WO2017078054A1 - RNAi分子とN-アセチル化キトサンとを含む複合体 - Google Patents

RNAi分子とN-アセチル化キトサンとを含む複合体 Download PDF

Info

Publication number
WO2017078054A1
WO2017078054A1 PCT/JP2016/082545 JP2016082545W WO2017078054A1 WO 2017078054 A1 WO2017078054 A1 WO 2017078054A1 JP 2016082545 W JP2016082545 W JP 2016082545W WO 2017078054 A1 WO2017078054 A1 WO 2017078054A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
chitosan
rnai molecule
disease
chst15
Prior art date
Application number
PCT/JP2016/082545
Other languages
English (en)
French (fr)
Inventor
米山 博之
Original Assignee
株式会社ステリック再生医科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ステリック再生医科学研究所 filed Critical 株式会社ステリック再生医科学研究所
Priority to JP2017548797A priority Critical patent/JPWO2017078054A1/ja
Priority to US15/773,352 priority patent/US10646579B2/en
Priority to EP16862114.2A priority patent/EP3372234B1/en
Publication of WO2017078054A1 publication Critical patent/WO2017078054A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/02Sulfotransferases (2.8.2)
    • C12Y208/02033N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (2.8.2.33)

Definitions

  • the present invention relates to a complex comprising an RNAi molecule that suppresses the expression of the CHST15 gene and N-acetylated chitosan, a method for producing the same, and a pharmaceutical composition comprising the same.
  • inflammatory bowel disease Diseases that cause chronic inflammation or ulcers in the mucosa of the large and small intestine are collectively referred to as inflammatory bowel disease.
  • Representative inflammatory bowel diseases include ulcerative colitis and Crohn's disease, both of which are intractable diseases. Ulcerative colitis is an inflammatory disease that mainly causes ulcers and erosions in the mucosa of the large intestine, and exhibits various systemic symptoms including hemorrhagic diarrhea, abdominal pain, and fever.
  • Crohn's disease is an inflammatory disease that causes ulcers and inflammation discontinuously across the digestive tract from the oral cavity to the anus, and exhibits systemic symptoms such as abdominal pain, fever, chronic diarrhea, and nutritional disorders.
  • Carbohydrate sulfotransferase 15 (also called GalNAc4S-6ST or N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase), which is a sulfotransferase, is a residue of GalNAc (4SO 4 ) of chondroitin sulfate-A (CS-A). It is a type II transmembrane Golgi protein that synthesizes highly sulfated chondroitin sulfate-E (CS-E) by transferring sulfate to the 6-position of the group.
  • CHST15 also called GalNAc4S-6ST or N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase
  • CS-A chondroitin sulfate-A
  • It is a type II transmembrane Golgi protein that synthesizes highly sulfated chondroitin s
  • the present inventors administered siRNA that suppresses the expression of CHST15 gene (CHST15 siRNA) to the animal model of colitis submucosally in the large intestine, resulting in a decrease in CHST15 gene expression in the large intestine, including suppression of ulcers, inflammation, and fibrosis.
  • CHST15 siRNA siRNA that suppresses the expression of CHST15 gene
  • nucleic acid drugs such as siRNA are easily degraded by enzymes such as nucleases, they are often administered locally, for example, by injection to the affected site or using a special drug delivery system.
  • local administration is limited in the sites where it can be administered and requires administration by a doctor, development of a formulation that can be administered easily and minimally invasively to more sites, such as an oral administration formulation, is desired. .
  • Chitosan is a high molecular weight polysaccharide that can be produced by deacetylation of chitin, the main component of the outer shell of arthropods such as crustaceans and insects, and the cell walls of fungi.
  • Patent Documents 4 and 5 disclose siRNA delivery compositions comprising chitosan and siRNA. However, Patent Documents 4 and 5 do not describe at all about acetylating chitosan and combining the obtained acetylated chitosan with siRNA.
  • Non-Patent Document 7 reports that a complex containing N-acetylated chitosan and plasmid DNA is delivered to the intestine by oral administration. However, Non-Patent Document 7 does not describe a complex in which an RNAi molecule such as siRNA is combined with N-acetylated chitosan.
  • An object of the present invention is to provide a minimally invasive composition containing an RNAi molecule that suppresses the expression of the CHST15 gene.
  • the present inventor surprisingly found that the complex containing siRNA that suppresses the expression of the CHST15 gene and N-acetylated chitosan was orally administered. Has been found to be efficiently delivered to the small intestine and large intestine to suppress the expression of the CHST15 gene, and to have a therapeutic effect on small intestinal inflammation and colitis, thereby completing the present invention.
  • the present invention includes the following.
  • [1] A complex comprising an RNAi molecule that suppresses the expression of the CHST15 gene and N-acetylated chitosan.
  • [2] The complex according to [1], wherein the N-acetylated chitosan has a degree of acetylation of 70 to 100%.
  • [3] The complex according to [1] or [2], wherein the RNAi molecule is siRNA.
  • Any of [1] to [3], wherein the RNAi molecule comprises an antisense strand comprising the base sequence represented by SEQ ID NO: 1 and a sense strand comprising a base sequence complementary to the antisense strand A complex according to any one of the above.
  • [5] A method for producing a complex comprising an RNAi molecule that suppresses the expression of the CHST15 gene and N-acetylated chitosan, (a) mixing the RNAi molecule and chitosan to form a complex; (b) a step of drying the complex obtained in step (a), and (c) a step of acetylating chitosan in the dried complex obtained in step (b).
  • a pharmaceutical composition for treating or preventing an inflammatory disease or mucosal disorder of the digestive tract comprising the complex according to any one of [1] to [4].
  • the pharmaceutical composition according to [6] for oral administration or rectal administration.
  • Endoscope for inflammatory disease or mucosal disorder is inflammatory bowel disease, ulcerative colitis, Crohn's disease, esophagitis, gastroenteritis, NSAID-induced enteritis, intestinal Behcet's disease, simple ulcer, gastrointestinal cancer Artificial ulcer after surgical resection, enteritis associated with collagen disease, radiation-induced enteritis, ischemic enteritis, reflux esophagitis, Barrett's esophagus, drug-induced esophagitis or gastroenteritis, and drug-resistant or refractory peptic ulcer
  • composition that can be administered minimally invasively, comprising an RNAi molecule that suppresses the expression of the CHST15 gene.
  • DAI disease activity index
  • NSAID non-steroidal anti-inflammatory drug
  • the present invention provides a complex comprising an RNAi molecule that suppresses the expression of the CHST15 gene and N-acetylated chitosan.
  • the RNAi molecule used in the present invention can suppress the expression of the CHST15 gene.
  • the CHST15 gene is not particularly limited, but may be derived from an animal, for example, a mammal (eg, human, monkey, cow, mouse, rat, dog, etc.).
  • the base sequence of the human CHST15 gene can be obtained, for example, at GenBank accession number NM_015892.
  • the nucleotide sequence of the human CHST15 gene is shown in SEQ ID NO: 5, and the amino acid sequence of the CHST15 protein encoded by the gene is shown in SEQ ID NO: 6.
  • the CHST15 protein has high identity (for example, 80% or more, preferably 90% or more, more preferably 95% or more or 98% or more) with the amino acid sequence represented by SEQ ID NO: 6, and And a protein having the activity (for example, sulfate transfer activity) possessed by the protein consisting of the amino acid sequence shown in SEQ ID NO: 6.
  • the CHST15 gene includes a gene encoding such a CHST15 protein in non-human organisms.
  • the CHST15 gene includes, for example, an endogenous CHST15 gene (such as an ortholog of the human CHST15 gene) in a non-human organism corresponding to the DNA consisting of the base sequence shown in SEQ ID NO: 5.
  • an endogenous CHST15 gene such as an ortholog of the human CHST15 gene
  • Those skilled in the art can appropriately obtain the endogenous CHST15 gene in organisms other than humans based on the nucleotide sequence shown in SEQ ID NO: 5.
  • the endogenous CHST15 gene in non-human organisms is generally highly identical to the DNA shown in SEQ ID NO: 5 (eg 80% or more, preferably 90% or more, more preferably 95% or more or 98% or more). ).
  • the base sequences of mouse, rat, bovine, and dog CHST15 genes can be obtained at GenBank accession numbers NM_029935.5, NM_173310.3, XM_005225861.2, and XM_544058.6, respectively.
  • sequence identity can be appropriately determined by those skilled in the art. Determining sequence identity can include aligning two sequences. Suitable computer programs for performing such sequence alignments include, but are not limited to, Vector NTI® (Thermo Fisher Scientific) and ClustalW programs (Thompson JD, et al., Nucleic Acids Research 22 ( 22): 4673-4680; Larkin, et al., Bioinformatics 23 (21): 2947-2948 (2007)). The ClustalW program can be used, for example, on the DNA-Data-Bank-of-Japan (DDBJ) web page. After making the alignment, the percent sequence identity between the two sequences can be calculated. Typically, the software does this as part of the sequence comparison and generates a numerical result.
  • DDBJ DNA-Data-Bank-of-Japan
  • the RNAi molecule can suppress the expression of the CHST15 gene.
  • ⁇ RNAi molecule '' refers to RNAi (RNA interference; RNA inteference) in vivo and suppresses the expression of the gene through degradation of the transcript of the target gene (CHST15 in the present invention) ( RNA molecules that can be silenced (Fire A. et al., Nature 391, 806-811 (1998)).
  • RNAi molecules include siRNA and shRNA.
  • RNA is an antisense strand comprising a sequence complementary to a part of the mRNA sequence of the target gene, and a sense strand comprising a sequence complementary to the antisense strand (homogeneous to a part of the sequence of the target gene). Is a double-stranded RNA formed by hybridization.
  • shRNA refers to a single-stranded RNA in which the sense strand and antisense strand of the siRNA are linked by a short spacer sequence having an appropriate sequence.
  • shRNA has a hairpin stem-loop structure as a whole molecule by forming a stem structure by pairing the sense region and the antisense region with each other within one molecule, and at the same time the spacer sequence forms a loop structure. Is forming.
  • suppression of target gene expression refers to when target gene expression is determined using the mRNA or protein expression level of the gene as an index, when no RNAi molecule is introduced, or when an irrelevant control RNAi molecule is introduced. On the other hand, not only the case where it is suppressed 100% but also that it is suppressed 75% or more, 50% or more, or 20% or more.
  • the mRNA expression level can be measured, for example, by Northern hybridization or real-time PCR, and the protein expression level can be appropriately determined by those skilled in the art, for example, by Western blotting, ELISA, or protein activity measurement. Specific methods for measuring gene expression levels are also described in Green, MR and Sambrook, J, (2012) Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York .
  • the sequence of the RNAi molecule can be appropriately designed by those skilled in the art based on the base sequence of the target gene (CHST15 gene).
  • the sequence of the antisense strand is designed so that the antisense strand contains a sequence complementary to a part of the coding region or 5 ′ or 3 ′ untranslated region (UTR) in the target gene mRNA.
  • the sequence of the sense strand can be designed so that the strand contains a sequence complementary to the antisense strand.
  • complementary means a relationship capable of base pairing between two bases (for example, Watson-Crick type), such as a relationship between adenine and thymine or uracil, and cytosine and guanine.
  • the relationship As used herein, the term “complementary” is preferably completely complementary, but need not be completely complementary, and one or more (for example, as long as the RNAi molecule retains the ability to suppress target gene expression (for example, 1 to 5 or 1 to 3) mismatches may be included. Mismatch refers to a relationship other than the relationship between adenine and thymine or uracil and the relationship between cytosine and guanine.
  • RNAi molecules such as siRNA are generally known to have high RNAi activity when they have a single-stranded portion (overhang) of several (eg, 2 to 5) nucleotides at the ends. Therefore, the RNAi molecule used in the present invention preferably has several deoxyribonucleotides or ribonucleotide overhangs at the ends. For example, an RNAi molecule can have a 2 nucleotide 3 ′ overhang. Specifically, the RNAi molecule may have a 3 ′ overhang consisting of two ribonucleotides (eg AU or AG).
  • the sense strand and antisense strand constituting the RNAi molecule may be, for example, 20 to 50 bases long, 20 to 40 bases long, or 20 to 30 bases long, but are not particularly limited, and are different even in the same length. It may be length. In the present invention, preferably, the sense strand and the antisense strand may each be 25 to 29 bases long, for example 27 bases long.
  • the RNAi molecule can include an antisense strand containing the base sequence shown in SEQ ID NO: 1 and a sense strand containing a base sequence complementary to the antisense strand.
  • the sense strand preferably includes the base sequence shown in SEQ ID NO: 2, which is a completely complementary sequence to SEQ ID NO: 1.
  • the antisense strand may consist of the base sequence shown in SEQ ID NO: 3, which is a sequence in which ribonucleotide AU is added to the 3 ′ end of the base sequence shown in SEQ ID NO: 1.
  • the sense strand may be composed of the base sequence shown in SEQ ID NO: 4, which is a sequence in which ribonucleotide AG is added to the 3 ′ end of the base sequence shown in SEQ ID NO: 2.
  • the nucleotides of the RNAi molecule are preferably all ribonucleotides, but several (for example, 1 to 5, 1 to 3, or 1 to 2) may be deoxyribonucleotides.
  • the nucleotides of RNAi molecules can also be modified with groups such as halogens (fluorine, chlorine, bromine or iodine), methyl, carboxymethyl or thio groups, for example to improve the stability of RNAi molecules It may be a nucleotide.
  • the sense strand and the antisense strand constituting the RNAi molecule can be appropriately produced using a commercially available nucleic acid synthesizer.
  • the produced sense strand and antisense strand may be mixed preferably in an equimolar ratio and hybridized with each other to produce an RNAi molecule.
  • RNAi molecules may be produced using a contract manufacturing service of a manufacturer (for example, BioSpring, Takara Bio, Sigma-Aldrich, etc.).
  • chitosan in the present invention is a polymeric polysaccharide having a structure in which glucosamine and a small amount of N-acetylglucosamine are polymerized.
  • Chitosan can be obtained by deacetylating chitin, which can be obtained from crustacean shells such as crabs and shrimps, with a concentrated alkaline solution.
  • Chitosan is commercially available in various degrees of acetylation and molecular weight, such as Carbosynth or Funakoshi. In the present specification, the degree of acetylation of chitosan is usually 0-30%, for example, 20% or less, 10% or less, or 5% or less.
  • the molecular weight of chitosan is not particularly limited, and it may be low molecular weight chitosan (for example, molecular weight 2000 Da to 100 kDa) or high molecular weight chitosan (for example, molecular weight 100 kDa to 10,000 kDa or more) Or it may be a mixture of various molecular weights.
  • N-acetylated chitosan is a polymeric polysaccharide in which part or all of the amino group of the chitosan is acetylated.
  • the degree of acetylation of N-acetylated chitosan may be usually 70 to 100%, such as 80% or more, 90% or more, 95% or more, 98% or more, or 99% or more.
  • the degree of acetylation of chitosan and N-acetylated chitosan can be determined by colloid titration, infrared absorption spectrum, nuclear magnetic resonance spectrum (NMR), elemental analysis and the like.
  • RNAi molecule is an anionic polymer
  • N Since -acetylated chitosan is a cationic polymer, it is assumed that both form a complex by electrostatic interaction.
  • the ratio (molar ratio) between the RNAi molecule and the glucosamine unit constituting the N-acetylated chitosan is 1: 200 to 1: 5, 1: 100 to 1: 5, or 1:50. It can be up to 1:10.
  • RNAi molecules that suppresses CHST15 gene expression and N-acetylated chitosan
  • the complex of the present invention can deliver RNAi molecules to cells by a minimally invasive administration method such as oral administration without requiring a special drug delivery system.
  • the present invention also provides a method for producing a complex comprising an RNAi molecule that suppresses the expression of the CHST15 gene and N-acetylated chitosan.
  • the method comprises (a) mixing the RNAi molecule and chitosan to form a complex, (b) drying the complex obtained in step (a), and (c) step (b ) Acetylating chitosan in the dried complex obtained in (1).
  • Chitosan As chitosan, chitosan having an acetylation degree of 0 to 30%, for example, 20% or less, 10% or less, or 5% or less can be used. Chitosan can be provided as a chitosan solution, for example, by dissolving in an aqueous acid solution.
  • the type of acid is not particularly limited, and examples include acetic acid or hydrochloric acid, and acetic acid is preferable.
  • the acid aqueous solution may have a concentration of, for example, 1% (v / v) to 10% (v / v), preferably 2% (v / v) to 8% (v / v).
  • Chitosan can be dissolved in an acid aqueous solution at a concentration of 0.1% (w / v) to 10% (w / v), preferably 1% (w / v) to 8% (w / v).
  • the method for dissolving chitosan in the acid aqueous solution is not particularly limited, and it may be dissolved by a conventional method such as stirring.
  • the temperature during dissolution may be room temperature, for example 15-30 ° C.
  • the dissolution time varies depending on the molecular weight and the degree of acetylation of chitosan and can be appropriately set.
  • the pH of the chitosan solution thus obtained can be adjusted to 3.0 to 5.0, preferably 3.5 to 4.5, more preferably 4.0 to 4.3 with an alkaline solution such as sodium hydroxide solution.
  • the chitosan solution may then be appropriately diluted with water, for example sterile water.
  • the chitosan solution may be filtered through a filter having a pore size of 0.5 to 2 ⁇ m, for example, 1 ⁇ m (for example, a cellulose filter), and the filtrate may be used in the subsequent step.
  • the RNAi molecule that suppresses the expression of the CHST15 gene can usually be provided as a solution containing the RNAi molecule in an appropriate buffer solution by contract manufacture of the manufacturer.
  • RNAi molecule and chitosan are mixed to form a complex (RNAi molecule / chitosan complex) by, for example, electrostatic interaction.
  • the ratio (molar ratio) between the RNAi molecule and the glucosamine unit that constitutes chitosan is 1: 200 to 1: 5, 1: 100 to 1: 5, or 1:50 to 1. : 10.
  • the RNAi molecule and chitosan may be mixed, for example, by mixing and stirring the solution containing the RNAi molecule and the chitosan solution.
  • RNAi molecule / chitosan complex is dried by any known drying method such as lyophilization or vacuum drying.
  • the drying is lyophilization. Freeze-drying may be performed after the solution containing the complex is flow-cast onto a substrate such as a Teflon dish. Freeze-drying can be appropriately performed using a commercially available freeze-dryer.
  • chitosan in the dried RNAi molecule / chitosan complex is acetylated using an acetylating agent.
  • the acetylating agent include acetic anhydride and acetyl chloride, with acetic anhydride being preferred.
  • the acetylating agent may be used as a solution in an organic solvent such as methanol.
  • the acetylating agent may be at a concentration of, for example, 0.5-10% (v / v), preferably 1-5% (v / v). Acetylation may be performed by adding such an acetylating agent to the dried RNAi molecule / chitosan complex.
  • the reaction time for acetylation may be 1-5 hours, preferably 2-4 hours.
  • Acetylation may be performed in nitrogen gas.
  • the temperature during acetylation may be room temperature, for example 15-30 ° C.
  • the degree of acetylation of N-acetylated chitosan may usually be 70-100%, for example 80% or more, 90% or more, 95% or more, 98% or more or 99% or more.
  • the obtained complex containing RNAi molecule and N-acetylated chitosan may be dried by any drying method such as lyophilization or vacuum drying. Preferably, the drying is lyophilization.
  • the dried composite may be further subjected to treatment such as pulverization and granulation.
  • the present invention also provides a pharmaceutical composition for treating or preventing a disease, comprising a complex comprising an RNAi molecule that suppresses the expression of the CHST15 gene and N-acetylated chitosan.
  • treatment means to cure, reduce or ameliorate a disease or condition
  • prevention means to prevent, inhibit or delay the onset of the disease or condition.
  • the target disease is not particularly limited as long as the complex of the present invention shows an effect, and may be, for example, an inflammatory disease or a mucosal disorder.
  • Inflammatory diseases refer to diseases involving inflammation.
  • Mucosal disorder refers to mucosal lesions and may include ulcers, erosions, edema and the like.
  • the location of the disease can be anywhere in the body, preferably the gastrointestinal tract.
  • the gastrointestinal tract can be, for example, the esophagus, stomach, and intestines (small and large intestines).
  • the small intestine includes the duodenum, jejunum and ileum
  • the large intestine includes the cecum, colon and rectum.
  • the disease may be a disease induced by a drug (for example, a nonsteroidal anti-inflammatory drug).
  • a drug for example, a nonsteroidal anti-inflammatory drug.
  • Non-steroidal anti-inflammatory drugs NSAID: Non-Steroidal Anti-Inflammatory Drug
  • NSAID Non-Steroidal Anti-Inflammatory Drug
  • the diseases include inflammatory bowel disease (e.g. ulcerative colitis, Crohn's disease), esophagitis, gastroenteritis, NSAID-induced enteritis (e.g. NSAID-induced enterocolitis), intestinal Behcet's disease, simple ulcer, digestion Artificial ulcer after endoscopic resection for ductal cancer, enteritis associated with collagen disease, radiation-induced enteritis, ischemic enteritis, reflux esophagitis, Barrett's esophagus, drug esophagitis or gastroenteritis, and drug resistance or refractory Peptic ulcers (including ulcers resistant to Helicobacter pylori eradication therapy).
  • inflammatory bowel disease e.g. ulcerative colitis, Crohn's disease
  • esophagitis e.g. NSAID-induced enteritis
  • gastroenteritis e.g. NSAID-induced enterocolitis
  • enteritis e.g. NSAID-induced enterocolitis
  • the disease can be inflammatory bowel disease, ulcerative colitis, Crohn's disease, gastroenteritis or NSAID-induced enteritis.
  • Ulcerative colitis is an inflammatory disease that mainly causes ulcers and erosions in the mucosa of the large intestine.
  • Crohn's disease is an inflammatory disease that causes ulcers and inflammation discontinuously throughout the digestive tract from the oral cavity to the anus.
  • NSAID is not particularly limited as long as it can cause gastrointestinal mucosal damage, but salicylic acid (for example, aspirin and sodium salicylate), fenamic acid (for example, mefenamic acid), arylacetic acid (for example, indomethacin, etodolac) , Diclofenac sodium, sulindac, progouritacin and acemetacin maleate), propionic acid systems (e.g. ibuprofen, naproxen, ketoprofen, loxoprofen and zaltoprofen), oxicam systems (e.g. piroxicam, meloxicam and lornoxicam) and basic anti-inflammatory drugs (e.g. Tiaramid hydrochloride, emorphazone) and the like.
  • salicylic acid for example, aspirin and sodium salicylate
  • fenamic acid for example, mefenamic acid
  • arylacetic acid for example, indomethacin,
  • the pharmaceutical composition may contain any formulation adjuvant normally used in the pharmaceutical field.
  • formulation aids pharmaceutically acceptable carriers (solid or liquid carriers), excipients, stabilizers, emulsifiers, surfactants, binders, disintegrants, lubricants, flavoring agents, solubilizing aids
  • Various drug carriers or additives such as suspending agents, coating agents, coloring agents, flavoring agents, preservatives, buffering agents and the like can be used.
  • formulation adjuvants include water, saline, other aqueous solvents, pharmaceutically acceptable organic solvents, mannitol, microcrystalline cellulose, starch, glucose, calcium, polyvinyl alcohol, collagen, polyvinyl pyrrolidone, Carboxyvinyl polymer, sodium alginate, water-soluble dextran, water-soluble dextrin, sodium carboxymethyl starch, gum arabic, pectin, xanthan gum, casein, gelatin, agar, propylene glycol, glycerin, polyethylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid Sorbitol, lactose and the like.
  • the formulation adjuvant can be selected appropriately or in combination depending on the dosage form of the formulation.
  • the pharmaceutical composition according to the present invention can be administered orally or parenterally (for example, rectal administration, transmucosal administration, intravenous administration, intraarterial administration, or transdermal administration). Rectal administration is preferred.
  • dosage forms suitable for oral administration include solid preparations (including tablets, pills, sublingual tablets, capsules, troches, and drops), granules, powders, powders, and liquids.
  • the solid preparation may be a dosage form with a coating known in the art, for example, sugar-coated tablet, gelatin-encapsulated tablet, enteric tablet, film-coated tablet, double tablet or multilayer tablet.
  • a coating can be intended, for example, to release the active ingredient at a target location in the body or to increase the absorbability of the active ingredient.
  • a dosage form suitable for each administration method can be appropriately used.
  • dosage forms suitable for parenteral administration include suppositories, injections, drops, coatings, eye drops, Examples include nasal drops, inhalants, suspensions, emulsions, creams, pastes, gels, ointments, plasters and the like.
  • the pharmaceutical composition of the present invention can be administered to a living body in a pharmaceutically effective amount for the treatment or prevention of a target disease.
  • the “pharmaceutically effective amount” means that the RNAi molecule contained in the pharmaceutical composition of the present invention is a dose necessary for treating or preventing a target disease and is administered to a living body. A dose with little or no adverse side effects.
  • the specific dose is determined depending on the individual subject, for example, based on the judgment of a doctor, based on the degree or severity of disease, general health, age, sex, weight, tolerance to treatment, and the like.
  • the weight of the RNAi molecule that suppresses the expression of the CHST15 gene is usually 0.001 to 1000 mg / kg body weight / day, such as 0.01 to 100 mg / kg body weight / day, or The dose may be 0.1 to 10 mg / kg body weight / day.
  • the pharmaceutical composition of the present invention can be administered once, for example, based on a treatment plan determined by a doctor, but at regular time intervals, for example, 1, 2, 3, 4, The subject can be administered several times or several tens of times at intervals such as 6 days, 1 week, 2 weeks, 3 weeks, 1 month, 2 months, 6 months or 1 year.
  • the pharmaceutical composition of the present invention may be administered in combination with another drug (for example, a drug for the therapeutic or preventive disease of the pharmaceutical composition of the present invention, or NSAID).
  • another drug for example, a drug for the therapeutic or preventive disease of the pharmaceutical composition of the present invention, or NSAID.
  • NSAID a drug for the therapeutic or preventive disease of the pharmaceutical composition of the present invention
  • they may be used as a combination preparation for simultaneous administration or as separate preparations combined for independent administration. Combination includes simultaneous administration and sequential administration.
  • the subject to which the pharmaceutical composition of the present invention is administered may be an animal, for example, a mammal (eg, human, monkey, cow, mouse, rat, dog, etc.). If the disease to be treated or prevented is a disease induced by a drug (eg, NSAID), the subject may be a patient receiving the drug.
  • a mammal eg, human, monkey, cow, mouse, rat, dog, etc.
  • a drug eg, NSAID
  • the present invention also provides a method for treating or preventing a disease, comprising administering the pharmaceutical composition according to the present invention to a subject in need thereof.
  • the present invention also relates to an inflammatory disease treatment or prevention agent or a mucosal healing promoter comprising a complex comprising an RNAi molecule that suppresses the expression of the CHST15 gene and N-acetylated chitosan.
  • the present invention also provides a method for producing a pharmaceutical composition according to the present invention, comprising a step of mixing a complex comprising an RNAi molecule that suppresses the expression of the CHST15 gene and N-acetylated chitosan with a pharmaceutically acceptable carrier. provide.
  • a pharmaceutical composition comprising a complex comprising an RNAi molecule that suppresses CHST15 gene expression and N-acetylated chitosan is particularly useful in the treatment or prevention of inflammatory diseases or mucosal disorders of the gastrointestinal tract.
  • Example 1 Effects of CHST15 siRNA / N-acetylated chitosan complex administered to DSS-induced acute colitis model mice CHST15 siRNA / N-acetylated chitosan complex administered orally to dextran sulfate sodium (DSS) -induced colitis model mice The RNAi effect and therapeutic effect were examined.
  • This DSS-induced colitis model is widely used as a standard experimental model for inflammatory bowel diseases such as mouse ulcerative colitis and Crohn's disease.
  • siRNA / N-acetylated chitosan complex Methods for preparing CHST15 siRNA / N-acetylated chitosan complex and negative control siRNA (NC) / N-acetylated chitosan complex are described below. A specific preparation method was the same as that described in Kai E et al., Pharmaceutical Research 21: 838-843 (2004), except that siRNA was used instead of plasmid DNA.
  • Chitosan was manufactured by Carbosynth (UK) and had a minimum degree of deacetylation of 90% (that is, an acetylation degree of 10% or less). 2 g of chitosan was dissolved in 50 mL of 5% (v / v) acetic acid, 2M sodium hydroxide was added to a pH of 4.2, the volume was adjusted to 100 mL with sterile water, and the chitosan solution (2% w / v) was obtained. The chitosan solution was filtered using a cellulose filter (pore size: 1 ⁇ m) under reduced pressure, and the filtrate was stored at room temperature until use.
  • a cellulose filter pore size: 1 ⁇ m
  • CHST15 siRNA The antisense strand and the sense strand of siRNA that suppresses the expression of the CHST15 gene (CHST15 siRNA) used in this example consist of the base sequences shown in SEQ ID NOs: 3 and 4, respectively.
  • the two RNA strands of the negative control siRNA consist of the base sequences shown in SEQ ID NOs: 7 and 8, respectively.
  • CHST15 siRNA and negative control siRNA were produced by requesting synthesis from BioSpring (Germany).
  • mice Eight week old female C57BL / 6J mice were obtained from Japan SLC (Shizuoka, Japan). All animals used in this example were bred according to the Japanese Pharmacological Society guidelines for animal experiments. The animals were maintained in the animal facility under conventional conditions, specifically in a clean cage under controlled room temperature (22-28 ° C.) and humidity (35-55%). Animals were housed in polycarbonate cages (KN-600, Natsume Seisakusho, Japan) with up to 3 mice per cage. Mice were given free sterilized normal diet and distilled water.
  • DSS Dextran sodium sulfate
  • the treatment group consisted of the following three groups. ⁇ Group 1: Normal (no DSS, no complex administration) ⁇ Group 2: DSS-induced colitis, negative control siRNA (NC) / N-acetylated chitosan complex administration ⁇ Group 3: DSS-induced colitis, CHST15 siRNA / N-acetylated chitosan complex administration
  • mice Each group consisted of 5 mice. On days 0, 1 and 2, N.C./N-acetylated chitosan complex and CHST15 siRNA / N-acetylated chitosan complex were orally administered to mice in which colitis in groups 2 and 3 were induced, respectively. Administration was performed using physiological saline (Otsuka Pharmaceutical Factory, Japan) as a vehicle once a day at a dose of 10 ⁇ g siRNA per mouse (in a volume of 10 mL / kg). On day 3, the mice were sacrificed and the effectiveness of the complex was evaluated.
  • physiological saline Olethylated chitosan complex
  • the disease activity index was calculated by summing the indices evaluated for weight loss, fecal occult blood, and fecal stiffness in day 3 mice. Table 1 shows the evaluation criteria for weight loss, fecal occult blood, and stool hardness.
  • Real-time PCR was performed using DICE and SYBR premix Taq (Takara Bio).
  • the primer sequences used were SEQ ID NOs: 9 and 10 for the CHST15 gene, SEQ ID NOs: 11 and 12 for the TNF- ⁇ gene, SEQ ID NOs: 13 and 14 for the MCP-1 gene, SEQ ID NOs: 15 and 14 for the ROR- ⁇ gene.
  • 16 shows SEQ ID NOs: 17 and 18 for the 36B4 gene.
  • the expression of each gene was normalized to the expression of the reference gene 36B4.
  • the results of the disease activity index (DAI) are shown in FIG.
  • the DAI measured in the NC administration group (group 2) of colitis model mice was significantly increased compared to normal (group 1).
  • the colitis model mouse CHST15 siRNA administration group (Group 3) showed a significant reduction in DAI compared to the NC administration group (Group 2). From this result, it was shown that the CHST15 siRNA / N-acetylated chitosan complex suppresses the activity of colitis.
  • Colon length The results of colon length are shown in FIG. The length of the colon was significantly shorter in the NC-administered group (group 2) of colitis model mice on the third day than in the normal group (group 1). On the other hand, in the CHST15 siRNA administration group (Group 3) of colitis model mice, the colon length was significantly longer than that in the NC administration group (Group 2). This result indicated that the CHST15 siRNA / N-acetylated chitosan complex provides protection from colon shortening due to colitis.
  • the histological score was also significantly reduced in the CHST15 siRNA administration group (Group 3) of colitis model mice compared to the NC administration group (Group 2) (FIG. 4). From these results, it was shown that the CHST15 siRNA / N-acetylated chitosan complex has a histological therapeutic effect on colitis and does not induce inflammation.
  • CHST15 mRNA in the colon was significantly increased in the NC administration group (group 2) of colitis model mice as compared to normal (group 1).
  • the CHST15 siRNA-administered group (Group 3) of colitis model mice showed a significant reduction of CHST15 mRNA in the colon compared to the NC-administered group (Group 2).
  • expression is increased by inflammation between the CHST15 siRNA administration group (Group 3) and the NC administration group (Group 2) of colitis model mice, TNF- ⁇ , MCP-1 And there was no significant difference in ROR- ⁇ mRNA levels. From these results, it was shown that the CHST15 siRNA / N-acetylated chitosan complex specifically reduced CHST15 mRNA in the colon (large intestine) and did not induce inflammation.
  • Example 2 Effects of CHST15 siRNA / N-acetylated chitosan complex administered to NSAID-induced enterocolitis model mice
  • Non-steroidal anti-inflammatory drugs NSAIDs
  • NSAIDs Non-steroidal anti-inflammatory drugs
  • the RNAi effect and therapeutic effect of an orally administered CHST15 siRNA / N-acetylated chitosan complex were examined on small intestinal inflammation model mice induced with indomethacin, an NSAID.
  • N-acetylated chitosan / siRNA complex A CHST15 siRNA / N-acetylated chitosan complex and a negative control siRNA (NC) / N-acetylated chitosan complex were prepared by the method described in Example 1.
  • NSAID indomethacin (Wako Pure Chemical Industries) was subcutaneously administered at a dose of 10 mg / kg of mouse body weight to induce enteritis.
  • the treatment group consisted of the following 4 groups. ⁇ Group 1: Normal (no NSAID, no complex administration) ⁇ Group 2: NSAID-induced enteritis, mock administration ⁇ Group 3: NSAID-induced enteritis, negative control siRNA (NC) / N-acetylated chitosan complex administration ⁇ Group 4: NSAID-induced enteritis CHST15 siRNA / N-acetylated chitosan complex administration
  • mice were administered vehicle saline (Otsuka Pharmaceutical Factory, Japan), and groups 3 and 4 mice received NC / N-acetylated chitosan complex and CHST15 siRNA / N, respectively.
  • -Acetylated chitosan complex was administered by oral gavage. Administration was performed once on day 0 after administration of NSAID (intestinal enteritis) at a dose of 10 ⁇ g siRNA per mouse. On day 1, mice were sacrificed and the effectiveness of the complex was evaluated.
  • NSAID intestinal enteritis
  • CHST15 mRNA expression levels were determined by quantitative RT-PCR in the same manner as described in Example 1 except that the jejunum was used instead of the colon. The number of ulcers visible in the jejunum was counted to determine the ulcer score. Statistical tests were performed in the same manner as described in Example 1.
  • CHST15 mRNA in the jejunum (small intestine) was significantly increased in the sham-administered group (group 2) and NC-administered group (group 3) of small intestinal model mice as compared with normal (group 1).
  • the CHST15 siRNA-administered group (Group 4) of enterocolitis model mice showed a significant decrease in CHST15 mRNA in the jejunum compared with the sham-administered group (Group 2) and the NC-administered group (Group 3). It was. From this result, it was shown that the CHST15 siRNA / N-acetylated chitosan complex reduces CHST15 mRNA in the jejunum (small intestine).
  • ulcer score The results of the ulcer score (number of ulcers) are shown in FIG.
  • the number of ulcers in the jejunum (small intestine) was significantly increased in the sham-administered group (group 2) and NC-administered group (group 3) of small intestinal model mice compared to normal (group 1).
  • the CHST15 siRNA administration group (Group 4) of enterocolitis model mice showed a significant reduction in the number of ulcers in the jejunum compared with the sham administration group (Group 2) and the NC administration group (Group 3). It was.
  • the CHST15 siRNA / N-acetylated chitosan complex has an effect of reducing the number of NSAID-induced ulcers in the jejunum (small intestine) and suppressing NSAID-induced enteritis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

CHST15遺伝子の発現を抑制するRNAi分子を含む、低侵襲的に投与可能な組成物の提供。 CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体、CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を製造する方法であって、(a)該RNAi分子とキトサンとを混合して、複合体を形成させる工程、(b)工程(a)で得られた複合体を乾燥する工程、及び(c)工程(b)で得られた乾燥した複合体中のキトサンをアセチル化する工程を含む、方法、並びに前記複合体を含む医薬組成物。

Description

RNAi分子とN-アセチル化キトサンとを含む複合体
 本発明は、CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体、その製造方法、及びそれを含む医薬組成物に関する。
 大腸及び小腸の粘膜に慢性の炎症又は潰瘍を引き起こす疾患を総称して炎症性腸疾患と呼ぶ。炎症性腸疾患としては、代表的なものに潰瘍性大腸炎及びクローン病があり、いずれも難病である。潰瘍性大腸炎は、主に大腸の粘膜に潰瘍やびらんを生じる炎症性疾患であり、出血性下痢、腹痛、発熱をはじめとする種々の全身症状を示す。また、クローン病は口腔から肛門まで消化管全域にわたって非連続的に潰瘍や炎症を生じる炎症性疾患であり、腹痛、発熱、慢性下痢、栄養障害などの全身症状を示す。
 硫酸転移酵素であるCarbohydrate sulfotransferase 15(CHST15)(GalNAc4S-6ST又はN-acetylgalactosamine 4-sulfate 6-O-sulfotransferaseとも称される)は、コンドロイチン硫酸-A(CS-A)のGalNAc(4SO4)残基の6位に硫酸塩を転移し、高度に硫酸化されたコンドロイチン硫酸-E(CS-E)を合成する、II型の膜貫通型ゴルジタンパク質である。本発明者は、CHST15遺伝子の発現を抑制するsiRNA(CHST15 siRNA)を大腸炎の動物モデルに大腸粘膜下投与したところ、大腸においてCHST15遺伝子発現が低下し、潰瘍、炎症及び線維化の抑制を含めた治療効果が見られたこと、またヒトクローン病患者においても治療効果が見られたことを報告した(特許文献1~3及び非特許文献1~2)。さらに、局所投与したCHST15 siRNAは、拡張型心筋症及び膵臓癌にも効果があることが最近報告されている(非特許文献3~6)。
 siRNAなどの核酸医薬は、ヌクレアーゼなどの酵素によって分解されやすいため、例えば注射によって罹患部位に局所投与されるか、又は特別なドラッグデリバリーシステムを用いて投与されることが多い。しかし局所投与は投与できる部位が限定され、また医師による投与を必要とするため、より多くの部位へ簡便にかつ低侵襲的に投与できる形態の製剤、例えば経口投与製剤の開発が望まれている。
 キトサンは、甲殻類や昆虫類等の節足動物の外殻及び真菌の細胞壁の主要構成成分であるキチンの脱アセチル化により生成することができる高分子多糖類である。特許文献4及び5は、キトサン及びsiRNAを含む、siRNA送達用組成物を開示している。しかし、特許文献4及び5は、キトサンをアセチル化して、得られたアセチル化キトサンをsiRNAと組み合わせることについて全く記載していない。また、非特許文献7は、N-アセチル化キトサン及びプラスミドDNAを含む複合体が、経口投与により腸に送達されることを報告している。しかし、非特許文献7は、siRNAなどのRNAi分子をN-アセチル化キトサンと組み合わせた複合体について全く記載していない。
国際公開第WO 2009/004995号 国際公開第WO 2009/084232号 国際公開第WO 2014/013535号 特表2010-503640号公報(国際公開第WO 2008/031899号) 特表2014-518875号公報(国際公開第WO 2012/159215号)
Kiryu H, et al., Bioinformatics 27(13): 1788-1797 (2011) Suzuki K, et al., 米国消化器病週間(DDW)2014, 要旨集, Su1078 (2014) Watanabe K, et al., Cell Signal 27(7): 1517-1524 (2015) Nishimura M, et al., 2015年米国臨床腫瘍学会年会(ASCO Annual Meeting), 要旨集, e22201 (2015) Nishimura M, et al., 米国消化器病週間(DDW)2015, 要旨集, Mo1043 (2015) Nishimura M, 欧州消化器病週間(UEGW)2015, 要旨集 (2015) Kai E, et al., Pharmaceutical Research 21: 838-843 (2004)
 本発明は、CHST15遺伝子の発現を抑制するRNAi分子を含む、低侵襲的に投与可能な組成物を提供することを課題とする。
 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、CHST15遺伝子の発現を抑制するsiRNAとN-アセチル化キトサンとを含む複合体を経口投与すると、驚くべきことに、該複合体は、小腸及び大腸に効率的に送達され、CHST15遺伝子発現を抑制すること、また、小腸炎及び大腸炎に対して治療効果を奏することを見出し、本発明を完成するに至った。
 本発明は以下を包含する。
 [1]CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体。
 [2]前記N-アセチル化キトサンのアセチル化度が、70~100%である、[1]に記載の複合体。
 [3]前記RNAi分子がsiRNAである、[1]又は[2]に記載の複合体。
 [4]前記RNAi分子が、配列番号1に示される塩基配列を含むアンチセンス鎖と、該アンチセンス鎖に相補的な塩基配列を含むセンス鎖とを含む、[1]~[3]のいずれかに記載の複合体。
 [5]CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を製造する方法であって、
 (a)該RNAi分子とキトサンとを混合して、複合体を形成させる工程、
 (b)工程(a)で得られた複合体を乾燥する工程、及び
 (c)工程(b)で得られた乾燥した複合体中のキトサンをアセチル化する工程
を含む、方法。
 [6][1]~[4]のいずれかに記載の複合体を含む、消化管の炎症性疾患又は粘膜障害を治療又は予防するための、医薬組成物。
 [7]経口投与又は経直腸投与用の、[6]に記載の医薬組成物。
 [8]前記炎症性疾患又は粘膜障害が、炎症性腸疾患、潰瘍性大腸炎、クローン病、食道炎、胃腸炎、NSAID誘発腸炎、腸管ベーチェット病、単純性潰瘍、消化管癌に対する内視鏡的切除後の人工潰瘍、膠原病に伴う腸炎、放射線による腸炎、虚血性腸炎、逆流性食道炎、バレット食道、薬剤性食道炎若しくは胃腸炎、並びに薬剤抵抗性若しくは不応性の消化性潰瘍からなる群から選択される、[6]又は[7]に記載の医薬組成物。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-216482号の開示内容を包含する。
 本発明により、CHST15遺伝子の発現を抑制するRNAi分子を含む、低侵襲的に投与可能な組成物が提供される。
DSS(デキストラン硫酸ナトリウム)誘発大腸炎モデルマウスにおける疾患活動指数(DAI)を示すグラフである。 DSS誘発大腸炎モデルマウスにおける結腸の長さを示すグラフである。 DSS誘発大腸炎モデルマウスにおけるHE染色した結腸切片の代表的な顕微鏡写真である。 DSS誘発大腸炎モデルマウスにおける結腸の組織学的スコアを示すグラフである。 DSS誘発大腸炎モデルマウスにおける結腸のCHST15遺伝子発現を示すグラフである。 NSAID(非ステロイド性抗炎症薬)誘発小腸炎モデルマウスにおける空腸のCHST15遺伝子発現を示すグラフである。 NSAID誘発小腸炎モデルマウスにおける空腸の潰瘍スコアを示すグラフである。
 以下、本発明を詳細に説明する。
<複合体>
 本発明は、CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を提供する。
 本発明で用いるRNAi分子は、CHST15遺伝子の発現を抑制することができる。本明細書において、CHST15遺伝子は、特に限定しないが、動物由来であってよく、例えば哺乳動物(例えばヒト、サル、ウシ、マウス、ラット、イヌなど)に由来するものであってよい。
 ヒトCHST15遺伝子の塩基配列は、例えばGenBankアクセッション番号NM_015892において取得することができる。ヒトCHST15遺伝子の塩基配列を配列番号5に、該遺伝子によってコードされるCHST15タンパク質のアミノ酸配列を配列番号6に示す。
 本明細書において、CHST15タンパク質には、配列番号6に示されるアミノ酸配列と高い同一性(例えば80%以上、好ましくは90%以上、より好ましくは95%以上又は98%以上)を有し、かつ、配列番号6に示されるアミノ酸配列からなるタンパク質が有する活性(例えば硫酸転移活性)を保持するタンパク質が含まれる。CHST15遺伝子には、ヒト以外の生物における、このようなCHST15タンパク質をコードする遺伝子が含まれる。
 またCHST15遺伝子には、例えば、配列番号5に示される塩基配列からなるDNAに対応するヒト以外の生物における内在性のCHST15遺伝子(ヒトCHST15遺伝子のオルソログなど)が含まれる。当業者は、配列番号5に示される塩基配列を基に、ヒト以外の生物における内在性のCHST15遺伝子を適宜取得することができる。ヒト以外の生物における内在性のCHST15遺伝子は、一般に、配列番号5に示されるDNAと高い同一性(例えば80%以上、好ましくは90%以上、より好ましくは95%以上又は98%以上の同一性)を有し得る。例えば、マウス、ラット、ウシ、及びイヌのCHST15遺伝子の塩基配列は、それぞれ、GenBankアクセッション番号NM_029935.5、NM_173310.3、XM_005225861.2及びXM_544058.6において取得できる。
 配列同一性は、当業者であれば適宜決定できる。配列同一性の決定は、2つの配列をアライメントすることを含み得る。そのような配列アラインメントを実行するための適切なコンピュータプログラムとして、特に限定されないが、Vector NTI(登録商標)(サーモフィッシャーサイエンティフィック)及びClustalWプログラム(Thompson JD, et al., Nucleic Acids Research 22(22): 4673-4680; Larkin, et al., Bioinformatics 23(21): 2947-2948(2007))が挙げられる。ClustalWプログラムは、例えば、DNA Data Bank of Japan(DDBJ)のウェブページ中で利用可能である。アラインメントを作製した後、2つの配列間の配列同一性%を算出することができる。典型的には、ソフトウェアは配列比較の一部としてこれを行い、数値的な結果を生成する。
 本発明において、RNAi分子は、CHST15遺伝子の発現を抑制することができる。本明細書において「RNAi分子」とは、生体内においてRNAi(RNA干渉; RNA inteference)を誘導し、標的遺伝子(本発明ではCHST15)の転写産物の分解などを介してその遺伝子の発現を抑制(サイレンシング)することができるRNA分子をいう(Fire A. et al., Nature 391, 806-811 (1998))。RNAi分子の具体例としては、siRNA、shRNAなどが挙げられる。「siRNA」は、標的遺伝子のmRNA配列の一部に相補的な配列を含むアンチセンス鎖と、該アンチセンス鎖に相補的(標的遺伝子の配列の一部と相同)な配列を含むセンス鎖とがハイブリダイズして形成される二本鎖RNAである。「shRNA」は、適当な配列を有する短いスペーサー配列によって前記siRNAのセンス鎖及びアンチセンス鎖が連結された一本鎖RNAをいう。つまり、shRNAは、一分子内でセンス領域とアンチセンス領域が互いに塩基対合してステム構造を形成し、同時に前記スペーサー配列がループ構造を形成ことによって、分子全体としてヘアピン型のステム-ループ構造を形成している。
 本明細書において、標的遺伝子発現の抑制は、標的遺伝子の発現をその遺伝子のmRNA又はタンパク質の発現量を指標に判定した場合に、RNAi分子を導入しない場合又は無関係な対照RNAi分子を導入した場合に対して、100%抑制される場合のみならず、75%以上、50%以上又は20%以上抑制されることも意味する。mRNA発現量は、例えばノザンハイブリダイゼーション又はリアルタイムPCRにより測定することができ、タンパク質発現量は、例えばウエスタンブロッティング、ELISA又はタンパク質の活性測定により、当業者であれば適宜測定することができる。遺伝子発現量の具体的な測定方法は、Green, MR and Sambrook, J, (2012) Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New Yorkにも記載されている。
 RNAi分子の配列は、標的遺伝子(CHST15遺伝子)の塩基配列を基に、当業者であれば適宜設計することができる。例えば、アンチセンス鎖が、標的遺伝子mRNA中のコーディング領域又は5'若しくは3'非翻訳領域(UTR)などの一部に相補的な配列を含むように、アンチセンス鎖の配列を設計し、センス鎖が、上記アンチセンス鎖に相補的な配列を含むように、センス鎖の配列を設計し得る。
 本明細書において「相補的」とは、2つの塩基間で(例えばワトソン・クリック型の)塩基対合をし得る関係を意味し、例えば、アデニンとチミン又はウラシルとの関係、並びにシトシンとグアニンとの関係をいう。本明細書において相補的とは、完全に相補的であることが好ましいが、完全に相補的である必要はなく、RNAi分子が標的遺伝子発現を抑制する能力を保持する限り、1個以上(例えば1~5個又は1~3個)のミスマッチを含んでいてもよい。ミスマッチとは、アデニンとチミン又はウラシルとの関係並びにシトシンとグアニンとの関係以外の関係を指す。
 siRNAなどのRNAi分子は、末端に数個(例えば、2~5個)のヌクレオチドの一本鎖部分(オーバーハング)を有する場合にRNAi活性が高いことが一般に知られている。そのため、本発明で用いるRNAi分子は、末端に数個のデオキシリボヌクレオチド又はリボヌクレオチドのオーバーハングを有することが好ましい。例えば、RNAi分子は、2ヌクレオチドの3'オーバーハングを有し得る。具体的には、RNAi分子は、2個のリボヌクレオチド(例えばAU又はAG)からなる3'オーバーハングを有していてもよい。
 RNAi分子を構成するセンス鎖及びアンチセンス鎖は、それぞれ、例えば20~50塩基長、20~40塩基長又は20~30塩基長であってよいが、特に限定されず、互いに同じ長さでも異なる長さでもよい。本発明では、好ましくは、センス鎖及びアンチセンス鎖は、それぞれ25~29塩基長、例えば27塩基長であってよい。
 具体的には、RNAi分子は、配列番号1に示される塩基配列を含むアンチセンス鎖と、該アンチセンス鎖に相補的な塩基配列を含むセンス鎖とを含み得る。この場合、センス鎖は、配列番号1に完全に相補的な配列である、配列番号2に示される塩基配列を含むことが好ましい。
 より具体的には、アンチセンス鎖は、配列番号3に示される塩基配列からなってよく、これは、配列番号1に示される塩基配列の3'末端にリボヌクレオチドAUが付加した配列である。センス鎖は、配列番号4に示される塩基配列からなってよく、これは、配列番号2に示される塩基配列の3'末端にリボヌクレオチドAGが付加した配列である。
 RNAi分子のヌクレオチドは、全てがリボヌクレオチドであることが好ましいが、数個(例えば1~5個、1~3個又は1~2個)がデオキシリボヌクレオチドであってもよい。RNAi分子のヌクレオチドはまた、天然のヌクレオチドに加えて、例えばRNAi分子の安定性を向上させるために、ハロゲン(フッ素、塩素、臭素又はヨウ素)、メチル、カルボキシメチル又はチオ基などの基を有する修飾ヌクレオチドであってもよい。
 RNAi分子を構成するセンス鎖及びアンチセンス鎖は、市販の核酸合成機を用いて適宜製造することができる。製造されたセンス鎖及びアンチセンス鎖は、好ましくは等モル比で混合して、互いにハイブリダイズさせ、RNAi分子を製造してもよい。また、メーカー(例えば、BioSpring、タカラバイオ、Sigma-Aldrichなど)の受託製造サービスを利用してRNAi分子を製造してもよい。
 次に、本発明における「キトサン」は、グルコサミンと少量のN-アセチルグルコサミンとが重合した構造を有する高分子多糖類である。キトサンは、カニ、エビなど甲殻類の殻から得ることができるキチンを、濃アルカリ溶液と加熱して脱アセチル化することによって得ることができる。キトサンは、様々なアセチル化度及び分子量で、例えばCarbosynth社又はフナコシ社などで市販されている。本明細書においてキトサンのアセチル化度は、通常0~30%、例えば20%以下、10%以下又は5%以下であり得る。本明細書においてキトサンの分子量は、特に限定されず、低分子量キトサン(例えば、分子量2000Da~100kDa)であっても、高分子量キトサン(例えば、分子量100kDa~10,000kDa又はそれ以上)であっても、又は様々な分子量の混合物であってもよい。
 「N-アセチル化キトサン」は、上記キトサンのアミノ基の一部又は全部がアセチル化された高分子多糖類である。本明細書においてN-アセチル化キトサンのアセチル化度は、通常70~100%、例えば80%以上、90%以上、95%以上、98%以上又は99%以上であってよい。キトサン及びN-アセチル化キトサンのアセチル化度は、コロイド滴定、赤外吸収スペクトル、核磁気共鳴スペクトル(NMR)、元素分析などによって決定することができる。
 CHST15遺伝子発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体中のRNAi分子とN-アセチル化キトサンとの結合の様式は特に限定しないが、RNAi分子はアニオン性ポリマーであり、N-アセチル化キトサンはカチオン性ポリマーであるため、両者は静電的相互作用で複合体を形成することが想定される。上記複合体において、RNAi分子と、N-アセチル化キトサンを構成しているグルコサミン単位との比(モル比)は、1:200~1:5、1:100~1:5、又は1:50~1:10であってよい。
 CHST15遺伝子発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を製造する方法の一例は、以下の「製造方法」の節に記載されている。本発明の複合体は、特別なドラッグデリバリーシステムを必要とせずに、低侵襲的な投与方法、例えば経口投与によって、RNAi分子を細胞に送達することができる。
<製造方法>
 本発明はまた、CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を製造する方法を提供する。本方法は、(a)該RNAi分子とキトサンとを混合して、複合体を形成させる工程、(b)工程(a)で得られた複合体を乾燥する工程、及び(c)工程(b)で得られた乾燥した複合体中のキトサンをアセチル化する工程を含む。
 キトサンとしては、アセチル化度0~30%、例えば20%以下、10%以下又は5%以下のキトサンを使用し得る。キトサンは、例えば酸水溶液に溶解することによって、キトサン溶液として提供し得る。酸の種類は特に限定されないが、酢酸又は塩酸などが挙げられ、好ましくは酢酸である。酸水溶液は、例えば1%(v/v)~10%(v/v)、好ましくは2%(v/v)~8%(v/v)の濃度であってよい。キトサンは、酸水溶液に対して0.1%(w/v)~10%(w/v)、好ましくは1%(w/v)~8%(w/v)の濃度で溶解し得る。酸水溶液へのキトサンの溶解方法は特に限定されず、撹拌などの常法により溶解すればよい。溶解時の温度は室温、例えば15~30℃であってよい。溶解時間はキトサンの分子量及びアセチル化度などによって異なり、適宜設定し得る。こうして得られたキトサン溶液のpHは、アルカリ溶液、例えば水酸化ナトリウム溶液によって3.0~5.0、好ましくは3.5~4.5、より好ましくは4.0~4.3に調整し得る。次いで、キトサン溶液は、水、例えば滅菌水によって適宜希釈してもよい。次いで、キトサン溶液は、孔径0.5~2μm、例えば1μmのフィルター(例えばセルロースフィルター)でろ過してろ液をその後の工程に使用してもよい。
 CHST15遺伝子の発現を抑制するRNAi分子は、通常、適切な緩衝液中にRNAi分子を含む溶液としてメーカーの受託製造によって提供され得る。
 該RNAi分子とキトサンとは混合され、例えば静電的相互作用によって、複合体(RNAi分子/キトサン複合体)を形成させる。RNAi分子/キトサン複合体において、RNAi分子とキトサンを構成しているグルコサミン単位との比(モル比)は、1:200~1:5、1:100~1:5、又は1:50~1:10であってよい。RNAi分子とキトサンとの混合は、例えば、RNAi分子を含む溶液とキトサン溶液とを混合し撹拌することによって行ってよい。
 得られたRNAi分子/キトサン複合体は、凍結乾燥、減圧乾燥などの任意の公知の乾燥法によって乾燥される。好ましくは、乾燥は凍結乾燥である。凍結乾燥は、該複合体を含む溶液を、テフロンディッシュなどの基板にフローキャストした後に行ってもよい。凍結乾燥は、市販の凍結乾燥機を用いて適宜行うことができる。
 次に、乾燥したRNAi分子/キトサン複合体中のキトサンをアセチル化剤を用いてアセチル化する。アセチル化剤としては、無水酢酸及び塩化アセチルなどがあるが、無水酢酸が好ましい。アセチル化剤は、メタノールなどの有機溶媒中の溶液として用いてよい。アセチル化剤は、例えば0.5~10%(v/v)、好ましくは1~5%(v/v)の濃度であってよい。アセチル化は、このようなアセチル化剤を、乾燥したRNAi分子/キトサン複合体に添加することによって行ってよい。アセチル化の反応時間は、1~5時間、好ましくは2~4時間であってよい。アセチル化は窒素ガス中で行ってもよい。アセチル化時の温度は室温、例えば15~30℃であってよい。このようなアセチル化処理によって、RNAi分子とN-アセチル化キトサンとを含む複合体を得ることができる。N-アセチル化キトサンのアセチル化度は、通常70~100%、例えば80%以上、90%以上、95%以上、98%以上又は99%以上であってよい。
 得られたRNAi分子とN-アセチル化キトサンとを含む複合体は、凍結乾燥、減圧乾燥などの任意の乾燥法によって乾燥されてもよい。好ましくは、乾燥は凍結乾燥である。乾燥させた複合体には、さらに粉砕、顆粒化などの処理を施してもよい。
<医薬組成物>
 本発明はまた、CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を含む、疾患の治療又は予防のための医薬組成物を提供する。本明細書において「治療」とは疾患若しくは症状を治癒、軽減、又は改善することを意味し、「予防」とは疾患若しくは症状の発症を阻止、抑制、又は遅延することを意味する。
 対象となる疾患は、本発明の複合体が効果を示す限り特に限定されないが、例えば、炎症性疾患又は粘膜障害であり得る。炎症性疾患は、炎症を伴う疾患を指す。粘膜障害は、粘膜の病変を意味し、潰瘍、びらん、浮腫などを含み得る。疾患の場所は身体におけるいずれの場所であってもよく、好ましくは消化管であってよい。消化管は、例えば、食道、胃、及び腸(小腸及び大腸)であってよい。小腸は、十二指腸、空腸及び回腸を含み、大腸は、盲腸、結腸及び直腸を含む。
 疾患は、薬物(例えば、非ステロイド性抗炎症薬)によって誘発される疾患であってもよい。非ステロイド性抗炎症薬(NSAID: Non-Steroidal Anti-Inflammatory Drug)は、解熱剤、鎮痛剤、抗炎症剤として広く用いられているが、同時に消化管粘膜障害などの副作用を有し得ることが知られている。
 具体的には、疾患としては、炎症性腸疾患(例えば潰瘍性大腸炎、クローン病)、食道炎、胃腸炎、NSAID誘発腸炎(例えばNSAID誘発小腸炎)、腸管ベーチェット病、単純性潰瘍、消化管癌に対する内視鏡的切除後の人工潰瘍、膠原病に伴う腸炎、放射線による腸炎、虚血性腸炎、逆流性食道炎、バレット食道、薬剤性食道炎若しくは胃腸炎、並びに薬剤抵抗性若しくは不応性の消化性潰瘍(ヘリコバクター・ピロリ除菌療法抵抗性潰瘍を含む)などが挙げられる。好ましくは、疾患は、炎症性腸疾患、潰瘍性大腸炎、クローン病、胃腸炎又はNSAID誘発腸炎であり得る。潰瘍性大腸炎は、主に大腸の粘膜に潰瘍やびらんを生じる炎症性疾患である。クローン病は口腔から肛門まで消化管全域にわたって非連続的に潰瘍や炎症を生じる炎症性疾患である。
 NSAIDとしては、消化管粘膜障害を引き起こし得るものであれば特に限定しないが、サリチル酸系(例えば、アスピリン及びサリチル酸ナトリウム)、フェナム酸系(例えば、メフェナム酸)、アリール酢酸系(例えば、インドメタシン、エトドラク、ジクロフェナクナトリウム、スリンダク、マレイン酸プログルメタシン及びアセメタシン)、プロピオン酸系(例えば、イブプロフェン、ナプロキセン、ケトプロフェン、ロキソプロフェン及びザルトプロフェン)、オキシカム系(例えば、ピロキシカム、メロキシカム及びロルノキシカム)並びに塩基性抗炎症薬(塩酸チアラミド、エモルファゾン)などが挙げられる。本明細書においてNSAIDは、アリール酢酸系が好ましく、インドメタシンがより好ましい。
 医薬組成物は、製剤分野において通常使用される任意の製剤補助剤を含んでもよい。製剤補助剤としては、製薬上許容される、担体(固体又は液体担体)、賦形剤、安定化剤、乳化剤、界面活性剤、結合剤、崩壊剤、滑沢剤、矯臭剤、溶解補助剤、懸濁剤、コーティング剤、着色剤、矯味剤、保存剤、緩衝剤などの、様々な薬物担体又は添加剤を用いることができる。具体的には、製剤補助剤としては、水、生理食塩水、他の水性溶媒、製薬上許容される有機溶媒、マンニトール、微結晶セルロース、デンプン、ブドウ糖、カルシウム、ポリビニルアルコール、コラーゲン、ポリビニルピロリドン、カルボキシビニルポリマー、アルギン酸ナトリウム、水溶性デキストラン、水溶性デキストリン、カルボキシメチルスターチナトリウム、アラビアゴム、ペクチン、キサンタンガム、カゼイン、ゼラチン、寒天、プロピレングリコール、グリセリン、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ソルビトール、ラクトースなどが挙げられる。製剤補助剤は、製剤の剤形に応じて適宜又は組み合わせて選択され得る。
 本発明に係る医薬組成物は、経口投与又は非経口投与(例えば、経直腸投与、経粘膜投与、静脈内投与、動脈内投与、若しくは経皮投与)することができるが、特に経口投与及び経直腸投与が好ましい。
 経口投与に適した剤形としては、例えば、固形剤(錠剤、丸剤、舌下剤、カプセル剤、トローチ剤、ドロップ剤を含む)、顆粒剤、散剤、粉剤、液剤などを挙げることができる。固形剤は、当該分野で公知の剤皮を施した剤形、例えば、糖衣錠、ゼラチン被包錠、腸溶錠、フィルムコーティング錠、二重錠又は多層錠としてもよい。このような剤皮は、例えば、身体における目的の場所で有効成分を放出させること又は有効成分の吸収性を高めることを目的としたものであり得る。
 非経口投与では、それぞれの投与方法に適した剤形を適宜用いることができるが、非経口投与に適した剤形としては、例えば、坐剤、注射剤、点滴剤、塗布剤、点眼剤、点鼻剤、吸入剤、懸濁剤、乳剤、クリーム剤、ペースト剤、ゲル剤、軟膏剤、硬膏剤などを挙げることができる。
 本発明の医薬組成物は、目的とする疾患の治療又は予防のために製薬上有効な量で生体に投与することができる。本明細書において「製薬上有効な量」とは、本発明の医薬組成物に含まれるRNAi分子が、対象とする疾患を治療又は予防する上で必要な用量であって、かつ投与する生体に対して有害な副作用がほとんどないか又は全くない用量をいう。具体的な投与量は、個々の被験体に応じて、病気の進行度若しくは重症度、全身の健康状態、年齢、性別、体重及び処置に対する耐性などに基づき、例えば医師の判断により決定される。例えば、本発明の医薬組成物を経口的に投与する場合、CHST15遺伝子の発現を抑制するRNAi分子の重量で、通常は0.001~1000mg/体重kg/日、例えば0.01~100mg/体重kg/日又は0.1~10mg/体重kg/日となる量で投与してもよい。本発明の医薬組成物は、例えば医師が決定した治療計画に基づいて、単回投与することができるが、一定の時間間隔、例えば、1日、2日、3日、4日、5日、6日、1週間、2週間、3週間、1ヶ月、2ヶ月、6ヶ月又は1年などの間隔で、被験体に対して、数回又は数十回に分けて投与することもできる。
 本発明の医薬組成物は、他の薬物(例えば本発明の医薬組成物の治療若しくは予防対象疾患に対する薬物、又はNSAID)と併用して投与してもよい。これらと併用する場合は、同時に投与するための配合剤として、あるいは独立して投与するために組み合わされた別個の製剤として使用してもよい。併用は、同時投与及び連続投与を含む。
 本発明の医薬組成物を投与する被験体は、動物、例えば哺乳動物(例えばヒト、サル、ウシ、マウス、ラット、イヌなど)であってよい。治療又は予防対象の疾患が、薬物(例えばNSAID)によって誘発される疾患である場合は、被験体は、当該薬物の投与を受けている患者であってよい。
 本発明は、本発明に係る医薬組成物をそれを必要とする被験体に投与することを含む、疾患の治療又は予防方法も提供する。また本発明は、CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を含む、炎症性疾患治療若しくは予防剤又は粘膜治癒促進剤にも関する。本発明は、CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を、製薬上許容される担体と混合する工程を含む、本発明に係る医薬組成物の製造方法も提供する。
 CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を含む、医薬組成物は、消化管の炎症性疾患又は粘膜障害の治療又は予防において特に有用である。
 以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。
[実施例1]
DSS誘発急性大腸炎モデルマウスに投与したCHST15 siRNA/N-アセチル化キトサン複合体の効果
 デキストラン硫酸ナトリウム(DSS)で誘発した大腸炎モデルマウスに経口投与したCHST15 siRNA/N-アセチル化キトサン複合体のRNAi効果及び治療効果を検討した。本DSS誘発性大腸炎モデルは、マウス潰瘍性大腸炎やクローン病などの炎症性腸疾患の標準的実験モデルとして広く用いられている。
<材料と方法>
(siRNA/N-アセチル化キトサン複合体)
 CHST15 siRNA/N-アセチル化キトサン複合体及び陰性対照siRNA(N.C.)/N-アセチル化キトサン複合体の調製方法を以下に説明する。具体的な調製方法は、プラスミドDNAの代わりにsiRNAを使用したことを除いて、Kai E et al., Pharmaceutical Research 21: 838-843 (2004)に記載の方法に準じた。
 キトサンは、Carbosynth社(英国)製で、脱アセチル化度最小90%(すなわち、アセチル化度10%以下)であった。2gのキトサンを、50mLの5%(v/v)酢酸中に溶解し、pHが4.2になるように2M 水酸化ナトリウムを添加した後、滅菌水で体積を100mLにして、キトサン溶液(2%w/v)を得た。このキトサン溶液を、減圧下でセルロースフィルター(孔径1μm)を用いてろ過し、ろ液を使用まで室温で保存した。
 本実施例で用いた、CHST15遺伝子の発現を抑制するsiRNA(CHST15 siRNA)のアンチセンス鎖及びセンス鎖は、それぞれ配列番号3及び4に示される塩基配列からなる。陰性対照siRNAの2本のRNA鎖は、それぞれ配列番号7及び8に示される塩基配列からなる。CHST15 siRNA及び陰性対照siRNAは、BioSpring社(ドイツ)に合成依頼して製造した。
 上記キトサン溶液(2% w/v)を、CHST15 siRNA溶液又は陰性対照siRNA溶液と穏やかに混合し、CHST15 siRNA/キトサン複合体又は陰性対照 siRNA/キトサン複合体を含む溶液(100mg siRNA/mL)を得た。溶液中で、CHST15 siRNAと、キトサンを構成しているグルコサミン単位との比(モル比)は、約1:21であった。次いで、この溶液をテフロンディッシュ(直径60mm)にフローキャストし、一晩凍結乾燥した。凍結乾燥した複合体を、メタノール中の3%(v/v)無水酢酸を用いて、室温にて窒素ガス中で3時間N-アセチル化した。得られた生成物を一晩凍結乾燥し、CHST15 siRNA/N-アセチル化キトサン複合体、及び陰性対照siRNA(N.C.)/N-アセチル化キトサン複合体を得た。
(動物)
 8週齢の雌性C57BL/6Jマウスを日本SLC(静岡、日本)から得た。本実施例で用いた全ての動物は、動物実験に関する日本薬理学会指針にしたがって飼育した。動物は、慣用の条件下、具体的には、清潔なケージ内で、制御された室温(22~28℃)及び湿度(35~55%)の下で、動物施設において維持した。動物は、ケージ1個あたり最大3匹のマウスを有する、ポリカーボネートケージ(KN-600、夏目製作所、日本)中で飼育した。マウスには滅菌した通常の食餌、及び蒸留水を自由に与えた。
(大腸炎の誘発)
 デキストラン硫酸ナトリウム(DSS)はMP Biomedicals社から購入した。2.5%(w/v)DSS水溶液をマウスに3日間(DSS水溶液をマウスに与えた初日を0日目として、0、1及び2日目に)自由に与えて、急性大腸炎を誘発した。
(siRNA/N-アセチル化キトサン複合体の投与)
 処置群は以下の3群からなった。
・第1群: 正常(DSS無し、複合体投与無し)
・第2群: DSS誘発大腸炎、陰性対照siRNA(N.C.)/N-アセチル化キトサン複合体投与
・第3群: DSS誘発大腸炎、CHST15 siRNA/N-アセチル化キトサン複合体投与
 各群は、5匹のマウスからなった。0、1及び2日目に、第2群及び第3群の大腸炎を誘発したマウスにそれぞれN.C./N-アセチル化キトサン複合体及びCHST15 siRNA/N-アセチル化キトサン複合体を経口投与した。投与は、生理食塩水(大塚製薬工場、日本)をビヒクルとして使用し、1日1回、マウス1匹あたり10μg siRNAの用量(10mL/kgの体積中)で行った。3日目に、マウスを屠殺し、複合体の有効性を評価した。
(疾患活動指数の測定)
 疾患活動指数(DAI)を、3日目のマウスにおいて体重減少、便潜血及び便の硬さについて評価した指数を合計することによって計算した。体重減少、便潜血及び便の硬さの評価基準を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(組織病理)
 遠位結腸(大腸)の約1.5~2.0cmを10%中性緩衝ホルマリン(和光純薬工業、日本)中で固定し、パラフィンに包埋し、4μm切片にしてHE染色を行った。切片を顕微鏡下で観察した。組織学的スコアを、腸管上皮損傷及び炎症性浸潤について評価した指数を合計することによって計算した。腸管上皮損傷及び炎症性浸潤の評価基準を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(定量的RT-PCR)
 全RNAを、RNAiso(タカラバイオ、日本)を用いて製造業者の説明書にしたがって結腸サンプルから抽出した。4.4mM MgCl2(F. Hoffmann-La Roche、スイス)、40U RNaseインヒビター(東洋紡、日本)、0.5mM dNTP(Promega、米国)、6.28μM ランダムヘキサマー(Promega)、5×ファーストストランドバッファー(Promega)、10mM ジチオスレイトール(Invitrogen)及び200U MMLV-RT(Invitrogen)を含有する反応混合物を用いて最終体積20μL中で、1μgのRNAを逆転写した。反応を37℃で1時間行い、その後、99℃で5分処理した。リアルタイムPCR DICE及びSYBRプレミックスTaq(タカラバイオ)を用いてリアルタイムPCRを行った。用いたプライマーの配列を、CHST15遺伝子について配列番号9及び10に、TNF-α遺伝子について配列番号11及び12に、MCP-1遺伝子について配列番号13及び14に、ROR-γ遺伝子について配列番号15及び16に、36B4遺伝子について配列番号17及び18に示す。相対的mRNA発現レベルを計算するため、各遺伝子(CHST15、TNF-α、MCP-1及びROR-γ)の発現を参照遺伝子36B4の発現に対して正規化した。
(統計的検定)
 DAI、結腸の長さ、組織学的スコア、及び相対的遺伝子発現レベルについて、GraphPad Prism 4(GraphPad Software、米国)を用いてボンフェローニ多重比較検定を使用して統計的検定を行った。P値<0.05を統計的に有意であると見なした。片側t検定がP値<0.05を返した場合、ある傾向を推測した。結果を平均±標準偏差として表した。図面では、P値<0.05を「*」、P値<0.01を「**」、P値<0.001を「***」、P値≧0.05を「n.s.」(有意差無し)と表した。
<結果>
(疾患活動指数)
 疾患活動指数(DAI)の結果を図1に示す。大腸炎モデルマウスのN.C.投与群(第2群)において測定されたDAIは、正常(第1群)と比較して、有意に増加した。大腸炎モデルマウスのCHST15 siRNA投与群(第3群)は、N.C.投与群(第2群)と比較して、DAIの有意な低減を示した。この結果から、CHST15 siRNA/N-アセチル化キトサン複合体は、大腸炎の活動性を抑制することが示された。
(結腸の長さ)
 結腸の長さの結果を図2に示す。結腸の長さは、3日目の大腸炎モデルマウスのN.C.投与群(第2群)において、正常(第1群)と比較して、有意に短かった。一方、大腸炎モデルマウスのCHST15 siRNA投与群(第3群)において、N.C.投与群(第2群)と比較して、結腸の長さは有意に長かった。この結果から、CHST15 siRNA/N-アセチル化キトサン複合体は、大腸炎による結腸の短縮からの保護をもたらすことが示された。
(組織学的解析)
 HEで染色した結腸切片を用いて、腸管上皮損傷及び炎症性浸潤を評価した。HE染色切片の代表的な顕微鏡写真を図3に示す。重度の潰瘍は3日目にどの群でも観察されなかったが、炎症性浸潤を伴う局所的潰瘍性病変は、大腸炎モデルマウスのN.C.投与群(第2群)において観察された(図3A)。これらの病変は全て、固有層に見られ、第2群における杯細胞の喪失を伴った。大腸炎モデルマウスのCHST15 siRNA投与群(第3群)では、わずかに陰窩損傷及び炎症性浸潤が低減した(図3B)。組織学的スコアも、大腸炎モデルマウスのCHST15 siRNA投与群(第3群)において、N.C.投与群(第2群)と比較して有意に低減した(図4)。これらの結果から、CHST15 siRNA/N-アセチル化キトサン複合体は、大腸炎に対して組織学的にも治療効果を有すること、さらに、炎症を誘発しないことが示された。
(遺伝子発現解析)
 CHST15遺伝子発現の結果を図5に示す。結腸におけるCHST15 mRNAは、大腸炎モデルマウスのN.C.投与群(第2群)において、正常(第1群)と比較して有意に増加した。一方、大腸炎モデルマウスのCHST15 siRNA投与群(第3群)は、N.C.投与群(第2群)と比較して、結腸におけるCHST15 mRNAの有意な低減を示した。また、大腸炎モデルマウスのCHST15 siRNA投与群(第3群)とN.C.投与群(第2群)との間で、炎症によって発現が増加することが知られている、TNF-α、MCP-1及びROR-γ mRNAレベルに有意差はなかった。これらの結果から、CHST15 siRNA/N-アセチル化キトサン複合体は、結腸(大腸)においてCHST15 mRNAを特異的に低減すること、さらに、炎症を誘発しないことが示された。
[実施例2]
NSAID誘発小腸炎モデルマウスに投与したCHST15 siRNA/N-アセチル化キトサン複合体の効果
 非ステロイド性抗炎症薬(NSAID)は、副作用として消化管に粘膜障害及び炎症を誘発することが分かっている。本実施例では、NSAIDであるインドメタシンで誘発した小腸炎モデルマウスに対する、経口投与したCHST15 siRNA/N-アセチル化キトサン複合体のRNAi効果及び治療効果を検討した。
(N-アセチル化キトサン/siRNA複合体) 
 実施例1に記載した方法によって、CHST15 siRNA/N-アセチル化キトサン複合体、及び陰性対照siRNA(N.C.)/N-アセチル化キトサン複合体を製造した。
(動物)
 7~8週齢の雌性C57BL/6Jマウスを日本SLC(静岡、日本)から得た。飼育条件は実施例1に記載したものと同様とした。
(小腸炎の誘発)
 0日目に、NSAIDであるインドメタシン(和光純薬工業)を、マウス体重1kgあたり10mgの用量で皮下投与し、小腸炎を誘発した。
(N-アセチル化キトサン/siRNA複合体の投与)
 処置群は以下の4群からなった。
・第1群: 正常(NSAID無し、複合体投与無し)
・第2群: NSAID誘発小腸炎、偽(Mock)投与
・第3群: NSAID誘発小腸炎、陰性対照siRNA(N.C.)/N-アセチル化キトサン複合体投与
・第4群: NSAID誘発小腸炎、CHST15 siRNA/N-アセチル化キトサン複合体投与
 各群は、4匹のマウスからなった。第2群のマウスにはビヒクルである生理食塩水(大塚製薬工場、日本)を投与し、第3群及び第4群のマウスにはそれぞれN.C./N-アセチル化キトサン複合体及びCHST15 siRNA/N-アセチル化キトサン複合体を強制経口投与した。投与は、NSAID投与(小腸炎誘発)後に、0日目に1回、マウス1匹あたり10μg siRNAの用量で行った。1日目に、マウスを屠殺し、複合体の有効性を評価した。
(複合体の有効性の評価方法)
 結腸の代わりに空腸を用いたことを除いて、実施例1に記載したのと同様の方法で、定量的RT-PCRによってCHST15 mRNA発現レベルを決定した。空腸において目に見える潰瘍の数をカウントして、潰瘍スコアを決定した。統計的検定は、実施例1に記載したのと同様の方法で行った。
<結果>
(遺伝子発現解析)
 CHST15遺伝子発現解析の結果を図6に示す。空腸(小腸)におけるCHST15 mRNAは、小腸炎モデルマウスの偽投与群(第2群)及びN.C.投与群(第3群)において、正常(第1群)と比較して有意に増加した。一方、小腸炎モデルマウスのCHST15 siRNA投与群(第4群)は、偽投与群(第2群)及びN.C.投与群(第3群)と比較して、空腸におけるCHST15 mRNAの有意な低減を示した。この結果から、CHST15 siRNA/N-アセチル化キトサン複合体は、空腸(小腸)においてCHST15 mRNAを低減することが示された。
(潰瘍スコア)
 潰瘍スコア(潰瘍数)の結果を図7に示す。空腸(小腸)における潰瘍数は、小腸炎モデルマウスの偽投与群(第2群)及びN.C.投与群(第3群)において、正常(第1群)と比較して有意に増加した。一方、小腸炎モデルマウスのCHST15 siRNA投与群(第4群)は、偽投与群(第2群)及びN.C.投与群(第3群)と比較して、空腸における潰瘍数の有意な低減を示した。この結果から、CHST15 siRNA/N-アセチル化キトサン複合体は、空腸(小腸)におけるNSAID誘発性潰瘍の数を低減し、NSAID誘発小腸炎を抑制する効果を有することが示された。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (8)

  1.  CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体。
  2.  前記RNAi分子がsiRNA又はshRNAである、請求項1に記載の複合体。
  3.  前記RNAi分子が、配列番号1に示される塩基配列を含むアンチセンス鎖と、該アンチセンス鎖に相補的な塩基配列を含むセンス鎖とを含む、請求項1又は2に記載の複合体。
  4.  CHST15遺伝子の発現を抑制するRNAi分子とN-アセチル化キトサンとを含む複合体を製造する方法であって、
     (a)該RNAi分子とキトサンとを混合して、複合体を形成させる工程、
     (b)工程(a)で得られた複合体を乾燥する工程、及び
     (c)工程(b)で得られた乾燥した複合体中のキトサンをアセチル化する工程
    を含む、方法。
  5.  請求項1~3のいずれか一項に記載の複合体を含む、疾患の治療又は予防のための医薬組成物。
  6.  経口投与又は経直腸投与用の、請求項5に記載の医薬組成物。
  7.  前記疾患が、消化管の炎症性疾患又は粘膜障害である、請求項5又は6に記載の医薬組成物。
  8.  前記炎症性疾患又は粘膜障害が、炎症性腸疾患、潰瘍性大腸炎、クローン病、食道炎、胃腸炎、NSAID誘発腸炎、腸管ベーチェット病、単純性潰瘍、消化管癌に対する内視鏡的切除後の人工潰瘍、膠原病に伴う腸炎、放射線による腸炎、虚血性腸炎、逆流性食道炎、バレット食道、薬剤性食道炎若しくは胃腸炎、並びに薬剤抵抗性若しくは不応性の消化性潰瘍からなる群から選択される、請求項7に記載の医薬組成物。
PCT/JP2016/082545 2015-11-04 2016-11-02 RNAi分子とN-アセチル化キトサンとを含む複合体 WO2017078054A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017548797A JPWO2017078054A1 (ja) 2015-11-04 2016-11-02 RNAi分子とN−アセチル化キトサンとを含む複合体
US15/773,352 US10646579B2 (en) 2015-11-04 2016-11-02 Complex comprising RNAi molecule and N-acetylated chitosan
EP16862114.2A EP3372234B1 (en) 2015-11-04 2016-11-02 Complex comprising rnai molecule and n-acetylated chitosan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-216482 2015-11-04
JP2015216482 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017078054A1 true WO2017078054A1 (ja) 2017-05-11

Family

ID=58661947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082545 WO2017078054A1 (ja) 2015-11-04 2016-11-02 RNAi分子とN-アセチル化キトサンとを含む複合体

Country Status (4)

Country Link
US (1) US10646579B2 (ja)
EP (1) EP3372234B1 (ja)
JP (3) JPWO2017078054A1 (ja)
WO (1) WO2017078054A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105708A1 (ja) 2016-12-07 2018-06-14 株式会社ステリック再生医科学研究所 慢性疾患の治療及び予防用医薬組成物
JP2020079270A (ja) * 2015-11-04 2020-05-28 株式会社ステリック再生医科学研究所 RNAi分子とN−アセチル化キトサンとを含む複合体
WO2020225871A1 (ja) * 2019-05-08 2020-11-12 株式会社Tмeセラピューティックス 食道狭窄抑制剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231383A2 (en) * 2020-05-11 2021-11-18 University Of Southern California Oral delivery of nanoparticles for kidney disease

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509207A (ja) * 1994-11-14 1998-09-08 アストラ・アクチエボラーグ 特定のアセチル化度を有するキトサンポリマー
JP2006516988A (ja) * 2003-02-06 2006-07-13 アドバンスド バイオポリマーズ エーエス 持続した薬物放出またはムコ粘着のための活性剤およびキトサンを含む製薬組成物
WO2014013535A1 (ja) * 2012-07-17 2014-01-23 株式会社ステリック再生医科学研究所 粘膜治癒促進剤
JP2014518875A (ja) * 2011-05-24 2014-08-07 ポリヴァロール ソシエテ アン コマンディト 特定のキトサン系ナノ複合体を用いてsiRNAを効果的かつ安全に送達するための組成物及び方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588821A (zh) 2006-09-15 2009-11-25 Fmc生物聚合物联合股份有限公司 寡核苷酸非病毒递送系统
EP3034095B1 (en) 2007-06-29 2018-08-08 Stelic Institute Of Regenerative Medicine, Stelic Institute & Co. Method of fixing and expressing physiologically active substance
US20110027248A1 (en) 2007-12-27 2011-02-03 Hiroyuki Yoneyama Sugar Chain-Related Gene and Use Thereof
EP3372234B1 (en) * 2015-11-04 2021-09-29 Stelic Institute & Co., Inc. Complex comprising rnai molecule and n-acetylated chitosan

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509207A (ja) * 1994-11-14 1998-09-08 アストラ・アクチエボラーグ 特定のアセチル化度を有するキトサンポリマー
JP2006516988A (ja) * 2003-02-06 2006-07-13 アドバンスド バイオポリマーズ エーエス 持続した薬物放出またはムコ粘着のための活性剤およびキトサンを含む製薬組成物
JP2014518875A (ja) * 2011-05-24 2014-08-07 ポリヴァロール ソシエテ アン コマンディト 特定のキトサン系ナノ複合体を用いてsiRNAを効果的かつ安全に送達するための組成物及び方法
WO2014013535A1 (ja) * 2012-07-17 2014-01-23 株式会社ステリック再生医科学研究所 粘膜治癒促進剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ARUMUGAM, S. ET AL.: "Orally Active siRNA Targeting Carbohydrate Sulfotransferase 15 Alleviates Colonic Mucosal Injury in Mice", GASTROENTEROLOGY, vol. 150, no. 4, April 2016 (2016-04-01), pages S-125, XP 029511769 *
KAI, E. ET AL.: "A Method for Oral DNA Delivery with N-Acetylated Chitosan", PHARMACEUTICAL RESEARCH, vol. 21, no. 5, 1 May 2004 (2004-05-01), pages 838 - 843, XP055541259, DOI: 10.1023/B:PHAM.0000026437.32238.6f *
MALMO, J. ET AL.: "siRNA delivery with chitosan nanoparticles: Molecular properties favoring efficient gene silencing", JOURNAL OF CONTROLLED RELEASE, vol. 158, no. 2, 2012, pages 261 - 268, XP 055382177 *
MAO, S. ET AL.: "Chitosan-based formulations for delivery of DNA and siRNA", ADVANCED DRUG DELIVERY REVIEWS, vol. 62, no. 1, 2010, pages 12 - 27, XP 029627554 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020079270A (ja) * 2015-11-04 2020-05-28 株式会社ステリック再生医科学研究所 RNAi分子とN−アセチル化キトサンとを含む複合体
WO2018105708A1 (ja) 2016-12-07 2018-06-14 株式会社ステリック再生医科学研究所 慢性疾患の治療及び予防用医薬組成物
EP3552632A4 (en) * 2016-12-07 2020-07-22 Stelic Institute & Co., Inc. MEDICINAL COMPOSITION FOR TREATING AND PREVENTING CHRONIC DISEASE
US11911409B2 (en) 2016-12-07 2024-02-27 Stelic Institute & Co., Inc. Pharmaceutical composition for treatment and prevention of chronic disease
WO2020225871A1 (ja) * 2019-05-08 2020-11-12 株式会社Tмeセラピューティックス 食道狭窄抑制剤

Also Published As

Publication number Publication date
US10646579B2 (en) 2020-05-12
JP2022068371A (ja) 2022-05-09
US20180318430A1 (en) 2018-11-08
JP7424661B2 (ja) 2024-01-30
JPWO2017078054A1 (ja) 2018-08-30
EP3372234B1 (en) 2021-09-29
EP3372234A4 (en) 2019-07-17
EP3372234A1 (en) 2018-09-12
JP2020079270A (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
JP7424661B2 (ja) RNAi分子とN-アセチル化キトサンとを含む複合体
JP6694903B2 (ja) プロバイオティクス製剤および使用のための方法
CN102497883A (zh) 用于克服细菌多重抗药性的藻酸盐低聚物
CN102037123A (zh) Epas1抑制剂的组合物和用途
US20090131362A1 (en) Use of defibrotide for the inhibition of heparanase
Shende et al. siRNA: an alternative treatment for diabetes and associated conditions
CN106132969A (zh) 用于治疗糖尿病和肝病的组合物和方法
US20180296676A1 (en) Pharmaceutical formulation for reducing bladder spasms and method of use thereof
Bao et al. Oral nanoparticles of SNX10-shRNA plasmids ameliorate mouse colitis
Lima et al. Development of nanostructured systems using natural polymers to optimize the treatment of inflammatory bowel diseases: A prospective study
Spezzini et al. Hydrogen sulfide and epigenetics: Novel insights into the cardiovascular effects of this gasotransmitter
JP2023156463A (ja) 潰瘍性大腸炎を患っている患者を治療するための組成物、および薬物としての組成物の使用
JP2017516832A (ja) 排尿頻度を減少させるための医薬製剤およびその使用の方法
US20200352868A1 (en) Capsule for treating ulcerative colitis
Xu et al. Lysophosphatidic acid increases SLC26A3 expression in inflamed intestine and reduces diarrheal severity in C57BL/6 mice with dextran-sodium-sulfate-induced colitis
US11911409B2 (en) Pharmaceutical composition for treatment and prevention of chronic disease
KR20170049613A (ko) 방광경련을 감소시키기 위한 약학적 제형과 이의 사용법
WO2020225871A1 (ja) 食道狭窄抑制剤
US20180344673A1 (en) Pharmaceutical formulation for reducing bladder spasms and method of use thereof
JP2019069991A (ja) 膀胱痙攣を低減するための医薬製剤およびその使用の方法
Calmasini et al. Lipopolysaccharide reduces urethral smooth muscle contractility via cyclooxygenase activation
CN111281866B (zh) 一种预防或治疗溃疡性结肠炎的中药化学制剂
Fatima et al. The contemplation of amylose for the delivery of ulcerogenic nonsteroidal anti-inflammatory drugs
Kumar et al. Anti-inflammatory effect of Sustained release granules of Aceclofenac in Gouty Arthritis Rat
CN116640315A (zh) 一种硫酸化透明质酸-支链聚乙烯亚胺接枝聚合物及其衍生物和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548797

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15773352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016862114

Country of ref document: EP