WO2017086145A1 - 磁性材料を含む成形体の製造方法およびかかる製造方法により製造される成形体 - Google Patents

磁性材料を含む成形体の製造方法およびかかる製造方法により製造される成形体 Download PDF

Info

Publication number
WO2017086145A1
WO2017086145A1 PCT/JP2016/082423 JP2016082423W WO2017086145A1 WO 2017086145 A1 WO2017086145 A1 WO 2017086145A1 JP 2016082423 W JP2016082423 W JP 2016082423W WO 2017086145 A1 WO2017086145 A1 WO 2017086145A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
powder
molded body
material member
heat
Prior art date
Application number
PCT/JP2016/082423
Other languages
English (en)
French (fr)
Inventor
尾藤 三津雄
吉田 健二
淳 陰山
雄太 清水
阿部 宗光
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2017551807A priority Critical patent/JP6483278B2/ja
Publication of WO2017086145A1 publication Critical patent/WO2017086145A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a method for producing a molded article containing a magnetic material and a molded article produced by such a production method.
  • Patent Document 1 describes a method for producing a magnetic core for low frequency applications from a spiral soft magnetic nanocrystal strip.
  • the strip has the following alloy composition: Fe Rest Co a Cu b Nb c Si d B e C f
  • a, b, c, d, e and f are represented by atomic percentages, 0 ⁇ a ⁇ 1; 0.7 ⁇ b ⁇ 1.4; 2.5 ⁇ c ⁇ 3.5; 14.5 ⁇ d ⁇ 16.5; 5.5 ⁇ e ⁇ 8 and 0 ⁇ f ⁇ 1, and cobalt can be replaced in whole or in part by nickel
  • the strip comprising a metal oxide solution and / or A coating with a metal-containing acetyl-acetone-chelate complex is provided, said coating forming a sealing metal oxide coating during subsequent heat treatment for nanocrystallization of said strip, said nanocrystal of said strip
  • the saturation magnetostriction ⁇ s is set
  • the heat treatment may be performed without magnetic field on a magnetic core that is not stacked in a continuous annealing process (Patent Document 1, claim 16), and is not stacked in this continuous annealing process.
  • the magnetic core may be installed on a carrier having excellent thermal conductivity (Patent Document 1, Claim 17).
  • the nano-crystallization of heteroamorphous that occurs during heat treatment is an exothermic reaction. For this reason, if the heating conditions in the heat treatment are not properly controlled, reactions other than nanocrystallization (such as compound formation reactions) that occur in a higher temperature range than nanocrystallization proceed and the magnetic properties of the compact containing the magnetic material There are cases where the characteristics deteriorate or the heat generated from the nanocrystallized molded body becomes uncontrollable (thermal runaway) and the molded body burns out.
  • the present invention is manufactured by a method for manufacturing a molded body containing a magnetic material, which can be made less susceptible to the influence of the shape of the molded body in suppressing defects in heat treatment for nanocrystallization, and the manufacturing method. It aims at providing a molded object.
  • a heat treatment is performed by embedding a member subjected to heat treatment (raw material member) in a powder (heat dissipating powder) excellent in thermal conductivity.
  • a powder heat dissipating powder
  • the heat dissipating powder and the raw material member in the heat treatment are obtained by using a heat dissipating powder as a ceramic material having low reactivity to the magnetic material.
  • a heat dissipating powder as a ceramic material having low reactivity to the magnetic material.
  • the present invention provided on the basis of the above knowledge, in one aspect, forms a raw material member containing a magnetic material having a heteroamorphous structure, heat-treats the formed raw material member, and converts the heteroamorphous structure into a nanocrystalline structure.
  • the molded raw material member is embedded in a heat dissipating ceramic powder having low reactivity with the raw material member and a thermal conductivity of 20 W ⁇ m / K or more in the heat treatment. It is a manufacturing method of the molded object characterized by this.
  • the magnetic material may be a powder, and the heat dissipating ceramic powder may have a larger particle size than the magnetic material.
  • the magnetic material has a volume-based particle size distribution in which the particle size D50 at which the cumulative particle size distribution from the small particle size side is 50% is less than 50 ⁇ m, and the heat dissipating ceramic powder has the particle size D50 of 50 ⁇ m. It may be 500 ⁇ m or less.
  • the heat dissipating ceramic powder may contain one or more selected from the group consisting of alumina powder, silicon carbide powder, silicon nitride powder, and aluminum nitride powder.
  • the magnetic material included in the raw material member may be in a powder form, and the raw material member may be a pressure formed body of the raw material including the powdered magnetic material.
  • the heat treatment step may include a temperature raising process of 100 ° C./min or more.
  • the present invention is a molded body manufactured by the manufacturing method according to the above aspect of the present invention.
  • FIG. 1 It is a perspective view which shows notionally an example of the raw material member manufactured by the manufacturing method which concerns on one Embodiment of this invention. It is a perspective view showing a part seeing through the whole structure of an inductance element provided with an example of a raw material member manufactured by a manufacturing method concerning one embodiment of the present invention. It is a perspective view which shows one of the shaping
  • FIG. 1 shows notionally an example of the raw material member manufactured by the manufacturing method which concerns on one Embodiment of this invention. It is a perspective view showing a part seeing through the whole structure of an inductance element provided with an example of a raw material member manufactured by a manufacturing method concerning one embodiment of the present invention. It is a perspective view which shows one of
  • FIG. 4 is a graph showing the measurement results of the X-ray diffraction spectrum of a molded article produced by the production method of Example 1.
  • FIG. It is a figure which shows the temperature profile which the raw material member received in the heat processing process of the manufacturing method of the comparative example 1.
  • 6 is a graph showing the measurement results of the X-ray diffraction spectrum of a molded article produced by the production method of Comparative Example 1.
  • the manufacturing method of the molded object which concerns on one Embodiment of this invention is equipped with the embedding process and heat processing process which are demonstrated below.
  • a raw material member containing a magnetic material having a heteroamorphous structure generated by nanocrystallization accompanied by heat generation is contained in a heat dissipating ceramic powder having low reactivity with the magnetic material and a thermal conductivity of 20 W ⁇ m / K or more. Buried in
  • heteroamorphous structure means a structure in which very fine crystals serving as crystal nuclei are dispersed in the amorphous structure during nanocrystallization.
  • the magnetic material included in the raw material member is a soft magnetic material, and its composition is not limited as long as it has a heteroamorphous composition.
  • the shape of the raw material member is not limited.
  • the member subjected to the heat treatment is an unstacked strip so that heat can be efficiently dissipated in the carrier.
  • the shape of the raw material member may be superior to a three-dimensional shape that can be applied as a molded body as it is.
  • the ring shape which can be applied as it is as a toroidal core may be sufficient.
  • the raw material member 30 having such a shape includes two molding members 31 and 32, and pressurizes these molding members 31 and 32 in a state in which the coil body 10 is accommodated. It can be manufactured by molding. In addition, by pressure forming, both end portions of the coil body 10 are bent into terminal plates 20 and 25, and coating type electrodes 40 and 45 are provided so as to cover these terminal plates 20 and 25, The inductance element 100 is obtained.
  • the composition of raw material members is not limited.
  • the magnetic material included in the raw material member is in powder form, and the raw material member is obtained by molding a raw material including a powdered magnetic material (magnetic powder).
  • the molding method is arbitrary, and pressure molding is an example.
  • the raw material containing the magnetic powder may contain a binder component made of a resin material or the like.
  • the size of the magnetic powder is not limited.
  • the particle size distribution on a volume basis the particle size D50 (median diameter D50) at which the cumulative particle size distribution from the small particle size side becomes 50% is It may be preferable that it is 25 ⁇ m or more and 53 ⁇ m or less.
  • the raw material member is embedded in the heat dissipating ceramic powder having low reactivity with the raw material member including the magnetic material and a thermal conductivity of 20 W ⁇ m / K or more.
  • “low reactivity with a raw material member containing a magnetic material” means that the heat dissipating ceramic powder is a raw material when heated in a range of 300 ° C. to 600 ° C. in an inert atmosphere such as nitrogen. It means that it is difficult to react with the components contained in the member, and the problem that the heat dissipating ceramic powder adheres firmly to the raw material member is less likely to occur.
  • the type of the heat dissipating ceramic powder is not limited as long as it has low reactivity with the raw material member containing the magnetic material and the above-described characteristics relating to thermal conductivity.
  • Specific examples of the heat dissipating ceramic powder include alumina powder, silicon carbide powder, silicon nitride powder, and aluminum nitride powder.
  • the heat dissipating ceramic powder may be composed of one type of material, or may be composed of a plurality of types of materials. From the viewpoints of reactivity and thermal conductivity, the heat dissipating ceramic powder preferably contains one or more selected from the group consisting of the above powders, and one or two selected from the group consisting of the above powders. It is preferable to consist of more than seeds.
  • the heat dissipating ceramic powder preferably has a median diameter D50 of 50 ⁇ m or more and 500 ⁇ m or less.
  • the median diameter D50 of the heat dissipating ceramic powder is 50 ⁇ m or more, it is difficult for the heat dissipating ceramic powder to enter the raw material member.
  • the raw material member is a press-molded body of a raw material containing magnetic powder, irregularities are formed on the surface of the raw material member according to the shape of the material constituting the raw material such as a magnetic material. If the particle size of the heat dissipating ceramic powder is excessively small, the heat dissipating ceramic powder may enter the recesses on the surface, and it may be difficult to properly separate the heat dissipating ceramic powder from the formed body.
  • the median diameter D50 of the heat dissipating ceramic powder is preferably 100 ⁇ m or more, and is 150 ⁇ m or more. It is more preferable.
  • the median diameter D50 of the heat dissipating ceramic powder is 500 ⁇ m or less, it is possible to sufficiently ensure contact between the heat dissipating ceramic powders and contact between the heat dissipating ceramic powder and the raw material member.
  • the heat released from the magnetic material can be efficiently dissipated.
  • the median diameter D50 of the heat dissipating ceramic powder is preferably 450 ⁇ m or less, and more preferably 400 ⁇ m or less. .
  • the particle size (median diameter D50) of the heat dissipating ceramic powder is set to be the particle size of the magnetic powder (median) from the viewpoint of facilitating separation of the heat dissipating ceramic powder from the compact. Preferably it is larger than the diameter D50).
  • the median diameter D50 of the magnetic material is less than 50 ⁇ m
  • the median diameter D50 of the heat dissipating ceramic powder is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the raw material member embedded in the heat dissipating ceramic powder is heat-treated to change the magnetic material structure of the raw material member from a heteroamorphous structure to a nanocrystalline structure.
  • a member containing a magnetic material with a heteroamorphous structure is heated to form a nanocrystalline structure, heating is performed so that thermal runaway in which the temperature control of the member becomes impossible due to heat generated with the change of the structure does not occur.
  • -Measures such as performing heat treatment consisting of cooling multiple times are taken. For this reason, the time required for the heat treatment process tends to be long.
  • the raw material member is embedded in the heat dissipating ceramic powder in the embedding process, and thus it is necessary to perform the heat treatment a plurality of times as described above. Absent. Further, in the heat treatment, it is possible to reduce the possibility of thermal runaway even in a temperature rising process of 100 ° C./min or more.
  • the temperature raising process may be 150 ° C./min or higher, or 200 ° C./min or higher.
  • the molded body can be separated from the heat dissipating ceramic powder by removing the embedded formed body from the heat dissipating ceramic powder. it can.
  • the molded body may be washed with a liquid such as alcohol, or an ultrasonic impact may be applied at that time.
  • a liquid such as alcohol
  • an ultrasonic impact may be applied at that time.
  • the molded body manufactured by the manufacturing method including the above-described embedding step and heat treatment step is heated in a temperature rising process exceeding 100 ° C./min in one example, excessive heating due to thermal runaway is not performed. Excellent magnetic properties.
  • it since it receives the specific heat history as described above, it has a feature that the surface of the heat-treated molded body has a uniform color and almost no color spots occur. This is because the thermal conductivity is sufficiently high in the above-described embedding step and heat treatment step, so that the temperature variation in the heat-treated molded body is reduced, and the molded body such as uneven composition in the molded body and variation in the distribution of the nanocrystal structure, etc. It is presumed that color spots are less likely to occur as a result of fewer causes for the variation in the refractive index and characteristics.
  • the embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
  • the above-described embedding process and heat treatment process may overlap in time. Specifically, after the heat treatment in the heat treatment step is started, the heat dissipating ceramic powder may be supplied so as to be in contact with the raw material member as the embedding step.
  • Example 1 The Fe-based alloy composition was melted, and a magnetic powder having a median diameter D50 of 45 ⁇ m was obtained by a gas atomization method.
  • the magnetic powder is more preferably subjected to a treatment for classifying and removing particles having a particle diameter of 75 ⁇ m or more, since a near-ideal nanocrystal structure is generated by the subsequent heat treatment.
  • the obtained magnetic powder was stirred and mixed in a binder component containing a silicone resin and water as a dilution medium, and the resulting slurry was dried to obtain a mixed powder.
  • This mixed powder was placed in a mold cavity and subjected to pressure molding to obtain a raw material member having a toroidal core shape having an outer diameter of 10 mm, an inner diameter of 8 mm, and a thickness of 10 mm.
  • a heat dissipating ceramic powder made of alumina powder having a median diameter D50 of 100 ⁇ m was prepared, and the heat dissipating ceramic powder was supplied into the alumina boat so that the raw material member placed in the alumina boat was buried.
  • the temperature increase rate was 200 ° C./min to 250 ° C./min, and the temperature at the end of heating was set to 400 ° C. Then, it cooled to about 200 degreeC with the cooling rate of about 20 degreeC / min.
  • FIG. 5 is a view showing a temperature profile of a molded body (raw material member) in the above heat treatment. As shown in FIG. 5, when the temperature raising process was completed, the temperature of the compact immediately turned to cooling, and it was confirmed that the cooling was performed at about 20 ° C./min as scheduled. That is, in Example 1, no thermal runaway of the molded body was observed.
  • the X-ray diffraction spectrum of the molded body obtained through the heat treatment step was measured (X-ray source: Cu). The result is shown in FIG. As shown in FIG. 6, only the peak derived from ⁇ -Fe (indicated by a circled arrow in FIG. 6) was measured, and it was confirmed that nanocrystallization proceeded appropriately in the heat treatment step. .
  • an alumina boat having the raw material member placed therein was installed in the alumina core tube in the same manner as in Example 1.
  • the raw material member was heated in a nitrogen atmosphere using a heat source arranged outside the core tube.
  • the temperature increase rate was 200 ° C./min to 250 ° C./min, and the temperature at the end of heating was set to 400 ° C.
  • FIG. 7 is a view showing a temperature profile of a formed body (raw material member) in the above heat treatment.
  • the temperature of the molded body did not decrease stably, and conversely, the temperature rose extremely rapidly and a thermal runaway up to 600 ° C. occurred. For this reason, it has become difficult to appropriately control the cooling rate.
  • Comparative Example 1 thermal runaway of the molded body was observed.
  • the X-ray diffraction spectrum of the molded body obtained through the heat treatment step was measured (X-ray source: Cu). The result is shown in FIG. As shown in FIG. 8, in addition to a peak derived from ⁇ -Fe (indicated by an arrow marked with “ ⁇ ” in FIG. 8), it is attributed to being derived from a compound such as Fe—B or Fe—P. A peak (indicated by an arrow with “ ⁇ ” in FIG. 8) was also measured, and it was confirmed that nanocrystallization could not proceed appropriately in the heat treatment step.
  • Electrical / electronic parts using the molded body produced by the production method of the present invention are suitably used for power inductors, reactors used in step-up circuits for hybrid vehicles, power generation, transformer facilities, transformers, choke coils, motors, etc. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

ナノ結晶化のための熱処理における不具合を抑制するにあたり成形体の形状の影響を受けにくくすることが可能な成形体の製造方法として、ヘテロアモルファス組織を有する磁性材料を含む原料部材を成形し、成形した原料部材を熱処理してへテロアモルファス組織をナノ結晶組織に変化させた成形体の製造方法であって、熱処理において、成形した原料部材を原料部材との反応性が低く熱伝導率が20W・m/K以上の放熱性セラミックス粉末内に埋設することにより熱処理における不具合を抑制した成形体の製造方法が提供される。

Description

磁性材料を含む成形体の製造方法およびかかる製造方法により製造される成形体
 本発明は、磁性材料を含む成形体の製造方法およびかかる製造方法により製造される成形体に関する。
 特許文献1には、らせん状軟磁性ナノ結晶ストリップから低周波用途向け磁心を製造するための方法が記載されている。この方法は、前記ストリップが下記合金組成を有し、
 FeRestCoCuNbSi
 式中、a、b、c、d、eおよびfは原子百分率で表され、0≦a≦1;0.7≦b≦1.4;2.5≦c≦3.5;14.5≦d≦16.5;5.5≦e≦8および0≦f≦1であり、コバルトを全体的または部分的にニッケルに置き換えることができ、前記ストリップには、金属酸化物溶液および/または金属を有するアセチル-アセトン-キレート錯体によるコーティングが備えられ、前記コーティングにより、後に続く前記ストリップのナノ結晶化のための熱処理中に、封止金属酸化物コーティングが形成され、前記ストリップの前記ナノ結晶化のための熱処理において、飽和磁歪λが|λ|<2ppmに設定される、方法である。
 特許文献1の磁心の製造方法において、熱処理は、連続アニーリングプロセスにおいて積層していない磁心に無磁場で行われてもよく(特許文献1請求項16)、この連続アニーリングプロセスにおいて、積層していない磁心が、熱伝導率が優れているキャリア上に設置されてもよい(特許文献1請求項17)とされている。
特開2013-532910号公報
 熱処理において生じるヘテロアモルファスのナノ結晶化は発熱反応である。このため、熱処理における加熱条件を適切に制御しないと、ナノ結晶化よりも高い温度域で発生するナノ結晶化以外の反応(化合物の生成反応など)が進行して磁性材料を含む成形体の磁気特性が劣化したり、ナノ結晶化させた成形体からの発熱が制御不能(熱暴走)になって成形体が焼損したりする不具合が生じる場合がある。
 この点に関し、特許文献1に記載される方法では、積層していない成形体をキャリア上に配置して、熱処理の際に成形体に生じた結晶化熱を効果的に消散させている。しかしながら、このようなキャリア上に処理対象を載置する構成では、載置面と接触した部分からの発熱は抑えることができるが、載置面と接触していない部分からの発熱を抑えることは難しい。特に、凹部などが有ると、そこにキャリアを密着させることは難しく、そこからの発熱を押えることは困難である。
 本発明は、ナノ結晶化のための熱処理における不具合を抑制するにあたり成形体の形状の影響を受けにくくすることが可能な、磁性材料を含む成形体の製造方法、およびかかる製造方法により製造される成形体を提供することを目的とする。
 上記課題を解決するために本発明者らが検討した結果、熱処理を受ける部材(原料部材)を熱伝導性に優れる粉末(放熱性粉末)に埋設した状態で熱処理を行うことにより、熱処理の際に、発熱に起因する不具合が生じる可能性を低減させうるとの知見を得た。
 ただし、このように放熱性粉末中に原料部材を埋設した状態で熱処理を行うと、放熱性粉末と原料部材との接触面積が増加するため、放熱性粉末と原料部材との反応が熱処理中に生じやすくなる。放熱性粉末と原料部材とが反応すると、放熱性粉末と原料部材との反応生成物が成形体に生成したり、放熱性粉末が成形体に強固に付着したりして、成形体の外観不良、破壊、磁気特性の低下などをもたらすおそれがある。それゆえ、熱処理の際に放熱性粉末と原料部材との反応を抑制することが重要である。
 かかる観点でさらに検討した結果、ヘテロアモルファス組成の磁性材料を含む成形体を得る場合には、放熱性粉末を磁性材料に対する反応性が低いセラミックス材料とすることにより、熱処理における放熱性粉末と原料部材との反応が生じにくくなって、良好な品質の成形体を安定的に得ることが可能であるとの新たな知見を得た。
 以上の知見に基づき提供される本発明は、一態様において、ヘテロアモルファス組織を有する磁性材料を含む原料部材を成形し、前記成形した原料部材を熱処理して前記へテロアモルファス組織をナノ結晶組織に変化させた成形体の製造方法であって、前記熱処理において、前記成形した原料部材を前記原料部材との反応性が低く熱伝導率が20W・m/K以上の放熱性セラミックス粉末内に埋設することを特徴とする成形体の製造方法である。
 前記磁性材料は粉体であり、前記放熱性セラミックス粉末は、前記磁性材料よりも粒径が大きくてもよい。
 前記磁性材料は、体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径D50が、50μm未満であり、前記放熱性セラミックス粉末は、前記粒径D50が、50μm以上500μm以下であってもよい。
 前記放熱性セラミックス粉末は、アルミナ粉末、炭化ケイ素粉末、窒化ケイ素粉末、および窒化アルミニウム粉末からなる群から選ばれる1種または2種以上を含んでいてもよい。
 前記原料部材が含む前記磁性材料は粉末状であり、前記原料部材は、前記粉末状の磁性材料を含む原材料の加圧成形体であってもよい。
 前記熱処理工程は、100℃/分以上の昇温プロセスを備えていてもよい。
 本発明は、他の一態様において、上記の本発明の一態様に係る製造方法により製造される成形体である。
 本発明によれば、ナノ結晶化のための熱処理における不具合を抑制するにあたり成形体の形状の影響を受けにくくすることが可能な成形体の製造方法、およびその製造方法によって製造される成形体が提供される。
本発明の一実施形態に係る製造方法により製造された原料部材の一例を概念的に示す斜視図である。 本発明の一実施形態に係る製造方法により製造された原料部材の一例を備えるインダクタンス素子の全体構成を一部透視して示す斜視図である。 図2に示される原料部材を形成するために用いられる成形部材の一つを示す斜視図である。 図2に示される原料部材を形成するために用いられる成形部材の他の一つを示す斜視図である。 実施例1の製造方法の熱処理工程において原料部材が受けた温度プロファイルを示す図である。 実施例1の製造方法により製造された成形体のX線回折スペクトルの測定結果を示すグラフである。 比較例1の製造方法の熱処理工程において原料部材が受けた温度プロファイルを示す図である。 比較例1の製造方法により製造された成形体のX線回折スペクトルの測定結果を示すグラフである。
 以下、本発明の実施形態について詳しく説明する。
 本発明の一実施形態に係る成形体の製造方法は、次に説明する埋設工程および熱処理工程を備える。
 埋設工程では、発熱を伴うナノ結晶化によって発生するヘテロアモルファス組織を有する磁性材料を含む原料部材を、磁性材料との反応性が低く熱伝導率が20W・m/K以上の放熱性セラミックス粉末内に埋設する。
 本明細書において「ヘテロアモルファス組織」とは、アモルファス組織中にナノ結晶化の際に結晶核となるごく微細な結晶が分散した構造を意味する。
 原料部材が含む磁性材料は軟磁性体であって、その組成はヘテロアモルファス組成を有していればよく、詳細な組成は限定されない。
 原料部材の形状は限定されない。特許文献1に記載される発明では、キャリアに熱を消散させることが効率的に行われるように、熱処理を受ける部材は、積層されていないストリップである。これに対して、原料部材の形状は、そのまま成形体として適用しうるような3次元的な形状を優位していてもよい。例えば、図1に示される原料部材1のように、トロイダルコアとしてそのまま適用しうるリング形状であってもよい。あるいは、図2に示されるインダクタンス素子100のように、成形体を与える原料部材30の内部にコイル体10が収容された形状を有していてもよい。このような形状の原料部材30は、図3および図4に示されるように、2つの成形部材31,32から構成され、コイル体10を収容した状態でこれらの成形部材31,32を加圧成形することにより製造することができる。なお、加圧成形されることにより、コイル体10の両端部は折り曲げ加工されて端子板20,25となり、これらの端子板20,25を覆うように塗布型電極40,45が設けられて、インダクタンス素子100が得られる。
 原料部材の構成も限定されない。一例において、原料部材が含む磁性材料は粉末状であり、原料部材は、粉末状の磁性材料(磁性粉末)を含む原材料を成形することによって得られる。成形方法は任意であり、加圧成形が一例として挙げられる。この場合において、磁性粉末を含む原材料は、樹脂系材料などからなるバインダー成分を含有していてもよい。磁性材料が粉末状である場合において、磁性粉末の大きさは限定されない。組成の均一性を確保する観点や形状加工性を確保する観点などから、体積基準の粒度分布において、小粒径側からの積算粒径分布が50%となる粒径D50(メジアン径D50)は25μm以上53μm以下であることが好ましいことがある。
 上記のとおり、埋設工程では、磁性材料を含む原料部材との反応性が低く熱伝導率が20W・m/K以上の放熱性セラミックス粉末内に原料部材を埋設する。本明細書において、「磁性材料を含む原料部材との反応性が低い」とは、窒素などの不活性雰囲気中で300℃~600℃の範囲で加熱されたときに、放熱性セラミックス粉末が原料部材に含有される成分と反応しにくく、放熱性セラミックス粉末が原料部材に強固に付着するといった不具合が生じにくいことを意味する。
 放熱性セラミックス粉末の種類は、磁性材料を含む原料部材との反応性が低いことおよび上記の熱伝導率に関する特性を有している限り、限定されない。放熱性セラミックス粉末の具体例として、アルミナ粉末、炭化ケイ素粉末、窒化ケイ素粉末、および窒化アルミニウム粉末が挙げられる。放熱性セラミックス粉末は、1種類の材料から構成されていてもよいし、複数種類の材料から構成されていてもよい。反応性および熱伝導率の観点から、放熱性セラミックス粉末は、上記の粉末からなる群から選ばれる1種または2種以上を含むことが好ましく、上記の粉末からなる群から選ばれる1種または2種以上からなることが好ましい。
 放熱性セラミックス粉末は、メジアン径D50が50μm以上500μm以下であることが好ましい。
 放熱性セラミックス粉末のメジアン径D50が50μm以上であることにより、原料部材の内部に放熱性セラミックス粉末が入り込んでしまうことが生じにくい。原料部材が磁性粉末を含む原材料の加圧成形体である場合には、磁性材料など原材料を構成する材料の形状に応じて原料部材の表面に凹凸が形成される。放熱性セラミックス粉末の粒径が過度に小さいと、放熱性セラミックス粉末が表面の凹部に入り込んでしまい、成形体から放熱性セラミックス粉末を適切に分離することが困難となってしまうこともある。
 こうした成形体に残留する放熱性セラミックス粉末に起因する不具合が生じる可能性をより安定的に低減させる観点から、放熱性セラミックス粉末のメジアン径D50は、100μm以上であることが好ましく、150μm以上であることがより好ましい。
 一方、放熱性セラミックス粉末のメジアン径D50が500μm以下であることにより、放熱性セラミックス粉末同士の接触および放熱性セラミックス粉末と原料部材との接触を十分に確保することができ、後述する熱処理工程において磁性材料から放出される熱を効率的に消散させることができる。磁性材料から放出される熱を効率的に消散させることをより安定的に実現させる観点から、放熱性セラミックス粉末のメジアン径D50は、450μm以下であることが好ましく、400μm以下であることがより好ましい。
 このように、埋設工程において、放熱性セラミックス粉末に原料部材を埋設することにより、原料部材の形状にかかわらず、次に説明する熱処理工程において磁性材料から放出される熱を効率的に消散させることができる。原料部材が磁性粉末を含む場合には、成形体から放熱性セラミックス粉末を分離することを容易にする観点から、放熱性セラミックス粉末の粒径(メジアン径D50)は、磁性粉末の粒径(メジアン径D50)よりも大きいことが好ましい。具体的には、磁性材料のメジアン径D50が50μm未満である場合には、放熱性セラミックス粉末のメジアン径D50は50μm以上500μm以下であることが好ましい。
 熱処理工程では、放熱性セラミックス粉末内に埋設された状態にある原料部材を熱処理して、原料部材が有する磁性材料の組織をヘテロアモルファス組織からナノ結晶組織にする。通常、ヘテロアモルファス組織の磁性材料を含む部材を加熱してナノ結晶組織にする場合には、組織の変化に伴い発生する熱により部材の温度管理が不能になる熱暴走が生じないように、加熱‐冷却からなる熱処理を複数回行うなどの対応が施される。このため、熱処理工程に要する時間が長くなる傾向がある。ところが、本発明の一実施形態に係る製造方法では、上記のとおり、埋設工程において原料部材を放熱性セラミックス粉末内に埋設された状態とするため、上記のような複数回の熱処理を行う必要がない。また、熱処理における加熱では、100℃/分以上の昇温プロセスとしても、熱暴走が生じる可能性を低減させることが可能である。昇温プロセスは、150℃/分以上としてもよく、200℃/分以上としてもよい。
 熱処理工程直後は、成形体は放熱性セラミックス粉末内に埋設された状態にあるため、埋設している成形体を放熱性セラミックス粉末から取り出すことにより、放熱性セラミックス粉末から成形体を分離することができる。放熱性セラミックス粉末と成形体との分離をより確実にするために、アルコールなどの液体を用いて成形体を洗浄したり、その際に超音波衝撃を加えたりしてもよい。放熱性セラミックス粉末が非磁性材料からなる場合には、放熱性セラミックス粉末と成形体とを分離させるにあたり、磁力を用いることにより、両者の分離を容易にすることが可能である。
 上記の埋設工程および熱処理工程を備える製造方法により製造された成形体は、その一例において、100℃/分を超える昇温プロセスで加熱されながら、熱暴走による過度の加熱が行われていないため、磁気特性に優れる。また、上記のような特異的な熱履歴を受けていることから、被熱処理成形体の表面の色が均一で殆ど色斑が発生しないという特徴を有する。これは、上記の埋設工程および熱処理工程で、熱伝導性が十分に高いため、被熱処理成形体内の温度ばらつきが小さくなって、成形体内の組成ムラやナノ結晶構造の分布のばらつき等、成形体の屈折率並びに特性をばらつかせる原因が少なった結果、色斑が発生しにくくなったものと推測される。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。例えば、前述の埋設工程と熱処理工程とは、時間的に重複していてもよい。具体的には、熱処理工程における熱処理が開始されてから、埋設工程として放熱性セラミックス粉末が原料部材に接するように供給されてもよい。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1)
 Fe基合金組成物を溶製し、ガスアトマイズ法によりメジアン径D50が45μmの磁性粉末を得た。磁性粉末は、粒子径75μm以上の粒子を分級して取り除く処理を加えておくと、後の熱処理によって理想に近いナノ結晶組織が生成されるため、より好ましい。
 得られた磁性粉末を、シリコーン系樹脂を含むバインダー成分と希釈媒体としての水中で撹拌して混合し、得られたスラリーを乾燥して混合粉末体を得た。この混合粉末体を金型のキャビティ内に配置して、加圧成形を行って、外径:10mm、内径:8mm、厚さ10mmのトロイダルコアの形状を有する原料部材を得た。
 メジアン径D50が100μmのアルミナ粉末からなる放熱性セラミックス粉末を用意し、アルミナボート内に載置した原料部材が埋設されるように、アルミナボート内に放熱性セラミックス粉末を供給した。
 こうして放熱性セラミックス粉末内に埋設された状態にある原料部材が載置されたアルミナボートを、アルミナ炉心管内に設置して、炉心管外に配置された熱源を用いて、窒素雰囲気下で原料部材の加熱を行った。昇温速度は200℃/分~250℃/分として、加熱終了時の温度を400℃に設定した。その後、20℃/分程度の冷却速度で200℃程度まで冷却した。
 図5は、上記の熱処理における成形体(原料部材)の温度プロファイルを示す図である。図5に示されるように、昇温プロセスが終了すると速やかに成形体の温度は冷却に転じ、予定通り20℃/分程度の冷却が行われていることが確認された。すなわち、実施例1では成形体の熱暴走は観測されなかった。
 熱処理工程を経て得られた成形体について、X線回折スペクトルの測定を行った(X線源:Cu)。その結果を図6に示す。図6に示されるように、α-Feに由来するピーク(図6では丸を付した矢印で示した。)のみが測定され、熱処理工程において適切にナノ結晶化が進行したことが確認された。
(比較例1)
 実施例1と同様にして、トロイダルコアの形状を有する原料部材を製造した。
 アルミナボート内に放熱性セラミックスを供給しなかったこと以外は、実施例1と同様にして、内部に原料部材が載置されたアルミナボートをアルミナ炉心管内に設置した。炉心管外に配置された熱源を用いて、窒素雰囲気下で原料部材の加熱を行った。昇温速度は200℃/分~250℃/分として、加熱終了時の温度を400℃に設定した。
 図7は、上記の熱処理における成形体(原料部材)の温度プロファイルを示す図である。図7に示されるように、昇温プロセスが終了しても成形体の温度は安定的に低下せず、逆に、きわめて急激に温度が上昇して600℃に至る熱暴走が生じた。このため、冷却速度を適切に制御することも困難となった。このように、比較例1では成形体の熱暴走が観測された。
 熱処理工程を経て得られた成形体について、X線回折スペクトルの測定を行った(X線源:Cu)。その結果を図8に示す。図8に示されるように、α-Feに由来するピーク(図8では「○」を付した矢印で示した。)に加え、Fe-B、Fe-Pなどの化合物に由来すると帰属されるピーク(図8では「△」を付した矢印で示した。)も測定され、熱処理工程において適切にナノ結晶化を進行させることができなかったことが確認された。
 本発明の製造方法により製造された成形体を用いた電気・電子部品は、パワーインダクタ、ハイブリッド自動車等の昇圧回路、発電、変電設備に用いられるリアクトル、トランスやチョークコイル、モータなどに好適に使用されうる。
1…リング形状の原料部材
100…インダクタンス素子
10…コイル体
20,25…端子板
30…原料部材
40,45…塗布型電極
31…成形部材
HP1…中空部
32…成形部材
HP2…中空部

Claims (7)

  1.  ヘテロアモルファス組織を有する磁性材料を含む原料部材を成形し、前記成形した原料部材を熱処理して前記へテロアモルファス組織をナノ結晶組織に変化させた成形体の製造方法であって、
     前記熱処理において、前記成形した原料部材を前記原料部材との反応性が低く熱伝導率が20W・m/K以上の放熱性セラミックス粉末内に埋設することを特徴とする成形体の製造方法。
  2.  前記磁性材料は粉体であり、
     前記放熱性セラミックス粉末は、前記磁性材料よりも粒径が大きいことを特徴とする請求項1に記載の成形体の製造方法。
  3.  前記磁性材料は、体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径D50が、50μm未満であり、前記放熱性セラミックス粉末は、前記粒径D50が、50μm以上500μm以下である、請求項2に記載の成形体の製造方法。
  4.  前記放熱性セラミックス粉末は、アルミナ粉末、炭化ケイ素粉末、窒化ケイ素粉末、および窒化アルミニウム粉末からなる群から選ばれる1種または2種以上を含む、請求項1から3のいずれか一項に記載の成形体の製造方法。
  5.  前記原料部材が含む前記磁性材料は粉末状であり、前記原料部材は、前記粉末状の磁性材料を含む原材料の加圧成形体である、請求項1から4のいずれか一項に記載の成形体の製造方法。
  6.  前記熱処理は、100℃/分以上の昇温プロセスを備える、請求項1から5のいずれか一項に記載の成形体の製造方法。
  7.  請求項1から6のいずれか一項に記載される製造方法により製造される成形体。
PCT/JP2016/082423 2015-11-17 2016-11-01 磁性材料を含む成形体の製造方法およびかかる製造方法により製造される成形体 WO2017086145A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017551807A JP6483278B2 (ja) 2015-11-17 2016-11-01 磁性材料を含む成形体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-224350 2015-11-17
JP2015224350 2015-11-17

Publications (1)

Publication Number Publication Date
WO2017086145A1 true WO2017086145A1 (ja) 2017-05-26

Family

ID=58718011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082423 WO2017086145A1 (ja) 2015-11-17 2016-11-01 磁性材料を含む成形体の製造方法およびかかる製造方法により製造される成形体

Country Status (2)

Country Link
JP (1) JP6483278B2 (ja)
WO (1) WO2017086145A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046201A (ja) * 1990-04-25 1992-01-10 Fujitsu Ltd 磁性材料からなる射出成形体の脱脂方法
JP2004535075A (ja) * 2001-07-13 2004-11-18 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト ナノ結晶磁心の製造方法およびこの方法を実施するための装置
WO2008129803A1 (ja) * 2007-03-20 2008-10-30 Nec Tokin Corporation 軟磁性合金及びそれを用いた磁気部品並びにそれらの製造方法
JP2012136770A (ja) * 2010-12-10 2012-07-19 Nec Tokin Corp Fe基ナノ結晶合金粉末及びその製造方法、並びに、圧粉磁心及びその製造方法
JP2015157999A (ja) * 2014-02-25 2015-09-03 国立大学法人東北大学 合金組成物、Fe基ナノ結晶合金薄帯、Fe基ナノ結晶合金粉末及び磁性部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046201A (ja) * 1990-04-25 1992-01-10 Fujitsu Ltd 磁性材料からなる射出成形体の脱脂方法
JP2004535075A (ja) * 2001-07-13 2004-11-18 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト ナノ結晶磁心の製造方法およびこの方法を実施するための装置
WO2008129803A1 (ja) * 2007-03-20 2008-10-30 Nec Tokin Corporation 軟磁性合金及びそれを用いた磁気部品並びにそれらの製造方法
JP2012136770A (ja) * 2010-12-10 2012-07-19 Nec Tokin Corp Fe基ナノ結晶合金粉末及びその製造方法、並びに、圧粉磁心及びその製造方法
JP2015157999A (ja) * 2014-02-25 2015-09-03 国立大学法人東北大学 合金組成物、Fe基ナノ結晶合金薄帯、Fe基ナノ結晶合金粉末及び磁性部品

Also Published As

Publication number Publication date
JPWO2017086145A1 (ja) 2018-07-12
JP6483278B2 (ja) 2019-03-13

Similar Documents

Publication Publication Date Title
JP5333794B2 (ja) Fe基軟磁性合金及び前記Fe基軟磁性合金を用いた圧粉コア
JP4457682B2 (ja) 圧粉磁心およびその製造方法
JP6442621B2 (ja) 磁性粉末の製造方法
JP2009174034A (ja) アモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた磁心並びに磁性部品
JP6471260B2 (ja) 軟磁性材料、軟磁性材料を用いた圧粉磁心、圧粉磁心を用いたリアクトル
TW201034775A (en) Process for producing metallurgical powder, process for producing powder magnetic core, powder magnetic core, and coil component
CN107658090B (zh) 软磁性金属压粉磁芯及具备软磁性金属压粉磁芯的电抗器
JP2005064444A (ja) 高周波特性に優れたナノ結晶粒金属粉末の製造方法及びこれを用いた高周波用軟磁性コアの製造方法
JP6842824B2 (ja) 金属軟磁性合金と磁心の製造方法
JP2015167183A (ja) ナノ結晶軟磁性合金粉末およびそれを用いた圧粉磁芯
JP2019151909A (ja) 軟磁性材料、圧粉磁心、及び圧粉磁心の製造方法
JP2016094651A (ja) 軟磁性合金および磁性部品
CN111801752A (zh) 磁性芯及其制造方法和线圈部件
WO2013015361A1 (ja) Fe基非晶質合金、及びFe基非晶質合金粉末を用いた圧粉磁心
TW201738908A (zh) 壓粉芯、該壓粉芯之製造方法、具該壓粉芯之電感器、及安裝有該電感器之電子・電氣機器
JP2007134591A (ja) 複合磁性材料とそれを用いた圧粉磁芯および磁性素子
JP6314020B2 (ja) ナノ結晶軟磁性合金粉末を用いた圧粉磁芯とその製造方法
TW202101485A (zh) 磁性體芯及線圈部件
JP6898057B2 (ja) 圧粉磁心
JP2014049643A (ja) 圧粉磁心用鉄粉および圧粉磁心の製造方法
JP6483278B2 (ja) 磁性材料を含む成形体の製造方法
JPWO2017154561A1 (ja) Fe基合金組成物、軟磁性材料、磁性部材、電気・電子関連部品および機器
JP6168382B2 (ja) 圧粉磁心の製造方法
JP7418194B2 (ja) 圧粉磁心の製造方法
JP6080115B2 (ja) 圧粉磁心の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866147

Country of ref document: EP

Kind code of ref document: A1