WO2017086205A1 - 車両の衝撃吸収部材構造 - Google Patents

車両の衝撃吸収部材構造 Download PDF

Info

Publication number
WO2017086205A1
WO2017086205A1 PCT/JP2016/083075 JP2016083075W WO2017086205A1 WO 2017086205 A1 WO2017086205 A1 WO 2017086205A1 JP 2016083075 W JP2016083075 W JP 2016083075W WO 2017086205 A1 WO2017086205 A1 WO 2017086205A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing member
crash
pair
vehicle
shock absorbing
Prior art date
Application number
PCT/JP2016/083075
Other languages
English (en)
French (fr)
Inventor
力 河村
常規 嶋中
弘明 竹下
剛史 西原
隆之 木村
一孝 石倉
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US15/760,195 priority Critical patent/US10604094B2/en
Priority to JP2017551825A priority patent/JP6610677B2/ja
Priority to DE112016004866.1T priority patent/DE112016004866T5/de
Priority to CN201680051634.7A priority patent/CN107921920B/zh
Publication of WO2017086205A1 publication Critical patent/WO2017086205A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/124Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by their special construction from fibre-reinforced plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/03Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects characterised by material, e.g. composite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R19/34Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/152Front or rear frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/003One-shot shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R19/00Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
    • B60R19/02Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
    • B60R19/24Arrangements for mounting bumpers on vehicles
    • B60R19/26Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
    • B60R2019/262Arrangements for mounting bumpers on vehicles comprising yieldable mounting means with means to adjust or regulate the amount of energy to be absorbed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0241Fibre-reinforced plastics [FRP]

Definitions

  • the present invention relates to a shock absorbing member structure for a vehicle including a bumper reinforcement attached to the tip of a pair of left and right fiber reinforced resin shock absorbing members including a plurality of reinforcing fibers continuously extending in the front-rear direction.
  • a pair of left and right front side frames or a pair of left and right rear side frames has been provided at the front or rear of the vehicle body, and a pair of left and right crashes that can absorb impact energy at the time of collision at the front end of these side frames.
  • a structure for attaching a bumper reinforcement extending in the vehicle width direction through a can (also referred to as a crash box) is known.
  • These pair of crash cans are usually formed of a metal material, and absorb impact energy transmitted to the passenger compartment by being compressed and broken in the axial direction at the time of a vehicle collision.
  • the reinforcing fiber used as the reinforcing material includes glass fiber, carbon fiber, metal fiber, and the like, and a fiber reinforced resin is formed by combining with a base material (matrix).
  • a fiber reinforced resin shares mechanical properties such as strength, and the base material resin shares the function of transmitting stress between fibers and the function of protecting fibers.
  • CFRP Carbon-Fiber-Reinforced-Plastic
  • the impact-absorbing member of Patent Document 1 is a composite-made impact-absorbing member made of a synthetic resin and carbon fiber, and the impact fracture temperature is set in the range of ⁇ 15 ° C. to + 50 ° C. of the glass transition temperature of the resin. ing. Thereby, high energy absorption performance is secured.
  • a cylindrical shape, a cylindrical shape, a closed cross-sectional prism shape, and the like are disclosed.
  • the performance required for the impact absorbing member is that the energy absorption amount (hereinafter referred to as EA (Energy Absorption) amount) is large. Furthermore, the impact energy can be stably increased by the sequential fracture in which the compression fracture progresses sequentially. To absorb.
  • EA Energy Absorption
  • the present applicant is studying a carbon fiber resin structure that can be sequentially broken at the time of a vehicle collision (Japanese Patent Application No. 2015-117520).
  • the carbon fiber resin structure examined by the present applicant includes a plurality of first carbon fiber layers arranged so that the carbon fibers extend in the compression load input direction, and carbon intersecting the carbon fibers of these first carbon fiber layers.
  • a plurality of second carbon fiber layers arranged so that the fibers extend, and when a compressive load is input, the carbon fibers are in a direction crossing the compressive load input direction at both ends in the thickness direction of the fiber reinforced resin plate material.
  • One or more second carbon fiber layers are disposed in the vicinity of one end side in the thickness direction and the vicinity in the other end side of the fiber reinforced resin sheet so as to be separated through the extending second carbon fiber layer.
  • a pillar-shaped pillar part can be formed by the 1st carbon fiber layer inside a plate thickness direction rather than the 2nd carbon fiber layer by making the 2nd carbon fiber layer into a boundary part, and it is a board rather than the 2nd carbon fiber layer.
  • a branch-shaped front part can be formed by the first carbon fiber layer on the outer side in the thickness direction.
  • This carbon fiber resin structure can reliably and stably sequentially destroy both ends in the thickness direction of the fiber reinforced resin at the time of a vehicle collision, and can increase the amount of EA.
  • sequential destruction by the fiber reinforced resin cannot effectively contribute to the amount of EA.
  • the base end of the crash can is bolted to the tip of the side frame via a set plate or the like, when the crash can is formed using fiber reinforced resin, the base end side portion of the crash can A fiber cut portion is formed along with the formation of the bolt hole.
  • the strength difference between the base end side part which is the support side end part and the front end side part which is the compressive load input direction side end part at the time of the vehicle collision Based on the above, there is a possibility that the breakage of the base end side portion may be started earlier than the breakage of the distal end side portion by the fiber cut portion as the starting point of the breakage.
  • the destruction phenomenon that the destruction of the proximal end portion starts early may occur due to structural factors even when the fiber cut portion is not formed by the bolt hole.
  • the crash can when the crash can is formed on a closed cross-section member extending in the longitudinal direction of the vehicle body, the fiber reinforced resin that is sequentially destroyed at the time of the vehicle collision, so-called resin debris is accumulated inside the crash can, and the crash can itself is Although there is still a margin in performance, there is a possibility that the sequential destruction performance of the crash can may be hindered by the fiber reinforced resin that is sequentially destroyed. That is, there is room for improvement in structure in order to ensure stable EA performance in a crash can that absorbs impact energy using sequential fracture.
  • An object of the present invention is to provide a vehicle impact absorbing member structure and the like that can ensure stable EA performance in the event of a vehicle collision.
  • a pair of left and right fiber reinforced resin impact absorbing members including a plurality of reinforcing fibers disposed at a front end portion of the vehicle body in the longitudinal direction and arranged so as to extend continuously in the longitudinal direction.
  • the shock absorbing member attaches the bumper reinforcement and attaches to the tip. It is formed in the open cross-section member provided with the formed front end wall part.
  • the first aspect of the invention since it has a pair of left and right fiber reinforced resin impact absorbing members including a plurality of reinforcing fibers arranged so as to extend continuously in the longitudinal direction of the vehicle body, Impact energy can be absorbed using sequential fracture. Since the shock absorbing member is formed on an open cross-section member with a bumper reinforcement attached and a tip wall formed at the tip, the fiber reinforced resin that is sequentially destroyed at the time of a vehicle collision is placed inside the shock absorbing member. It is possible to discharge to the outside without accumulating in the shock absorber, and the impact absorbing member can be crushed.
  • the shock absorbing member is arranged so as to extend continuously in the longitudinal direction of the vehicle body and includes a plurality of first reinforcing members constituting most of the reinforcing fibers included in the shock absorbing member.
  • a plurality of second reinforcing fibers arranged so as to extend continuously in a direction intersecting the extending direction of the first reinforcing fibers, and a plurality of curved portions in a longitudinal sectional view orthogonal to the front-rear direction It is characterized by being formed.
  • the second reinforcing fiber forms a fiber bridge between the first reinforcing fibers, so that the second reinforcing fiber is cut by a tensile load.
  • Cutting energy can be used to absorb impact energy.
  • a third invention is characterized in that, in the second invention, the plurality of curved portions have a plurality of partial arc shapes. According to this configuration, it is possible to apply a tensile load evenly to the second reinforcing fibers and further to absorb impact energy.
  • a fourth invention is characterized in that, in any one of the first to third inventions, the impact absorbing member is formed so that the vertical width becomes smaller toward the tip. According to this configuration, the input load per unit area of the distal end portion can be made larger than the input load per unit area of the proximal end portion at the time of a vehicle collision, so that the starting point of sequential destruction is reliably formed at the distal end portion. can do.
  • the fifth invention is characterized in that, in the second invention, the plurality of second reinforcing fibers are respectively disposed in the vicinity of both ends in the thickness direction of the pair of shock absorbing members. According to this configuration, when the vehicle collides, by reducing the thickness of the front part formed in the fiber reinforced resin, a wide pillar part can be stably formed, and the EA performance can be improved.
  • shock absorbing member structure for a vehicle of the present invention when a vehicle collides, it is possible to sequentially proceed with destruction from the tip end portion to the base end side portion of the shock absorbing member, thereby ensuring stable EA performance. it can.
  • FIG. 1 is a perspective view of a rear part of a vehicle body including a shock absorbing member structure according to Embodiment 1.
  • FIG. It is a top view of the left vehicle body rear part. It is a side view of the left vehicle body rear part. It is a perspective view of the rear end side part periphery of a crash can. It is a perspective view of the front end side part periphery of a crash can. It is a side view of a crash can. It is the perspective view which looked at the crash can from diagonally forward.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 6. It is a principal part enlarged view of FIG.
  • FIG. 3 is a sectional view taken along line XX in FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line XI-XI in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along line XII-XII in FIG. 3.
  • It is a figure of an outside bracket (a) is a front view, (b) is a rear view, (c) is a side view, (d) is a top view.
  • It is a figure of an inner side bracket Comprising: (a) is a front view, (b) is a rear view, (c) is a side view, (d) is a top view.
  • It is a disassembled perspective view of a crash can, an outer side bracket, an inner side bracket, and a bolt attachment member.
  • the vehicle V includes a pair of left and right rear side frames 1, a floor panel 2 provided so as to span between the pair of rear side frames 1, and a bumper fascia (not shown).
  • a bumper reinforcement (hereinafter abbreviated as “bumper rain”) 3 that covers the rear outer periphery and extends to the left and right, and a pair of left and right crashes disposed between the pair of rear side frames 1 and the bumper rain 3.
  • a can 10 impact absorbing member
  • a pair of left and right outer brackets 20 and a pair of left and right inner brackets 30 for attaching the pair of crash cans 10 to a pair of rear side frames 1 are provided. Since the pair of left and right members have a bilaterally symmetric structure, the left side member will be mainly described below.
  • the rear side frame 1 is formed as an integral part by extrusion molding of an aluminum alloy material.
  • the rear side frame 1 supports a floor panel 2 and the like and has a closed cross section that extends in a substantially horizontal shape in a straight line in the front-rear direction.
  • the rear side frame 1 is formed in a substantially trapezoidal cross section, an outer wall portion 1a orthogonal to the left-right direction, an inner wall portion 1b arranged in parallel at the right position of the outer wall portion 1a and having a larger vertical width than the outer wall portion 1a.
  • the upper wall 1c that connects the upper ends of the outer wall 1a and the inner wall 1b and the lower wall 1d that connects the lower ends of the outer wall 1a and the inner wall 1b are provided.
  • the upper wall portion 1c is formed in an inclined shape so as to move downward on the left side
  • the lower wall portion 1d is formed on an inclined shape so as to move upward on the left side.
  • a pair of upper and lower bolt mounting members 40 are provided on the rear end portions (front end portions) of the upper wall portion 1 c and the lower wall portion 1 d. Each is arranged. Since the upper and lower pair of bolt mounting members 40 have a plane symmetrical structure with respect to the horizontal plane, the upper bolt mounting member 40 will be mainly described.
  • the bolt mounting member 40 includes a main body portion 41 and two bolt portions 42 that are fixed to the rear end portion of the main body portion 41 and extend rearward from the rear end portion of the main body portion 41.
  • the main body portion 41 is integrally formed of aluminum alloy material so that two cylindrical bodies are adjacent to each other with a predetermined distance therebetween, and the bottom portion is joined to the rear end side portion of the upper wall portion 1c by welding. As shown in FIG. 10, the rear end portion of the main body portion 41 is disposed so as to protrude rearward from the rear end portion of the upper wall portion 1c.
  • a front side wall 41 a (base end side wall) is formed at the front end portion of the main body 41. The front side wall portion 41a is inclined so as to be closer to the upper wall portion 1c toward the front side.
  • the longitudinal length of the ceiling portion of the main body 41 is formed shorter than the longitudinal length of the bottom portion, and the longitudinal length of the bottom portion located on the rear side of the rear end portion of the upper wall portion 1c is the height of the upper wall portion 1c. It is formed shorter than the front-rear length of the bottom portion located in front of the rear end.
  • the two bolt portions 42 are respectively formed with screw portions that can be screwed onto the nuts 43 on the outer peripheral portions thereof, and are arranged adjacent to each other in a substantially parallel manner along the inclination direction of the upper wall portion 1c.
  • the front end side portions of these bolt portions 42 are fixed to the inside of the main body portion 41 so that the front end portions are arranged at positions corresponding to the rear end portions of the upper wall portion 1c. Accordingly, the bolt mounting member 40 is reduced in size and weight while ensuring the support strength of the bolt portion 42 and the bonding strength of the main body portion 41. Since the lower bolt mounting member 40 has a plane-symmetric structure with respect to the upper bolt mounting member 40 and a horizontal plane, detailed description thereof is omitted.
  • the floor panel 2 has a rear seat (not shown) mounted on a front end side portion, and a spare tire pan 2a capable of storing a spare tire (not shown) formed on a rear end side portion.
  • the left and right ends of the floor panel 2 are joined to the respective inner wall portions 1b of the pair of rear side frames 1 by welding.
  • Spare tire pan 2 a is formed so as to be recessed downward at a portion corresponding to the cargo compartment of floor panel 2.
  • the bumper rain 3 is formed as an integral part by extrusion molding of an aluminum alloy material.
  • the bumper rain 3 has a closed cross section extending in a horizontal direction substantially horizontally, and is formed in a gently curved shape with a central portion protruding rearward in plan view. As shown in FIG. 12, a pair of upper and lower bolt holes 3a are formed in the left and right end portions of the front side wall portion of the bumper rain 3, and a pair of upper and lower ends for fastening work are formed in the left and right end portions of the rear side wall portion. Each of the work holes 3b is formed.
  • the crash can 10 is an open cross-section member in which a right side (inner side in the vehicle width direction) portion is opened by molding a carbon fiber resin (CFRP) molded body using carbon fibers, which are long fibers, as a reinforcing material (for example, RTM method).
  • CFRP carbon fiber resin
  • RTM method is a molding method in which a carbon fiber preform is set in a cavity of a mold that can be vertically separated and a synthetic resin melted in the cavity is injected.
  • the crash can 10 includes a side wall portion 11 extending in the front-rear direction, a front end wall portion 12 bent rightward from a rear end portion of the side wall portion 11, and a side wall.
  • a flange portion 13 bent to the right from the front end portion of the portion 11 is provided.
  • the side wall portion 11 is formed in a substantially conical shape, and is formed so as to open to the right when the middle portion bulges leftward in a longitudinal section perpendicular to the front-rear direction.
  • the side wall portion 11 includes a substantially partially conical upper curved portion 11a, two substantially partially cylindrical intermediate curved portions 11b arranged above and below, and a substantially partially conical bottom portion.
  • a side curved portion 11c is provided.
  • the upper curved portion 11a and the lower curved portion 11c are formed such that a longitudinal cross section perpendicular to the front-rear direction is formed in a partial arc shape, and the diameter thereof decreases toward the rear side.
  • Each of the upper and lower intermediate curved portions 11b has a vertical cross section orthogonal to the front-rear direction formed in a partial arc shape, and their diameters are formed substantially constant over the front and rear. Therefore, the side wall part 11 is formed so that the vertical width increases toward the front side in a side view.
  • the lower end portion of the upper curved portion 11a is connected to the upper end portion of the upper intermediate curved portion 11b in a curved shape without forming a corner portion
  • the upper end portion of the lower curved portion 11c is the lower intermediate curved portion.
  • the lower end of 11b is connected in a curved shape without forming a corner. Since the lower end portion of the upper curved portion 11a and the upper end portion of the lower intermediate curved portion 11b are connected in a curved shape, the middle portion of the side wall portion 11 is formed with a concave portion extending in the front-rear direction. .
  • a second carbon fiber 52 corresponding to a part of the carbon fiber contained in the carbon fiber resin is composed of a fiber bundle (tow) in which a predetermined number (for example, 12 k) of fibers (filaments) are bundled. It consists of a fiber bundle in which a predetermined number of single fibers continuously extending uniformly from the upper end to the lower end are bundled.
  • the diameter of the carbon fiber single fiber is, for example, 7 to 10 ⁇ m.
  • a thermosetting epoxy synthetic resin is used for the base material 53 of the carbon fiber resin molded body.
  • the first carbon fibers 51 are arranged one layer at the left end and the right end in the thickness direction of the side wall portion 11, and the second carbon fibers 52 orthogonal to the first carbon fibers 51 are arranged inside the first carbon fibers 51.
  • Each layer is arranged.
  • a plurality of layers of first carbon fibers 51 are arranged between the left and right second carbon fibers 52.
  • the first carbon fiber 51 part corresponding to the front part is peeled and broken before the first carbon fiber 51 part corresponding to the pillar part,
  • the first carbon fiber 51 portion corresponding to the pillar portion is compressed and broken.
  • Sequential fracture in which this peeling fracture and compression fracture proceed sequentially forward from the rear end (compression load input side end) is performed.
  • the pillar part with a large left-right width is stably formed, and a large amount of EA is secured.
  • the second carbon fiber 52 forms a fiber bridge between the plurality of first carbon fibers 51, so that the second carbon fiber 52 is cut by a tensile load.
  • the cutting energy of the carbon fiber 52 is used for energy absorption.
  • the front end wall portion 12 is formed so as to close substantially the entire area in the front-rear direction from the upper end portion to the lower end portion of the rear end portion of the side wall portion 11. Thereby, the compressive load input via the bumper rain 3 is uniformly distributed and transmitted to the entire rear end portion of the side wall portion 11 by the front end wall portion 12.
  • the front end wall portion 12 is bent from the rear end portion of the side wall portion 11 along the front side wall portion of the bumper rain 3, and the crossing angle ⁇ between the side wall portion 11 and the front end wall portion 12 is an obtuse angle. Specifically, it is set in the range of 90 ° to 120 °.
  • This crossing angle ⁇ is preferably in the range of 95 ° to 115 °, and is set to about 100 ° in this embodiment.
  • the first carbon fibers 51 from the side wall portion 11 are extended to the right end portion of the tip wall portion 12, and therefore, the first carbon fibers 51 are disposed so as to extend substantially uniformly in the left-right direction. ing.
  • the tip wall portion 12 is formed with a pair of upper and lower mounting portions 12 a (openings) for mounting the bumper rain 3. Therefore, a fiber cut portion in which the first carbon fibers 51 are cut is formed around the pair of upper and lower attachment portions 12a, and the support strength of the bumper rain 3 is reduced. Therefore, a nut member 14 that can be screwed into the bolt 15 is fitted into the mounting portion 12a.
  • the flange portion 13 is formed from the upper end portion to the lower end portion of the front end portion of the side wall portion 11.
  • the flange portion 13 is bent toward the right (the axial center direction of the crash can 10) so as to be substantially orthogonal to the front end portion of the side wall portion 11.
  • the first carbon fibers 51 from the side wall portion 11 are extended to the inner end portion of the flange portion 13, the first carbon fibers 51 are substantially uniform with respect to the axial direction of the crash can 10. It arrange
  • the outer bracket 20 and the inner bracket 30 will be described. As shown in FIGS. 5, 10, 11, and 15, the outer bracket 20 and the inner bracket 30 crash the front end side portion of the crash can 10 (part of the front end side portion of the side wall portion 11 and the flange portion 13).
  • the can 10 is sandwiched from the thickness direction and fixed to a bolt mounting member 40 supported by the rear side frame 1. Thereby, the crush can 10 can be attached to the rear side frame 1 without forming a fiber cutting part in the front end side part of the crush can 10.
  • the outer bracket 20 is integrally formed of an aluminum alloy material, and has a substantially semicircular body portion 21 and an inclined portion 22 (outer inclined portion) in a front view. Part), an attachment part 23, and the like.
  • the main body portion 21 is formed in a substantially L-shaped longitudinal section, and when the outer bracket 20 and the inner bracket 30 sandwich the crash can 10, the outer periphery of the front end side portion of the crash can 10 It is comprised so that a surface may contact along a surface.
  • the inclined portion 22 is formed in an inclined shape so as to move forward from the right end portion of the main body portion 21 toward the right side.
  • the inclined portion 22 is provided with a pair of upper and lower boss portions 22a protruding rearward and a pair of upper and lower fastening holes 22b formed in the pair of boss portions 22a.
  • a screw groove into which the bolt 33 can be screwed is formed in the pair of fastening holes 22b.
  • the attachment portion 23 is provided outside the main body portion 21 in the radial direction.
  • the mounting portion 23 has a pair of left and right bolt holes 23 a at the upper and lower positions of the main body portion 21. These bolt holes 23a are formed at positions where the bolt portions 42 of the bolt mounting members 40 can be inserted when the crash can 10 is mounted to the rear side frame 1, respectively.
  • the inner bracket 30 is integrally formed of an aluminum alloy material, and has a substantially semicircular main body 31 and an inclined portion 32 (inner inclined) in a front view. Part) etc.
  • the main body 31 is formed in a substantially L-shaped vertical cross section, and when the outer bracket 20 and the inner bracket 30 sandwich the crash can 10, It is comprised so that surface contact may be made along a surrounding surface.
  • the inclined portion 32 is formed in an inclined shape so as to move forward from the right end portion of the main body portion 31 toward the right side.
  • the inclined portion 32 is provided with a pair of upper and lower boss portions 32a projecting forward and a pair of upper and lower bolt holes 32b formed in the pair of boss portions 32a.
  • the procedure for assembling the crash can 10 will be described with reference to FIG.
  • the bolt mounting members 40 are joined to the upper wall portion 1c and the lower wall portion 1d of the rear side frame 1, respectively.
  • the bolt 33 is inserted into the bolt hole 32b and fastened to the fastening hole 22b.
  • the crash can unit is attached to the rear side frame 1.
  • the bottom part of the main body part 41 of the bolt mounting member 40 protrudes rearward from the rear end part of the rear side frame 1, so that the outer peripheral part of the main body part 21 of the outer bracket 20 moves forward along the bottom part of the main body part 41.
  • the bolt part 42 is inserted into the bolt hole 23a.
  • the nut 43 is fastened to the bolt part 42 inserted through the bolt hole 23 a to connect and fix the crash can unit to the rear side frame 1.
  • the bumper rain 3 may be connected to the crash can 10 in advance before the crash can unit is fastened and fixed to the rear side frame 1, or may be connected to the crash can 10 after the crash can unit is fastened and fixed to the rear side frame 1. You may do it.
  • the crash can 10 has a pair of left and right CFRP crash cans 10 including a plurality of first carbon fibers 51 arranged so as to extend continuously in the front-rear direction.
  • the impact energy can be absorbed by using successive fractures. Since the crash can 10 is formed in an open cross-section member with the bumper rain 3 attached and the tip wall portion 12 formed at the tip, the fiber reinforced resin (CFRP) that has been sequentially destroyed at the time of a vehicle collision is crashed. 10 can be discharged to the outside without accumulating inside, and the crash can 10 can be crushed.
  • CFRP fiber reinforced resin
  • the crash can 10 is arranged so as to continuously extend in the front-rear direction and intersects the extending direction of the first carbon fibers 51 and a plurality of first carbon fibers 51 constituting most of the reinforcing fibers included in the crash can 10. And a plurality of second carbon fibers 52 arranged so as to continuously extend in the direction to be formed, and a plurality of curved portions are formed in a longitudinal sectional view orthogonal to the front-rear direction.
  • the plurality of curved portions have a plurality of partial arc shapes, it is possible to apply a tensile load evenly to the second carbon fibers 52 and further to absorb impact energy.
  • the crash can 10 (side wall portion 11) is formed so that the vertical width becomes smaller toward the rear side, the input load per unit area of the rear end portion of the side wall portion 11 at the time of a vehicle collision is the unit of the front end side portion. It can be made larger than the input load per area, and the starting point of sequential fracture can be reliably formed at the rear end portion.
  • the width of the Fronze portion formed on the side wall portion 11 can be reduced by reducing the width at the time of a vehicle collision.
  • a large pillar portion can be formed stably and EA performance can be enhanced.
  • FIG. 16 is a perspective view of the rear part of the vehicle body of the vehicle V provided with the shock absorbing member structure according to the second embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 17 is a perspective view of the vicinity of the rear end side portion of the crash can 10 of the second embodiment and corresponds to FIG. 4 of the first embodiment.
  • the left crash can 10 is illustrated
  • FIG. 17 the right crash can 10 is illustrated.
  • the opening direction of the crash can 10 of the present embodiment is opposite to the opening direction of the crash can 10 of the first embodiment.
  • the left crush can 10 is formed so as to open leftward in a vertical cross section orthogonal to the front-rear direction
  • the right crush can 10 is vertical cross-section orthogonal to the front-rear direction. Is formed so as to open to the right. That is, the crash can 10 of the present embodiment is formed as an open cross-section member whose outer side in the vehicle width direction is opened.
  • the crash can 10 of the present embodiment has a distal end wall portion 12 at the distal end portion, which is the same as in the first embodiment.
  • the opening direction of the crash can 10 is opposite to that of the first embodiment, so that the shapes of the rear side frame 1, the outer bracket 20, the inner bracket 30, and the bolt mounting member 40 of the present embodiment. Is reversed from that of the first embodiment. From a different point of view, the rear side frame 1, the outer bracket 20, the inner bracket 30, and the bolt mounting member 40 arranged on the right side in the first embodiment are arranged on the left side in the present embodiment. The rear side frame 1, the outer bracket 20, the inner bracket 30, and the bolt mounting member 40 that are disposed in the right side are disposed on the right side in the present embodiment.
  • the crash can 10 is formed as an open cross-section member whose outer side in the vehicle width direction is opened.
  • the fiber reinforced resin (sequentially destroyed at the time of a vehicle collision) CFRP) can be discharged to the outside without accumulating inside the crash can 10, and the crash can 10 can be crushed.
  • the second carbon fiber has been described as being disposed so as to be orthogonal to the first carbon fiber.
  • the second carbon fiber may be at least crossed with respect to the first carbon fiber, for example, with respect to the first carbon fiber. It is also possible to use a second carbon fiber having a crossing angle of 45 ° or 60 °.
  • Bumper rain 10 Crash can 11 Side wall part 11a Upper curved part 11b Middle curved part 11c Lower curved part 12 Tip wall part 12a Mounting part 51 First carbon fiber 52 Second carbon fiber V Vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

左右1対のリヤサイドフレーム1と、前後方向に連続して延びるように配列された複数の第1炭素繊維51を含む左右1対のクラッシュカン10と、1対のリヤサイドフレーム1の先端部に1対のクラッシュカン10を介して取り付けられたバンパレイン3とを備えた車両Vの衝撃吸収部材構造であって、クラッシュカン10が、前後に延びる側壁部11と、側壁部11に連なり且つバンパレイン3を取り付けるための取付部12aが形成された先端壁部12とを備えた開断面部材に形成されている。

Description

車両の衝撃吸収部材構造
 本発明は、前後方向に連続して延びる複数の強化繊維を含む左右1対の繊維強化樹脂製衝撃吸収部材の先端部に取り付けられたバンパレインフォースメントを備えた車両の衝撃吸収部材構造に関する。
 従来より、車体前部又は後部において、左右1対のフロントサイドフレーム又は左右1対のリヤサイドフレームが設けられ、これらサイドフレームの先端部に、衝突時の衝撃エネルギを吸収可能な左右1対のクラッシュカン(クラッシュボックスともいう)を介して車幅方向に延びるバンパレインフォースメントを取り付ける構造が知られている。
 これら1対のクラッシュカンは、通常、金属材料によって成形され、車両衝突時には、軸方向に圧縮破壊されることにより車室に伝達される衝撃エネルギを吸収している。
 クラッシュカンは、大型部品であるため、車体重量の軽量化を狙いとして、繊維強化樹脂成形体で構成することも知られている。
 強化材として使われる強化繊維は、ガラス繊維、炭素繊維、金属繊維等があり、母材(マトリックス)と組み合わせることによって繊維強化樹脂が形成されている。
 このような繊維強化樹脂では、強化繊維が強度等の力学的特性を分担し、母材樹脂が繊維間の応力伝達機能と繊維の保護機能を分担している。
 特に、炭素繊維樹脂(Carbon-Fiber-Reinforced-Plastic: CFRP)は、高比強度(強度/比重)と高比剛性(剛性/比重)、所謂軽さと強度・剛性とを併せ持つ特性であるため、航空機や車両等の構造材料として広く使用に供されている。
 特許文献1の衝撃吸収部材は、合成樹脂と炭素繊維からなる複合材料製衝撃吸収部材であって、衝撃破壊温度が、この樹脂のガラス転移温度の-15℃以上+50℃以下の範囲に設定されている。これにより、高いエネルギ吸収性能を確保している。
 この衝撃吸収部材の構造では、筒形状、円柱形状、閉断面状角柱形状等が開示されている。
 衝撃吸収部材に要求される性能は、エネルギ吸収量(以下、EA(Energy Absorption)量という)が大きいことであり、更には、逐次的に圧縮破壊が進行する逐次破壊によって安定的に衝撃エネルギを吸収することである。
特開2004-116564号公報
 また、本出願人は、車両衝突時に逐次破壊可能な炭素繊維樹脂構造体を検討している(特願2015-117520号)。
 本出願人が検討する炭素繊維樹脂構造体は、圧縮荷重入力方向に炭素繊維が延びるように配列された複数の第1炭素繊維層と、これら第1炭素繊維層の炭素繊維に交差して炭素繊維が延びるように配列された複数の第2炭素繊維層とを備え、圧縮荷重が入力されたとき、繊維強化樹脂板材の厚さ方向両端部分を圧縮荷重入力方向に交差する方向に炭素繊維が延びる第2炭素繊維層を介して夫々剥離させるように、繊維強化樹脂板材の厚さ方向一端側近傍部分と他端側近傍部分とに1以上の第2炭素繊維層を夫々配設している。
 これにより、第2炭素繊維層を境界部分として、第2炭素繊維層よりも板厚方向内側の第1炭素繊維層によって柱状のピラー部を形成することができ、第2炭素繊維層よりも板厚方向外側の第1炭素繊維層によって枝状のフロンズ部を形成することができる。
 この炭素繊維樹脂構造体は、車両衝突時、繊維強化樹脂の厚さ方向両端部を確実且つ安定的に逐次破壊させることができ、EA量を増加することができる。
 しかし、繊維強化樹脂による逐次破壊がEA量に有効に寄与できない虞がある。
 一般に、クラッシュカンの基端部は、サイドフレームの先端部にセットプレート等を介してボルト締結されていることから、繊維強化樹脂を用いてクラッシュカンを形成した場合、クラッシュカンの基端側部分にボルト穴の形成に伴う繊維切断部分が形成される。
 そして、クラッシュカンの基端側部分に繊維切断部分が形成されると、車両衝突時、支持側端部である基端側部分と圧縮荷重入力方向側端部である先端側部分との強度差に基づき、繊維切断部分が破壊の起点となって先端側部分の破壊よりも基端側部分の破壊が早く開始されてしまう可能性がある。
 この基端側部分の破壊が早く開始されるという破壊現象は、ボルト穴によって繊維切断部分が形成されていない場合であっても、構造的要因からも発生する可能性がある。
 クラッシュカンの基端側部分の破壊が早く開始された場合、基端側部分の破壊が集中的に進行し、クラッシュカンの軸心方向と圧縮荷重入力方向とがずれてしまい、結果的に、衝突時の圧縮荷重によってクラッシュカンを潰し切ることができない虞がある。
 また、クラッシュカンが車体前後方向に延びる閉断面部材に形成された場合、車両衝突時、逐次破壊された繊維強化樹脂、所謂樹脂残骸がクラッシュカンの内部に蓄積されてしまい、クラッシュカン自体としては、まだ、性能上の余裕があるにも拘らず、逐次破壊された繊維強化樹脂によってクラッシュカンの逐次破壊性能が阻害される虞もある。
 即ち、逐次破壊を用いて衝撃エネルギ吸収を図るクラッシュカンにおいて、安定したEA性能を確保するには構造上改善の余地がある。
 本発明の目的は、車両衝突時、安定したEA性能を確保することができる車両の衝撃吸収部材構造等を提供することである。
 第1の発明は、車体前後方向先端側部分に配設され且つ前後方向に連続して延びるように配列された複数の強化繊維を含む左右1対の繊維強化樹脂製衝撃吸収部材と、前記1対の衝撃吸収部材の先端部に取り付けられた車幅方向に延びるバンパレインフォースメントとを備えた車両の衝撃吸収部材構造において、前記衝撃吸収部材が、前記バンパレインフォースメントを取り付けると共に先端部に形成された先端壁部を備えた開断面部材に形成されていることを特徴としている。
 第1の発明によれば、車体前後方向に連続して延びるように配列された複数の強化繊維を含む左右1対の繊維強化樹脂製衝撃吸収部材を有するため、車両衝突時、衝撃吸収部材の逐次破壊を用いて衝撃エネルギを吸収することができる。
 衝撃吸収部材が、バンパレインフォースメントを取り付けると共に先端部に形成された先端壁部を備えた開断面部材に形成されているため、車両衝突時、逐次破壊された繊維強化樹脂を衝撃吸収部材内部に蓄積することなく、外部に排出することができ、衝撃吸収部材を潰し切ることができる。
 第2の発明は、第1の発明において、前記衝撃吸収部材は、車体前後方向に連続して延びるように配列され且つ衝撃吸収部材に含まれる強化繊維の大部分を構成する複数の第1強化繊維と、前記第1強化繊維の延びる方向と交差する方向に連続して延びるように配列された複数の第2強化繊維とを有し、前後方向に直交する縦断面視にて複数の曲線部が形成されていることを特徴としている。
 この構成によれば、第1強化繊維に相当する部分が剥離破壊するとき、第2強化繊維が第1強化繊維の間にファイバーブリッジを形成するため、第2強化繊維が引張荷重によって切断される切断エネルギを衝撃エネルギ吸収に用いることができる。
 第3の発明は、第2の発明において、前記複数の曲線部は複数の部分円弧形状であることを特徴としている。
 この構成によれば、第2強化繊維に対して均等に引張荷重を作用させることができ、更に衝撃エネルギを吸収することができる。
 第4の発明は、第1~第3の発明のいずれかにおいて、前記衝撃吸収部材は、前記先端部側程上下幅が小さくなるように形成されていることを特徴としている。
 この構成によれば、車両衝突時、先端部分の単位面積当たりの入力荷重を基端側部分の単位面積当たりの入力荷重よりも大きくすることができ、先端部分に逐次破壊の起点を確実に形成することができる。
 第5の発明は、第2の発明において、前記複数の第2強化繊維が前記1対の衝撃吸収部材の厚さ方向両端近傍部分に夫々配設されていることを特徴としている。
 この構成によれば、車両衝突時、繊維強化樹脂に形成されるフロンズ部を薄くすることにより幅の大きなピラー部を安定的に形成し、EA性能を高くすることができる。
 本発明の車両の衝撃吸収部材構造によれば、車両衝突時、衝撃吸収部材の先端部分から基端側部分に亙って逐次破壊を進行させることができ、安定したEA性能を確保することができる。
実施形態1に係る衝撃吸収部材構造を備えた車両の車体後部の斜視図である。 左側車体後部の平面図である。 左側車体後部の側面図である。 クラッシュカンの後端側部分周辺の斜視図である。 クラッシュカンの前端側部分周辺の斜視図である。 クラッシュカンの側面図である。 クラッシュカンを斜め前方から視た斜視図である。 図6のVIII-VIII線断面図である。 図8の要部拡大図である。 図2のX-X線断面図である。 図3のXI-XI線断面図である。 図3のXII-XII線断面図である。 外側ブラケットの図であって、(a)は正面図、(b)は背面図、(c)は側面図、(d)は平面図である。 内側ブラケットの図であって、(a)は正面図、(b)は背面図、(c)は側面図、(d)は平面図である。 クラッシュカン、外側ブラケット、内側ブラケット、及びボルト取付部材の分解斜視図である。 実施形態2に係る衝撃吸収部材構造を備えた車両の車体後部の斜視図である。 クラッシュカンの後端側部分周辺の斜視図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 以下の説明は、本発明を車両の車体後部における衝撃吸収部材構造に適用したものを例示したものであり、本発明、その適用物、或いは、その用途を制限するものではない。
 尚、図において、矢印Fは前方を示し、矢印Lは左方を示し、矢印Uは上方を示すものとして説明する。
 (実施形態1)
 以下、本発明の実施形態1について図1~図15に基づいて説明する。
 図1~図3に示すように、車両Vは、左右1対のリヤサイドフレーム1と、これら1対のリヤサイドフレーム1の間を掛け渡すように設けられたフロアパネル2と、バンパフェイシャ(図示略)に後側外周部分を覆われ且つ左右に延びるバンパレインフォースメント(以下、バンパレインと省略する)3と、1対のリヤサイドフレーム1とバンパレイン3との間に配設された左右1対のクラッシュカン10(衝撃吸収部材)と、これら1対のクラッシュカン10を1対のリヤサイドフレーム1に夫々取り付けるための左右1対の外側ブラケット20及び左右1対の内側ブラケット30等を備えている。
 尚、上記左右1対の部材は、何れも左右対称構造であるため、以下、主に左側の部材について説明する。
 リヤサイドフレーム1は、アルミ合金材料を押出成形にて一体部品として成形されている。このリヤサイドフレーム1は、フロアパネル2等を支持すると共に略水平状に前後方向直線状に延びる閉断面を構成している。
 リヤサイドフレーム1は、断面略台形状に形成され、左右方向に直交する外壁部1aと、この外壁部1aの右側位置において平行状に配置され且つ外壁部1aよりも上下幅が大きい内壁部1bと、外壁部1aと内壁部1bの上端部同士を連結する上壁部1cと、外壁部1aと内壁部1bの下端部同士を連結する下壁部1dを備えている。
 上壁部1cは左側程下方に移行するように傾斜状に形成され、下壁部1dは左側程上方に移行するように傾斜状に形成されている。
 図1~図3,図5,図10,図15に示すように、上壁部1c及び下壁部1dの後端側部分(先端側部分)には、上下1対のボルト取付部材40が夫々配設されている。
 上下1対のボルト取付部材40は、水平面に対して面対称構造であるため、主に上側のボルト取付部材40について説明する。
 ボルト取付部材40は、本体部41と、この本体部41の後端側部分に固定され且つ本体部41の後端部から後方に延びる2本のボルト部42等を備えている。
 本体部41は、アルミ合金材料により2つの筒状体が所定間隔離隔して隣接するように一体形成され、その底部が上壁部1cの後端側部分に溶接にて接合されている。
 図10に示すように、本体部41の後端部は、上壁部1cの後端部よりも後側に突出するように配置されている。本体部41の前端部分には、前側壁部41a(基端側壁部)が形成されている。この前側壁部41aは、前側程上壁部1cに近接するように傾斜状に構成されている。それ故、本体部41の天井部分の前後長は底部分の前後長よりも短く形成され、上壁部1cの後端部よりも後側に位置する底部分の前後長は上壁部1cの後端部よりも前側に位置する底部分の前後長よりも短く形成されている。
 2本のボルト部42は、それらの外周部分にナット43と螺合可能なねじ部が夫々形成され、上壁部1cの傾斜方向に沿って略平行状に隣り合って配設されている。
 これらのボルト部42の前端側部分は、前端部が上壁部1cの後端部に対応する位置に配置されるように本体部41の内部に夫々固着されている。
 これにより、ボルト部42の支持強度と本体部41の接合強度とを確保しながら、ボルト取付部材40の小型軽量化を図っている。
 下側のボルト取付部材40は、上側のボルト取付部材40と水平面に対して面対称構造であるため、詳細な説明を省略する。
 次に、フロアパネル2及びバンパレイン3について説明する。
 図1に示すように、フロアパネル2は、前端側部分にリヤシート(図示略)が搭載され、後端側部分にスペアタイヤ(図示略)を格納可能なスペアタイヤパン2aが形成されている。このフロアパネル2の左右両端部分は、1対のリヤサイドフレーム1の夫々の内壁部1bに溶接にて接合されている。スペアタイヤパン2aは、フロアパネル2の荷室に対応する部位において下方に凹入するように形成されている。
 図1~図5に示すように、バンパレイン3は、アルミ合金材料を押出成形にて一体部品として成形されている。
 このバンパレイン3は、略水平状に左右に延びる閉断面を構成し、平面視にて中央部分が後方に突出した緩湾曲状に形成されている。
 図12に示すように、バンパレイン3の前側壁部の左右両端側部分には上下1対のボルト穴3aが夫々形成され、後側壁部の左右両端側部分には締結作業用の上下1対の作業穴3bが夫々形成されている。
 次に、クラッシュカン10について説明する。
 クラッシュカン10は、長繊維である炭素繊維を強化材とした炭素繊維樹脂(CFRP)成形体を成形することにより(例えばRTM法)、右側(車幅方向内側)部分が開放された開断面部材として一体形成されている。
 RTM法とは、炭素繊維のプリフォームを上下分離可能な成形型のキャビティ内にセットし、このキャビティ内に溶融させた合成樹脂を射出する成形方法である。
 図6~図8,図15に示すように、クラッシュカン10は、前後に延びる側壁部11と、この側壁部11の後端部から右方に折り曲けられた先端壁部12と、側壁部11の前端部から右方に折り曲けられたフランジ部13等を備えている。
 側壁部11は、略部分円錐状に構成され、前後方向に直交する縦断面にて中段部分が左方に膨出することにより右方に開口するように形成されている。
 これにより、車両衝突時、逐次破壊された炭素繊維樹脂をクラッシュカン10の外部に排出することができ、クラッシュカン10を潰し切ることができる。
 図6~図8に示すように、側壁部11は、略部分円錐状の上側湾曲部11aと、上下に配置された2つの略部分円筒状の中間湾曲部11bと、略部分円錐状の下側湾曲部11cを備えている。
 上側湾曲部11a及び下側湾曲部11cは、前後方向に直交する縦断面が部分円弧形状に形成され、その直径は後側程小さくなるように形成されている。
 上下2つの中間湾曲部11bは、前後方向に直交する縦断面が部分円弧形状に夫々形成され、それらの直径は前後に亙って略一定に夫々形成されている。
 それ故、側壁部11は、側面視にて、前側程上下幅が大きくなるように形成されている。
 図8に示すように、上側湾曲部11aの下端部が上側中間湾曲部11bの上端部に角部を形成することなく湾曲状に連なり、下側湾曲部11cの上端部が下側中間湾曲部11bの下端部に角部を形成することなく湾曲状に連なっている。
 上側湾曲部11aの下端部と下側中間湾曲部11bの上端部とが湾曲状に連なっているため、側壁部11の中段部分には右方に凹入した前後に延びる凹部が形成されている。
 ここで、クラッシュカン10を形成する炭素繊維樹脂について説明する。
 図9に示すように、炭素繊維樹脂に含まれる炭素繊維の大部分に相当する第1炭素繊維51は、炭素繊維樹脂成形体の前端から後端に亙って連続して一様に延びる単繊維(フィラメント)が所定数(例えば12k)束ねられた繊維束(トウ)で構成され、炭素繊維樹脂に含まれる炭素繊維の一部に相当する第2炭素繊維52は、炭素繊維樹脂成形体の上端から下端に亙って連続して一様に延びる単繊維が所定数束ねられた繊維束で構成されている。炭素繊維の単繊維の直径は、例えば7~10μmである。炭素繊維樹脂成形体の母材53には、熱硬化性エポキシ系合成樹脂が使用されている。
 図9に示すように、第1炭素繊維51は、側壁部11の厚さ方向左端及び右端に1層ずつ配置され、それらの内側に第1炭素繊維51に直交する第2炭素繊維52を2層ずつ配置している。そして、左右両第2炭素繊維52の間に複数層の第1炭素繊維51が配置されている。これにより、車両衝突時、厚さ方向両端部に配置された第1炭素繊維51に相当する部分にフロンズ部の機能を持たせることができ、厚さ方向中間部分に配置された第1炭素繊維51に相当する部分にピラー部の機能を夫々持たせることができる。
 それ故、側壁部11に前後方向の圧縮荷重が作用した場合、フロンズ部に相当する第1炭素繊維51部分がピラー部に相当する第1炭素繊維51部分に先行して剥離破壊し、その後、ピラー部に相当する第1炭素繊維51部分が圧縮破壊される。この剥離破壊と圧縮破壊とが、後端部(圧縮荷重入力側端部)から逐次前方に進行する逐次破壊が行われる。
 これにより、左右幅の大きなピラー部を安定的に形成し、大きなEA量を確保している。
 しかも、フロンズ部に相当する第1炭素繊維51部分が剥離破壊するとき、第2炭素繊維52が複数の第1炭素繊維51の間にファイバーブリッジを形成するため、引張荷重によって切断される第2炭素繊維52の切断エネルギをエネルギ吸収に利用している。
 図15に示すように、先端壁部12は、側壁部11の後端部の上端部から下端部に亙って前後方向の略全域を閉塞するように形成されている。
 これにより、バンパレイン3を介して入力された圧縮荷重は、先端壁部12によって側壁部11の後端部全域に一様に分散伝達される。
 図12に示すように、先端壁部12は、バンパレイン3の前側壁部に沿うように側壁部11の後端部から折り曲げられ、側壁部11と先端壁部12との交差角度θが鈍角、具体的には90°~120°の範囲に設定されている。この交差角度θは、好ましくは、95°~115°の範囲であり、本実施形態では、約100°に設定されている。
 これにより、バンパレイン3から先端壁部12に前後方向の圧縮荷重が入力したとき、側壁部11と先端壁部12との境界部分(角部分)に入力した荷重を集中的に作用させて破壊起点を生成している。
 先端壁部12では、側壁部11からの第1炭素繊維51が先端壁部12の右端部まで延長されているため、第1炭素繊維51が略一様に左右方向に延びるように配設されている。
 図4,図12,図15に示すように、先端壁部12には、バンパレイン3を装着するために上下1対の取付部12a(開口部)が形成されている。
 それ故、上下1対の取付部12aの周辺では、第1炭素繊維51が切断された繊維切断部分が形成されており、バンパレイン3の支持強度が低下している。
 そこで、取付部12aには、ボルト15と螺合可能なナット部材14を内嵌している。
 これにより、バンパレイン3の上下1対のボルト穴3aに挿通された1対のボルト15を先端壁部12に内嵌されたナット部材14に締結することにより、バンパレイン3をクラッシュカン10の後端部に取り付けている。
 図7,図10,図11,図15に示すように、フランジ部13は、側壁部11の前端部の上端部から下端部に亙って形成されている。このフランジ部13は、側壁部11の前端部から略直交するように右方(クラッシュカン10の軸心方向)に向けて折り曲げられている。フランジ部13では、側壁部11からの第1炭素繊維51がフランジ部13の内側端部まで延長されているため、第1炭素繊維51がクラッシュカン10の軸心方向に対して略一様に放射方向に延びるように配設されている。
 次に、外側ブラケット20及び内側ブラケット30について説明する。
 図5,図10,図11,図15に示すように、外側ブラケット20及び内側ブラケット30は、クラッシュカン10の前端側部分(側壁部11の前端側部分の一部及びフランジ部13)をクラッシュカン10の厚さ方向から挟み込んでリヤサイドフレーム1に支持されたボルト取付部材40に固定するように構成されている。
 これにより、クラッシュカン10の前端側部分に繊維切断部分を形成することなく、リヤサイドフレーム1にクラッシュカン10を取り付けることができる。
 図13(a)~図13(d)に示すように、外側ブラケット20は、アルミ合金材料にて一体形成され、正面視にて略半円状の本体部21と、傾斜部22(外側傾斜部)と、取付部23等を備えている。図10,図11に示すように、本体部21は、縦断面略L字状に形成され、外側ブラケット20及び内側ブラケット30がクラッシュカン10を挟持するとき、クラッシュカン10の前端側部分の外周面に沿って面当接するように構成されている。
 傾斜部22は、本体部21の右端部から右側程前方に移行するように傾斜状に形成されている。この傾斜部22は、後方に突出した上下1対のボス部22aと、これら1対のボス部22aに夫々形成された上下1対の締結穴22bが設けられている。1対の締結穴22bには、ボルト33が螺合可能なねじ溝が形成されている。
 取付部23は、本体部21の放射方向外側に設けられている。この取付部23は、本体部21の上側位置及び下側位置に左右1対のボルト穴23aを夫々有している。
 これらのボルト穴23aは、クラッシュカン10をリヤサイドフレーム1に取り付けるとき、ボルト取付部材40のボルト部42が夫々挿通可能な位置に形成されている。
 図14(a)~図14(d)に示すように、内側ブラケット30は、アルミ合金材料にて一体形成され、正面視にて略半円状の本体部31と、傾斜部32(内側傾斜部)等を備えている。図10,図11に示すように、本体部31は、縦断面略L字状に形成され、外側ブラケット20及び内側ブラケット30がクラッシュカン10を挟持したとき、クラッシュカン10の前端側部分の内周面に沿って面当接するように構成されている。
 傾斜部32は、本体部31の右端部から右側程前方に移行するように傾斜状に形成されている。この傾斜部32は、前方に突出した上下1対のボス部32aと、これら1対のボス部32aに夫々形成された上下1対のボルト穴32bが設けられている。
 外側ブラケット20及び内側ブラケット30によってクラッシュカン10を挟持するとき、各ボルト穴32bに挿通されたボルト33が締結穴22bに締結されている。
 これにより、傾斜部22と傾斜部32が重畳されると共に、本体部21と本体部31が、側壁部11の前端側部分の一部及びフランジ部13に圧着され、クラッシュカン10と外側ブラケット20と内側ブラケット30が一体的にユニット化される。
 図15に基づき、クラッシュカン10の組み付け手順について説明する。
 車体側において、準備工程として、リヤサイドフレーム1の上壁部1c及び下壁部1dにボルト取付部材40を夫々接合する。
 クラッシュカン10の前端側部分の外周側に外側ブラケット20を重ね合わせ、前端側部分の内周側に内側ブラケット30を重ね合わせた後、ボルト33をボルト穴32bに挿通させて締結穴22bに締結することにより、クラッシュカン10はブラケット20,30と一体化されたクラッシュカンユニットを形成する。
 次に、クラッシュカンユニットをリヤサイドフレーム1に装着する。
 このとき、ボルト取付部材40の本体部41の底部がリヤサイドフレーム1の後端部よりも後方に突出しているため、外側ブラケット20の本体部21の外周部が本体部41の底部に沿って前方に誘導され、ボルト部42がボルト穴23aに挿通される。
 ボルト穴23aに挿通されたボルト部42にナット43を締結してクラッシュカンユニットをリヤサイドフレーム1に連結固定する。
 尚、バンパレイン3は、クラッシュカンユニットをリヤサイドフレーム1に締結固定する前に、予めクラッシュカン10に連結しても良く、また、クラッシュカンユニットをリヤサイドフレーム1に締結固定した後にクラッシュカン10に連結しても良い。
 次に、本実施形態の車両Vの衝撃吸収部材構造における作用、効果について説明する。
 この衝撃吸収部材構造によれば、前後方向に連続して延びるように配列された複数の第1炭素繊維51を含む左右1対のCFRP製クラッシュカン10を有するため、車両衝突時、クラッシュカン10の逐次破壊を用いて衝撃エネルギを吸収することができる。
 クラッシュカン10が、バンパレイン3を取り付けると共に先端部に形成された先端壁部12を備えた開断面部材に形成されているため、車両衝突時、逐次破壊された繊維強化樹脂(CFRP)をクラッシュカン10内部に蓄積することなく、外部に排出することができ、クラッシュカン10を潰し切ることができる。
 クラッシュカン10は、前後方向に連続して延びるように配列され且つクラッシュカン10に含まれる強化繊維の大部分を構成する複数の第1炭素繊維51と、第1炭素繊維51の延びる方向と交差する方向に連続して延びるように配列された複数の第2炭素繊維52とを有し、前後方向に直交する縦断面視にて複数の曲線部が形成されている。これにより、第1炭素繊維51に相当する部分が剥離破壊するとき、第2炭素繊維52が第1炭素繊維51の間にファイバーブリッジを形成するため、第2炭素繊維52が引張荷重によって切断される切断エネルギを衝撃エネルギ吸収に用いることができる。
 複数の曲線部は複数の部分円弧形状であるため、第2炭素繊維52に対して均等に引張荷重を作用させることができ、更に衝撃エネルギを吸収することができる。
 クラッシュカン10(側壁部11)は、後側程上下幅が小さくなるように形成されているため、車両衝突時、側壁部11の後端部分の単位面積当たりの入力荷重を前端側部分の単位面積当たりの入力荷重よりも大きくすることができ、後端部分に逐次破壊の起点を確実に形成することができる。
 複数の第2炭素繊維52が1対のクラッシュカン10の厚さ方向両端近傍部分に夫々配設されているため、車両衝突時、側壁部11に形成されるフロンズ部を薄くすることにより幅の大きなピラー部を安定的に形成し、EA性能を高くすることができる。
 (実施形態2)
 次に、本発明の実施形態2について図16及び図17に基づいて説明する。ここでは、実施形態2のうち実施形態1と異なる部分を中心に説明し、実施形態1の説明と重複する説明は省略する。図16は、実施形態2に係る衝撃吸収部材構造を備えた車両Vの車体後部の斜視図であって、実施形態1の図1に相当する図である。また、図17は、実施形態2のクラッシュカン10の後端側部分周辺の斜視図であって、実施形態1の図4に相当する図である。ただし、図4では左側のクラッシュカン10を図示しているのに対し、図17では右側のクラッシュカン10を図示している。
 図1と図16を対比してわかるように、本実施形態のクラッシュカン10の開口方向は、実施形態1のクラッシュカン10の開口方向と逆である。具体的には、本実施形態では、左側のクラッシュカン10は前後方向に直交する縦断面にて左方に開口するように形成されており、右側のクラッシュカン10は前後方向に直交する縦断面にて右方に開口するように形成されている。すなわち、本実施形態のクラッシュカン10は、車幅方向外側が開放された開断面部材に形成されている。なお、図17に示すように、本実施形態のクラッシュカン10は先端部に先端壁部12を有しており、この点は実施形態1と同様である。
 また、本実施形態ではクラッシュカン10の開口方向が実施形態1のものと逆であることに伴って、本実施形態のリヤサイドフレーム1、外側ブラケット20、内側ブラケット30、及びボルト取付部材40の形状は実施形態1のものと左右が逆になっている。異なる見方をすれば、実施形態1で右側に配置されていたリヤサイドフレーム1、外側ブラケット20、内側ブラケット30、及びボルト取付部材40は本実施形態では左側に配置されており、実施形態1で左側に配置されていたリヤサイドフレーム1、外側ブラケット20、内側ブラケット30、及びボルト取付部材40は本実施形態では右側に配置されている。
 以上のとおり、本実施形態では、クラッシュカン10は車幅方向外側が開放された開断面部材に形成されているが、実施形態1と同様に、車両衝突時、逐次破壊された繊維強化樹脂(CFRP)をクラッシュカン10内部に蓄積することなく、外部に排出することができ、クラッシュカン10を潰し切ることができる。
 次に、前記実施形態を部分的に変更した変形例について説明する。
1〕前記実施形態においては、リヤサイドフレームに取り付けられるリヤ側のクラッシュカンに適用した例を説明したが、フロントサイドフレームに取り付けられるフロント側のクラッシュカンに適用しても良い。
 また、車幅方向内側が開放された部分筒状の開断面部材に構成されたクラッシュカンに適用した例を説明したが、前後方向に直交する縦断面が矩形状、所謂側壁部が板状であっても良い。
2〕前記実施形態においては、炭素繊維樹脂を用いたクラッシュカンの例を説明したが、少なくとも汎用の強化繊維、例えばガラス繊維や金属繊維等を用いても良い。
 また、母材樹脂についても、クラッシュカンの仕様に応じて任意に選択することができる。
3〕前記実施形態においては、第2炭素繊維は第1炭素繊維に直交するように配置した例を説明したが、第1炭素繊維に対して少なくとも交差すれば良く、例えば第1炭素繊維に対して45°、或いは60°の交差角度をなす第2炭素繊維を用いることも可能である。
4〕前記実施形態においては、ボルト取付部材の本体部にボルト部を設けた例を説明したが、本体部にねじ溝を備えた締結穴を形成し、外側ブラケットの取付部をボルトによって締結固定しても良い。
5〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施形態に種々の変更を付加した形態や各実施形態を組み合わせた形態で実施可能であり、本発明はそのような変更形態も包含するものである。
3    バンパレイン
10   クラッシュカン
11   側壁部
11a  上側湾曲部
11b 中間湾曲部
11c 下側湾曲部
12   先端壁部
12a  取付部
51   第1炭素繊維
52   第2炭素繊維
V    車両
 

Claims (5)

  1.  車体前後方向先端側部分に配設され且つ前後方向に連続して延びるように配列された複数の強化繊維を含む左右1対の繊維強化樹脂製衝撃吸収部材と、前記1対の衝撃吸収部材の先端部に取り付けられた車幅方向に延びるバンパレインフォースメントとを備えた車両の衝撃吸収部材構造において、
     前記衝撃吸収部材が、前記バンパレインフォースメントを取り付けると共に先端部に形成された先端壁部を備えた開断面部材に形成されていることを特徴とする車両の衝撃吸収部材構造。
  2.  前記衝撃吸収部材は、車体前後方向に連続して延びるように配列され且つ衝撃吸収部材に含まれる強化繊維の大部分を構成する複数の第1強化繊維と、前記第1強化繊維の延びる方向と交差する方向に連続して延びるように配列された複数の第2強化繊維とを有し、
     前後方向に直交する縦断面視にて複数の曲線部が形成されていることを特徴とする請求項1に記載の車両の衝撃吸収部材構造。
  3.  前記複数の曲線部は複数の部分円弧形状であることを特徴とする請求項2に記載の車両の衝撃吸収部材構造。
  4.  前記衝撃吸収部材は、前記先端部側程上下幅が小さくなるように形成されていることを特徴とする請求項1~3の何れか1項に記載の車両の衝撃吸収部材構造。
  5.  前記複数の第2強化繊維が前記1対の衝撃吸収部材の厚さ方向両端近傍部分に夫々配設されていることを特徴とする請求項2に記載の車両の衝撃吸収部材構造。
     
PCT/JP2016/083075 2015-11-20 2016-11-08 車両の衝撃吸収部材構造 WO2017086205A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/760,195 US10604094B2 (en) 2015-11-20 2016-11-08 Impact absorbing member structure of vehicle
JP2017551825A JP6610677B2 (ja) 2015-11-20 2016-11-08 車両の衝撃吸収部材構造
DE112016004866.1T DE112016004866T5 (de) 2015-11-20 2016-11-08 Stoßabsorbierende Elementstruktur eines Fahrzeugs
CN201680051634.7A CN107921920B (zh) 2015-11-20 2016-11-08 车辆的冲击吸收构件结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227625 2015-11-20
JP2015-227625 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017086205A1 true WO2017086205A1 (ja) 2017-05-26

Family

ID=58718923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083075 WO2017086205A1 (ja) 2015-11-20 2016-11-08 車両の衝撃吸収部材構造

Country Status (5)

Country Link
US (1) US10604094B2 (ja)
JP (1) JP6610677B2 (ja)
CN (1) CN107921920B (ja)
DE (1) DE112016004866T5 (ja)
WO (1) WO2017086205A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203161A (zh) * 2018-02-28 2019-09-06 马自达汽车株式会社 车辆的冲击吸收构造
JP2019151131A (ja) * 2018-02-28 2019-09-12 マツダ株式会社 車両の衝撃吸収構造
JP2021104783A (ja) * 2019-12-27 2021-07-26 マツダ株式会社 車両の後部車体構造

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044624B2 (ja) * 2014-12-17 2016-12-14 マツダ株式会社 車両用フレーム構造
DE102015222664A1 (de) * 2015-11-17 2017-05-18 Bayerische Motoren Werke Aktiengesellschaft Sicherheitseinrichtung für ein Fahrzeug
US11130525B2 (en) * 2016-09-07 2021-09-28 Thunder Power New Energy Vehicle Development Company Limited Rear crash safety profile
JP6555221B2 (ja) * 2016-10-14 2019-08-07 トヨタ自動車株式会社 バンパリインフォースメントとサイドメンバとの結合構造
JP6770913B2 (ja) * 2017-02-24 2020-10-21 本田技研工業株式会社 鞍乗り型車両のスイングアーム構造
US10399519B2 (en) * 2017-06-16 2019-09-03 Ford Global Technologies, Llc Vehicle bumper beam with varied strength zones
US11104283B2 (en) * 2018-11-16 2021-08-31 Aisin Seiki Kabushiki Kaisha Vehicular energy absorbing member and manufacturing method thereof
JP7084326B2 (ja) * 2019-01-11 2022-06-14 トヨタ自動車株式会社 クラッシュボックス
JP6677839B1 (ja) * 2019-03-08 2020-04-08 株式会社神戸製鋼所 自動車のバンパー補強材
US11097785B2 (en) * 2019-07-19 2021-08-24 Volvo Car Corporation Automobile hood for decoupled pedestrian safety and durability
JP7380234B2 (ja) * 2020-01-15 2023-11-15 マツダ株式会社 衝撃吸収部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296823A (ja) * 2007-06-01 2008-12-11 Toyota Motor Corp 車両骨格部材の結合構造
WO2010100716A1 (ja) * 2009-03-02 2010-09-10 トヨタ自動車株式会社 車両の骨格構造
JP2015055271A (ja) * 2013-09-11 2015-03-23 富士重工業株式会社 衝撃吸収装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073402A (zh) * 1991-11-06 1993-06-23 肯塞特分析公司 用于车辆保险杠的弹性能量吸收装置
JP2000081069A (ja) 1998-09-05 2000-03-21 Press Kogyo Co Ltd 車両用衝撃吸収部材とその製造方法
DE69910426T2 (de) * 1998-11-26 2004-06-24 Lotus Cars Ltd., Norwich Deformierbare träger für fahrzeuge
US6406079B2 (en) * 2000-07-14 2002-06-18 Kyoraku Co., Ltd. Automobile bumper core
JP2004116564A (ja) 2002-09-24 2004-04-15 Toray Ind Inc エネルギー吸収部材
DE102005026441B4 (de) * 2005-06-08 2009-11-12 Continental Automotive Gmbh Verfahren zur Adaption des Vorsteuerkennfeldes einer volumenstromgeregelten Diesel-Common-Rail Pumpe
JP2007015626A (ja) 2005-07-08 2007-01-25 Toyota Industries Corp 車両用バンパーの支持構造
JP2008024084A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp バンパリインフォースメントと衝撃吸収部材との連結構造
JP4685819B2 (ja) * 2007-03-12 2011-05-18 トヨタ自動車株式会社 バンパリインフォースメント支持構造
JP4685818B2 (ja) * 2007-03-12 2011-05-18 トヨタ自動車株式会社 バンパリインフォースメント支持構造
CN201148150Y (zh) * 2007-10-17 2008-11-12 奇瑞汽车股份有限公司 一种双吸能式汽车前保险杠
KR101427921B1 (ko) * 2012-09-03 2014-08-11 현대자동차 주식회사 차량용 충격흡수장치
WO2014042211A1 (ja) * 2012-09-13 2014-03-20 本田技研工業株式会社 自動車の車体前部構造
KR101484227B1 (ko) * 2013-07-09 2015-01-21 현대자동차 주식회사 차량용 하이브리드 범퍼빔과 그 제조방법 및 이를 이용한 차량용 범퍼빔 유닛
JP5791676B2 (ja) 2013-09-10 2015-10-07 富士重工業株式会社 衝撃吸収装置
JP6223168B2 (ja) 2013-12-19 2017-11-01 スターテング工業株式会社 建設機器のゲートレバー装置
JP6409687B2 (ja) 2015-06-10 2018-10-24 マツダ株式会社 衝撃吸収用炭素繊維樹脂構造体
JP6365893B2 (ja) * 2015-11-20 2018-08-01 マツダ株式会社 車両の衝撃吸収部材構造
JP6281558B2 (ja) * 2015-11-20 2018-02-21 マツダ株式会社 車両の衝撃吸収部材構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296823A (ja) * 2007-06-01 2008-12-11 Toyota Motor Corp 車両骨格部材の結合構造
WO2010100716A1 (ja) * 2009-03-02 2010-09-10 トヨタ自動車株式会社 車両の骨格構造
JP2015055271A (ja) * 2013-09-11 2015-03-23 富士重工業株式会社 衝撃吸収装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203161A (zh) * 2018-02-28 2019-09-06 马自达汽车株式会社 车辆的冲击吸收构造
WO2019167699A1 (ja) * 2018-02-28 2019-09-06 マツダ株式会社 車両の衝撃吸収構造
JP2019151130A (ja) * 2018-02-28 2019-09-12 マツダ株式会社 車両の衝撃吸収構造
JP2019151131A (ja) * 2018-02-28 2019-09-12 マツダ株式会社 車両の衝撃吸収構造
JP2021104783A (ja) * 2019-12-27 2021-07-26 マツダ株式会社 車両の後部車体構造
JP7298473B2 (ja) 2019-12-27 2023-06-27 マツダ株式会社 車両の後部車体構造

Also Published As

Publication number Publication date
CN107921920B (zh) 2021-07-27
DE112016004866T5 (de) 2018-07-19
JPWO2017086205A1 (ja) 2018-08-09
JP6610677B2 (ja) 2019-11-27
US20180257589A1 (en) 2018-09-13
US10604094B2 (en) 2020-03-31
CN107921920A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6610677B2 (ja) 車両の衝撃吸収部材構造
JP6281558B2 (ja) 車両の衝撃吸収部材構造
JP6365514B2 (ja) 車両の衝撃吸収構造
JP5862555B2 (ja) 自動車の車体構造
JP5928929B2 (ja) 自動車の衝撃吸収部材および自動車の車体構造
JP6365893B2 (ja) 車両の衝撃吸収部材構造
JP2005014902A (ja) 自動車バンパー補強構造体
JP6340640B2 (ja) 車両の衝撃吸収構造
US10994680B2 (en) Impact-absorbing structure for vehicle
JP5881117B2 (ja) 自動車の車体構造
JP6344664B2 (ja) 車両の衝撃吸収構造
JP6365891B2 (ja) 車両の衝撃吸収構造
JP6365890B2 (ja) 車両の衝撃吸収構造
JP6323526B2 (ja) 車両の衝撃吸収構造
JP6311896B2 (ja) 車両の衝撃吸収構造
JP2018030466A (ja) 車両の衝撃吸収構造
WO2014097765A1 (ja) 自動車の車体構造
JP6365892B2 (ja) 車両の衝撃吸収構造
JP7185566B2 (ja) センターピラー
KR101971578B1 (ko) 차량용 임팩트 빔 유닛
KR20210148695A (ko) 경량 카울 크로스바
JP2014121954A (ja) 自動車の車体構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551825

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760195

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016004866

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866207

Country of ref document: EP

Kind code of ref document: A1