n-プロピルコハク酸ジエチル、2,3-ジイソプロピルコハク酸ジエチル、2,3-ジ-n-プロピルコハク酸ジ-n-プロピル、2,3-ジイソプロピルコハク酸ジ-n-プロピル、2,3-ジ-n-プロピルコハク酸ジイソプロピル、2,3-ジイソプロピルコハク酸ジイソプロピル、2,3-ジ-n-プロピルコハク酸ジ-n-ブチル、2,3-ジイソプロピルコハク酸ジ-n-ブチル、2,3-ジ-n-プロピルコハク酸ジイソブチル、2,3-ジイソプロピルコハク酸ジイソブチルが好ましく用いられる。
 本発明に係るオレフィン類重合用固体触媒成分は、電子供与性化合物として、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を必須成分として含むが、これ等の電子供与性化合物以外に、さらにその他の電子供与性化合物(以下、適宜、「電子供与性化合物(D)」と称する。)を含んでいてもよい。
 このようなその他の電子供与性化合物(D)としては、酸ハライド類、酸アミド類、ニトリル類、酸無水物、ジエーテル化合物類及び一般式(1)で表されるジエステル化合物(B)以外のカルボン酸エステル類等が挙げられる。
 このような電子供与性化合物(D)として、具体的には、シクロアルカンジカルボン酸ジエステル、シクロアルケンジカルボン酸ジエステル、マロン酸ジエステル、アルキル置換マロン酸ジエステル、マレイン酸ジエステル等のカルボン酸ジエステルや、ジエーテル化合物等から選ばれる一種以上を挙げることができる。
 より具体的には、ジイソブチルマロン酸ジメチル、ジイソブチルマロン酸ジエチル等のジアルキルマロン酸ジエステル、シクロヘキサン-1,2-ジカルボン酸ジメチル等のシクロアルカンジカルボン酸ジエステル及び、(イソプロピル)(イソペンチル)-1,3-ジメトキシプロパン、9,9-ビス(メトキシメチル)フルオレン等の1,3-ジエーテルから選ばれる一種以上がより好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)とともに、その他の電子供与性化合物を有するものであることにより、重合時に得られるオレフィン類重合体の立体規則性を容易に向上させることができ、また、分子量分布や水素応答性を、従来のフタル酸エステルを電子供与性化合物として含む固体触媒を用いて製造した重合体と同等の範囲に容易にコントロールすることができる。
 このように、本発明に係るオレフィン類重合用固体触媒成分は、複数の電子供与性化合物を含むものであってもよいが、下記式
{(エーテルカーボネート化合物(A)の含有量(g)+コハク酸ジエステル化合物(B)の含有量(g))/電子供与性化合物の全含有量(g))}×100
で示される、電子供与性化合物の全含有量に占めるエーテルカーボネート化合物(A)及び上記コハク酸ジエステル化合物(B)の合計含有量の割合が、50~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分が、電子供与性化合物の全含有量に占めるエーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)の合計含有割合が上記範囲内にあることにより、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上十分な水準を満たしつつバランスよく実現し得るオレフィン重合用固体触媒成分を容易に提供することができる。
 本発明に係るオレフィン類重合用固体触媒成分は、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を、下記式
(エーテルカーボネート化合物(A)の含有量/コハク酸ジエステル化合物(B)の含有量)
で表されるモル比が、0.01~1.00となるように含むものであり、0.05~1.00となるように含むものであることが好ましく、0.10~1.00となるように含むものであることがより好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を、上記比で含むものであることにより、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分であって、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上十分な水準を満たしつつバランスよく実現し得るオレフィン重合用固体触媒成分を容易に提供することができる。
 本発明におけるオレフィン類重合用固体触媒成分は、ポリシロキサン(以下、適宜、「ポリシロキサン(E)」と称する。)を含むものであってもよい。
 本発明におけるオレフィン類重合用固体触媒成分が、ポリシロキサン(E)を含むものであることにより、オレフィン類を重合したときに、得られる重合体の立体規則性あるいは結晶性を容易に向上させることができ、さらには生成ポリマーの微粉を容易に低減することができる。
 ポリシロキサンは、主鎖にシロキサン結合(-Si-O-結合)を有する重合体であるが、シリコーンオイルとも称され、25℃における粘度が0.02~100cm/s(2~10000センチストークス)、より好ましくは0.03~5cm/s(3~500センチストークス)を有する、常温で液状あるいは粘稠状の鎖状、部分水素化、環状あるいは変性ポリシロキサンである。
 鎖状ポリシロキサンとしては、ジメチルポリシロキサン、メチルフェニルポリシロキサンが、部分水素化ポリシロキサンとしては、水素化率10~80%のメチルハイドロジェンポリシロキサンが、環状ポリシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、2,4,6-トリメチルシクロトリシロキサン及び2,4,6,8-テトラメチルシクロテトラシロキサンから選ばれる一種以上が挙げられる。
 本発明に係るオレフィン類重合用固体触媒成分は、マグネシウム化合物(C)、チタンハロゲン化合物(F)、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を含むもの、すなわちこれ等化合物の相互接触により得られるものであることが好ましい。
 上記マグネシウム化合物(C)としては、ジハロゲン化マグネシウム、ジアルキルマグネシウム、ハロゲン化アルキルマグネシウム、ジアルコキシマグネシウム、ジアリールオキシマグネシウム、ハロゲン化アルコキシマグネシウムあるいは脂肪酸マグネシウム等から選ばれる一種以上が挙げられる。
 これらのマグネシウム化合物の中、ジハロゲン化マグネシウム、ジハロゲン化マグネシウムとジアルコキシマグネシウムの混合物、ジアルコキシマグネシウムが好ましく、特にジアルコキシマグネシウムが好ましく、具体的にはジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、エトキシメトキシマグネシウム、エトキシプロポキシマグネシウム及びブトキシエトキシマグネシウム等から選ばれる一種以上が挙げられ、これらのうち、ジエトキシマグネシウムが特に好ましい。
 また、上記ジアルコキシマグネシウムは、金属マグネシウムを、ハロゲン含有有機金属等の存在下にアルコールと反応させて得たものであってもよい。
 さらに、上記ジアルコキシマグネシウムとしては、顆粒状又は粉末状であり、その形状は不定形あるいは球状のものであってもよい。例えば球状のジアルコキシマグネシウムを使用した場合、より良好な粒子形状と狭い粒度分布を有する重合体粉末が得られ易く、重合操作時の生成重合体粉末の取り扱い操作性が向上し、生成重合体粉末に含まれる微粉に起因する重合体の分離装置におけるフィルターの閉塞等の問題が容易に解決される。
 上記ジアルコキシマグネシウムは、単独あるいは2種以上併用することもできる。
 上記の如き球状のジアルコキシマグネシウムを製造する方法は、例えば、特開昭58-4132号公報、特開昭62-51633号公報、特開平3-74341号公報、特開平4-368391号公報、特開平8-73388号公報等に例示されている。
 上記マグネシウム化合物(C)としては、溶液状のマグネシウム化合物、又はマグネシウム化合物懸濁液のいずれであってもよい。マグネシウム化合物(C)が固体である場合には、マグネシウム化合物(C)の可溶化能を有する溶媒に溶解して溶液状のマグネシウム化合物とするか、マグネシウム化合物(C)の可溶化能を有さない溶媒に懸濁してマグネシウム化合物懸濁液として用いる。マグネシウム化合物(C)が液体である場合には、そのまま溶液状のマグネシウム化合物として用いることができ、マグネシウム化合物の可溶化能を有する溶媒にこれを溶解して溶液状のマグネシウム化合物として用いることもできる。
 上記チタンハロゲン化合物(F)としては、特に制限されないが、チタンテトラハライド及びアルコキシチタンハライド等から選ばれる一種以上を挙げることができる。
 チタンハロゲン化合物(F)としては、一般式
  Ti(OR4-i
(式中、Rは炭素数1~10の炭化水素基を示し、Xはハロゲン原子を示し、Xが複数存在する場合、各Xは同一であっても異なっていてもよく、iは0~4の整数である。)
で表されるチタンテトラハライドもしくはアルコキシチタンハライド群から選択される一種の化合物であることが好ましい。
 チタンハロゲン化合物(F)として、具体的には、チタンテトラフルオライド、チタンテトラクロライド、チタンテトラブロマイド、チタンテトラアイオダイド等のチタンテトラハライド、アルコキシチタンハライドとしてメトキシチタントリクロライド、エトキシチタントリクロライド、プロポキシチタントリクロライド、n-ブトキシチタントリクロライド等のアルコキシチタントリハライド、ジメトキシチタンジクロライド、ジエトキシチタンジクロライド、ジプロポキシチタンジクロライド、ジ-n-ブトキシチタンジクロライド等のジアルコキシチタンジハライド、トリメトキシチタンクロライド、トリエトキ
シチタンクロライド、トリプロポキシチタンクロライド、トリ-n-ブトキシチタンクロライド等のトリアルコキシチタンハライド等から選ばれる一種以上が挙げられる。
 これらの中ではハロゲン含有チタン化合物が好ましく用いられ、チタンテトラクロライド、チタンテトラブロマイド、チタンテトラアイオダイド等のチタンテトラハライドが好ましく、チタンテトラクロライドがより好ましい。これ等のチタン化合物は、炭化水素化合物あるいはハロゲン化炭化水素化合物等に希釈して使用してもよい。
 本発明に係るオレフィン類重合用固体触媒成分は、必要に応じて、上記チタンハロゲン化合物(F)以外のハロゲン化合物を接触してなるものであってもよい。このようなハロゲン化合物としては、四価のハロゲン含有ケイ素化合物が挙げることができ、より具体的には、テトラクロロシラン(四塩化ケイ)、テトラブロモシラン等のシランテトラハライド、メトキシトリクロロシラン、エトキシトリクロロシラン、プロポキシトリクロロシラン、n-ブトキシトリクロロシラン、ジメトキシジクロロシラン、ジエトキシジクロロシラン、ジプロポキシジクロロシラン、ジ-n-ブトキシジクロロシラン、トリメトキシ
クロロシラン、トリエトキシクロロシラン、トリプロポキシクロロシラン、トリ-n-ブトキシクロロシラン等のアルコキシ基含有ハロゲン化シラン等から選ばれる一種以上を挙げることができる。
 本発明に係るオレフィン類重合用固体触媒成分は、上記マグネシウム化合物(C)、チタンハロゲン化合物(F)、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を、不活性有機溶媒の存在下に接触させることによって調製してなるものであることが好ましい。
 本発明において、上記不活性有機溶媒としては、チタンハロゲン化合物(F)を溶解し、かつマグネシウム化合物(C)は溶解しないものが好ましく、具体的には、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、1,2-ジエチルシクロヘキサン、メチルシクロヘキセン、デカリン、ミネラルオイル等の飽和炭化水素化合物、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素化合物、オルトジクロルベンゼン、塩化メチレン、1,2-ジクロロベンゼン、四塩化炭素、ジクロルエタン等のハロゲン化炭化水素化合物等から選ばれる一種以上を挙げることができる。
 上記不活性有機溶媒としては、沸点が50~200℃程度の、常温で液状の飽和炭化水素化合物あるいは芳香族炭化水素化合物が好ましく用いられ、中でも、ヘキサン、ヘプタン、オクタン、エチルシクロヘキサン、ミネラルオイル、トルエン、キシレン、エチルベンゼンから選ばれる一種以上が好ましく、特に好ましくは、ヘキサン、ヘプタン、エチルシクロヘキサン及びトルエンから選ばれるいずれか一種以上である。
 本発明に係るオレフィン類重合用固体触媒成分を調製する方法としては、例えば、還元性を有さない固体マグネシウム化合物、エーテルカーボネート化合物(A)、コハク酸ジエステル化合物(B)及びハロゲン化チタンを共粉砕する方法や、アルコール等の付加物を有するハロゲン化マグネシウム化合物、エーテルカーボネート化合物(A)、コハク酸ジエステル化合物(B)及びハロゲン化チタンを不活性炭化水素溶媒の共存下、接触させる方法や、ジアルコキシマグネシウム、エーテルカーボネート化合物(A)、コハク酸ジエステル化合物(B)及びハロゲン化チタンを不活性炭化水素溶媒共存下で接触させる方
法や、還元性を有するマグネシウム化合物、エーテルカーボネート化合物(A)、コハク酸ジエステル化合物(B)及びハロゲン化チタンを接触させて固体触媒を析出させる方法等を挙げることができる。
 本発明に係るオレフィン類重合用固体触媒成分の調製方法としては、例えば、マグネシウム化合物(C)、チタンハロゲン化合物(F)、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を炭化水素溶媒に懸濁し、加熱しながら所定時間接触させた後、得られた懸濁液にさらにチタンハロゲン化合物(F)を加え、加熱しながら接触させて固体生成物を得、当該固体生成物を炭化水素溶媒で洗浄することにより目的とするオレフィン類重合用固体触媒成分を得る方法を挙げることができる。
 上記加熱温度は、70~150℃が好ましく、80~120℃がより好ましく、90~110℃がさらに好ましい。
 上記加熱時間は、30~240分間が好ましく、60~180分間がより好ましく、60~120分間がさらに好ましい。
 上記懸濁液に対するチタンハロゲン化合物(F)の添加回数は特に制限されない。
 上記懸濁液に対しチタンハロゲン化合物(F)を複数回添加した場合には、各加熱温度が上記範囲内になるように、また各添加毎の加熱時間が上記範囲内となるようにすればよい。
 なお、上記調製方法において、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)に加え、これ等以外の電子供与性化合物を併用してもよい。さらに、上記接触は、例えば、ケイ素、リン、アルミニウム等の他の反応試剤や界面活性剤の共存下に行ってもよい。
 本発明に係るオレフィン類重合用固体触媒成分中に含まれる、チタン原子、マグネシウム原子、ハロゲン原子、エーテルカーボネート化合物(A)、コハク酸ジエステル化合物(B)の含有量は、(エーテルカーボネート化合物(A)の含有量/コハク酸ジエステル化合物(B)の含有量)で表されるモル比が、上述した範囲内になるように含むものであれば、特に制限されない。
 本発明に係るオレフィン類重合用固体触媒成分は、上記含有量比の範囲内において、エーテルカーボネート化合物(A)を、0.2~10.0質量%含むものが好ましく、0.5~10.0質量%含むものがより好ましく、1.0~8.0質量%含むものがさらに好ましい。
 また、本発明に係るオレフィン類重合用固体触媒成分は、上記含有量比の範囲内において、コハク酸ジエステル化合物(B)を、0.2~20.0質量%含むものが好ましく、1.0~20.0質量%含むものがより好ましく、5.0~18.0質量%含むものがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、チタンを、原子量換算で、0.1~10質量%含むものが好ましく、0.5~8.0質量%含むものがより好ましく、1.0~8.0質量%含むものがさらに好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、マグネシウムを、原子量換算で、10~70質量%含むものが好ましく、710~50質量%含むものがより好ましく、15~40質量%含むものがさらに好ましく、15~25質量%含むものが一層好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、ハロゲンを、原子量換算で、20~90質量%含むものが好ましく、30~85質量%含むものがより好ましく、40~80質量%含むものがさらに好ましく、45~75質量%含むものが一層好ましい。
 本発明に係るオレフィン類重合用固体触媒成分は、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を、合計で、5~30質量%含むものが好ましく、5~25質量%含むものがより好ましく、5~20質量%含むものがさらに好ましい。
 エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)の合計量が、5質量%未満であると重合活性や得られる重合体の立体規則性を向上し難くなり、30質量%を超えると得られる重合体の分子量分布が広げ難くなる。
 本出願書類において、オレフィン類重合用固体触媒成分中に含まれるチタンの含有率及びマグネシウムの含有率は、JIS 8311-1997「チタン鉱石中のチタン定量方法」に記載の方法(酸化還元滴定)に準じて測定した値を意味する。
 また、本出願書類において、オレフィン類重合用固体触媒成分中に含まれるハロゲンの含有量は、固体触媒成分を硫酸と純水の混合溶液で処理して水溶液とした後、所定量を分取し、硝酸銀標準溶液でハロゲンを滴定する硝酸銀滴定法によって測定した値を意味する。
 さらに、本出願書類において、オレフィン類重合用固体触媒成分中に含まれるエーテルカーボネート化合物(A)やコハク酸ジエステル化合物(B)等の電子供与性化合物の含有率は、固体触媒を加水分解した後、芳香族溶剤を用いて内部電子供与性化合物を抽出し、この溶液をガスクロマトグラフィーFID(Flame Ionization Detector、水素炎イオン化型検出器)法によって測定した値を意味する。
 本発明によれば、フタル酸エステル以外の電子供与性化合物を含む固体触媒成分であって、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上十分な水準を満たしつつバランスよく実現し得るオレフィン重合用固体触媒成分を容易に提供することができる。
 次に、本発明に係るオレフィン類重合用触媒について説明する。
 本発明に係るオレフィン類重合用触媒は、
(I)請求項1~請求項3のいずれかに記載のオレフィン類重合用固体触媒成分、及び
(II)下記一般式(3);
   R AlQ3-p (3)
(式中、Rは、炭素数1~6のアルキル基であり、Qは、水素原子あるいはハロゲンであり、pは、0<p≦3の実数であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは互いに同一であっても異なっていてもよい。)で表わされる有機アルミニウム化合物
を含むことを特徴とするものである。
 本発明に係るオレフィン類重合用触媒としては、
(I)本発明に係るオレフィン類重合用固体触媒成分、
(II)下記一般式(3);
   R AlQ3-p (3)
(式中、Rは炭素数1~6のアルキル基であり、Qは水素原子あるいはハロゲン原子であり、pは0<p≦3の実数であって、Rが複数存在する場合各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合各Qは互いに同一であっても異なっていてもよい。)で表わされる有機アルミニウム化合物、及び
(III)外部電子供与性化合物
を含むものであることが好ましい。
 本発明に係るオレフィン類重合用触媒を構成する(I)本発明に係るオレフィン類重合用固体触媒成分の詳細は、上述したとおりである。
 本発明に係るオレフィン類重合用触媒において、(II)有機アルミニウム化合物は、
 下記一般式(3);
   R AlQ3-p (3)
(式中、Rは炭素数1~6のアルキル基であり、Qは水素原子あるいはハロゲン原子であり、pは0<p≦3の実数であって、Rが複数存在する場合各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合各Qは互いに同一であっても異なっていてもよい。)で表わされるものである。
 このような(II)有機アルミニウム化合物の具体例としては、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリ-n-ヘキシルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムブロマイド等のハロゲン化アルキルアルミニウム、ジエチルアルミニウムハイドライド等から選ばれる一種以上が挙げられ、ジエチルアルミニウムクロライド等のハロゲン化アルキルアルミニウム、トリエチルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウムなどのトリアルキル
アルミニウム等から選ばれる一種以上が好ましく、トリエチルアルミニウム及びトリイソブチルアルミニウムから選ばれる一種以上がより好ましい。
 本発明のオレフィン類重合用触媒を構成する(III)外部電子供与性化合物としては、例えば、下記一般式(4)
  R Si(NR1011(OR124-(r+s) (4)
(式中、rは0または1~2の整数、sは0または1~2の整数、r+sは0または1~4の整数、R、R10又はR11は水素原子または炭素数1~12の直鎖状または分岐状アルキル基、置換又は未置換のシクロアルキル基、フェニル基、アリル基およびアラルキル基から選ばれるいずれかの基であって、ヘテロ原子を含有していてもよく、互いに同一であっても異なっていてもよい。R10とR11は結合して環形状を形成していてもよく、R、R10およびR11は、同一であっても異なっていてもよい。また、R12は炭素数1~4のアルキル基、シクロアルキル基、フェニル基、ビニル基、アリル基およびアラルキル基から選ばれるいずれかの基であって、ヘテロ原子を含有してもよい。)
で表される化合物が挙げられる。
 一般式(4)で表される化合物において、Rは、水素原子または炭素数1~12の直鎖状または分岐鎖状アルキル基、置換又は未置換のシクロアルキル基、フェニル基、アリル基およびアラルキル基から選ばれるいずれかの基であって、ヘテロ原子を含有していてもよい。
 Rとしては、炭素数1~10の直鎖状又は分岐状のアルキル基または炭素数5~8のシクロアルキル基が好ましく、特に炭素数1~8の直鎖状または分岐鎖状のアルキル基、炭素数5~8のシクロアルキル基が好ましい。
 一般式(4)で表される化合物において、R10またはR11は、水素原子または炭素数1~12の直鎖状または分岐鎖状アルキル基、置換又は未置換のシクロアルキル基、フェニル基、アリル基およびアラルキル基から選ばれるいずれかの基であって、ヘテロ原子を含有していてもよい。
 R10またはR11としては、炭素数1~10の直鎖状または分岐鎖状のアルキル基、炭素数5~8のシクロアルキル基が好ましく、特に炭素数1~8の直鎖又は分岐鎖状のアルキル基、炭素数5~8のシクロアルキル基が好ましい。
 また、R10とR11が結合して環形状を形成していてもよく、この場合、環形状を形成する(NR)は、パーヒドロキノリノ基、パーヒドロイソキノリノ基が好ましい。
 一般式(4)で表される化合物において、R、R10およびR11は、同一であっても異なっていてもよい。
 一般式(4)で表される化合物において、R12は、炭素数1~4のアルキル基、シクロアルキル基、フェニル基、アリル基およびアラルキル基から選ばれるいずれかの基であって、ヘテロ原子を含有してもよい。
 R12としては、炭素数1~4の直鎖状又は分岐鎖状のアルキル基が好ましい。
 このような一般式(4)で表される化合物として、具体的には、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニルアルキルアルコキシシラン、シクロアルキルアルコキシシラン、シクロアルキルアルキルアルコキシシラン、(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)シラン、アルキルアミノシラン等から選ばれる一種以上の有機ケイ素化合物を挙げることができる。
 一般式(4)におけるsが0の化合物として、特に好ましくは、ジ-n-プロピルジメトキシシラン、ジイソプロピルジメトキシシラン、ジ-n-ブチルジメトキシシラン、ジイソブチルジメトキシシラン、ジ-t-ブチルジメトキシシラン、t-ブチルメチルジメトキシシラン、t-ブチルエチルジメトキシシラン、ジ-n-ブチルジエトキシシラン、t-ブチルトリメトキシシラン、t-ブチルトリエトキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、シクロヘキシルエチルジメトキシシラン
、シクロヘキシルエチルジエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、シクロペンチルメチルジメトキシシラン、シクロペンチルメチルジエトキシシラン、シクロペンチルエチルジエトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルシクロペンチルジエトキシシラン、3-メチルシクロヘキシルシクロペンチルジメトキシシラン、4-メチルシクロヘキシルシクロペンチルジメトキシシラン、3,5-ジメチルシクロヘキシルシクロペンチルジメトキシシランから選ばれる一種以上の有機ケイ素化合物が挙げられる。
 一般式(4)におけるsが1または2の化合物としては、ジ(アルキルアミノ)ジアルコキシシラン、(アルキルアミノ)(シクロアルキルアミノ)ジアルコキシシラン、(アルキルアミノ)(アルキル)ジアルコキシシラン、ジ(シクロアルキルアミノ)ジアルコキシシラン、ビニル(アルキルアミノ)ジアルコキシシラン、アリル(アルキルアミノ)ジアルコキシシラン、(アルコキシアミノ)トリアルコキシシラン、(アルキルアミノ)トリアルコキシシラン、(シクロアルキルアミノ)トリアルコキシシラン等から選ばれる一種以上の有機ケイ素化合物を挙げることができ、特に好ましくは、エチル(t-ブチルアミノ)ジメトキシシラン、シクロヘキシル(シクロヘキシルアミノ)ジメトキシシラン、エチル(t-ブチルアミノ)ジメトキシシラン、ビス(シクロヘキシルアミノ)ジメトキシシラン、ビス(パーヒドロイソキノリノ)ジメトキシシラン、ビス(パーヒドロキノリノ)ジメトキシシラン、エチル(イソキノリノ)ジメトキシシラン、ジエチルアミノトリメトキシシラン、ジエチルアミノトリエトキシシラン等が挙げられ、中でも、ビス(パーヒドロイソキノリノ)ジメトキシシラン、ジエチルアミノトリメトキシシラン、またはジエチルアミノトリエトキシシランから選ばれる一種以上の有機ケイ素化合物である。
 なお、上記一般式(4)で表される化合物は、二種以上組み合わせて用いてもよい。
 本発明に係るオレフィン類重合用触媒は、(I)本発明に係るオレフィン類重合用固体触媒成分、(II)一般式(3)で表わされる有機アルミニウム化合物及び(III)外部電子供与性化合物を含むもの、すなわちこれ等の接触物である。
 本発明に係るオレフィン類重合用触媒は、(I)本発明に係るオレフィン類重合用固体触媒成分、(II)一般式(3)で表わされる有機アルミニウム化合物及び(III)外部電子供与性化合物をオレフィン類不存在下で接触させることにより調製してなるものであってもよいし、以下に記述するように、オレフィン類存在下で(重合系内で)接触させてなるものであってもよい。
 本発明に係るオレフィン類重合用触媒において、各成分の含有比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常、上記(I)オレフィン類重合用固体触媒成分中のチタン原子1モル当たり、上記(II)有機アルミニウム化合物を、1~2000モル含むものであることが好ましく、50~1000モル含むものであることがより好ましい。また、本発明に係るオレフィン類重合用触媒は、上記(II)有機アルミニウム化合物1モル当たり、上記(III)外部電子供与性化合物を、0.002~10モル含むものであることが好ましく、0.01~2モル含むものである
ことがより好ましく、0.01~0.5モル含むものであることがさらに好ましい。
 本発明によれば、エーテルカーボネート化合物(A)やコハク酸ジエステル化合物(B)を一定の量比で含有することにより、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)がその性能を発揮し易い最適な表面部位に選択的に吸着されて、2種類の内部電子供与性化合物の性能がいずれも効果的に発現され、かつ、これら2種類の内部電子供与性化合物が吸着した部位の活性点からは異なる成長速度で重合体が成長すると考えられる。
 このため、本発明によれば、フタル酸エステル以外の電子供与性化合物を含有するにも拘わらず、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上十分な水準を満たしつつバランスよく実現し得るオレフィン重合触媒を提供できると考えられる。
 次に、本発明に係るオレフィン類重合体の製造方法について説明する。
 本発明に係るオレフィン類重合体の製造方法は、本発明に係るオレフィン重合用触媒の存在下にオレフィン類の重合を行うことを特徴とするものである。
 本発明に係るオレフィン類重合体の製造方法において、オレフィン類の重合は単独重合であってもよいし、他のα-オレフィンとの共重合であってもよい。
 本発明に係るオレフィン類重合体の製造方法において、重合対象となるオレフィン類としては、エチレン、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、ビニルシクロヘキサン等から選ばれる一種以上を挙げることができ、中でもエチレン、プロピレン及び1-ブテンから選ばれる一種以上が好適であり、プロピレンがより好適である。
 上記オレフィン類がプロピレンである場合、プロピレンの単独重合であってもよいが、他のα-オレフィン類との共重合であってもよい。
 プロピレンと共重合されるオレフィン類としては、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、ビニルシクロヘキサン等から選ばれる一種以上を挙げることができる。
 本発明に係るオレフィン類重合用触媒がオレフィン類存在下に(重合系内で)調製してなるものである場合、各成分の使用量比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常、上述した(II)有機アルミニウム化合物を、上述した(I)オレフィン類重合用固体触媒成分中のチタン原子1モル当たり、1~2000モル接触させることが好ましく、50~1000モル接触させることがより好ましい。また、上述した(III)外部電子供与性化合物を、上記(II)有機アルミニウム化合物1モル当たり、0.002~10モル接触させることが好ましく、0.01~2モル接触させることがより好ましく、0.01~0.5モル接触させることがさらに好ましい。
 上記オレフィン類重合用触媒を構成する各成分の接触順序は任意であるが、重合系内にまず上記(II)有機アルミニウム化合物を装入し、次いで上記(III)外部電子供与性化合物を装入、接触させた後、上述した(I)オレフィン類重合用固体触媒成分を装入、接触させることが望ましい。
 本発明に係るオレフィン類重合体の製造方法は、有機溶媒の存在下行ってもよいし不存在下で行ってもよい。
 またプロピレン等のオレフィンモノマーは、気体及び液体のいずれの状態でも用いることができる。重合温度は200℃以下が好ましく、100℃以下がより好ましく、重合圧力は10MPa以下が好ましく、5MPa以下がより好ましい。また、オレフィン類の重合は、連続重合法、バッチ式重合法のいずれでも可能である。さらに、重合反応は一段で行なってもよいし、二段以上で行なってもよい。
 加えて、本発明に係るオレフィン類重合用触媒を用いてオレフィン類を重合するにあたり(本重合とも称する)、触媒活性、立体規則性及び生成する重合体の粒子性状等を一層改善させるために、本重合に先立ち予備重合を行うことが好ましく、予備重合の際には、本重合と同様のオレフィン類あるいはスチレン等のモノマーを用いることができる。
 予備重合を行うに際して、上記オレフィン類重合用触媒を構成する各成分及びモノマー(オレフィン類)の接触順序は任意であるが、好ましくは、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内に、先ず(II)有機アルミニウム化合物を装入し、次いで(I)本発明に係るオレフィン類重合用固体触媒成分を装入、接触させた後、プロピレン等のオレフィン類を単独で、又はプロピレン等のオレフィン類及びその他のオレフィン類を一種以上混合したものを接触させることが好ましい。
 上記予備重合において、予備重合系内にさらに(III)外部電子供与性化合物を装入する場合、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内に、先ず(II)有機アルミニウム化合物を装入し、次いで(III)外部電子供与性化合物を装入、接触させ、更に(I)本発明に係るオレフィン類重合用固体触媒成分を接触させた後、プロピレン等のオレフィン類を単独で、又はプロピレン等のオレフィン類及びその他のオレフィン類を一種以上混合したものを接触させることが好ましい。
 本発明に係るオレフィン類重合体の製造方法において、重合方法としては、シクロヘキサン、ヘプタン等の不活性炭化水素化合物の溶媒を使用するスラリー重合法、液化プロピレン等の溶媒を使用するバルク重合法、及び実質的に溶媒を使用しない気相重合法を挙げることができ、バルク重合法又は気相重合法が好ましい。
 プロピレンと他のα-オレフィン類の単量体との共重合を行う場合、プロピレンと少量のエチレンをコモノマーとして、1段で重合するランダム共重合と、第一段階(第一重合槽)でプロピレンの単独重合を行い、第二段階(第二重合槽)あるいはそれ以上の多段階(多段重合槽)でプロピレンとエチレン等の他のα-オレフィンとの共重合を行う、いわゆるプロピレン-エチレンブロック共重合が代表的であり、プロピレンと他のα-オレフィンとのブロック共重合が好ましい。
 ブロック共重合により得られるブロック共重合体とは、2種以上のモノマー組成が連続して変化するセグメントを含む重合体であり、モノマー種、コモノマー種、コモノマー組成、コモノマー含量、コモノマー配列、立体規則性などポリマーの一次構造の異なるポリマー鎖(セグメント)が1分子鎖中に2種類以上繋がっている形態のものをいう。
 本発明に係るオレフィン類重合体の製造方法において、プロピレンと他のα-オレフィン類とのブロック共重合反応は、通常、本発明に係るオレフィン類重合用触媒の存在下、前段でプロピレン単独あるいは、プロピレンと少量のα-オレフィン(エチレン等)とを接触させ、次いで後段でプロピレンとα-オレフィン(エチレン等)とを接触させることにより実施することができる。なお、上記前段の重合反応を複数回繰り返し実施してもよいし、上記後段の重合反応を複数回繰り返し多段反応により実施してもよい。
 プロピレンと他のα-オレフィン類とのブロック共重合反応は、具体的には、前段で(最終的に得られる共重合体に占める)ポリプロピレン部の割合が20~90質量%になるように重合温度及び時間を調整して重合を行ない、次いで後段において、プロピレン及びエチレンあるいは他のα-オレフィンを導入し、(最終的に得られる共重合体に占める)エチレン-プロピレンゴム(EPR)などのゴム部割合が10~80質量%になるように重合することが好ましい。
 前段及び後段における重合温度は共に、200℃以下が好ましく、100℃以下がより好ましく、75~80℃がさらに好ましく、重合圧力は、10MPa以下が好ましく、6MPa以下がより好ましく、5MPa以下がさらに好ましい。
 上記共重合反応においても、連続重合法、バッチ式重合法のいずれの重合法も採用することができ、重合反応は1段で行なってもよいし、2段以上で行なってもよい。
 また、重合時間(反応炉内の滞留時間)は、前段又は後段の各重合段階のそれぞれの重合段階で、あるいは連続重合の際においても、1分~5時間であることが好ましい。
 重合方法としては、シクロヘキサン、ヘプタン等の不活性炭化水素化合物の溶媒を使用するスラリー重合法、液化プロピレン等の溶媒を使用するバルク重合法、実質的に溶媒を使用しない気相重合法が挙げられ、バルク重合法又は気相重合法が好適であり、後段の反応は一般的にはEPRのPP粒子からの溶出を抑える目的から気相重合反応であることが好ましい。
 本発明によれば、立体規則性、分子量分布の広さ、共重合活性および共重合体のブロック率について実用上十分な水準をバランスよく満たすオレフィン類重合体を容易に製造する方法を提供することができる。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(実施例1)
1.固体触媒成分の合成
 攪拌機を具備し、窒素ガスで充分に置換された容量200mlの丸底フラスコに、ジエトキシマグネシウム10g(87.4ミリモル)、2,3-ジイソプロピルコハク酸ジエチル3.0ml(11.2ミリモル)及びトルエン50mlを装入し、懸濁状態とした。
 次いで、該懸濁液を、攪拌機を具備し、窒素ガスで充分に置換された容量500mlの丸底フラスコに予め装てんされたトルエン70ml及びチタンテトラクロライド30mlの混合溶液中に添加した。
 次いで、(2-エトキシエチル)エチルカーボネート(分子量162.18、比重1.011)0.25ml(1.6ミリモル)及び2,3-ジイソプロピルコハク酸ジエチル(分子量258.35、比重0.963)3.0ml(11.2ミリモル)を加え、攪拌しながら温度を100℃まで上昇させ、該懸濁液を100℃まで昇温した後、攪拌しながら100℃で90分反応処理した後、反応生成物を100℃のトルエン75mlで4回洗浄した。
 次に、新たに四塩化チタン10容量%のトルエン溶液100mlを加え、攪拌しながら100℃に昇温し、100℃で15分間反応させた後、生成物を100℃のトルエン100mlで1回洗浄する操作を3回行い、さらに40℃のn-ヘプタン75mlで6回洗浄して固体触媒成分を得た。
 この固体触媒成分の固液を分離して、得られた固体分中のチタン含有量、(2-エトキシエチル)エチルカーボネートの含有量及びコハク酸ジイソプロピルの含有量を測定したところ、それぞれ、3.85質量%、1.88質量%、16.64質量%であった。また、(2-エトキシエチル)エチルカーボネートの含有量/2,3-ジイソプロピルコハク酸ジエチルの含有量で表されるモル比は0.18であった。
 なお、固体分中のチタン含有量、エーテルカーボネート化合物(A)に相当する(2-エトキシエチル)エチルカーボネートの含有量、コハク酸ジエステル化合物(B)に相当するコハク酸ジイソプロピルの含有量は、下記のようにして測定した。
<固体分中のチタン含有量>
 固体分中のチタン含有量は、JIS M 8301の方法に準じて測定した。
<固体分中の電子供与性化合物(エーテルカーボネート化合物(A)、コハク酸ジエステル化合物(B))含有量>
 電子供与性化合物の含有量は、ガスクロマトグラフィー((株)島津製作所製、GC-14B)を用いて以下の条件にて測定することで求めた。また、各成分のモル数については、ガスクロマトグラフィーの測定結果より、予め既知濃度において測定した検量線を用いて求めた。
(測定条件)
・カラム:パックドカラム(φ2.6×2.1m,Silicone SE-30 10%,Chromosorb WAW DMCS 80/100、ジーエルサイエンス(株)社製)
・検出器:FID(Flame Ionization Detector,水素炎イオン化型検出器)
・キャリアガス:ヘリウム、流量40ml/分
・測定温度:気化室280℃、カラム225℃、検出器280℃
2.重合触媒の形成及び重合反応
 窒素ガスで完全に置換された内容積2.0リットルの攪拌機付オートクレーブに、トリエチルアルミニウム1.32ミリモル、ジシクロペンチルジメトキシシラン(DCPDMS)0.13ミリモル及び前記固体触媒成分をチタン原子として0.0026ミリモル装入し、重合用触媒を形成した。その後、水素ガス1.5リットル、液化プロピレン1.4リットルを装入し、20℃で5分間予備重合を行なった後に昇温し、70℃で1時間の重合反応を行なった。
 このときの固体触媒成分1g当たりの重合活性、重合体の嵩密度(BD)、重合体のp-キシレン可溶分の割合(XS)、重合体の溶融流れ性(MFR)、重合体の分子量分布(Mw/Mn)を以下の方法で測定した。結果を表1に示す。
<固体触媒成分1g当たりの重合活性>
 固体触媒成分1g当たりの重合活性については、下記式により求めた。
 重合活性(g-pp/g-触媒)=重合体の質量(g)/固体触媒成分の質量(g)
<重合体の嵩密度(BD)>
重合体の嵩密度(BD)は、JIS K6721に従って測定した。
<重合体の溶融流れ性(MFR)>
 重合体の溶融流れ性を示すメルトフローレート(MFR)(g/10分間)を、ASTM D 1238、JIS K 7210に準じて測定した。
<重合体のp-キシレン可溶分の割合(XS)>
 攪拌装置を具備したフラスコ内に、4.0gの重合体(ポリプロピレン)と、200mlのp-キシレンを装入し、外部温度をキシレンの沸点以上(約150℃)とすることにより、フラスコ内部のp-キシレンの温度を沸点下(137~138℃)に維持しつつ、2時間かけて重合体を溶解した。その後1時間かけて液温を23℃まで冷却し、不溶解成分と溶解成分とを濾過分別した。上記溶解成分の溶液を採取し、加熱減圧乾燥によりp-キシレンを留去し、得られた残留物の重量を求め、生成した重合体(ポリプロピレン)に対する相対割合(質量%)を算出して、キシレン可溶分(XS)とした。
<重合体の分子量分布>
 重合体の分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)(Waters社製GPCV2000)にて以下の条件で測定して求めた質量平均分子量Mw及び数平均分子量Mnの比Mw/Mnによって評価した。
 溶媒:o-ジクロロベンゼン(ODCB)
 温度:140℃(SEC)
 カラム:Shodex GPC UT-806M
 サンプル濃度:1g/liter-ODCB(50mg/50ml-ODCB)
 注入量:0.5ml
 流量:1.0ml/min
3.共重合反応
 窒素ガスで完全に置換された内容積2.0リットルの撹拌機付オートクレープに、トリエチルアルミニウム2.4ミリモル、ジシクロペンチルジメトキシシラン(DCPDMS)0.24ミリモル及び前記固体触媒成分をチタン原子換算で0.003ミリモル装入し、プロピレン系ブロック共重合触媒を調製した。
 上記プロピレン系プロック共重合触媒の存在下、さらに液化プロピレン15モルと水素ガス0.20MPa(分圧)を装入し、20℃で5分間予備重合を行なった後、70℃で75分間、一段目のホモプロピレン(ホモ段)重合反応を行なった。ホモ段重合終了後、反応機の温度を室温に下げつつモノマーをパージし、その後オートクレーブ全体の重量を計量することで、重合開始前にあらかじめ秤量した重量との差から前段の重合量を求めた。窒素下でMFR測定用に一部のポリマーをサンプリングした後、再度モノマー供給ライン等を接続し、エチレン/プロピレン/水素を、それぞれモル比が1.0/1.0/0.043となるように上記撹拌機付オートクレープ内に投入した後、70℃まで昇温し、エチレン/プロピレン/水素を、それぞれリットル/分が2/2/0.086の割合となるように導入しつつ、1.2MPa、70℃、1時間の条件で重合反応することにより、エチレン-プロピレン共重合体を得た。
 得られたエチレン-プロピレン共重合体について、エチレン-プロピレンブロック共重合活性(ICP活性)、ブロック率(CV)及びEPR含有率を、以下の方法により測定した。結果を表1に示す。
<エチレン-プロピレンブロック共重合活性(ICP活性)(g-ICP/(g-cat))>
 固体触媒成分1g当たりのエチレン-プロピレンブロック共重合時におけるエチレン-プロピレンブロック共重合活性(ICP活性)は、以下の式により算出した。
 ICP活性(g-ICP/g-cat)=(I+J-F)/(エチレン-プロピレン共重合用触媒に含まれる固体触媒成分の質量(g))
(ここで、Fはオートクレーブ質量(g)、Iは共重合反応終了後のオートクレーブ質量(g)、Jはホモ重合後に一部抜き出したポリマー量(g)である。)
<ブロック率(CV)>
 エチレン-プロピレン共重合体のブロック率(CV)を、下記式により求めた。
 ブロック率(質量%)={(I-G+J)÷(I-F)}×100
(ここで、Fはオートクレーブ質量(g)、Gは1段目重合(ホモ段の重合)終了後、未反応モノマーを除去した後のオートクレーブ質量(g)、Iは共重合反応終了後のオートクレーブ質量(g)、Jはホモ重合後に一部抜き出したポリマー量(g)である。)
<EPR含有率(エチレン-プロピレンブロック共重合体中のキシレン可溶分量)>
 撹拌装置を具備したフラスコ内に、5.0gの共重合体(エチレン-プロピレンブロック共重合体)と、250mlのp-キシレンを装入し、外部温度をキシレンの沸点以上(約150℃)とすることにより、フラスコ内部のp-キシレンの温度を沸点下(137~138℃)に維持しつつ、2時聞かけて重合体を溶解した。その後1時聞かけて液温を23℃まで冷却し、キシレン可溶分(EPR)とキシレン不溶分(XI)を漏過分別した。
 上記可溶分を溶液ごと採取し、加熱減圧乾燥によりp-キシレンを留去し、得られた残留物の重量を求め、生成した重合体(エチレン-プロピレンブロック共重合体)に対する相対割合(質量%)を算出して、EPR含有率とした。
(実施例2)
 実施例1の「1.固体触媒成分の合成」において、ジエトキシマグネシウム10g(87.4ミリモル)、2,3-ジイソプロピルコハク酸ジエチル3ml(11.2ミリモル)及びトルエン50mlを装入する代わりに、ジエトキシマグネシウム10g(87.4ミリモル)、2,3-ジイソプロピルコハク酸ジエチル(分子量258.35、比重0.963)2.0ml(7.3ミリモル)及びトルエン50mlを装入し、さらに、(2-エトキシエチル)エチルカーボネートを0.25ml(1.6ミリモル)及び2,3-ジイソプロピルコハク酸ジエチル3.0ml(11.2ミリモル)を加える代わりに、(2-
エトキシエチル)エチルカーボネート(分子量162.18、比重1.011)0.6ml(3.8ミリモル)及び2,3-ジイソプロピルコハク酸ジエチル(分子量258.35、比重0.963)2.6ml(9.5ミリモル)を加えた以外は、実施例1と同様にして固体触媒成分を調製した。
 得られた固体状の固体触媒成分中の、チタン含有量、(2-エトキシエチル)エチルカーボネートの含有量及び2,3-ジイソプロピルコハク酸ジエチルの含有量を測定したところ、それぞれ、3.26質量%、5.46質量%、12.65質量%であった。また、(2-エトキシエチル)エチルカーボネートの含有量/2,3-ジイソプロピルコハク酸ジエチルの含有量で表されるモル比は0.69であった。
 次いで、上記固体触媒成分を用いた以外は、実施例1の「2.重合触媒の形成及び重合」と同様の方法で重合触媒の形成及び重合を行った。このときの固体触媒成分1g当たりの重合活性、重合体の嵩密度(BD)、重合体のp-キシレン可溶分の割合(XS)、重合体の溶融流れ性(MFR)及び重合体の分子量分布(Mw/Mn)を実施例1と同様の方法で測定した。結果を表1に示す。
 また、実施例1の「3.共重合反応」と同様の方法で共重合反応を行った。このときのエチレン-プロピレンブロック共重合活性(ICP活性)、ブロック率(CV)及びEPR含有率を実施例1と同様の方法で測定した。結果を表1に示す。
(実施例3)
 実施例1の「1.固体触媒成分の合成」において、ジエトキシマグネシウム10g(87.4ミリモル)、2,3-ジイソプロピルコハク酸ジエチル3ml(11.2ミリモル)及びトルエン50mlを装入する代わりに、ジエトキシマグネシウム10g(87.4ミリモル)、2,3-ジイソプロピルコハク酸ジエチル(分子量258.35、比重0.963)2.8ml(10.2ミリモル)及びトルエン50mlを装入し、さらに、(2-エトキシエチル)エチルカーボネート0.25ml(1.6ミリモル)及び2,3-ジイソプロピルコハク酸ジエチル3.0ml(11.2ミリモル)を加える代わりに、(2-
エトキシエチル)エチルカーボネート(分子量162.18、比重1.011)1.0ml(6.4ミリモル)及び2,3-ジイソプロピルコハク酸ジエチル(分子量258.35、比重0.963)2.8ml(10.2ミリモル)を加えた以外は、実施例1と同様にして固体触媒成分を調製した。
 得られた固体状の固体触媒成分中の、チタン含有量、(2-エトキシエチル)エチルカーボネートの含有量及び2,3-ジイソプロピルコハク酸ジエチルの含有量を測定したところ、それぞれ、3.60質量%、7.18質量%、14.17質量%であった。また、(2-エトキシエチル)エチルカーボネートの含有量/2,3-ジイソプロピルコハク酸ジエチルの含有量で表されるモル比は0.81であった。
 次いで、上記固体触媒成分を用いた以外は、実施例1の「2.重合触媒の形成及び重合」と同様の方法で重合触媒の形成及び重合を行った。このときの固体触媒成分1g当たりの重合活性、重合体の嵩密度(BD)、重合体のp-キシレン可溶分の割合(XS)、重合体の溶融流れ性(MFR)及び重合体の分子量分布(Mw/Mn)を実施例1と同様の方法で測定した。結果を表1に示す。
 また、実施例1の「3.共重合反応」と同様の方法で共重合反応を行った。このときのエチレン-プロピレンブロック共重合活性(ICP活性)、ブロック率(CV)及びEPR含有率を実施例1と同様の方法で測定した。結果を表1に示す。
(比較例1)
 実施例1の「1.固体触媒成分の合成」において、(2-エトキシエチル)エチルカーボネート0.25ml(1.6ミリモル)を添加しなかった以外は、実施例1と同様にして固体触媒成分を調製した。
 得られた固体状の固体触媒成分中の、チタン含有量及び2,3-ジイソプロピルコハク酸ジエチルの含有量を測定したところ、それぞれ、3.91質量%及び16.36質量%であった。また、(2-エトキシエチル)エチルカーボネートの含有量/2,3-ジイソプロピルコハク酸ジエチルの含有量で表されるモル比は0であった。
 次いで、上記固体触媒成分を用いた以外は、実施例1の「2.重合触媒の形成及び重合」と同様の方法で重合触媒の形成及び重合を行った。このときの固体触媒成分1g当たりの重合活性、重合体の嵩密度(BD)、重合体のp-キシレン可溶分の割合(XS)、重合体の溶融流れ性(MFR)及び重合体の分子量分布(Mw/Mn)を実施例1と同様の方法で測定した。結果を表1に示す。
 また、実施例1の「3.共重合反応」と同様の方法で共重合反応を行った。このときのエチレン-プロピレンブロック共重合活性(ICP活性)、ブロック率(CV)及びEPR含有率を実施例1と同様の方法で測定した。結果を表1に示す。
(比較例2)
 実施例1の「1.固体触媒成分の合成」において、2,3-ジイソプロピルコハク酸ジエチルを加える代わりに同モルの(2-エトキシエチル)エチルカーボネートを加えた以外は、実施例1と同様にして固体触媒成分を調製した。
 得られた固体状の固体触媒成分中の、チタン含有量及び(2-エトキシエチル)エチルカーボネートの含有量を測定したところ、それぞれ、1.71質量%及び7.96質量%であった。
 次いで、上記固体触媒成分を用いた以外は、実施例1の「2.重合触媒の形成及び重合」と同様の方法で重合触媒の形成及び重合を行った。このときの固体触媒成分1g当たりの重合活性、重合体の嵩密度(BD)、重合体のp-キシレン可溶分の割合(XS)、重合体の溶融流れ性(MFR)及び重合体の分子量分布(Mw/Mn)を実施例1と同様の方法で測定した。結果を表1に示す。
 また、実施例1の「3.共重合反応」と同様の方法で共重合反応を行った。このときのエチレン-プロピレンブロック共重合活性(ICP活性)、ブロック率(CV)及びEPR含有率を実施例1と同様の方法で測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1より、実施例1~実施例3においては、マグネシウム原子、チタン原子及びハロゲン原子とともに、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を特定の比で含むことにより、得られるプロピレン重合体は、XSが低く高い立体規則性が維持されるとともに、Mw/Mnが大きい(分子量分布が広い)重合体が得られることが分かり、また、共重合時にブロック率やEPR含有率の高い機械的強度が良好な共重合体を好適に調製し得ることが分かる。
 一方、表1より、比較例1においては、オレフィン重合用固体触媒成分が、コハク酸ジエステル化合物(B)とともに所定量のエーテルカーボネート化合物(A)を含まないことから、実施例1等に比較して、得られるプロピレン重合体のXSが高く(立体規則性に劣り)、得られる共重合体のブロック率やEPR含有率が低く機械的強度に劣るものであることが分かる。
 また、表1より、比較例2においては、オレフィン重合用固体触媒成分が、エーテルカーボネート化合物(A)とともに所定量のコハク酸ジエステル化合物(B)を含まないことから、実施例1等に比較して、得られるプロピレン重合体の分子量分布が狭く、プロピレン重合活性や共重合時のICP活性に劣ることが分かる。
 本発明によれば、フタル酸エステル以外の電子供与性化合物を含むものであるにも拘わらず、得られる重合体の立体規則性および分子量分布の広さ、共重合活性ならびに得られる共重合体のブロック率について実用上十分な水準を満たしつつバランスよく実現し得るオレフィン重合用固体触媒成分を提供するとともに、係るオレフィン類重合用固体触媒成分を用いたオレフィン重合用触媒及びオレフィン類重合体の製造方法を提供することができる。

Claims (7)

  1.  マグネシウム、チタン、ハロゲン、エーテルカーボネート化合物(A)及びコハク酸ジエステル化合物(B)を含み、下記式
    (エーテルカーボネート化合物(A)の含有量/コハク酸ジエステル化合物(B)の含有量)
    で表されるモル比が、0.01~1.00である
    ことを特徴とするオレフィン類重合用固体触媒成分。
  2.  前記エーテルカーボネート化合物(A)が、下記一般式(1);
      R-O-C(=O)-O-Z-O-R  (1)
    (式中、R及びRは、炭素数1~20の直鎖状アルキル基、炭素数3~20の分岐アルキル基、ビニル基、炭素数3~20の直鎖状アルケニル基又は分岐アルケニル基、炭素数1~20の直鎖状ハロゲン置換アルキル基、炭素数3~20の分岐ハロゲン置換アルキル基、炭素数2~20の直鎖状ハロゲン置換アルケニル基、炭素数3~20の分岐ハロゲン置換アルケニル基、炭素数3~20のシクロアルキル基、炭素数3~20のシクロアルケニル基、炭素数3~20のハロゲン置換シクロアルキル基、炭素数3~20のハロゲン置換シクロアルケニル基、炭素数6~24の芳香族炭化水素基、炭素数6~24のハロゲン置換芳香族炭化水素基、結合末端が炭素原子である炭素数2~24の窒素原子含有炭化水素基、結合末端が炭素原子である炭素数2~24の酸素原子含有炭化水素基又は結合末端が炭素原子である炭素数2~24のリン含有炭化水素基を示し、R及びRは互いに同一であっても異なっていてもよく、但し、該炭素数2~24の窒素原子含有炭化水素基は、結合末端がC=N基であるもの、該炭素数2~24の酸素原子含有炭化水素基は、結合末端がカルボニル基であるもの、該炭素数2~24のリン含有炭化水素基は、結合末端がC=P基であるものをそれぞれ除く。Zは、炭素原子又は炭素鎖を介して結合する結合性基を示す。)
    で表される化合物から選ばれる一種以上である請求項1に記載のオレフィン類重合用固体触媒成分。
  3.  前記コハク酸エステル化合物(B)が、下記一般式(2);
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは、水素原子又は炭素数1~4のアルキル基であって互いに同一であってもよいし異なっていてもよく、R及びRは、炭素数2~4の直鎖アルキル基又は分岐アルキル基であって互いに同一であってもよいし異なっていてもよい。)
    で表される化合物から選ばれる一種以上である請求項1に記載のオレフィン類重合用固体触媒成分。
  4. (I)請求項1に記載のオレフィン類重合用固体触媒成分、及び
    (II)下記一般式(3);
      R AlQ3-p (3)
    (式中、Rは、炭素数1~6のアルキル基であり、Qは、水素原子あるいはハロゲンであり、pは、0<p≦3の実数であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは互いに同一であっても異なっていてもよい。)
    で表わされる有機アルミニウム化合物を含むことを特徴とするオレフィン類重合用触媒。
  5. (I)請求項1に記載のオレフィン類重合用固体触媒成分、
    (II)下記一般式(3);
      R AlQ3-p (3)
    (式中、Rは、炭素数1~6のアルキル基であり、Qは、水素原子あるいはハロゲンであり、pは、0<p≦3の実数であり、Rが複数存在する場合、各Rは互いに同一であっても異なっていてもよく、Qが複数存在する場合、各Qは互いに同一であっても異なっていてもよい。)
    で表わされる有機アルミニウム化合物、及び
    (III)外部電子供与性化合物
    を含む請求項4に記載のオレフィン類重合用触媒。
  6.  請求項4に記載のオレフィン重合用触媒の存在下にオレフィン類の重合を行うことを特徴とするオレフィン類重合体の製造方法。
  7.  請求項5に記載のオレフィン重合用触媒の存在下にオレフィン類の重合を行うことを特徴とするオレフィン類重合体の製造方法。

     
PCT/JP2021/010320 2020-04-28 2021-03-15 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法 WO2021220645A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021538004A JP7036995B1 (ja) 2020-04-28 2021-03-15 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィ類重合体の製造方法
EP21795462.7A EP4144767A4 (en) 2020-04-28 2021-03-15 SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, CATALYST FOR OLEFIN POLYMERIZATION AND METHOD FOR PRODUCING AN OLEFIN POLYMER
US17/921,666 US20230174684A1 (en) 2020-04-28 2021-03-15 Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing polymer of olefin
CN202180031370.XA CN115515988A (zh) 2020-04-28 2021-03-15 烯烃类聚合用固体催化剂成分、烯烃类聚合用催化剂和烯烃类聚合物的制造方法
KR1020227041475A KR20230003087A (ko) 2020-04-28 2021-03-15 올레핀류 중합용 고체 촉매 성분, 올레핀류 중합용 촉매 및 올레핀류 중합체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020079595 2020-04-28
JP2020-079595 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021220645A1 true WO2021220645A1 (ja) 2021-11-04

Family

ID=78373479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010320 WO2021220645A1 (ja) 2020-04-28 2021-03-15 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法

Country Status (7)

Country Link
US (1) US20230174684A1 (ja)
EP (1) EP4144767A4 (ja)
JP (1) JP7036995B1 (ja)
KR (1) KR20230003087A (ja)
CN (1) CN115515988A (ja)
TW (1) TW202146470A (ja)
WO (1) WO2021220645A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171433A1 (ja) * 2022-03-11 2023-09-14 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法及びオレフィン類重合体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS584132A (ja) 1981-07-01 1983-01-11 Toshiba Corp 立体像観察装置
JPS6251633A (ja) 1985-08-28 1987-03-06 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ オレフィン重合触媒成分を製造する方法
JPH0374341A (ja) 1989-08-16 1991-03-28 Korukooto Eng Kk 球形で粒度分布の狭いマグネシウムアルコラートの合成方法
JPH04368391A (ja) 1991-06-18 1992-12-21 Idemitsu Petrochem Co Ltd マグネシウムジアルコキシドの製造方法
JPH0873388A (ja) 1994-09-07 1996-03-19 Nippon Soda Co Ltd マグネシウムエチラート球状微粒品の製造方法
WO2016121551A1 (ja) * 2015-01-30 2016-08-04 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合触媒の製造方法およびオレフィン類重合体の製造方法
CN107344979A (zh) * 2016-05-05 2017-11-14 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分、催化剂体系及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6234682B2 (ja) * 2013-02-27 2017-11-22 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
EP3098243B1 (en) * 2014-01-20 2020-11-18 Toho Titanium Co., Ltd. Solid catalyst component for use in polymerization of olefins, method for producing same, catalyst for use in polymerization of olefins, and method for producing olefin polymer
CN104479055B (zh) * 2014-11-27 2017-06-06 任丘市利和科技发展有限公司 一种二烷氧基镁载体型固体催化剂组分和催化剂
JP6670081B2 (ja) * 2015-11-24 2020-03-18 東邦チタニウム株式会社 オレフィン類重合用触媒の製造方法
US11008408B2 (en) * 2016-03-28 2021-05-18 Toho Titanium Co., Ltd. Alkoxymagnesium, method for producing alkoxymagnesium, solid catalyst component for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
RU2762191C2 (ru) * 2016-10-03 2021-12-16 Тохо Титаниум Ко., Лтд. Твердый каталитический компонент для полимеризации олефинов, способ получения твердого каталитического компонента для полимеризации олефинов, катализатор полимеризации олефинов, способ получения полимера олефина, способ получения сополимера пропилена и сополимер пропилена
JP6810653B2 (ja) * 2017-04-28 2021-01-06 東邦チタニウム株式会社 オレフィン類重合体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS584132A (ja) 1981-07-01 1983-01-11 Toshiba Corp 立体像観察装置
JPS6251633A (ja) 1985-08-28 1987-03-06 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ オレフィン重合触媒成分を製造する方法
JPH0374341A (ja) 1989-08-16 1991-03-28 Korukooto Eng Kk 球形で粒度分布の狭いマグネシウムアルコラートの合成方法
JPH04368391A (ja) 1991-06-18 1992-12-21 Idemitsu Petrochem Co Ltd マグネシウムジアルコキシドの製造方法
JPH0873388A (ja) 1994-09-07 1996-03-19 Nippon Soda Co Ltd マグネシウムエチラート球状微粒品の製造方法
WO2016121551A1 (ja) * 2015-01-30 2016-08-04 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合触媒の製造方法およびオレフィン類重合体の製造方法
CN107344979A (zh) * 2016-05-05 2017-11-14 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分、催化剂体系及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4144767A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171433A1 (ja) * 2022-03-11 2023-09-14 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合体の製造方法及びオレフィン類重合体

Also Published As

Publication number Publication date
JPWO2021220645A1 (ja) 2021-11-04
EP4144767A4 (en) 2024-05-15
KR20230003087A (ko) 2023-01-05
TW202146470A (zh) 2021-12-16
US20230174684A1 (en) 2023-06-08
CN115515988A (zh) 2022-12-23
JP7036995B1 (ja) 2022-03-15
EP4144767A1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
JP5624680B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
JP6577964B2 (ja) オレフィン類重合触媒の製造方法およびオレフィン類重合体の製造方法
JP6297022B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP6283653B2 (ja) プロピレン系ブロック共重合体の製造方法
JP6515038B2 (ja) オレフィン類重合用固体触媒成分、その製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP7212625B2 (ja) オレフィン類重合用触媒、オレフィン類重合用触媒の製造方法、オレフィン類重合体の製造方法およびプロピレン-α-オレフィン共重合体
WO2016121551A1 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合触媒の製造方法およびオレフィン類重合体の製造方法
JP6847098B2 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP6925924B2 (ja) オレフィン類重合用触媒、オレフィン類重合用触媒の製造方法、オレフィン類重合体の製造方法およびプロピレン−α−オレフィン共重合体
JP7036995B1 (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィ類重合体の製造方法
WO2022004205A1 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒、オレフィン類重合用触媒の製造方法及びオレフィン類重合体の製造方法
JP7145149B2 (ja) オレフィン類重合用触媒、オレフィン類重合体の製造方法およびプロピレン-α-オレフィン共重合体
WO2021240955A1 (ja) オレフィン類重合用触媒の製造方法、オレフィン類重合用触媒およびオレフィン類重合体の製造方法
JP2013075992A (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
WO2023145153A1 (ja) オレフィン類重合用固体触媒成分及びその製造方法、オレフィン類重合用触媒の製造方法、並びにオレフィン類重合体の製造方法
JP2022181400A (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒、オレフィン類重合体の製造方法、オレフィン類重合体、プロピレン系ブロック共重合体の製造方法及びプロピレン系ブロック共重合体
JP2020139048A (ja) オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
JPWO2020035962A1 (ja) オレフィン類重合用触媒、オレフィン類重合用触媒の製造方法、オレフィン類重合体の製造方法およびオレフィン類重合体
KR20180100658A (ko) 올레핀류 중합용 고체 촉매 성분, 올레핀류 중합용 촉매 및 올레핀류 중합체의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021538004

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227041475

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021795462

Country of ref document: EP

Effective date: 20221128