WO2017077696A1 - 蓄電装置用電極板の製造方法、及び塗布装置 - Google Patents

蓄電装置用電極板の製造方法、及び塗布装置 Download PDF

Info

Publication number
WO2017077696A1
WO2017077696A1 PCT/JP2016/004717 JP2016004717W WO2017077696A1 WO 2017077696 A1 WO2017077696 A1 WO 2017077696A1 JP 2016004717 W JP2016004717 W JP 2016004717W WO 2017077696 A1 WO2017077696 A1 WO 2017077696A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
positive electrode
electrode plate
manufacturing
current collector
Prior art date
Application number
PCT/JP2016/004717
Other languages
English (en)
French (fr)
Inventor
正志 塚本
智文 柳
元貴 衣川
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US15/768,935 priority Critical patent/US11511307B2/en
Priority to CN201680061323.9A priority patent/CN108140804B/zh
Priority to JP2017548633A priority patent/JP6965162B2/ja
Publication of WO2017077696A1 publication Critical patent/WO2017077696A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • B05C5/0258Coating heads with slot-shaped outlet flow controlled, e.g. by a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0225Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work characterised by flow controlling means, e.g. valves, located proximate the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/027Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated
    • B05C5/0275Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated flow controlled, e.g. by a valve
    • B05C5/0279Coating heads with several outlets, e.g. aligned transversally to the moving direction of a web to be coated flow controlled, e.g. by a valve independently, e.g. individually, flow controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • H01G13/006Apparatus or processes for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for manufacturing an electrode plate for a power storage device and a coating apparatus.
  • a positive electrode mixture layer is formed by applying a positive electrode mixture slurry on a strip-shaped positive electrode current collector. Thereafter, a part of the positive electrode mixture layer is peeled to form an uncoated portion where no positive electrode mixture layer is present. A positive electrode lead is welded to the uncoated portion. By making the width of the uncoated portion shorter than the width of the positive electrode plate, the uncoated portion is formed only in a partial region in the width direction to increase the existence region of the positive electrode mixture layer, thereby realizing high capacity. .
  • Patent Document 2 proposes a technique capable of improving productivity in addition to increasing the capacity.
  • the coating apparatus disclosed in Patent Document 2 includes a plurality of nozzles. The discharge ports of the plurality of nozzles are arranged so as not to overlap each other when viewed from the length direction of the positive electrode current collector.
  • Each nozzle discharges a positive electrode mixture slurry to each divided region that divides the positive electrode current collector along the length direction.
  • the uncoated portion and the positive electrode mixture layer can be freely formed. Since this coating apparatus does not require peeling of the positive electrode mixture layer, productivity is improved.
  • the discharge ports of a plurality of nozzles are arranged so as not to overlap each other when viewed from the length direction of the current collector, and a positive electrode mixture is fed from one nozzle to each divided region of the current collector. A slurry is applied.
  • the positive electrode mixture slurry is applied on the positive electrode current collector by such a method, the thickness of the positive electrode mixture layer is difficult to be uniform.
  • the subject of this indication is providing the manufacturing method of the electrode plate for electrical storage apparatuses which can suppress the dispersion
  • a mixture slurry is applied from a discharge nozzle corresponding to each of the discharge regions to a plurality of discharge regions extending along the length direction on a strip-shaped current collector.
  • the position of the discharge region is set so as to form an overlapping portion that overlaps a part of the adjacent discharge region, and an uncoated portion is provided in at least one of the discharge regions by intermittently discharging the mixture slurry.
  • the coating apparatus of the present disclosure includes a plurality of discharge ports extending in an arbitrary first direction, and each discharge port overlaps with all other discharge ports when viewed from a second direction orthogonal to the first direction. And a region that overlaps a part of the ejection port adjacent to each ejection port.
  • an electrode plate for a power storage device and a coating device According to the method for manufacturing an electrode plate for a power storage device and a coating device according to the present disclosure, it is possible to suppress the thickness variation of the mixture layer on the current collector, in addition to increase in capacity and productivity.
  • FIG. 1 is a view showing the structure of a non-aqueous electrolyte secondary battery manufactured by the manufacturing method and coating apparatus of the present embodiment.
  • FIG. 2 is a schematic view showing an outline of a coating process of the positive electrode mixture slurry onto the positive electrode current collector.
  • FIG. 3 is a schematic view showing a plurality of ejection regions extending in the length direction on the positive electrode current collector.
  • FIG. 4 is a diagram for explaining the relative position of each discharge nozzle with respect to the positive electrode current collector, and is a schematic diagram when the positive electrode current collector is viewed from above the coating surface.
  • FIG. 5A is a schematic diagram showing the tip of the flow path in the discharge nozzle of the first discharge section, and FIG.
  • FIG. 5B is a schematic diagram showing the tip of the flow path of the discharge nozzle in the second discharge section. is there.
  • FIG. 6 is a schematic diagram for explaining an angle formed by the discharge flow path of the discharge nozzle and the surface to be coated of the positive electrode current collector, and is a partially enlarged view of a region indicated by R in FIG.
  • FIGS. 7A and 7B are schematic views showing the shape of the tip of the flow path of the discharge nozzle used in the experimental example.
  • FIG. 8 is a schematic diagram illustrating a discharge unit according to a modification.
  • FIG. 1 is a diagram showing a structure of a non-aqueous electrolyte secondary battery 10 that can be preferably manufactured by the manufacturing method and coating apparatus of the present embodiment.
  • an electrode group in which a positive electrode plate 1 and a negative electrode plate 3 are wound via a separator 5 is a cylindrical battery case 6. It is accommodated together with the electrolytic solution.
  • the opening of the battery case 6 is sealed with a sealing plate 9 via a gasket 7, and the inside of the battery case 6 is sealed.
  • the positive electrode plate 1 is connected to the positive electrode lid 8 disposed on the sealing plate 9 by the positive electrode lead 2, and the positive electrode lid 8 serves as a positive electrode terminal.
  • the negative electrode plate 3 is connected to the battery case 6 by a negative electrode lead 4, and the battery case 6 serves as a negative electrode terminal.
  • the positive electrode plate 1 is manufactured as follows. A conductive agent, a binder, or the like is mixed with the positive electrode active material, and the mixture is kneaded in a dispersion medium to prepare a paste-like positive electrode mixture slurry. The positive electrode mixture slurry is applied onto a hoop-like positive electrode current collector made of a metal foil such as aluminum to form a positive electrode mixture layer. Next, the positive electrode mixture layer is dried and compressed. Finally, the positive electrode plate 1 is produced by cutting the positive electrode current collector on which the positive electrode mixture layer is formed into a predetermined size.
  • the negative electrode plate 3 is manufactured as follows. A conductive agent, a thickener and the like are mixed with the negative electrode active material, and the mixture is kneaded in a dispersion medium to prepare a paste-like negative electrode mixture slurry. Further, the negative electrode mixture slurry is applied onto a hoop-shaped negative electrode current collector made of a metal foil such as copper to form a negative electrode mixture layer. Next, the negative electrode mixture layer is dried and compressed. Finally, the negative electrode plate 3 is produced by cutting the negative electrode current collector on which the negative electrode mixture layer is formed into predetermined dimensions.
  • the positive electrode lead 2 is joined to a predetermined position of the positive electrode plate 1 by spot welding, and the negative electrode lead 4 is joined to a predetermined position of the negative electrode plate 3 by spot welding.
  • Each of the positive electrode plate 1 and the negative electrode plate 3 has an unapplied portion where the mixture slurry is not applied.
  • the positive electrode lead 2 and the negative electrode lead 4 need to be directly joined to the current collectors of the positive electrode plate 1 and the negative electrode plate 3.
  • the uncoated part constitutes a lead connection part to which the positive electrode lead 2 and the negative electrode lead 4 are connected.
  • the hoop-shaped positive electrode current collector 15 is unwound by a driving roll (not shown) so as to run at a constant speed on one side in the length direction indicated by the arrow A.
  • the positive electrode mixture slurry is discharged toward the positive electrode current collector 15 from the first and second discharge portions 11 and 12 disposed on the upper side of the positive electrode current collector 15, thereby forming the positive electrode current collector 15 on the positive electrode current collector 15.
  • a positive electrode mixture layer 14 is formed.
  • the first discharge unit 11 is provided with discharge nozzles 11a and 11b
  • the second discharge unit 12 is provided with a discharge nozzle 12a.
  • the discharge nozzles 11a and 11b continuously discharge the positive electrode mixture slurry.
  • the discharge nozzle 12a intermittently discharges the positive electrode mixture slurry.
  • the discharge nozzles 11a and 11b constitute a continuous discharge nozzle
  • the discharge nozzle 12a constitutes an intermittent discharge nozzle.
  • the discharge ports of the continuous discharge nozzle and the discharge ports of the intermittent discharge nozzle are alternately arranged in the width direction Y.
  • FIG. 3 is a schematic diagram showing a plurality of ejection regions 50, 51, 52 extending along the length direction X on the positive electrode current collector 15.
  • the discharge regions 50, 51, and 52 indicate regions where the positive electrode mixture slurry discharged from the discharge nozzles 11 a, 11 b, and 12 a is assumed to collide with the positive electrode current collector 15, respectively.
  • the positions of the discharge nozzles 11a, 11b, and 12a and the discharge ports 18a, 18b, and 19a with respect to the positive electrode current collector 15 are determined.
  • the discharge regions 50, 51, 52 and the discharge ports 18a, 18b are viewed from the thickness direction. , 19a overlap each other.
  • the lengths of the discharge regions 50 and 51 in the width direction Y are equal to each other, and the discharge region 51 is provided with an unapplied portion 40 to which the positive electrode mixture slurry is not applied.
  • the ejection regions 50 and 52 are arranged so that each part thereof overlaps with each other when viewed in the length direction X.
  • the ejection regions 51 and 52 are arranged so that each part thereof overlaps when viewed in the length direction X.
  • the discharge regions 50, 51, 52 are formed with the overlapping portions 60a, 60b and the non-overlapping portions 70, 71, 72.
  • the positions of the first discharge part 11 having the discharge ports 18a and 18b and the second discharge part 12 having the discharge ports 19a with respect to the positive electrode current collector 15 are determined.
  • the first discharge is performed such that both ends in the width direction Y of the discharge ports 18a, 18b, 19a coincide with both ends in the width direction Y of the discharge regions 50, 51, 52, respectively.
  • the part 11 and the second discharge part 12 are arranged.
  • the first discharge part 11 is arranged at an interval in the length direction X of the positive electrode current collector 15 with respect to the second discharge part 12.
  • the second discharge part 12 is arranged in front of the first discharge part 11 in the moving direction A of the positive electrode current collector 15, but the second discharge part 12 is more positive than the first discharge part 11 in the positive electrode current collector. It may be arranged behind 15 movement directions A.
  • the discharge ports 18 a, 18 b, 19 a have a rectangular planar shape extending in the width direction Y of the positive electrode current collector 15.
  • Each discharge nozzle 11a, 11b, 12a has a control valve for controlling the supply and stop of the positive electrode mixture slurry from a storage tank (not shown). Each control valve is controlled independently of each other. Using each control valve, supply and stop of the positive electrode mixture slurry from each discharge nozzle 11a, 11b, 12a can be controlled at an arbitrary timing. By repeatedly supplying and stopping the positive electrode mixture slurry to the discharge nozzle 12a, the positive electrode mixture slurry is intermittently discharged from the discharge nozzle 12a. Thereby, the uncoated part 40 as a positive electrode lead connection part is provided.
  • a part of the discharge port 19a overlaps a part of the discharge port 18a, and the overlap amount is set to f 1 [mm].
  • a part of the discharge port 19a overlaps with a part of the discharge port 18b, and the amount of overlap is f 2 [mm].
  • the overlapping amounts f 1 [mm] and f 2 [mm] respectively coincide with the lengths in the width direction Y of the overlapping portions 60a and 60b (see FIG. 3).
  • FIG. 5 (a) is a schematic diagram showing the front end 20 of the flow path of the discharge nozzles 11a and 11b
  • FIG. 5 (b) is a schematic diagram showing the front end 30 of the flow path of the discharge nozzle 12a.
  • the extending direction of the front end of the flow path in the discharge nozzles 11 a and 11 b matches the thickness direction Z of the positive electrode current collector 15.
  • the length in the width direction Y becomes longer toward the discharge port 18a.
  • the extending direction of the discharge nozzle 12 a coincides with the thickness direction Z of the positive electrode current collector 15.
  • the length in the width direction Y is constant regardless of the position in the extending direction of the distal end portion 30 of the flow path.
  • FIG. 6 is a schematic diagram for explaining an angle formed by the tip 20 of the flow path of the discharge nozzles 11a and 11b and the coating surface 28 of the positive electrode current collector 15, and represents a region indicated by R in FIG. It is a partial enlarged view.
  • the length in the width direction Y of the front end portion 20 of the flow path becomes longer in a linear function as it goes to the discharge port 18a.
  • the extended surface 25 obtained by extending the side surface of the front end portion 20 of the flow path and the coated surface 28 of the positive electrode current collector 15 intersect at an acute angle such as 30 ° to 60 °, preferably 45 °. Intersect at an angle.
  • the uncoated portion 40 forming the positive electrode lead connection portion exists only in a part of the positive electrode current collector 15 in the width direction. Therefore, the application area of the positive electrode mixture slurry can be increased as compared with the case where the unapplied part is provided in the entire region in the width direction, so that the capacity can be increased.
  • the positive electrode current collector 15 relatively moves at a constant speed in the direction indicated by the arrow A with respect to the first and second discharge units 11 and 12. Therefore, in the discharge nozzle 12a, a long electrode plate material in which the unapplied portions 40 are periodically provided along the length direction X only by alternately repeating the discharge for the first predetermined time and the second predetermined discharge stop. Can be produced easily. Therefore, productivity is improved.
  • the electrode plate having the periodicity is cut along the line KK shown in FIG. 3 so that the width of the positive electrode current collector 15 is divided into two equal parts after the positive electrode mixture layer is formed. Further, the electrode plate material is cut along the center line between each two uncoated portions 40 adjacent in the length direction.
  • the positive electrode current collector 15 moves relative to the discharge nozzles 11a, 11b, and 12a at a constant speed.
  • the uncoated portion is kept constant by controlling the control valve for controlling the supply and stop of the positive electrode mixture slurry to each discharge nozzle at a predetermined timing based on the measurement of the travel distance of the positive electrode current collector by an encoder or the like. You may provide for every distance.
  • the thickness of the positive electrode mixture layer provided on the positive electrode current collector varies locally, a uniform winding structure of the electrode group is not realized, and the charge / discharge reaction becomes non-uniform, which is not preferable.
  • an overlapping portion as shown by 60a and 60b in FIG. 3 has not been provided. It has been found that when there is no overlap of the discharge regions, the thickness of the positive electrode mixture layer at the boundary between the adjacent discharge regions is thinner than the thickness of the positive electrode mixture layer at the region other than the boundary.
  • Table 1 shows the result of evaluating the thickness variation of the positive electrode mixture layer for the positive electrode plate according to the experimental example manufactured by changing the dimension in the width direction Y of the overlapping portions 60a and 60b of the discharge region in the range of 0 to 5 mm. Show.
  • Example 1 and 2 The positive plates according to Experimental Examples 1 and 2 were produced as follows. A lithium nickel composite oxide as a positive electrode active material, acetylene black (AB) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder are mixed at a predetermined ratio, and the mixture is mixed with N as a dispersion medium. A positive electrode mixture slurry was prepared by kneading in -methyl-pyrrolidone (NMP).
  • NMP -methyl-pyrrolidone
  • the length in the width direction Y of the distal end portion of the flow path of the discharge nozzles 11a and 11b becomes longer from the inside toward the discharge port. Yes.
  • a shape in which the length in the width direction of the front end portion of the flow path is increased is schematically shown in FIG. 7A, and the shape is represented as a pattern A in FIG.
  • the length in the width direction Y of the front end portion of the flow path of the discharge nozzle 12a is constant at the front end portion of the flow path.
  • a shape in which the length in the width direction Y of the front end portion of the flow path is constant is schematically shown in FIG. 7B, and the shape is represented as a pattern B in FIG. 7B and Table 1.
  • the discharge nozzles 11 a and 11 b are provided in the first discharge unit 11, and the discharge nozzle 12 a is provided in the second discharge unit 12.
  • Example 3-5 A positive electrode plate according to Experimental Example 3 was manufactured in the same manner as Experimental Example 2 except that the shape of the tip of the flow path of the discharge nozzle 12 provided in the second discharge unit 12 was set to Pattern A. Further, positive plates according to Experimental Examples 4 and 5 were produced in the same manner as Experimental Example 3 except that the lengths of the overlapping portions 60a and 60b in the width direction Y were changed to 1 mm and 0 mm.
  • the thickness variation of the positive electrode mixture layer was evaluated as follows. First, the thickness A of the positive electrode mixture layer at the center in the width direction Y of the non-overlapping portion 70 was measured. Next, the thickness B of the positive electrode mixture layer at the center in the width direction Y of the overlapping portions 60a and 60b was measured. In Experimental Example 5 in which the length of the overlapping portion in the width direction Y was 0 mm, the thickness of the positive electrode mixture layer at the positions corresponding to both ends in the width direction Y of the discharge nozzle 12a was measured as the thickness B. Using the obtained thickness A [ ⁇ m] and thickness B [ ⁇ m], the value calculated from the formula (BA) ⁇ A ⁇ 100 was evaluated as the thickness variation of the positive electrode mixture layer. The smaller the absolute value, the smaller the thickness variation of the positive electrode mixture layer.
  • the thickness of the positive electrode mixture layer is expected to be less stable in the overlapping portions 60a and 60b than in the non-overlapping portions 70, 71, and 72, the positive electrode combination is increased by increasing the length in the width direction Y of the overlapping portions 60a and 60b. It was confirmed that the thickness variation of the agent layer tends to decrease.
  • the length in the width direction Y of the overlapping portions 60a and 60b is not particularly limited, but is preferably 1 mm or more and 8 mm or less, and more preferably 3 mm or more and 5 mm or less.
  • the width of the tip of the discharge nozzle flow path is increased toward the discharge port, so that the end of the applied mixture layer rises. It is described that it is prevented.
  • it is possible to form a uniform positive electrode mixture layer by making the length in the width direction Y of the front end portion of the flow path of the discharge nozzle of the second discharge portion that performs intermittent discharge constant. Recognize.
  • the shape of the flow path of the discharge nozzle is not particularly limited, but the shape of the front end of the flow path of the continuous discharge nozzle is preferably pattern A, and the shape of the front end of the flow path of the intermittent discharge nozzle is preferably pattern B. .
  • the thickness of the positive electrode mixture layer formed on one surface of the positive electrode current collector is not particularly limited, but is preferably 40 ⁇ m or more and 200 ⁇ m or less because the thickness variation of the positive electrode mixture layer is remarkably suppressed by providing an overlapping portion. .
  • the arrangement position of the discharge port of the coating apparatus of the present disclosure has been described with reference to the length direction X and the width direction Y of the positive electrode current collector. Therefore, the arrangement position of the discharge port of the coating apparatus of the present disclosure can be specified as follows using an arbitrary first direction and a second direction orthogonal to the first direction. That is, the coating device of the present disclosure includes a plurality of discharge ports extending in an arbitrary first direction, and each discharge port is not overlapped with all other discharge ports when viewed from the second direction. And a region overlapping with a part of the adjacent discharge port.
  • the discharge region is assumed to be composed of a first discharge region in which an uncoated portion as a positive electrode lead connection portion is not provided and a second discharge region in which an uncoated portion as a positive electrode lead connection portion is provided.
  • the first discharge area and the second discharge area can be arbitrarily arranged in the width direction so that an uncoated portion is provided at a predetermined position on the positive electrode current collector.
  • the first discharge region and the second discharge region are preferably arranged alternately in the width direction of the positive electrode current collector. In that case, it is preferable that the first discharge regions are arranged on both sides of the second discharge region in the width direction.
  • an uncoated portion other than the uncoated portion as the positive electrode lead connecting portion may be provided in any of the first and second ejection regions.
  • the number of discharge ports is determined according to a plurality of discharge regions set on the positive electrode current collector.
  • M is a natural number of 2 or more
  • the discharge ports are also arranged in the M rows. Since adjacent discharge regions partially overlap each other when viewed from the length direction of the positive electrode current collector, the discharge ports arranged in adjacent rows are provided with a predetermined interval in the length direction of the positive electrode current collector.
  • the plurality of discharge ports are preferably arranged in a zigzag manner along the width direction of the positive electrode current collector. Thereby, a discharge outlet can be arrange
  • the discharge nozzles 11 a and 11 b are provided in the discharge unit 11 and the discharge nozzle 12 a is provided in another discharge unit 12 has been described.
  • the discharges 11a, 11b, and 12a can be provided in an integral discharge portion.
  • a plurality of discharge nozzles may be provided in the integral discharge unit 111 in which the discharge ports 111a to 111g are arranged.
  • a positive electrode plate for a nonaqueous electrolyte secondary battery has been described in detail as an example of an electrode plate for a power storage device.
  • the power storage device of the present disclosure includes not only a non-aqueous electrolyte secondary battery but also other batteries such as a nickel cadmium battery and a nickel hydrogen battery.
  • the power storage device includes a capacitor in addition to the battery. Therefore, the electrode plate for a power storage device of the present disclosure includes a positive electrode plate and a negative electrode plate of a battery or a capacitor, and the materials of the current collector and the mixture slurry are not limited to the materials described in the above embodiment.
  • the manufacturing method and the coating apparatus of the present disclosure are applied to the manufacture of the positive electrode plate for a nonaqueous electrolyte secondary battery.
  • the manufacturing method and the coating apparatus of the present disclosure are applied to an object to be continuously run. It can be applied to other uses for applying objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Coating Apparatus (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本開示は高容量化と生産性向上に加えて、合剤層の厚みばらつきを抑制できる蓄電装置用電極板の製造方法及び塗布装置を提供することを目的とする。本開示の一態様は次の通りである。帯状の正極集電体(15)上にその長さ方向Xに沿って延在する複数の吐出領域(50,51,52)に、それぞれに対応する吐出ノズル(11a,11b,12a)から正極合剤スラリーを吐出することにより正極集電体15上に正極合剤層を形成する。吐出領域(50,51,52)のそれぞれの一部が、長さ方向Xから見てそれぞれに隣り合う吐出領域(50,51,52)の一部と重なる重なり部(60a,60b)を形成するように吐出領域(50,51,52)の位置を設定する。吐出領域(50,51,52)の少なくとも一つに、正極合剤スラリーを間欠的に吐出することにより未塗布部(40)を設ける。

Description

蓄電装置用電極板の製造方法、及び塗布装置
 本開示は、蓄電装置用電極板の製造方法、及び塗布装置に関する。
 近年、電子機器のポータブル化やコードレス化が急速に進むにしたがって、電子機器の駆動用電源として使用する二次電池を高容量化することへの要望が高まっている。このような背景において、特許文献1の非水電解質二次電池では、正極合剤スラリーを帯状の正極集電体上に塗布することによって正極合剤層を形成する。その後、正極合剤層の一部を剥離することによって、正極合剤層が存在しない未塗布部を形成する。その未塗布部には正極リードが溶接される。未塗布部の幅を正極板幅よりも短くすることによって、未塗布部を幅方向の一部領域のみに形成して正極合剤層の存在領域を増大させ、高容量化を実現している。
 上記特許文献1記載の技術は、正極合剤層の一部の剥離が必要不可欠となる。しかし、剥離によって生産性が悪化する上、剥離された正極合剤層に含まれる材料の材料費が無駄になる。これに対し、特許文献2は、高容量化に加えて生産性を向上できる技術を提案している。特許文献2に開示された塗布装置は複数のノズルを備える。複数のノズルの吐出口は、正極集電体の長さ方向から見て互いに重ならないように配設される。
 各ノズルは長さ方向に沿って正極集電体を分割する各分割領域に正極合剤スラリーを吐出する。一定速度で走行する正極集電体に各ノズルからの正極合剤スラリーの吐出又は停止を適宜実行することによって、未塗布部及び正極合剤層を自在に形成する。この塗布装置では正極合剤層の剥離が必要ないから生産性が向上する。
特開2003-68271号公報 特開2001-6664号公報
 特許文献2の塗布装置では、複数のノズルの吐出口が集電体の長さ方向から見て互いに重ならないように配設され、集電体の各分割領域には1つのノズルから正極合剤スラリーが塗布される。しかし、このような方法で正極集電体上に正極合剤スラリーを塗布すると、正極合剤層の厚みが均一になりにくいことが判明した。
 本開示の課題は、高容量化と生産性の向上に加えて、集電体上の合剤層の厚みばらつきを抑制できる蓄電装置用電極板の製造方法、及び塗布装置を提供することにある。
 本開示の蓄電装置用電極板の製造方法は、帯状の集電体上にその長さ方向に沿って延在する複数の吐出領域に、吐出領域のそれぞれに対応する吐出ノズルから合剤スラリーを吐出することにより集電体上に合剤層を形成する蓄電装置用電極板の製造方法であって、複数の吐出領域のそれぞれの一部が、集電体の長さ方向から見てそれぞれに隣り合う吐出領域の一部と重なる重なり部を形成するように吐出領域の位置が設定され、吐出領域の少なくとも一つに、合剤スラリーを間欠的に吐出することにより未塗布部が設けられる。
 また、本開示の塗布装置は、任意の第1方向に延在する複数の吐出口を備え、第1方向と直交する第2方向から見て、各吐出口が他の全ての吐出口と重ならない領域と、各吐出口に隣り合う吐出口の一部と重なる領域と、を有する。
 本開示に係る蓄電装置用電極板の製造方法及び塗布装置によれば、高容量化と生産性の向上に加えて、集電体上の合剤層の厚みばらつきを抑制できる。
図1は本実施形態の製造方法及び塗布装置で製造される非水電解質二次電池の構造を示す図である。 図2は正極集電体への正極合剤スラリーの塗布工程の概要を示す模式図である。 図3は正極集電体上にその長さ方向に延在する複数の吐出領域を示す模式図である。 図4は正極集電体に対する各吐出ノズルの相対位置を説明するための図であり、正極集電体を塗布面の上方から見たときの模式図である。 図5(a)は第1吐出部の吐出ノズルにおける流路の先端部を示す模式図であり、図5(b)は第2吐出部の吐出ノズルの流路の先端部を示す模式図である。 図6は吐出ノズルの吐出流路と、正極集電体の被塗布面とがなす角度を説明する模式図であり、図5(a)にRで示す領域の部分拡大図である。 図7(a)及び図7(b)は実験例に用いた吐出ノズルの流路の先端部の形状を示す模式図である。 図8は変形例の吐出部を示す模式図である。
 以下に、本開示に係る実施の形態(以下、実施形態という)について図面を参照しながら詳細に説明する。この説明において、具体的な形状、材料、数値、方向等は、本開示の理解を容易にするための例示であって、用途、目的、仕様等にあわせて適宜変更することができる。また、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。また、実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは現物と異なる場合がある。本明細書において「略**」との記載は、略全域を例に挙げて説明すると、全域はもとより実質的に全域と認められる場合を含む意図である。
 図1は、本実施形態の製造方法及び塗布装置で好適に製造できる非水電解質二次電池10の構造を示す図である。
 図1に示すように、蓄電装置の一例としてのこの非水電解質二次電池10では、正極板1及び負極板3がセパレータ5を介して巻回された電極群が、円筒形の電池ケース6内に電解液と共に収容される。電池ケース6の開口部はガスケット7を介して封口板9で封口され、電池ケース6内は密閉される。正極板1は正極リード2により封口板9上に配設された正極蓋8に接続され、正極蓋8は正極端子となる。また、負極板3は負極リード4により電池ケース6に接続され、電池ケース6は負極端子となる。
 正極板1は、次のように作製される。正極活物質に導電剤や結着剤等を混合し、その混合物を分散媒中で混練することによってペースト状の正極合剤スラリーを作製する。その正極合剤スラリーをアルミニウム等の金属箔からなるフープ状の正極集電体上に塗布して正極合剤層を形成する。次いで、その正極合剤層を乾燥し、圧縮する。最後に、正極合剤層が形成された正極集電体を所定寸法に切断することによって正極板1が作製される。
 負極板3は、次のように作製される。負極活物質に導電剤や増粘剤等を混合し、その混合物を分散媒中で混練することによってペースト状の負極合剤スラリーを作製する。さらに、その負極合剤スラリーを銅等の金属箔からなるフープ状の負極集電体上に塗布して負極合剤層を形成する。次いで、その負極合剤層を乾燥し、圧縮する。最後に、負極合剤層が形成された負極集電体を所定寸法に切断することによって負極板3が作製される。
 正極板1の所定位置には正極リード2がスポット溶接により接合され、負極板3の所定位置には負極リード4がスポット溶接により接合される。正極板1及び負極板3のそれぞれは、合剤スラリーが塗布されない未塗布部を有する。正極リード2及び負極リード4は、正極板1及び負極板3の集電体に直接接合する必要がある。上記未塗布部は、正極リード2及び負極リード4が接続されるリード接続部を構成する。
 以下、本開示の集電体及び合剤スラリーの例として、非水電解質二次電池用の正極集電体及び正極合剤スラリーを用いて本実施形態を詳細に説明する。
 まず、図2を用いて本実施形態における正極合剤スラリーの塗布工程の概要を説明する。フープ状の正極集電体15を、図示しない駆動ロールによって巻き出すことによって矢印Aで示す長さ方向の一方側に一定速度で走行させる。この状態で正極集電体15の上部に配置された第1及び第2吐出部11、12から正極集電体15に向けて正極合剤スラリーを吐出することによって、正極集電体15上に正極合剤層14が形成される。第1吐出部11には吐出ノズル11a、11bが設けられ、第2吐出部12には吐出ノズル12aが設けられる。
 吐出ノズル11a及び11bは、正極合剤スラリーを連続的に吐出する。一方、吐出ノズル12aは、正極合剤スラリーを間欠的に吐出する。このように、吐出ノズル11a及び11bは連続吐出ノズルを構成し、吐出ノズル12aは間欠吐出ノズルを構成する。連続吐出ノズルの吐出口と間欠吐出ノズルの吐出口は、幅方向Yに交互に配置される。
 図3は、正極集電体15上に長さ方向Xに沿って延在する複数の吐出領域50,51,52を示す模式図である。吐出領域50,51,52はそれぞれ、吐出ノズル11a,11b,12aのそれぞれから吐出された正極合剤スラリーが正極集電体15に衝突すると想定される領域を示す。吐出領域50,51,52に基づいて、吐出ノズル11a,11b,12a及び吐出口18a,18b,19aの正極集電体15に対する位置が決定される。なお、本実施形態のように正極合剤スラリーが正極集電体15にその厚み方向に沿って吐出される場合は、その厚み方向から見て吐出領域50,51,52と吐出口18a,18b,19aはそれぞれ互いに重なり合う。
 吐出領域50,51の幅方向Yの長さは互いに等しく、吐出領域51には、正極合剤スラリーが塗布されない未塗布部40が設けられる。吐出領域50,52は、長さ方向Xから見て、それぞれの一部が互いに重なるように配置される。同様に、吐出領域51,52は、長さ方向Xから見て、それぞれの一部が重なるように配置される。これにより、吐出領域50,51,52が、重なり部60a,60bと非重なり部70,71,72が形成される。
 吐出領域50,51,52の設定後、吐出口18a,18bを有する第1吐出部11、及び吐出口19aを有する第2吐出部12の正極集電体15に対する位置が決定される。本実施形態では図3に示すように、吐出口18a,18b,19aの幅方向Yの幅方向の両端がそれぞれ吐出領域50,51,52の幅方向Yの両端に一致するように第1吐出部11と第2吐出部12が配置される。第1吐出部11は、第2吐出部12に対して正極集電体15の長さ方向Xに間隔をおいて配置される。本実施形態では第2吐出部12が第1吐出部11より正極集電体15の移動方向Aの前方に配置されているが、第2吐出部12が第1吐出部11より正極集電体15の移動方向Aの後方に配置されていてもよい。吐出口18a,18b,19aは正極集電体15の幅方向Yに延在する長方形の平面形状を有する。各吐出ノズル11a,11b,12aは、図示しない貯留タンクからの正極合剤スラリーの供給と停止を制御する制御弁を有する。各制御弁は、互いに独立に制御される。各制御弁を用いて、各吐出ノズル11a,11b,12aからの正極合剤スラリーの供給と停止を任意のタイミングで制御することができる。吐出ノズル12aへの正極合剤スラリーの供給と停止を繰り返すことで、正極合剤スラリーが吐出ノズル12aから間欠的に吐出される。これにより、正極リード接続部としての未塗布部40が設けられる。
 図4に示すように、長さ方向Xから見て、吐出口19aの一部が吐出口18aの一部に重なっており、それらの重なり量はf〔mm〕とされている。また、長さ方向Xから見て、吐出口19aの一部が吐出口18bの一部と重なっており、それらの重なり量はf〔mm〕とされている。重なり量f〔mm〕及びf〔mm〕はそれぞれ重なり部60a,60b(図3参照)の幅方向Yの長さに一致する。
 図5(a)は、吐出ノズル11a,11bの流路の先端部20を示す模式図であり、図5(b)は、吐出ノズル12aの流路の先端部30を示す模式図である。
 図5(a)に示すように、吐出ノズル11a,11bにおける流路の先端部の延在方向は、正極集電体15の厚み方向Zと一致している。吐出ノズル11aの流路の先端部20では、幅方向Yの長さが吐出口18aに行くにしたがって長くなっている。また、図5(b)に示すように、吐出ノズル12aの延在方向は正極集電体15の厚み方向Zに一致している。吐出ノズル12aの流路の先端部30では、幅方向Yの長さが流路の先端部30の延在方向の位置によらず一定となっている。
 図6は、吐出ノズル11a,11bの流路の先端部20と正極集電体15の塗布面28とがなす角度を説明する模式図であり、図5(a)にRで示す領域を表す部分拡大図である。
 流路の先端部20の幅方向Yの長さは、吐出口18aに行くにしたがって一次関数的に長くなっている。図6に示すように、流路の先端部20の側面を延長した延長面25と正極集電体15の被塗布面28とは、30°~60°等の鋭角で交わり、好ましくは45°の角度で交わっている。
 本実施形態では、正極リード接続部をなす未塗布部40が正極集電体15の幅方向の一部にしか存在しない。したがって、幅方向の全域で未塗布部が設けられる場合と比較して正極合剤スラリーの塗布面積を増大させることができるため、高容量化が可能となる。
 また、本実施形態によれば、正極集電体15が第1及び第2吐出部11,12に対して矢印Aで示す方向に一定速度で相対移動する。したがって、吐出ノズル12aにおいて、第1所定時間の吐出と第2所定の吐出停止を交互に繰り返すだけで、長さ方向Xに沿って未塗布部40が周期的に設けられた長尺の極板材を簡易に生産することができる。よって、生産性が向上する。
 上記周期性を有する極板材は、正極合剤層が形成された後、正極集電体15の幅を二等分するように図3に示すKK線に沿って切断される。また、極板材は、長さ方向に隣り合う各2つの未塗布部40間の中心線に沿って切断される。
 なお、本実施形態では、正極集電体15が吐出ノズル11a,11b,12aに対して一定速度で相対移動したが、正極集電体は吐出ノズルに対して変動する速度で相対移動してもよい。この場合、エンコーダ等による正極集電体の走行距離の測定に基づいて所定のタイミングで、各吐出ノズルへ正極合剤スラリーの供給と停止を制御する制御弁を制御することによって未塗布部を一定距離毎に設けてもよい。
 正極集電体上に設けられる正極合剤層の厚みが局所的にばらつくと電極群の均一な巻回構造が実現されず、また充放電反応が不均一になるので、好ましくない。従来は、図3の60a,60bで示すような重なり部が設けられなかった。吐出領域の重なり部が存在しない場合、隣り合う吐出領域の境界における正極合剤層の厚みが、境界以外の領域の正極合剤層の厚みよりも薄くなることが見出された。
 表1に、吐出領域の重なり部60a,60bの幅方向Yの寸法を0~5mmの範囲で変化させて作製した実験例に係る正極板について、正極合剤層の厚みばらつきを評価した結果を示す。
Figure JPOXMLDOC01-appb-T000001
(実験例1及び2)
 実験例1及び2に係る正極板を次のように作製した。正極活物質としてリチウムニッケル複合酸化物と、導電剤としてのアセチレンブラック(AB)と、結着剤としてのポリフッ化ビニリデン(PVDF)とを所定の割合で混合し、その混合物を分散媒としてのN-メチル-ピロリドン(NMP)中で混練することによって正極合剤スラリーを作製した。
 上記のようにして作製した正極合剤スラリーを用いて、上記実施形態で説明した方法に基づいて実験例1及び2に係る正極板を作製した。このとき、重なり部60a,60bの幅方向Yの長さを実験例1では5mmと、実験例2では3mmとした
 実験例1及び2では、図5(a)を用いて説明したように、吐出ノズル11a,11bの流路の先端部の幅方向Yの長さは内部から吐出口へ行くにしたがって長くなっている。このように流路の先端部の幅方向の長さが長くなる形状を図7(a)に模式的に示し、その形状を図7(a)及び表1にパターンAと表記した。さらに、図5(b)を用いて説明したように、吐出ノズル12aの流路の先端部の幅方向Yの長さは流路の先端部で一定となっている。このように流路の先端部の幅方向Yの長さは一定である形状を図7(b)に模式的に示し、その形状を図7(b)及び表1にパターンBと表記した。なお、吐出ノズル11a,11bは第1吐出部11に、吐出ノズル12aは第2吐出部12に設けられている。
(実験例3-5)
 第2吐出部12に設けられた吐出ノズル12の流路の先端部の形状をパターンAとしたことを除いては実験例2と同様にして実験例3に係る正極板を作製した。さらに、重なり部60a,60bの幅方向Yの長さを1mm及び0mmに変更したことを除いては実験例3と同様にして、それぞれ実験例4及び5に係る正極板を作製した。
 正極合剤層の厚みばらつきを次のように評価した。まず、非重なり部70の幅方向Yの中央部の正極合剤層の厚みAを測定した。次に、重なり部60a,60bの幅方向Yの中央部の正極合剤層の厚みBを測定した。重なり部の幅方向Yの長さが0mmの実験例5においては、吐出ノズル12aの幅方向Yの両端部に対応する位置の正極合剤層の厚みを厚みBとして測定した。得られた厚みA〔μm〕及び厚みB〔μm〕を用いて、式(B-A)÷A×100から算出される値を正極合剤層の厚みばらつきとして評価した。その値の絶対値が小さいほど正極合剤層の厚みばらつきは小さいことを示す。
 表1に示すように、重なり部60a,60bの幅方向Yの長さが0mmである実験例5においては、厚みばらつきが-15%と、その絶対値が大きな値になっている。これは、重なり部60a,60bの幅方向Yの長さを0mmとした場合に、吐出ノズル12aの幅方向Yの両端部に対応する位置の正極合剤層の厚みが薄くなることを示している。これに対して、重なり部60a,60bの幅方向Yの長さを1~5mmとした実験例1~4においては、厚みばらつきの絶対値が低下しており、正極合剤層の厚みがより均一になっている。重なり部60a,60bでは非重なり部70,71,72に比べて正極合剤層の厚みが安定しないと予想されるが、重なり部60a,60bの幅方向Yの長さを増やすことで正極合剤層の厚みばらつきは低減する傾向が確認された。ただし、重なり部60a,60bの幅方向Yの長さは特に制限されないが、1mm以上8mm以下とすることが好ましく、3mm以上5mm以下とすることがより好ましい。
 国際公開第2010/082230号には、パターンAのように吐出ノズルの流路の先端部の幅を吐出口側に行くにしたがって拡大することにより、塗布された合剤層の端部の盛り上がりが防止されることが記載されている。しかし実験例2及び3を比較すると、間欠吐出を行う第2吐出部の吐出ノズルの流路の先端部の幅方向Yの長さを一定にすることにより均一な正極合剤層を形成できることがわかる。本開示において吐出ノズルの流路の形状は特に制限されないが、連続吐出ノズルの流路の先端部の形状をパターンA、間欠吐出ノズルの流路の先端部の形状をパターンBとすることが好ましい。
 正極集電体片面上に形成する正極合剤層の厚みは特に制限されないが、40μm以上200μm以下であれば、重なり部を設けることにより正極合剤層の厚みばらつきが顕著に抑制されるため好ましい。
 上記実施形態では、本開示の塗布装置の吐出口の配置位置を正極集電体の長さ方向X及び幅方向Yを基準として説明した。したがって、本開示の塗布装置の吐出口の配置位置は任意の第1方向と、第1方向に直交する第2方向を用いて次のように特定することができる。すなわち、本開示の塗布装置は任意の第1方向に延在する複数の吐出口を備え、第2方向から見て各吐出口が他の全ての吐出口と重ならない領域と、各吐出口に隣り合う吐出口の一部と重なる領域と、を有している。
 なお、本開示は、上記実施形態及びその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項及びその均等な範囲において種々の改良や変更が可能である。
 吐出領域の配置方法について、吐出領域が正極リード接続部としての未塗布部が設けられない第1吐出領域と、正極リード接続部としての未塗布部が設けられる第2吐出領域からなるものとして本開示の変形例を説明する。第1吐出領域と第2吐出領域は、正極集電体上に所定の位置に未塗布部が設けられるように任意に幅方向に並べて配置することができる。しかし、第1吐出領域と第2吐出領域は正極集電体の幅方向に交互に配置されることが好ましい。その場合、第2吐出領域の幅方向の両側に第1吐出領域が配置されていることが好ましい。また、正極リード接続部としての未塗布部以外の未塗布部を、第1及び第2吐出領域のいずれに設けてもよい。
 上記実施形態では、3つの吐出口18a,18b,19aが、3列に配置される例について説明した。しかし、吐出口の数は、正極集電体上に設定された複数の吐出領域に応じて決定される。例えば、吐出領域が正極集電体の長さ方向に沿ってM列(Mは2以上の自然数)に設定された場合、吐出口もM列に配置される。隣り合う吐出領域は正極集電体の長さ方向から見てそれぞれの一部が重なるため、隣り合う列に配置される吐出口は正極集電体の長さ方向に所定の間隔が設けられる。複数の吐出口は正極集電体の幅方向に沿ってジグザクに配置することが好ましい。これにより、吐出口をコンパクトに配置することができる。
 また、上記実施形態では、吐出ノズル11a,11bを吐出部11に設け、吐出ノズル12aを別の吐出部12に設ける例について説明した。しかし、吐出11a,11b,12aは一体の吐出部に設けることができる。例えば、図8に示すように、吐出口111a~111gが配置された一体の吐出部111に複数の吐出ノズルを設けてもよい。
 また、上記実施形態では、吐出ノズル11a,11b,12aの制御弁が独立して制御される例について説明した。しかし、複数の吐出ノズルのうち正極合剤スラリーの吐出と停止を同じタイミングで行う吐出ノズルは共通の制御弁によって制御することもできる。
 上記実施形態では、蓄電装置用電極板の一例として非水電解質二次電池用正極板を詳細に説明した。しかし、本開示の蓄電装置には非水電解質二次電池だけでなく、ニッケルカドミウム電池やニッケル水素電池などの他の電池が含まれる。さらに、蓄電装置には電池以外にキャパシタも含まれる。そのため、本開示の蓄電装置用電極板には電池やキャパシタの正極板や負極板が含まれ、集電体及び合剤スラリーの材料は上記実施形態に記載された材料に限定されない。
 また、上記実施形態では、本開示の製造方法及び塗布装置が非水電解質二次電池用正極板の製造に適用されたが、本開示の製造方法及び塗布装置は連続走行する被塗布物に塗布物を塗布する他の用途にも適用できる。
 11 第1吐出部、12 第2吐出部、11a,11b,12a,111a~111g 吐出ノズル、14 正極合剤層、15 正極集電体、18a,18b,19a 吐出口、20,30 流路の先端部、40 未塗布部、50~52 吐出領域、60a,60b 重なり部、70,71,72 非重なり部、111 吐出部

Claims (8)

  1.  帯状の集電体上にその長さ方向に沿って延在する複数の吐出領域に、前記吐出領域のそれぞれに対応する吐出ノズルから合剤スラリーを吐出することにより前記集電体上に合剤層を形成する蓄電装置用電極板の製造方法であって、
     前記複数の吐出領域のそれぞれの一部が、前記集電体の長さ方向から見てそれぞれに隣り合う吐出領域の一部と重なる重なり部を形成するように前記吐出領域の位置が設定され、
     前記吐出領域の少なくとも一つに、前記合剤スラリーを間欠的に吐出することにより未塗布部が設けられる、蓄電装置用電極板の製造方法。
  2.  請求項1に記載の蓄電装置用電極板の製造方法において、
     前記複数の吐出領域は、前記集電体の幅方向に交互に配列される少なくとも一つの第1吐出領域と、少なくとも一つの第2吐出領域からなり、
     前記第2吐出領域に前記未塗布部が設けられる、蓄電装置用電極板の製造方法。
  3.  請求項2に記載の蓄電装置用電極板の製造方法において、
     前記第1吐出領域に対応する前記吐出ノズルにおける先端側流路の前記幅方向の長さが吐出口に行くにしたがって長くなっており、前記第2吐出領域に対応するノズルにおける先端側流路の前記幅方向の長さが一定である、蓄電装置用電極板の製造方法。
  4.  請求項1乃至3のいずれか1つに記載の蓄電装置用電極板の製造方法において、
     前記重なり部が1mm以上8mm以下の前記幅方向の長さを有する、蓄電装置用電極板の製造方法。
  5.  請求項4に記載の蓄電装置用電極板の製造方法において、
     前記重なり部が3mm以上5mm以下の前記幅方向の長さを有する、蓄電装置用電極板の製造方法。
  6.  請求項1乃至5のいずれか1つに記載の蓄電装置用電極板の製造方法において、
     前記集電体上の合剤層の厚みが40μm以上200μm以下である、蓄電装置用電極板の製造方法。
  7.  任意の第1方向に延在する複数の吐出口を備え、
     前記第1方向と直交する第2方向から見て、前記各吐出口が他の全ての前記吐出口と重ならない領域と、前記各吐出口に隣り合う前記吐出口の一部と重なる領域と、を有する、塗布装置。
  8.  請求項7に記載の塗布装置において、
     前記複数の吐出口が一体の吐出部に組み込まれた、塗布装置。
PCT/JP2016/004717 2015-11-06 2016-10-27 蓄電装置用電極板の製造方法、及び塗布装置 WO2017077696A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/768,935 US11511307B2 (en) 2015-11-06 2016-10-27 Method for manufacturing electrode sheet for use in power storage device and applicator
CN201680061323.9A CN108140804B (zh) 2015-11-06 2016-10-27 蓄电装置用电极板的制造方法以及涂敷装置
JP2017548633A JP6965162B2 (ja) 2015-11-06 2016-10-27 蓄電装置用電極板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-218221 2015-11-06
JP2015218221 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017077696A1 true WO2017077696A1 (ja) 2017-05-11

Family

ID=58662484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004717 WO2017077696A1 (ja) 2015-11-06 2016-10-27 蓄電装置用電極板の製造方法、及び塗布装置

Country Status (4)

Country Link
US (1) US11511307B2 (ja)
JP (1) JP6965162B2 (ja)
CN (1) CN108140804B (ja)
WO (1) WO2017077696A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193882A1 (ja) 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 非水電解質二次電池用電極板及び非水電解質二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115672655B (zh) * 2021-07-30 2024-03-19 宁德时代新能源科技股份有限公司 涂布垫片和涂布设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311677A (ja) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd 捲回式円筒型リチウム二次電池
JP2001006664A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 塗布装置
JP2001293416A (ja) * 2000-04-12 2001-10-23 Konica Corp 塗布装置、塗布方法及びその塗布物の断裁方法
JP2002028554A (ja) * 2000-07-14 2002-01-29 Konica Corp 塗布方法及び塗布装置jp5
WO2010082230A1 (ja) * 2009-01-15 2010-07-22 パナソニック株式会社 電池用極板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744574B2 (ja) * 1995-10-20 2006-02-15 Tdk株式会社 間欠塗布方法
DE19722159A1 (de) * 1997-05-27 1998-12-03 Voith Sulzer Papiermasch Gmbh Verfahren und Vorrichtung zum direkten oder indirekten Auftragen eines flüssigen oder pastösen Auftragsmediums auf eine laufende Oberfläche
JP2003068271A (ja) 2001-06-13 2003-03-07 Matsushita Electric Ind Co Ltd リチウム二次電池及びこの電池に用いる正極板の製造方法
JP3957640B2 (ja) * 2002-02-21 2007-08-15 アイシン化工株式会社 幅広スリットノズル及び幅広スリットノズルによる塗装方法
DE10224128A1 (de) * 2002-05-29 2003-12-18 Schmid Rhyner Ag Adliswil Verfahren zum Auftrag von Beschichtungen auf Oberflächen
JP4399859B2 (ja) * 2003-09-17 2010-01-20 富士フイルム株式会社 塗布ヘッド及び塗布装置
TW200950889A (en) * 2008-02-04 2009-12-16 Toray Eng Co Ltd Coating machine and coating method
JP5527636B2 (ja) * 2010-11-02 2014-06-18 トヨタ自動車株式会社 塗工方法及び塗工装置
WO2013024621A1 (ja) * 2011-08-17 2013-02-21 日本電気株式会社 リチウムイオン電池
US9905838B2 (en) * 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
JP2013182810A (ja) * 2012-03-02 2013-09-12 Tdk Corp 集電体、およびそれを用いたリチウムイオン二次電池
JP5964253B2 (ja) 2013-01-18 2016-08-03 オートモーティブエナジーサプライ株式会社 二次電池用電極シートの製造方法およびそれに用いる塗工装置
JP6425706B2 (ja) * 2013-03-15 2018-11-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated リチウムイオンバッテリのためのエレクトロスプレーを用いた複合シャワーヘッドコーティング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311677A (ja) * 1999-04-27 2000-11-07 Shin Kobe Electric Mach Co Ltd 捲回式円筒型リチウム二次電池
JP2001006664A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 塗布装置
JP2001293416A (ja) * 2000-04-12 2001-10-23 Konica Corp 塗布装置、塗布方法及びその塗布物の断裁方法
JP2002028554A (ja) * 2000-07-14 2002-01-29 Konica Corp 塗布方法及び塗布装置jp5
WO2010082230A1 (ja) * 2009-01-15 2010-07-22 パナソニック株式会社 電池用極板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193882A1 (ja) 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 非水電解質二次電池用電極板及び非水電解質二次電池

Also Published As

Publication number Publication date
JPWO2017077696A1 (ja) 2018-09-27
US20190054495A1 (en) 2019-02-21
JP6965162B2 (ja) 2021-11-10
US11511307B2 (en) 2022-11-29
CN108140804B (zh) 2021-11-30
CN108140804A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
JP5217095B2 (ja) 非水系二次電池の製造方法、及び、電極の製造方法
JP6212951B2 (ja) 電池用電極部材の製造方法
CN103430360B (zh) 非水电解质二次电池及其制造方法
CN108292743B (zh) 制备具有均匀质量的电极的方法和制备包括该电极的电极组件的方法
US20150280226A1 (en) Method for manufacturing electrode for battery, apparatus for manufacturing electrode for battery and electrode composite
JP6038813B2 (ja) 電極の製造方法及び非水電解質電池の製造方法
US11777101B2 (en) Non-aqueous electrolyte secondary battery
CN104428925A (zh) 锂离子二次电池的制造方法以及制造装置
CN104009203A (zh) 电池用电极、电池、电池用电极的制造方法及制造装置
CN110249455B (zh) 制造可充电电池的电极的方法
WO2017077696A1 (ja) 蓄電装置用電極板の製造方法、及び塗布装置
KR102431645B1 (ko) 비수전해질 이차 전지
KR101267717B1 (ko) 도포 장치
TWI496334B (zh) 鋰離子二次電池及其製造方法
US20170033399A1 (en) Secondary battery and method for manufacturing the same
KR20130023078A (ko) 전지용 전극의 제조 방법
WO2017077697A1 (ja) 蓄電装置用電極板及びそれを備える蓄電装置
JP2010232146A (ja) 積層式電池
JP2019212909A (ja) 蓄電デバイス
KR20200034426A (ko) 전극 합제 로딩 편차 감소를 위한 코팅용 슬롯 다이
EP3605663B1 (en) Method of manufacturing irregular electrode
CN108352495B (zh) 蓄电装置用电极板以及具备其的蓄电装置
JP2012146480A (ja) 電極の製造方法、電池用電極および電池
KR20230078468A (ko) 슬롯 다이 코터
KR20240040720A (ko) 듀얼 슬롯 다이 코터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861773

Country of ref document: EP

Kind code of ref document: A1