WO2017081427A1 - Particules sphériques et chargées en agents colorants - Google Patents

Particules sphériques et chargées en agents colorants Download PDF

Info

Publication number
WO2017081427A1
WO2017081427A1 PCT/FR2016/052936 FR2016052936W WO2017081427A1 WO 2017081427 A1 WO2017081427 A1 WO 2017081427A1 FR 2016052936 W FR2016052936 W FR 2016052936W WO 2017081427 A1 WO2017081427 A1 WO 2017081427A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
matrix
coloring agents
seconds
temperature
Prior art date
Application number
PCT/FR2016/052936
Other languages
English (en)
Inventor
Loïc MARCHIN
Marie-Laure DESSE
Original Assignee
Pylote
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pylote filed Critical Pylote
Priority to CA3004343A priority Critical patent/CA3004343A1/fr
Priority to CN201680078630.8A priority patent/CN108779343A/zh
Priority to EP16809982.8A priority patent/EP3374436A1/fr
Priority to JP2018524363A priority patent/JP7382715B2/ja
Priority to US15/774,547 priority patent/US11208560B2/en
Publication of WO2017081427A1 publication Critical patent/WO2017081427A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • C09C1/3054Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds

Definitions

  • the present invention relates to spherical particles, dense, micrometric, and comprising coloring agents.
  • the invention also relates to a material comprising these particles intended for use in paper, paint, food processing, cosmetic or pharmaceutical. It also relates to the process for preparing these particles and their incorporation into a matrix. State of the art of the invention
  • organic or inorganic dyes which are organic compounds or their salts or even pigments.
  • the encapsulation of the dyes, in particular the organic compounds, in a particle confers various advantages, such as preserving the stability of the dye irrespective of the pH, avoiding the chemical degradation of the dye by the solvent or by a third constituent of the formulation, it is possible to use a dye which is usually water-insoluble in water or to prevent its uncontrolled migration or dispersion towards the material in which it is integrated or the paper support, in the case of the ink.
  • the patent application US 2013/091637 to Lischewski et al describes a method of encapsulation of a water-soluble dye in a "pigment" of silica in one step by spray or spray drying with the Buchi B290 apparatus, in the form of spheres with a release of the pigment less than 0.5%.
  • the precursor solution is based on TEOS (Tetraethoxysilane) with hydrolysis in a hydro-alcoholic medium, preferably catalyzed with acetic acid and a dye content of 0.03-0.15 g of dye / g TEOS, ie 9% 34% by mass dye in the final particle.
  • the field of the invention mainly covers agri-food, pharmaceutical and cosmetic products.
  • Alberius et al. also disclose a method of encapsulating a dye in a one-shot spherical silica capsule, in the form of spheres, with a release of the dye from the capsule between 0.5% and 5%.
  • the precursor solution is based on TEOS (Tetraethoxysilane) with hydrolysis in a hydro-alcoholic medium, preferably catalyzed at pH 1.5-2.5 with hydrochloric acid and dye content from 0% to 25% by weight. dye in the final particle.
  • TEOS Tetraethoxysilane
  • the field of the invention mainly covers detergents and cosmetics.
  • the properties conferred on the material by the nano and / or microparticles are generally related to the properties of the particles themselves, such as their morphological, structural and / or chemical properties.
  • the properties conferred on the material may also originate from agents incorporated into the body. particles.
  • Particles of spherical morphology are particularly interesting in different fields. It is known in particular from the literature that the particles of spherical morphology are particularly interesting in colorimetry, because the more the particles are spherical, the more the color is intense. The size range of microspheres is also important for inks. Thus, the suspension of spherical and micrometric particles between 0.5 and 10 microns seems particularly advantageous for inks, because the smaller the particles are, the more the particles will diffuse and be easy to disperse.
  • particles of the prior art which are said to be spherical, however, are either aggregates of non-spherical particles, the aggregate itself having a shape approaching a sphere, or have an unsatisfactory sphericity.
  • Various methods have been developed to optimize the sphericity of the synthesized particles. Most of these methods are optimized for a single type of particles, for example a chemical type (silica particles for example) or a morphology (porous particles for example). It should be noted that silica particles are already known for other functions, especially as abrasive agents or rheological agents in ink formulations, cosmetics or agro-food.
  • the dispersion of particles in a matrix is also a known technique for conferring a property on said matrix.
  • pigments can be dispersed in matrices to impart color properties.
  • the nature of the particles, their surface properties, and possibly their coating must be optimized for obtain a satisfactory dispersion in the matrix.
  • the optimization of the dispersibility of the particles in the matrix will depend both on the nature of the particles and the nature of the matrix. It is important to be able to homogeneously disperse the particles in the matrix, in order to homogeneously distribute the desired property in the entire volume of the matrix. When the particles agglomerate in the matrix, the desired properties are not conferred homogeneously on the matrix and the result obtained is not satisfactory.
  • the Applicant has developed a simple process for preparing perfectly spherical micrometric and colored particles, of different types, containing dyes. Surprisingly, the particles obtained by this process, whatever their chemical nature, remain in the individualized state and do not form aggregates both in the dry state and when they are dispersed in a matrix.
  • the process according to the invention makes possible a higher loading rate of dyes than conventional processes and in particular processes by impregnation of porous particles in post-treatment.
  • the process according to the invention makes it possible to obtain spherical particles which are micrometric and filled with coloring agents, the formation of the particles and the incorporation of the coloring agents being concomitant.
  • the first object of the present invention is a set of particles characterized in that they are spherical, dense, micrometric, and in that they comprise organic coloring agents.
  • the amount of coloring agents in the particles according to the invention can be high. More specifically, the amount of coloring agents can vary from 5 to 35%, preferably from 5 to 30%, and more particularly from 10 to 30% by weight relative to the mass of the particles.
  • Another subject of the invention is a material comprising a set of particles according to the invention and a matrix.
  • the invention also relates to a method for preparing a set of particles according to the invention.
  • the invention also relates to a method for preparing a material according to the invention, comprising contacting a matrix with a set of particles according to the invention.
  • Figure 1 SEM image of silica particles loaded with dye of Example 2 - 5 ⁇ scale - Average diameter ⁇ , ⁇ ⁇ 0.5 ⁇ of circularity coefficient of 0.95 ⁇ 0.15
  • Figure 2 Schematic representation of a reactor adapted for implementing the method according to the invention.
  • the first object of the present invention is a set of particles, characterized in that the particles are spherical, dense, micrometric and in that they have incorporated coloring agents.
  • the particles according to the invention are spherical, that is to say that they have a sphericity coefficient in 3D or circularity in 2D greater than or equal to 0.75.
  • the sphericity coefficient is greater than or equal to 0.8, greater than or equal to 0.85, greater than or equal to 0.9, or greater than or equal to 0.95.
  • the circularity coefficient in 2D can be calculated for example by measuring the aspect ratio by means of any software adapted from images, for example images obtained by microscopy, in particular scanning electron microscopy or transmission, particles.
  • the invention relates to a set of particles as defined above.
  • the assembly may optionally contain particles that do not have the required sphericity criteria insofar as the number average sphericity on all the particles meets the criteria set in the present invention.
  • the term "set of spherical particles” denotes a plurality of particles of which at least 50% of the particles in number have a sphericity as defined above.
  • at least 60%, at least 70%, at least 80%, at least 90%, at least 95% by number of the particles of the set considered have a sphericity as defined above.
  • the particles according to the invention are micrometric, that is to say that the particle diameter is between 0.1 and 100 microns, in particular between 0.1 and 20 microns. In a preferred embodiment, the average particle diameter is between 0.3 and 10 microns or between 0.5 and 5 or between 0.5 and 2 microns.
  • the average particle diameter of a set, the standard deviation and the size distribution in particular can be determined by statistical studies from microscopy images, for example scanning electron microscopy or transmission. More specifically, particles with an average diameter of 1.0 microns and a particle size distribution of 0.3 to 4 microns were obtained.
  • the above diameter values may correspond to the average particle diameter in number, even though some of the particles in the set have diameters outside this range.
  • all the particles of the population have a diameter as defined above.
  • the relative standard deviation of the particle size in a population of particles according to the invention is less than or equal to 50%, preferably less than or equal to 20%.
  • the size distribution of the particles in the set of particles according to the invention can be monomodal or multimodal.
  • the use of micrometric and spherical particles in the present invention makes it possible to promote the particle dispersion properties because they are not too large (sedimentation is thus minimized), and not to have the disadvantages (difficulties of implementation). toxicity, low opacifying power ...) nanoparticles.
  • it allows to have paints or inks of small thickness (for example less than 50 microns).
  • particle is meant in the present invention a particle whose three-dimensional network consists at least in part of an inorganic component, that is to say which is not derived from the chemistry of carbon (except CO3 2 " )
  • an inorganic component that is to say which is not derived from the chemistry of carbon (except CO3 2 " )
  • the chemical diversity of the inorganic components is well known to those skilled in the art.
  • the particles according to the invention are dense.
  • dense particles particles which have a low specific surface area, more specifically less than 15 m 2 / g, preferably less than 5 m 2 / g (and more particularly between 0.01 and 5 m 2 / g). and / or which have pores of small diameter, for example pores with a diameter of less than 5 nm (and more particularly between 0.1 and 5 nm).
  • the size of the pores must be smaller than the size of the coloring agent in order to limit the release of the coloring agent towards the outside of the particle. Measurements of pore diameters and specific surfaces can be classically determined by nitrogen porosimetry and the "BJH" method by the names of its authors Barett, Joyner and Halenda.
  • the particles have a low release rate.
  • the degree of release of the dyes may be less than or equal to 3%, preferably less than or equal to 2% by weight. This measure can be obtained in particular by measuring the release by immersion of the particles in a specific solvent measured by UV-Visible spectroscopy of the concentration of dye not contained in the particles (ie released dye) (using a standard range of dye put into solution in the same solvent at different concentrations).
  • the particles according to the invention are not aggregated: each particle of the assembly is not bound to other particles by strong chemical bonds such as than covalent bonds, which has the advantage of formulating more easily its particles in the matrices
  • the set of particles according to the invention may optionally contain particles that do not meet this characteristic, insofar as the non-aggregation criterion is met by at least 50% by number of the particles of the assembly.
  • at least 60%, at least 70%, at least 80%, at least 90%, at least 95% by number of the particles of the set considered are not aggregated.
  • a particle of the assembly according to the invention is not constituted by the aggregation of several particles of smaller size. This can be clearly visualized for example by microscopy studies, in particular by scanning electron microscopy or transmission. This means that the particles according to the invention can consist only of domains of size significantly smaller than that of the particles according to the invention.
  • a particle according to the invention is preferably formed of at least two domains.
  • a domain is made of material having the same chemical nature and the same structure, which can be punctual or continuously extended within the particle.
  • the atomization techniques conventionally used in the art generally provide aggregated nonspherical particles.
  • the objects that are formed by these aggregates of particles can be spherical.
  • the inorganic component comprises several chemical elements, preferably from 2 to 16 different chemical elements, this number of elements not taking into account the elements O and H possibly included in the inorganic component. It is then possible inorganic components that are heterogeneous, that is to say that comprise various elements whose stoichiometry is preferably controlled by the synthesis method.
  • the heterogeneous inorganic components can either comprise several chemical elements (except O and H), preferably all the chemical elements (except O and H) constituting the inorganic component, within the same domain, or comprise domains each formed of a single chemical element (except O and H). In a particular embodiment, each domain of the heterogeneous inorganic component comprises a single chemical element (except O and H).
  • the particles according to the invention may comprise a minimum proportion, for example less than or equal to 5% by weight, of contaminants which may have a chemical nature different from that of said particles.
  • the inorganic components are silica, in particular amorphous silica, alumina, in particular amorphous or crystalline alumina, boehmite, zinc oxide, in particular hexagonal, optionally doped, for example doped with aluminum, titanium dioxide, in particular anatase or rutile, mixed titanium oxide and silicon, in particular anatase, montmorillonite, in particular monoclinic , hydrotalcite, in particular hexagonal, magnesium dihydroxide, in particular hexagonal, magnesium oxide in particular periclase, yttrium oxide, in particular cubic, optionally doped with europium and / or with erbium and / or ytterbium, cerium dioxide, copper calcium titanate, barium titanate, iron oxide, preferably in hematite form, magnesium sulfate
  • the particles according to the invention are composed of metal oxide, preferably alumina, in particular of amorphous or crystalline alumina, of boehmite, of silicate, of silica, in particular of amorphous silica, or mullite.
  • the inorganic components are silica or sodium silicate, in particular amorphous silica.
  • the three-dimensional network of which the particles are composed is constituted at least in part by a metallic component, possibly an organic-inorganic hybrid.
  • This component can be obtained by sol-gel from at least one metal molecular precursor comprising one or more hydrolyzable groups of formulas (1), (2), (3) or (4) defined below.
  • the particles according to the invention comprise coloring agents.
  • the coloring agents are organic compounds, optionally present in the form of salts. Their incorporation is carried out during the preparation of the precursor solution.
  • the coloring agent is compatible with the medium of the precursor solution and / or is chosen so that it does not degrade at the temperatures to be applied during the particle preparation process, which can be generally between 100 and 300 ° C.
  • the coloring agent may be selected in accordance with the application of the invention and the regulations in force, such as the list of dyes from the Food and Drug Administration (FDA), in particular FD & C or D & C coloring agents.
  • FDA Food and Drug Administration
  • brilliant blue E133; CI 42090
  • tartrazine E102, Cl, 18140
  • azorubine El 12, Cl, 14720
  • EXT. D & C Green No. 1 CI 10020
  • azo-acid type dyes in particular such as those described in COLOR INDEX INTERNATIONAL, 3rd edition under the name ACID, for example: Disperse Red 17, Acid Yellow 9, Acid Black 1, Acid Yellow 36, Acid Orange 7, Acid Red 33, Acid Red 35, Acid Yellow 23, Acid Orange 24, Acid Violet 43, Acid Blue 62, Acid Blue 9 -Acid Violet 49, Acid Blue 7.
  • Agents may also be mentioned Naturally occurring dyes, such as grape extracts, safflower extracts, cochineal extracts, beet extracts, turmeric, riboflavin, xanthophyll, carotenoids, carmine, carminic acid, anthocyanins, chlorophylls, etc.
  • the dye may be cationic, anionic, neutral, amphoteric, zwitterionic or amphiphilic.
  • the coloring agents are positively charged agents (or molecules).
  • they are more compatible with the negatively charged silica particles at acidic pH, which promotes the retention of the dye in the particle.
  • the particles according to the invention can be loaded with one or more organic coloring agents.
  • organic coloring agents When there are several coloring agents in the same particle, it may be a mixture of organic coloring agents, a mixture of inorganic coloring agents or a mixture of organic and inorganic coloring agents.
  • organic coloring agents in particles according to the invention makes it possible to formulate these agents in any medium, whether hydrophilic or hydrophobic and thus to make these organic agents fully compatible and therefore effective in different types of matrices. . It can also protect or stabilize organic coloring agents when used in an aggressive environment. This may also make it possible to avoid unwanted transfer problems of these coloring agents to supports or materials other than those in which they are located.
  • the particles according to the invention have coloring agents whose quantity may vary to a large extent, which depends in particular on the size and nature of the particles. This quantity also depends on the desired degree of coloration and the nature of the coloring agents used.
  • the ratio of coloring agents can vary from 5 to 35%, preferably from 5 to 30%, and more particularly from 10 to 30% by weight relative to the mass of the particles.
  • the amount of coloring agents can be 15-25% by weight and the amount of particles 85-75% by weight.
  • the process according to the invention makes it possible to obtain a higher content of dyestuffs in the particles than conventional processes.
  • the process according to the invention has the advantage of having a low loss of the reagents used. initially (high utilization rate of the reagents used), and in particular a low loss of the coloring agents used.
  • the particles according to the invention may have shells (or coatings), such as a shell based on silica, obtained from a sol-gel reaction from organosilanes.
  • the shell may be permanent or temporary, possibly degradable.
  • the shell can therefore be eliminated by any means, in particular by using shells based on degradable polymers, or by the action of an external stimulus of pH (by dissolution), mechanical (fragile shell), thermal (shell that background by temperature rise) or optical (shell that breaks up under irradiation).
  • Another subject of the invention is a material comprising a set of particles according to the invention and a matrix. More specifically, the particles according to the invention are dispersed homogeneously in said matrix.
  • matrix designates any material that can advantageously benefit from the inclusion of particles according to the invention. It may be in particular solid or liquid matrices, whatever the viscosity of the starting liquid matrix.
  • the matrix is a flexible, rigid, or solid matrix used as a coating, for example a ceramic or polymeric matrix, in particular a polymeric matrix of the paint type, sol-gel layers, varnish or one of their mixture.
  • the material according to the invention may be intended for use in stationery, painting, food processing, cosmetics or pharmaceuticals.
  • the material is an ink formulation, in particular that can be used for writing or printing.
  • the inclusion of the particles according to the invention in a matrix makes it possible to confer the coloring property on the matrix.
  • the inclusion of the particles in the matrix can be carried out by the techniques conventionally used in the art, in particular by mechanical stirring when the matrix is liquid.
  • the material according to the invention may especially be in the form of liquid, powder, beads, pellets, granules, films, foam, the shaping or preparation operations of these materials being carried out by known conventional techniques. of the skilled person.
  • the method of shaping or preparing the material does not require an additional step of dispersing the particles within the matrix compared to the shaping method conventionally used for matrices without inclusion of particles.
  • the shaping method can preferably be implemented on the equipment and processing lines conventionally used for matrices without inclusion of particles.
  • the dispersion of the particles within the matrix may, in some embodiments, be carried out without additional chemical dispersing agent.
  • the dispersion of the particles within the matrix is carried out in the presence of a chemical dispersing agent such as a surfactant.
  • a chemical dispersing agent such as a surfactant.
  • the dispersing agent may be used in an amount of 0.1 to 50% by weight relative to the mass of particles, especially in an amount of 0.5 to 20% by weight relative to the mass of particles .
  • the particles according to the invention have the particularity of being dispersed substantially homogeneously in volume in the matrix, whatever their chemical nature, their morphology and the nature of the matrix. This means that the particle density per unit volume is the same at every point of the matrix. In the case of a solid matrix, the density of particles per unit area is preferably the same whatever the surface of the matrix considered, whether it is an end surface of the matrix, or a "core" surface obtained by cutting the material for example. Thus, the coloring property imparted to the matrix by inclusion of the particles according to the invention is distributed substantially homogeneously throughout the matrix volume.
  • the material according to the invention may comprise particles according to the invention in any proportion adapted to give it the desired properties, and in particular the desired coloration.
  • the material may comprise from 0.1 to 80% by weight of particles relative to the total mass of matrix + particles, preferably from 1 to 60% by weight, in particular from 2 to 50% by weight.
  • the particles according to the invention are non-deformable spherical particles.
  • the surface of each particle that is in contact with other particles is very small.
  • the radius of curvature of the meniscus forming the contact between two different particles of the assembly is less than 5%, preferably less than 2%, of the radius of each of the two particles, in particular within a matrix or in powder form.
  • the sphericity of the particles according to the invention also makes it possible, for the same charge rate in a liquid matrix, to obtain a lower viscosity than with nonspherical particles.
  • Another object of the present invention is a method for preparing a set of particles according to the invention.
  • the process according to the invention is a so-called "aerosol pyrolysis" process (or pyrolysis spray) which is carried out at drying and not pyrolysis temperatures.
  • This process is an improved process compared to the aerosol pyrolysis process described in particular in application FR 2 973 260. More specifically, the process according to the invention is generally carried out in a reactor. This process comprises the non-dissociable and continuous stages in the same reactor, as follows:
  • the liquid solution also comprises at least one coloring agent, as defined above,
  • step (2) heating the fog obtained in step (1) to a so-called drying temperature capable of ensuring the evaporation of the solvent and volatile compounds and the formation of particles,
  • the nebulizing step (1) is preferably carried out at a temperature of 10 to 40 ° C, and / or preferably for a duration less than or equal to 10 seconds, in particular less than or equal to 5 seconds.
  • the liquid solution is generally in the form of an aqueous or aqueous-alcoholic solution or in the form of a colloidal sol. More specifically, the liquid solution of step (1) is introduced into a reactor by nebulization.
  • the heating step (2) (drying) is preferably carried out at a temperature of 40 to 120 ° C, and / or preferably for a duration of less than or equal to 10 seconds, in particular between 1 and 10 seconds.
  • the step (3) is preferably carried out at a temperature of 120 to 300 ° C, and / or preferably for a duration less than or equal to 30 seconds, in particular between 10 and 30 seconds.
  • the optional step (4) densification or consolidation can be performed in a wide range of temperatures, especially between 200 and 600 ° C. This step is preferably carried out at a temperature of 200 to 400 ° C when the particles that are to be prepared are at least partly in crystallized form.
  • the "densification" temperature may be lower, for example it may be around 200 ° C to 300 ° C, especially for amorphous silica.
  • the densification step is carried out for a duration of less than or equal to 30 seconds, in particular between 20 and 30 seconds.
  • the recovery step (5) is preferably carried out at a temperature below 100 ° C, and / or preferably for a duration of less than or equal to 10 seconds, in particular less than or equal to 5 seconds.
  • the step (5) for recovering the particles is preferably carried out by depositing the particles on a filter at the outlet of the reactor.
  • the advantage of the process according to the invention is that it can be achieved in a relatively short time.
  • the duration of the process implementing the successive steps specified above may for example be less than a few minutes (for example 2 or 3 minutes, or even a minute).
  • the temperatures of each of the steps may be outside the range of temperatures provided above. Indeed, for the same particles, the temperature to be applied may depend on the speed at which the droplets, then the particles circulate in the reactor. The more the droplets and then the particles circulate quickly in the reactor, the higher the set temperature must be high to obtain the same result. Of course, the maximum temperature applied in the reactor depends on the coloring agent chosen so as not to degrade the latter.
  • steps (2), (3) and optionally (4) are carried out in the same reactor. All the steps of the process, in particular steps (2), (3) and optionally (4), are carried out in continuity with one another.
  • the temperature profile applied in the reactor is adapted according to the particles that it is desired to form so that these two or three steps take place one after the other.
  • the temperature in the reactor is adjusted via at least one, preferably 2 or 3, heating elements whose temperatures can be set independently.
  • the temperatures of the sequential steps (2), (3) and optionally (4) are increasing.
  • the process according to the present invention preferably further comprises, between step (3), or optionally the densification step of the particles (4) when it is implemented, and the step of recovering the particles (5). ), a step (4 ') of quenching the particles.
  • the quenching step (4 ') is preferably carried out by entering a gas, preferably air, cold over all or part of the circumference of the reactor.
  • a gas is said to be cold in the present invention if it is at a temperature of between 15 and 50 ° C, preferably between 15 and 30 ° C.
  • the gas entering the reactor is a different gas from the air.
  • it may be a neutral gas (such as nitrogen or argon), a reducing gas (such as hydrogen or carbon monoxide), or any mixture of such gases.
  • the method is preferably implemented in the absence of a flow of gas vectorizing the fog from the bottom of the reactor.
  • the laminar flow making it possible to bring the material into the zone in which the temperature is higher is advantageously created solely by suction at the top of the reactor, producing a depression for example of the order of a few pascals or a few tens of pascals.
  • Such an embodiment makes it possible to use a reactor without gas entry in its lower part, thus limiting process disturbances and losses, and thus optimizing the process efficiency and the size distribution of the particles obtained.
  • the reactor in which the process is implemented also includes a gas inlet at the level where the mist is formed.
  • the gas entering the reactor at this level is preferably air.
  • the method according to the invention does not include any other heating step than those implemented inside the aerosol pyrolysis reactor.
  • these may comprise any constituent chemical that it is possible to to densify, especially to crystallize, even the metastable phases.
  • the particular conditions used in the process make it possible to preserve compounds whose degradation temperature is lower than the temperature actually applied, because the time spent at high temperature is very short.
  • the term "high temperature” preferably denotes a temperature greater than 40 ° C.
  • “Time spent at high temperature” generally refers to the time spent on the drying, pyrolysis and densification steps.
  • the time spent at high temperature does not exceed 70 seconds, in particular it is between 30 and 70 seconds.
  • quenching is characterized by a cooling rate greater than or equal to 100 ° C per second.
  • FIG. 2 shows an exemplary reactor scheme for implementing the method according to the invention.
  • the lower part (1) of the reactor comprises the liquid solution containing a precursor or precursors of the three-dimensional network at a given molar concentration in a solvent. This solution is nebulized at the intermediate portion (2), and the droplets rise by suction in the reactor. The entry of cold gas, in particular cold air, allows quenching of the particles.
  • the upper part (3) of the reactor is also at a cold temperature (below 100 ° C., for example between 15 and 50 ° C.).
  • the precursor or the precursors of the three-dimensional network of the particles may be or may be of any origin, it (they) is (are) introduced in step (1) of the process in the form of a liquid solution, in particular an aqueous or hydroalcoholic solution containing the metal ions (such as an organic or inorganic salt of the metal in question) or the precursor molecules (such as organosilanes) or in the form of a colloidal sol (such as a colloidal dispersion of nanoparticles of the metal or of the oxide of the metal in question).
  • the precursor (s) of the three-dimensional network is or are chosen according to the particles that it is desired to form. In a particular embodiment, this precursor is at least partly derived from plant or food waste, which represents biosources. Examples of such precursors of inorganic material include sodium silicate from rice husks.
  • the three-dimensional network of which the particles are composed is constituted at least in part by a metallic component, possibly an organic-inorganic hybrid.
  • This component can be obtained by sol-gel from at least one metal molecular precursor comprising one or more hydrolyzable groups of formula (1), (2), (3) or (4).
  • hydrolyzable group is meant a group capable of reacting with water to give a group -OH, which will undergo itself a polycondensation.
  • Said metal precursor (s) containing one or more hydrolyzable groups is chosen from an alkoxide or a metal halide, preferably a metal alkoxide, or an alkynylmetal, of formula (1), (2) , (3) or (4) below: L m xMZn-mx (2),
  • M represents Si (IV), the number in parenthesis being the valency of the atom M;
  • n the valence of the atom M
  • x is an integer from 1 to n-1;
  • x ' is an integer from 1 to 3;
  • Each Z independently of one another, is selected from a halogen atom and a group -OR, and preferably Z is a group -OR;
  • R represents an alkyl group preferably comprising 1 to 4 carbon atoms, such as a methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl or t-butyl group, preferably methyl, ethyl or i-propyl, more preferably ethyl;
  • Each R ' represents, independently of one another, a non-hydrolyzable group chosen from alkyl groups, especially C 1 -C 4 groups, for example methyl, ethyl, propyl or butyl; alkenyl groups, especially C 2 -C 4, such as vinyl, 1-propenyl, 2-propenyl and butenyl; alkynyl groups, especially C 2 -C 4, such as acetylenyl and propargyl; aryl groups, in particular C 6-10, such as phenyl and naphthyl; methacryl or methacryloxy (C1-10 al
  • L represents a monodentate or polydentate complexing ligand, preferably polydentate, for example a carboxylic acid, preferably a C 1 -C 18 carboxylic acid, such as acetic acid, a C 5-20 ⁇ -diketone, for example acetylacetone, a ⁇ -diketone, preferably a C5-20 ketoester, such as methyl acetoacetate, a C5-20 ⁇ -ketoamide preferably, such as an N-methylacetoacetamide, preferably a C3-20 a- or ⁇ -hydroxyacid, such as lactic acid or salicylic acid, an amino acid such as alanine, a polyamine such as diethylenetriamine (or DETA), or a phosphonic acid or a phosphonate;
  • a monodentate or polydentate complexing ligand for example a carboxylic acid, preferably a C 1 -C 18 carboxylic acid, such as acetic acid, a C 5-20 ⁇
  • n represents the hydroxylation number of ligand L
  • R represents a non-hydrolyzable function chosen from alkylene groups, preferably C 1 -C 12, for example methylene, ethylene, propylene, butylene, hexylene, octylene, decylene and dodecylene, and alkynylene groups, preferably C 2 -C 12, by acetylenylene (-OC-), -C ⁇ CC ⁇ C-, and -C ⁇ CC 6 H 4 -C ⁇ C-; N, N-di (C 2 -C 10) alkylene amino groups such that ⁇ , ⁇ - diethyleneamino; bis [N, N-di (C2-10 alkylene) amino] groups such as bis [N- (3-propylene) -N-methyleneamino]; C 2 -C 10 mercaptoalkylene such as mercaptopropylene; C2 io) polysulfide such as propylene disulfide or propylene tetrasulf
  • organosilane types such as
  • organoalkoxysilane of formula (3) there may be mentioned 3-aminopropyltrialkoxysilane (RO) 3Si - (CH 2 ) 3 -NH 2, 3- (2-aminoethyl) aminopropyltrialkoxysilane (RO) 3 Si ( CH 2 ) 3-NH- (CH 2 ) 2 -NH 2, 3- (trialkoxysilyl) propyldiethylenetriamine (RO) 3Si- (CH 2 ) 3 -NH- (CH 2) 2 -NH- (CH 2 ) 2 -NH 2; organosilyl azoles of the N- (3-trialkoxysilylpropyl) -4,5-dihydroimidazole type, R having the same meaning as above.
  • bis-alkoxysilane of formula (4) a bis [trialkoxysilyl] methane (RO) 3 Si-CH 2 -Si (OR) 3, a bis (trialkoxysilyl) ethane (RO) 3 Si (preferably CH 2) 2 -Si (OR) 3, a bis- [trialkoxysilyl] octane (RO) 3 Si- (CH 2) 8 Si (OR) 3, bis [trialcoxysilyHpropyl] amine (RO) 3 Si- (CH 2 ) 3-NH- (CH 2 ) 3 -Si (OR) 3, a bis- [trialkoxysilylpropyl] ethylenediamine (RO) 3Si- (CH 2) 3 -NH- (CH 2 ) 2 -NH- (CH 2 ) 3 Si (OR) 3; bis- [trialkoxysilylpropyl] disulfide (RO) 3Si- (CH 2 ) 3S 2 - (CH 2 ) 3S
  • an organic-inorganic hybrid is understood to mean a network consisting of molecules corresponding to formulas (2), (3) or (4).
  • the coloring agents may be introduced into the liquid solution in step (1) either in dry form or in the form of a liquid solution.
  • the coloring agents are nanoparticles, they can be introduced into the liquid solution of step (1) in the form of an aqueous or aqueous-alcoholic suspension comprising nanoparticles or else in dry form to be dispersed in the liquid solution of the step (1) of the process according to the invention.
  • the coloring agents are salts, they may be introduced into the liquid solution of step (1) in dry form or in dissolved form in an aqueous or aqueous-alcoholic solution.
  • the amount of coloring agents introduced during the process according to the invention can vary to a large extent, this amount depends in particular on the size and nature of the desired particles. This quantity also depends on the rate of desired coloration and the nature of the coloring agents used.
  • the process according to the invention makes it possible to obtain a higher content of dyestuffs in the particles than conventional processes.
  • the process according to the invention has the advantage of having a low loss of the reagents used initially (high utilization rate of the reagents used), and in particular a low loss of the coloring agents used. artwork.
  • at least the amount of coloring agents introduced may be substantially the same as that desired in the particles obtained.
  • the amount of coloring agents introduced in the process according to the invention, and in particular in step (1) can be from 0 to 20% greater than the quantity finally obtained in the particles of the invention.
  • the quantity of organic coloring agents introduced into step (1) of the process according to the invention is such that the quantity of coloring agents present in the particles of the invention is from 5 to 35%, preferably from 5 to 30%, and more particularly from 10 to 30%, by weight relative to the weight of the particles obtained.
  • the process according to the invention makes it possible to obtain particles having a high degree of purity. These particles do not necessarily require the implementation of subsequent processing steps, such as washing, heat treatment, milling, etc., prior to use.
  • the components, other than the coloring agent, introduced and used in the reactor are transformed, which is an important advantage because the process generates little waste.
  • the rate of use of atoms is high and complies with the requirements of green chemistry.
  • the process according to the invention may optionally comprise at least one post-treatment stage of the particles.
  • it may be a wash step with a suitable solvent, a particle heating step, and / or a coating step particles, in particular for "sealing" said particles, as described above.
  • a post-treatment step by heating the particles may be necessary to optimize the properties of the particles such as their composition or their crystalline structure.
  • a post-treatment step by heating the particles will generally be all the less necessary as the speed of the drops then particles in the weak reactor.
  • the method according to the invention makes it possible to precisely control the size of the particles at the output of the process. Indeed, there is a constant ratio, which is around 5, between the diameter of the drops of the mist used and the diameter of the particles at the output of the process.
  • the person skilled in the art knows how to determine, according to the concentration of precursor, the ratio between these two diameters. For example, if the precursor concentration is decreased by a factor of 10, then the size of the particles obtained is reduced by a cubic root factor of 10, or about 3.
  • the diameter of the drops may also be controlled in particular by the parameters the nebulization mode, for example the frequency of the piezoelectric elements used to form the fog.
  • the process according to the invention also makes it possible to precisely control the pore size at the output of the process.
  • the size of the pores is controlled by the choice of the precursor compounds of the solution, their concentrations, the pH and the presence of the coloring agents. In the present invention, it will be advantageous to limit the pore size and the specific surface area for values of less than 5 m 2 / g.
  • Another subject of the invention is a set of particles capable of being prepared according to the process defined above.
  • the particles thus prepared have the characteristics described above. This process makes it possible in particular to obtain spherical particles and in particular without aggregates. Preferably, it also allows that each particle is not constituted by the aggregation of several smaller particles.
  • a final subject of the invention is a method for preparing a material according to the invention, comprising contacting a matrix as defined above with at least one set of particles according to the invention. This process then preferably comprises a step of shaping the material as described above.
  • Preparation of the solution In a beaker, the following compounds are added in order and with magnetic stirring: 70.7 g of an aqueous acetic acid solution, 14 g of TEOS (ie 4.04 g of silica, 75% of the particles obtained) with 14.0 g of ethanol. The solution is then stirred for at least 1 hour to allow hydrolysis-condensation of TEOS. A mass of 1.35 g of organic dye (25% of the particles obtained) is added to the soil.
  • TEOS ie 4.04 g of silica, 75% of the particles obtained
  • the precursor solution is nebulized by the pyrolysis spray method according to the invention in step (1).
  • step (2) and (3) the maximum temperature of the oven in which the drying and pyrolysis steps take place is set at 250 ° C in order to preserve the coloring agent.
  • the particles are recovered directly in step (5) on the filter and optionally dried under air.
  • the particles are spherical and have a mean diameter of 1.0 micron, with a particle size distribution in the range of 0.3 to 4 microns (electron microscopy at scan), and a sphericity calculated from the microscopy images of 0.9.
  • the BJH surface area is 1.8 m 2 / g and a pore diameter of 2.4 nm.
  • Example 2 Particles of Example 1 with a Surface Coating or Shell of Silica
  • Example 1 A mass of 15.6 g of the particles of Example 1 is dispersed by magnetic stirring in 80.6 g of a hydroalcoholic solution and 0.4 g of ammonia. A mass of 3.4 g of TEOS is added gradually. Aging of at least 1 hour is necessary for the condensation hydrolysis of TEOS.
  • the particles are separated by centrifugation and then dried to consolidate the silica layer.
  • the particles are spherical and have an average diameter of 1.0 ⁇ 0.5 microns, with a particle size distribution in the range of 0.3 to 4 microns (scanning electron microscopy) and a sphericity calculated from the 0 microscopy images.
  • Figure 1 shows an image of Scanning Electron Microscopy of the particles of Example 2. The particles are well unaggregated.
  • a mass of 0.25 g of microparticles of Example 2 (with 24% dye) is dispersed in ethanol at a concentration of 20 g / L microparticles.
  • the solution is centrifuged.
  • the sediments are dried and the supernatant is analyzed by UV-Visible spectrometry.
  • the supernatant contains 0.1 g / l of dye, ie a release of 2% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Paints Or Removers (AREA)
  • Glanulating (AREA)
  • Silicon Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

La présente invention concerne des particules sphériques, denses, micrométriques, et comprenant des agents colorants. L'invention concerne également un matériau comprenant ces particules destiné à un usage en papeterie, peinture, agro-alimentaire, cosmétique ou pharmaceutique. Elle a également trait au procédé de préparation de ces particules et leur incorporation dans une matrice.

Description

Particules sphériques
et chargées en agents colorants
La présente invention concerne des particules sphériques, denses, micrométriques, et comprenant des agents colorants. L'invention concerne également un matériau comprenant ces particules destiné à un usage en papeterie, peinture, agro-alimentaire, cosmétique ou pharmaceutique. Elle a également trait au procédé de préparation de ces particules et leur incorporation dans une matrice. Etat de l'art de l'invention
Dans le domaine des encres ou plus généralement de coloration, destiné à un usage en papeterie, peinture, agro-alimentaire, cosmétique ou pharmaceutique, il est courant d'utiliser des colorants organiques ou inorganiques qui sont des composés organiques ou leurs sels ou encore des pigments.
L'encapsulation des colorants, en particulier les composés organiques, dans une particule confère divers avantages, tels que conserver la stabilité du colorant quel que soit le pH, éviter la dégradation chimique du colorant par le solvant ou par un constituant tiers de la formulation, pouvoir utiliser un colorant habituellement non hydrosoluble dans l'eau ou éviter sa migration ou sa dispersion non contrôlée vers le matériau dans lequel il est intégré ou le support papier, dans le cas de l'encre.
Plusieurs procédés existant d'encapsulation sont décrits dans la littérature :
On peut citer l'encapsulation dans une capsule organique polymère submicronique de 0,05-0,3 microns, comme le brevet US 6841591 de Vincent et al. dans le domaine des encres et des peintures. Cependant, des résidus de monomères ou solvants de synthèse, issus de la polymérisation, peuvent subsister et être néfastes pour l'application, notamment pour Γ agro-alimentaire ou cosmétique. De plus la résistance à la dégradation et la capacité de rétention du colorant par ces capsules polymériques n'est pas forcément optimale.
II a également été décrit l'encapsulation d'un colorant par imprégnation / adsorption à la surface de microparticules poreuses de silice avec ou sans agent de couplage, comme le brevet US 5520917 de Mitzuguchi et al. ou les travaux de Ren et al. (Ren, Tie-Zhen, YUAN, Zhong- Yong, et SU, Bao-Lian. Encapsulation of direct blue dye into mesoporous silica-based materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, vol. 300, no 1, p. 79-87), mais la concentration en colorant dans la porosité est limitée et un relargage peut apparaître dans le temps.
Enfin, on peut citer l'encapsulation d'un colorant dans des capsules de 1-2 microns en une étape par émulsion sol-gel, comme le brevet US 7923030 de LAPIDOT et al., mais le procédé nécessite des quantités de solvants organiques, tels que des alcanes linéaires, cyclohexane ou kérosène, qui peuvent dénaturer le colorant et aussi rendre le procédé difficilement industrialisable et/ou utilisable dans les domaines agro-alimentaire, cosmétique et pharmaceutique. En raison du procédé utilisé, la quantité de colorants présente dans les capsules obtenues est faible.
La demande de brevet US 2013/091637 de Lischewski et al décrit un procédé d'encapsulation d'un colorant hydrosoluble dans un « pigment » de silice en une étape par spray ou séchage par atomisation avec l'appareil Buchi B290, sous forme de sphères, avec un relargage du pigment inférieur à 0,5 %. La solution précurseur est à base de TEOS (Tetraethoxysilane) avec une hydrolyse en milieu hydro-alcoolique, catalysée de préférence avec l'acide acétique et un taux en colorant de 0,03-0, 15g de colorant/g TEOS, soit 9 % à 34 % en masse en colorant dans la particule finale. Le domaine de l'invention couvre principalement les produits agro-alimentaires, pharmaceutiques et cosmétiques. Dans le brevet US 8168095, Alberius et al. décrivent également un procédé d'encapsulation d'un colorant dans une capsule de silice en une étape par atomisation, sous forme de sphères, avec un relargage du colorant par la capsule entre 0,5 % et 5 %. La solution précurseur est à base de TEOS (Tetraethoxysilane) avec une hydrolyse en milieu hydro-alcoolique, catalysée de préférence à pH 1,5-2,5 avec l'acide chlorhydrique et taux en colorant de 0 % à 25 % en masse en colorant dans la particule finale. Le domaine de l'invention couvre principalement les détergents et cosmétiques.
De manière générale, dans le domaine des matériaux, il est courant d'utiliser des particules pour conférer à un matériau des propriétés désirées, car il existe une très large gamme de particules, celles-ci permettant d'obtenir une gamme tout aussi large de propriétés. Les propriétés conférées au matériau par les nano et/ou microparticules sont généralement liées aux propriétés des particules elles-mêmes, telles que leurs propriétés morphologiques, structurales et/ou chimiques notamment, les propriétés conférées au matériau peuvent aussi provenir d'agents incorporés au sein des particules.
Les particules de morphologie sphérique sont particulièrement intéressantes dans différents domaines. Il est connu en particulier de la littérature que les particules de morphologie sphérique sont particulièrement intéressantes en colorimétrie, car plus les particules sont sphériques, plus la couleur est intense. La gamme de taille des microsphères a aussi son importance pour les encres. Ainsi, la mise en suspension de particules sphériques et micrométriques entre 0,5 et 10 microns semble particulièrement intéressante pour les encres, car plus les particules sont de faibles diamètres, plus les particules vont diffuser et seront faciles à disperser.
La plupart des particules de l'art antérieur qui sont dites sphériques sont toutefois soit des agrégats de particules non sphériques, l'agrégat ayant lui-même une forme s' approchant d'une sphère, soit présentent une sphéricité non satisfaisante. Différents procédés ont été développés pour optimiser la sphéricité des particules synthétisées. La plupart de ces procédés sont optimisés pour un seul type de particules, par exemple un type chimique (les particules de silice par exemple) ou une morphologie (les particules poreuses par exemple). Il convient de noter que des particules de silice sont déjà connues pour d'autres fonctions, notamment en tant qu'agents abrasifs ou agents rhéologiques dans les formulations d'encres, cosmétiques ou agro-alimentaires.
Il serait par conséquent intéressant de disposer de particules à haut coefficient de sphéricité contenant des agents colorants afin de conférer une propriété colorante aux particules et à des matrices les contenant.
La dispersion de particules dans une matrice est également une technique connue pour conférer une propriété à ladite matrice. Par exemple, des pigments peuvent être dispersés dans des matrices pour leur conférer des propriétés de couleur. La nature des particules, leurs propriétés de surface, et éventuellement leur enrobage doivent être optimisés pour obtenir une dispersion satisfaisante dans la matrice. L'optimisation de la dispersabilité des particules dans la matrice va dépendre à la fois de la nature des particules et de la nature de la matrice. Il est important de pouvoir disperser de façon homogène les particules dans la matrice, afin de répartir de façon homogène la propriété recherchée dans l'ensemble du volume de la matrice. Lorsque les particules s'agglomèrent dans la matrice, les propriétés recherchées ne sont pas conférées à la matrice de façon homogène et le résultat obtenu n'est pas satisfaisant. Dans le cas spécifique de l'utilisation de particules pigmentaires submicroniques à fort pouvoir colorant/opacifiant théorique, l'agrégation de ces dernières conduit à n'avoir que les particules situées à la surface de l'agrégat en interaction avec la lumière. Il en résulte que toutes les particules situées dans le volume de l'agrégat deviennent inefficaces vis-à-vis de la propriété de coloration recherchée.
Il serait par conséquent très intéressant de disposer de nouveaux procédés permettant d'obtenir des particules pouvant être dispersées de manière satisfaisante dans n'importe quelle matrice, et ainsi apporter la propriété colorante à la matrice et ceci de manière homogène et pleinement efficiente.
Dans ce cadre, la Demanderesse a mis au point un procédé simple permettant de préparer des particules parfaitement sphériques micrométriques et colorées, de différentes natures chimiques, contenant des colorants. De façon surprenante, les particules obtenues par ce procédé, quelle que soit leur nature chimique, restent à l'état individualisé et ne forment pas d'agrégats aussi bien à l'état sec que lorsqu'elles sont dispersées dans une matrice. Le procédé selon l'invention rend possible un taux de chargement en agents colorants plus élevé que les procédés classiques et notamment les procédés par imprégnation de particules poreuses en post traitement.
Le procédé selon l'invention permet d'obtenir des particules sphériques micrométriques et chargées en agents colorants, la formation des particules et l'incorporation des agents colorants étant concomitantes. Résumé de l'invention
Le premier objet de la présente invention est un ensemble de particules caractérisé en ce qu'elles sont sphériques, denses, micrométriques, et en ce qu'elles comprennent des agents colorants organiques. De manière intéressante, la quantité d'agents colorants dans les particules selon l'invention peut être élevée. Plus spécifiquement, la quantité d'agents colorants peut varier de 5 à 35%, de préférence de 5 à 30 %, et plus particulièrement de 10 à 30%, en masse par rapport à la masse des particules.
Un autre objet de l'invention est un matériau comprenant un ensemble de particules selon l'invention et une matrice.
L'invention concerne aussi un procédé de préparation d'un ensemble de particules selon l'invention.
L'invention a trait également à un procédé de préparation d'un matériau selon l'invention, comprenant la mise en contact d'une matrice avec un ensemble de particules selon l'invention.
Brève description des figures
Figure 1 : Image MEB de particules de silice chargées en colorant de l'exemple 2 - échelle 5 μιη - Diamètre moyen Ι,Ομιη ± 0,5μιη de coefficient de circularité de 0,95 ± 0,15 Figure 2 : Représentation schématique d'un réacteur adapté pour la mise en œuvre du procédé selon l'invention.
Description détaillée de l'invention Le premier objet de la présente invention est un ensemble de particules, caractérisé en ce que les particules sont sphériques, denses, micrométriques et en ce qu'elles présentent des agents colorants incorporés. Les particules selon l'invention sont sphériques, c'est-à-dire qu'elles ont un coefficient de sphéricité en 3D ou de circularité en 2D supérieur ou égal à 0,75. De préférence, le coefficient de sphéricité est supérieur ou égal à 0,8, supérieur ou égale à 0,85, supérieur ou égal à 0,9, ou encore supérieur ou égal à 0,95.
Le coefficient de circularité en 2D peut être calculé par exemple par mesure du rapport d'aspect au moyen de tout logiciel adapté à partir d'images, par exemple d'images obtenues par microscopie, en particulier microscopie électronique à balayage ou en transmission, des particules. Le coefficient de circularité C d'une particule, en vue 2D, est le rapport :C = 4π Surface Pour un cercle parfait, ce rapport est égal à 1.
Périmètre2 &
(CAVARRETTA, L, O'SULLIVAN, C, et COOP, M. R. Applying 2D shape analysis techniques to granular materials with 3D particle geometries. POWDERS AND GRAINS 2009, 2009, vol. 1145, p. 833-836).
Dans un mode de réalisation, l'invention concerne un ensemble de particules telles que définies ci-avant. Dans ce mode de réalisation, l'ensemble peut éventuellement contenir de façon ponctuelle des particules n'ayant pas les critères requis de sphéricité dans la mesure où la sphéricité moyenne en nombre sur l'ensemble des particules répond aux critères fixés dans la présente invention. Ainsi, les termes « ensemble de particules sphériques » désigne une pluralité de particules dont au moins 50% des particules en nombre présentent une sphéricité telle que définie ci-avant. De préférence, au moins 60%, au moins 70%, au moins 80%, au moins 90%, au moins 95% en nombre des particules de l'ensemble considéré ont une sphéricité telle que définie ci-dessus.
Les particules selon l'invention sont micrométriques, c'est-à-dire que le diamètre des particules est compris entre 0,1 et 100 micromètres, en particulier entre 0,1 et 20 micromètres. Dans un mode de réalisation préféré, le diamètre moyen des particules est compris entre 0,3 et 10 micromètres ou entre 0,5 et 5 ou encore entre 0,5 et 2 micromètres. L'homme du métier connaît les techniques adaptées pour déterminer le diamètre des particules ou des ensembles de particules selon l'invention, et il connaît également le degré d'incertitudes existant sur ces mesures. Par exemple, le diamètre moyen des particules d'un ensemble, l'écart-type et la distribution des tailles notamment peuvent être déterminés par des études statistiques à partir d'images de microscopie, par exemple de microscopie électronique à balayage ou en transmission. Plus spécifiquement, il a été obtenu des particules avec un diamètre moyen de 1,0 micron et une distribution granulométrique en nombre de 0,3 à 4 microns.
Dans le cas où les particules sont au sein d'un ensemble, les valeurs de diamètres ci- dessus peuvent correspondre au diamètre moyen des particules en nombre, même si certaines des particules de l'ensemble ont des diamètres en dehors de cette gamme. Avantageusement, toutes les particules de la population ont un diamètre tel que défini ci- dessus.
Dans un mode de réalisation, l'écart-type relatif à la taille des particules dans une population de particules selon l'invention est inférieur ou égal à 50%, de préférence inférieur ou égal à 20%.
La distribution des tailles des particules dans l'ensemble de particules selon l'invention peut être monomodale ou multimodale. L'utilisation de particules micrométriques et sphériques dans la présente invention permet de favoriser les propriétés de dispersion de particules, car elles ne sont pas trop grosses (la sédimentation est ainsi minimisée), et de ne pas avoir les inconvénients (difficultés de mise en œuvre, toxicité, faible pouvoir opacifiant...) des nanoparticules. De plus, cela permet d'avoir des peintures ou encres de faible épaisseur (par exemple inférieure à 50 microns).
Par particule, on désigne dans la présente invention une particule dont le réseau tridimensionnel est constitué au moins en partie par un composant inorganique, c'est-à- dire qui n'est pas issu de la chimie du carbone (hormis CO32"). La diversité chimique des composants inorganiques est bien connue de l'homme du métier. Selon un mode particulier, les particules selon l'invention sont denses.
Par particules denses, on entend des particules qui ont une faible surface spécifique, plus spécifiquement inférieure à 15 m2/g, de préférence inférieure à 5 m2/g (et plus particulièrement comprise entre 0,01 et 5 m2/g), et/ou qui présentent des pores de faible diamètre, par exemple des pores de diamètre inférieur à 5 nm (et plus particulièrement comprise entre 0,1 et 5 nm). La taille des pores doit être inférieure à la taille de l'agent colorant afin de limiter le relargage de l'agent colorant vers l'extérieur de la particule. Les mesures des diamètres de pores et de surfaces spécifiques peuvent être classiquement déterminées par porosimétrie à l'azote et la méthode « BJH» du nom de ses auteurs Barett, Joyner et Halenda.
Selon un mode particulier de l'invention, les particules présentent un taux de relargage faible. Par exemple, le taux de relargage des colorants peut être inférieur ou égal à 3%, de préférence inférieur ou égal à 2 %, en en masse. Cette mesure peut être notamment obtenue en mesurant le relargage par immersion des particules dans un solvant déterminé avec mesure par spectroscopie UV- Visible de la concentration en colorant non contenue dans les particules (i.e. colorant relargué) (en utilisant une gamme étalon de colorant mis en solution dans le même solvant à différentes concentrations). Dans un mode particulier de l'invention, de par leur haut coefficient de sphéricité, les particules selon l'invention ne sont pas agrégées : chaque particule de l'ensemble n'est pas liée à d'autres particules par des liaisons chimiques fortes telles que des liaisons covalentes, ce qui a comme avantage de formuler plus aisément ses particules dans les matrices
L'ensemble de particules selon l'invention peut éventuellement contenir de façon ponctuelle des particules ne répondant pas à cette caractéristique, dans la mesure où le critère de non agrégation est respecté par au moins 50% en nombre des particules de l'ensemble. De préférence, au moins 60%, au moins 70%, au moins 80%, au moins 90%, au moins 95% en nombre des particules de l'ensemble considéré sont non agrégées. De préférence, une particule de l'ensemble selon l'invention n'est pas constituée par l'agrégation de plusieurs particules de taille inférieure. Ceci peut être clairement visualisé par exemple par des études en microscopie, notamment en microscopie électronique à balayage ou en transmission. Ceci signifie que les particules selon l'invention ne peuvent être constituées que de domaines de taille nettement inférieure à celle des particules selon l'invention. Une particule selon l'invention est de préférence formée d'au moins deux domaines. Un domaine est constitué de matière ayant la même nature chimique et la même structure, pouvant être ponctuel ou étendu de façon continue au sein de la particule. A titre de comparaison, les techniques d' atomisation classiquement utilisées dans l'art fournissent généralement des particules non sphériques agrégées. Les objets qui sont formés par ces agrégats de particules peuvent être sphériques.
Dans un mode de réalisation, la composante inorganique comprend plusieurs éléments chimiques, de préférence de 2 à 16 éléments chimiques différents, ce nombre d'éléments ne prenant pas en compte les éléments O et H éventuellement compris dans la composante inorganique. Il s'agit alors de composantes inorganiques éventuellement hétérogènes, c'est-à-dire qui comprennent différents éléments dont la stœchiométrie est de préférence contrôlée par le procédé de synthèse. Les composantes inorganiques hétérogènes peuvent soit comprendre plusieurs éléments chimiques (sauf O et H), de préférence tous les éléments chimiques (sauf O et H) constituant la composante inorganique, au sein du même domaine, soit comprendre des domaines formés chacun d'un seul élément chimique (sauf O et H). Dans un mode de réalisation particulier, chaque domaine de la composante inorganique hétérogène comprend un seul élément chimique (sauf O et H).
Bien entendu, les particules selon l'invention peuvent comprendre une proportion minime, par exemple inférieure ou égale à 5% en masse, de contaminants qui peuvent avoir une nature chimique différente de celle desdites particules. Dans un mode de réalisation préféré, les composants inorganiques sont de la silice, en particulier de la silice amorphe, de l'alumine, en particulier de l'alumine amorphe ou cristalline, de la boehmite, de l'oxyde de zinc, en particulier hexagonal, éventuellement dopées, par exemple dopées à l'aluminium, du dioxyde de titane, en particulier de Γ anatase ou du rutile, de l'oxyde mixte de titane et silicium, en particulier d' anatase, de la montmorillonite, en particulier monoclinique, de l'hydrotalcite, en particulier hexagonale, du dihydroxyde de magnésium, en particulier hexagonal, de l'oxyde de magnésium en particulier periclase, de l'oxyde d'yttrium, en particulier cubique, éventuellement dopées à l'europium et/ou à l'erbium et/ou à l'ytterbium, du dioxyde de cérium, du titanate de calcium cuivre, du titanate de baryum, de l'oxyde de fer, de préférence sous forme hématite, du sulfate de magnésium, de préférence orthorhombique.
Selon un mode particulier, les particules selon l'invention sont composées d'oxyde métallique, de préférence de l'alumine, en particulier de l'alumine amorphe ou cristalline, de boehmite, de silicate, de silice, en particulier de silice amorphe, ou de la mullite.
Dans un mode de réalisation préféré, les composants inorganiques sont de la silice ou silicate de sodium, en particulier de la silice amorphe. Selon un mode particulier de l'invention, le réseau tridimensionnel dont sont composées les particules est constitué au moins en partie par une composante métallique, éventuellement hybride organique-inorganique. Cette composante peut être obtenue par voie sol-gel à partir d'au moins un précurseur moléculaire métallique comportant un ou plusieurs groupes hydrolysables, de formules (1), (2), (3) ou (4) définies plus bas.
Les particules selon l'invention comprennent des agents colorants. On parle également de particules chargées en agents colorants. Les agents colorants sont des composés organiques, éventuellement présents sous forme de sels. Leur incorporation est réalisée pendant la préparation de la solution précurseur.
Une large variété de colorant peut être adaptée à cette invention. De préférence, l'agent colorant est compatible avec le milieu de la solution précurseur et/ou est choisi pour qu'il ne se dégrade pas aux températures à appliquer lors du procédé de préparation des particules, qui peut être généralement comprise entre 100 et 300°C.
L'agent colorant peut être choisi, conformément à l'application de l'invention et à la réglementation en vigueur, comme la liste des colorants de la « Food and Drug Administration » (FDA), en particulier les agents colorants FD&C ou D&C.
On peut notamment citer les agents colorants suivants : Bleu brillant (E133; CI. 42090), tartrazine (E102, CI. 18140), azorubine (El 12; CI. 14720), EXT. D&C Vert No. 1 (CI. 10020), EXT. D&C Jaune No. 7 (CI. 10316), EXT. D&C Jaune No. 1 (CI. 13065), EXT. D&C Orange No. 3 (CI. 14600), FD&C Rouge No. 4 (CI. 14700), D&C Orange No. 4 (CI. 15510), FD&C Jaune No. 6 (CI. 15985), D&C Rouge No. 2 (CI. 16185), D&C Rouge No. 33 (CI. 17200), EXT. D&C Jaune No. 3 (CI. 18820), FD&C Jaune No. 5 (CI. 19140), D&C Brun No. 1 (CI. 20170), D&C Black (ou noir) No. 1 (CI. 20470), FD&C Vert No. 3 (CI. 42053), FD&C Bleu No. 1 (CI. 42090), D&C Bleu No. 4 (CI. 42090), D&C Rouge No. 19 (CI. 45170), D&C Rouge No. 37 (CI 45170), EXT. D&C Rouge No. 3 (CI. 45190), D&C Jaune No. 8 (CI. 45350), D&C Orange No. 5 (CI. 45370), D&C Rouge No. 21 (CI. 45380), D&C Rouge No. 22 (CI. 45380), D&C Rouge No. 28 (CI. 45410), D&C Rouge No. 27 (CI. 45410), D&C Orange No. 10 (CI. 45425), D&C Orange No. 11 (CI. 45425), FD&C Rouge No. 3 (CI. 45430), D&C Jaune No. 11 (CI. 47000), D&C Jaune No. 10 (CI. 47005), D&C Vert No. 8 (CI. 59040), EXT. D&C Violet No. 2 (CI. 60730), D&C Vert No. 5 (CI. 61570) ou FD&C Bleu No. 2 (CI. 73015).
On peut également citer des agents colorants de type «acides azoïques», en particulier tels que ceux décrits dans le COLOUR INDEX INTERNATIONAL, 3e édition sous l'appellation ACID, comme par exemple : Disperse Red 17, Acid Yellow 9, Acid Black 1, Acid Yellow 36, Acid Orange 7, Acid Red 33, Acid Red 35, Acid Yellow 23, Acid Orange 24, Acid Violet 43, Acid Blue 62, Acid blue 9 -Acid Violet 49, Acid Blue 7. On peut également citer des agents colorants d'origine naturelle, comme des extraits de raisin, des extraits de carthame, des extraits de cochenille, des extraits de betterave, curcuma, riboflavine, xanthophylle, les caroténoïdes, carminé, acide carminique, anthocyanines, chlorophylles, etc. Pour la présente invention, le colorant peut être cationique, anionique, neutre, amphotère, zwitterio nique ou amphiphile.
De préférence, les agents colorants sont des agents (ou molécules) chargés positivement. Ainsi, ils sont plus compatibles avec les particules de silice chargées négativement à pH acide, ce qui favorise la rétention du colorant dans la particule.
Les particules selon l'invention peuvent être chargées d'un ou de plusieurs agents colorants organiques. Lorsqu'il y a plusieurs agents colorants dans une même particule, il peut s'agir d'un mélange d'agents colorants organiques, d'un mélange d'agents colorants inorganiques ou d'un mélange d'agents colorants organiques et inorganiques.
L'encapsulation des agents colorants organiques dans des particules selon l'invention permet de formuler ces agents dans n'importe quel milieu, qu'il soit hydrophile ou hydrophobe et ainsi de rendre pleinement compatibles et donc efficaces ces agents organiques dans différents types de matrices. Cela peut permettre également de protéger ou de stabiliser les agents colorants organiques, lorsque ceux-ci sont utilisés dans un milieu agressif. Cela peut permettre aussi d'éviter des problèmes de transfert non désirés de ces agents colorants vers des supports ou des matériaux autres que ceux dans lesquels ils se trouvent.
Les particules selon l'invention présentent des agents colorants dont la quantité peut varier dans une large mesure, qui dépend notamment de la taille et de la nature des particules. Cette quantité dépend également du taux de coloration désiré et de la nature des agents colorants mis en œuvre. Par exemple, le ratio des agents colorants peut varier de 5 à 35%, de préférence de 5 à 30%, et plus particulièrement de 10 à 30%, en masse par rapport à la masse des particules. Par exemple, la quantité d'agents colorants peut être de 15-25% en poids et la quantité de particules de 85-75% en poids.
Comme spécifié ci-dessus, le procédé selon l'invention permet d'obtenir un taux en agents colorants dans les particules plus élevé que les procédés classiques. En outre, le procédé selon l'invention présente l'avantage d'avoir une perte faible des réactifs mis en œuvre au départ (taux d'utilisation des réactifs mis en œuvre élevé), et en particulier une perte faible des agents colorants mis en œuvre.
Il est aussi possible d'ajouter une étape de post-traitement qui consiste à rendre étanche, notamment par voie chimique ou thermique, au moins momentanément, les particules, ce qui a notamment pour but de prolonger la non-libération de l'agent colorant. Ainsi, les particules selon l'invention peuvent présenter des coquilles (ou revêtements), comme une coquille à base de silice, obtenue à partir d'une réaction sol-gel à partir d'organosilanes. La coquille peut être permanente ou provisoire, éventuellement dégradable. La coquille peut donc être éliminée par tout moyen, en particulier en utilisant des coquilles à base de polymères dégradables, ou par l'action d'un stimulus extérieur de type pH (par dissolution), mécanique (coquille fragile), thermique (coquille qui fond par élévation de température) ou optique (coquille qui se désagrège sous irradiation). Un autre objet de l'invention est un matériau comprenant un ensemble de particules selon l'invention et une matrice. Plus spécifiquement, les particules selon l'invention sont dispersées de façon homogène dans ladite matrice.
Selon la présente invention, le terme matrice désigne n'importe quel matériau pouvant avantageusement bénéficier de l'inclusion de particules selon l'invention. Il peut s'agir notamment de matrices solides ou liquides, quelle que soit la viscosité de la matrice liquide de départ.
Dans un mode de réalisation, la matrice est une matrice souple, rigide, ou solide, utilisée à titre de revêtement, par exemple une matrice céramique ou polymérique, en particulier une matrice polymérique de type peinture, couches sol-gel, vernis ou un de leur mélange.
Le matériau selon l'invention peut être destiné à un usage en papeterie, peinture, agroalimentaire, cosmétique ou pharmaceutique. Dans un mode particulier, le matériau est une formulation d'encre, en particulier utilisable pour l'écriture ou l'imprimerie. L'inclusion des particules selon l'invention dans une matrice permet de conférer la propriété colorante à la matrice. L'inclusion des particules dans la matrice peut être effectuée par les techniques classiquement utilisées dans l'art, notamment par agitation mécanique lorsque la matrice est liquide.
Le matériau selon l'invention peut être notamment sous forme de liquide, poudre, de billes, de pastilles, de granulés, de films, de mousse, les opérations de mise en forme ou de préparation de ces matériaux étant réalisées par les techniques classiques connues de l'homme du métier.
En particulier, le procédé de mise en forme ou de préparation du matériau ne nécessite pas d'étape supplémentaire de dispersion des particules au sein de la matrice par rapport au procédé de mise en forme classiquement utilisé pour les matrices sans inclusion de particules. Le procédé de mise en forme peut de préférence être mis en œuvre sur les équipements et filières de transformation utilisés classiquement pour les matrices sans inclusion de particules. La dispersion des particules au sein de la matrice peut, dans certains modes de réalisation, être réalisée sans agent dispersant chimique supplémentaire. Dans un mode de réalisation particulier, la dispersion des particules au sein de la matrice est réalisée en présence d'un agent dispersant chimique tel qu'un surfactant. L'homme du métier est à même de déterminer si l'utilisation d'un agent dispersant est nécessaire pour obtenir la dispersion recherchée et d'adapter la quantité d'agent dispersant à utiliser le cas échéant. Par exemple, l'agent dispersant peut être utilisé en une quantité de 0,1 à 50% en masse par rapport à la masse de particules, notamment en une quantité de 0,5 à 20% en masse par rapport à la masse de particules.
Les particules selon l'invention ont la particularité de se disperser de façon substantiellement homogène en volume dans la matrice, quelles que soient leur nature chimique, leur morphologie et la nature de la matrice. Cela signifie que la densité de particules par unité de volume est la même en tout point de la matrice. Dans le cas d'une matrice solide, la densité de particules par unité de surface est de préférence la même quelle que soit la surface de la matrice considérée, qu'il s'agisse d'une surface d'extrémité de la matrice, ou d'une surface « à coeur » obtenue par coupe du matériau par exemple. Ainsi, la propriété colorante conférée à la matrice par l'inclusion des particules selon l'invention est répartie de façon substantiellement homogène dans l'ensemble du volume de matrice.
Le matériau selon l'invention peut comprendre des particules selon l'invention en toute proportion adaptée pour lui conférer les propriétés désirées, et en particulier la coloration désirée. Par exemple, le matériau peut comprendre de 0,1 à 80% en masse de particules par rapport à la masse totale de matrice + particules, de préférence de 1 à 60% en masse, en particulier de 2 à 50% en masse.
De préférence, les particules selon l'invention sont des particules sphériques non déformables. Aussi, la surface de chaque particule qui est en contact avec d'autres particules est très faible. Dans un mode de réalisation, le rayon de courbure du ménisque formant le contact entre deux particules différentes de l'ensemble est inférieur à 5%, de préférence inférieur à 2%, du rayon de chacune des deux particules, en particulier au sein d'une matrice ou sous forme de poudre.
La sphéricité des particules selon l'invention permet également, pour un même taux de charge dans une matrice liquide, d'obtenir une viscosité plus faible qu'avec des particules non sphériques. Un autre objet de la présente invention est un procédé de préparation d'un ensemble de particules selon l'invention. Le procédé selon l'invention est un procédé dit « par pyrolyse d'aérosol » (ou spray pyrolyse) qui est mis en œuvre à des températures de séchage et non de pyrolyse. Ce procédé est un procédé amélioré par rapport au procédé de pyrolyse d'aérosol notamment décrit dans la demande FR 2 973 260. Plus précisément, le procédé selon l'invention est généralement mis en œuvre dans un réacteur. Ce procédé comprend les étapes, non dissociables et continues dans un même réacteur, suivantes :
(1) la nébulisation dans un réacteur d'une solution liquide contenant un ou des précurseurs du réseau tridimensionnel des particules, à une concentration molaire donnée dans un solvant, de sorte à obtenir un brouillard de gouttelettes de solution, la solution liquide comprend en outre au moins un agent colorant, tel que défini ci-dessus,
(2) le chauffage du brouillard obtenu à l'étape (1) à une température dite de séchage apte à assurer l'évaporation du solvant et des composés volatils et la formation de particules,
(3) le chauffage des particules ainsi formées à une température (dite de pyrolyse) apte à assurer la transformation du ou des précurseurs pour former la partie inorganique dudit réseau,
(4) optionnellement la densification des particules de l'étape (3), et
(5) la récupération des particules ainsi formées. L'étape (1) de nébulisation est réalisée de préférence à une température de 10 à 40°C, et/ou de préférence pendant une durée inférieure ou égale à 10 secondes, en particulier inférieure ou égale à 5 secondes. A l'étape (1), la solution liquide est en général sous forme de solution aqueuse ou hydro-alcoolique ou sous forme d'un sol colloïdal. Plus spécifiquement, la solution liquide de l'étape (1) est introduite dans un réacteur par nébulisation.
L'étape (2) de chauffage (séchage) est réalisée de préférence à une température de 40 à 120°C, et/ou de préférence pendant une durée inférieure ou égale à 10 secondes, en particulier comprise entre 1 et 10 secondes.
L'étape (3), dite de pyrolyse, est réalisée de préférence à une température de 120 à 300°C, et/ou de préférence pendant une durée inférieure ou égale à 30 secondes, en particulier comprise entre 10 et 30 secondes.
L'étape (4) optionnelle de densification ou de consolidation peut être réalisée dans une large gamme de températures, notamment entre 200 et 600°C. Cette étape est réalisée de préférence à une température de 200 à 400°C lorsque les particules que l'on veut préparer sont au moins en partie sous forme cristallisée. Lorsque l'on cherche à obtenir des particules denses mais non cristallisées, en particulier des particules amorphes, la température de « densification » peut être plus faible, par exemple elle peut être aux alentours de 200°C à 300°C, notamment pour la silice amorphe. De préférence, l'étape de densification est réalisée pendant une durée inférieure ou égale à 30 secondes, en particulier comprise entre 20 et 30 secondes.
L'étape (5) de récupération est réalisée de préférence à une température inférieure à 100°C, et/ou de préférence pendant une durée inférieure ou égale à 10 secondes, en particulier inférieure ou égale à 5 secondes. L'étape (5) de récupération des particules est réalisée de préférence par dépôt des particules sur un filtre en sortie du réacteur.
L'avantage du procédé selon l'invention est qu'il peut être réalisé en un temps relativement court. La durée du procédé mettant en œuvre les étapes successives spécifiées ci-dessus peut être par exemple inférieur à quelques minutes (par exemple 2 ou 3 minutes, voire une minute).
Les températures de chacune des étapes peuvent se situer en dehors des gammes de températures fournies ci-dessus. En effet, pour les mêmes particules, la température à appliquer pourra dépendre de la vitesse à laquelle les gouttelettes, puis les particules circulent dans le réacteur. Plus les gouttelettes et ensuite les particules circulent vite dans le réacteur, plus la température de consigne doit être élevée pour obtenir le même résultat. Bien entendu, la température maximale appliquée dans le réacteur dépend de l'agent colorant choisi pour ne pas dégrader ce dernier.
De préférence, les étapes (2), (3) et éventuellement (4) sont réalisées dans le même réacteur. L'ensemble des étapes du procédé, en particulier les étapes (2), (3) et éventuellement (4), sont réalisées dans la continuité l'une de l'autre. Le profil de température appliqué dans le réacteur est adapté en fonction des particules que l'on souhaite former pour que ces deux ou trois étapes aient lieu les unes après les autres. De préférence, la température dans le réacteur est ajustée par l'intermédiaire d'au moins un, de préférence 2 ou 3, éléments chauffants dont les températures peuvent être définies indépendamment. De préférence, les températures des étapes séquentielles (2), (3) et éventuellement (4) sont croissantes.
Le procédé selon la présente invention comprend de préférence en outre, entre l'étape (3), ou éventuellement l'étape de densification des particules (4) lorsqu'elle est mise en œuvre, et l'étape de récupération des particules (5), une étape (4') de trempe des particules. L'étape de trempe (4') est de préférence réalisée par entrée d'un gaz, de préférence de l'air, froid sur tout ou partie de la circonférence du réacteur. Un gaz est dit froid dans la présente invention s'il est à une température comprise entre 15 et 50°C, de préférence entre 15 et 30°C. Dans un mode de réalisation, le gaz entrant dans le réacteur est un gaz différent de l'air. En particulier, il peut s'agir d'un gaz neutre (tel que l'azote ou l'argon), d'un gaz réducteur (tel que l'hydrogène ou le monoxyde de carbone), ou d'un quelconque mélange de tels gaz.
Le procédé est mis en œuvre de préférence en absence de flux de gaz vectorisant le brouillard depuis le bas du réacteur. Le flux laminaire permettant d'amener la matière dans la zone dans laquelle la température est plus forte est avantageusement créé uniquement par l'aspiration en haut du réacteur, produisant une dépression par exemple de l'ordre de quelques pascals ou quelques dizaines de pascals.
Un tel mode de réalisation permet d'utiliser un réacteur sans entrée de gaz dans sa partie inférieure, limitant ainsi les perturbations du procédé et les pertes, et optimisant ainsi le rendement du procédé et la distribution en taille des particules obtenues.
Dans un autre mode de réalisation, le réacteur dans lequel le procédé est mis en œuvre comprend également une entrée de gaz au niveau où le brouillard est formé. Le gaz qui entre dans le réacteur à ce niveau est de préférence de l'air.
De préférence, le procédé selon l'invention ne comprend pas d'autre étape de chauffage que celles mises en œuvre à l'intérieur du réacteur de pyrolyse d'aérosol.
De par la capacité du procédé selon l'invention d'être rapide, et l'existence éventuelle d'une étape de trempe à la fin du procédé de préparation des particules selon l'invention, celles-ci peuvent comprendre n'importe quel constituant chimique qu'il est possible de densifier, notamment de cristalliser, même les phases métastables. En effet, les conditions particulières mises en œuvre dans le procédé permettent de préserver des composés dont la température de dégradation est inférieure à la température effectivement appliquée, car le temps passé à haute température est très court. Dans ce contexte, les termes « haute température » désignent de préférence une température supérieure à 40°C. Le « temps passé à haute température » désigne généralement le temps passé pour les étapes de séchage, pyrolyse et densification. De préférence, le temps passé à haute température n'excède pas 70 secondes, en particulier il est compris entre 30 et 70 secondes. De préférence, la trempe est caractérisée par une vitesse de refroidissement supérieure ou égale à 100°C par seconde.
L'homme du métier est à même d'ajuster le temps et la température passée dans chacune des étapes en fonction des composés introduits à l'étape (1).
La figure 2 présente un exemple de schéma de réacteur pour la mise en œuvre du procédé selon l'invention. La partie basse (1) du réacteur comprend la solution liquide contenant un précurseur ou des précurseurs du réseau tridimensionnel à une concentration molaire donnée dans un solvant. Cette solution est nébulisée au niveau de la partie intermédiaire (2), et les gouttelettes montent par aspiration dans le réacteur. L'entrée de gaz froid, en particulier d'air froid, permet une trempe des particules. La partie supérieure (3) du réacteur est également à une température froide (inférieure à 100°C, par exemple comprise entre 15 et 50°C).
Le précurseur ou les précurseurs du réseau tridimensionnel des particules peut être ou peuvent être de toute origine, il(s) est(sont) introduit(s) à l'étape (1) du procédé sous forme d'une solution liquide, en particulier une solution aqueuse ou hydro alcoolique contenant les ions métalliques (comme un sel organique ou minéral du métal considéré) ou les molécules précurseurs (comme des organosilanes) ou encore sous forme d'un sol colloïdal (comme une dispersion colloïdale de nanoparticules du métal ou de l'oxyde du métal considéré). Le ou les précurseurs du réseau tridimensionnel est ou sont choisi(s) en fonction des particules que l'on souhaite former. Dans un mode de réalisation particulier, ce précurseur est au moins en partie issu de rebuts de plantes ou alimentaires, qui représentent des biosources. Comme exemples de tels précurseurs de matériau inorganique, on peut notamment citer le silicate de sodium issu des coques de riz.
Comme spécifié précédemment, selon un mode particulier de l'invention, le réseau tridimensionnel dont sont composées les particules est constitué au moins en partie par une composante métallique, éventuellement hybride organique-inorganique. Cette composante peut être obtenue par voie sol-gel à partir d'au moins un précurseur moléculaire métallique comportant un ou plusieurs groupes hydrolysables, de formule (1), (2), (3) ou (4).
Par groupe hydrolysable, on entend un groupe capable de réagir avec l'eau pour donner un groupe -OH, qui subira lui-même une polycondensation.
Ledit ou lesdits précurseur(s) moléculaire(s) métallique(s) comportant un ou plusieurs groupes hydrolysables est choisi parmi un alcoxyde ou un halogénure métallique, de préférence un alcoxyde métallique, ou un alcynylmétal, de formule (1), (2), (3) ou (4) suivante : LmxMZn-mx (2),
RVSiZ4-x' (3), ou
Figure imgf000022_0001
formules (1), (2), (3) et (4) dans lesquelles :
M représente Si(IV), le chiffre entre parenthèse étant la valence de l'atome M ;
n représente la valence de l'atome M ;
x est un nombre entier allant de 1 à n-1 ;
x' est un nombre entier allant de 1 à 3 ;
Chaque Z, indépendamment l'un de l'autre, est choisi parmi un atome d'halogène et un groupement -OR, et de préférence Z est un groupement -OR ;
R représente un groupe alkyle comprenant de préférence 1 à 4 atomes de carbone, tel qu'un groupe méthyle, éthyle, n-propyle, i-propyle, n-butyle, s-butyle ou t-butyle, de préférence méthyle, éthyle ou i-propyle, mieux encore éthyle ; Chaque R' représente, indépendamment l'un de l'autre, un groupe non hydrolysable choisi parmi les groupes alkyle, notamment en C1-4 , par exemple, méthyle, éthyle, propyle ou butyle ; les groupes alcényle en particulier en C2-4, tels que vinyle, 1- propényle, 2-propényle et butényle ; les groupes alcynyle en particulier en C2-4, tels que acétylényle et propargyle ; les groupes aryle en particulier en CÔ-IO, tels que phényle et naphtyle ; les groupes méthacryle ou méthacryloxy(alkyle en C1-10) tel que méthacryloxypropyle ; les groupes époxyalkyle ou époxyalcoxyalkyle dans lesquels le groupe alkyle est linéaire, ramifié ou cyclique, en C1-10, et le groupe alcoxy comporte de 1 à 10 atomes de carbone, tels que glycidyle et glycidyloxy(alkyle en C1-10) ; les groupes halogénoalkyle en C2-10 tel que 3-chloropropyle ; les groupes perhalogénoalkyle en C2-10 tel que perfluoropropyle ; les groupes mercaptoalkyle en C2-10 tel que mercaptopropyle ; les groupes aminoalkyle en C2- 10 tel que 3-aminopropyle ; les groupes (aminoalkyle en C2- io)amino(alkyle en C2-10) tel que 3-[(2-aminoéthyl)amino]propyle ; les groupes di(alkylène en C2 io)triamino(alkyle en C2-10) tel que 3-[diéthylènetriamino]propyle et les groupes imidazolyl- (alkyle en C2-10) ;
L représente un ligand complexant monodentate ou polydentate, de préférence polydentate, par exemple, un acide carboxylique de préférence en Ci-is, comme l'acide acétique, une β-dicétone de préférence en C5-20, comme l'acétylacétone, un β-cétoester de préférence en C5-20, comme l'acétoacétate de méthyle, un β-cétoamide de préférence en C5-20, comme un N-méthylacétoacétamide, un a- ou β-hydroxyacide de préférence en C3-20, comme l'acide lactique ou l'acide salicylique, un acide aminé comme Γ alanine, une polyamine comme la diéthylènetriamine (ou DETA), ou un acide phosphonique ou un phosphonate ;
m représente l'indice d'hydroxylation du ligand L ; et
R" représente une fonction non-hydrolysable choisie parmi les groupes alkylène de préférence en C1-12, par exemple, méthylène, éthylène, propylène, butylène, hexylène, octylène, décylène et dodécylène ; les groupes alcynylène de préférence en C2-12, par exemple acétylénylène (-OC-), -C≡C-C≡C-, et -C≡C-C6H4-C≡C- ; les groupes N,N- di(alkylène en C2 io)amino tels que Ν,Ν-diéthylèneamino ; les groupes bis[N,N- di(alkylène en C2 io)amino] tels que bis[N-(3-propylène)-N-méthylèneamino] ; mercaptoalkylène en C2-10 tels que mercaptopropylène ; les groupes (alkylène en C2- io)polysulfure tel que propylène-disulfure ou propylène-tétrasulfure ; les groupes alcénylène en particulier en C2-4, tels que vinylène ; les groupes arylène en particulier en Cô io, tels que phénylène ; les groupes di(alkylène en C2-io)arylène en CÔ-IO, tels que di (éthylène)phénylène ; les groupes N,N'-di(alkylène en C2-io)uréido tels que Ν,Ν'- dipropylèneuréido ; et les groupes suivant :
• de type thiophènes tels que
Figure imgf000024_0001
de types (poly)éthers ou (poly)thioéthers, aliphatiques et aryliques, en C2-50 que -(CH2)p-X-(CH2)p-, -(CH2)p-C6H4-X-C6H4-(CH2)p-, -C6H4-X-C6H4-, [(CH2)p-X]q(CH2)p-, avec X représentant O ou S, p=l-4 et q=2-10, de types éthers couronnes comme
Figure imgf000024_0002
de types organosilanes tels que
-CH2CH2-SiMe2-C6H4-SiMe2-CH2CH2-,
-CH2CH2-SiMe2-C6H4-0-C6H4-SiMe2-CH2CH2- et
-CH2CH2-SiMe2-C2H4-SiMe2-CH2CH2-,
Figure imgf000024_0003
, ou encore
de type trans-l,2-bis(4-pyridylpropyl)éthène
Figure imgf000024_0004
A titre d'exemples d'organoalcoxysilane de formule (3), on peut notamment citer le 3- aminopropyltrialcoxysilane (RO)3Si-(CH2)3-NH2, le 3-(2- aminoéthyl)aminopropyltrialcoxysilane (RO)3Si-(CH2)3-NH-(CH2)2-NH2, la 3- (trialcoxysilyl)propyldiéthylènetriamine (RO)3Si-(CH2)3-NH-(CH2)2-NH-(CH2)2-NH2 ; les azoles organosilylés de type N-(3-trialcoxysilylpropyl)-4,5-dihydroimidazole, R ayant la même signification que ci-dessus.
Comme exemples de bis-alcoxysilane de formule (4), on utilise de préférence un bis- [trialcoxysilyl] méthane (RO)3Si-CH2-Si(OR)3, un bis-[trialcoxysilyl]éthane (RO)3Si- (CH2)2-Si(OR)3, un bis- [trialcoxysilyl] octane (RO)3Si-(CH2)8-Si(OR)3, une bis [trialcoxysilyHpropyl] aminé (RO)3Si-(CH2)3-NH-(CH2)3-Si(OR)3, une bis- [trialcoxysilylpropyl]éthylènediamine (RO)3Si-(CH2)3-NH-(CH2)2-NH-(CH2)3-Si(OR)3; un bis-[trialcoxysilylpropyl]disulfide (RO)3Si-(CH2)3S2-(CH2)3-Si(OR)3, un bis- [trialcoxysilylpropyl]tétrasulfide (RO)3Si-(CH2)3-S4-(CH2)3-Si(OR)3, un bis- [trialcoxysilylpropyl]urée (RO)3Si-(CH2)3-NH-CO-NH-(CH2)3-Si(OR)3 ; un bis[trialcoxysilyléthyl]phényle (RO)3Si-(CH2)2-C6H4-(CH2)2-Si(OR)3, R ayant la même signification que ci-dessus.
Pour la présente invention, on entend par hybride organique-inorganique un réseau constitué de molécules correspondant aux formules (2), (3) ou (4). Les agents colorants peuvent être introduits dans la solution liquide à l'étape (1) soit sous forme sèche soit sous forme de solution liquide. Lorsque les agents colorants sont des nanoparticules, elles peuvent être introduites dans la solution liquide de l'étape (1) sous forme de suspension aqueuse ou hydro-alcoolique comprenant des nanoparticules ou encore sous forme sèche à disperser dans la solution liquide de l'étape (1) du procédé selon l'invention. Lorsque les agents colorants sont des sels, ils peuvent être introduits dans la solution liquide de l'étape (1) sous forme sèche ou sous forme dissoute dans une solution aqueuse ou hydro-alcoolique.
Comme spécifié ci-dessus, la quantité d'agents colorants introduite lors du procédé selon l'invention peut varier dans une large mesure, cette quantité dépend notamment de la taille et de la nature des particules désirées. Cette quantité dépend également du taux de coloration désiré et de la nature des agents colorants mis en œuvre. Aussi, le procédé selon l'invention permet d'obtenir un taux en agents colorants dans les particules plus élevé que les procédés classiques. En outre, le procédé selon l'invention présente l'avantage d'avoir une perte faible des réactifs mis en œuvre au départ (taux d'utilisation des réactifs mis en œuvre élevé), et en particulier une perte faible des agents colorants mis en œuvre. Plus spécifiquement, au minimum la quantité d'agents colorants introduite peut être sensiblement identique à celle désirée dans les particules obtenues. Par exemple, la quantité introduite d'agents colorants dans le procédé selon l'invention, et en particulier à l'étape (1), peut être de 0 à 20% supérieure à la quantité finalement obtenue dans les particules de l'invention.
Selon un mode particulier de l'invention, la quantité introduite d'agents colorants organiques introduits à l'étape (1) du procédé selon l'invention est de telle sorte que quantité d'agents colorants présents dans les particules de l'invention est de 5 à 35%, de préférence de 5 à 30%, et plus particulièrement de 10 à 30%, en poids par rapport au poids des particules obtenues.
Le procédé selon l'invention permet d'obtenir des particules présentant un haut degré de pureté. Ces particules ne nécessitent pas nécessairement la mise en œuvre d'étapes ultérieures de traitement, telles qu'un lavage, un traitement thermique, un broyage, etc., avant leur utilisation.
Dans le procédé selon l'invention, les composants, autres que l'agent colorant, introduits et utilisés dans le réacteur sont transformés, ce qui est un avantage important, car le procédé génère peu de déchets. En outre, le taux d'utilisation des atomes est élevé et conforme aux exigences de la chimie verte.
Le procédé selon l'invention peut éventuellement comprendre au moins une étape de post- traitement des particules. Par exemple, il peut s'agir d'une étape de lavage avec un solvant adapté, d'une étape de chauffage des particules, et/ou d'une étape de revêtement des particules, en particulier pour « étanchéifier » lesdites particules, comme décrit ci- dessus.
En particulier, une étape de post-traitement par chauffage des particules peut être nécessaire pour optimiser les propriétés des particules telles que leur composition ou leur structure cristalline. Une étape de post-traitement par chauffage des particules sera généralement d'autant moins nécessaire que la vitesse des gouttes puis des particules dans le réacteur faible. Le procédé selon l'invention permet de contrôler précisément la taille des particules en sortie de procédé. En effet, il existe un rapport constant, lequel est aux alentours de 5, entre le diamètre des gouttes du brouillard utilisé et le diamètre des particules en sortie de procédé. L'homme du métier sait déterminer en fonction de la concentration en précurseur le rapport entre ces deux diamètres. Par exemple, si la concentration en précurseur est diminuée d'un facteur 10, alors la taille des particules obtenues est diminué d'un facteur racine cubique de 10, soit environ 3. Le diamètre des gouttes peut en outre être notamment contrôlé par les paramètres du mode de nébulisation, par exemple la fréquence des éléments piézoélectriques utilisés pour former le brouillard. Le procédé selon l'invention permet également de contrôler précisément la taille des pores en sortie de procédé. La taille des pores est contrôlée par le choix des composés précurseurs de la solution, leurs concentrations, le pH et la présence des agents colorants. Dans la présente invention, on limitera avantageusement la taille des pores et la surface spécifique pour des valeurs inférieures à 5 m2/g.
Un autre objet de l'invention est un ensemble de particules susceptible d'être préparé selon le procédé défini ci-dessus. Les particules ainsi préparées présentent les caractéristiques décrites ci-avant. Ce procédé permet en particulier d'obtenir des particules sphériques et en particulier sans agrégats. De préférence, il permet également que chaque particule ne soit pas constituée par l'agrégation de plusieurs particules de taille inférieure. Un dernier objet de l'invention est un procédé de préparation d'un matériau selon l'invention, comprenant la mise en contact d'une matrice telle que précédemment définie avec au moins un ensemble de particules selon l'invention. Ce procédé comprend ensuite de préférence une étape de mise en forme du matériau telle que décrite ci-avant.
Sauf précision contraire, les pourcentages mentionnés dans la présente invention sont des pourcentages en masse. Les termes « masse » et « poids » sont utilisés ici de manière interchangeable.
Les exemples qui suivent sont fournis à titre illustratif, et non limitatif, de l'invention.
Exemples
Exemple 1 : Procédé de synthèse des particules
Préparation de la solution : Dans un bêcher, sont ajoutés dans l'ordre et sous agitation magnétique les composés suivants : 70,7 g d'une solution aqueuse d'acide acétique, 14 g de TEOS (soit 4,04 g de silice, 75 % des particules obtenues) avec 14,0 g d'éthanol. La solution est ensuite maintenue sous agitation pendant au moins 1 heure afin de permettre l'hydrolyse-condensation du TEOS. Une masse de 1,35 g de colorant organique (25 % des particules obtenues) est ajoutée au sol.
La solution précurseur est nébulisée par le procédé de spray pyrolyse selon l'invention en étape (1).
En étape (2) et (3), la température maximale du four dans lequel se déroulent les étapes de séchage et pyrolyse est réglée à 250°C afin de préserver l'agent colorant.
Les particules sont récupérées directement en étape (5) sur le filtre et éventuellement séchées sous air.
Les particules sont sphériques et ont un diamètre moyen de 1,0 micron, avec une distribution granulométrique en nombre de 0,3 à 4 microns (microscopie électronique à balayage), et une sphéricité calculée à partir des images de microscopie de 0,9. La surface spécifique BJH est de l,8m2/g et un diamètre de pores de 2,4 nm.
Exemple 2 : Particules de l'exemple 1 avec un revêtement ou coquille de silice en surface
Une masse de 15,6 g des particules de l'exemple 1, est dispersée par agitation magnétique dans 80,6 g d'une solution hydro-alcoolique et 0,4 g d'ammoniaque. Une masse de 3,4 g de TEOS est ajouté progressivement. Un vieillissement d'au moins 1 heure est nécessaire pour l'hydrolyse condensation du TEOS.
Les particules sont séparées par centrifugation puis séchées pour consolider la couche de silice.
Les particules sont sphériques et ont un diamètre moyen de 1,0 ± 0,5 microns, avec une distribution granulométrique en nombre de 0,3 à 4 microns (microscopie électronique à balayage) et une sphéricité calculée à partir des images de microscopie de 0,9.
La figure 1 présente une image de Microscopie Électronique à Balayage des particules de l'exemple 2. Les particules sont bien non agrégées.
Exemple 3 : Test de relargage
Une masse de 0,25 g de microparticules de l'exemple 2 (avec 24 % de colorant) est dispersée dans l'éthanol à une concentration de 20 g/L en microparticules. La solution est centrifugée. Les sédiments sont séchés et le surnageant est analysé par spectrométrie UV- Visible. Le surnageant contient 0,1 g/L de colorant, soit un relargage de 2 % en masse.

Claims

REVENDICATIONS
1. Ensemble de particules inorganiques, caractérisé en ce que les particules sont sphériques, denses, micrométriques, et en ce qu'elles comprennent des agents colorants organiques en une quantité comprise entre 5 à 30% en masse par rapport à la masse des particules.
2. Ensemble de particules selon la revendication 1, dans lequel les particules ont un coefficient de sphéricité supérieur ou égal à 0,75.
3. Ensemble de particules selon l'une quelconque des revendications 1 et 2, dans lequel les particules ont un diamètre compris entre 0,3 et 10 micromètres.
4. Ensemble de particules selon l'une quelconque des revendications 1 à 3, dans lequel les particules présentent un réseau tridimensionnel constitué au moins en partie par un composant inorganique, de préférence d'oxyde métallique, avantageusement de l'alumine, en particulier de l'alumine amorphe ou cristalline, de boehmite, de silicate, de silice, en particulier de silice amorphe, ou de la mullite.
5. Ensemble de particules selon l'une quelconque des revendications 1 à 4, dans lequel les particules sont des particules de silice ou de silicate de sodium.
6. Ensemble de particules selon l'une quelconque des revendications 1 à 5, dans lequel les particules comprennent un ou plusieurs agents colorants organiques.
7. Matériau comprenant un ensemble de particules selon l'une des revendications 1- 5 et une matrice.
8. Matériau selon la revendication précédente, la matrice étant une matrice polymérique de type peinture, couches sol-gel, vernis ou un de leur mélange.
9. Matériau selon l'une des revendications 7 ou 8, le matériau étant destiné à un usage en papeterie, peinture, agro-alimentaire, cosmétique ou pharmaceutique.
10. Matériau selon l'une des revendications 7 à 9, le matériau étant une formulation d'encre.
11. Procédé de préparation d'un ensemble de particules, comprenant les étapes, non dissociables et continues dans un même réacteur, suivantes : (1) la nébulisation dans un réacteur d'une solution liquide contenant un ou des précurseurs du réseau tridimensionnel des particules à une concentration molaire donnée dans un solvant, de sorte à obtenir un brouillard de gouttelettes de solution, la solution liquide comprend en outre au moins un agent colorant,
(2) le chauffage du brouillard à une température dite de séchage apte à assurer l'évaporation du solvant et la formation de particules,
(3) le chauffage de ces particules à une température dite de pyrolyse apte à assurer la transformation du ou des précurseurs pour former la partie inorganique dudit réseau,
(4) optionnellement la densification des particules, et
(5) la récupération des particules ainsi formées,
les étapes (2), (3), et éventuellement (4), sont réalisées dans un même réacteur.
12. Procédé selon la revendication 11, caractérisé en ce que :
- l'étape (1) de nébulisation est réalisée à une température de 10 à 40°C, et/ou de préférence pendant une durée inférieure ou égale à 10 secondes, en particulier inférieure ou égale à 5 secondes, et/ou
. l'étape (2) de chauffage est réalisée à une température de 40 à 120°C, et/ou de préférence pendant une durée inférieure ou égale à 10 secondes, en particulier comprise entre 1 et 10 secondes, et/ou
. l'étape (3), dite de pyrolyse, est réalisée à une température de 120 à 300°C, et/ou de préférence pendant une durée inférieure ou égale à 30 secondes, en particulier comprise entre 10 et 30 secondes, et/ou
. l'étape (4) optionnelle de densification est réalisée à une température comprise entre 200 et 600°C.
13. Procédé selon l'une des revendications 11 et 12, caractérisé en ce que la quantité introduite d'agents colorants organiques introduits à l'étape (1) du procédé est de telle sorte que la quantité d'agents colorants présents dans les particules est de 5 à 35%, de préférence de 5 à 30%, et plus particulièrement de 10 à 30%, en poids par rapport au poids des particules obtenues.
PCT/FR2016/052936 2015-11-12 2016-11-10 Particules sphériques et chargées en agents colorants WO2017081427A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3004343A CA3004343A1 (fr) 2015-11-12 2016-11-10 Particules spheriques et chargees en agents colorants et procede pour obtenir de telles particules
CN201680078630.8A CN108779343A (zh) 2015-11-12 2016-11-10 负载有着色剂的球形颗粒
EP16809982.8A EP3374436A1 (fr) 2015-11-12 2016-11-10 Particules sphériques et chargées en agents colorants
JP2018524363A JP7382715B2 (ja) 2015-11-12 2016-11-10 着色剤を充填した球形粒子
US15/774,547 US11208560B2 (en) 2015-11-12 2016-11-10 Spherical particles filled with colouring agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1560840 2015-11-12
FR1560840A FR3043683B1 (fr) 2015-11-12 2015-11-12 Particules spheriques et chargees en agents colorants

Publications (1)

Publication Number Publication Date
WO2017081427A1 true WO2017081427A1 (fr) 2017-05-18

Family

ID=55345982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052936 WO2017081427A1 (fr) 2015-11-12 2016-11-10 Particules sphériques et chargées en agents colorants

Country Status (7)

Country Link
US (1) US11208560B2 (fr)
EP (1) EP3374436A1 (fr)
JP (2) JP7382715B2 (fr)
CN (1) CN108779343A (fr)
CA (1) CA3004343A1 (fr)
FR (1) FR3043683B1 (fr)
WO (1) WO2017081427A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043683B1 (fr) * 2015-11-12 2019-04-12 Pylote Particules spheriques et chargees en agents colorants

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581651A2 (fr) * 1992-07-27 1994-02-02 Suzuki Yushi Industries Co., Ltd. Matériaux en forme de fines particules sphériques colorées, procédé de production et compositions cosmétiques contenant le matériau particulaire
US20060251687A1 (en) * 2003-03-14 2006-11-09 Noa Lapidot Agent-encapsulating micro-and nanoparticles, methods for preparation of same and products containing same
US20130091637A1 (en) * 2009-06-04 2013-04-18 Sensient Imaging Technologies Gmbh Spray-dried dye compositions, process for the production and use thereof
WO2015170060A1 (fr) * 2014-05-07 2015-11-12 Pylote Particules inorganiques individualisées

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582233A (ja) * 1981-06-23 1983-01-07 Nippon Telegr & Teleph Corp <Ntt> 光フアイバ用シリカガラスの製造方法
JPH0611870B2 (ja) * 1986-06-27 1994-02-16 徳山曹達株式会社 無機化合物/染料複合体粒子
DE69010537T2 (de) 1989-04-01 1994-12-01 Nippon Sheet Glass Co Ltd Verfahren zur Herstellung eines schichtförmig aufgebauten Materials mit einem organischen Farbstoff enthaltenden Siliziumdioxidfilm sowie das somit erzeugte Produkt.
JPH0798659B2 (ja) 1990-05-25 1995-10-25 信越化学工業株式会社 球状シリカ及びその製造方法並びにエポキシ樹脂組成物及びその硬化物
JPH0647273A (ja) 1992-07-27 1994-02-22 Suzuki Yushi Kogyo Kk 着色球状微粒子及びその製造方法
JPH07216256A (ja) * 1994-01-28 1995-08-15 Suzuki Yushi Kogyo Kk 着色微粒子とその製造方法
DE19647038B4 (de) * 1996-11-14 2007-02-22 Ferro Gmbh Kugelförmige Pigmente, Verfahren zu ihrer Herstellung und deren Verwendung
DE19647037A1 (de) * 1996-11-14 1998-05-28 Degussa Kugelförmige Farbpigmente, Verfahren zu ihrer Herstellung und deren Verwendung
JPH1135312A (ja) * 1997-07-17 1999-02-09 Pola Chem Ind Inc 色素含有シリカ
US6074629A (en) * 1998-07-27 2000-06-13 J. M. Huber Corporation Dentifrice with a dye absorbing silica for imparting a speckled appearance thereto
JP2000159509A (ja) 1998-11-27 2000-06-13 Kansai Shingijutsu Kenkyusho:Kk 無機粒子の製造方法および無機粒子
US6143280A (en) * 1999-05-18 2000-11-07 J. M. Huber Corporation Color containing silica resistant to dye migration and method of making the same
GB2382813B (en) * 2000-06-26 2004-07-14 Asahi Chemical Ind Porous inorganic fine particles
US7094814B2 (en) * 2000-09-01 2006-08-22 Toda Kogyo Corporation Coloring composition for color filter containing colorant and color filter using the same
DE102004032120A1 (de) 2004-07-01 2006-02-09 Merck Patent Gmbh Beugungsfarbmittel für die Kosmetik
JP2006170801A (ja) 2004-12-15 2006-06-29 Seiko Epson Corp 色材組成物の分析方法
JP2007297621A (ja) * 2006-04-21 2007-11-15 Merck Patent Gmbh 顔料
EP2025720B1 (fr) 2007-08-13 2010-12-08 Procter & Gamble International Operations SA Procédé de séchage par atomisation pour la fabrication de particules chargées de colorant
JP5389374B2 (ja) * 2008-04-23 2014-01-15 株式会社アドマテックス 着色非晶質シリカ微粒子及びその製造方法並びに着色非晶質シリカ微粒子含有樹脂組成物
JP5717720B2 (ja) * 2009-04-15 2015-05-13 コーネル ユニバーシティCornell University シリカの高密度化で改良された蛍光シリカナノ粒子
FR2956109B1 (fr) * 2010-02-11 2012-04-20 Commissariat Energie Atomique Procede de preparation par voie stober de particules de silice contenant un derive de phtalocyanine, lesdites particules et leurs utilisations.
US8426692B2 (en) 2010-08-01 2013-04-23 Monsanto Technology Llc Soybean variety A1024702
JP5896688B2 (ja) * 2011-11-04 2016-03-30 日揮触媒化成株式会社 顔料内包シリカ系粒子の製造方法
KR20130113572A (ko) * 2012-04-06 2013-10-16 한림대학교 산학협력단 소수성 유기물질을 함유하는 이중층 실리카 나노입자 및 그 제조방법
FR3043683B1 (fr) * 2015-11-12 2019-04-12 Pylote Particules spheriques et chargees en agents colorants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581651A2 (fr) * 1992-07-27 1994-02-02 Suzuki Yushi Industries Co., Ltd. Matériaux en forme de fines particules sphériques colorées, procédé de production et compositions cosmétiques contenant le matériau particulaire
US20060251687A1 (en) * 2003-03-14 2006-11-09 Noa Lapidot Agent-encapsulating micro-and nanoparticles, methods for preparation of same and products containing same
US20130091637A1 (en) * 2009-06-04 2013-04-18 Sensient Imaging Technologies Gmbh Spray-dried dye compositions, process for the production and use thereof
WO2015170060A1 (fr) * 2014-05-07 2015-11-12 Pylote Particules inorganiques individualisées

Also Published As

Publication number Publication date
US11208560B2 (en) 2021-12-28
JP2019503405A (ja) 2019-02-07
JP7382715B2 (ja) 2023-11-17
JP2021185248A (ja) 2021-12-09
FR3043683B1 (fr) 2019-04-12
FR3043683A1 (fr) 2017-05-19
EP3374436A1 (fr) 2018-09-19
CN108779343A (zh) 2018-11-09
US20190100657A1 (en) 2019-04-04
CA3004343A1 (fr) 2017-05-18

Similar Documents

Publication Publication Date Title
CA2947499C (fr) Particules inorganiques individualisees
CA2714279C (fr) Materiau hybride organique-inorganique, couche mince optique de ce materiau, materiau optique les comprenant, et leur procede de fabrication
FR2721615A1 (fr) Procédé de préparation de particules d&#39;oxyde métallique organophiles.
EP3234029A1 (fr) Particules mésostructurées chargées en agents anticorrosion obtenues par aérosol
US20230348726A1 (en) Closed-cell metal oxide particles
CN104968719A (zh) 亲水化的有机硅颗粒及制造方法
FR3046156A1 (fr) Poudre d&#39;oxyde metallique, liquide de dispersion et materiau cosmetique
WO2006105600A1 (fr) Particules d&#39;oxyde metallique revetues de silicone
US6939605B2 (en) Multi-layer coating
WO2016152872A1 (fr) Additif cosmétique et son procédé de production
WO2017081427A1 (fr) Particules sphériques et chargées en agents colorants
KR20020020259A (ko) 수성 도료 조성물 및 이의 제조방법
US20160200632A1 (en) Method of Making Nanoporous Structures
FR3029835B1 (fr) Revetements anticorrosion charges en particules mesostructurees
CN109071972A (zh) 具有改善的光稳定性的底漆配制剂
JP2009280547A (ja) 複合体及びその製造方法並びに化粧品材料
JP2023535924A (ja) ハイブリッド金属酸化物粒子
EP2832691A1 (fr) Sphères de silice
WO2020185924A1 (fr) Colorants structuraux avec groupes silane
EP2567940A1 (fr) Procédé de préparation d&#39;argiles ayant de nouvelles propriétés physicochimiques
FR3057869A1 (fr) Composition pulverulente pigmentaire comprenant des particules de polymethacrylate de methyle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16809982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3004343

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2018524363

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016809982

Country of ref document: EP