WO2017086265A1 - 光学フィルム及び偏光板 - Google Patents
光学フィルム及び偏光板 Download PDFInfo
- Publication number
- WO2017086265A1 WO2017086265A1 PCT/JP2016/083670 JP2016083670W WO2017086265A1 WO 2017086265 A1 WO2017086265 A1 WO 2017086265A1 JP 2016083670 W JP2016083670 W JP 2016083670W WO 2017086265 A1 WO2017086265 A1 WO 2017086265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical film
- polymer
- compound hydride
- hydride unit
- block
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
- C08F297/04—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
- C08F297/046—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
- C08F297/04—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
- C08L53/025—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08J2323/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2353/00—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
- C08J2353/02—Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
Definitions
- the present invention relates to an optical film and a polarizing plate, and more particularly to an optical film suitable for use as a film for protecting a polarizer in a polarizing plate and a polarizing plate provided with such an optical film.
- Various optical films are provided on display devices such as liquid crystal display devices.
- a liquid crystal display device is usually provided with a polarizing plate, and the polarizing plate is usually provided with a polarizer composed of a resin such as polyvinyl alcohol and a protective film for protecting the polarizer.
- a polarizer composed of a resin such as polyvinyl alcohol
- a protective film for protecting the polarizer.
- Various materials have been proposed as a material for the protective film. For example, use of a block copolymer containing a block of an aromatic vinyl compound hydride and a block of a diene compound hydride has been proposed (Patent Document 1).
- the protective film in the polarizing plate Various properties are required for the protective film in the polarizing plate. For example, even if the thickness is small, durability that does not cause defects is required in the manufacturing process of the display device. Furthermore, it is required that a display device with little reduction in display quality can be configured during use. For example, when a display device is used, it is required to reduce the occurrence of inconveniences such as the polarizing plate being deformed to cause light leakage and the display quality during black display to be reduced.
- an object of the present invention is to provide a display device that can have a durability that does not cause a defect in the manufacturing process of the display device even if the thickness is small, and that reduces display quality during use.
- An object is to provide an optical film and a polarizing plate.
- the present inventors have specific heat resistance, tear strength, and water vapor transmission rate, and the absolute values of in-plane retardation Re and thickness direction retardation Rth are specific. It was found that an optical film having a value can solve the above problem. The present inventor has further found that the optical film can be manufactured using a material containing a polymer having a specific unit.
- the present invention has been completed based on the above findings. That is, according to the present invention, the following [1] to [9] are provided.
- Heat resistance is 120 ° C. or more, tear strength is 1.5 N / mm or more, water vapor transmission rate is 50 g / m 2 ⁇ day or less, in-plane retardation Re and thickness direction retardation Rth
- the optical film according to [1] including a polymer having an aromatic vinyl compound hydride unit (a) and a diene compound hydride unit (b).
- the polymer is Block A having the aromatic vinyl compound hydride unit (a);
- the aromatic vinyl compound hydride unit (a) is a unit obtained by polymerizing styrene and hydrogenating
- a polarizing plate comprising the optical film according to any one of [1] to [8] and a polarizer layer.
- the optical film and the polarizing plate of the present invention can have a durability that does not cause defects in the manufacturing process of the display device even when the thickness is thin, and the display device has little reduction in display quality during use. Can be configured.
- the optical film of the present invention includes a light source and a liquid crystal cell, and in a liquid crystal display device having polarizing plates on both the light source side and the display surface side of the liquid crystal cell, the position on the light source side relative to the polarizer on the display surface side.
- a protective film used in it can be suitably used.
- the present invention will be described in detail with reference to embodiments and examples. However, the present invention is not limited to the following embodiments and exemplifications, and can be implemented with any modifications without departing from the scope of the claims of the present invention and the equivalents thereof.
- the “polarizing plate” includes not only a rigid member but also a flexible member such as a resin film, unless otherwise specified.
- optical film of the present invention has specific heat resistance, tear strength, and water vapor transmission rate, and the absolute values
- the heat resistance of the optical film of the present invention is 120 ° C. or higher, preferably 125 ° C. or higher.
- heat resistance of a film means that a film is cut into a 5 mm ⁇ 20 mm shape and used as a sample, and this is measured in a state where a tension of 50 mN is applied in the longitudinal direction of the sample in TMA measurement. Is the temperature when the linear expansion changes by 5%.
- the upper limit of heat resistance is not specifically limited, For example, it may be 160 degrees C or less.
- the tear strength of the optical film of the present invention is 1.5 N / mm or more, preferably 1.6 N / mm or more.
- the tear strength of a film is evaluated according to a trouser tear test method (JIS K7128-1).
- the upper limit of the tear strength is not particularly limited, but may be, for example, 10 N / mm or less.
- the unit of tear strength is N / mm, which is an index for evaluating the film thickness with a value related to 1 mm.
- the water vapor transmission rate of the optical film of the present invention is 50 g / m 2 ⁇ day or less, preferably 30 g / m 2 ⁇ day or less.
- the water vapor transmission rate is a value measured using a water vapor transmission rate measuring device ("PERMATRAN-W" manufactured by MOCON) in accordance with JIS K 7129 B-1992 at a temperature of 40 ° C and a humidity of 90% RH. Yes.
- the lower limit of the water vapor transmission rate is not particularly limited, but can ideally be 0 g / m 2 ⁇ day.
- of the in-plane retardation Re and the thickness direction retardation Rth of the optical film of the present invention are both 1 nm or less, preferably 0.5 nm or less.
- the values of Re and Rth can be measured using a phase difference meter (for example, Axoscan, manufactured by AXOMETRICS).
- are not particularly limited, but both are ideally 0.
- Re and Rth can be values for light having a wavelength of 590 nm.
- the optical film of the present invention has the above-mentioned various characteristics, so that even if the thickness is small, the optical film can have durability that does not cause defects in the manufacturing process of the display device, and the display quality at the time of use. Thus, a display device with a small reduction can be configured. As a result, it can be used as an optical film useful in applications such as a polarizing plate protective film.
- the optical film having the above-mentioned various characteristics can be obtained by adopting a resin containing the polymer X described below as the material.
- the optical film of the present invention preferably contains a polymer having an aromatic vinyl compound hydride unit (a) and a diene compound hydride unit (b).
- a polymer having an aromatic vinyl compound hydride unit (a) and a diene compound hydride unit (b) may be referred to as “polymer X”.
- the optical film of the present invention can be a film made of a resin containing the polymer X. When the resin constituting the optical film contains the polymer X, an optical film having the above various characteristics can be easily obtained.
- the aromatic vinyl compound hydride unit (a) is a repeating unit having a structure obtained by polymerizing an aromatic vinyl compound and hydrogenating an unsaturated bond thereof.
- the aromatic vinyl compound hydride unit (a) includes units obtained by any production method as long as it has the structure.
- a repeating unit having a structure obtained by polymerizing styrene and hydrogenating the unsaturated bond may be referred to as a styrene hydride unit.
- the styrene hydride unit also includes a unit obtained by any production method as long as it has the structure.
- Examples of the aromatic vinyl compound hydride unit (a) include repeating units represented by the following structural formula (1).
- R c represents an alicyclic hydrocarbon group.
- R c include cyclohexyl groups such as cyclohexyl group; decahydronaphthyl groups and the like.
- R 1 , R 2 and R 3 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group or an imide group.
- R 1 , R 2 and R 3 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoints of heat resistance, low birefringence and mechanical strength.
- the chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
- a more specific example of the aromatic vinyl compound hydride unit (a) includes a repeating unit represented by the following formula (1-1).
- the repeating unit represented by the formula (1-1) is a styrene hydride unit.
- aromatic vinyl compound hydride unit (a) having a stereoisomer can be used. Only one type of aromatic vinyl compound hydride unit (a) may be used, or two or more types may be used in combination at any ratio.
- the diene compound hydride unit (b) is a repeating unit having a structure obtained by polymerizing a diene compound and hydrogenating the unsaturated bond if the obtained polymer has an unsaturated bond.
- the diene compound hydride unit (b) includes units obtained by any production method as long as it has the structure.
- a repeating unit having a structure obtained by polymerizing isoprene and hydrogenating the unsaturated bond may be referred to as an isoprene hydride unit.
- the isoprene hydride unit also includes a unit obtained by any production method as long as it has the structure.
- the diene compound hydride unit (b) preferably has a structure obtained by polymerizing a conjugated diene compound such as a linear conjugated diene compound and hydrogenating the unsaturated bond. Examples thereof include a repeating unit represented by the following structural formula (2) and a repeating unit represented by the structural formula (3).
- R 4 to R 9 are each independently a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, or a silyl group. Or a chain hydrocarbon group substituted with a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group).
- R 4 to R 9 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoints of heat resistance, low birefringence, mechanical strength, and the like.
- the chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
- R 10 to R 15 each independently represent a hydrogen atom, a chain hydrocarbon group, a halogen atom, an alkoxy group, a hydroxyl group, an ester group, a cyano group, an amide group, an imide group, or a silyl group. Or a chain hydrocarbon group substituted with a polar group (halogen atom, alkoxy group, hydroxyl group, ester group, cyano group, amide group, imide group, or silyl group).
- R 10 to R 15 are preferably a hydrogen atom and a chain hydrocarbon group having 1 to 6 carbon atoms from the viewpoint of heat resistance, low birefringence, mechanical strength, and the like.
- the chain hydrocarbon group is preferably a saturated hydrocarbon group, and more preferably an alkyl group.
- diene compound hydride unit (b) include repeating units represented by the following formulas (2-1) to (2-3).
- the repeating units represented by formulas (2-1) to (2-3) are isoprene hydride units.
- any of the stereoisomers of the diene compound hydride unit (b) having a stereoisomer can be used. Only one type of diene compound hydride unit (b) may be used, or two or more types may be used in combination at any ratio.
- the polymer X includes a block A having an aromatic vinyl compound hydride unit (a) and a copolymer block B having an aromatic vinyl compound hydride unit (a) and a diene compound hydride unit (b). Is preferred. Furthermore, the polymer X preferably has a triblock molecular structure having one copolymer block B per molecule and two blocks A per molecule linked to both ends thereof.
- the polymer X having a triblock molecular structure has a block A1 and a block A2 as two blocks A per molecule, and the weight ratio A1 / A2 of the block A1 and the block A2 is within a specific range. It is preferable. A1 / A2 is preferably 40/5 to 70/5, more preferably 50/5 to 60/5. When the polymer X has a triblock molecular structure and A1 / A2 is within such a range, an optical film excellent in the above various characteristics, particularly in heat resistance, can be easily obtained.
- the weight ratio (a) / (b) between the aromatic vinyl compound hydride unit (a) and the diene compound hydride unit (b) is preferably within a specific range.
- (A) / (b) is preferably 70/30 to 85/15, more preferably 75/25 to 80/20.
- an optical film excellent in the above various properties can be easily obtained.
- an optical film having high tear strength and impact strength and low retardation development can be easily obtained.
- the molecular weight of the polymer X is preferably 80,000 or more, more preferably 90,000 or more, while preferably 150,000 or less, more preferably 130,000 or less. When the molecular weight is within such a range, particularly when the value is not less than the lower limit, an optical film excellent in the above-described various characteristics, particularly in heat resistance, can be easily obtained.
- a polystyrene-reduced weight average molecular weight determined by GPC using THF as a solvent can be adopted.
- the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the polymer X is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1.2 or less.
- the lower limit of the molecular weight distribution can be 1.0 or more. Thereby, a polymer viscosity can be lowered
- the block A is preferably composed of only the aromatic vinyl compound hydride unit (a), but may contain any unit other than the aromatic vinyl compound hydride unit (a).
- Examples of the arbitrary structural unit include structural units based on vinyl compounds other than the aromatic vinyl compound hydride unit (a).
- the content of any structural unit in the block A is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
- the copolymer block B preferably comprises only the aromatic vinyl compound hydride unit (a) and the diene compound hydride unit (b), but may contain any other unit.
- the arbitrary structural unit include structural units based on vinyl compounds other than the aromatic vinyl compound hydride unit (a).
- the content of any structural unit in the block B is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 1% by weight or less.
- the manufacturing method of the polymer X is not specifically limited, Arbitrary manufacturing methods can be employ
- Polymer X prepares monomers corresponding to, for example, aromatic vinyl compound hydride unit (a) and diene compound hydride unit (b), polymerizes them, and hydrogenates the resulting polymer. Can be manufactured.
- an aromatic vinyl compound can be used as the monomer corresponding to the aromatic vinyl compound hydride unit (a).
- examples include styrene, ⁇ -methyl styrene, ⁇ -ethyl styrene, ⁇ -propyl styrene, ⁇ -isopropyl styrene, ⁇ -t-butyl styrene, 2-methyl styrene, 3-methyl styrene, 4-methyl styrene, 2 , 4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, monochlorostyrene, dichlorostyrene, monofluorostyrene, and 4-phenylstyrene Vinylcyclohexanes such as vinylcyclohexane and 3-methylisopropenylcyclohexane; and 4-
- Examples of monomers corresponding to the diene compound hydride unit (b) include chains such as butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene. Conjugated dienes. These monomers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- anionic polymerization can be usually employed.
- the polymerization may be performed by any of bulk polymerization and solution polymerization. Among these, solution polymerization is preferable in order to continuously perform the polymerization reaction and the hydrogenation reaction.
- reaction solvents for polymerization include aliphatic hydrocarbons such as n-butane, n-pentane, isopentane, n-hexane, n-heptane, and isooctane; cyclopentane, cyclohexane, methylcyclopentane, methylcyclohexane, and And alicyclic hydrocarbons such as decalin; and aromatic hydrocarbons such as benzene and toluene.
- a reaction solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. The reaction solvent is usually used at a ratio of 200 to 10,000 parts by weight with respect to 100 parts by weight of the total monomers.
- a polymerization initiator is usually used.
- polymerization initiators include monoorganolithiums such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, and phenyllithium; and dilithiomethane, 1,4-diobane, and 1,4-dilithiol Examples thereof include polyfunctional organolithium compounds such as 2-ethylcyclohexane.
- a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- Examples of the production method for producing a triblock copolymer containing the blocks A1 and A2 and the copolymer block B as the polymer X include production methods including the following first to third steps.
- the material called “monomer composition” includes not only a mixture of two or more substances but also a material composed of a single substance.
- First step A step of polymerizing the monomer composition (a1) containing an aromatic vinyl compound to form the block A.
- Second step a step of polymerizing a monomer composition containing an aromatic vinyl compound and a diene compound at one end of the block A to form a copolymer block B to form a diblock polymer AB.
- Third step A step of polymerizing the monomer composition (a2) containing the aromatic vinyl compound at the terminal of the copolymer block B side of the diblock polymer to obtain a block copolymer.
- the monomer composition (a1) and the monomer composition (a2) may be the same or different.
- a polymerization accelerator and a randomizer can be used in order to prevent an excessively long chain of one component in each block.
- a Lewis base compound can be used as a randomizer.
- Lewis base compounds include ether compounds such as dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, diphenyl ether, ethylene glycol diethyl ether, and ethylene glycol methyl phenyl ether; tetramethylethylenediamine, trimethylamine, triethylamine, and pyridine.
- Tertiary amine compounds such as potassium-t-amyl oxide and alkali metal alkoxide compounds such as potassium-t-butyl oxide; and phosphine compounds such as triphenylphosphine.
- phosphine compounds such as triphenylphosphine.
- One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the polymerization temperature is not limited as long as the polymerization proceeds, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually 200 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
- the polymer After polymerization, the polymer can be recovered from the reaction mixture by any method if necessary. Examples of the recovery method include a steam stripping method, a direct desolvation method, and an alcohol coagulation method. Further, when a solvent inert to the hydrogenation reaction is used as the reaction solvent during the polymerization, the polymer can be used as it is without recovering the polymer from the polymerization solution.
- Hydrogenation can be performed, for example, using a suitable hydrogenation catalyst. More specifically, hydrogenation is performed using a hydrogenation catalyst containing at least one metal selected from the group consisting of nickel, cobalt, iron, rhodium, palladium, platinum, ruthenium, and rhenium in an organic solvent. sell.
- the hydrogenation catalyst may be a heterogeneous catalyst or a homogeneous catalyst.
- a hydrogenation catalyst may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the heterogeneous catalyst may be used as it is as a metal or a metal compound, or may be used by being supported on an appropriate carrier.
- the carrier include activated carbon, silica, alumina, calcium carbide, titania, magnesia, zirconia, diatomaceous earth, and silicon carbide.
- the amount of the catalyst supported on the carrier is usually 0.01% by weight or more, preferably 0.05% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less.
- homogeneous catalysts include catalysts combining nickel, cobalt, or iron compounds with organometallic compounds (eg, organoaluminum compounds, organolithium compounds); and rhodium, palladium, platinum, ruthenium, rhenium, etc.
- organometallic complex catalyst is mentioned.
- nickel, cobalt, or iron compounds include acetylacetone salts, naphthenates, cyclopentadienyl compounds, and cyclopentadienyl dichloro compounds of these metals.
- organoaluminum compounds include alkylaluminums such as triethylaluminum and triisobutylaluminum; aluminum halides such as diethylaluminum chloride and ethylaluminum dichloride; and alkylaluminum hydrides such as diisobutylaluminum hydride.
- organometallic complex catalysts include metal complexes such as ⁇ -dichloro- ⁇ -benzene complexes, dichloro-tris (triphenylphosphine) complexes, hydrido-chloro-triphenylphosphine) complexes of the above metals. .
- the amount of the hydrogenation catalyst used is usually 0.01 parts by weight or more, preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, and usually 100 parts by weight with respect to 100 parts by weight of the polymer.
- the amount is preferably 50 parts by weight or less, more preferably 30 parts by weight or less.
- the reaction temperature during the hydrogenation reaction is usually 10 ° C. to 250 ° C., but is preferably 50 ° C. or more, more preferably, because the hydrogenation rate can be increased and the polymer chain scission reaction can be reduced. It is 80 degreeC or more, Preferably it is 200 degrees C or less, More preferably, it is 180 degrees C or less.
- the pressure during the reaction is usually 0.1 MPa to 30 MPa, but in addition to the above reasons, from the viewpoint of operability, it is preferably 1 MPa or more, more preferably 2 MPa or more, preferably 20 MPa or less, more preferably 10 MPa or less.
- the hydrogenation rate is usually 90% or more, preferably 95% or more, more preferably 97% or more. By increasing the hydrogenation rate, the low birefringence and thermal stability of the vinyl alicyclic hydrocarbon polymer can be enhanced.
- the hydrogenation rate can be measured by 1 H-NMR.
- the optical film of the present invention may be composed only of the polymer X, but may contain any component other than the polymer X.
- the resin constituting the optical film of the present invention may contain an ultraviolet absorber in addition to the polymer X.
- the optical film of the present invention can acquire resistance to ultraviolet rays.
- the optical film can also acquire the ability to block ultraviolet rays, other members can be protected from the ultraviolet rays that pass through the display surface from the outside of the display device and enter the device.
- the optical film of the present invention when using the optical film of the present invention as a polarizing plate protective film, the optical film of the present invention, a polarizing plate protected by this film, and a display device provided at a position farther from the display surface than the polarizing plate. It is possible to protect the components such as the liquid crystal cell to be protected from deterioration due to ultraviolet rays.
- UV absorbers examples include benzophenone UV absorbers, benzotriazole UV absorbers, triazine UV absorbers, acrylonitrile UV absorbers, and benzoate UV absorbers. Of these, benzotriazole ultraviolet absorbers, triazine ultraviolet absorbers, benzophenone ultraviolet absorbers, and benzoate ultraviolet absorbers are preferred.
- 2,2'-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol) is particularly preferable.
- One type of ultraviolet absorber may be used, or two or more types may be used in combination at any ratio.
- the concentration of the ultraviolet absorber in the resin constituting the optical film of the present invention is preferably 0.5% by weight or more, more preferably 1.0% by weight or more, and preferably 8.0% by weight or less. By keeping the concentration of the ultraviolet absorber within the above range, it is possible to efficiently block ultraviolet rays without deteriorating the color tone of the optical film of the present invention.
- optional ingredients include: inorganic fine particles; stabilizers such as antioxidants, heat stabilizers, near infrared absorbers; resin modifiers such as lubricants and plasticizers; colorants such as dyes and pigments; and An antistatic agent is mentioned.
- these arbitrary components one type may be used alone, or two or more types may be used in combination at an arbitrary ratio. However, from the viewpoint of remarkably exhibiting the effects of the present invention, it is preferable that the content of any component is small.
- the total ratio of optional components other than the ultraviolet absorber is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, and still more preferably 3 parts by weight or less with respect to 100 parts by weight of the polymer X. In particular, it is preferable not to include any components other than the ultraviolet absorber.
- the thickness of the optical film of the present invention is usually 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and usually 75 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 25 ⁇ m or less.
- the optical film of the present invention preferably has a high impact strength.
- the impact strength of the film means that the film is horizontally fixed to a jig that can be supported horizontally, and a steel ball (pachinko ball, weight 5 g, diameter 11 mm) is fixed to the center of the film fixed to the jig. Is the potential energy (mJ) of the steel ball at the height h of the boundary when the film is not torn and when the film is torn.
- the impact strength of the optical film of the present invention is preferably 14 mJ or more, more preferably 15 mJ or more.
- the upper limit of impact strength is not particularly limited, but may be, for example, 80 mJ or less. In addition to the high tear strength described above, having a high impact strength in this range makes it possible to obtain high durability that does not cause defects in the manufacturing process of the display device.
- the optical film of the present invention preferably has low retardation.
- the term “retardation developability” refers to the degree that a retardation develops when the film is stretched.
- the optical film is freely uniaxially stretched at 135 ° C. at a stretch ratio of 2 times, and Re of the stretched film is measured using a phase difference meter (for example, Axoscan, manufactured by AXOMETRICS) It can be used as an index of expression.
- the Re of the film after stretching can be preferably 1 nm or less, more preferably 0.7 nm or less.
- the optical film of the present invention is usually a transparent layer and transmits visible light well.
- the specific light transmittance can be appropriately selected according to the use of the film of the present invention.
- the light transmittance at a wavelength of 420 to 780 nm is preferably 85% or more, more preferably 88% or more.
- the optical film of the present invention may have only one layer made of a resin containing the polymer X, or may have two or more layers.
- the optical film of the present invention may have an optional layer in addition to the film made of the resin containing the polymer X.
- the optional layer include a matte layer that improves the slipperiness of the film, a hard coat layer such as an impact-resistant polymethacrylate resin layer, an antireflection layer, and an antifouling layer.
- the manufacturing method of the optical film of this invention is not specifically limited, Arbitrary manufacturing methods can be employ
- the optical film of the present invention can be manufactured by preparing a resin containing the polymer X and molding the resin into a desired shape.
- a polymer X prepared by the above-described method can be used as it is or as a mixture with an optional component as required.
- the molding method of the resin containing the polymer X is not particularly limited, and any molding method can be adopted.
- any of a melt molding method and a solution casting method can be used.
- the melt molding method can be classified into an extrusion molding method, a press molding method, an inflation molding method, an injection molding method, a blow molding method, a stretch molding method, and the like.
- an extrusion molding method in order to obtain a film excellent in mechanical strength, surface accuracy, etc., an extrusion molding method, an inflation molding method or a press molding method is preferable.
- the efficiency is improved while suppressing the development of retardation more reliably.
- the extrusion method is particularly preferable.
- a long film can be obtained by forming by extrusion.
- the long film refers to a shape having a length of 5 times or more with respect to the width, preferably 10 times or more, and specifically wound or stored in a roll shape. It refers to the shape of a film having a length that can be transported.
- the upper limit of the ratio of the length to the width is not particularly limited, but may be, for example, 100,000 times or more.
- the resin molded into the shape of the film can be used as it is as the optical film of the present invention.
- molded by the shape of the film is further used for arbitrary processes, and what was obtained by it can be made into the optical film of this invention.
- Such optional treatment includes stretching treatment. By appropriately adjusting the ratio of the units constituting the polymer X, it is possible to reduce the retardation developed in the film by stretching. Therefore, by performing such stretching treatment, the thickness is reduced, the area is increased, and the quality is increased. However, it is possible to easily produce an optical film with good quality.
- the stretching conditions for performing the stretching treatment are not particularly limited, and can be appropriately adjusted so that a desired product is obtained.
- the stretching performed in the stretching process can be uniaxial stretching, biaxial stretching, or other stretching.
- the stretching direction can be set in any direction.
- the stretching direction may be any of the longitudinal direction of the film, the width direction, and other oblique directions.
- the angle formed by the two stretching directions when biaxial stretching is performed can usually be an angle orthogonal to each other, but is not limited thereto, and may be an arbitrary angle.
- Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching. From the viewpoint of high productivity, simultaneous biaxial stretching is preferred.
- the stretching ratio when performing the stretching treatment can be appropriately adjusted according to the desired conditions.
- the draw ratio is preferably 1.5 times or more, more preferably 2 times or more, preferably 5 times or less, more preferably 3 times or less.
- the magnification in each of the two stretching directions can be within this range.
- the stretching temperature can be Tg ⁇ 5 (° C.) to Tg + 20 (° C.) based on the glass transition temperature Tg of the resin containing the polymer X.
- optical film of the present invention has characteristics such as high heat resistance, low water vapor transmission rate, low
- the protective film of the present invention can function particularly well as a polarizer protective film.
- the polarizing plate of the present invention includes the optical film of the present invention and a polarizer layer.
- the optical film can function as a polarizer protective film.
- the polarizing plate of the present invention may further include an adhesive layer for bonding these between the optical film and the polarizer layer.
- the polarizer layer is not particularly limited, and any known polarizer layer may be used.
- the polarizer include those obtained by adsorbing a material such as iodine or a dichroic dye on a polyvinyl alcohol film and then stretching the material.
- the adhesive constituting the adhesive layer include those using various polymers as a base polymer. Examples of such base polymers include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyethers, and synthetic rubbers.
- the number of polarizer layers and protective film layers provided in the polarizing plate of the present invention is arbitrary, but the polarizing plate of the present invention is usually composed of one polarizer layer and two layers provided on both sides thereof.
- a protective film may be provided. Of these two protective films, both may be the optical film of the present invention, and only one of them may be the optical film of the present invention.
- the present invention is used as a protective film used at a position closer to the light source side than a polarizer on the display surface side. It is particularly preferred to provide the inventive optical film.
- a liquid crystal display device having good display quality and durability can be easily configured by taking advantage of characteristics such as high heat resistance, low water vapor transmission rate, low
- the tear strength of the optical film was evaluated according to a trouser tear test method (JIS K7128-1). The test speed was 200 mm / min ⁇ 10%.
- Re and Rth at a wavelength of 590 nm were determined by measuring the long optical films obtained in Examples and Comparative Examples using a phase difference meter (product name: Axoscan, manufactured by AXOMETRICS).
- Phase difference expression The long optical films obtained in Examples and Comparative Examples were freely uniaxially stretched at 135 ° C. in a longitudinal direction of the long film at a stretch ratio of 2 using a tensile tester (manufactured by Instron). By measuring the stretched film using a phase difference meter (product name: Axoscan, manufactured by AXOMETRIC), Re at a wavelength of 590 nm was determined. The Re value of the film after stretching was divided by the thickness of the film after stretching and converted to a value per 1 nm of film thickness, which was used as an index of retardation development.
- phase difference meter product name: Axoscan, manufactured by AXOMETRIC
- Example 1 (1-1. First-stage polymerization reaction: elongation of block A1) A stainless steel reactor equipped with a stirrer and thoroughly dried and purged with nitrogen was charged with 320 parts of dehydrated cyclohexane, 55 parts of styrene, and 0.38 part of dibutyl ether, and stirred at 60 ° C to give an n-butyllithium solution. (15 wt% hexane solution) 0.41 part was added to initiate the polymerization reaction, and the first stage polymerization reaction was carried out. At 1 hour after the start of the reaction, a sample was sampled from the reaction mixture and analyzed by gas chromatography (GC). As a result, the polymerization conversion was 99.5%.
- GC gas chromatography
- the mixture containing the polymer X is transferred to a pressure-resistant reactor equipped with a stirrer, and a diatomite supported nickel catalyst (product name “E22U”, nickel supported amount 60%, JGC Catalysts & Chemicals Co., Ltd.) as a hydrogenation catalyst. 8.0 parts) and 100 parts dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, and hydrogen was supplied while stirring the solution. A hydrogenation reaction was performed at a temperature of 190 ° C. and a pressure of 4.5 MPa for 6 hours.
- the polymer X hydride contained in the reaction solution obtained by the hydrogenation reaction had a weight average molecular weight (Mw) of 111,800 and a molecular weight distribution (Mw / Mn) of 1.05.
- the reaction solution was filtered to remove the hydrogenation catalyst, and then the phenolic antioxidant pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) ) Propionate] (product name “Songnox 1010”, manufactured by Matsubara Sangyo Co., Ltd.) 2.0 parts of xylene solution in which 0.1 part was dissolved was added and dissolved.
- a solvent such as cyclohexane, xylene and other solvents at a temperature of 260 ° C.
- pellet-like polymer X hydride had a weight average molecular weight (Mw) of 110,300, a molecular weight distribution (Mw / Mn) of 1.10, and a hydrogenation rate of almost 100%.
- Example 2 An optical film was obtained and evaluated in the same manner as in Example 1 except that the operation was changed as follows.
- the amount of styrene used was changed from 55 parts to 65 parts.
- the second stage polymerization reaction of (1-2) 30 parts of mixed monomer consisting of 15 parts of styrene and 15 parts of isoprene was used instead of 40 parts of mixed monomer consisting of 20 parts of styrene and 20 parts of isoprene.
- Example 3 An optical film was obtained and evaluated in the same manner as in Example 1 except that the operation was changed as follows.
- the amount of styrene used was changed from 55 parts to 45 parts.
- the second stage polymerization reaction of (1-2) 50 parts of a mixed monomer consisting of 25 parts of styrene and 25 parts of isoprene was used instead of 40 parts of the mixed monomer consisting of 20 parts of styrene and 20 parts of isoprene.
- Example 4 An optical film was obtained and evaluated in the same manner as in Example 1 except that the operation was changed as follows. In the first-stage polymerization reaction of (1-1), the n-butyllithium solution (15% by weight containing hexane solution) was changed from 0.41 part to 0.56 part.
- Example 1 An optical film was obtained and evaluated in the same manner as in Example 1 except that the operation was changed as follows. In the first stage polymerization reaction of (1-1), the amount of styrene used was changed from 55 parts to 30 parts. In the third stage polymerization reaction of (1-3), the amount of styrene used was changed from 5 parts to 30 parts.
- Example 2 An optical film was obtained and evaluated in the same manner as in Example 1 except that the operation was changed as follows.
- the first stage polymerization reaction of (1-1) the amount of styrene used was changed from 55 parts to 20 parts.
- the second stage polymerization reaction of (1-2) instead of 40 parts of mixed monomer consisting of 20 parts of styrene and 20 parts of isoprene, 60 parts of mixed monomer consisting of 30 parts of styrene and 30 parts of isoprene were used.
- the third stage polymerization reaction of (1-3) the amount of styrene used was changed from 5 parts to 20 parts.
- Example 4 An optical film was obtained and evaluated in the same manner as in Example 1 except that the operation was changed as follows.
- the first stage polymerization reaction of (1-1) the amount of styrene used was changed from 55 parts to 60 parts.
- the second stage polymerization reaction of (1-2) instead of 40 parts of the mixed monomer consisting of 20 parts of styrene and 20 parts of isoprene, 24 parts of mixed monomer consisting of 12 parts of styrene and 12 parts of isoprene were used.
- the third stage polymerization reaction of (1-3) the amount of styrene used was changed from 5 parts to 16 parts.
- Tables 1 and 2 show the results of Examples and Comparative Examples.
- optical films obtained in Examples 1 to 4 have high tear strength, high impact strength, high heat resistance, low
- a protective film for protecting a polarizer in a polarizing plate includes a light source and a liquid crystal cell, and in a liquid crystal display device having polarizing plates on both the light source side and the display surface side of the liquid crystal cell, the position on the light source side relative to the polarizer on the display surface side.
- a protective film used in it can be suitably used.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Nonlinear Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Liquid Crystal (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
本発明者はさらに、上記の光学フィルムは、特定の単位を有する重合体を含む材料を用いて製造しうることを見出した。
本発明は、上記の知見に基づいて完成されたものである。
すなわち、本発明によれば、以下の〔1〕~〔9〕が提供される。
〔2〕 芳香族ビニル化合物水素化物単位(a)及びジエン化合物水素化物単位(b)を有する重合体を含む、〔1〕に記載の光学フィルム。
〔3〕 前記重合体が、
前記芳香族ビニル化合物水素化物単位(a)を有するブロックAと、
前記芳香族ビニル化合物水素化物単位(a)及び前記ジエン化合物水素化物単位(b)を有する共重合ブロックBとを含む、〔2〕に記載の光学フィルム。
〔4〕 前記重合体が、1分子あたり1つの前記共重合ブロックBと、その両端に連結された1分子当たり2つの前記ブロックAとを有するトリブロック分子構造を有する、〔3〕に記載の光学フィルム。
〔5〕 前記重合体が、1分子当たり2つの前記ブロックAとしてブロックA1及びブロックA2を有し、
前記ブロックA1と前記ブロックA2との重量比A1/A2が、40/5~70/5である、〔3〕又は〔4〕に記載の光学フィルム。
〔6〕 前記重合体における、前記芳香族ビニル化合物水素化物単位(a)と、前記ジエン化合物水素化物単位(b)との重量比(a)/(b)が、70/30~85/15である、〔2〕~〔5〕のいずれか1項に記載の光学フィルム。
〔7〕 前記芳香族ビニル化合物水素化物単位(a)が、スチレンを重合し水素化してなる単位であり、
前記ジエン化合物水素化物単位(b)が、イソプレンを重合し水素化してなる単位である、〔2〕~〔6〕のいずれか1項に記載の光学フィルム。
〔8〕 前記重合体の分子量が、80,000~150,000である、〔2〕~〔7〕のいずれか1項に記載の光学フィルム。
〔9〕 〔1〕~〔8〕のいずれか1項に記載の光学フィルムと、偏光子層とを備える偏光板。
以下の説明において、「偏光板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
本発明の光学フィルムは、特定の耐熱性、引裂き強度、及び水蒸気透過率を有し、且つ、面内レターデーションRe及び厚み方向レターデーションRthの絶対値|Re|及び|Rth|が特定の値である。
本発明の光学フィルムは、芳香族ビニル化合物水素化物単位(a)及びジエン化合物水素化物単位(b)を有する重合体を含むことが好ましい。以下の説明においては、かかる特定の重合体を、「重合体X」と呼ぶ場合がある。具体的には、本発明の光学フィルムは、重合体Xを含む樹脂からなるフィルムとしうる。光学フィルムを構成する樹脂が重合体Xを含むことにより、上記各種の特性を有する光学フィルムを容易に得ることができる。
芳香族ビニル化合物水素化物単位(a)は、芳香族ビニル化合物を重合し、その不飽和結合を水素化して得られる構造を有する繰り返し単位である。ただし、芳香族ビニル化合物水素化物単位(a)は、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。
同様に、本願においては、例えばスチレンを重合し、その不飽和結合を水素化して得られる構造を有する繰り返し単位を、スチレン水素化物単位と呼ぶことがある。スチレン水素化物単位も、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。
芳香族ビニル化合物水素化物単位(a)の例としては、以下の構造式(1)で表される繰り返し単位が挙げられる。
ジエン化合物水素化物単位(b)は、ジエン化合物を重合し、その得られた重合物が不飽和結合を有していればその不飽和結合を水素化して得られる構造を有する繰り返し単位である。但し、ジエン化合物水素化物単位(b)は、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。
同様に、本願においては、例えばイソプレンを重合し、その不飽和結合を水素化して得られる構造を有する繰り返し単位を、イソプレン水素化物単位と呼ぶことがある。イソプレン水素化物単位も、当該構造を有する限りにおいて、どのような製造方法で得られた単位をも含む。
重合体Xは、芳香族ビニル化合物水素化物単位(a)を有するブロックAと、芳香族ビニル化合物水素化物単位(a)及びジエン化合物水素化物単位(b)を有する共重合ブロックBとを含むことが好ましい。さらに、重合体Xは、1分子あたり1つの共重合ブロックBと、その両端に連結された1分子当たり2つのブロックAとを有するトリブロック分子構造を有することが好ましい。
重合体Xの製造方法は、特に限定されず任意の製造方法を採用しうる。重合体Xは、例えば、芳香族ビニル化合物水素化物単位(a)及びジエン化合物水素化物単位(b)に対応する単量体を用意し、これらを重合させ、得られた重合体を水素化することにより製造しうる。
反応溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
反応溶媒は、通常、全単量体100重量部に対して200~10,000重量部となるような割合で用いられる。
第二工程:かかるブロックAの一端において、芳香族ビニル化合物及びジエン化合物を含有するモノマー組成物を重合させて共重合ブロックBを形成し、A-Bのジブロックの重合体を形成する工程。
第三工程:かかるジブロックの重合体の、共重合ブロックB側の末端において、芳香族ビニル化合物を含有するモノマー組成物(a2)を重合させて、ブロック共重合体を得る工程。ただし、モノマー組成物(a1)とモノマー組成物(a2)とは、同一でも異なっていてもよい。
均一系触媒の例としては、ニッケル、コバルト、又は鉄の化合物と有機金属化合物(例えば、有機アルミニウム化合物、有機リチウム化合物)とを組み合わせた触媒;並びにロジウム、パラジウム、白金、ルテニウム、及びレニウム等の有機金属錯体触媒が挙げられる。ニッケル、コバルト、又は鉄の化合物の例としては、これらの金属のアセチルアセトン塩、ナフテン酸塩、シクロペンタジエニル化合物、及びシクロペンタジエニルジクロロ化合物が挙げられる。有機アルミニウム化合物の例としては、トリエチルアルミニウム、トリイソブチルアルミニウム等のアルキルアルミニウム;ジエチルアルミニウムクロリド、エチルアルミニウムジクロリド等のハロゲン化アルミニウム;並びにジイソブチルアルミニウムハイドライド等の水素化アルキルアルミニウムが挙げられる。
有機金属錯体触媒の例としては、例えば、上記各金属のγ-ジクロロ-π-ベンゼン錯体、ジクロロ-トリス(トリフェニルホスフィン)錯体、ヒドリド-クロロ-トリフェニルホスフィン)錯体等の金属錯体が挙げられる。
水素化触媒の使用量は、重合体100重量部に対して、通常0.01重量部以上、好ましくは0.05重量部以上、より好ましくは0.1重量部以上であり、通常100重量部以下、好ましくは50重量部以下、より好ましくは30重量部以下である。
水素化率は、通常90%以上、好ましくは95%以上、より好ましくは97%以上である。水素化率を高くすることにより、ビニル脂環式炭化水素重合体の低複屈折性及び熱安定性等を高めることができる。水素化率は1H-NMRにより測定できる。
本発明の光学フィルムは、重合体Xのみからなってもよいが、重合体X以外に任意の成分を含んでいてもよい。
例えば、本発明の光学フィルムを構成する樹脂は、重合体Xに加え、紫外線吸収剤を含みうる。重合体Xが紫外線吸収剤を含むことにより、本発明の光学フィルムが紫外線に対する耐性を獲得することができる。加えて、光学フィルムが紫外線を遮断する能力をも獲得することができるため、表示装置外から表示面を透過して装置内に入射する紫外線から、他の部材を保護することができる。このため、例えば偏光板保護フィルムとして本発明の光学フィルムを用いる場合、本発明の光学フィルム、並びに、このフィルムに保護される偏光板、及び表示装置において偏光板よりも表示面から遠い位置に設けられる液晶セル等の構成要素を、紫外線による劣化から保護することが可能となる。
本発明の光学フィルムの厚さは、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、通常75μm以下、好ましくは50μm以下、より好ましくは25μm以下である。厚さを前記範囲の下限以上にすることで、偏光板保護フィルムとして使用する際に偏光板の破損防止能及びハンドリング性を向上させることができ、上限以下にすることで偏光板を薄くすることができる。
本発明の光学フィルムは、重合体Xを含む樹脂からなるフィルムを、1層のみ有していてもよく、2層以上有していてもよい。本発明の光学フィルムはまた、重合体Xを含む樹脂からなるフィルムに加えて、任意の層を有しうる。任意の層の例としては、フィルムの滑り性を良くするマット層、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、反射防止層、防汚層等が挙げられる。
本発明の光学フィルムの製造方法は特に限定されず、任意の製造方法を採用しうる。例えば、重合体Xを含む樹脂を調製し、当該樹脂を所望の形状に成形することにより、本発明の光学フィルムを製造しうる。
本発明の光学フィルムは、高い耐熱性、低い水蒸気透過率、低い|Re|及び|Rth|等の特性を有するため、液晶表示装置などの表示装置において、他の層を保護する保護フィルムとして好適に用いうる。特に、本発明の保護フィルムは、偏光子保護フィルムとして特に良好に機能することができる。
以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
(分子量)
重合体(重合体X、及びその製造の中間体としての重合体)の重量平均分子量及び数平均分子量は、THFを溶離液とするGPCによる標準ポリスチレン換算値として38℃において測定した。測定装置としては、東ソー社製HLC8020GPCを用いた。
光学フィルムの引裂き強度は、トラウザー引裂き試験法(JIS K7128-1)に従って評価した。試験速度は200mm/分±10%とした。
実施例及び比較例で得られた光学フィルムを、水平となるように支持できる冶具に水平に固定した。治具に固定されたフィルムの中央に、鋼球(パチンコ玉、重さ5g、直径11mm)を様々な高さhから落下させて、フィルムが破れなかった場合及びフィルムが破れた場合の境界の高さhにおける、鋼球の位置エネルギー(mJ)を衝撃強度とした。
実施例及び比較例で得られた光学フィルムを5mm×20mmの形状に切り出し試料とした。TMA(熱機械的分析)測定において、試料の長手方向に50mNの張力を加えた状態で、温度を変化させた。温度変化は、5℃/分の昇温とした。線膨張が5%変化した時の温度を、耐熱性の指標とした。
実施例及び比較例で得られた長尺の光学フィルムを、位相差計(製品名:Axoscan、AXOMETRICS社製)を用いて測定することにより、波長590nmにおけるRe及びRthを求めた。
実施例及び比較例で得られた長尺の光学フィルムを、135℃において、引っ張り試験機(インストロン社製)を用いて延伸倍率2倍で長尺のフィルムの長手方向に自由一軸延伸した。延伸後のフィルムを、位相差計(製品名:Axoscan、AXOMETRICS社製)を用いて測定することにより、波長590nmにおけるReを求めた。延伸後のフィルムのReの値を、延伸後のフィルムの厚みで割って、膜厚1nm当たりの値に換算して、これを位相差発現性の指標とした。
水蒸気透過度測定装置(MOCON社製「PERMATRAN-W」)を用い、JIS K 7129 B-1992に準じて、温度40℃、湿度90%RHの条件にて、実施例及び比較例で得られた光学フィルムの水蒸気透過率を測定した。この測定装置の検出限界値は、0.01g/(m2・日)である。
(1-1.第1段階の重合反応:ブロックA1の伸長)
十分に乾燥し窒素置換した、攪拌装置を備えたステンレス鋼製反応器に、脱水シクロヘキサン320部、スチレン55部、及びジブチルエーテル0.38部を仕込み、60℃で攪拌しながらn-ブチルリチウム溶液(15重量%含有ヘキサン溶液)0.41部を添加して重合反応を開始させ、第1段階の重合反応を行った。反応開始後1時間の時点で、反応混合物から、試料をサンプリングし、ガスクロマトグラフィー(GC)により分析した結果、重合転化率は99.5%であった。
(1-1)で得られた反応混合物に、スチレン20部及びイソプレン20部からなる混合モノマー40部を添加し、引き続き第2段階の重合反応を開始した。第2段階の重合反応開始後1時間の時点で、反応混合物から、試料をサンプリングし、GCにより分析した結果、重合転化率は99.5%であった。
(1-2)で得られた反応混合物に、スチレン5部を添加し、引き続き第3段階の重合反応を開始した。第3段階の重合反応開始後1時間の時点で、反応混合物から、試料をサンプリングし、重合体の重量平均分子量Mw及び数平均分子量Mnを測定した。またこの時点でサンプリングした試料をGCにより分析した結果、重合転化率はほぼ100%であった。その後直ちに、反応混合物にイソプロピルアルコール0.2部を添加して反応を停止させた。これにより、A1-B-A2のトリブロック分子構造を有する重合体Xを含む混合物を得た。
これらの値から、得られた重合体Xは、St-(St/Ip)-St=55-(20/20)-5のトリブロック分子構造を有する重合体であることが分かった。重合体Xの重量平均分子量(Mw)は105,500、分子量分布(Mw/Mn)は1.04であった。
次いで、上記溶液を、円筒型濃縮乾燥器(製品名「コントロ」、日立製作所社製)を用いて、温度260℃、圧力0.001MPa以下で、溶液から、溶媒であるシクロヘキサン、キシレン及びその他の揮発成分を除去した。溶融ポリマーをダイからストランド状に押出し、冷却後、ペレタイザーにより重合体X水素化物のペレット95部を作製した。
得られたペレット状の重合体X水素化物の重量平均分子量(Mw)は110,300、分子量分布(Mw/Mn)は1.10、水素化率はほぼ100%であった。
(1-3)で得られた、重合体X水素化物のペレットを押出成形し、厚さ50μmの、長尺の光学フィルムを得た。得られた光学フィルムについて、引裂き強度、衝撃強度、耐熱性、Re、Rth、位相差発現性及び水蒸気透過率を測定した。
操作を下記の通り変更した他は、実施例1と同様にして、光学フィルムを得て評価した。
・(1-1)の第1段階の重合反応において、スチレンの使用量を55部から65部に変更した。
・(1-2)の第2段階の重合反応において、スチレン20部及びイソプレン20部からなる混合モノマー40部に代えて、スチレン15部及びイソプレン15部からなる混合モノマー30部を用いた。
操作を下記の通り変更した他は、実施例1と同様にして、光学フィルムを得て評価した。
・(1-1)の第1段階の重合反応において、スチレンの使用量を55部から45部に変更した。
・(1-2)の第2段階の重合反応において、スチレン20部及びイソプレン20部からなる混合モノマー40部に代えて、スチレン25部及びイソプレン25部からなる混合モノマー50部を用いた。
操作を下記の通り変更した他は、実施例1と同様にして、光学フィルムを得て評価した。
・(1-1)の第1段階の重合反応において、n-ブチルリチウム溶液(15重量%含有ヘキサン溶液)を0.41部から0.56部に変更した。
操作を下記の通り変更した他は、実施例1と同様にして、光学フィルムを得て評価した。
・(1-1)の第1段階の重合反応において、スチレンの使用量を55部から30部に変更した。
・(1-3)の第3段階の重合反応において、スチレンの使用量を5部から30部に変更した。
操作を下記の通り変更した他は、実施例1と同様にして、光学フィルムを得て評価した。
・(1-1)の第1段階の重合反応において、スチレンの使用量を55部から20部に変更した。
・(1-2)の第2段階の重合反応において、スチレン20部及びイソプレン20部からなる混合モノマー40部に代えて、スチレン30部及びイソプレン30部からなる混合モノマー60部を用いた。
・(1-3)の第3段階の重合反応において、スチレンの使用量を5部から20部に変更した。
操作を下記の通り変更した他は、実施例1と同様にして、光学フィルムを得て評価した。
・(1-1)の第1段階の重合反応において、n-ブチルリチウム溶液(15重量%含有ヘキサン溶液)を0.41部から0.90部に変更した。
操作を下記の通り変更した他は、実施例1と同様にして、光学フィルムを得て評価した。
・(1-1)の第1段階の重合反応において、スチレンの使用量を55部から60部に変更した。
・(1-2)の第2段階の重合反応において、スチレン20部及びイソプレン20部からなる混合モノマー40部に代えて、スチレン12部及びイソプレン12部からなる混合モノマー24部を用いた。
・(1-3)の第3段階の重合反応において、スチレンの使用量を5部から16部に変更した。
Claims (9)
- 耐熱性が120℃以上であり、引裂き強度が1.5N/mm以上であり、水蒸気透過率が50g/m2・day以下であり、且つ面内レターデーションRe及び厚み方向レターデーションRthの絶対値|Re|及び|Rth|が、いずれも1nm以下である光学フィルム。
- 芳香族ビニル化合物水素化物単位(a)及びジエン化合物水素化物単位(b)を有する重合体を含む、請求項1に記載の光学フィルム。
- 前記重合体が、
前記芳香族ビニル化合物水素化物単位(a)を有するブロックAと、
前記芳香族ビニル化合物水素化物単位(a)及び前記ジエン化合物水素化物単位(b)を有する共重合ブロックBとを含む、請求項2に記載の光学フィルム。 - 前記重合体が、1分子あたり1つの前記共重合ブロックBと、その両端に連結された1分子当たり2つの前記ブロックAとを有するトリブロック分子構造を有する、請求項3に記載の光学フィルム。
- 前記重合体が、1分子当たり2つの前記ブロックAとしてブロックA1及びブロックA2を有し、
前記ブロックA1と前記ブロックA2との重量比A1/A2が、40/5~70/5である、請求項3又は4に記載の光学フィルム。 - 前記重合体における、前記芳香族ビニル化合物水素化物単位(a)と、前記ジエン化合物水素化物単位(b)との重量比(a)/(b)が、70/30~85/15である、請求項2~5のいずれか1項に記載の光学フィルム。
- 前記芳香族ビニル化合物水素化物単位(a)が、スチレンを重合し水素化してなる単位であり、
前記ジエン化合物水素化物単位(b)が、イソプレンを重合し水素化してなる単位である、請求項2~6のいずれか1項に記載の光学フィルム。 - 前記重合体の分子量が、80,000~150,000である、請求項2~7のいずれか1項に記載の光学フィルム。
- 請求項1~8のいずれか1項に記載の光学フィルムと、偏光子層とを備える偏光板。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187012322A KR102685094B1 (ko) | 2015-11-18 | 2016-11-14 | 광학 필름 및 편광판 |
CN201680062733.5A CN108351456B (zh) | 2015-11-18 | 2016-11-14 | 光学膜和偏振片 |
JP2017539047A JP6229824B2 (ja) | 2015-11-18 | 2016-11-14 | 光学フィルム及び偏光板 |
EP16866267.4A EP3379304A4 (en) | 2015-11-18 | 2016-11-14 | OPTICAL FILM AND POLARIZATION PLATE |
US15/772,880 US10941236B2 (en) | 2015-11-18 | 2016-11-14 | Optical film and polarizing plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015225636 | 2015-11-18 | ||
JP2015-225636 | 2015-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017086265A1 true WO2017086265A1 (ja) | 2017-05-26 |
Family
ID=58718944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/083670 WO2017086265A1 (ja) | 2015-11-18 | 2016-11-14 | 光学フィルム及び偏光板 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10941236B2 (ja) |
EP (1) | EP3379304A4 (ja) |
JP (2) | JP6229824B2 (ja) |
KR (1) | KR102685094B1 (ja) |
CN (1) | CN108351456B (ja) |
WO (1) | WO2017086265A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018123662A1 (ja) * | 2016-12-28 | 2018-07-05 | 日本ゼオン株式会社 | フィルム |
WO2019026625A1 (ja) * | 2017-07-31 | 2019-02-07 | 日本ゼオン株式会社 | 光学フィルム |
WO2024166850A1 (ja) * | 2023-02-06 | 2024-08-15 | Eneosクレイトンエラストマー株式会社 | 制振性および耐熱性に優れたブロック共重合体及びその製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002012362A1 (fr) * | 2000-08-04 | 2002-02-14 | Zeon Corporation | Copolymere bloc, son procede de production et objet moule |
JP2003114329A (ja) * | 2001-10-05 | 2003-04-18 | Nippon Zeon Co Ltd | 延伸フィルムの製造方法 |
JP2006243266A (ja) * | 2005-03-02 | 2006-09-14 | Fuji Photo Film Co Ltd | 光学積層体、偏光板および液晶表示装置 |
WO2007138850A1 (ja) * | 2006-05-26 | 2007-12-06 | Nitto Denko Corporation | 偏光子保護フィルム、偏光板、および画像表示装置 |
JP2008052002A (ja) * | 2006-08-24 | 2008-03-06 | Nitto Denko Corp | 光学フィルム、偏光板、および画像表示装置 |
JP2009227905A (ja) * | 2008-03-25 | 2009-10-08 | Toray Ind Inc | 二軸配向アクリル樹脂フィルム |
JP2011013378A (ja) | 2009-06-30 | 2011-01-20 | Nippon Zeon Co Ltd | フィルム |
JP2011523668A (ja) * | 2008-05-07 | 2011-08-18 | ダウ グローバル テクノロジーズ エルエルシー | ニアゼロ位相差のフィルム |
JP2012133377A (ja) * | 2012-01-30 | 2012-07-12 | Nippon Shokubai Co Ltd | 偏光子保護フィルム、偏光板、および画像表示装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE265497T1 (de) * | 1999-06-11 | 2004-05-15 | Dow Global Technologies Inc | Hydrierte blockcopolymerzusammensetzungen und verwendungen davon |
US6881453B2 (en) * | 2000-04-25 | 2005-04-19 | Teijin Limited | Optical film |
JP2002105151A (ja) * | 2000-09-29 | 2002-04-10 | Nippon Zeon Co Ltd | フィルム及びシート |
EP1375544A1 (en) * | 2001-01-25 | 2004-01-02 | Teijin Limited | Improved hydrogenated styrene/conjugated diene/styrene block copolymer and process for production thereof |
CN103827157B (zh) * | 2011-09-29 | 2017-05-31 | 三菱化学株式会社 | 氢化嵌段共聚物、树脂组合物、膜及容器 |
JP2017134305A (ja) * | 2016-01-29 | 2017-08-03 | 日本ゼオン株式会社 | 延伸フィルム、製造方法、偏光板及び表示装置 |
-
2016
- 2016-11-14 EP EP16866267.4A patent/EP3379304A4/en not_active Withdrawn
- 2016-11-14 KR KR1020187012322A patent/KR102685094B1/ko active IP Right Grant
- 2016-11-14 US US15/772,880 patent/US10941236B2/en active Active
- 2016-11-14 WO PCT/JP2016/083670 patent/WO2017086265A1/ja active Application Filing
- 2016-11-14 JP JP2017539047A patent/JP6229824B2/ja active Active
- 2016-11-14 CN CN201680062733.5A patent/CN108351456B/zh active Active
-
2017
- 2017-10-17 JP JP2017201036A patent/JP2018045241A/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002012362A1 (fr) * | 2000-08-04 | 2002-02-14 | Zeon Corporation | Copolymere bloc, son procede de production et objet moule |
JP2003114329A (ja) * | 2001-10-05 | 2003-04-18 | Nippon Zeon Co Ltd | 延伸フィルムの製造方法 |
JP2006243266A (ja) * | 2005-03-02 | 2006-09-14 | Fuji Photo Film Co Ltd | 光学積層体、偏光板および液晶表示装置 |
WO2007138850A1 (ja) * | 2006-05-26 | 2007-12-06 | Nitto Denko Corporation | 偏光子保護フィルム、偏光板、および画像表示装置 |
JP2008052002A (ja) * | 2006-08-24 | 2008-03-06 | Nitto Denko Corp | 光学フィルム、偏光板、および画像表示装置 |
JP2009227905A (ja) * | 2008-03-25 | 2009-10-08 | Toray Ind Inc | 二軸配向アクリル樹脂フィルム |
JP2011523668A (ja) * | 2008-05-07 | 2011-08-18 | ダウ グローバル テクノロジーズ エルエルシー | ニアゼロ位相差のフィルム |
JP2011013378A (ja) | 2009-06-30 | 2011-01-20 | Nippon Zeon Co Ltd | フィルム |
JP2012133377A (ja) * | 2012-01-30 | 2012-07-12 | Nippon Shokubai Co Ltd | 偏光子保護フィルム、偏光板、および画像表示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3379304A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018123662A1 (ja) * | 2016-12-28 | 2018-07-05 | 日本ゼオン株式会社 | フィルム |
WO2019026625A1 (ja) * | 2017-07-31 | 2019-02-07 | 日本ゼオン株式会社 | 光学フィルム |
CN110741289A (zh) * | 2017-07-31 | 2020-01-31 | 日本瑞翁株式会社 | 光学膜 |
KR20200037215A (ko) | 2017-07-31 | 2020-04-08 | 니폰 제온 가부시키가이샤 | 광학 필름 |
JPWO2019026625A1 (ja) * | 2017-07-31 | 2020-07-09 | 日本ゼオン株式会社 | 光学フィルム |
CN110741289B (zh) * | 2017-07-31 | 2021-12-14 | 日本瑞翁株式会社 | 光学膜 |
TWI754083B (zh) * | 2017-07-31 | 2022-02-01 | 日商日本瑞翁股份有限公司 | 光學薄膜 |
JP7092133B2 (ja) | 2017-07-31 | 2022-06-28 | 日本ゼオン株式会社 | 光学フィルム |
KR102557788B1 (ko) | 2017-07-31 | 2023-07-19 | 니폰 제온 가부시키가이샤 | 광학 필름 |
WO2024166850A1 (ja) * | 2023-02-06 | 2024-08-15 | Eneosクレイトンエラストマー株式会社 | 制振性および耐熱性に優れたブロック共重合体及びその製造方法 |
JP7559102B2 (ja) | 2023-02-06 | 2024-10-01 | Eneosクレイトンエラストマー株式会社 | 制振性および耐熱性に優れたブロック共重合体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3379304A1 (en) | 2018-09-26 |
US20180312622A1 (en) | 2018-11-01 |
EP3379304A4 (en) | 2019-08-07 |
KR20180084041A (ko) | 2018-07-24 |
JP6229824B2 (ja) | 2017-11-15 |
JP2018045241A (ja) | 2018-03-22 |
JPWO2017086265A1 (ja) | 2017-11-16 |
US10941236B2 (en) | 2021-03-09 |
KR102685094B1 (ko) | 2024-07-12 |
CN108351456B (zh) | 2020-12-25 |
CN108351456A (zh) | 2018-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016152871A1 (ja) | 光学フィルム | |
JP6229824B2 (ja) | 光学フィルム及び偏光板 | |
JP6911766B2 (ja) | 光学フィルム及び偏光板 | |
JP6992759B2 (ja) | 光学フィルム及びその製造方法、並びに偏光板 | |
KR102638927B1 (ko) | 광학 필름 및 편광판 | |
JP2011043601A (ja) | 位相差フィルムの製造方法 | |
JP2017177367A (ja) | 光学積層体、偏光板及び液晶表示装置 | |
JP6891902B2 (ja) | 積層フィルム、その製造方法、偏光板、及び表示装置 | |
JP2018097121A (ja) | 複合フィルム、製造方法、偏光板、及び表示装置 | |
JP2018097110A (ja) | 複合フィルム、製造方法、偏光板、及び表示装置 | |
JP2018069613A (ja) | 積層フィルム、製造方法、偏光板、及び表示装置 | |
JPWO2020110672A1 (ja) | 光学フィルム、位相差フィルム、及びそれらの製造方法 | |
JPWO2020110673A1 (ja) | 光学フィルム、位相差フィルム、及びそれらの製造方法 | |
JPWO2018180498A1 (ja) | 光学フィルム、偏光板、及び製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16866267 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017539047 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187012322 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15772880 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016866267 Country of ref document: EP |