WO2017081893A1 - 水素含有水生成装置および水素含有水の生成方法 - Google Patents

水素含有水生成装置および水素含有水の生成方法 Download PDF

Info

Publication number
WO2017081893A1
WO2017081893A1 PCT/JP2016/072954 JP2016072954W WO2017081893A1 WO 2017081893 A1 WO2017081893 A1 WO 2017081893A1 JP 2016072954 W JP2016072954 W JP 2016072954W WO 2017081893 A1 WO2017081893 A1 WO 2017081893A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
dissolution tank
water
containing water
gas
Prior art date
Application number
PCT/JP2016/072954
Other languages
English (en)
French (fr)
Inventor
篤樹 柿谷
裕也 渡邊
通寛 小倉
宗郷 熊谷
加藤 康昭
哲也 門馬
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017081893A1 publication Critical patent/WO2017081893A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen-containing water generating device that generates hydrogen-containing water and a method for generating hydrogen-containing water.
  • hydrogen water hydrogen-dissolved water in which hydrogen having a concentration lower than the saturation concentration is dissolved and hydrogen water containing hydrogen having a saturation concentration or more are collectively referred to as hydrogen-containing water.
  • a method for ingesting hydrogen (i) a method of directly sucking hydrogen gas, (ii) a method of drinking hydrogen water in which hydrogen is dissolved, (iii) a method of absorbing from the skin in a hydrogen bath, etc. And (iv) a method of instilling physiological saline in which hydrogen is dissolved is known.
  • the method of drinking hydrogen water is safer than the method of sucking hydrogen gas, and can easily ingest hydrogen in daily life. It is becoming popular.
  • Patent Literature 1 includes a hydrogen gas generation device that extracts hydrogen gas from water under pressure control, and a gas supply path that connects the hydrogen gas generation device and a liquid container, and hydrogen generated by the hydrogen gas generation device.
  • a hydrogen addition system that adds hydrogen to a liquid contained in a liquid container detachably connected to a gas supply path by variably controlling the gas pressure of the gas.
  • Patent Document 2 discloses a technique in which a solid polymer-type hydrogen generator is connected to a container such as a plastic bottle, and water contained in the container is electrolytically treated in a state where the container is sealed.
  • Patent No. 57105050 Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2015-131295 (published July 23, 2015)”
  • the health effect of drinking hydrogen water is correlated with the amount of hydrogen intake and the frequency of intake, but the hydrogen water that has been sold by hydrogen water manufacturers has a relatively low dissolved concentration of hydrogen, so it has a health effect. Therefore, the user needs to ingest a large amount of hydrogen water. For example, in the case of hydrogen water having a hydrogen content of 0.8 ppm, it is said that the user needs to ingest about 1 L of hydrogen water per day.
  • the conventional technology has a problem that it is difficult to easily and quickly supply hydrogen-containing water containing hydrogen at a high concentration to the user.
  • the dissolved concentration of hydrogen decreases with time, and the hydrogen pressure in the storage tank decreases each time the hydrogen water is taken out. Then, since the dissolved concentration of hydrogen is lowered, it is difficult to maintain the hydrogen water in the storage tank at a high concentration.
  • a membrane electrode assembly (MEA) is used as an electrode portion for electrolytic treatment of water.
  • MEA membrane electrode assembly
  • the electrolytic performance is extremely lowered.
  • work for always immersing an electrode part in water has become a burden for the user.
  • the electrode part which consists of a membrane electrode assembly is the structure which touches the hydrogen water produced
  • the flavor of hydrogen water was lowered by direct contact.
  • the membrane electrode assembly has a higher electrolytic performance when the membrane is thinner, but the pressure resistance reliability decreases as the membrane becomes thinner. There is also a problem that it is necessary to consider the problem of pressure resistance of the film.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a hydrogen-containing water generator and a hydrogen-containing water generator that can easily and quickly generate hydrogen-containing water containing hydrogen at a high concentration. It is to provide a method for producing water.
  • the hydrogen-containing water generating apparatus includes an electrolytic tank that electrolyzes an electrolytic solution to generate hydrogen gas, a dissolution tank that dissolves hydrogen gas in water, a gas phase portion of the electrolytic tank, and the A vent pipe connecting the gas phase part of the dissolution tank, and by increasing the pressure in the dissolution tank with hydrogen gas generated in the electrolytic tank, the hydrogen gas is dissolved in water in the dissolution tank It is characterized by.
  • Embodiment 1 An embodiment of the present invention will be described.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a hydrogen-containing water generating apparatus 1 according to the present embodiment. As shown in this figure, the hydrogen-containing water generator 1 includes an electrolysis unit 10 and a dissolution unit 20.
  • the electrolysis unit 10 includes an electrolyzer 11 and an electrolyzer 12 for storing an electrolyte solution.
  • the electrolytic cell 11 is provided with an introduction port for introducing the electrolytic solution into the electrolytic cell 11 and a discharge port for discharging the electrolytic solution in the electrolytic cell 11. Illustration of the inlet and outlet is omitted.
  • the electrolytic solution stored in the electrolytic cell 11 is not particularly limited as long as it is a liquid that generates hydrogen by electrolytic treatment. For example, tap water or pure water may be used.
  • FIG. 2 is an explanatory diagram showing the configuration of the electrolysis apparatus 12.
  • the electrolysis apparatus 12 includes an ion exchange membrane 51, a catalyst layer 52, a catalyst layer 53, a negative electrode (electrode) 54, a positive electrode (electrode) 55, and a power supply unit 56.
  • a solid polymer electrolytic device is used.
  • ion exchange membrane 51 for example, a fluorine-based proton exchange membrane is used.
  • it may be a membrane having an ion exchange function made of a material other than a fluorine-based proton exchange membrane, such as a hydrocarbon-based cation exchange membrane or an anion exchange membrane.
  • the catalyst layer 52 and the catalyst layer 53 are made of a catalyst such as Pt (platinum) coated on the surface of the ion exchange membrane 51.
  • a gas diffusion layer (water repellent treated carbon paper or the like) may be further provided on the outer layer of the catalyst layer 52 or the catalyst layer 53. Further, the catalyst layer 52 or the catalyst layer 53 may not be provided.
  • the negative electrode 54 and the positive electrode 55 are made of, for example, a Pt plated electrode obtained by plating punched Ti (titanium) or mesh Ti with Pt (platinum).
  • the positive electrodes 54 and 55 may be plated with a compound having an electrocatalytic action made of Ir (iridium), Ta (tantalum), Ru (ruthenium), or the like instead of or in addition to Pt.
  • the negative electrode 54 is disposed in contact with or adhered to the catalyst layer 52, and the positive electrode 55 is disposed in contact with or adhered to the catalyst layer 53.
  • a membrane electrode assembly is formed by the ion exchange membrane 51, the catalyst layers 52 and 53, the negative electrode 54, and the positive electrode 55. That is, the solid polymer electrolytic device according to this embodiment includes an MEA configured such that a catalyst layer or an electrode is integrated on both surfaces of an ion conductive polymer film.
  • the negative electrode 54 is disposed in contact with the electrolytic solution in the electrolytic cell 11, and the positive electrode 55 is exposed to the external space of the electrolytic cell 11.
  • the outside of the electrolytic cell 11 may be air or may be filled with water or the like.
  • the power source unit 56 is a DC power source, and a negative terminal is connected to the negative electrode 54 and a positive terminal is connected to the positive electrode 55.
  • Oxygen is generated outside the electrolytic cell 11 by applying a negative potential to the negative electrode 54 disposed in the electrolytic cell 11 from the power source 56 and a positive potential to the positive electrode 55 disposed outside the electrolytic cell 11. Then, high purity hydrogen is generated in the electrolytic cell 11.
  • the polarity of the voltage applied from the power supply unit 56 to the negative electrode 54 and the positive electrode 55 can be reversed, and a positive potential is applied to the negative electrode 54 and a negative potential is applied to the positive electrode 55 at the time of maintenance.
  • the ion component adsorbed on the film 51 may be removed.
  • the electrolysis control unit 61 controls the voltage generated between the positive electrode 55 and the negative electrode 54 so that water is naturally generated from hydrogen dissolved in the electrolyte and oxygen in the air. You may make it suppress the reverse reaction which generate
  • the configuration in which the negative electrode 54 is disposed in the electrolytic cell 11 storing the electrolytic solution and the positive electrode 55 is exposed to the outside of the electrolytic cell 11 is described, but the present invention is not limited to this. It is sufficient that either the positive electrode 55 or the negative electrode 54 is in contact with the electrolytic solution, the positive electrode 55 is disposed in the electrolytic cell 11, and the negative electrode is exposed to the outside of the electrolytic cell 11. Hydrogen generated outside the tank 11 may be collected and connected to the dissolution unit 20. Further, both the positive electrode 55 and the negative electrode 54 may be disposed in the electrolytic cell 11.
  • the ceiling surface 13 of the electrolytic cell 11 is an inclined surface inclined upward from the peripheral edge toward the center, and is generated by the electrolysis unit 10 at the center of the ceiling surface 13, that is, the top of the inclined surface.
  • a vent pipe 31 for supplying hydrogen to the melting part 20 is connected.
  • the hydrogen gas generated in the electrolysis unit 10 accumulates near the top of the ceiling surface 13 of the electrolytic cell 11 and is supplied to the dissolution unit 20 through the vent pipe 31.
  • the top of the inclined surface of the ceiling surface 13 is the center of the ceiling surface 13.
  • the present invention is not limited to this, and an arbitrary part of the ceiling surface 13 is defined as the top, toward the top.
  • the ceiling surface 13 may be inclined upward, and the ventilation pipe 31 may be connected near the top.
  • the inner diameter of the vent pipe 31 reduces the volume of the space in which the hydrogen gas generated in the electrolysis unit 10 is present, and inhibits the passage of water and the electrolyte between the electrolytic tank 11 and the dissolution tank 21. It is preferable to make it as thin as possible. However, if water drops have entered the vent pipe 31, if the vent pipe 31 is too thin, the vent pipe 31 may be clogged with water drops and hydrogen gas may not be allowed to pass therethrough. For this reason, it is preferable to make the inner diameter of the vent pipe 31 as thin as possible within a range that does not hinder the passage of hydrogen gas even when water droplets enter.
  • the electrolytic solution is stored only up to a position below the portion of the electrolytic cell 11 to which the vent pipe 31 is connected, and the vicinity of the top of the ceiling surface 13 and the vent pipe 31 in the electrolytic cell 11 are always in the gas phase. It is designed to be maintained in a state.
  • the volume of the gas phase part in the electrolytic cell 11 is large, the rate of increase in the pressure of the gas phase part of the electrolytic cell 11, the vent pipe 31, and the gas phase part of the dissolution unit 20 due to the hydrogen gas generated in the electrolysis unit 10. Decreases. For this reason, it is preferable to make the volume of the gas phase part of the electrolytic cell 11 as small as possible within a range in which the electrolytic solution in the electrolytic cell 11 can be prevented from flowing out to the vent pipe 31.
  • the capacity of the electrolytic cell 11 is, for example, about 1 cc in the case where 2 L of hydrogen-containing water of 4 to 5 ppm is generated, and is very small.
  • a water level sensor for detecting the water level of the electrolytic solution in the electrolytic cell 11 is provided, and the electrolytic solution is automatically filled in the electrolytic cell 11 when the water level of the electrolytic solution in the electrolytic cell 11 falls below a predetermined value.
  • An electrolyte solution filling device (not shown) may be provided.
  • a water storage tank may be provided above the electrolytic cell 11 and the electrolytic solution may be supplemented by gravity.
  • the electrolysis unit 10 may be provided with a discharge pipe for exchanging the electrolytic solution in the electrolytic cell 11.
  • an ion exchange resin filter or a reverse osmosis (RO) filter is provided in the introduction path for introducing the electrolytic solution into the electrolytic cell 11 to remove ions in the electrolytic solution.
  • RO reverse osmosis
  • an activated carbon filter or the like may be provided on the introduction path for introducing the electrolytic solution into the electrolytic cell 11 to remove residual chlorine in the electrolytic solution.
  • the outer wall of the electrolytic cell 11 may be made of a transparent material so that the user can observe the state of the electrolytic treatment from the outside. Further, a heating means or a cooling means for controlling the temperature of the electrolytic solution may be provided in the electrolytic cell 11.
  • the dissolution unit 20 includes a dissolution tank 21 that stores water to be hydrogen-containing water, a stirring unit 22 that stirs water stored in the dissolution tank 21 and a gas (hydrogen gas) in the upper part of the dissolution tank 21, and a stirring unit. And a motor 40 for rotationally driving the motor 22.
  • the dissolution tank 21 includes a vent pipe 31 for supplying hydrogen gas from the electrolysis unit 10 to the dissolution tank 21, a water supply pipe 32 for supplying water into the dissolution tank 21, and an upper part of the dissolution tank 21 (gas phase And a water intake pipe 34 for the user to take in the hydrogen-containing water generated in the dissolution tank 21 from the dissolution tank 21.
  • the vent pipe 31 and the exhaust pipe 33 are connected to the vicinity of the center of the ceiling surface of the dissolution tank 21 (near the intersection of the ceiling surface of the dissolution tank 21 and a straight line passing through the center of the rotating shaft 22a in the stirring section 22).
  • the dissolution tank 21 is supplied with water only to a position below the connection portion between the vent pipe 31 and the exhaust pipe 33. Thereby, even when the liquid level of the water in the dissolution tank 21 becomes higher in the radial direction due to centrifugal force when the stirring unit 22 is driven to rotate, the water in the dissolution tank 21 is vented. 31 and the exhaust pipe 33 are not ejected, and the vent pipe 31, the upper part of the dissolution tank 21, and the exhaust pipe 33 are always maintained in a gas phase state. Therefore, in the present embodiment, the electrolytic solution in the electrolytic bath 11 is not mixed with the water in the dissolving bath 21, and the water in the dissolving bath 21 is not mixed with the electrolytic solution in the electrolytic bath 11.
  • the exhaust pipe 33 is provided with an exhaust valve 38, and the gas in the gas phase portion of the dissolution tank 21 is discharged to the outside of the dissolution tank 21 by opening the exhaust pipe 33.
  • the gas phase part of the electrolytic cell 11, the vent pipe 31, the gas phase part of the dissolution tank 21, and the exhaust pipe 33 are communicated with each other in the gas phase part, and the expanded gas is ramped in the water of the dissolution tank 21.
  • a recess (not shown) that protrudes upward is provided around the connection portion of the vent pipe 31 on the ceiling surface of the dissolution tank 21, and the hydrogen gas supplied from the vent pipe 31 is stored in the recess, and the exhaust pipe 33 may be connected to reduce the volume of the gas phase part of the dissolution tank 21.
  • the water supply pipe 32 is provided with a water supply pump 37 and a water supply valve 36, and the water supply pump 37 is connected to water supply means (for example, a water tap, a water storage container, or a water storage tank) not shown. Thereby, water is supplied into the dissolution tank 21 by opening the water supply valve 36 and starting the water supply pump 37. Further, a water storage container or the like may be provided above the dissolution tank 21 without providing a water supply pump, and water may be supplied by gravity.
  • the water supply pipe 32 may be provided with a hollow fiber filter, an activated carbon filter, a reverse osmosis membrane (RO) filter, and the like, and purified water or degassed water may be supplied to the dissolution tank 21.
  • RO reverse osmosis membrane
  • ion-concentrated water may be supplied from the water supply pipe 32 to the dissolution tank 21.
  • the purified water of the reverse osmosis membrane filter may be supplied to the electrolytic cell 11, and the ion-concentrated water that has not passed through the membrane may be supplied to the dissolution vessel 21.
  • the intake pipe 34 is connected to the liquid phase part of the dissolution tank 21, and the intake pipe 34 is provided with an intake valve 39.
  • the hydrogen-containing water in the dissolution tank 21 is discharged from the water intake pipe 34 by opening the water intake valve 39, and the user can take the hydrogen-containing water discharged from the water intake pipe 34 in an arbitrary container.
  • the mechanism in which the user repeatedly attaches and detaches can be operated only at a low pressure because the attaching and detaching portion gradually deteriorates and cannot withstand high pressure.
  • the intake pipe 34 having the intake valve 39 the operation pressure is greatly increased. Can be increased. For example, it is possible to set the pressure to 5 to 9 atmospheres or more after complying with the upper limit by the laws and regulations concerning high pressure gas in each country.
  • the dissolution tank 21 has a lid portion (upper surface portion) and a container portion (a cup-shaped container portion constituted by a bottom surface and a side surface) detachably connected via an O-ring or the like.
  • the lid part may be removed from the container part and the inside may be cleaned.
  • a connecting tool (not shown) for injecting hydrogen-containing water into a predetermined container is attached to the tip of the intake pipe 34, and the hydrogen-containing water is injected into the container through this connecting tool. Good.
  • the stirring unit 22 includes a rotating shaft 22a, a stirring blade 22b attached around the rotating shaft 22a, and a magnet coupling 41b attached to one end of the rotating shaft 22a.
  • the rotating shaft 22a is arranged to extend in the vertical direction, and the other end of the rotating shaft 22a is rotatably supported by a bearing (not shown) arranged at the center of the ceiling surface of the dissolution tank 21. Has been.
  • the stirring blade 22b is disposed so as to extend to both the water storage part (liquid phase part) of water stored in the dissolution tank 21 and the gas phase part on the water surface.
  • the shape and the number of the stirring blades 22b are not particularly limited as long as the shape and the number can efficiently stir the water and gas in the dissolution tank 21.
  • the motor 40 is disposed outside the dissolution tank 21, and the rotation shaft of the motor 40 is connected to a magnet coupling 41 a disposed opposite to the bottom wall (wall surface) of the dissolution tank 21. Further, the magnet coupling 41 b provided in the stirring unit 22 is disposed at a position facing the magnet coupling 41 a via the bottom wall (wall surface) of the dissolution tank 21.
  • the stirring unit 22 rotates about the rotation shaft 22a. That is, in the present embodiment, a floating fan that is rotationally driven in a non-contact manner with respect to the motor 40 and a member (magnet coupling 41a and the like) connected to the motor 40 is used as the stirring unit 22.
  • the motor 40 is disposed below the dissolution tank 21 and the magnet couplings 41a and 41b are disposed so as to face each other with the bottom wall of the dissolution tank 21, but the present invention is not limited thereto.
  • the motor 40 may be disposed on the side of the dissolution tank 21 and the magnet couplings 41a and 41b may be disposed so as to face each other through the side wall (wall surface) of the dissolution tank 21.
  • the motor 40 may be disposed above the dissolution tank 21 and the magnet couplings 41a and 41b may be disposed to face each other via the upper wall (wall surface) of the dissolution tank 21.
  • it is not restricted to the structure provided with only 1 set of the motor 40 and the stirring part 22, You may provide multiple sets.
  • FIG. 3 is an explanatory diagram showing the configuration of the control system of the hydrogen-containing water generating apparatus 1.
  • the hydrogen-containing water generation device 1 controls the operation of each unit of the hydrogen-containing water generation device 1, and inputs an instruction from the user.
  • An operation input unit 70 that receives and transmits the operation input to the control unit 60 is provided.
  • the control unit 60 includes an electrolysis control unit 61 and a dissolution control unit 62, and the dissolution control unit 62 includes a water supply control unit 63, a water intake control unit 64, an exhaust control unit 65, and an agitation control unit 66.
  • the control unit 60 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software using a CPU (Central Processing Unit).
  • the control unit 60 includes a CPU that executes instructions of a program, which is software that implements each function, a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU), or A storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • generation apparatus 1 is implement
  • the electrolysis control unit 61 controls the operation of the electrolysis apparatus 12, that is, the application of voltage to the positive electrode 55 and the negative electrode 54.
  • the water supply control unit 63 controls the operation of the water supply pump 37 and the water supply valve 36
  • the water intake control unit 64 controls the operation of the water intake valve 39
  • the exhaust control unit 65 controls the operation of the exhaust valve 38
  • the stirring control unit 66 controls the operation of the motor 40.
  • electromagnetic valves are used as the water supply valve 36, the water intake valve 39, and the exhaust valve 38, and the water supply control unit 63, the water intake control unit 64, and the exhaust control unit 65 perform operations of the respective electromagnetic valves. Control to open and close.
  • the configuration of the operation input unit 70 is not particularly limited as long as it has a function of receiving an instruction from the user and transmitting the instruction to the control unit 60.
  • the operation input unit 70 may include a key operation button. Or a combination thereof.
  • FIG. 4 is a flowchart showing the flow of processing in the hydrogen-containing water generating apparatus 1
  • FIG. 5 is an explanatory diagram showing the operation of each part in the hydrogen-containing water generating apparatus 1.
  • the water supply control unit 63 opens the water supply valve 36 (OPEN), activates the water supply pump 37 (ON), and enters the dissolution tank 21. Water is supplied (S1, water supply process). In this state, the exhaust valve 38 is opened (OPEN), the intake valve 39 is closed (CLOSE), and the electrolyzer 12 and the motor 40 are stopped (OFF).
  • the water supply control unit 63 stops the water supply pump 37, closes the water supply valve 36, and ends the water supply process.
  • a water level sensor may be provided in the dissolution tank 21, and the water supply control unit 63 may determine whether or not the dissolution tank 21 has been supplied to a predetermined water level according to the detection result of the water level sensor. Water supply may be performed until the water level sensor detects a predetermined water level.
  • the electrolysis control unit 61 activates the electrolysis apparatus 12 to start generation of hydrogen gas, and the exhaust control unit 65 opens the exhaust valve 38, whereby the vent pipe 31, the gas phase part of the dissolution tank 21, and the exhaust gas
  • the air in the pipe 33 is replaced with hydrogen gas generated by the electrolysis device 12 (S2, replacement step).
  • oxygen in the gas phase is discharged to have an oxygen mixed concentration that does not react with hydrogen gas even when energy is artificially applied.
  • Whether or not the replacement of the vent pipe 31, the gas phase portion of the dissolution tank 21, and the exhaust pipe 33 with hydrogen gas is completed may be determined according to the processing time after the replacement process is started, for example. Alternatively, the determination may be made by detecting the hydrogen gas concentration in the dissolution tank 21 or the composition of the exhaust from the exhaust pipe 33.
  • the exhaust control part 65 closes the exhaust valve 38, and the electrolysis control part 61 causes the hydrogen generated by the electrolyzer 12 to flow.
  • the pressures of the vent pipe 31, the gas phase portion of the dissolution tank 21, and the exhaust pipe 33 are increased to a predetermined pressure (S3, pressure increasing process).
  • the pressure of the vent pipe 31, the gas phase part of the dissolution tank 21, and the exhaust pipe 33 is increased to 5 atm by this pressure increasing process.
  • the agitation controller 66 drives the motor 40 to rotate the agitation part 22 to rotate the dissolution tank 21.
  • the water and gas (hydrogen gas) inside are stirred (S4, stirring step). Thereby, hydrogen gas melt
  • the pressure in the vent pipe 31, the gas phase portion of the dissolution tank 21, and the exhaust pipe 33 has been increased to a predetermined pressure is, for example, the electrolytic cell 11, the dissolution tank 21, Or you may make it judge based on the detection result by providing the pressure sensor (not shown) arrange
  • the predetermined pressure is appropriately set so as to obtain hydrogen-containing water having a desired hydrogen concentration. That's fine.
  • an estimated value of the pressure increase rate calculated from the hydrogen generation rate may be compared with an actual measurement value of this pressure sensor to determine abnormality such as leakage.
  • a pressure valve may be provided that opens the valve above the set pressure.
  • a pressure sensor or a pressure valve in the gas phase part of the electrolytic cell 11 or its vicinity.
  • the start timing of the stirring process is not limited to the configuration that is determined based on the detection result of the pressure sensor.
  • the stirring process may be started when the time reaches a predetermined time.
  • the stirring step is started after the pressurizing step.
  • the present invention is not limited to this, and the pressurizing step and the stirring step may be performed in parallel.
  • the electrolysis control unit 61 stops the electrolysis apparatus 12
  • the stirring control unit 66 stops the motor 40
  • the exhaust control unit 65 opens the exhaust valve 38.
  • the pressure in the dissolution tank 21 is reduced to normal pressure (S5, pressure reduction step).
  • the exhaust control unit 65 may control the pressure reduction speed of the dissolution tank 21 by adjusting the friction loss or opening of the exhaust valve 38.
  • the timing which transfers to the pressure reduction process from a stirring process provides the pressure sensor which detects the pressure in the dissolution tank 21, for example, and is the predetermined time after the time change rate of the pressure detected by a pressure sensor becomes below a predetermined value.
  • the stirring process may be terminated and the process may proceed to a pressure reducing process.
  • the water intake control unit 64 opens the intake valve 39 so that the hydrogen-containing water in the dissolution tank 21 is supplied to the container via the intake pipe 34. (S6, water intake step).
  • control unit 60 automatically performs the processes of the above steps.
  • the present invention is not limited to this, and the user manually performs some or all of the steps. It may be.
  • FIG. 6 is a graph showing the results of an experiment conducted for examining the relationship between the presence or absence of stirring and the dissolution characteristics of hydrogen.
  • a dissolution tank 21 having a volume of 273 cc was used, and water was poured into the dissolution tank 21 so that the volume of the gas phase in the dissolution tank 21 was 11 cc (4% of the total). Then, a hydrogen cylinder was directly connected to the gas phase portion and the gas in the gas phase portion was replaced with hydrogen gas, and then the pressure in the gas phase portion was increased to 5 atm and maintained for a predetermined time. Then, about each of the case where stirring by the stirring part 22 was performed, and the case where stirring was not performed, after carrying out pressure reduction processing and taking water, the dissolved hydrogen concentration of water was measured.
  • the pressure in the dissolution tank 21 was increased with hydrogen gas and maintained at a high pressure, and by stirring with the stirring unit 22, hydrogen could be dissolved in water in a short time.
  • the hydrogen concentration was 2.9 ppm at a holding time of 0.25 minutes, 3.5 ppm at 0.5 minutes, 4.5 ppm at 1 minute, and 4.8 ppm at 2 minutes. Thereafter, even if the holding time was extended. The hydrogen concentration hardly increased.
  • FIG. 7 is a graph showing the results of an experiment conducted for examining the relationship between the hydrogen substitution in the gas phase portion in the dissolution tank 21 and the hydrogen concentration of the generated hydrogen-containing water.
  • the exhaust valve 38, the water supply valve 36, and the water intake valve 39 are closed to seal the dissolution tank 21, and the electrolyzer 12 is driven at a constant current. (2.0 A), and the electrolytic treatment is continued until the gas phase portion of the dissolution tank 21 reaches 5.55 atm. Then, the stirring portion 22 is stirred for 40 seconds, the exhaust valve 38 is opened, and the pressure reduction treatment is performed. The water intake valve 39 was opened to take water, and the hydrogen concentration was measured. Note that the experimental results in FIG. 7 show the average values of the results obtained by performing the measurement a plurality of times under the conditions (i) to (iv). The pressure in the dissolution tank 21 after the stirring by the stirring unit 22 and before the exhaust valve 38 is opened to start the pressure reduction process is approximately 5.1 atm under any of the above conditions (i) to (iv). Met.
  • FIG. 8 shows the results of an experiment conducted to investigate the relationship between the pressure in the dissolution tank 21 at the start of stirring and the hydrogen concentration of the generated hydrogen-containing water, and (a) shows the dissolution tank 21 at the start of stirring. Is a table showing the pressure of the dissolution tank 21 at the end of stirring, and the hydrogen concentration of the generated hydrogen-containing water, (b) is the pressure of the dissolution tank 21 at the start of stirring and the hydrogen-containing water generated It is a graph which shows the relationship with hydrogen concentration.
  • the electrolytic treatment is performed until hydrogen gas corresponding to the volume of the gas phase portion of the dissolution tank 21 is generated by the electrolysis apparatus 12 with the exhaust valve 38 opened, and the hydrogen gas generated by the electrolytic treatment is used.
  • the gas phase was replaced.
  • the exhaust valve 38, the water supply valve 36, and the water intake valve 39 are closed to seal the dissolution tank 21, and the electrolysis apparatus 12 is driven at a constant current (2.0 A), so that the gas phase portion of the dissolution tank 21 has a predetermined pressure (main)
  • the electrolytic treatment was continued until it reached 2.03 atm, 3.03 atm, 4.04 atm, 5.05 atm, and 5.55 atm.
  • FIG. 9 shows the results of an experiment conducted to investigate the relationship between the hydrogen partial pressure and the hydrogen concentration of the produced hydrogen-containing water.
  • A shows the total gas amount / water amount (hydrogen / oxygen relative to the amount of tap water).
  • B is a graph showing the relationship between the molar fraction of hydrogen gas and the hydrogen concentration of the produced hydrogen-containing water. is there.
  • the hydrogen concentration becomes saturated and constant, and even if the total gas amount is increased further, the hydrogen concentration does not increase.
  • the lower the hydrogen gas fraction in the mixed gas the lower the hydrogen concentration at saturation.
  • the hydrogen concentration at saturation depends on the hydrogen mole fraction, but the relationship between the hydrogen mole fraction (mixing ratio of hydrogen gas in the mixed gas) and the hydrogen concentration is not proportional, and the hydrogen mole fraction is The lower the hydrogen concentration, the lower the hydrogen concentration.
  • the electrolytic tank 11 that generates hydrogen gas and the dissolution tank 21 that dissolves the hydrogen gas generated in the electrolytic tank 11 in water communicate with each other through the vent pipe 31.
  • the vent pipe 31 is provided so as to connect the gas phase part in the electrolytic cell 11 and the gas phase part in the dissolution cell 21.
  • the pressure in the dissolution tank 21 is increased by the hydrogen gas generated in the electrolysis unit 10, and the water and hydrogen gas in the dissolution tank 21 are stirred by the stirring unit 22.
  • the pressure in the dissolution tank 21 is increased to increase the saturation concentration of hydrogen from that at normal pressure, and the hydrogen concentration can be increased to a higher concentration efficiently in a short time under a state where the saturation concentration is increased by the increased pressure. Can be dissolved.
  • the dissolution tank 21 After producing
  • the decay rate of the hydrogen concentration at the time of depressurization has a value mainly depending on the pressure before the depressurization, but in any case, the hydrogen concentration at that time does not decrease to the saturation concentration (1.6 ppm) at normal pressure. For this reason, according to the hydrogen-containing water production
  • the pressure in the dissolution tank 21 is increased by the hydrogen gas generated in the electrolysis unit 10. For this reason, since the pump for raising the pressure in the dissolution tank 21 is unnecessary, the size of the hydrogen-containing water generating apparatus 1 can be reduced as compared with the configuration in which the pressure in the dissolution tank 21 is increased by a pump.
  • the hydrogen-containing water is generated every time the user instructs to generate hydrogen-containing water. For this reason, it is not necessary to provide a water storage tank for storing a large amount of hydrogen-containing water, and it is only necessary to have a dissolution tank 21 corresponding to the amount of hydrogen-containing water supplied to the user.
  • the size of the device 1 can be reduced. Moreover, it is possible to quickly and easily generate a necessary amount of high-concentration hydrogen-containing water on the spot, thereby reducing the work burden on the user.
  • the gas phase portion in the dissolution tank 21 is replaced with hydrogen gas generated in the electrolysis unit 10, and the pressure is increased by the hydrogen gas generated in the electrolysis unit 10, and stirring is performed in the stirring unit 22.
  • Hydrogen is dissolved in the water in the dissolution tank 21.
  • the hydrogen partial pressure can be increased by replacing the gas phase portion in the dissolution tank 21 with hydrogen gas, the hydrogen gas is efficiently dissolved in water to produce high-concentration hydrogen-containing water. it can.
  • step S2 the motor 40 is stopped in the replacement process of step S2.
  • the stirring control unit 66 performs the process of the replacement process with the motor 40 being driven.
  • the stirring control unit 66 may drive the motor 40 in the step-up step of Step 3.
  • FIG. 11 is an explanatory diagram illustrating a schematic configuration of the hydrogen-containing water generating device 1 according to the present embodiment
  • FIG. 12 is an explanatory diagram illustrating a configuration of a control system of the hydrogen-containing water generating device 1 according to the present embodiment
  • FIG. 13 is an explanatory diagram showing the operation of each part in the hydrogen-containing water generating apparatus 1 according to the present embodiment.
  • the hydrogen-containing water generating apparatus 1 has a communication path for connecting the electrolytic cell 11 and the dissolution vessel 21 in addition to the configuration shown in FIG.
  • An intake valve 80 is provided in the vicinity of the dissolution tank 21 of the trachea 31, and the dissolution control unit 62 includes an intake control unit 67 that controls the operation of the intake valve 80.
  • an electromagnetic valve is used as the intake valve 80, and the intake control unit 67 controls the operation of the electromagnetic valve to open and close.
  • the intake control unit 67 keeps the intake valve 80 closed until the water supply process in step S1, and in the replacement process in step S2, the pressure increasing process in step S3, and the stirring process in step S4, the intake valve Open 80. Further, the intake valve 80 is closed in the pressure reducing step in step S5 and the water intake step in step S6.
  • the gas phase portion of the electrolytic cell 11 and the portion of the vent pipe 31 closer to the electrolytic cell 11 than the intake valve 80 are maintained in a state in which high-pressure hydrogen gas is enclosed,
  • the dissolved hydrogen concentration in the electrolytic solution can be kept high.
  • the amount of hydrogen gas to be generated in the next replacement step and boosting step can be reduced, and the replacement step and boosting step can be performed quickly.
  • FIG. 14 is an explanatory diagram showing a schematic configuration of the hydrogen-containing water generating apparatus 1 according to the present embodiment.
  • the hydrogen-containing water generating device 1 according to the present embodiment includes a hydrophobic filter 91 provided in the vicinity of the connection portion of the vent pipe 31 with the electrolytic cell 11. And a hydrophobic filter 92 provided in the vicinity of the connection portion between the vent pipe 31 and the dissolution tank 21.
  • Hydrophobic filters 91 and 92 allow hydrogen gas to pass through while blocking the passage of droplets.
  • the material of the hydrophobic filters 91 and 92 is not particularly limited as long as it has a function of permeating hydrogen gas and blocking the passage of droplets.
  • a non-woven fabric made of Teflon (registered trademark) is used. Can be used.
  • the hydrophobic filter is provided in both the vicinity of the connection portion of the vent pipe 31 with the electrolytic bath 11 and the vicinity of the connection portion of the vent pipe 31 with the dissolution bath 21, but not limited thereto. For example, you may provide only in either one.
  • the installation position of the hydrophobic filter is not limited to the vicinity of the connection portion of the vent pipe 31 with the electrolytic bath 11 and the vicinity of the connection portion of the vent pipe 31 to the dissolution bath 21. Any position can be used as long as moisture can be prevented from flowing therethrough.
  • FIG. 15 is an explanatory diagram showing a schematic configuration of the hydrogen-containing water generating apparatus 1 according to the present embodiment.
  • the electrolysis apparatus 12 having a configuration in which the positive electrode 55 and the negative electrode 54 are arranged to face each other through the diaphragm 57 in the electrolytic cell is used.
  • the diaphragm 57 is arranged to divide the electrolytic cell 11 into a negative electrode side electrolytic cell 11a and a positive electrode side electrolytic cell 11b.
  • a porous membrane, an electrolytic membrane, an ion exchange membrane or the like can be used as the diaphragm 57.
  • a pressure adjusting mechanism (not shown) may be provided to adjust the pressure difference between the negative electrode side electrolytic cell 11a and the positive electrode side electrolytic cell 11b.
  • the negative electrode 54 is arranged to face the diaphragm 57 in the negative electrode side electrolytic cell 11a
  • the positive electrode 55 is arranged to face the diaphragm 57 in the positive electrode side electrolytic cell 11b.
  • an oxygen exhaust pipe 101 is connected to the ceiling surface of the positive electrode side electrolytic cell 11b, and an oxygen exhaust valve 102 is connected to the oxygen exhaust pipe 101. Accordingly, the electrolysis control unit 61 opens the oxygen discharge valve 102 as necessary, so that oxygen generated in the positive electrode side electrolytic cell 11 b is released to the outside of the electrolysis unit 10.
  • the ceiling surface 13 of the negative electrode side electrolytic cell 11a is an inclined surface inclined upward toward the center of the negative electrode side electrolytic cell 11a, and is formed at the center of the ceiling surface 13, that is, the top of the inclined surface.
  • a vent pipe 31 for supplying the hydrogen generated in the electrolysis unit 10 to the dissolution unit 20 is connected.
  • Examples of the electrolytic solution injected into the negative electrode side electrolytic cell 11a and the positive electrode side electrolytic cell 11b include (i) pure water, (ii) tap water, or (iii) K ions, phosphate ions, or carbonate ions. An electrolytic solution to which ions such as these are added can be used.
  • an ion elution device for adding ions to an electrolytic solution injection part (not shown) for injecting an electrolytic solution into the negative electrode side electrolytic cell 11a and the positive electrode side electrolytic cell 11b is installed, and ions are added to tap water. Minutes may be added.
  • FIG. 16 is an explanatory diagram illustrating a schematic configuration of the hydrogen-containing water generating device 1 according to the present embodiment
  • FIG. 17 is an explanatory diagram illustrating a configuration of a control system of the hydrogen-containing water generating device 1.
  • the hydrogen-containing water generating apparatus 1 includes a water tank 110 (or a water tap), a water supply pipe 111, a concentration.
  • a control valve 112 and a concentration control unit 68 are provided.
  • the water tank 110 stores the same water as the water injected into the dissolution tank 21 (water before dissolving hydrogen). Note that the water stored in the water tank 110 is not necessarily the same as the water injected into the dissolution tank 21. Moreover, the water stored in the water tank 110 may be, for example, pure water, purified water, tap water, or the like.
  • the water supply pipe 111 is connected to the intake pipe 34.
  • the water supply pipe 111 is connected to the downstream side of the intake valve 39 in the intake pipe 34, but is not limited thereto, and is connected to the upstream side of the intake valve 39. Also good.
  • the concentration control valve 112 is composed of, for example, an electromagnetic valve, and opens and closes according to an instruction from the concentration control unit 68.
  • the concentration control unit 68 adjusts the opening of the concentration control valve 112 according to the target hydrogen concentration and the target hydrogen water amount input via the operation input unit 70, thereby connecting the intake pipe 34 and the water supply pipe 111.
  • the mixing ratio of the hydrogen-containing water supplied from the dissolution tank 21 and the water supplied from the water tank 110 mixed in the part (mixing part) is adjusted.
  • FIG. 18 is an explanatory diagram illustrating a schematic configuration of the hydrogen-containing water generating device 1 according to the present embodiment
  • FIG. 19 is an explanatory diagram illustrating a configuration of a control system of the hydrogen-containing water generating device 1.
  • the hydrogen-containing water generating apparatus 1 has a pressure sensor 74, a concentration calculation unit 69, a display control unit 71, concentration data in addition to the configuration shown in FIG. 1.
  • a storage unit 72 and a display unit 73 are provided.
  • the pressure sensor 74 is attached to the vent pipe 31, detects the pressure in the vent pipe 31, and transmits it to the concentration calculation unit 69.
  • the mounting position of the pressure sensor 74 is not limited to the vent pipe 31 and may be any position where the pressure in the gas phase portion of the dissolution tank 21 can be detected.
  • the air connected from the electrolytic cell 11 to the dissolution tank 21 including the pipe It may be detected in any of the phase portions, or may be detected via the electrolytic solution in the electrolytic cell 11 or the water in the dissolution vessel 21.
  • the concentration calculation unit 69 estimates the hydrogen concentration of hydrogen-containing water supplied to the user via the intake pipe 34 based on the detection result of the pressure sensor 74 and information stored in the concentration data storage unit 72 in advance. Calculate the value.
  • the concentration data storage unit 72 the correlation between the pressure at the end of the pressurization process or the stirring process in the dissolution tank 21 and the hydrogen concentration of hydrogen-containing water supplied to the user via the intake pipe 34 in the intake process. Is stored.
  • the configuration of the density data storage unit 72 is not particularly limited as long as the information can be stored, and various conventionally known memory devices can be used.
  • the hydrogen concentration of the hydrogen-containing water in the dissolution tank 21 becomes the upper limit of the saturation concentration corresponding to the pressure increased in the dissolution tank 21 by the pressurization step and the stirring step.
  • the hydrogen concentration of the hydrogen-containing water decreases in the subsequent depressurization step and the water intake step, the decay rate from the hydrogen concentration after the stirring step is determined mainly depending on the pressure in the dissolution tank 21 before depressurization. .
  • the correlation between the pressure at the end of the pressurization process or the stirring process in the dissolution tank 21 and the hydrogen concentration of the hydrogen-containing water discharged from the dissolution tank 21 through the intake pipe 34 in the intake process is measured in advance.
  • the concentration calculation unit 69 estimates the hydrogen concentration of the hydrogen-containing water supplied to the user via the intake pipe 34 according to the detection result of the pressure sensor 74 by storing the concentration in the concentration data storage unit 72. Can do.
  • the display control unit 71 controls the operation of the display unit 73 and causes the display unit 73 to display the estimated value of the hydrogen concentration calculated by the concentration calculation unit 69.
  • the display unit 73 displays characters, figures, images, and the like according to instructions from the display control unit 71.
  • the display unit 73 is not particularly limited as long as the estimated value of the hydrogen concentration can be displayed.
  • a liquid crystal display panel or an organic EL display panel can be used.
  • the display unit 73 is not limited to the configuration that displays the estimated value of the hydrogen concentration itself.
  • the display unit 73 includes one or a plurality of lamps that indicate that the estimated value of the hydrogen concentration is equal to or greater than a predetermined value. The lighting / extinguishing of each lamp may be switched according to the estimated value of the hydrogen concentration.
  • the estimated value of the hydrogen concentration of the hydrogen-containing water supplied to the user in the water intake process according to the pressure in the dissolution tank 21 is calculated, and the display according to the calculated estimated value of the hydrogen concentration. I do.
  • the gas phase portion of the dissolution tank 21 is not sufficiently replaced with hydrogen gas and air is mixed, or oxygen is dissolved in the water in the dissolution tank 21, and concentration data storage. If the information stored in the unit 72 corresponds to the case where the gas phase portion in the dissolution tank 21 is sufficiently replaced with hydrogen gas, the gas phase portion has a sufficient partial pressure of hydrogen gas. Since it is lower than when it is replaced with hydrogen gas, the estimated value of the hydrogen concentration may be calculated higher than the actual value. Therefore, in order to estimate the hydrogen concentration at the time of water intake more accurately, the inside of the dissolution tank 21 is sufficiently replaced with hydrogen gas in the replacement step, and the dissolved oxygen contained in the water in the dissolution tank 21 is sufficiently degassed. It is preferable to do.
  • the configuration of the hydrogen-containing water generating apparatus 1 according to the present embodiment is the same as the configuration shown in FIG.
  • the electrolysis control unit 61 when the electrolysis control unit 61 receives an instruction from the user via the operation input unit 70, the time when hydrogen gas is generated between the positive electrode 55 and the negative electrode 54 of the electrolysis device 12. Maintenance processing for applying a reverse polarity voltage is performed. Thereby, the ion component adhering to the positive electrode 55, the negative electrode 54, and the ion exchange membrane 51 can be separated, and the degradation of the electrolysis performance of the electrolysis apparatus 12 due to the adhesion of the ion component can be prevented.
  • the configuration is not limited to the configuration in which the maintenance process is performed when an instruction is given from the user. For example, when the cumulative operation time since the previous maintenance process has reached a predetermined time, the cumulative amount after the previous maintenance process is performed. Maintenance processing may be performed when the number of activations reaches a predetermined number, or when it is detected that the current value, voltage value, or resistance during electrolysis has changed by a certain amount.
  • the voltage applied between the positive electrode 55 and the negative electrode 54 by the electrolysis control unit 61 is controlled to a voltage that generates a very small amount of ozone (for example, ozone of 0.1 ppm or less). You may make it clean the electrolytic vessel 11, the vent pipe 31, and the dissolution tank 21.
  • the exhaust valve 38 may be closed until a predetermined time has elapsed since the start of ozone generation, and the exhaust valve 38 may be opened to discharge ozone when the predetermined time has elapsed.
  • the intake valve 80 is provided in the vent pipe 31 as in the configuration of FIG. 11 described above, and the intake valve 80 is closed during the generation of ozone, and is upstream of the intake valve 80 in the electrolytic cell 11 and the vent pipe 31. You may make it clean only a part with ozone.
  • an ozone removal filter (not shown) may be provided in the vent pipe 31 so that ozone generated in the electrolytic cell 11 does not flow out to the dissolution vessel 21.
  • a hydrogen-containing water generating apparatus 1 includes an electrolytic cell 11 that electrolyzes an electrolytic solution to generate hydrogen gas, a dissolution vessel 21 that dissolves hydrogen gas in water, and a gas in the electrolytic cell 11.
  • the device configuration can be simplified. Further, since the electrolytic cell 11 and the dissolution cell 21 are separately provided and communicated only in the gas phase part, the electrode part (positive electrode 55, negative electrode 54) is always impregnated in the electrolytic solution in the electrolytic cell 11. Even in this case, the electrolytic solution in the electrolytic bath 11 is not mixed with the water in the dissolution bath 21.
  • the hydrogen-containing water generating apparatus 1 is the hydrogen gas generated in the electrolytic cell 11, comprising the stirring unit 22 that stirs the water and hydrogen gas in the dissolution tank 21 in the above aspect 1.
  • the pressure in the dissolution tank 21 is increased, and the water and hydrogen gas in the dissolution tank 21 are agitated by the agitation unit 22, whereby the hydrogen gas is dissolved in water in the dissolution tank 21.
  • the hydrogen-containing water generating apparatus 1 includes the motor 40 for rotationally driving the stirring unit 22 in the aspect 2 described above, and the motor 40 is disposed outside the dissolution tank 21.
  • the rotational driving force of the motor 40 is transmitted to the agitation unit 22 by magnet couplings 41a and 41b arranged with the wall surface of the dissolution tank 21 interposed therebetween.
  • the motor 40 can be disposed outside the dissolution tank 21, it is possible to prevent the mechanical system from touching the drinking water and to prevent the flavor of the hydrogen-containing water from deteriorating. Moreover, since it is not necessary to provide the hole etc. for connecting the motor 40 and the stirring part 22 in the dissolution tank 21, the structure of the hydrogen-containing water production
  • generation apparatus 1 can be simplified and the pressure resistance of a container can be improved.
  • the hydrogen-containing water generating apparatus 1 according to Aspect 4 of the present invention is the hydrogen-containing water generating apparatus 1 according to any one of the Aspects 1 to 3, wherein the electrolytic bath 11 has an ionic conductivity for generating hydrogen gas by performing an electrolytic treatment of an electrolytic solution.
  • the electrolysis apparatus 12 (namely, solid polymer electrolysis apparatus) comprised so that a catalyst layer or an electrode may be united on both surfaces of the polymer film to have is comprised.
  • high purity hydrogen gas can be efficiently generated in the electrolytic cell 11.
  • oxygen is not mixed through the pores because the membrane does not have pores.
  • the hydrogen-containing water generating apparatus 1 according to the fifth aspect of the present invention is the hydrogen-containing water generating apparatus 1 according to any one of the first to fourth aspects, wherein the exhaust valve 38 is provided at a position communicating with the gas phase portion of the dissolution tank 21; And an exhaust control unit 65 for controlling the operation of the gas generator.
  • the exhaust control unit 65 opens the exhaust valve 38 and generates hydrogen gas in the electrolytic cell 11, so that the gas phase part in the dissolution tank 21 is hydrogenated.
  • a replacement step for replacing with gas and a pressure increasing step for increasing the pressure in the dissolution tank 21 by closing the exhaust valve 38 and generating hydrogen gas in the electrolytic cell 11 after the replacement step are performed. It is the composition which makes it.
  • the hydrogen-containing water generating apparatus 1 according to Aspect 6 of the present invention is the hydrogen-containing water generating apparatus 1 according to any one of Aspects 1 to 5, wherein the pressure sensor 74 detects the pressure in the gas phase portion of the dissolution tank 21 and the gas phase of the dissolution tank 21.
  • a concentration data storage unit 72 that stores information indicating the relationship between the pressure of the unit and the hydrogen concentration of the hydrogen-containing water generated in the dissolution tank 21, and the pressure detected by the pressure sensor 74 and the concentration data storage unit 72. It is the structure provided with the concentration calculation part 69 which calculates the estimated value of the hydrogen concentration of the hydrogen containing water produced
  • the hydrogen concentration of the hydrogen-containing water generated in the dissolution tank 21 in accordance with the detection result of the pressure in the dissolution tank 21 without using a generally expensive and large-sized hydrogen concentration measuring apparatus that exists today.
  • An estimated value can be calculated.
  • the hydrogen-containing water generating apparatus 1 includes the display unit 73 and the display control unit 71 that controls the operation of the display unit 73 in the above-described aspect 6, and the display control unit 71
  • the display unit 73 is configured to display according to the estimated value of the hydrogen concentration calculated by the concentration calculation unit 69.
  • the vent pipe 31 is connected to a part of the ceiling surface of the electrolytic cell 11.
  • the ceiling surface has a configuration that is inclined upward from a peripheral portion of the ceiling surface toward a portion to which the vent pipe 31 is connected.
  • the hydrogen gas generated in the electrolytic cell 11 can be efficiently guided to the vent pipe 31, the volume of the gas phase part of the electrolytic cell 11 can be reduced. That is, since the volume to be boosted is small, the pressure can be increased quickly.
  • the hydrogen-containing water generating apparatus 1 according to Aspect 9 of the present invention is the hydrogen-containing water generating device 1 according to any one of the Aspects 1 to 8, wherein the gas phase part of the electrolytic cell 11, the vent pipe 31, the gas phase part of the dissolution tank 21, and the exhaust pipe. Are connected in communication.
  • the gas expanded in the decompression step S5 is discharged from the exhaust pipe 33 without being disturbed in the water of the dissolution tank 21.
  • dissolved hydrogen concentration falls by an impact, it can suppress that water mixes with the hydrogen discharged
  • the hydrogen-containing water generating apparatus 1 includes, in the above aspect 5, the stirring unit that stirs the water and hydrogen gas in the dissolution tank 21, and the stirring control unit that controls the operation of the stirring unit.
  • the agitation control unit is configured to cause the agitation unit to agitate water in the dissolution tank in the replacement step.
  • the oxygen contained in the water in the dissolution tank 21 can be deaerated by stirring the water in the dissolution tank 21 in a substitution process, it is efficient to melt
  • the hydrogen-containing water generating apparatus 1 is the aspect 10 described above, wherein the stirring unit 22 includes a rotating shaft 22a disposed along the vertical direction and a stirring blade 22b attached to the rotating shaft 22a.
  • the exhaust valve 38 is arranged to communicate with the vicinity of the intersection of the ceiling surface of the dissolution tank 21 and the straight line passing through the center of the rotating shaft 22a.
  • the water in the dissolution tank 21 can be prevented from being blown out through the exhaust valve 38.
  • the hydrogen-containing water generating device 1 is the water intake pipe 34 connected to the liquid phase part of the dissolution tank 21 and the water intake pipe 34 in any of the above aspects 1 to 11.
  • the water intake valve 39 is provided, and by opening the water intake valve 39, the user can take the hydrogen-containing water generated in the dissolution tank 21 into an arbitrary container.
  • the user can easily take hydrogen-containing water into an arbitrary container by opening the water intake valve 39, so that it is not necessary to provide a mechanism for the user to repeatedly attach and detach. Therefore, since the mechanism that repeats attachment and detachment gradually deteriorates and cannot withstand high pressure, it can be operated only at low pressure.
  • the intake pipe 34 provided with the intake valve 39 the pressure in the agitation step S4 is greatly increased. Can be increased.
  • the hydrogen-containing water generating apparatus 1 is the water tank 110 for storing water, the hydrogen-containing water generated in the dissolution tank 21 and the water tank 110 according to any one of the first to twelfth aspects. And mixing the water stored in the water tank 110 with the hydrogen-containing water generated in the dissolution tank 21 to mix the hydrogen concentration and the amount of water in the hydrogen-containing water. It is the structure which can be adjusted.
  • the electrolysis apparatus 12 includes the positive electrode 55, the negative electrode 54, and the ion exchange membrane 51 sandwiched between the electrodes 54 and 55. And an electrolysis control unit 61 that switches the polarity of the voltage applied between the positive electrode 55 and the negative electrode 54 to a polarity opposite to that when performing electrolysis of the electrolytic solution.
  • the ions adsorbed on the ion exchange membrane 51 can be switched by switching the polarity of the voltage applied between the positive electrode 55 and the negative electrode 54 to the opposite polarity to the electrolytic treatment of the electrolytic solution.
  • the inside of the electrolytic cell 11 can be cleaned by ozone generated by applying a voltage of reverse polarity.
  • the vent pipe 31 is provided with a filter (hydrophobic filters 91, 92) for preventing the passage of liquid droplets. It is the composition which is done.
  • the method for producing hydrogen-containing water includes an electrolytic cell 11 that electrolyzes an electrolytic solution to produce hydrogen gas, a dissolution vessel 21 that dissolves hydrogen gas in water, and a gas in the electrolytic cell 11.
  • the method for producing hydrogen-containing water according to Aspect 17 of the present invention is the agitation step in which the water and hydrogen gas in the dissolution tank 21 are agitated after the pressurization step or in parallel with the pressurization step. It is a method to do.
  • the pressure in the dissolution tank 21 is increased by the hydrogen gas generated in the electrolytic cell 11, and the stirring in the dissolution tank 21 is performed by the stirring unit 22, thereby increasing the pressure in the dissolution tank 21.
  • Hydrogen can be dissolved to a saturated concentration corresponding to the pressure, and high concentration hydrogen can be easily generated.
  • the method for producing hydrogen-containing water according to aspect 18 of the present invention is the above aspect 16 or 17, wherein the gas phase portion in the dissolution tank 21 is formed by the hydrogen gas produced in the electrolytic cell 11 before the pressurizing step.
  • This is a method of performing a substitution step of substitution with hydrogen gas.
  • the method for producing hydrogen-containing water according to aspect 19 of the present invention is the method according to aspect 18 in which the water in the dissolution tank 21 is agitated in the replacement step.
  • the oxygen contained in the water in the dissolution tank 21 can be degassed by stirring the water in the dissolution tank 21 in the replacement step, the dissolution of hydrogen in the water is efficient. Can be done automatically.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

水素を高濃度に含有する水素含有水を手軽にかつ素早く生成する。電解液を電解処理して水素ガスを生成する電解槽(11)と、水に水素ガスを溶解させる溶解槽(21)と、前記電解槽(11)の気相部と前記溶解槽(21)の気相部とを接続する通気管(31)とを備え、前記電解槽(11)で生成される水素ガスで前記溶解槽(21)内の圧力を昇圧させることにより、前記溶解槽(21)で水素ガスを水に溶解させる。

Description

水素含有水生成装置および水素含有水の生成方法
 本発明は、水素含有水を生成する水素含有水生成装置および水素含有水の生成方法に関するものである。なお、本明細書では、飽和濃度未満の水素が溶解した水素水(水素溶存水)、および飽和濃度以上の水素を含有する水素水を総称して水素含有水と称する。
 近年、水素の生体内における抗酸化作用が注目されており、水素の摂取により、肥満、動脈硬化、糖尿病、アトピー性皮膚炎、放射線障害などを副作用なく改善する健康効果が得られることが確認されている。
 また、水素を摂取するための方法としては、(i)水素ガスを直接吸引する方法、(ii)水素を溶存させた水素水を飲む方法、(iii)水素風呂等で皮膚から吸収させる方法、および(iv)水素が溶存した生理食塩水を点滴する方法が知られている。
 これらの方法のうち、水素水を飲む方法は、水素ガスを吸引する方法に比べて安全で日常生活の中で手軽に水素を摂取することができるため、水素の優れた効果を求める一般家庭に普及しつつある。
 なお、従来の水素水生成設備では、高濃度かつ大容量の水素水を生成して貯蔵槽に貯蔵しておき、必要に応じて貯蔵槽から水素水を取り出すようになっている。
 また、近年、水素水を予め生成して貯蔵しておくのではなく、必要なときに水素水を生成する技術も開発されている。
 例えば、特許文献1には、圧力制御下で水から水素ガスを取り出す水素ガス発生装置と、水素ガス発生装置と液体容器とを接続するガス供給路とを備え、水素ガス発生装置が発生する水素ガスのガス圧を可変制御することにより、ガス供給路に着脱可能に接続された液体容器に収容されている液体に水素を添加する水素添加システムが開示されている。
 また、特許文献2には、固体高分子型の水素発生部をペットボトル等の容器に接続し、容器を密閉した状態で容器に収容された水を電解処理する技術が開示されている。
日本国公開特許公報「特許第5710050号明細書(2015年4月30日公開)」 日本国公開特許公報「特開2015-131295号公報(2015年7月23日公開)」
 ところで、水素水の飲用による健康効果は水素の摂取量と摂取頻度とに相関があるが、水素水メーカーから従来販売されている水素水は水素の溶存濃度が比較的低いので、健康効果を得るためにユーザは大量の水素水を摂取する必要がある。例えば、水素含有量が0.8ppmである水素水の場合、ユーザは1日1L程度の水素水を摂取する必要があると言われている。
 このため、大量の水素水を飲むことがユーザにとって大きな負担になっており、ユーザの負担を軽減するために高濃度の水素水を提供する技術が求められている。
 しかしながら、従来の技術では、水素を高濃度に含有する水素含有水を手軽にかつ素早くユーザに供給することが困難であるという問題がある。
 具体的には、生成した水素水を貯蔵槽に貯蔵しておく方法では、時間の経過とともに水素の溶存濃度が低下してしまうこと、および水素水を取り出す毎に貯蔵槽の水素の圧力が低下して水素の溶存濃度が低下してしまうことから、貯蔵槽内の水素水を高濃度に維持することが困難であった。
 また、上記特許文献1の技術では、水素ガス供給チューブの先端に配置されたカプラを介して液体容器を水素ガス発生装置に接続する構成なので、カプラに適合する専用の液体容器を準備する必要があることや、カプラのネジ部等の着脱を繰り返すと着脱部の劣化が促進され徐々に高い圧力に耐えられなくなり水素が漏れ出す懸念があるため、ユーザが水素水を手軽に得ることができなかった。
 また、特許文献2の技術では、水を電解処理するための電極部に膜電極接合体(MEA;Membrane Electrode Assembly)を用いているが、膜電極接合体は乾燥すると電解性能が極めて低下するため、電解性能を維持するために常に水に浸しておく必要がある。このため、電極部を常に水に浸しておくための作業がユーザにとって負担になっていた。
 また、特許文献2の技術では、膜電極接合体からなる電極部が飲用水として生成される水素水に直接触れる構成になっているため、生成される水素水に電極部を含む機械的な構造が直接接することによって水素水の風味が低下するという問題があった。また、特許文献2の技術では、膜電極接合体は、膜が薄い方が電解性能は高くなるが、膜が薄くなると耐圧信頼性が低下するので、膜が湿潤と乾燥とを繰り返す場合には膜の耐圧性の問題を考慮する必要があるという問題もあった。
 本発明は、これらの問題点に鑑みて成されたものであり、その目的は、水素を高濃度に含有する水素含有水を手軽にかつ素早く生成することのできる水素含有水生成装置および水素含有水の生成方法を提供することにある。
 本発明の一態様にかかる水素含有水生成装置は、電解液を電解処理して水素ガスを生成する電解槽と、水に水素ガスを溶解させる溶解槽と、前記電解槽の気相部と前記溶解槽の気相部とを接続する通気管とを備え、前記電解槽で生成される水素ガスで前記溶解槽内の圧力を昇圧させることにより、前記溶解槽で水素ガスを水に溶解させることを特徴としている。
 上記の構成によれば、水素を高濃度に含有する水素含有水を手軽にかつ素早く生成することができる。
本発明の実施形態1にかかる水素含有水生成装置の概略構成を示す説明図である。 図1に示した水素含有水生成装置に備えられる電解装置の構成を示す説明図である。 図1に示した水素含有水生成装置の制御系の構成を示す説明図である。 図1に示した水素含有水生成装置における処理の流れを示すフローチャートである。 図1に示した水素含有水生成装置における各部の動作を示す説明図である。 撹拌の有無と水素の溶解特性との関係を調べるために行った実験の結果を示すグラフである。 溶解槽内の気相部の水素置換と生成される水素含有水の水素濃度との関係を調べるために行った実験の結果を示すグラフである。 撹拌開始時の溶解槽の圧力と生成される水素含有水の水素濃度との関係を調べるために行った実験の結果を示す図であり、(a)は撹拌開始時の溶解槽の圧力、撹拌終了時の溶解槽の圧力、および生成された水素含有水の水素濃度を示しており、(b)は撹拌開始時の溶解槽の圧力と生成された水素含有水の水素濃度との関係を示している。 水素分圧と生成した水素含有水の水素濃度との関係を調べるために行った実験の結果を示す図であり、(a)は合計ガス量/水量(水道水の水量に対する水素・酸素の混合気体の体積の比)と生成した水素含有水の水素濃度との関係を示しており、(b)は水素ガスのモル分率と生成した水素含有水の水素濃度との関係を示している。 (a)は本発明の実施形態2にかかる水素含有水生成装置における各部の動作を示す説明図であり、(b)はその変形例を示す説明図である。 本発明の実施形態3にかかる水素含有水生成装置の概略構成を示す説明図である。 図11に示した水素含有水生成装置の制御系の構成を示す説明図である。 図11に示した水素含有水生成装置における各部の動作を示す説明図である。 本発明の実施形態4にかかる水素含有水生成装置の概略構成を示す説明図である。 本発明の実施形態5にかかる水素含有水生成装置の概略構成を示す説明図である。 本発明の実施形態6にかかる水素含有水生成装置の概略構成を示す説明図である。 図16に示した水素含有水生成装置の制御系の構成を示す説明図である。 本発明の実施形態7にかかる水素含有水生成装置の概略構成を示す説明図である。 図18に示した水素含有水生成装置の制御系の構成を示す説明図である。
  〔実施形態1〕
 本発明の一実施形態について説明する。
  (1-1.水素含有水生成装置1の構成)
 図1は、本実施形態にかかる水素含有水生成装置1の概略構成を示す説明図である。この図に示すように、水素含有水生成装置1は、電解部10と溶解部20とを備えている。
 電解部10は、電解液を貯水する電解槽11と電解装置12とを備えている。なお、電解槽11には、電解槽11内に電解液を導入するための導入口、および電解槽11内の電解液を排出するための排出口が設けられているが、図1ではこれらの導入口および排出口については図示を省略している。また、電解槽11に貯水される電解液は、電解処理によって水素を発生する液体であれば特に限定されるものではなく、例えば水道水であってもよく、純水であってもよい。
 図2は、電解装置12の構成を示す説明図である。この図に示すように、本実施形態では、電解装置12として、イオン交換膜51、触媒層52、触媒層53、負電極(電極)54、正電極(電極)55、および電源部56を備えた固体高分子型電解装置を用いている。
 イオン交換膜51としては、例えば、フッ素系のプロトン交換膜が用いられる。あるいは、炭化水素系の陽イオン交換膜や陰イオン交換膜など、フッ素系のプロトン交換膜以外の素材で出来たイオン交換機能を備える膜であってもよい。
 触媒層52および触媒層53は、イオン交換膜51の表面にコーティングされた、例えばPt(白金)等の触媒からなる。触媒層52または触媒層53の外層に、ガス拡散層(撥水処理したカーボンペーパー等)をさらに設けてもよい。また、触媒層52または触媒層53を設けない構成としてもよい。
 負電極54および正電極55は、例えば、パンチング加工されたTi(チタン)あるいは網目状のTiをPt(白金)でメッキしたPtメッキ電極からなる。あるいは、正電極54,55は、Ptに代えて、あるいはPtに加えて、Ir(イリジウム)、Ta(タンタル)、Ru(ルテニウム)等からなる電解触媒作用を有する化合物をメッキしてもよい。負電極54は触媒層52に接触または接着して配置され、正電極55は触媒層53に接触または接着して配置されている。
 これにより、イオン交換膜51、触媒層52,53、負電極54、および正電極55によって膜電極接合体(MEA;Membrane Electrode Assembly)が形成されている。すなわち、本実施形態にかかる固体高分子型電解装置は、イオン伝導性を有する高分子膜の両面に触媒層または電極が一体となるように構成されたMEAを備えている。
 負電極54は電解槽11内の電解液に接するように配置されており、正電極55は電解槽11の外部空間に露出している。なお、電解槽11の外側は空気であってもよく、水等で満たされていてもよい。
 電源部56は、直流電源であり、マイナス端子が負電極54に接続され、プラス端子が正電極55に接続されている。電源部56から電解槽11内に配置された負電極54にマイナス電位、電解槽11の外部に配置された正電極55にプラス電位を印加することで、電解槽11の外側で酸素が発生し、電解槽11内で純度の高い水素が発生する。
 また、電源部56から負電極54および正電極55に印加する電圧の極性を反転可能とし、メンテナンス時に負電極54にプラス電位を印加し、正電極55にマイナス電位を印加することにより、イオン交換膜51に吸着されたイオン分を除去するようにしてもよい。なお、酸性水あるいは熱水を用いてイオン交換膜51に吸着されたイオン分を除去するようにしてもよい。
 電解やメンテナンスの運転を行わない時は、電解制御部61が正電極55と負電極54との間に生じる電圧を制御して、電解液に溶存した水素と空気中の酸素から水が自然に発生するといった逆反応を抑制するようにしてもよい。
 本実施形態では、負電極54が電解液を貯水する電解槽11内に配置され、正電極55が電解槽11の外部に露出している構成について説明したが、これに限るものではない。正電極55または負電極54のいずれかが電解液に接していればよく、正電極55が電解槽11内に配置され、負電極が電解槽11の外部に露出するように構成して、電解槽11の外側で発生した水素を集めて溶解部20と接続してもよい。また、正電極55および負電極54の両方が電解槽11内に配置されていてもよい。
 電解槽11の天井面13は、周縁部から中心部に向かって上方へ傾斜した傾斜面になっており、天井面13の中心部、すなわち傾斜面の頂部には、電解部10で生成された水素を溶解部20へ供給するための通気管31が接続されている。これにより、電解部10で生成された水素ガスは電解槽11の天井面13の頂部付近に溜まり、通気管31を介して溶解部20へ供給されるようになっている。なお、本実施形態では天井面13における傾斜面の頂部が天井面13の中心部である構成としているが、これに限らず、天井面13の任意の一部を頂部とし、この頂部に向かって天井面13が上方へ傾斜している構造とし、頂部近傍に通気管31を接続してもよい。
 通気管31の内径は、電解部10で生成させた水素ガスが存在する空間の体積を小さくするとともに、電解槽11と溶解槽21との間で水および電解液の往来を阻害するために、できるだけ細くすることが好ましい。ただし、通気管31に水滴が入ってしまった場合、通気管31が細すぎると通気管31に水滴が詰まって水素ガスを通過させることができなくなる可能性がある。このため、通気管31の内径は、水滴が入った場合であっても水素ガスの通過が阻害されない範囲でできるだけ細くすることが好ましい。
 電解液は、電解槽11における通気管31が接続されている部分よりも下方の位置までしか貯水されないようになっており、電解槽11における天井面13の頂部近傍および通気管31は常に気相状態に維持されるようになっている。
 なお、電解槽11における気相部の体積が大きいと、電解部10で発生した水素ガスによる、電解槽11の気相部、通気管31、および溶解部20の気相部の圧力の上昇速度が低下する。このため、電解槽11の気相部の体積は、電解槽11内の電解液が通気管31へ流出することを防止できる範囲内でできるだけ小さくすることが好ましい。
 また、電解槽11の容量は、電解液に溶解する水素量を低減して水素ガスの発生効率を向上させるために、電解処理に支障が生じない範囲内でできるだけ少なくすることが好ましい。なお、電解処理による電解液の消費量は、例えば4~5ppmの水素含有水2Lを生成する場合で1cc程度であり、非常に少ない。
 また、電解槽11内の電解液の水位を検出する水位センサを設けるとともに、電解槽11内の電解液の水位が所定値以下に低下したときに電解槽11内に電解液を自動的に補填する電解液補填装置(図示せず)を備えてもよい。貯水タンクを電解槽11よりも上方に設けて、重力により電解液を補填してもよい。また、電解部10に、電解槽11内の電解液を交換するための排出配管を設けてもよい。
 また、電解槽11内に電解液を導入するための導入路に、イオン交換樹脂フィルタ、あるいは逆浸透膜(RO;Reverse Osmosis)フィルタを設け、電解液内のイオン分を除去するようにしてもよい。また、電解槽11内に電解液を導入するための導入路に活性炭フィルタ等を設け、電解液内の残留塩素を除去するようにしてもよい。
 また、電解槽11の外壁を透明な材料で構成し、ユーザが電解処理の様子を外部から観察できるようにしてもよい。また、電解液の温度を制御するための加温手段または冷却手段を電解槽11に設けてもよい。
 溶解部20は、水素含有水となる水を貯水する溶解槽21と、溶解槽21内に貯水された水および溶解槽21の上部の気体(水素ガス)を撹拌する撹拌部22と、撹拌部22を回転駆動するためのモータ40とを備えている。
 また、溶解槽21には、電解部10から溶解槽21に水素ガスを供給するための通気管31、溶解槽21内に水を給水するための給水管32、溶解槽21の上部(気相部)の気体を溶解槽21の外部に排出するための排気管33、およびユーザが溶解槽21で生成された水素含有水を溶解槽21から取水するための取水管34が接続されている。
 通気管31および排気管33は、溶解槽21の天井面における中心部近傍(溶解槽21の天井面と撹拌部22における回転軸22aの中心を通る直線との交点の近傍)に接続されており、溶解槽21には通気管31および排気管33の接続部よりも下方の位置までしか注水されないようになっている。これにより、撹拌部22を回転駆動させたときに遠心力により溶解槽21内の水の液面が径方向外側へ向かうほど高くなった場合であっても、溶解槽21内の水は通気管31および排気管33には噴出せず、通気管31、溶解槽21の上部、および排気管33は常に気相状態に維持されるようになっている。したがって、本実施形態では、電解槽11内の電解液が溶解槽21内の水に混ざったり、溶解槽21内の水が電解槽11内の電解液に混ざったりしないようになっている。
 また、排気管33には排気弁38が設けられており、排気管33を開くことにより溶解槽21の気相部の気体が溶解槽21の外部に排出される。なお、電解槽11の気相部、通気管31、溶解槽21の気相部、排気管33を気相部で連通して、減圧する時に膨張したガスを前記溶解槽21の水中で暴れさせることなく排気管33から排出してもよい。これにより、水に溶解させた水素の濃度が膨張ガスの衝撃によって低下することを抑制すると共に、排気管33から排出される水素に水が混合することや、溶解槽21内の水が通気管31に侵入することを抑制できる。また、溶解槽21の天井面における通気管31の接続部の周囲に上方に凸となる窪み(図示せず)を設け、通気管31から供給される水素ガスをこの窪みに溜めるとともに、排気管33を接続して、溶解槽21の気相部の体積を減らしてもよい。
 給水管32には、給水ポンプ37と給水弁36とが備えられており、給水ポンプ37は図示しない給水手段(例えば水道栓、貯水容器、あるいは貯水タンクなど)に接続されている。これにより、給水弁36を開いて給水ポンプ37を起動することにより、溶解槽21内に水が給水される。また、給水ポンプを設けずに貯水容器等を溶解槽21よりも上方に設けて、重力により給水してもよい。なお、給水管32に、中空糸フィルタ、活性炭フィルタ、逆浸透膜(RO;Reverse Osmosis)フィルタ等を設け、浄水あるいは脱気した水を溶解槽21に給水するようにしてもよい。また、給水管32から溶解槽21にイオン濃縮水を給水するようにしてもよい。また、逆浸透膜フィルタの浄水を電解槽11に給水し、膜を通過しなかったイオン濃縮水を溶解槽21に給水してもよい。また、水素含有水となる水の温度を制御するための加温手段または冷却手段を溶解槽21に設けてもよい。水温が低いほど、飽和濃度は増加する。
 取水管34は、溶解槽21の液相部に接続されており、取水管34には取水弁39が設けられている。これにより、取水弁39を開くことにより溶解槽21内の水素含有水が取水管34から排出され、ユーザは取水管34から排出される水素含有水を任意の容器で取水でき、取水する際にユーザが着脱する機構を設ける必要がなくなる。ユーザが着脱を繰り返す機構は、着脱部が徐々に劣化し高い圧力に耐えられなくなるため、低い圧力でしか運転できないが、取水弁39を備えた取水管34を設けることで、操作圧力を大幅に高めることができる。例えば、各国における高圧ガスに関する法規制による上限を遵守した上で、5から9気圧以上にすることができる。
 ただし、溶解槽21は、蓋部(上面部)と容器部(底面および側面によって構成されるコップ状の容器部分)とがOリング等を介して着脱可能に接続されており、必要に応じて蓋部を容器部から取り外して内部の洗浄等を行うようにしてもよい。また、取水管34の先端部に水素含有水を所定の容器に注入するための接続具(図示せず)を取り付け、この接続具を介して上記容器に水素含有水を注入するようにしてもよい。
 撹拌部22は、回転軸22aと、回転軸22aの周囲に取り付けられた撹拌翼22bと、回転軸22aの一端部に取り付けられたマグネットカップリング41bとを備えている。また、回転軸22aは鉛直方向に延伸するように配置されており、回転軸22aの他端部は溶解槽21の天井面の中心に配置された軸受(図示せず)によって回転可能に軸支されている。
 撹拌翼22bは、溶解槽21内に貯水された水の貯水部(液相部)および水面上の気相部の両方に延在するように配置されている。撹拌翼22bの形状や枚数は特に限定されるものではなく、溶解槽21内の水およびガスを効率よく撹拌できる形状および枚数であればよい。
 モータ40は、溶解槽21の外部に配置されており、モータ40の回転軸は溶解槽21の底壁(壁面)に対向配置されたマグネットカップリング41aに接続されている。また、撹拌部22に備えられているマグネットカップリング41bは、溶解槽21の底壁(壁面)を介してマグネットカップリング41aに対向する位置に配置されている。
 これにより、モータ40の回転駆動力によってマグネットカップリング41aが回転すると、その回転駆動力が磁力によってマグネットカップリング41bに伝達され、撹拌部22が回転軸22aを中心として回転するようになっている。すなわち、本実施形態では、撹拌部22として、モータ40およびモータ40に接続された部材(マグネットカップリング41a等)に対して非接触で回転駆動されるフローティングファンを用いている。
 なお、本実施形態では、モータ40を溶解槽21の下方に配置し、マグネットカップリング41a,41bを溶解槽21の底壁を介して対向するように配置しているがこれに限るものではない。例えば、モータ40を溶解槽21の側方に配置し、マグネットカップリング41a,41bを溶解槽21の側壁(壁面)を介して対向するように配置してもよい。また、モータ40を溶解槽21の上方に配置し、マグネットカップリング41a,41bを溶解槽21の上壁(壁面)を介して対向するように配置してもよい。また、モータ40および撹拌部22を1組のみ備えた構成に限らず、複数組備えていてもよい。
 図3は、水素含有水生成装置1の制御系の構成を示す説明図である。この図に示すように、水素含有水生成装置1は、電解部10および溶解部20に加えて、水素含有水生成装置1の各部の動作を制御する制御部60と、ユーザからの指示入力を受け付けて制御部60に伝達する操作入力部70とを備えている。
 制御部60は、電解制御部61と溶解制御部62とを備えており、溶解制御部62は給水制御部63、取水制御部64、排気制御部65、および撹拌制御部66を備えている。
 なお、制御部60は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。後者の場合、制御部60は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、水素含有水生成装置1の機能が実現される。
 電解制御部61は、電解装置12の動作、すなわち正電極55および負電極54に対する電圧の印加を制御する。
 給水制御部63は給水ポンプ37および給水弁36の動作を制御し、取水制御部64は取水弁39の動作を制御し、排気制御部65は排気弁38の動作を制御し、撹拌制御部66はモータ40の動作を制御する。なお、本実施形態では、給水弁36、取水弁39、および排気弁38として電磁弁を用いており、給水制御部63、取水制御部64、および排気制御部65がそれら各電磁弁の動作を制御して開閉させる。
 操作入力部70の構成は、ユーザからの指示を受け付けて制御部60に伝達する機能を有するものであれば特に限定されるものではなく、例えばキー操作ボタンからなるものであってもよく、タッチパネルであってもよく、それらの組み合わせであってもよい。
  (1-2.水素含有水生成装置1の動作)
 図4は水素含有水生成装置1における処理の流れを示すフローチャートであり、図5は水素含有水生成装置1における各部の動作を示す説明図である。
 操作入力部70を介してユーザから水素含有水の生成指示が行われると、まず、給水制御部63が給水弁36を開き(OPEN)、給水ポンプ37を起動(ON)させて溶解槽21に水を給水する(S1、給水工程)。なお、この状態では、排気弁38は開状態(OPEN)、取水弁39は閉状態(CLOSE)であり、電解装置12およびモータ40は停止(OFF)している。
 S1において溶解槽21に所定水位まで給水されると、給水制御部63は給水ポンプ37を停止させ、給水弁36を閉じて給水工程を終了する。なお、溶解槽21に水位センサを設けておき、この水位センサの検出結果に応じて給水制御部63が溶解槽21に所定水位まで給水されたか否かを判断するようにしてもよい。水位センサが所定の水位を検知するまで、給水を行うようにしてもよい。
 そして、電解制御部61が電解装置12を起動させて水素ガスの生成を開始させるとともに、排気制御部65が排気弁38を開くことにより、通気管31、溶解槽21の気相部、および排気管33の空気を電解装置12で生成された水素ガスに置換する(S2、置換工程)。安全性を向上させるために、気相中の酸素を排出して、エネルギーを人工的に与えても水素ガスと反応しない酸素混合濃度にしておくことが好ましい。
 なお、通気管31、溶解槽21の気相部、および排気管33の水素ガスへの置換が完了したか否かは、例えば置換工程を開始してからの処理時間に応じて判断してもよく、溶解槽21内の水素ガス濃度あるいは排気管33からの排気の組成を検出することにより判断してもよい。
 S2において通気管31、溶解槽21の気相部、および排気管33の水素ガスへの置換が完了すると、排気制御部65が排気弁38を閉じるとともに、電解制御部61が電解装置12による水素ガスの生成を継続させることにより、通気管31、溶解槽21の気相部、および排気管33の圧力を所定圧力まで昇圧させる(S3、昇圧工程)。本実施形態では、この昇圧工程により、通気管31、溶解槽21の気相部、および排気管33の圧力を5気圧まで昇圧させる。
 S3において通気管31、溶解槽21の気相部、および排気管33の圧力が所定圧力まで昇圧されると、撹拌制御部66はモータ40を駆動させ、撹拌部22を回転させて溶解槽21内の水および気体(水素ガス)を撹拌させる(S4、撹拌工程)。これにより、溶解槽21内の水に水素ガスが溶解して高濃度の水素含有水が生成される。
 なお、通気管31、溶解槽21の気相部、および排気管33の圧力が所定圧力まで昇圧されたか否かは、例えば、内部の圧力が検知できるように、電解槽11、溶解槽21、あるいは、それらに接続されている各管31,32,33,34の何れかに配置された圧力センサ(図示せず)を設けておき、その検知結果に基づいて判断するようにしてもよい。この際、溶解槽21内の圧力と生成される水素含有水の水素濃度との間には相関があるので、上記所定圧力は、所望する水素濃度の水素含有水が得られるように適宜設定すればよい。
 なお、水素発生速度から計算される昇圧速度の推定値を、この圧力センサの実測値と比較して、漏れ等の異常を判定してもよい。
 また、設定した圧力以上で弁が開放する圧力弁を設けてもよい。なお、圧力センサまたは圧力弁は、電解槽11の気相部かその近傍に設けることが好ましい。
 また、撹拌工程の開始タイミングは、圧力センサの検知結果に基づいて判断する構成に限らず、例えば、電解装置12において定電流で電解処理を行い、昇圧工程の処理を開始してからの処理時間が所定時間に達したときに撹拌工程を開始させるようにしてもよい。
 また、本実施形態では、昇圧工程後に撹拌工程を開始するものとしているが、これに限らず、昇圧工程と撹拌工程とを並行して行ってもよい。
 その後、撹拌工程を開始してから所定時間が経過すると、電解制御部61が電解装置12を停止させ、撹拌制御部66がモータ40を停止させ、排気制御部65が排気弁38を開くことにより、溶解槽21内の圧力を常圧まで減圧させる(S5、減圧工程)。排気制御部65が排気弁38の摩擦損失または開度を調整して溶解槽21の減圧速度を制御するようにしてもよい。なお、この減圧工程により、溶解槽21内の水素含有水中にキャビテーションを発生させ、ファインバブルを生成することができる。また、減圧工程において電解装置12を起動させたままにしてもよい。
 なお、撹拌工程から減圧工程に移行するタイミングは、例えば、溶解槽21内の圧力を検知する圧力センサを設け、圧力センサによって検知される圧力の時間変化率が所定値以下になってから所定時間が経過したときに撹拌工程を終了して減圧工程に移行するようにしてもよい。
 そして、溶解槽21内の圧力が常圧まで減圧されると、取水制御部64が取水弁39を開くことにより、溶解槽21内の水素含有水が取水管34を介して容器に給水される(S6、取水工程)。
 なお、本実施形態では、上記各工程の処理を制御部60が自動的に行うものとしているが、これに限るものではなく、上記各工程のうちの一部または全部をユーザが手動で行うようにしてもよい。
  (1-3.実験結果)
  (実験1:撹拌の有無と水素の溶解特性との関係)
 図6は、撹拌の有無と水素の溶解特性との関係を調べるために行った実験の結果を示すグラフである。
 この実験では、容積273ccの溶解槽21を用い、溶解槽21内の気相部の体積が11cc(全体の4%)となるように溶解槽21に水を注水した。そして、気相部に水素ボンベを直結して気相部の空気を水素ガスで置換した後、気相部の圧力を5気圧まで昇圧させて所定時間維持した。その後、撹拌部22による撹拌を行った場合と撹拌を行わなかった場合のそれぞれについて、減圧処理して取水してから水の溶存水素濃度を測定した。
 図6に示したように、撹拌部22による撹拌を行わない場合、溶解槽21内の圧力を水素ガスで高圧(この実験では5気圧)に昇圧して維持しても、2分間では水素はほとんど水に溶存しなかった。
 これに対して、溶解槽21内の圧力を水素ガスで昇圧して高圧状態に保持するとともに、撹拌部22による撹拌を行うことにより、水素を短時間で水に溶存させることができた。なお、水素濃度は、保持時間0.25分で2.9ppm、0.5分で3.5ppm、1分で4.5ppm、2分で4.8ppmであり、その後は保持時間を延ばしても水素濃度はほとんど増加しなかった。
  (実験2:気相部の水素置換と水素濃度との関係)
 図7は、溶解槽21内の気相部の水素置換と生成される水素含有水の水素濃度との関係を調べるために行った実験の結果を示すグラフである。
 この実験では、まず、以下の(i)~(iv)の各条件で溶解槽21の気相部の水素ガスへの置換処理を行った。
(i)溶解槽21に水素ボンベを接続し、溶解槽21の気相部を水素ボンベから供給される水素ガスで完全に置換した(図7の「理想100%」参照)。
(ii)排気弁38を開いた状態で電解装置12によって溶解槽21の気相部の体積に相当する水素ガスが発生されるまで電解処理を行い、電解処理で生成した水素ガスで気相部の置換を行った(図7の「電解100%」参照)。
(iii)排気弁38を開いた状態で電解装置12によって溶解槽21の気相部の体積の1/2に相当する水素ガスが発生されるまで電解処理を行い、電解処理で生成した水素ガスで気相部の置換を行った(図7の「電解50%」参照)。
(iv)水素ガスへの置換処理を行うことなく、溶解槽21の気相部を空気のままとした(図7の「置換なし」参照)。
 そして、上記(i)~(iv)の各条件で置換処理を行った後、排気弁38、給水弁36、および取水弁39を閉じて溶解槽21を密閉し、電解装置12を定電流駆動(2.0A)して溶解槽21の気相部が5.55気圧になるまで電解処理を継続した後、撹拌部22で40秒間の撹拌を行い、排気弁38を開いて減圧処理し、取水弁39を開いて取水し、水素濃度を測定した。なお、図7の実験結果は、上記(i)~(iv)の各条件についてそれぞれ複数回の測定を行った結果の平均値を示している。なお、撹拌部22による撹拌を行った後、排気弁38を開いて減圧処理を開始する前の溶解槽21内の圧力は上記(i)~(iv)のいずれの条件でもおよそ5.1気圧であった。
 図7に示したように、溶解槽21の気相部を水素ガスに置換することにより、生成される水素含有水の水素濃度を向上させられることがわかった。ただし、水素ガスへの置換を行わない場合でも4.5ppmの水素含有水を生成することができた。
  (実験3:溶解槽21内の圧力と水素濃度との関係)
 図8は撹拌開始時の溶解槽21の圧力と生成される水素含有水の水素濃度との関係を調べるために行った実験の結果を示しており、(a)は撹拌開始時の溶解槽21の圧力、撹拌終了時の溶解槽21の圧力、および生成された水素含有水の水素濃度を示す表であり、(b)は撹拌開始時の溶解槽21の圧力と生成された水素含有水の水素濃度との関係を示すグラフである。
 この実験では、まず、排気弁38を開いた状態で電解装置12によって溶解槽21の気相部の体積に相当する水素ガスが発生されるまで電解処理を行い、電解処理で生成した水素ガスで気相部の置換を行った。その後、排気弁38、給水弁36、および取水弁39を閉じて溶解槽21を密閉し、電解装置12を定電流駆動(2.0A)して溶解槽21の気相部が所定圧力(本実施形態では2.03気圧、3.03気圧、4.04気圧、5.05気圧、5.55気圧の5段階)になるまで電解処理を継続した。そして、上記の各圧力になるまで電解処理した後、撹拌部22による撹拌を40秒間行い、排気弁38を開いて減圧処理し、取水弁39を開いて取水し、水素濃度を測定した。なお、図8の(a)および(b)に示した水素濃度は、上記の各圧力条件についてそれぞれ複数回の測定を行い、その平均値を示している。
  (実験4:水素分圧と水素濃度との関係)
 図9は水素分圧と生成した水素含有水の水素濃度との関係を調べるために行った実験の結果を示しており、(a)は合計ガス量/水量(水道水の水量に対する水素・酸素の混合気体の体積の比)と生成した水素含有水の水素濃度との関係を示すグラフ、(b)は水素ガスのモル分率と生成した水素含有水の水素濃度との関係を示すグラフである。
 なお、この実験では、容量500mLの容器に水を入れるとともに容器内の気相部にボンベから水素または水素と酸素の混合気体を大気圧で注入し、容器を手で振って30秒間撹拌した後、水素濃度を測定した。
 図9の(a)に示したように、気相部に100%の水素を注入して常圧で溶解させる場合、常圧において飽和で溶解する水素ガス量/水量が0.018ml/mlであるのに対して、0.087ml/mlを容器に供給しないと常温常圧における飽和濃度1.6ppmに到達しなかった。
 また、気相部に水素・酸素の混合気体を注入して、合計ガス量を増やしていくと水素濃度は飽和して一定になり、それ以上合計ガス量を増やしても水素濃度は増えなくなるが、混合気体における水素ガス分率が低いほど飽和時の水素濃度が低かった。
 また、飽和時の水素濃度は水素モル分率に依存するが、水素モル分率(混合気体における水素ガスの混合比)と水素濃度との関係は比例関係にはならず、水素モル分率が低いほど水素濃度が大きく低下した。
  (1-4.実施形態1のまとめ)
 以上のように、本実施形態では、水素ガスを生成する電解槽11と、電解槽11で生成された水素ガスを水に溶解させる溶解槽21とが通気管31を介して連通しており、通気管31は電解槽11内の気相部と溶解槽21内の気相部とを接続するように設けられている。
 これにより、電解槽11内の電解液と溶解槽21内の水とが混ざることを防止できるので、ユーザに提供される水素含有水が電解装置12の電極部に直接接触することがないため、水素含有水の風味が低下することを防止できる。
 また、電解槽11内に電解液を貯水した状態を長時間維持しておくことができるので、ユーザが電解装置12の電極部を常に水に浸して絶乾させておくための処理を行う必要がないため、ユーザの作業負担を低減することができる。また、電極部を常に水に浸しておくことにより、電解装置12に備えられるイオン交換膜の乾燥・変形を防止できるので、イオン交換膜としてより薄い膜を採用できる。これにより、電解装置12における水素生成電圧を低下させることができるので、安全性の向上、および消費電力の低減を図ることができる。
 また、本実施形態では、溶解槽21内の圧力を電解部10で生成された水素ガスによって昇圧するとともに、溶解槽21内の水および水素ガスを撹拌部22で撹拌する。
 これにより、溶解槽21内の圧力を高めて水素の飽和濃度を常圧時よりも上昇させるとともに、昇圧した圧力により飽和濃度が高まった状態下において短時間で効率的に、より高濃度に水素を溶解させることができる。
 なお、高圧で水素含有水を生成した後、溶解槽21を減圧すると水素含有水に含有されていた水素の一部が抜けてしまう。この減圧時の水素濃度の減衰率は主として減圧前の圧力に依存して値を持つが、いずれにせよ、その際の水素濃度は常圧での飽和濃度(1.6ppm)までは下がらない。このため、本実施形態にかかる水素含有水生成装置1によれば、常圧での飽和濃度を超える水素を含有する高濃度の水素含有水を生成することができる。
 なお、より高濃度の水素含有水をユーザに提供するためには、減圧前の水素分圧あるいは溶存水素濃度をできるだけ高めておくことが好ましい。
 また、本実施形態では、電解部10で生成した水素ガスにより溶解槽21内の圧力を昇圧する。このため、溶解槽21内の圧力を昇圧するためのポンプが不要なので、溶解槽21内の圧力をポンプで昇圧する構成に比べて、水素含有水生成装置1のサイズを小型化できる。
 また、本実施形態では、従来の大量の水素含有水を貯水タンクに貯水しておく構成と異なり、ユーザから水素含有水の生成指示がある毎に水素含有水を生成する。このため、大量の水素含有水を貯水しておくための貯水タンクを備える必要がなく、ユーザに供給する水素含有水の量に応じた溶解槽21を備えていればよいので、水素含有水生成装置1のサイズを小型化できる。また、高濃度の水素含有水を、必要な量だけ、その場で素早く手軽に生成することができ、ユーザの作業負担を軽減できる。
 また、本実施形態では、溶解槽21内の気相部を、電解部10で生成した水素ガスで置換するとともに、電解部10で生成した水素ガスにより昇圧させ、撹拌部22で撹拌することによって溶解槽21内の水に水素を溶解させる。これにより、水素はエネルギーを与えても反応しない酸素混合濃度になるため安全性を確保できる。また、溶解槽21内の気相部を水素ガスで置換することで水素分圧を上昇させることができるので、水素ガスの水への溶解を効率的に行い、高濃度の水素含有水を生成できる。
  〔実施形態2〕
 本発明の他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ部材については同じ符号を付し、その説明を省略する。
 実施形態1では、ステップS2の置換工程においてモータ40を停止させていた。
 これに対して、本実施形態では、図10の(a)に示すように、ステップS2の置換工程において撹拌制御部66がモータ40を駆動させた状態で置換工程の処理を行う。
 これにより、溶解槽21内の水に含まれる酸素を脱気することができるので、溶解槽21内の酸素量が減少し、より少ない水素ガス量で水素分圧を上昇できる。
 なお、図10の(b)に示すように、撹拌制御部66がステップ3の昇圧工程においてモータ40を駆動させるようにしてもよい。
  〔実施形態3〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ部材については同じ符号を付し、その説明を省略する。
 図11は本実施形態にかかる水素含有水生成装置1の概略構成を示す説明図であり、図12は本実施形態にかかる水素含有水生成装置1の制御系の構成を示す説明図であり、図13は本実施形態にかかる水素含有水生成装置1における各部の動作を示す説明図である。
 図11および図12に示したように、本実施形態にかかる水素含有水生成装置1は、実施形態1で図1に示した構成に加えて、電解槽11と溶解槽21とを接続する通気管31の溶解槽21の近傍に吸気弁80が備えられており、溶解制御部62は吸気弁80の動作を制御する吸気制御部67を備えている。なお、本実施形態では、吸気弁80として電磁弁を用いており、吸気制御部67はその電磁弁の動作を制御して開閉させる。
 吸気制御部67は、図13に示すように、ステップS1の給水工程までは吸気弁80を閉じさせておき、ステップS2の置換工程、ステップS3の昇圧工程、およびステップS4の撹拌工程では吸気弁80を開く。また、ステップS5の減圧工程、およびステップS6の取水工程では吸気弁80を閉じる。
 これにより、減圧工程において減圧する領域の容量を低減できるので、減圧工程を迅速に行うことができる。
 また、減圧工程後に、電解槽11の気相部、および通気管31における吸気弁80よりも電解槽11側の部分を高圧の水素ガスが封入された状態に維持するとともに、電解槽11内の電解液における溶存水素濃度を高く維持することができる。これにより、次回の置換工程および昇圧工程において生成すべき水素ガス量を低減し、置換工程および昇圧工程を迅速に行うことができる。
  〔実施形態4〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ部材については同じ符号を付し、その説明を省略する。
 図14は、本実施形態にかかる水素含有水生成装置1の概略構成を示す説明図である。この図に示すように、本実施形態にかかる水素含有水生成装置1は、図1に示した構成に加えて、通気管31における電解槽11との接続部近傍に備えられた疎水性フィルタ91と、通気管31における溶解槽21との接続部近傍に備えられた疎水性フィルタ92とを備えている。
 疎水性フィルタ91,92は、水素ガスを透過させる一方、液滴の通過を遮断する。疎水性フィルタ91,92の材質は、水素ガスを透過させ、液滴の通過を遮断する機能を有するものであれば特に限定されるものではないが、例えば、テフロン(登録商標)製の不織布を用いることができる。
 なお、本実施形態では、通気管31における電解槽11との接続部近傍、および通気管31における溶解槽21との接続部近傍の両方に疎水性フィルタを設けているが、これに限らず、例えばいずれか一方にのみ設けてもよい。また、疎水性フィルタの設置位置は、通気管31における電解槽11との接続部近傍、および通気管31における溶解槽21との接続部近傍に限るものではなく、電解槽11と溶解槽21との間で水分が流通することを防止できる位置であればよい。
 また、本実施形態では、実施形態1で図1に示した構成に疎水性フィルタ91,92を追加した例について説明したが、これに限らず、他の実施形態に示した構成と組み合わせてもよい。
  〔実施形態5〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ部材については同じ符号を付し、その説明を省略する。
 図15は、本実施形態にかかる水素含有水生成装置1の概略構成を示す説明図である。
 上述した各実施形態では、固体高分子型の電解装置12を用い、正電極55が電解槽11の外部に露出している構成について説明した。
 これに対して、本実施形態では、図15に示したように、正電極55および負電極54が電解槽内で隔膜57を介して対向配置されている構成の電解装置12を用いる。
 隔膜57は、電解槽11を負電極側電解槽11aと正電極側電解槽11bとに分割するように配置されている。隔膜57としては、例えば、多孔膜、電解膜、あるいはイオン交換膜等を用いることができる。なお、負電極側電解槽11aと正電極側電解槽11bとの圧力差を調整するために圧力調整機構(図示せず)を設けてもよい。
 負電極54は負電極側電解槽11a内で隔膜57に対向するように配置され、正電極55は正電極側電解槽11b内で隔膜57に対向するように配置されている。
 また、正電極側電解槽11bの天井面には酸素排出管101が接続されており、酸素排出管101には酸素排出弁102が接続されている。これにより、電解制御部61が必要に応じて酸素排出弁102を開操作することで、正電極側電解槽11bで生成された酸素が電解部10の外部に放出される。
 また、負電極側電解槽11aの天井面13は、負電極側電解槽11aの中心部に向かって上方へ傾斜した傾斜面になっており、天井面13の中心部、すなわち傾斜面の頂部に電解部10で生成された水素を溶解部20へ供給するための通気管31が接続されている。
 負電極側電解槽11aおよび正電極側電解槽11bに注入される電解液としては、例えば、(i)純水、(ii)水道水、あるいは(iii)Kイオン、リン酸イオン、または炭酸イオン等のイオンを添加した電解液などを用いることができる。
 上記の構成により、固体高分子型の電解装置を用いる場合と同様に水素含有水を生成することができる。
 なお、負電極側電解槽11aおよび正電極側電解槽11bに電解液を注入するための電解液注入部(図示せず)にイオンを追加するためのイオン溶出器を設置し、水道水にイオン分を添加するようにしてもよい。
  〔実施形態6〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ部材については同じ符号を付し、その説明を省略する。
 図16は本実施形態にかかる水素含有水生成装置1の概略構成を示す説明図であり、図17はこの水素含有水生成装置1の制御系の構成を示す説明図である。
 図16および図17に示したように、本実施形態にかかる水素含有水生成装置1は、図1に示した構成に加えて、水タンク110(もしくは、水道栓)、水供給管111、濃度調節弁112、および濃度制御部68を備えている。
 水タンク110は、溶解槽21に注入される水(水素を溶解させる前の水)と同じ水が貯蔵されている。なお、水タンク110に貯蔵される水は、必ずしも溶解槽21に注入される水と同じである必要はない。また、水タンク110に貯蔵される水は、例えば、純水、精製水、水道水等であってもよい。
 水供給管111は、取水管34に接続されている。なお、図16に示した構成では、水供給管111が取水管34における取水弁39よりも下流側に接続されているが、これに限らず、取水弁39よりも上流側に接続されていてもよい。
 濃度調節弁112は、例えば電磁弁からなり、濃度制御部68の指示に応じて開閉する。
 濃度制御部68は、操作入力部70を介して入力される目標水素濃度および目標水素水量に応じて濃度調節弁112の開度を調整することにより、取水管34と水供給管111との接続部(混合部)において混合される、溶解槽21から供給される水素含有水と水タンク110から供給される水との混合比を調整する。
 これにより、ユーザが所望する濃度および水量の水素含有水を容易に得ることができる。また、溶解槽21において水素濃度および水素水量を調整する必要がなく、溶解槽21では水素を過飽和に溶存させた高濃度の水素含有水を生成すればよいので、溶解槽21として小型の容器を用いることができ、溶解槽21の耐圧設計を容易にすることができる。
  〔実施形態7〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ部材については同じ符号を付し、その説明を省略する。
 図18は本実施形態にかかる水素含有水生成装置1の概略構成を示す説明図であり、図19はこの水素含有水生成装置1の制御系の構成を示す説明図である。
 図18および図19に示したように、本実施形態にかかる水素含有水生成装置1は、図1に示した構成に加えて、圧力センサ74、濃度算出部69、表示制御部71、濃度データ記憶部72、および表示部73を備えている。
 圧力センサ74は、通気管31に取り付けられており、通気管31内の圧力を検出して濃度算出部69に伝達する。なお、圧力センサ74の取付位置は通気管31に限らず溶解槽21の気相部の圧力を検出できる位置であればよく、例えば、配管を含め電解槽11から溶解槽21にかかる連通した気相部分のいずれかで検知してもよく、電解槽11内の電解液または溶解槽21内の水を介して検出してもよい。
 濃度算出部69は、圧力センサ74の検出結果と、濃度データ記憶部72に予め記憶している情報とに基づいて、取水管34を介してユーザに供給される水素含有水の水素濃度の推定値を算出する。
 濃度データ記憶部72には、溶解槽21内の昇圧工程終了時または撹拌工程終了時の圧力と、取水工程において取水管34を介してユーザに供給される水素含有水の水素濃度との相関関係を示す情報が記憶されている。濃度データ記憶部72の構成は、上記情報を記憶できるものであれば特に限定されるものではなく、従来から公知の各種メモリデバイスを用いることができる。
 なお、昇圧工程および撹拌工程により、溶解槽21内の水素含有水の水素濃度は、溶解槽21内の昇圧された圧力に応じた飽和濃度が上限となる。また、その後の減圧工程および取水工程では水素含有水の水素濃度は低下するものの、撹拌工程後の水素濃度からの減衰率は、主として減圧を行う前の溶解槽21内の圧力に依存して決まる。このため、溶解槽21内における昇圧工程終了時または撹拌工程終了時の圧力と、取水工程において取水管34を介して溶解槽21から排出される水素含有水の水素濃度との相関関係を予め測定して濃度データ記憶部72に記憶させておくことにより、濃度算出部69が圧力センサ74の検知結果に応じて取水管34を介してユーザに供給される水素含有水の水素濃度を推定することができる。
 表示制御部71は、表示部73の動作を制御し、濃度算出部69が算出した水素濃度の推定値を表示部73に表示させる。
 表示部73は、表示制御部71の指示に応じて文字、図形、画像等を表示する。なお、表示部73は水素濃度の推定値を表示可能な構成であれば特に限定されるものではないが、例えば液晶表示パネル、あるいは有機EL表示パネルを用いることができる。
 また、表示部73は、水素濃度の推定値そのものを表示する構成に限らず、例えば、水素濃度の推定値が所定値以上であることを示すランプを1または複数備え、濃度算出部69が算出した水素濃度の推定値に応じて各ランプの点灯/消灯を切り替えるものであってもよい。
 このように、本実施形態では、溶解槽21内の圧力に応じて取水工程でユーザに供給される水素含有水の水素濃度の推定値を算出し、算出した水素濃度の推定値に応じた表示を行う。これにより、今日存在する一般に高額で大型の水素濃度検知装置を用いることなく生成する水素含有水の水素濃度を得ること可能となり、水素含有水の生成作業中にユーザが生成作業の進行状況を把握することによって、ユーザの利便性を向上させることができる。
 なお、溶解槽21の気相部が十分に水素ガスに置換されておらず空気が混在している場合、あるいは溶解槽21内の水に酸素が溶存している場合であって、濃度データ記憶部72に記憶されている情報が溶解槽21内の気相部が水素ガスに十分に置換されている場合に対応するものである場合には、水素ガスの分圧が十分に気相部が水素ガスで置換されている場合よりも低くなるので、水素濃度の推定値は実際の値よりも高く算出される場合がある。このため、取水時の水素濃度をより正確に推定するためには、置換工程において溶解槽21内を水素ガスに十分に置換し、溶解槽21内の水に含まれる溶存酸素を十分に脱気することが好ましい。
  〔実施形態8〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態と同じ部材については同じ符号を付し、その説明を省略する。
 本実施形態にかかる水素含有水生成装置1の構成は、上述した図1に示した構成と同様である。
 本実施形態では、電解制御部61が、操作入力部70を介してユーザからの指示があったときに、電解装置12の正電極55と負電極54との間に水素ガスの生成時とは逆極性の電圧を印加するメンテナンス処理を行う。これにより、正電極55、負電極54、およびイオン交換膜51に付着したイオン分を離脱させ、イオン分の付着に起因する電解装置12の電解性能の低下を防止することができる。
 なお、ユーザからの指示があったときにメンテナンス処理を行う構成に限らず、例えば、前回メンテナンス処理を行ってからの累積運転時間が所定時間に達したとき、前回メンテナンス処理を行ってからの累積起動回数が所定回数に達したとき、あるいは電解時の電流値、電圧値または抵抗が一定量変化したことを検出したときに、メンテナンス処理を行うようにしてもよい。
 また、メンテナンス処理時に、電解制御部61が正電極55と負電極54との間に印加する電圧を微量のオゾン(例えば0.1ppm以下のオゾン)が発生する電圧に制御し、発生したオゾンにより電解槽11、通気管31、および溶解槽21を清浄するようにしてもよい。また、オゾンの生成を開始してから所定時間が経過するまでは排気弁38を閉状態にしておき、所定時間が経過したときに排気弁38を開いてオゾンを排出するようにしてもよい。
 また、上述した図11の構成のように通気管31に吸気弁80を設け、オゾンの生成中は吸気弁80を閉状態とし、電解槽11および通気管31における吸気弁80よりも上流側の部分のみをオゾンで清浄するようにしてもよい。また、通気管31にオゾン除去フィルタ(図示せず)を設け、電解槽11で生成されたオゾンが溶解槽21に流出しないようにしてもよい。
  〔まとめ〕
 本発明の態様1にかかる水素含有水生成装置1は、電解液を電解処理して水素ガスを生成する電解槽11と、水に水素ガスを溶解させる溶解槽21と、前記電解槽11の気相部と前記溶解槽21の気相部とを接続する通気管31とを備え、前記電解槽11で生成される水素ガスで前記溶解槽21内の圧力を昇圧させることにより、前記溶解槽21で水素ガスを水に溶解させることを特徴としている。
 上記の構成によれば、水素含有水が必要になる毎に水素含有水を必要な分だけ生成することができるので、予め生成した大量の水素含有水を貯蔵するための貯蔵槽を設ける必要がないため、装置構成を簡略化できる。また、電解槽11と溶解槽21とが別々に備えられ、気相部のみで連通しているので、電解槽11において電極部(正電極55、負電極54)を電解液中に常に含浸させておいても電解槽11内の電解液が溶解槽21内の水と混合されることがない。したがって、溶解槽21で生成される水素含有水の風味が低下することを防止するとともに、電極部(正電極55、負電極54、イオン交換膜51、触媒層52、53)を常に含浸させておくためのユーザの作業負担を軽減し、さらに、電極部(正電極55、負電極54)間に備えられる膜(イオン交換膜51、触媒層52,53)の乾燥・変形を防止できるので、薄い膜(イオン交換膜51、触媒層52,53)を用いることができ、水素生成電圧を低下させてより容易かつ安全に制御することができる。また、上記特許文献1のように専用の液体容器を備える必要がないので、ユーザが水素含有水を手軽に得ることができる。したがって、上記の構成によれば、水素を高濃度に含有する水素含有水を手軽にかつ素早く生成することができる。
 本発明の態様2にかかる水素含有水生成装置1は、上記態様1において、前記溶解槽21内の水および水素ガスを撹拌する撹拌部22を備え、前記電解槽11で生成される水素ガスで前記溶解槽21内の圧力を昇圧させるとともに、前記撹拌部22で前記溶解槽21内の水および水素ガスを撹拌することにより、前記溶解槽21で水素ガスを水に溶解させる構成である。
 上記の構成によれば、電解槽11で生成された水素ガスにより溶解槽21の圧力を昇圧させるとともに、撹拌部22により溶解槽21内の撹拌を行うことで、昇圧された溶解槽21内の圧力に応じた飽和濃度まで水素を溶解させることができ、高濃度の水素含有水を容易に生成することができる。なお、溶解槽21内の圧力を昇圧させるとともに撹拌を行うことにより、昇圧のみ行って撹拌を行わない場合に比べて、水に対する水素の溶存濃度を各段に高めることができる。なお、昇圧時に水素を高濃度に溶存させた方が、常圧にして取水した時に、より高濃度の水素を含有する水素含有水を生成できる。
 本発明の態様3にかかる水素含有水生成装置1は、上記態様2において、前記撹拌部22を回転駆動するためのモータ40を備え、前記モータ40は前記溶解槽21の外部に配置されており、前記モータ40の回転駆動力が前記溶解槽21の壁面を挟んで配置されたマグネットカップリング41a,41bにより前記撹拌部22に伝達される構成である。
 上記の構成によれば、モータ40を溶解槽21の外部に配置することができるので、機械系統が飲用水に触れないようにして、水素含有水の風味が低下することを防止できる。また、溶解槽21にモータ40と撹拌部22とを接続するための孔等を設ける必要がないので、水素含有水生成装置1の構成を簡略化し容器の耐圧性を向上できる。
 本発明の態様4にかかる水素含有水生成装置1は、上記態様1から3のいずれかにおいて、前記電解槽11に、電解液の電解処理を行って水素ガスを生成するためのイオン伝導性を有する高分子膜の両面に触媒層または電極が一体となるように構成された電解装置12(すなわち固体高分子型電解装置)が備えられている構成である。
 上記の構成によれば、電解槽11において高純度の水素ガスを効率的に発生させることができる。また、イオン導電性を有する高分子膜を備えることで、膜に細孔がないために細孔を通じた酸素の混入がなくなる。
 本発明の態様5にかかる水素含有水生成装置1は、上記態様1から4のいずれかにおいて、前記溶解槽21の気相部と連通する位置に設けられた排気弁38と、前記排気弁38の動作を制御する排気制御部65とを備え、前記排気制御部65は、前記排気弁38を開いて前記電解槽11で水素ガスを生成することにより前記溶解槽21内の気相部を水素ガスに置換する置換する置換工程と、前記置換工程の後、前記排気弁38を閉じて前記電解槽11で水素ガスを生成することにより前記溶解槽21内の圧力を昇圧させる昇圧工程とを行わせる構成である。
 上記の構成によれば、酸素を排出することで安全性を向上させることができる。また、溶解槽内の水素分圧を上昇させることができるので、水への水素の溶解を少ない水素ガス量で効率的に行うことができる。
 本発明の態様6にかかる水素含有水生成装置1は、上記態様1から5のいずれかにおいて、前記溶解槽21の気相部の圧力を検出する圧力センサ74と、前記溶解槽21の気相部の圧力と前記溶解槽21で生成される水素含有水の水素濃度との関係を示す情報を記憶した濃度データ記憶部72と、前記圧力センサ74の検出した圧力と前記濃度データ記憶部72に記憶されている前記情報とに基づいて前記溶解槽21で生成される水素含有水の水素濃度の推定値を算出する濃度算出部69とを備えている構成である。
 上記の構成によれば、今日存在する一般に高額で大型の水素濃度計測装置を用いることなく、溶解槽21内の圧力の検出結果に応じて溶解槽21で生成される水素含有水の水素濃度の推定値を算出することができる。
 本発明の態様7にかかる水素含有水生成装置1は、上記態様6において、表示部73と、前記表示部73の動作を制御する表示制御部71とを備え、前記表示制御部71は、前記表示部73に前記濃度算出部69の算出した水素濃度の推定値に応じた表示を行わせる構成である。
 上記の構成によれば、生成される水素含有水の水素濃度の推定値に応じた表示を行うことにより、ユーザの利便性を向上させることができる。
 本発明の態様8にかかる水素含有水生成装置1は、上記態様1から7のいずれかにおいて、前記通気管31は前記電解槽11の天井面の一部に接続されており、前記電解槽11の天井面は、当該天井面の周縁部から前記通気管31が接続されている部分に向かって上方へ傾斜した形状である構成である。
 上記の構成によれば、電解槽11で生成された水素ガスを通気管31に効率よく導くことができるため、電解槽11の気相部の体積を減少できる。すなわち、昇圧する体積が小さくなるため、早く圧力を上げることができる。
 本発明の態様9にかかる水素含有水生成装置1は、上記態様1から8のいずれかにおいて、前記電解槽11の気相部と前記通気管31と前記溶解槽21の気相部と排気管が連通して接続されている構成である。
 上記の構成によれば、減圧工程S5で膨張したガスが前記溶解槽21の水中で暴れることなく排気管33から排出される。これにより、溶解した水素濃度が衝撃により低下しまうことを抑制すると共に、排出される水素に水が混合することを抑制できる。また、溶解槽21内の水が通気管31に侵入することを防止できる。
 本発明の態様10にかかる水素含有水生成装置1は、上記態様5において、前記溶解槽21内の水および水素ガスを撹拌する撹拌部と、前記撹拌部の動作を制御する撹拌制御部とを備え、前記撹拌制御部は、前記置換工程において前記撹拌部に前記溶解槽内の水の撹拌を行わせる構成である。
 上記の構成によれば、置換工程において溶解槽21内の水の撹拌を行うことにより、溶解槽21内の水に含まれる酸素を脱気することができるので、水への水素の溶解を効率的に行うことができる。
 本発明の態様11にかかる水素含有水生成装置1は、上記態様10において、前記撹拌部22は、鉛直方向に沿って配置された回転軸22aと、前記回転軸22aに取り付けられた撹拌翼22bとを備え、前記排気弁38は、前記溶解槽21の天井面における当該天井面と前記回転軸22aの中心を通る直線との交点の近傍に連通するように配置されている構成である。
 上記の構成によれば、溶解槽21内の水が排気弁38を介して外部に吹き出すことを抑制できる。
 本発明の態様12にかかる水素含有水生成装置1は、上記態様1から11のいずれかにおいて、前記溶解槽21の液相部に接続された取水管34と、前記取水管34に接続された取水弁39とを備え、前記取水弁39を開くことにより、前記溶解槽21で生成された水素含有水をユーザが任意の容器に取水可能である構成である。
 上記の構成によれば、取水弁39を開くことによりユーザが任意の容器に水素含有水を容易に取水できるので、ユーザが着脱を繰り返すような機構を設けなくてよい。したがって、着脱を繰り返す機構は徐々に劣化し高い圧力に耐えられなくなるため、低い圧力でしか運転できないが、取水弁39を備えた取水管34を設けることで、撹拌工程S4での圧力を大幅に高めることができる。
 本発明の態様13にかかる水素含有水生成装置1は、上記態様1から12のいずれかにおいて、水を貯水する水タンク110と、前記溶解槽21で生成された水素含有水と前記水タンク110に貯水された水とを混合する混合部とを備え、前記溶解槽21で生成された水素含有水に前記水タンク110に貯蔵された水を混合することにより、水素含有水の水素濃度および水量を調整可能である構成である。
 上記の構成によれば、ユーザが所望する濃度および水量の水素含有水を容易に得ることができる。また、溶解槽21において水素濃度および水素水量を調整する必要がないので、溶解槽21として小型の容器を用いることができ、溶解槽21の耐圧設計を容易にすることができる。
 本発明の態様14にかかる水素含有水生成装置1は、上記態様4において、前記電解装置12は、正電極55と、負電極54と、前記両電極54,55に挟まれたイオン交換膜51とを備え、前記正電極55と前記負電極54との間に印加する電圧の極性を前記電解液の電解処理を行うときとは逆極性に切り替える電解制御部61を備えている構成である。
 上記の構成によれば、正電極55と負電極54との間に印加する電圧の極性を電解液の電解処理を行うときとは逆極性に切り替えることにより、イオン交換膜51に吸着されたイオン分を除去し、電解性能が低下することを防止できる。また、逆極性の電圧を印加することによって発生するオゾンにより、電解槽11内を清浄することができる。
 本発明の態様15にかかる水素含有水生成装置1は、上記態様1から14のいずれかにおいて、前記通気管31に液滴の通過を防止するためのフィルタ(疎水性フィルタ91,92)が設けられている構成である。
 上記の構成によれば、電解槽11内の電解液と溶解槽21内の水とが混ざることを防止できる。
 本発明の態様16にかかる水素含有水の生成方法は、電解液を電解処理して水素ガスを生成する電解槽11と、水に水素ガスを溶解させる溶解槽21と、前記電解槽11の気相部と前記溶解槽21の気相部とを接続する通気管31とを備えた水素含有水生成装置1を用いて水素含有水を生成する水素含有水の生成方法であって、前記電解槽11で生成される水素ガスで前記溶解槽21内の圧力を昇圧させる昇圧工程を含むことを特徴としている。
 上記の方法によれば、水素を高濃度に含有する水素含有水を手軽にかつ素早く生成することができる。
 本発明の態様17にかかる水素含有水の生成方法は、上記態様16において、前記昇圧工程の後、または前記昇圧工程と並行して、前記溶解槽21内の水および水素ガスを撹拌する撹拌工程を行う方法である。
 上記の方法によれば、電解槽11で生成された水素ガスにより溶解槽21の圧力を昇圧させるとともに、撹拌部22により溶解槽21内の撹拌を行うことで、昇圧された溶解槽21内の圧力に応じた飽和濃度まで水素を溶解させることができ、高濃度の水素を容易に生成することができる。
 本発明の態様18にかかる水素含有水の生成方法は、上記態様16または17において、前記昇圧工程の前に、前記電解槽11で生成される水素ガスにより前記溶解槽21内の気相部を水素ガスに置換する置換する置換工程を行う方法である。
 上記の方法によれば、酸素を排出することで安全性を向上させることができる。また、溶解槽内の水素分圧を上昇させることができるので、水への水素の溶解を効率的に行うことができる。
 本発明の態様19にかかる水素含有水の生成方法は、上記態様18において、前記置換工程において前記溶解槽21内の水の撹拌を行う方法である。
 上記の方法によれば、置換工程において溶解槽21内の水の撹拌を行うことにより、溶解槽21内の水に含まれる酸素を脱気することができるので、水への水素の溶解を効率的に行うことができる。
 本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することもできる。
1 水素含有水生成装置
10 電解部
11 電解槽
11a 負電極側電解槽
11b 正電極側電解槽
12 電解装置
13 天井面
20 溶解部
21 溶解槽
22 撹拌部
22a 回転軸
22b 撹拌翼
31 通気管
32 給水管
33 排気管
34 取水管
36 給水弁
37 給水ポンプ
38 排気弁
39 取水弁
40 モータ
41a,41b マグネットカップリング
51 イオン交換膜
52,53 触媒層
54 負電極
55 正電極
56 電源部
57 隔膜
60 制御部
61 電解制御部
62 溶解制御部
63 給水制御部
64 取水制御部
65 排気制御部
66 撹拌制御部
67 吸気制御部
68 濃度制御部
69 濃度算出部
70 操作入力部
71 表示制御部
72 濃度データ記憶部
73 表示部
74 圧力センサ
80 吸気弁
91,92 疎水性フィルタ
101 酸素排出管
102 酸素排出弁
110 水タンク
111 原水供給管
112 濃度調節弁

Claims (9)

  1.  電解液を電解処理して水素ガスを生成する電解槽と、
     水に水素ガスを溶解させる溶解槽と、
     前記電解槽の気相部と前記溶解槽の気相部とを接続する通気管とを備え、
     前記電解槽で生成される水素ガスで前記溶解槽内の圧力を昇圧させることにより、前記溶解槽で水素ガスを水に溶解させることを特徴とする水素含有水生成装置。
  2.  前記溶解槽内の水および水素ガスを撹拌する撹拌部を備え、
     前記電解槽で生成される水素ガスで前記溶解槽内の圧力を昇圧させるとともに、前記撹拌部で前記溶解槽内の水および水素ガスを撹拌することにより、前記溶解槽で水素ガスを水に溶解させることを特徴とする請求項1に記載の水素含有水生成装置。
  3.  前記撹拌部を回転駆動するためのモータを備え、
     前記モータは前記溶解槽の外部に配置されており、前記モータの回転駆動力が前記溶解槽の壁面を挟んで配置されたマグネットカップリングにより前記撹拌部に伝達されることを特徴とする請求項2に記載の水素含有水生成装置。
  4.  前記電解槽に、電解液の電解処理を行って水素ガスを生成するための、イオン伝導性を有する高分子膜の両面に触媒層または電極が一体となるように構成された電解装置が備えられていることを特徴とする請求項1から3のいずれか1項に記載の水素含有水生成装置。
  5.  前記溶解槽の気相部と連通する位置に設けられた排気弁と、
     前記排気弁の動作を制御する排気制御部とを備え、
     前記排気制御部は、
     前記排気弁を開いて前記電解槽で水素ガスを生成することにより前記溶解槽内の気相部を水素ガスに置換する置換する置換工程と、
     前記置換工程の後、前記排気弁を閉じて前記電解槽で水素ガスを生成することにより前記溶解槽内の圧力を昇圧させる昇圧工程とを行わせることを特徴とする請求項1から4のいずれか1項に記載の水素含有水生成装置。
  6.  前記溶解槽内の水および水素ガスを撹拌する撹拌部と、
     前記撹拌部の動作を制御する撹拌制御部とを備え、
     前記撹拌制御部は、前記置換工程において前記撹拌部に前記溶解槽内の水の撹拌を行わせることを特徴とする請求項5に記載の水素含有水生成装置。
  7.  前記溶解槽の気相部の圧力を検出する圧力センサと、
     前記溶解槽の気相部の圧力と前記溶解槽で生成される水素含有水の水素濃度との関係を示す情報を記憶した濃度データ記憶部と、
     前記圧力センサの検出した圧力と前記濃度データ記憶部に記憶されている前記情報とに基づいて前記溶解槽で生成される水素含有水の水素濃度の推定値を算出する濃度算出部とを備えていることを特徴とする請求項1から6のいずれか1項に記載の水素含有水生成装置。
  8.  前記電解槽の気相部と通気管と前記溶解槽の気相部と排気管が気相で連通して接続されていることを特徴とする請求項1から7のいずれか1項に記載の水素含有水生成装置。
  9.  電解液を電解処理して水素ガスを生成する電解槽と、水に水素ガスを溶解させる溶解槽と、前記電解槽の気相部と前記溶解槽の気相部とを接続する通気管とを備えた水素含有水生成装置を用いて水素含有水を生成する水素含有水の生成方法であって、
     前記電解槽で生成される水素ガスで前記溶解槽内の圧力を昇圧させる昇圧工程を含むことを特徴とする水素含有水の生成方法。
PCT/JP2016/072954 2015-11-13 2016-08-04 水素含有水生成装置および水素含有水の生成方法 WO2017081893A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-222967 2015-11-13
JP2015222967A JP2017087168A (ja) 2015-11-13 2015-11-13 水素含有水生成装置および水素含有水の生成方法

Publications (1)

Publication Number Publication Date
WO2017081893A1 true WO2017081893A1 (ja) 2017-05-18

Family

ID=58696002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072954 WO2017081893A1 (ja) 2015-11-13 2016-08-04 水素含有水生成装置および水素含有水の生成方法

Country Status (3)

Country Link
JP (1) JP2017087168A (ja)
TW (1) TWI618677B (ja)
WO (1) WO2017081893A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617655A (zh) * 2019-02-28 2020-09-04 佳能株式会社 超细气泡生成装置、超细气泡生成方法以及超细气泡含有液
CN113667999A (zh) * 2021-08-26 2021-11-19 宁波智能技术研究院有限公司 一种电解水的臭氧浓度控制方法及电解水箱
EP3770123A4 (en) * 2018-03-23 2021-12-22 Guan Duk Lim DEVICE FOR PRODUCING HYDROGEN WATER
US11408081B2 (en) 2017-07-03 2022-08-09 Hystar As Method for producing hydrogen in a PEM water electrolyser system, PEM water electrolyser cell, stack and system
CN115613064A (zh) * 2022-10-26 2023-01-17 五华县百洁灵科技有限公司 一种采用多函道离子膜的高效电解装置
WO2023079534A1 (en) * 2021-11-08 2023-05-11 Richard Gardiner A system for seperating hydrogen from water

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6539817B2 (ja) * 2016-08-29 2019-07-10 株式会社光未来 水素水製造装置及び水素水製造方法
JP6896336B2 (ja) * 2017-05-31 2021-06-30 カーリットホールディングス株式会社 水素水の製造装置及び製造方法
JP2019056136A (ja) * 2017-09-20 2019-04-11 株式会社東芝 電気化学反応装置
JP7273929B2 (ja) * 2017-09-20 2023-05-15 株式会社東芝 電気化学反応装置および多孔質セパレータ
DE102017126886B3 (de) * 2017-11-15 2019-01-24 Graforce Gmbh Verfahren und Vorrichtung zur plasmainduzierten Wasserspaltung
CN108201804A (zh) * 2018-02-11 2018-06-26 苏州海森伯格环保科技有限公司 一种改进型重金属废水回收装置
CN108298655A (zh) * 2018-02-12 2018-07-20 叶财明 一种污水沉淀处理设备
CN108585124A (zh) * 2018-04-02 2018-09-28 云南中京国建投资有限公司 一种用于肠道水疗的富氢水及其制备装置
KR102135620B1 (ko) * 2018-05-24 2020-07-21 노종진 무인 카페 시스템용 탄산수 제조 장치
KR102011774B1 (ko) * 2018-12-11 2019-08-19 (주)휴앤스 비저수식 수소수 생성 장치
JP7011619B2 (ja) * 2019-03-27 2022-01-26 株式会社日本トリム 溶存水素水生成装置及び溶存水素水生成方法
RU199520U1 (ru) * 2019-10-14 2020-09-07 Василий Михайлович Лазарев Устройство для приготовления обогащенной водородом воды
CN111229067A (zh) * 2020-02-11 2020-06-05 武汉宝盈普济科技有限公司 一种负压状态下富氢水的连续制取装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293342A (ja) * 2000-04-18 2001-10-23 Mitsubishi Rayon Eng Co Ltd 炭酸水製造装置および炭酸水製造方法
JP2002282871A (ja) * 2001-03-27 2002-10-02 Shigemi Iida 活性水素水製造装置
JP2004337846A (ja) * 2003-04-14 2004-12-02 Tatsuo Okazaki 炭酸水生成方法及び装置
JP2004350538A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 家庭用水素溶解装置
JP2011011126A (ja) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd 機能液生成装置
KR101030721B1 (ko) * 2011-01-18 2011-05-09 주식회사 체푸드프라임 수소풍부수 제조장치
JP2015182061A (ja) * 2014-03-26 2015-10-22 諒介 花田 炭酸水製造方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4109455B2 (ja) * 2002-01-15 2008-07-02 オルガノ株式会社 水素溶解水製造装置
TWI535892B (zh) * 2013-10-23 2016-06-01 康宇能源科技股份有限公司 薄膜電極組及其製造方法
JP5691023B1 (ja) * 2014-02-15 2015-04-01 株式会社勝電技研 水素水製造装置
CN104591417A (zh) * 2014-05-25 2015-05-06 李燕飞 一种富氢水的制备方法和设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293342A (ja) * 2000-04-18 2001-10-23 Mitsubishi Rayon Eng Co Ltd 炭酸水製造装置および炭酸水製造方法
JP2002282871A (ja) * 2001-03-27 2002-10-02 Shigemi Iida 活性水素水製造装置
JP2004337846A (ja) * 2003-04-14 2004-12-02 Tatsuo Okazaki 炭酸水生成方法及び装置
JP2004350538A (ja) * 2003-05-27 2004-12-16 Matsushita Electric Works Ltd 家庭用水素溶解装置
JP2011011126A (ja) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd 機能液生成装置
KR101030721B1 (ko) * 2011-01-18 2011-05-09 주식회사 체푸드프라임 수소풍부수 제조장치
JP2015182061A (ja) * 2014-03-26 2015-10-22 諒介 花田 炭酸水製造方法および装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408081B2 (en) 2017-07-03 2022-08-09 Hystar As Method for producing hydrogen in a PEM water electrolyser system, PEM water electrolyser cell, stack and system
EP3770123A4 (en) * 2018-03-23 2021-12-22 Guan Duk Lim DEVICE FOR PRODUCING HYDROGEN WATER
US11535535B2 (en) 2018-03-23 2022-12-27 Guan Duk Lim Apparatus for manufacturing hydrogen containing water
CN111617655A (zh) * 2019-02-28 2020-09-04 佳能株式会社 超细气泡生成装置、超细气泡生成方法以及超细气泡含有液
CN113667999A (zh) * 2021-08-26 2021-11-19 宁波智能技术研究院有限公司 一种电解水的臭氧浓度控制方法及电解水箱
WO2023079534A1 (en) * 2021-11-08 2023-05-11 Richard Gardiner A system for seperating hydrogen from water
CN115613064A (zh) * 2022-10-26 2023-01-17 五华县百洁灵科技有限公司 一种采用多函道离子膜的高效电解装置

Also Published As

Publication number Publication date
TWI618677B (zh) 2018-03-21
JP2017087168A (ja) 2017-05-25
TW201716339A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
WO2017081893A1 (ja) 水素含有水生成装置および水素含有水の生成方法
JP6116658B2 (ja) 気体溶解装置及び気体溶解方法
AU2005217634B2 (en) Gas drive electrolytic cell
JP4734416B2 (ja) 硫酸の電解装置、電解方法及び基板の処理装置
JP2009005881A (ja) 水素ガスの体内吸入装置
US20060151896A1 (en) Method of centrifugally generating ozonated water and system thereof
JP5710206B2 (ja) 水素溶解水製造装置
TWI435952B (zh) Electrolytic water generating device
JP2005087257A (ja) 水素ガスの体内吸入方法及びその装置
WO2018020707A1 (ja) 水素水生成装置
CN116437971A (zh) 空间净化装置以及使用其的空间净化系统
TW202033266A (zh) 加氫裝置以及氫透過膜的消耗度判定方法
JP2001137862A (ja) オゾン水製造装置
JP2007289492A (ja) 炭酸泉の製造方法及び装置
JP2005021798A (ja) オゾン水製造方法、オゾン水製造装置
JP6554086B2 (ja) 電解水サーバー
JP2009050774A (ja) 水処理装置
JP5991619B2 (ja) オゾン水生成装置
CN114786736B (zh) 空气净化装置
JP2004223306A (ja) 電解水生成装置
JP3530452B2 (ja) 水処理装置
JP2008073189A (ja) 循環浴槽水を用いた炭酸泉の製造装置
JP2013085979A (ja) 次亜塩素酸水の製造装置
CN216738561U (zh) 臭氧水制备系统
JP2004267815A (ja) 水質調整装置及び水質調整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863857

Country of ref document: EP

Kind code of ref document: A1