WO2017077698A1 - 蓄電装置用電極板及び蓄電装置 - Google Patents

蓄電装置用電極板及び蓄電装置 Download PDF

Info

Publication number
WO2017077698A1
WO2017077698A1 PCT/JP2016/004719 JP2016004719W WO2017077698A1 WO 2017077698 A1 WO2017077698 A1 WO 2017077698A1 JP 2016004719 W JP2016004719 W JP 2016004719W WO 2017077698 A1 WO2017077698 A1 WO 2017077698A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
region
electrode plate
thickness
core
Prior art date
Application number
PCT/JP2016/004719
Other languages
English (en)
French (fr)
Inventor
栄祐 佐藤
元貴 衣川
直幸 小出
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US15/768,771 priority Critical patent/US10497985B2/en
Priority to JP2017548635A priority patent/JP7086605B2/ja
Priority to CN201680061532.3A priority patent/CN108352494B/zh
Publication of WO2017077698A1 publication Critical patent/WO2017077698A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the leads are biased and connected to one end in the width direction of the core.
  • the thickness of the lead is thicker than the thickness of the active material layer. Therefore, when the wound electrode body is configured using the electrode plates disclosed in Patent Documents 1 and 2, the lead body is formed at one end in the width direction of the core body. One end in the axial direction of the electrode body bulges locally due to the thickness of the connected lead. For this reason, when such an electrode plate is used, it is difficult to form a stable winding structure on the outer side than the connection portion of the lead, and there is a problem that winding deviation of the electrode body is likely to occur.
  • An electrode plate for a power storage device that is one embodiment of the present disclosure is a power storage device that constitutes a wound electrode body including a strip-shaped core body and an active material layer provided on at least one surface of the core body.
  • the surface of the core body to which the lead is connected is exposed at one end portion in the width direction of the core body at a position away from the one end portion in the longitudinal direction of the core body disposed on the outer side of the electrode body.
  • a plain part is formed, and the active material layer has a layer thickness thinner than that of the second region, which is a region other than the first region, in at least a part of the first region aligned with the plain part in the longitudinal direction of the core body. It has a thin part.
  • a power storage device that is one embodiment of the present disclosure includes the electrode plate for a power storage device as at least one of a positive electrode plate and a negative electrode plate.
  • the electrode plate for a power storage device of the present disclosure even when a plain part is formed at one end in the width direction of the core body and a lead is connected to the plain part, the winding deviation of the electrode body can be sufficiently suppressed. it can.
  • FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery which is an example of an embodiment.
  • FIG. 2 is a perspective view of a wound electrode body as an example of the embodiment.
  • FIG. 3 is a perspective view of a positive electrode plate as an example of the embodiment.
  • FIG. 4 is a perspective view of a positive electrode plate which is another example of the embodiment.
  • FIG. 5 is a perspective view showing a state where a positive electrode lead is attached to the positive electrode plate of FIG. 6 is a cross-sectional view taken along line AA in FIG.
  • FIG. 7 is a perspective view of a negative electrode plate which is an example of the embodiment.
  • FIG. 8 is a view for explaining a method of manufacturing a positive electrode plate which is an example of the embodiment.
  • 9 is a cross-sectional view taken along line BB in FIG.
  • a lead connecting portion is provided on a part of the core in the width direction (one end in the width direction).
  • a plain portion where the surface of the core body is exposed is formed.
  • the inventors of the present invention have a first active material layer region aligned with the plain portion in the longitudinal direction of the core body, which is the winding direction ⁇ (see FIG. 2) of the electrode body.
  • a new electrode plate structure having a thin portion with a reduced layer thickness was found in the region.
  • the first region of the active material layer overlaps with the plain portion where the lead is connected in the wound electrode body and the radial direction ⁇ (see FIG. 2), that is, in the direction in which the electrode body is laminated.
  • the thin portion is preferably formed on the outer side of the plain portion or substantially the entire first region.
  • a cylindrical battery nonaqueous electrolyte secondary battery 10 including a cylindrical metal case and a battery electrode plate (positive electrode plate 11) constituting the battery are illustrated.
  • the power storage device and the power storage device electrode plate are not limited thereto.
  • the power storage device according to the present disclosure may be, for example, a rectangular battery including a rectangular metal case or a laminated battery including an exterior body made of a resin sheet.
  • the power storage device of the present disclosure may be a capacitor, and the electrode plate for a power storage device of the present disclosure may be applied to a capacitor electrode plate.
  • FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery 10.
  • FIG. 2 is a perspective view of the electrode body 14 constituting the nonaqueous electrolyte secondary battery 10.
  • the nonaqueous electrolyte secondary battery 10 includes a positive electrode plate 11, a negative electrode plate 12, and a nonaqueous electrolyte (not shown), and the positive electrode plate 11 and the negative electrode plate 12 are separators. 13 constitutes an electrode body 14.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
  • the bottomed cylindrical case main body 15 and the sealing body 16 constitute a metal battery case that houses the electrode body 14 and the nonaqueous electrolyte.
  • the non-aqueous electrolyte secondary battery 10 preferably includes insulating plates 17 and 18 disposed above and below the electrode body 14, respectively.
  • the positive electrode lead 19 attached to the positive electrode plate 11 extends to the sealing body 16 side through the through hole of the insulating plate 17, and the negative electrode lead 20 attached to the negative electrode plate 12 is outside the insulating plate 18. And extends to the bottom side of the case body 15.
  • the positive electrode lead 19 is welded to the lower surface of the filter 22 that is the bottom plate of the sealing body 16, and the cap 26 that is the top plate of the sealing body 16 electrically connected to the filter 22 serves as a positive electrode terminal.
  • the negative electrode lead 20 is welded to the bottom inner surface of the case main body 15, and the case main body 15 serves as a negative electrode terminal.
  • the electrode body 14 is a wound electrode body in which the positive electrode plate 11 and the negative electrode plate 12 are wound in a spiral shape with a separator 13 interposed therebetween.
  • the positive electrode plate 11, the negative electrode plate 12, and the separator 13 are all formed in a strip shape, and are wound in a spiral shape to be alternately stacked in the radial direction ⁇ of the electrode body 14.
  • the longitudinal direction of each electrode plate is the winding direction ⁇
  • the width direction of each electrode plate is the axial direction ⁇ .
  • a porous sheet (microporous film) having ion permeability and insulating properties is used.
  • An example of a suitable separator 13 is a microporous membrane made of polyethylene. The thickness of the separator 13 is, for example, 10 ⁇ m to 50 ⁇ m. Details of the positive electrode plate 11 and the negative electrode plate 12 will be described later.
  • the electrode body 14 includes a positive electrode lead 19 and a negative electrode lead 20 in addition to the positive electrode plate 11, the negative electrode plate 12, and the separator 13. Each lead is attached to a core of each electrode (see FIG. 5 and the like described later).
  • the positive electrode lead 19 is attached to the longitudinal center of the positive electrode plate 11 away from the unwinding end portion 11 a, and the positive electrode lead 19 is attached to the positive electrode plate 11 from both sides in the radial direction ⁇ of the electrode body 14. , And sandwiched between the negative electrode plate 12 and the separator 13.
  • the negative electrode lead 20 is attached to the winding outer end 12 a of the negative electrode plate 12.
  • the positive electrode lead 19 extends from one end portion of the electrode body 14 in the axial direction ⁇ , and the negative electrode lead 20 extends from the other end portion of the electrode body 14 in the axial direction ⁇ .
  • the thickness of the positive electrode lead 19 is preferably 150 ⁇ m to 500 ⁇ m in consideration of the current collecting property of the positive electrode plate 11, lead durability (breakage prevention), miniaturization of the electrode body 14, and the like. Generally, the thickness of the positive electrode lead 19 is larger than the thickness of the positive electrode active material layer (see FIG. 6 described later).
  • each lead is attached to each electrode one by one, but a plurality of leads may be attached to each electrode.
  • the attachment position of the lead in each electrode is not limited to that illustrated in FIG.
  • the positive electrode lead 19 may be attached to the winding inner end portion 11b in addition to or in place of the central portion of the positive electrode plate 11 in the longitudinal direction.
  • the negative electrode lead 20 may be attached to the winding inner end portion 12b in addition to or in place of the winding outer end portion 12a.
  • the case body 15 is a bottomed cylindrical metal container.
  • a gasket 27 is provided between the case main body 15 and the sealing body 16 to ensure hermeticity in the battery case.
  • the case main body 15 includes an overhanging portion 21 that supports the sealing body 16 formed by pressing a side surface portion from the outside, for example.
  • the overhang portion 21 is preferably formed in an annular shape along the circumferential direction of the case body 15, and supports the sealing body 16 on the upper surface thereof.
  • the sealing body 16 includes a filter 22 in which a filter opening 22a is formed, a valve body (lower valve body 23, upper valve body 25), an insulating member 24, and a cap 26 in which a cap opening 26a is formed. .
  • the valve element closes the filter opening 22a and breaks when the internal pressure of the battery rises due to heat generated by an internal short circuit or the like.
  • the members constituting the sealing body 16 have, for example, a disk shape or a ring shape, and the members other than the insulating member 24 are electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at the center, and an insulating member 24 is interposed between the peripheral edges.
  • the electrode body 14 particularly the positive electrode plate 11 and the configuration related thereto will be described in detail with reference to FIGS. 3 to 7.
  • FIG. 5 is a view showing a state where the positive electrode lead 19 is attached to the positive electrode plate 11 of FIG. 6 is a cross-sectional view taken along line AA in FIG. 3 to 6 show a state in which the positive electrode plate 11 is straightly stretched, and the right side of the drawing is the winding outside (winding end side) of the electrode body 14 and the left side of the drawing is the winding inside (winding start side).
  • the longitudinal direction of the positive electrode plate 11 is the winding direction ⁇ of the electrode body 14, and the width direction of the positive electrode plate 11 is the axial direction ⁇ of the electrode body 14.
  • one end 30 a in the longitudinal direction of the positive electrode core 30 is disposed on the outer side of the electrode body 14, and the other end 30 b in the longitudinal direction is disposed on the inner side of the electrode body 14.
  • the positive electrode plate 11 includes a strip-shaped positive electrode core 30 and a positive electrode active material layer 31 provided on at least one surface of the positive electrode core 30.
  • the positive electrode active material layers 31 are provided on both surfaces of the positive electrode core 30.
  • the dimensions of the positive electrode core 30 vary depending on the dimensions of the battery and the like, but are generally 300 mm to 800 mm in length and 30 mm to 80 mm in width.
  • a metal foil such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • a suitable positive electrode core 30 is a metal foil mainly composed of aluminum or an aluminum alloy.
  • the thickness of the positive electrode core 30 is, for example, 10 ⁇ m to 30 ⁇ m.
  • the positive electrode active material layer 31 is provided on both surfaces of the positive electrode core 30 in substantially the entire area excluding the solid portion 32 described later.
  • the positive electrode active material layer 31 preferably includes a positive electrode active material, a conductive material, and a binder.
  • the positive electrode plate 11 has a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, and a solvent such as N-methyl-2-pyrrolidone (NMP) on both surfaces of the positive electrode core 30. It can be produced by applying and compressing.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material examples include lithium-containing composite oxides containing transition metal elements such as Co, Mn, and Ni.
  • the lithium-containing composite oxide is not particularly limited, but is represented by the general formula Li 1 + x MO 2 (wherein ⁇ 0.2 ⁇ x ⁇ 0.2, ⁇ 0.1 ⁇ b ⁇ 0.1, M is at least Ni, Co , Mn, and Al are preferably included).
  • suitable composite oxides include Ni—Co—Mn-based and Ni—Co—Al-based lithium-containing composite oxides.
  • the conductive material is used to increase the electrical conductivity of the positive electrode active material layer 31.
  • the conductive material include carbon materials such as carbon black (CB), acetylene black (AB), ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the binder is used to maintain a good contact state between the positive electrode active material and the conductive material and to increase the binding property of the positive electrode active material and the like to the surface of the positive electrode core 30.
  • the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. These resins may be used in combination with carboxymethyl cellulose (CMC) or a salt thereof, polyethylene oxide (PEO), and the like. These may be used alone or in combination of two or more.
  • a plain portion 32 with the core surface exposed is formed at one end in the width direction of the positive electrode core 30.
  • the plain portion 32 is a portion to which the positive electrode lead 19 is connected, and is a portion where the positive electrode active material layer 31 is not present and the core surface is not covered with the positive electrode active material layer 31.
  • the positive electrode lead 19 can be directly connected to the positive electrode core 30.
  • the plain portion 32 is formed with a length of L 32 from one end in the width direction of the positive electrode core 30 to the width direction of the positive electrode core 30.
  • the direction of the plain portion 32 along the longitudinal direction of the positive electrode core 30 may be referred to as a horizontal direction, and the direction of the plain portion 32 along the width direction of the positive electrode core 30 may be referred to as an up-down direction.
  • the length L 32 in the vertical direction of the plain portion 32 is preferably 1 ⁇ 2 or less of the width L 30 of the positive electrode core 30 in order to increase the area of the positive electrode active material layer 31 and increase the capacity of the battery. More preferably not more than 1/3 of the L 30. Considering the increase in capacity, the attachment property of the positive electrode lead 19, the current collecting property of the positive electrode plate 11, etc., the length L 32 of the plain portion 32 is particularly preferably 1/3 to 1/10 of L 30 .
  • the horizontal length of the plain portion 32 is preferably close to the width of the positive electrode lead 19 within a range that does not hinder the attachment of the positive electrode lead 19 to the plain portion 32, for example, slightly longer than the width of the positive electrode lead 19. .
  • the plain portion 32 may be formed by forming the positive electrode active material layer 31 on both sides of the positive electrode core 30 and then peeling off and removing a part of the positive electrode active material layer 31. It is preferably formed by not applying the positive electrode mixture slurry to a part of the body 30. For example, the positive electrode mixture slurry is intermittently applied to form the plain portion 32, whereby the active material layer peeling step can be eliminated and the material cost can be reduced.
  • a plurality of plain portions 32 may be formed on one surface of the positive electrode core 30, but one solid surface portion 32 is formed on one surface of the positive electrode core 30 in the present embodiment.
  • the same number of plain portions 32 as the number of leads are formed.
  • the positive electrode active material layer 31 is provided on both surfaces of the positive electrode core 30 as described above, and in this embodiment, the uncoated portions 32 are also formed on the both surfaces of the positive electrode core 30, respectively.
  • the positive electrode lead 19 is connected to one surface of the positive electrode core body 30 by welding or the like, even when the positive electrode active material layer 31 is provided on both surfaces of the positive electrode core body 30, only the one surface of the positive electrode core body 30 is uncoated. 32 may be formed.
  • the active material layer located on the opposite side of the plain portion 32 may obstruct the connection of the positive electrode lead 19 to the plain portion 32, for example. For this reason, it is preferable to form the plain portions 32 on both surfaces of the positive electrode core 30 so as to overlap in the thickness direction of the positive electrode core 30.
  • the plain portion 32 is formed at a position away from one end portion 30a in the longitudinal direction of the positive electrode core body 30 serving as the winding outer end portion 11a of the positive electrode plate 11 in the electrode body 14.
  • the plain portion 32 may be formed at both ends in the longitudinal direction of the positive electrode core 30, but is preferably formed at the central portion in the longitudinal direction of the positive electrode core 30 from the viewpoint of current collection of the positive electrode plate 11. That is, it is preferable to form the plain portion 32 at a position approximately equidistant from the longitudinal one end 30a and the longitudinal other end 30b.
  • the positive electrode active material layers 31 are provided on both sides of the plain portion 32 in the horizontal direction.
  • the positive electrode active material layer 31 is thinner in at least a part of the first region 33 aligned with the plain portion 32 in the longitudinal direction of the positive electrode core 30 than the second region 34, which is a region other than the first region 33. It has the thin part 35 which became. That is, the positive electrode active material layer 31 has two regions having different thicknesses. There may be a portion where the layer thickness is locally reduced in the second region 34, but at least the average thickness of the thin portion 35 is thinner than the average thickness of the second region 34, preferably the thin portion 35. The maximum thickness is thinner than the minimum thickness of the second region 34.
  • the first region 33 of the positive electrode active material layer 31 is a region aligned in the longitudinal direction of the plain portion 32 and the positive electrode core 30 (positive electrode plate 11) and overlapping in the longitudinal direction of the plain portion 32 and the positive electrode core 30. Means. In the present specification, a region that overlaps the plain portion 32 in the longitudinal direction of the positive electrode core 30 as a little as the first region 33.
  • the second region 34 of the positive electrode active material layer 31 is a region that does not line up with the plain portion 32 in the longitudinal direction of the positive electrode core 30 and does not overlap the plain portion 32 in the longitudinal direction.
  • the thickness of the positive electrode active material layer 31 can be measured using a contact-type thickness measuring device. The average thickness of the positive electrode active material layer 31 is calculated from each measured value by measuring the thickness at arbitrary 10 locations in the region to be measured.
  • the thickness of the positive electrode active material layer 31 is preferably substantially constant in the second region 34 that is a region other than the first region 33. In the second region 34, it is preferable to make the layer thickness as thick as possible from the viewpoint of increasing the capacity.
  • the average thickness of the second region 34 is not particularly limited, but is preferably 50 ⁇ m to 150 ⁇ m, more preferably 60 ⁇ m to 140 ⁇ m, and particularly preferably 70 ⁇ m to 130 ⁇ m.
  • the average thickness of the second region 34 is preferably 150 ⁇ m or less as described above. It is thinner than 19.
  • the thicknesses of the second regions 34 provided on both surfaces of the positive electrode core 30 are preferably substantially the same, and the total thickness of the second regions 34 is, for example, 100 ⁇ m to 300 ⁇ m.
  • the mass per unit area of the thin portion 35 is preferably lighter than the mass per unit area of the second region 34.
  • the density of the thin portion 35 is substantially the same as the density of the second region 34, and the density of the positive electrode active material layer 31 is substantially constant over the entire area including the thin portion 35.
  • the coating amount of the positive electrode mixture slurry is changed for the first region 33 and the second region 34, and the respective coating films are compressed under the same conditions.
  • the application amount of the slurry is set so that the area corresponding to the first area 33 on the positive electrode core 30 is smaller than the area corresponding to the second area 34.
  • the density of each region is substantially the same, and the thickness of the first region 33 can be made thinner than the thickness of the second region 34.
  • the reason why the thickness difference is formed in each region when the coating film is compressed using a uniform roll is considered to be because the amount of springback of the coating film after compression differs depending on the coating amount of the slurry. That is, even if the coating film is compressed to the same thickness, the springback amount is smaller in the first region 33 than in the second region 34.
  • the coating amount of the positive electrode mixture slurry is also possible to make the coating amount of the positive electrode mixture slurry the same in the first region 33 and the second region 34, and to change the thickness of each region by changing the compression condition of the coating film in each region.
  • the compression of the second region 34 is made slower than the compression of the first region 33.
  • the mass per unit area of each region is substantially the same, and the density of the second region 34 is lower than the density of the first region 33.
  • the thin portion 35 may be formed only in the first region 33 on one surface side of the positive electrode core 30 to which the positive electrode lead 19 is attached, but is preferably formed in each first region 33 on both surfaces of the positive electrode core 30. Is done.
  • the thin portions 35 formed on both surfaces of the positive electrode core 30 are preferably formed so as to overlap in the thickness direction of the positive electrode core 30. By forming the thin portions 35 on both surfaces of the positive electrode core 30, it becomes easier to absorb the difference between the thickness of the positive electrode lead 19 and the thickness of the second region 34.
  • the thin portion 35 is formed in substantially the entire region of the first region 33, and the layer thickness is thinner than that of the second region 34 in the substantially entire region of the first region 33.
  • the thickness of the thin portion 35 is substantially constant over the entire first region 33.
  • the positive electrode active material layer 31 has a thin part 35 formed in a band shape in a plan view along the longitudinal direction of the positive electrode core 30 at one end in the width direction of the positive electrode core 30.
  • a step is formed along the longitudinal direction of the positive electrode plate 11.
  • the thickness of the thin portion 35 may change along the longitudinal direction of the positive electrode core 30.
  • the thickness of the thin portion 35 may be reduced gradually or stepwise as it approaches the plain portion 32 from at least one of the longitudinal one end 30a and the other longitudinal end 30b of the positive electrode core 30. .
  • thin portions 35 are formed over substantially the entire first region 33 of each positive electrode active material layer 31 provided on both surfaces of the positive electrode core 30. That is, the form illustrated in FIG. 3 is a form in which the area of the thin portion 35 is maximized.
  • the preferable average thickness of the thin portion 35 is 0.90 to 0.99 times, particularly preferably 0.93 to 0.97 times the average thickness of the second region 34.
  • the thin portion 35 is formed only on the winding side of the first region 33 with respect to the plain portion 32.
  • first region 33 (hereinafter sometimes referred to as “winding outside first region”) located on the outer side of the plain portion 32, a thin portion 35 is formed over substantially the entire region.
  • the thickness of the first region 33 is substantially the same as the thickness of the second region 34 on the inner side than the plain portion 32.
  • the thickness of the thin portion 35 is substantially constant over the entire first area of the winding outer side, and a step is formed along the longitudinal direction of the positive electrode plate 11 at the boundary position between the thin portion 35 and the second region 34. . Similar to the embodiment illustrated in FIG. 3, the thickness of the thin portion 35 may change along the longitudinal direction of the positive electrode core 30.
  • the thin portion 35 is formed in substantially the entire area of each outer winding first region in the first region 33 of each positive electrode active material layer 31 provided on both surfaces of the positive electrode core 30.
  • the area of the thin portion 35 is 1 ⁇ 2 of the area of the first region 33, the absorption of the thickness of the positive electrode lead 19 is most efficiently performed by the thin portion 35 formed in the outer winding first region. Since it is considered, the form illustrated in FIG. 4 is an excellent form for achieving both high capacity and curling deviation.
  • the preferred average thickness of the thin portion 35 is 0.85 to 0.97 times, particularly preferably 0.90 to 0.95 times the average thickness of the second region 34.
  • the thin-walled portion 35 is preferably formed at a position that overlaps the positive electrode lead 19 (the plain portion 32) in the radial direction ⁇ of the electrode body 14, particularly at a position that overlaps in the radial direction ⁇ on the winding outside of the positive electrode lead 19. .
  • the formation range of the thin-walled portion 35 is approximately half the range of the first region on the winding outer side (for example, from the plain portion 32 to an intermediate position between the plain portion 32 and the longitudinal end portion 30a), and the first region across the plain portion 32. It may be a range that is approximately half of. It is also possible to selectively form the thin portion 35 only at a position overlapping the positive electrode lead 19 in the radial direction ⁇ of the electrode body 14.
  • the positive electrode lead 19 is connected to one plain portion 32 among the plain portions 32 formed on both sides of the positive electrode core 30.
  • the positive electrode lead 19 is attached to the plain portion 32 by, for example, welding. It is preferable to attach an insulating tape 36 covering the positive electrode lead 19 to the positive electrode plate 11 to which the positive electrode lead 19 is welded.
  • the insulating tape 36 is attached to a portion of the positive electrode lead 19 that faces the negative electrode plate 12.
  • the insulating tape 36 is attached to cover the portion connected to the plain portion 32 of the positive electrode lead 19 and straddle the thin portions 35 located on both sides of the plain portion 32 in the lateral direction.
  • the insulating tape 36 an adhesive tape having an adhesive layer formed on one surface of a resin film and having excellent electrolytic solution resistance is used.
  • the insulating tape 36 covers the positive electrode lead 19 and the plain portion 32, and when the separator 13 is broken, the negative electrode plate 12 and the positive electrode lead 19 or the positive electrode core body 30 come into contact with each other to cause a low resistance internal short circuit in which a large current flows. Prevent it from occurring.
  • the plain portion 32 to which the positive electrode lead 19 is not attached in order to prevent the internal short circuit, it is preferable to cover the plain portion 32 and attach the insulating tape 36.
  • the thickness T 19 of the positive electrode lead 19 is thicker than the thickness of the positive electrode active material layer 31 (thickness T 34 of the second region 34 ).
  • Thin thickness T 19 is greater than the thickness T 34, even when the thickness plus the thickness T 36 of the thickness T 19 insulating tape 36 (T 19 + T 36) is thicker than the thickness T 34, winding deviation of the electrode member 14 occurs easily, but the thickness T 19 is a problem of the winding deviation becomes more pronounced when thicker than T 34.
  • the thickness T 19 of the positive electrode lead 19 is determined by considering the current collecting property of the positive electrode plate 11, suppression of breakage of the lead, and suppression of breakage of the positive electrode plate 11 due to thickening of the positive electrode active material layer 31. It is difficult to make it thinner than the thickness. In other words, it is difficult to form the positive electrode active material layer 31 thicker than the thickness T 19 of the positive electrode lead 19.
  • the thickness T 36 of the insulating tape 36 is preferably thin as long as the short-circuit prevention function is not hindered from the viewpoint of suppressing winding deviation.
  • the thickness obtained by adding the thickness T 35 of the thin portion 35 and the thickness T 36 of the insulating tape 36 (T 35 + T 36) is thinner than the thickness T 34 of the second region 34 ( T 35 + T 36 ⁇ T 34 ).
  • the insulating tape 36 is stuck across the thin portions 35 located on both sides in the lateral direction of the plain portion 32. However, when T 35 + T 36 ⁇ T 34 , the insulating tape 36 is stuck on the thin portion 35 of the insulating tape 36. This portion does not protrude beyond the second region 34, and the influence of the thickness of the insulating tape 36 is easily mitigated.
  • the negative electrode plate 12 includes a strip-shaped negative electrode core 40 and a negative electrode active material layer 41 provided on at least one surface of the negative electrode core 40.
  • the dimensions of the negative electrode core 40 vary depending on the dimensions of the battery and the like, but are generally 350 mm to 900 mm in length and 35 mm to 90 mm in width.
  • a metal foil such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the thickness of the negative electrode core 40 is, for example, 10 ⁇ m to 30 ⁇ m. It is preferable that the negative electrode active material layer 41 is provided on both sides of the negative electrode core body 40 in substantially the entire area excluding the solid portion 42 described later.
  • the negative electrode active material layer 41 preferably includes a negative electrode active material and a binder.
  • the negative electrode plate 12 can be produced by applying and compressing a negative electrode mixture slurry containing, for example, a negative electrode active material, a binder, and water on both surfaces of the negative electrode core body 40.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions.
  • carbon materials such as natural graphite and artificial graphite, metals such as Si and Sn, alloys with lithium, or Si
  • An alloy, an oxide, or the like containing a metal element such as Sn can be used. These may be used individually by 1 type, and may mix and use multiple types.
  • a fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, or the like can be used as in the case of the positive electrode plate 11.
  • the negative electrode mixture slurry is prepared using an aqueous solvent, styrene-butadiene rubber (SBR), CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), or the like can be used.
  • SBR styrene-butadiene rubber
  • CMC styrene-butadiene rubber
  • PAA polyacrylic acid
  • PVA polyvinyl alcohol
  • the negative electrode lead 20 is connected to the longitudinal direction one end portion 40 a of the negative electrode core body 40 which becomes the unwinding end portion 12 a of the negative electrode plate 12 in the electrode body 14 over the entire width of the negative electrode core body 40.
  • a plain portion 42 where the surface of the core body is exposed is formed.
  • the negative electrode active material layer 41 is formed with a substantially constant thickness on both surfaces of the negative electrode core body 40 excluding the plain portion 42.
  • the formation position of the plain portion 42 is not limited to that shown in FIG.
  • the plain portion 42 may be formed at the other longitudinal end portion 40 b of the negative electrode core body 40, or may be formed at the central portion in the longitudinal direction of the negative electrode core body 40.
  • the negative electrode actives aligned in the longitudinal direction of the plain portion 42 and the negative electrode core 40 are the same as the positive electrode plate 11.
  • FIG. 8 is a plan view showing a long body 11z of the positive electrode plate (hereinafter simply referred to as “long body 11z”).
  • 9 is a cross-sectional view taken along line BB in FIG.
  • the long body 11z is a long body that is divided into a plurality of positive electrode plates 11 when cut at the scheduled cutting portions X, Y1, and Y2.
  • the portions that become the positive electrode active material layer 31, the plain portion 32, the first region 33, and the second region 34 of the positive electrode plate 11 are respectively positive electrode active.
  • the material layer 31z, the plain portion 32z, the first region 33z, and the second region 34z are used.
  • the long body 11z includes a positive electrode active material layer 31z (first region) on both sides of a long body 30z of a positive electrode core (hereinafter simply referred to as “long body 30z”). 33z and the second region 34z).
  • the positive electrode active material layer 31z is formed by applying a positive electrode mixture slurry to the long body 30z and compressing the coating film.
  • the positive electrode mixture slurry includes a positive electrode active material, a conductive material, a binder, a solvent, and the like.
  • the coating film formed by applying the positive electrode mixture slurry becomes, for example, the positive electrode active material layer 31z by being heated and dried and then compressed using a roll.
  • the negative electrode plate 12 can be produced by the same method as the positive electrode plate 11 except that the negative electrode mixture slurry is used instead of the positive electrode mixture slurry and the thin portion 35 is not formed.
  • the plain portion 32z where the surface of the long body 30z is exposed is formed by intermittently applying the positive electrode mixture slurry in a partial region along the longitudinal direction of the long body 30z when forming the positive electrode active material layer 31z. It is preferred that That is, the plain portion 32z is formed as an uncoated portion where the positive electrode mixture slurry is not applied. In the example illustrated in FIG. 8, the plain portions 32 z are formed at substantially equal intervals along the longitudinal direction of the long body 30 z in the central portion in the width direction of the long body 30 z.
  • the long body 30z can take two positive electrode cores 30 in the width direction.
  • the plain portion 32z is formed as the plain portion 32 of the two positive electrode plates 11 with an area twice that of the plain portion 32.
  • the plain part 32z is formed, for example, symmetrically with respect to the center in the width direction (scheduled part Y1) of the long body 30z, and the first positive electrode active material layer 31z arranged in the longitudinal direction of the plain part 32z and the long body 30z.
  • the region 33z is also formed symmetrically with respect to the center in the width direction.
  • the positive electrode mixture slurry is continuously applied on the elongated body 30z to form the second region 34z of the positive electrode active material layer 31z.
  • the long body 11z in which the positive electrode active material layer 31z is formed on both surfaces of the long body 30z is cut along the planned cutting portion Y1 at the center in the width direction, and the long cutting is performed at the planned cutting portion Y2.
  • the positive electrode plate 11 is obtained by cut
  • the positive electrode active material layer 31z has a plurality of strip-like regions (first region 33z, second region 34z) having different thicknesses along the longitudinal direction of the long body 11z.
  • the first region 33z is formed so that the layer thickness is thinner than that of the second region 34z.
  • the first region 33z and the second region 34z can be formed by using a slurry application device including a plurality of application units that apply the positive electrode mixture slurry independently.
  • An example of the application unit is a nozzle having a discharge port.
  • the slurry application device includes, for example, a valve capable of independently controlling ON / OFF of slurry application in each application unit, the amount of slurry application, and the like.
  • the first region 33z is formed, for example, by intermittently applying a positive electrode mixture slurry from an application part (hereinafter referred to as a “first application part”) disposed above the center in the width direction of the long body 30z.
  • the plain portion 32z is formed when the application of the slurry is stopped. By repeatedly applying and stopping the slurry at regular intervals, the first regions 33z and the plain portions 32z can be alternately formed at substantially equal intervals.
  • the second region 34z is formed, for example, by continuously applying slurry from an application unit (hereinafter referred to as “second application unit”) disposed adjacent to the first application unit that applies the slurry that forms the first region 33z. Is done. In general, application of the slurry onto the long body 30z is performed while continuously conveying the long body 30z in the longitudinal direction in a state where the position of the application portion is fixed.
  • the slurry application amount in the first application part is made smaller than the slurry application amount in the second application part.
  • the slurry application amount in the first application unit is adjusted to 0.80 to 0.99 times the slurry application amount in the second application unit, for example.
  • the compression conditions of a coating film shall be the same also in any area
  • the slurry application amount in the first application part may be set constant during the continuous application or may be varied.
  • the thin portion 35z can be formed over substantially the entire first region 33z.
  • the slurry application amount in the second application part is preferably set to be constant.
  • the first application unit and the second application unit are arranged above the elongated body 30z that is continuously conveyed in the longitudinal direction, but do not line up in the direction along the width direction of the elongated body 30z so as not to interfere with each other. Placed in. That is, one of the first application unit and the second application unit is arranged on the upstream side in the conveyance direction of the long body 30z, and the other is arranged on the downstream side in the conveyance direction.
  • the discharge port of the first application unit and the discharge port of the second application unit do not overlap in the direction along the longitudinal direction (conveying direction) of the elongated body 30z, and each application unit has the ends of the discharge ports corresponding to each other.
  • each application part is arrange
  • the thickness of the positive electrode lead 19 and the insulating tape 36 and the second region 34 are reduced by the thin portion 35 formed in the first region 33 of the positive electrode active material layer 31.
  • the difference with the thickness of can be absorbed. Therefore, in order to increase the battery capacity by increasing the area of the positive electrode active material layer 31 as much as possible, in the case where the positive electrode lead 19 is connected by forming the plain portion 32 in a part of the positive electrode core 30 in the width direction.
  • the winding deviation of the electrode body 14 can be sufficiently suppressed.
  • Table 1 shows an example (Example) of the effect of suppressing the winding deviation in the nonaqueous electrolyte secondary battery 10.
  • Table 1 shows an example (Example) of the effect of suppressing the winding deviation in the nonaqueous electrolyte secondary battery 10.
  • Table 1 shows the case where the first region of the positive electrode active material layer does not have a thin portion as a comparison.
  • Each wound electrode body of the example and the comparative example was manufactured under the same conditions using the same positive electrode plate, the same negative electrode plate, the same separator, and the same electrode plate lead except for the presence or absence of the thin portion.
  • Winding deviation is evaluated by measuring the meandering amount of the positive and negative electrode plates running during winding, and when the meandering amount of the positive electrode plate and the negative electrode plate is within 0.6 mm, there is no winding deviation, at least of the positive electrode plate and the negative electrode plate The case where one exceeded 0.6 mm was regarded as having a winding shift. As shown in Table 1, winding deviation can be suppressed by forming a thin portion.
  • the thickness of the positive electrode active material layer is an average value of values measured for 10 positive plates out of 20 electrode bodies.
  • Positive electrode plate / positive electrode core aluminum foil, length 661 mm, width 58 mm, thickness 0.15 mm -Plain part: It formed in the width direction one end part of the positive electrode core in the longitudinal direction center part of the positive electrode core.
  • Positive electrode active material layer Lithium nickel composite oxide, acetylene black, and polyvinylidene fluoride were formed on both surfaces of the positive electrode core.
  • Negative electrode plate / negative electrode core copper foil, length 720 mm, width 59 mm, thickness 0.1 mm -Solid part: It formed over the full width of the negative electrode core in the longitudinal direction one end part (winding outer side edge part) of the negative electrode core.
  • Negative electrode active material layer graphite, styrene butadiene rubber, and carboxymethyl cellulose were formed on both surfaces of the negative electrode core.
  • -Average thickness of negative electrode active material layer 160 ⁇ m (3)
  • Separator polyethylene microporous film with a thickness of 16 ⁇ m (4)
  • Positive electrode lead width 3 mm, thickness 0.15 mm (5)
  • Negative electrode lead width 3 mm, thickness 0.15 mm (6)
  • Electrode body produced by winding a positive electrode plate having a positive electrode lead welded to a plain part of the positive electrode core and a negative electrode plate having a negative electrode lead welded to the plain part of the negative electrode core through a separator ( Diameter 18 mm).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本開示の課題は、高容量で、合剤層の剥離が抑制された蓄電装置用電極板及びそれを備える蓄電装置を提供することにある。本開示の実施形態の一例である非水電解質二次電池は、帯状の正極芯体(30)と、正極芯体(30)の少なくとも一方の面上に設けられた正極活物質層(31)とを備える。正極芯体(30)の幅方向一端部には、正極リードが接続される芯体表面が露出した無地部(32)が形成されている。正極活物質層(31)は、正極芯体(30)の長手方向に無地部(32)と並んだ第1領域(33)の少なくとも一部に、第1領域(33)以外の領域である第2領域(34)よりも層厚みが薄くなった薄肉部(35)を有する。

Description

蓄電装置用電極板及び蓄電装置
 本開示は、蓄電装置用電極板及び蓄電装置に関する。
 蓄電装置のエネルギー密度を向上させるべく、電極板の更なる改良が求められている。例えば、特許文献1,2には、非水電解質二次電池の高容量化を実現するため、極板リードが接続される芯体表面が露出した無地部を芯体の幅方向の一部(幅方向一端部)に形成した電極板が開示されている。かかる電極板は、無地部が芯体の全幅に亘って形成された電極板と比べて活物質層の面積が大きいため、電池の高容量化に寄与する。なお、電極板の幅方向が巻回型の電極体の軸方向となり、長手方向が電極体の巻回方向となる。
特開2001-6664号公報 特開2003-68271号公報
 ところで、芯体の幅方向一端部に無地部を形成した場合、リードは芯体の幅方向において一端部に偏って接続されることになる。一般的に、リードの厚みは活物質層の厚みよりも厚いため、特許文献1,2に開示された電極板を用いて巻回型の電極体を構成すると、芯体の幅方向一端部に接続されたリードの厚みの影響で電極体の軸方向一端部が局所的に膨出する。このため、かかる電極板を用いた場合には、リードの接続部よりも巻外側で安定した巻回構造を形成することが難しく、電極体の巻きズレが発生し易いという課題がある。
 本開示の一態様である蓄電装置用電極板は、帯状の芯体と、芯体の少なくとも一方の面上に設けられた活物質層とを備えた巻回型の電極体を構成する蓄電装置用電極板であって、芯体の幅方向一端部には、電極体の巻外側に配置された芯体の長手方向一端部から離れた位置に、リードが接続される芯体表面が露出した無地部が形成され、活物質層は、芯体の長手方向に無地部と並んだ第1領域の少なくとも一部に、第1領域以外の領域である第2領域よりも層厚みが薄くなった薄肉部を有することを特徴とする。
 本開示の一態様である蓄電装置は、正極板及び負極板の少なくとも一方として、上記蓄電装置用電極板を備える。
 本開示の蓄電装置用電極板によれば、芯体の幅方向一端部に無地部を形成して当該無地部にリードを接続した場合においても、電極体の巻きズレを十分に抑制することができる。
図1は実施形態の一例である非水電解質二次電池の断面図である。 図2は実施形態の一例である巻回型電極体の斜視図である。 図3は実施形態の一例である正極板の斜視図である。 図4は実施形態の他の一例である正極板の斜視図である。 図5は図3の正極板に正極リードを取り付けた状態を示す斜視図である。 図6は図5中のAA線断面図である。 図7は実施形態の一例である負極板の斜視図である。 図8は実施形態の一例である正極板の製造方法を説明するための図である。 図9は図8中のBB線断面図である。
 本開示の蓄電装置用電極板は、活物質層の面積をできるだけ大きくして蓄電装置のエネルギー密度を向上させるため、芯体の幅方向の一部(幅方向一端部)にリードの接続部となる芯体表面が露出した無地部を形成している。芯体の全幅に亘ってリードを接続した場合は、巻回型電極体が軸方向α(図2参照)の略全長に亘って膨出するため巻きズレは生じ難いが、芯体の幅方向一端部にリードを接続すると、電極体の軸方向一端部が局所的に膨らみ、リードよりも巻外側で巻きズレが発生し易くなる。具体的には、巻回構造を形成する電極板が軸方向αにズレて電極体の軸方向端部が波打ち、軸方向端部の位置を揃えることが難しくなる。
 本発明者らは、かかる課題を解決すべく鋭意検討した結果、電極体の巻回方向γ(図2参照)となる芯体の長手方向に無地部と並ぶ活物質層の領域である第1領域に、層厚みが薄くなった薄肉部を有する新たな電極板構造を見出したのである。本開示の電極板によれば、第1領域に形成された薄肉部によってリードと活物質層(第2領域)との厚みの差分が吸収されるため、電極体の巻きズレが抑制されると考えられる。活物質層の第1領域は、巻回型の電極体においてリードが接続される無地部と径方向β(図2参照)、即ち電極体が積層される方向に重なるため、第1領域の厚みを第2領域の厚みよりも薄くすることで、リードの厚みの影響を緩和することが可能となる。
 なお、薄肉部の形成範囲が狭い場合でも巻きズレの抑制効果は得られるが、好ましくは無地部よりも巻外側、又は第1領域の略全域に薄肉部を形成する。
 以下、実施形態の一例について詳細に説明する。
 実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。本明細書において「略**」との用語は、略同一を例に説明すると、完全に同一はもとより、実質的に同一と認められるものを含む意図である。また、「端部」の用語は対象物の端及びその近傍を、「中央部」の用語は対象物の中央及びその近傍をそれぞれ意味するものである。
 実施形態の一例として、円筒形の金属製ケースを備えた円筒形電池(非水電解質二次電池10)及び当該電池を構成する電池用電極板(正極板11)を例示するが、本開示の蓄電装置及び蓄電装置用電極板はこれに限定されない。本開示の蓄電装置は、例えば角形の金属製ケースを備えた角形電池、樹脂製シートからなる外装体を備えたラミネート型電池であってもよい。或いは、本開示の蓄電装置はキャパシタであってもよく、本開示の蓄電装置用電極板はキャパシタ用電極板に適用されてもよい。
 図1~図9を参照しながら、実施形態の一例である非水電解質二次電池10、及び当該電池を構成する電極板について以下詳細に説明する。図1は、非水電解質二次電池10の断面図である。図2は、非水電解質二次電池10を構成する電極体14の斜視図である。
 図1及び図2に示すように、非水電解質二次電池10は、正極板11と、負極板12と、非水電解質(図示せず)とを備え、正極板11及び負極板12はセパレータ13と共に電極体14を構成している。非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。図1に示す例では、有底円筒形状のケース本体15と封口体16とによって、電極体14及び非水電解質を収容する金属製の電池ケースが構成されている。
 非水電解質二次電池10は、電極体14の上下にそれぞれ配置された絶縁板17,18を備えることが好適である。図1に示す例では、正極板11に取り付けられた正極リード19が絶縁板17の貫通孔を通って封口体16側に延び、負極板12に取り付けられた負極リード20が絶縁板18の外側を通ってケース本体15の底部側に延びている。正極リード19は封口体16の底板であるフィルタ22の下面に溶接され、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。負極リード20はケース本体15の底部内面に溶接され、ケース本体15が負極端子となる。
 電極体14は、正極板11及び負極板12がセパレータ13を介して渦巻状に巻回されてなる巻回型の電極体である。正極板11、負極板12、及びセパレータ13は、いずれも帯状に形成され、渦巻状に巻回されることで電極体14の径方向βに交互に積層された状態となる。電極体14において、各電極板の長手方向が巻回方向γとなり、各電極板の幅方向が軸方向αとなる。セパレータ13には、イオン透過性及び絶縁性を有する多孔性シート(微多孔膜)が用いられる。好適なセパレータ13の一例は、ポリエチレン製の微多孔膜である。セパレータ13の厚みは、例えば10μm~50μmである。正極板11及び負極板12の詳細については後述する。
 電極体14は、正極板11、負極板12、セパレータ13に加えて、正極リード19と、負極リード20とを有する。各リードは、各電極の芯体にそれぞれ取り付けられている(後述の図5等参照)。図2に示す例では、正極リード19が正極板11の巻外側端部11aから離れた長手方向中央部に取り付けられており、正極リード19は電極体14の径方向βの両側から正極板11、負極板12、及びセパレータ13に挟まれている。負極リード20は、負極板12の巻外側端部12aに取り付けられている。正極リード19は電極体14の軸方向αの一端部から延出し、負極リード20は電極体14の軸方向αの他端部から延出している。正極リード19の厚みは、正極板11の集電性、リードの耐久性(破断防止)、電極体14の小型化等を考慮して、150μm~500μmであることが好ましい。一般的に、正極リード19の厚みは正極活物質層の厚みよりも厚い(後述の図6参照)。
 本実施形態では、各リードが1つずつ各電極に取り付けられているが、各電極には複数のリードが取り付けられていてもよい。また、各電極におけるリードの取り付け位置は図2に例示するものに限定されない。例えば、正極板11の長手方向中央部に加えて又は当該中央部に代えて、巻内側端部11bに正極リード19が取り付けられていてもよい。また、負極リード20は巻外側端部12aに加えて又は巻外側端部12aに代えて、巻内側端部12bに取り付けられていてもよい。
 ケース本体15は、有底円筒形状の金属製容器である。ケース本体15と封口体16との間にはガスケット27が設けられ、電池ケース内の密閉性が確保されている。ケース本体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する張り出し部21を有する。張り出し部21は、ケース本体15の周方向に沿って環状に形成されることが好ましく、その上面で封口体16を支持する。
 封口体16は、フィルタ開口部22aが形成されたフィルタ22と、弁体(下弁体23、上弁体25)と、絶縁部材24と、キャップ開口部26aが形成されたキャップ26とを有する。弁体は、フィルタ開口部22aを塞いでおり、内部短絡等による発熱で電池の内圧が上昇した場合に破断する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。内部短絡等による発熱で内圧が上昇すると、例えば下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。
 以下、図3~図7を参照しながら、電極体14について、特に正極板11及びこれに関連する構成について詳説する。
 図3及び図4は、正極板11の斜視図である。図5は、図3の正極板11に正極リード19を取り付けた状態を示す図である。図6は、図5中のAA線断面図である。図3~図6では、正極板11を真っ直ぐに伸ばした状態を示しており、紙面右側が電極体14の巻外側(巻き終り側)、紙面左側が巻内側(巻き始め側)である。上述の通り、正極板11の長手方向が電極体14の巻回方向γとなり、正極板11の幅方向が電極体14の軸方向αとなる。そして、正極芯体30の長手方向一端部30aが電極体14の巻外側に配置され、長手方向他端部30bが電極体14の巻内側に配置される。
 正極板11は、帯状の正極芯体30と、正極芯体30の少なくとも一方の面上に設けられた正極活物質層31とを備える。本実施形態では、正極芯体30の両面に正極活物質層31が設けられている。正極芯体30の寸法は、電池の寸法等によっても異なるが、一般的には長さが300mm~800mm、幅が30mm~80mmである。正極芯体30には、例えばアルミニウムなどの金属の箔、当該金属を表層に配置したフィルム等を用いることができる。好適な正極芯体30は、アルミニウム又はアルミニウム合金を主成分とする金属の箔である。正極芯体30の厚みは、例えば10μm~30μmである。
 正極活物質層31は、正極芯体30の両面において、後述の無地部32を除く略全域に設けられることが好適である。正極活物質層31は、正極活物質、導電材、及び結着材を含むことが好ましい。詳しくは後述するが、正極板11は、正極活物質、導電材、結着材、及びN-メチル-2-ピロリドン(NMP)等の溶剤を含む正極合材スラリーを正極芯体30の両面に塗布し、圧縮することにより作製できる。
 正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム含有複合酸化物が例示できる。リチウム含有複合酸化物は、特に限定されないが、一般式Li1+xMO(式中、-0.2<x≦0.2、-0.1≦b≦0.1、Mは少なくともNi、Co、Mn、及びAlのいずれかを含む)で表される複合酸化物であることが好ましい。好適な複合酸化物の一例としては、Ni-Co-Mn系、Ni-Co-Al系のリチウム含有複合酸化物が挙げられる。
 上記導電材は、正極活物質層31の電気伝導性を高めるために用いられる。導電材の例としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 上記結着材は、正極活物質及び導電材間の良好な接触状態を維持し、且つ正極芯体30の表面に対する正極活物質等の結着性を高めるために用いられる。結着材の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 図3及び図4に示すように、正極芯体30の幅方向一端部には、芯体表面が露出した無地部32が形成されている。無地部32は正極リード19が接続される部分であって、正極活物質層31が存在せず芯体表面が正極活物質層31に覆われていない部分である。無地部32を形成することにより、正極芯体30に正極リード19を直接接続することができる。無地部32は、正極芯体30の幅方向一端から正極芯体30の幅方向にL32の長さで形成されている。以下では、説明の便宜上、正極芯体30の長手方向に沿った無地部32の方向を横方向、正極芯体30の幅方向に沿った無地部32の方向を上下方向という場合がある。
 無地部32の上下方向の長さL32は、正極活物質層31の面積をできるだけ大きくして電池の高容量化を図るため、正極芯体30の幅L30の1/2以下が好ましく、より好ましくはL30の1/3以下である。高容量化、正極リード19の取り付け性、正極板11の集電性等を考慮すると、無地部32の長さL32はL30の1/3~1/10とすることが特に好ましい。無地部32の横方向の長さは、無地部32に対する正極リード19の取り付けに支障がない範囲で正極リード19の幅に近いことが好ましく、例えば正極リード19の幅よりも僅かに長くされる。
 無地部32は、正極芯体30の両面の全域に正極活物質層31を形成した後、正極活物質層31の一部を剥離除去して形成されてもよいが、後述するように正極芯体30の一部に正極合材スラリーを塗布しないことにより形成することが好ましい。例えば、正極合材スラリーを間欠塗布して無地部32を形成することで、活物質層の剥離工程を無くすことができ、また材料コストの削減を図ることができる。
 無地部32は、正極芯体30の片面に複数形成されてもよいが、本実施形態では正極芯体30の片面に1つ形成されている。正極リード19が複数取り付けられる場合は、リードの数と同数の無地部32が形成される。正極活物質層31は、上述の通り正極芯体30の両面に設けられており、本実施形態では無地部32も正極芯体30の両面にそれぞれ1つずつ形成されている。通常、正極リード19は正極芯体30の一方の面に溶接等により接続されるため、正極活物質層31が正極芯体30の両面に設けられる場合も正極芯体30の片面のみに無地部32を形成してもよい。但し、無地部32の反対側に位置する活物質層は、例えば正極リード19の無地部32への接続を阻害する場合がある。このため、正極芯体30の厚み方向に重なるように、正極芯体30の両面に無地部32を形成することが好適である。
 無地部32は、電極体14において正極板11の巻外側端部11aとなる正極芯体30の長手方向一端部30aから離れた位置に形成されている。無地部32は、正極芯体30の長手方向両端部に形成されていてもよいが、正極板11の集電性の観点から、好ましくは正極芯体30の長手方向中央部に形成される。即ち、長手方向一端部30a及び長手方向他端部30bから略等距離の位置に無地部32を形成することが好ましい。この場合、無地部32の横方向両側に正極活物質層31が設けられる。
 正極活物質層31は、正極芯体30の長手方向に無地部32と並んだ第1領域33の少なくとも一部に、第1領域33以外の領域である第2領域34よりも層厚みが薄くなった薄肉部35を有する。即ち、正極活物質層31は厚みが異なる2つの領域を有する。第2領域34には局所的に層厚みが薄くなった部分が存在していてもよいが、少なくとも薄肉部35の平均厚みは第2領域34の平均厚みよりも薄く、好ましくは薄肉部35の最大の厚みが第2領域34の最小の厚みよりも薄い。第1領域33に薄肉部35を形成することで、正極リード19の厚みと第2領域34の厚みとの差分が薄肉部35によって吸収され、電極体14の巻きズレが抑制される。
 ここで、正極活物質層31の第1領域33とは、無地部32と正極芯体30(正極板11)の長手方向に並び、無地部32と正極芯体30の長手方向に重なった領域を意味する。本明細書では、正極芯体30の長手方向に無地部32と少しでも重なる領域は第1領域33とする。正極活物質層31の第2領域34は、正極芯体30の長手方向に無地部32と並ばず、無地部32と長手方向に重ならない領域である。正極活物質層31の厚みは、接触式厚み測定器を用いて測定することができる。正極活物質層31の平均厚みは、測定対象の領域において任意の10箇所で厚み測定を行い、各測定値から算出される。
 正極活物質層31の厚みは、第1領域33以外の領域である第2領域34において略一定であることが好ましい。第2領域34では、高容量化等の観点から、層厚みをできるだけ厚くすることが好適である。第2領域34の平均厚みは、特に限定されないが、好ましくは50μm~150μmであり、より好ましくは60μm~140μm、特に好ましくは70μm~130μmである。
 正極活物質層31の厚みを増加させると極板が伸び難くなり極板が破断し易くなるため、上述の通り第2領域34の平均厚みは150μm以下であることが好ましく、一般的に正極リード19の厚みよりも薄い。正極芯体30の両面に設けられた各第2領域34の厚みは互いに略同一であることが好ましく、各第2領域34の厚みの合計は、例えば100μm~300μmである。
 薄肉部35の平均厚みは、第2領域34の平均厚みの0.80倍~0.99倍が好ましく、0.85倍~0.97倍がより好ましい。薄肉部35と第2領域34の厚み比が当該範囲内であれば、電池の容量低下を抑えながら電極体14の巻きズレを効率良く抑制できる。一般的には、薄肉部35が形成される範囲(面積)が小さいほど、薄肉部35の厚みを薄くすることが好適であり、薄肉部35と第2領域34の好適な厚み比は大きくなる。
 薄肉部35の単位面積当たりの質量は、第2領域34の単位面積当たりの質量よりも軽いことが好ましい。例えば、薄肉部35の密度は第2領域34の密度と略同一であり、正極活物質層31の密度は薄肉部35を含む全域で略一定である。本実施形態では、第1領域33及び第2領域34について正極合材スラリーの塗布量を変更し、各塗膜を同一条件で圧縮する。スラリーの塗布量は、正極芯体30上の第1領域33に対応する領域<第2領域34に対応する領域とする。この場合、各領域の密度が略同一で第1領域33の厚みを第2領域34の厚みよりも薄くできる。均一なロールを用いて塗膜を圧縮した場合に各領域に厚み差が形成されるのは、スラリーの塗布量に応じて圧縮後の塗膜のスプリングバック量が異なるためであると考えられる。即ち、塗膜を同じ厚みまで圧縮しても、第1領域33では第2領域34に比べてスプリングバック量が小さくなる。
 なお、第1領域33と第2領域34とで正極合材スラリーの塗布量を同じとし、各領域で塗膜の圧縮条件を変更して各領域の厚みを異ならせることも可能である。例えば、第2領域34の圧縮を第1領域33の圧縮よりも緩やかにすることが考えられる。この場合、各領域の単位面積当たりの質量は略同一となり、第2領域34の密度が第1領域33の密度よりも低くなる。電池のエネルギー密度を考慮すると、正極活物質層31を強く圧縮して密度を高めることが望ましいため、上述のように正極合材スラリーの塗布量を変更し、各塗膜を同一条件で圧縮することが好ましい。
 薄肉部35は、正極リード19が取り付けられる正極芯体30の一方の面側の第1領域33のみに形成されてもよいが、好ましくは正極芯体30の両面の各第1領域33に形成される。正極芯体30の両面に形成された各薄肉部35は、正極芯体30の厚み方向に重なって形成されていることが好適である。正極芯体30の両面に薄肉部35を形成することで、正極リード19の厚みと第2領域34の厚みとの差分をより吸収し易くなる。
 図3に示す例では、第1領域33の略全域に薄肉部35が形成されており、第1領域33の略全域において第2領域34よりも層厚みが薄くなっている。薄肉部35の厚みは、第1領域33の全域に亘って略一定である。正極活物質層31は、正極芯体30の幅方向一端部に、正極芯体30の長手方向に沿って平面視帯状に形成された薄肉部35を有する。第1領域33(薄肉部35)と第2領域34の境界位置には、正極板11の長手方向に沿って段差が形成されている。なお、薄肉部35の厚みは、正極芯体30の長手方向に沿って変化していてもよい。一例としては、正極芯体30の長手方向一端部30a及び長手方向他端部30bの少なくとも一方から無地部32に近づくほど、徐々に又は段階的に薄肉部35の厚みを薄くすることが挙げられる。
 図3に示す例では、正極芯体30の両面に設けられた各正極活物質層31の第1領域33の略全域に亘って薄肉部35が形成されている。即ち、図3に例示する形態は薄肉部35の面積が最大となる形態である。この場合、薄肉部35の好適な平均厚みは、第2領域34の平均厚みの0.90倍~0.99倍であり、特に好ましくは0.93倍~0.97倍である。
 図4に示す例では、第1領域33のうち無地部32よりも巻外側のみに薄肉部35が形成されている。無地部32よりも巻外側に位置する第1領域33(以下、「巻外側第1領域」という場合がある)には、略全域に亘って薄肉部35が形成されている。第1領域33の厚みは、無地部32よりも巻内側では第2領域34の厚みと略同一である。薄肉部35の厚みは、巻外側第1領域の全域に亘って略一定であり、薄肉部35と第2領域34の境界位置には正極板11の長手方向に沿って段差が形成されている。なお、図3に例示する形態と同様に、薄肉部35の厚みは正極芯体30の長手方向に沿って変化していてもよい。
 図4に示す例では、正極芯体30の両面に設けられた各正極活物質層31の第1領域33のうち、各巻外側第1領域の略全域に薄肉部35が形成されている。この場合、薄肉部35の面積は第1領域33の面積の1/2となるが、正極リード19の厚みの吸収は巻外側第1領域に形成された薄肉部35によって最も効率良くなされると考えられるため、図4に例示する形態は高容量化と巻きズレ抑制の両立にとって優れた形態である。この場合、薄肉部35の好適な平均厚みは、第2領域34の平均厚みの0.85倍~0.97倍であり、特に好ましくは0.90倍~0.95倍である。
 薄肉部35は、電極体14の径方向βに正極リード19(無地部32)と重なる位置に、特に正極リード19よりも巻外側において径方向βに重なる位置に形成されることが好適である。薄肉部35の形成範囲は、巻外側第1領域の略半分の範囲(例えば、無地部32から無地部32と長手方向一端部30aとの中間位置まで)、無地部32を挟んで第1領域の略半分となる範囲などであってもよい。電極体14の径方向βに正極リード19と重なる位置のみに薄肉部35を選択的に形成することも可能である。
 図5に示すように、正極リード19は、正極芯体30の両側に形成された無地部32のうち一方の無地部32に接続される。無地部32に対する正極リード19の取り付けは、例えば溶接によりなされる。正極リード19が溶接された正極板11には、正極リード19を覆う絶縁テープ36を貼着することが好ましい。絶縁テープ36は、正極リード19の負極板12と対向する部分に貼着されている。図5に示す例では、正極リード19の無地部32に接続された部分を覆うと共に、無地部32の横方向両側に位置する薄肉部35に跨って絶縁テープ36が貼着されている。
 絶縁テープ36には、樹脂フィルムの一方の面に粘着層が形成された粘着テープであって、耐電解液性に優れるものが用いられる。絶縁テープ36は、正極リード19及び無地部32を被覆し、セパレータ13が破断した場合に負極板12と正極リード19又は正極芯体30とが接触して大電流が流れる低抵抗な内部短絡が発生することを防止する。正極リード19が取り付けられない無地部32についても、かかる内部短絡を防止するため、無地部32を覆って絶縁テープ36を貼着することが好ましい。
 図6に示すように、正極リード19の厚みT19は、正極活物質層31の厚み(第2領域34の厚みT34)よりも厚い。厚みT19が厚みT34よりも薄く、厚みT19と絶縁テープ36の厚みT36とを足した厚み(T19+T36)が厚みT34より厚い場合にも、電極体14の巻きズレは生じ易くなるが、厚みT19が厚みT34よりも厚い場合に巻ズレの課題がより顕著になる。正極リード19の厚みT19は、正極板11の集電性、リードの破断抑制、また正極活物質層31の厚膜化による正極板11の破断抑制等を考慮すると、正極活物質層31の厚みより薄くすることは難しい。換言すると、正極活物質層31を正極リード19の厚みT19よりも厚く形成することは難しい。
 絶縁テープ36の厚みT36は、巻きズレ抑制の観点から、短絡防止機能に支障がない範囲で薄いことが好ましい。図6に示す例では、薄肉部35の厚みT35と絶縁テープ36の厚みT36とを足した厚み(T35+T36)が、第2領域34の厚みT34よりも薄くなっている(T35+T36<T34)。絶縁テープ36は無地部32の横方向両側に位置する薄肉部35に跨って貼着されているが、T35+T36<T34である場合、絶縁テープ36の薄肉部35上に貼着される部分は第2領域34よりも出っ張ることがなく、絶縁テープ36の厚みの影響を緩和し易くなる。
 図7に示すように、負極板12は、帯状の負極芯体40と、負極芯体40の少なくとも一方の面上に設けられた負極活物質層41とを備える。負極芯体40の寸法は、電池の寸法等によっても異なるが、一般的には長さが350mm~900mm、幅が35mm~90mmである。負極芯体40には、例えば銅などの金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯体40の厚みは、例えば10μm~30μmである。負極活物質層41は、負極芯体40の両面において、後述の無地部42を除く略全域に設けられることが好適である。負極活物質層41は、負極活物質及び結着材を含むことが好ましい。負極板12は、例えば負極活物質、結着材、及び水等を含む負極合材スラリーを負極芯体40の両面に塗布し、圧縮することにより作製できる。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、Si、Sn等のリチウムと合金化する金属、又はSi、Sn等の金属元素を含む合金、酸化物などを用いることができる。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。負極活物質層41に含まれる結着材としては、正極板11の場合と同様にフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることができる。水系溶媒を用いて負極合材スラリーを調製する場合は、スチレン-ブタジエンゴム(SBR)、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等を用いることができる。
 図7に示す例では、電極体14において負極板12の巻外側端部12aとなる負極芯体40の長手方向一端部40aに、負極芯体40の全幅に亘って負極リード20が接続される芯体表面が露出した無地部42が形成されている。また、負極活物質層41は無地部42を除く負極芯体40の両面に略一定の厚みで形成されている。なお、無地部42の形成位置等は、図7に示すものに限定されない。無地部42は、負極芯体40の長手方向他端部40bに形成されていてもよく、負極芯体40の長手方向中央部に形成されていてもよい。無地部42を長手方向一端部40aから離れて負極芯体40の幅方向の一部に形成した場合は、正極板11と同様に、無地部42と負極芯体40の長手方向に並ぶ負極活物質層41の第1領域に、他の領域よりも層厚みが薄くなった薄肉部を形成することが好ましい。
 以下、図8及び図9を参照しながら、正極板11の製造方法の一例について詳説する。図8は、正極板の長尺体11z(以下、単に「長尺体11z」とする)を示す平面図である。図9は、図8中のBB線断面図である。長尺体11zは、切断予定部X,Y1,Y2で切断されたときに、複数の正極板11に分割される長尺体である。ここでは、長尺体11zを各切断予定部で切断したときに、正極板11の正極活物質層31、無地部32、第1領域33、及び第2領域34となる部分を、それぞれ正極活物質層31z、無地部32z、第1領域33z、及び第2領域34zとする。
 図8及び図9に示すように、長尺体11zには、正極芯体の長尺体30z(以下、単に「長尺体30z」とする)の両面に正極活物質層31z(第1領域33z及び第2領域34z)が設けられている。正極活物質層31zは、長尺体30zに正極合材スラリーを塗布し、塗膜を圧縮することにより形成される。正極合材スラリーは、上述の通り正極活物質、導電材、結着材、及び溶剤等を含む。正極合材スラリーを塗布して形成された塗膜は、例えば加熱乾燥された後、ロールを用いて圧縮されることで正極活物質層31zとなる。負極板12は、正極合材スラリーに代えて負極合材スラリーを用い、また薄肉部35を形成しない点を除いて、正極板11と同様の方法で作製できる。
 長尺体30zの表面が露出した無地部32zは、正極活物質層31zを形成する際に、長尺体30zの長手方向に沿った一部の領域で正極合材スラリーを間欠塗布して形成されることが好ましい。即ち、無地部32zは正極合材スラリーが塗布されない非塗布部として形成される。図8に示す例では、長尺体30zの幅方向中央部において、長尺体30zの長手方向に沿って略等間隔で無地部32zが形成されている。長尺体30zは、幅方向に2枚分の正極芯体30を採ることができる。無地部32zは、2枚の正極板11の無地部32として、無地部32の2倍の面積で形成される。
 無地部32zは、例えば長尺体30zの幅方向中央(切断予定部Y1)に対して左右対称に形成され、無地部32zと長尺体30zの長手方向に並ぶ正極活物質層31zの第1領域33zも当該幅方向中央に対して左右対称に形成される。第1領域33zの幅方向両側には、長尺体30z上に正極合材スラリーを連続塗布して正極活物質層31zの第2領域34zが形成される。
 図8に示す例では、正極活物質層31zが長尺体30zの両面に形成された長尺体11zを幅方向中央の切断予定部Y1に沿って切断し、また切断予定部Y2で長尺体11zの不要な端部を切断することにより、正極板11の1枚分の幅を有する長尺体が作製される。そして、当該長尺体を幅方向に沿って切断予定部Xで切断することにより正極板11が得られる。
 正極活物質層31zは、長尺体11zの長手方向に沿って厚みが異なる複数の帯状領域(第1領域33z、第2領域34z)を有する。第1領域33zは、第2領域34zよりも層厚みが薄くなるように形成される。第1領域33z及び第2領域34zは、正極合材スラリーをそれぞれ独立に塗布する複数の塗布部を備えたスラリー塗布装置を用いて形成できる。塗布部の一例は、吐出口を有するノズルである。スラリー塗布装置は、例えば各塗布部におけるスラリー塗布のON/OFF、スラリー塗布量等を独立して制御可能な弁を備える。
 第1領域33zは、例えば長尺体30zの幅方向中央部の上方に配置された塗布部(以下、「第1塗布部」とする)から正極合材スラリーを間欠塗布することにより形成され、スラリーの塗布が停止されたときに無地部32zが形成される。一定の間隔でスラリーの塗布と停止を繰り返すことで、第1領域33zと無地部32zが略等間隔で交互に形成できる。第2領域34zは、例えば第1領域33zを形成するスラリーを塗布する第1塗布部に隣接配置された塗布部(以下、「第2塗布部」とする)からスラリーを連続塗布することにより形成される。一般的に、長尺体30z上へのスラリーの塗布は、塗布部の位置を固定した状態で、長尺体30zを長手方向に連続搬送しながら行われる。
 正極合材スラリーの塗布工程では、第1塗布部におけるスラリー塗布量を第2塗布部におけるスラリー塗布量よりも少なくする。第1塗布部におけるスラリー塗布量は、例えば第2塗布部におけるスラリー塗布量の0.80倍~0.99倍に調整される。そして、塗膜の圧縮条件はいずれの領域においても同じとする。これにより、第1領域33zの厚みが第2領域34zの厚みよりも薄くなり第1領域33zに薄肉部35zが形成されると共に、薄肉部35zの密度と第2領域34zの密度は略同一となる。
 第1塗布部におけるスラリー塗布量は、連続塗布時において一定に設定してもよく、変動させてもよい。一定のスラリー塗布量に設定した場合は、第1領域33zの略全域に亘って薄肉部35zを形成することができる。スラリー塗布量を変動させた場合は、例えば正極板11の無地部32よりも巻外側のみに薄肉部35zを形成することもできるし、薄肉部35zの厚みを変化させることもできる。第2塗布部におけるスラリー塗布量については、一定に設定されることが好ましい。
 第1塗布部と第2塗布部は、長手方向に連続搬送される長尺体30zの上方に配置されるが、互いに干渉しないように長尺体30zの幅方向に沿った方向に並ばないように配置される。即ち、第1塗布部及び第2塗布部の一方が長尺体30zの搬送方向の上流側に、他方が搬送方向の下流側に配置される。
 第1塗布部の吐出口と第2塗布部の吐出口は、長尺体30zの長手方向(搬送方向)に沿った方向に重ならず、各塗布部は各吐出口の端部同士が当該方向に並ぶように配置されてもよい。或いは、各吐出口の一部同士が長尺体30zの長手方向に沿った方向に重なるように、即ち各吐出口の一部同士が当該方向に並ぶように各塗布部が配置される。吐出口の端部ではスラリーの塗布量が少なくなり易いため、前者の配置では、第1領域33zと第2領域34zとの境界位置で層厚みが大きく減少する場合がある。後者の配置によれば、各吐出口の重なりの程度を適切な範囲に調整することで、かかる層厚みの減少を抑制し易くなる。
 上述の構成を備えた非水電解質二次電池10によれば、正極活物質層31の第1領域33に形成された薄肉部35によって、正極リード19及び絶縁テープ36の厚みと第2領域34の厚みとの差分を吸収することができる。このため、正極活物質層31の面積をできるだけ大きくして電池の高容量化を図るため、正極芯体30の幅方向の一部に無地部32を形成して正極リード19を接続した場合においても、電極体14の巻きズレを十分に抑制することができる。
 表1に、非水電解質二次電池10における巻きズレ抑制効果の一例(実施例)を示す。表1では、正極活物質層の第1領域に薄肉部を有さない場合を比較として示している。実施例と比較例の各巻回型電極体は、薄肉部の有無以外は同一とした正極板、同一の負極板、同一のセパレータ、及び同一の極板リードを用いて同じ条件で作製した。巻きズレは、巻回時に走行する正負極板の蛇行量を測定して評価し、正極板及び負極板の蛇行量が0.6mm以内である場合を巻きズレ無し、正極板及び負極板の少なくとも一方が0.6mmを超える場合を巻きズレ有りとした。表1に示すように、薄肉部を形成することによって、巻きズレを抑制することができる。
Figure JPOXMLDOC01-appb-T000001
 実施例、比較例の詳細は下記の通りである。巻きズレの評価は、実施例、比較例のそれぞれ20個の電極体について行った。正極活物質層の厚みは、各20個の電極体のうち10個の正極板について測定した値の平均値である。
(1)正極板
・正極芯体:アルミニウム箔、長さ661mm、幅58mm、厚み0.15mm
・無地部:正極芯体の長手方向中央部において正極芯体の幅方向一端部に形成した。
・正極活物質層:リチウムニッケル複合酸化物、アセチレンブラック、ポリフッ化ビニリデンを含み、正極芯体の両面に形成した。
・正極活物質層の第1領域(薄肉部)の平均厚み:130μm
・正極活物質層の第2領域の平均厚み:140μm
(比較例の正極活物質層は、上記第2領域と同じ厚みで形成)
・第1領域と第2領域の厚み比(第1領域/第2領域):0.96
(2)負極板
・負極芯体:銅箔、長さ720mm、幅59mm、厚み0.1mm
・無地部:負極芯体の長手方向一端部(巻外側端部)において負極芯体の全幅に亘って形成した。
・負極活物質層:黒鉛、スチレンブタジエンゴム、カルボキシメチルセルロースを含み、負極芯体の両面に形成した。
・負極活物質層の平均厚み:160μm
(3)セパレータ:厚み16μmのポリエチレン製微多孔膜
(4)正極リード:幅3mm、厚み0.15mm
(5)負極リード:幅3mm、厚み0.15mm
(6)電極体:セパレータを介して、正極芯体の無地部に正極リードを溶接した正極板、及び負極芯体の無地部に負極リードを溶接した負極板を巻回することにより作製した(直径18mm)。
 10 非水電解質二次電池、11 正極板、11a 巻外側端部、11b 巻内側端部、11z 正極板の長尺体、12 負極板、12a 巻外側端部、12b 巻内側端部、13 セパレータ、14 電極体、15 ケース本体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、21 張り出し部、22 フィルタ、22a フィルタ開口部、23 下弁体、24 絶縁部材、25 上弁体、26 キャップ、26a キャップ開口部、27 ガスケット、30 正極芯体、30a 長手方向一端部、30b 長手方向他端部、30z 正極芯体の長尺体、31,31z 正極活物質層、32,32z 無地部、33,33z 第1領域、34,34z 第2領域、35,35z 薄肉部、36 絶縁テープ、40 負極芯体、40a 長手方向一端部、40b 長手方向他端部、41 負極活物質層、42 無地部

Claims (10)

  1.  帯状の芯体と、
     前記芯体の少なくとも一方の面上に設けられた活物質層と、
     を備えた巻回型の電極体を構成する蓄電装置用電極板であって、
     前記芯体の幅方向一端部には、前記電極体の巻外側に配置された前記芯体の長手方向一端部から離れた位置に、リードが接続される芯体表面が露出した無地部が形成され、
     前記活物質層は、前記芯体の長手方向に前記無地部と並んだ第1領域の少なくとも一部に、前記第1領域以外の領域である第2領域よりも層厚みが薄くなった薄肉部を有する、蓄電装置用電極板。
  2.  前記薄肉部は、前記活物質層の前記第1領域において、少なくとも前記無地部よりも巻外側に形成されている、請求項1に記載の蓄電装置用電極板。
  3.  前記薄肉部は、前記第1領域の略全域に形成されている、請求項2に記載の蓄電装置用電極板。
  4.  前記薄肉部の平均厚みは、前記第2領域の平均厚みの0.80倍~0.99倍である、請求項1~3のいずれか1項に記載の蓄電装置用電極板。
  5.  前記薄肉部の単位面積当たりの質量は、前記第2領域の単位面積当たりの質量よりも軽い、請求項1~4のいずれか1項に記載の蓄電装置用電極板。
  6.  前記無地部は、前記芯体の長手方向中央部に形成されている、請求項1~5のいずれか1項に記載の蓄電装置用電極板。
  7.  正極板及び負極板の少なくとも一方として、請求項1~6のいずれか1項に記載の蓄電装置用電極板を用いた、蓄電装置。
  8.  請求項1~6のいずれか1項に記載の蓄電装置用電極板からなる正極板と、
     前記正極板の前記無地部に接合された前記リードと、
     負極板と、
     を備え、前記リードの厚みは前記活物質層の厚みよりも厚い、蓄電装置。
  9.  請求項1~6のいずれか1項に記載の蓄電装置用電極板からなる正極板と、
     前記正極の前記無地部に接合された前記リードと、
     前記リードを覆って貼着された絶縁テープと、
     負極板と、
     を備え、前記リードの厚み、又は前記リードの厚みと前記絶縁テープの厚みとを足した厚みが、前記活物質層の厚みよりも厚い、蓄電装置。
  10.  前記薄肉部の厚みと前記絶縁テープの厚みとを足した厚みが、前記第2領域の厚みよりも薄い、請求項9に記載の蓄電装置。
PCT/JP2016/004719 2015-11-06 2016-10-27 蓄電装置用電極板及び蓄電装置 WO2017077698A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/768,771 US10497985B2 (en) 2015-11-06 2016-10-27 Electrode plate for power storage devices and power storage device
JP2017548635A JP7086605B2 (ja) 2015-11-06 2016-10-27 蓄電装置用電極板及び蓄電装置
CN201680061532.3A CN108352494B (zh) 2015-11-06 2016-10-27 蓄电装置用电极板以及蓄电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015218302 2015-11-06
JP2015-218302 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017077698A1 true WO2017077698A1 (ja) 2017-05-11

Family

ID=58661797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004719 WO2017077698A1 (ja) 2015-11-06 2016-10-27 蓄電装置用電極板及び蓄電装置

Country Status (4)

Country Link
US (1) US10497985B2 (ja)
JP (1) JP7086605B2 (ja)
CN (1) CN108352494B (ja)
WO (1) WO2017077698A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095608A (zh) * 2017-09-15 2020-05-01 三洋电机株式会社 圆筒形非水电解质二次电池
CN111937218A (zh) * 2018-04-06 2020-11-13 三洋电机株式会社 非水电解质二次电池
WO2020241410A1 (ja) * 2019-05-28 2020-12-03 三洋電機株式会社 非水電解質二次電池
CN113439350A (zh) * 2019-02-20 2021-09-24 三洋电机株式会社 电极板及其制造方法、二次电池及其制造方法
CN114204220A (zh) * 2020-08-31 2022-03-18 比亚迪股份有限公司 电芯、电池以及电池包

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6816395B2 (ja) * 2016-07-08 2021-01-20 日本ケミコン株式会社 電気二重層キャパシタ
EP4329056A2 (en) 2019-01-09 2024-02-28 BYD Company Limited Power battery pack and electric vehicle
CN113966558B (zh) * 2020-05-20 2022-08-05 宁德时代新能源科技股份有限公司 一种二次电池、其制备方法及含有该二次电池的装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187155A (ja) * 1989-12-15 1991-08-15 Fuji Elelctrochem Co Ltd スパイラル形非水電解液電池
JPH0714570A (ja) * 1993-06-25 1995-01-17 Furukawa Electric Co Ltd:The 電池用電極
JPH10241725A (ja) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd アルカリ二次電池
JP2000268813A (ja) * 1999-03-19 2000-09-29 Toyota Motor Corp 電池及びキャパシタの電極構造、並びに電極の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) * 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
JPH10302753A (ja) * 1997-02-28 1998-11-13 Japan Storage Battery Co Ltd 電池用極板の集電体とリードとの接続構造
JP3738125B2 (ja) * 1998-02-13 2006-01-25 三洋電機株式会社 非焼結式電極を用いたアルカリ蓄電池およびその製造方法
JP2001006664A (ja) 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 塗布装置
JP2003068271A (ja) 2001-06-13 2003-03-07 Matsushita Electric Ind Co Ltd リチウム二次電池及びこの電池に用いる正極板の製造方法
US8758928B2 (en) * 2006-07-07 2014-06-24 Donald P. H. Wu Conductive structure for an electrode assembly of a lithium secondary battery
KR100982003B1 (ko) * 2008-04-17 2010-09-13 주식회사 엘지화학 절연특성이 향상된 전지
CN101593849A (zh) * 2009-06-17 2009-12-02 广州丰江电池新技术股份有限公司 一种锂电池及其制造方法
WO2012077177A1 (ja) * 2010-12-06 2012-06-14 トヨタ自動車株式会社 リチウムイオン二次電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187155A (ja) * 1989-12-15 1991-08-15 Fuji Elelctrochem Co Ltd スパイラル形非水電解液電池
JPH0714570A (ja) * 1993-06-25 1995-01-17 Furukawa Electric Co Ltd:The 電池用電極
JPH10241725A (ja) * 1997-02-28 1998-09-11 Sanyo Electric Co Ltd アルカリ二次電池
JP2000268813A (ja) * 1999-03-19 2000-09-29 Toyota Motor Corp 電池及びキャパシタの電極構造、並びに電極の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171585B2 (ja) 2017-09-15 2022-11-15 三洋電機株式会社 円筒形非水電解質二次電池
JPWO2019054312A1 (ja) * 2017-09-15 2020-10-15 三洋電機株式会社 円筒形非水電解質二次電池
CN111095608A (zh) * 2017-09-15 2020-05-01 三洋电机株式会社 圆筒形非水电解质二次电池
CN111937218A (zh) * 2018-04-06 2020-11-13 三洋电机株式会社 非水电解质二次电池
JPWO2019194181A1 (ja) * 2018-04-06 2021-04-08 三洋電機株式会社 非水電解質二次電池
JP7343482B2 (ja) 2018-04-06 2023-09-12 パナソニックエナジー株式会社 非水電解質二次電池
CN113439350B (zh) * 2019-02-20 2024-04-30 三洋电机株式会社 电极板及其制造方法、二次电池及其制造方法
CN113439350A (zh) * 2019-02-20 2021-09-24 三洋电机株式会社 电极板及其制造方法、二次电池及其制造方法
WO2020241410A1 (ja) * 2019-05-28 2020-12-03 三洋電機株式会社 非水電解質二次電池
JP7434309B2 (ja) 2019-05-28 2024-02-20 パナソニックエナジー株式会社 非水電解質二次電池
JPWO2020241410A1 (ja) * 2019-05-28 2020-12-03
CN114204220B (zh) * 2020-08-31 2023-04-07 比亚迪股份有限公司 电芯、电池以及电池包
CN114204220A (zh) * 2020-08-31 2022-03-18 比亚迪股份有限公司 电芯、电池以及电池包

Also Published As

Publication number Publication date
CN108352494A (zh) 2018-07-31
US10497985B2 (en) 2019-12-03
CN108352494B (zh) 2021-10-26
JP7086605B2 (ja) 2022-06-20
JPWO2017077698A1 (ja) 2018-09-13
US20180287213A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017077698A1 (ja) 蓄電装置用電極板及び蓄電装置
JP6292678B2 (ja) 二次電池と電極の製造方法
WO2016121734A1 (ja) 二次電池
US20190221824A1 (en) Non-aqueous electrolyte secondary battery
JP7386432B2 (ja) 非水電解質二次電池
CN111886747A (zh) 非水电解质二次电池
WO2023145674A1 (ja) 円筒形の非水電解質二次電池
JP7321158B2 (ja) 非水電解質二次電池
WO2021131879A1 (ja) 二次電池
US11183678B2 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7454795B2 (ja) 非水電解質二次電池用電極板及び非水電解質二次電池
KR101709391B1 (ko) 비수전해질 2차 전지
WO2021131880A1 (ja) 二次電池
WO2018173899A1 (ja) 非水電解質二次電池
WO2021131877A1 (ja) 二次電池、及びその製造方法
WO2021199684A1 (ja) 非水電解質二次電池用正極板の製造方法及び非水電解質二次電池の製造方法
WO2021065420A1 (ja) 組電池
US12027694B2 (en) Nonaqueous electrolyte secondary battery
JP7320166B2 (ja) 二次電池
WO2023163097A1 (ja) 円筒形の非水電解質二次電池
WO2023085365A1 (ja) 円筒形二次電池
JP7343482B2 (ja) 非水電解質二次電池
WO2022249989A1 (ja) 非水電解質二次電池
WO2022190895A1 (ja) 非水電解質二次電池
CN113921751B (zh) 电极结构及电化学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15768771

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017548635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861775

Country of ref document: EP

Kind code of ref document: A1