WO2017073052A1 - ロボットシステムの監視装置 - Google Patents

ロボットシステムの監視装置 Download PDF

Info

Publication number
WO2017073052A1
WO2017073052A1 PCT/JP2016/004694 JP2016004694W WO2017073052A1 WO 2017073052 A1 WO2017073052 A1 WO 2017073052A1 JP 2016004694 W JP2016004694 W JP 2016004694W WO 2017073052 A1 WO2017073052 A1 WO 2017073052A1
Authority
WO
WIPO (PCT)
Prior art keywords
external force
robot
current
torque
value
Prior art date
Application number
PCT/JP2016/004694
Other languages
English (en)
French (fr)
Inventor
宗藤 康治
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP16859290.5A priority Critical patent/EP3369536B1/en
Priority to CN201680062558.XA priority patent/CN108136604A/zh
Priority to US15/772,160 priority patent/US10730191B2/en
Priority to KR1020187013728A priority patent/KR20180067652A/ko
Priority to JP2017547617A priority patent/JP6924146B2/ja
Priority to TW105135031A priority patent/TWI621004B/zh
Publication of WO2017073052A1 publication Critical patent/WO2017073052A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • B25J19/063Safety devices working only upon contact with an outside object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0052Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/226Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37285Load, current taken by motor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37624Detect collision, blocking by measuring change of velocity or torque
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39353Joint space observer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41372Force estimator using disturbance estimator observer

Definitions

  • the present invention relates to a monitoring device for a robot system.
  • Patent Documents 6 and 7 various techniques have been developed for monitoring a robot operation and detecting a collision with high accuracy (see Patent Documents 6 and 7).
  • the control device described in Patent Document 7 calculates a motor current necessary for driving the motor by performing inverse dynamics calculation from the detected motor rotation angle and the input load weight and center of gravity of the robot arm. calculate. Then, the difference between the calculated motor current value and the detected current value detected from the motor is calculated as a disturbance current value generated by the collision, and the collision is detected based on the disturbance current value.
  • an object of the present invention is to provide a monitoring device for a robot system that can detect a collision at the time of robot operation with high accuracy.
  • a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control device that controls the servo motors that drive the joint axes.
  • a current sensor for detecting a current value flowing through each servo motor, and a current torque conversion for converting a current value flowing through each servo motor detected by the current sensor into a torque value.
  • a differential torque calculation unit Calculating a differential torque between the torque value converted by the current torque converter and the estimated value of the drive torque, a drive torque estimator for estimating at least a part of the drive torque required for driving each servo motor
  • a differential torque calculation unit an external force conversion unit that converts the differential torque calculated by the differential torque calculation unit into an external force of the robot, and the external force conversion unit Generating a stop signal of the robot based on the converted value of the external force, and a stop signal generating unit supplies to the controller so.
  • the current value flowing in the motor that drives each joint axis of the robot is detected, the detected current value is converted into a torque value, and the converted torque value is converted into the external force of the robot. Since the external force acting on the robot is directly calculated, it is possible to detect the collision during the robot operation with high accuracy. Further, since the stop signal is generated based on the value of the external force, the administrator can easily set the threshold value and the like.
  • a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control apparatus that controls the servo motors that drive the joint axes.
  • a current sensor that detects a current value that flows through each servo motor, and a current value that flows through each servo motor detected by the current sensor is a detected value of the external force of the robot.
  • a current external force conversion unit that converts the drive torque into a torque
  • a drive torque estimation unit that estimates at least a part of the drive torque required to drive each servo motor
  • a torque that converts the estimated value of the drive torque into an estimated value of the external force of the robot
  • the external force conversion unit converts the external force of the robot into the external force by calculating the difference between the detected value of the external force of the robot and the estimated value of the external force of the robot. It comprises a force converter unit, and generates the stop signal of the robot based on the value of the converted external force in the force converter unit, and the stop signal generating unit and supplies it to the control device.
  • a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control apparatus that controls the servo motors that drive the joint axes.
  • a monitoring device for a robot system comprising: a current sensor that detects a current value that flows through each servo motor; a current estimation unit that estimates a current value that flows through each servo motor; and a detection current that flows through each servo motor.
  • a difference current calculation unit that calculates a difference current between the current value and the estimated current value
  • an external force conversion unit that converts the difference current calculated by the difference current calculation unit into an external force of the robot
  • the external force conversion unit A stop signal generation unit that generates a stop signal for the robot based on the value of the external force and supplies the generated stop signal to the control device.
  • a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control apparatus that controls the servo motors that drive the joint axes.
  • a current sensor for detecting a current value flowing through each servo motor, and a current value flowing through each servo motor detected by the current sensor into a detected torque value.
  • a first current torque converter a current estimator for estimating a current value flowing through each servo motor, and a second current for converting the estimated current value flowing through each servo motor estimated by the current estimator into an estimated torque value
  • a torque converter a differential torque calculator that calculates a differential torque between the detected value of the torque and the estimated value of the torque, and a differential torque calculated by the differential torque calculator.
  • An external force conversion unit that converts the external force into an external force of the robot, and a stop signal generation unit that generates a stop signal of the robot based on the value of the external force converted by the external force conversion unit and supplies the stop signal to the control device And comprising.
  • a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control apparatus that controls the servo motors that drive the joint axes.
  • a monitoring device for a robot system comprising: a current sensor that detects a current value flowing through each servo motor; a current estimation unit that estimates a current value flowing through each servo motor; and the current sensor
  • a first current external force conversion unit that converts a current value flowing through each servo motor into a detection value of an external force of the robot; and an estimated current value flowing through each servo motor estimated by the current estimation unit is an estimated value of the external force of the robot
  • a second current external force conversion unit that converts the external force of the robot, and an external force of the robot by calculating a difference between a detected value of the external force of the robot and an estimated value of the external force of the robot It comprises a force converter for converting, to generate a stop signal for the robot based on the converted value of the external force in the force converter unit, and the stop signal generating unit and supplies it to the control device.
  • the stop signal generation unit may generate a stop signal for the robot when the value of the external force converted by the external force conversion unit exceeds a preset first threshold value.
  • the administrator must estimate the external force acting on the robot from the current value, and the setting is complicated. According to the above configuration, since it is determined whether or not the value of the external force acting on the robot exceeds a preset threshold value, the administrator can easily set the threshold value. Thereby, for example, an external force value such as 100 N can be directly set as the threshold value.
  • the apparatus further includes a low pass filter that uses the value of the external force converted by the torque external force conversion unit as an input value, and the stop signal generation unit is configured to output an output value of the low pass filter that exceeds a preset second threshold value.
  • a stop signal for the robot may be generated.
  • the low-pass filter can suppress the noise component and appropriately perform the collision determination without excessively reacting to a change in external force that instantaneously acts on the robot.
  • the conversion from the torque to the external force of the robot or the conversion from the current to the external force of the robot is performed using a predetermined point of the robot (for example, the tip of the robot) as an action point of the external force. It may be calculated using a Jacobian matrix.
  • the present invention it is possible to provide a monitoring apparatus for a robot system that can detect a collision during robot operation with high accuracy.
  • FIG. 1 is a block diagram showing an overall configuration of a robot system in which a monitoring device according to a first embodiment of the present invention is mounted.
  • FIG. 2 is a block diagram showing the configuration of the monitoring apparatus of FIG.
  • FIG. 3 is a flowchart showing the flow of processing of the control device.
  • FIG. 4 is a flowchart illustrating a processing flow of the monitoring apparatus.
  • FIG. 5 is a block diagram showing the configuration of the monitoring apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram showing the configuration of the monitoring apparatus according to the third embodiment of the present invention.
  • FIG. 7 is a block diagram showing the configuration of the monitoring apparatus according to the fourth embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of the monitoring apparatus according to the fifth embodiment of the present invention.
  • FIG. 1 is a block diagram showing an overall configuration of a robot system in which a monitoring device according to a first embodiment of the present invention is mounted.
  • the robot system 1 includes a robot 2, a control device 3, and a monitoring device 4.
  • the robot system 1 is for a robot 2 and an operator to work together in the same work space.
  • the robot system 1 of this embodiment includes a monitoring device 4 for the robot 2 in order to improve the safety of the worker.
  • the robot 2 includes one or more joint axes and a servo motor that drives the joint axes.
  • the robot 2 includes six joint axes J1 to J6 and six servo motors M1 to M6 that drive the joint axes.
  • the robot 2 is a so-called 6-axis articulated robot.
  • Each of the servo motors M1 to M6 includes a current sensor 5 that detects a current for driving the motor, a brake (not shown) that brakes the rotation of the servo motors M1 to M6, and a rotation angle position of the servo motors M1 to M6.
  • a position sensor such as an encoder for detecting the above is provided.
  • the rotational angle position of the motor is the position of the angle of the joint axes J1 to J6 in the joint coordinate system of the servo motors M1 to M6 (hereinafter also referred to as the joint axis angular position).
  • the control device 3 is connected to the robot 2 via cables L1 to L6 (shown in bold).
  • the cables L1 to L6 are power lines for supplying power to the servomotors M1 to M6 and brakes of the joint axes J1 to J6, and sensors from position sensors (not shown) attached to the servomotors M1 to M6.
  • a signal line or the like for receiving a signal is included.
  • the control device 3 is configured to control the servo motors M1 to M6 that drive the joint axes J1 to J6 based on the position command value.
  • the control device 3 is connected to the monitoring device 4 via a communication cable (not shown).
  • the communication cable is a serial communication cable such as RS422, for example.
  • the control device 3 supplies a monitoring signal to the monitoring device 4 via a communication cable, and has a stop function for stopping the operation of the robot 2 when a stop signal is received from the monitoring device 4.
  • the control device 3 is a robot controller including an arithmetic processor 6, a servo amplifier 7, a memory, an input / output interface, a communication interface, and the like.
  • the arithmetic processor 6 includes a current command value generation unit 61 and a drive torque estimation unit 62.
  • the current command value generation unit 61 and the drive torque estimation unit 62 are functional blocks that are realized by executing a predetermined program in the arithmetic processor 6.
  • the current command value generation unit 61 calculates a current command value based on a predetermined position command value and the joint axis angle position from the position sensor, and outputs the current command value to the servo amplifier 7.
  • the servo amplifier 7 is provided corresponding to the servomotors M1 to M6, generates a current based on a given current command value, and supplies the current generated via the cables L1 to L6 to the servomotors M1 to M6. That is, each servo amplifier 7 is an amplifier that generates drive currents for the servomotors M1 to M6 in accordance with the current command value.
  • the control device 3 is configured to control the positions of the servo motors M1 to M6 provided on the joint axes J1 to J6 based on the position command values.
  • the drive torque estimation unit 62 estimates the drive torque required to drive the servomotors M1 to M6 of the joint axes J1 to J6 of the robot 2 from the joint axis angular position calculated by the position sensor.
  • the drive torque estimating unit 62 calculates gravity torque, inertial force torque, and frictional force torque, and calculates the estimated value of the drive torque by adding them.
  • the gravitational torque is a torque for overcoming the weight of each link and maintaining the posture.
  • the inertia force torque is a torque required to overcome the inertia of the link.
  • the frictional force torque is a torque necessary to overcome the friction of the reduction gear.
  • the estimated drive torque value is transmitted from the control device 3 to the monitoring device 4 as a monitoring signal together with the sensor current value detected by the current sensor 5.
  • the monitoring device 4 is configured to detect a collision by monitoring the operation of the robot 2 in the robot system 1.
  • the monitoring device 4 receives a monitoring signal (sensor current value, estimated driving torque value) of the robot 2 from the control device 3 and supplies a stop signal to the control device 3 when a collision is detected.
  • the monitoring device 4 is provided independently from the control device 3 in order to improve the safety of the worker who works with the robot 2.
  • the control device 3 and the monitoring device 4 are accommodated in one housing.
  • the monitoring device 4 includes a current torque converter 41, a differential torque calculator 42, an external force converter 43, and a stop signal generator 44.
  • the monitoring device 4 is a computer including one or more processors, a memory, an input / output interface, a communication interface, and the like.
  • the monitoring device 4 has a configuration in which the administrator can adjust the threshold value for collision detection to an arbitrary value.
  • Each unit (41 to 44) is a functional block realized by executing a predetermined program in the processor.
  • the current torque converter 41 converts the sensor current value flowing through each servo motor M1 to M6 detected by the current sensor 5 into a torque value.
  • the sensor current value detected by the current sensor 5 is transmitted as a monitoring signal from the control device 3 to the monitoring device 4 via the communication cable and input to the current torque conversion unit 41.
  • the current torque converter 41 converts the input sensor current value into a torque value, and outputs this to the differential torque calculator 42.
  • the difference torque calculation unit 42 calculates the difference between the torque value converted by the current torque conversion unit 41 and the estimated value of the drive torque as the difference torque.
  • the drive torque estimation value is transmitted as a monitoring signal from the control device 3 to the monitoring device 4 via the communication cable and input to the differential torque calculation unit 42.
  • the control device 3 includes the drive torque estimation unit 62, but the monitoring device 4 may include the drive torque estimation unit 62.
  • the differential torque calculator 42 includes an adder / subtractor 51 in the present embodiment.
  • the adder / subtractor 51 subtracts the drive torque estimation value input from the drive torque estimation unit 62 from the torque value of each of the servo motors M1 to M6 input from the current torque conversion unit 41 to calculate a differential torque. Output to the external force converter 43.
  • the external force conversion unit 43 converts the differential torque value calculated by the differential torque calculation unit 42 into the external force of the robot 2 and outputs this to the stop signal generation unit 44.
  • the stop signal generation unit 44 generates a stop signal for the robot 2 based on the external force scalar value converted by the external force conversion unit 43, and supplies this to the control device 3.
  • the stop signal generation unit 44 includes a first collision determination unit 52, a low-pass filter 53, and a second collision determination unit 54.
  • the first collision determination unit 52 determines whether or not the external force value
  • a first stop signal is generated and output to the control device 3.
  • the first threshold f th1 is set to 100 N in the present embodiment.
  • , which is to be compared with the first threshold f th1 is a scalar value of the external force f d .
  • Low pass filter 53 as an input value a value f d of the converted external force by an external force conversion unit 43, performs a filtering operation, and is configured to output it to the second collision determination unit 54.
  • the second collision determination unit 54 determines whether more than a second threshold value f th2 which the output value of the low-pass filter 53 is set in advance, the second stop signal of the robot 2 when exceeding the second threshold value f th2 Is generated and output to the control device 3.
  • the second threshold f th2 is set to 80 N in the present embodiment.
  • the output value of the low-pass filter 53 that is a comparison target with the second threshold f th2 is also a scalar value.
  • the control device 3 calculates a current command value based on a predetermined position command value and joint axis angle position information from the position sensor.
  • the servo amplifier 7 generates a current based on the current command value, and supplies the current generated via the cables L1 to L6 to the servo motors M1 to M6.
  • the joint axis angles of the joint axes J1 to J6 are displaced, and the position of the hand of the robot 2 moves to the target position. In this way, the control device 3 controls the positions of the servo motors M1 to M6 provided on the joint axes J1 to J6 based on the position command values.
  • the control device 3 first generates a monitoring signal necessary for monitoring the operation of the robot 2 (step S31 in FIG. 3). As the monitoring signal, the control device 3 detects the sensor current value by the current sensor 5 and estimates the drive torque estimation value by the drive torque estimation unit 62 (see FIG. 1). The drive torque estimating unit 62 calculates the drive shaft speed by taking, for example, a time difference from the joint shaft angular position calculated by the position sensor. Then, the friction coefficient stored in advance in the memory is read, and the frictional force torque corresponding to Coulomb friction, viscous friction, etc.
  • the drive torque estimation unit 62 calculates a joint angular velocity from the joint axis angular position calculated by the position sensor. Then, the joint angular acceleration is calculated from the calculated joint angular velocity.
  • the link parameter stored in advance in the memory is read, and the moment of inertia of each link is calculated from the link parameter and the joint axis angular position calculated by the position sensor. Inertial force torque is calculated from the calculated joint angular acceleration and the inertia moment of each link.
  • the drive torque estimating unit 62 reads the link parameter stored in advance in the memory, calculates the gravity acting on each link from the joint axis angular position calculated by the position sensor using the link parameter, and compensates for this gravity. Calculate gravity torque.
  • the drive torque estimation unit 62 adds the frictional force torque, the inertial force torque, and the gravity torque to calculate an estimated value of the drive torque.
  • the control device 3 transmits the monitoring signal generated in step S1 to the monitoring device 4 every predetermined period (step S32 in FIG. 3).
  • the monitoring signal includes a sensor current value flowing through each servo motor M1 to M6 detected by the current sensor 5 and a drive necessary for driving each servomotor M1 to M6 calculated by the drive torque estimating unit 62.
  • a torque estimate is included.
  • the monitoring device 4 receives a monitoring signal transmitted from the control device 3 every predetermined period (step S41 in FIG. 4).
  • the current torque converter 41 converts the sensor current value flowing through each of the servo motors M1 to M6 detected by the current sensor 5 into a torque value (step S42 in FIG. 4). ).
  • the current torque converter 41 converts the input sensor current value into a torque value, and outputs this to the differential torque calculator 42.
  • the differential torque calculator 42 calculates the difference between the torque value converted by the current torque converter 41 and the estimated value of the drive torque as a differential torque (step S43 in FIG. 4).
  • the adder / subtractor 51 subtracts the drive torque estimation value input from the drive torque estimation unit 62 from the torque value of each of the servo motors M1 to M6 input from the current torque conversion unit 41 to calculate a differential torque. It outputs to the external force conversion part 43 (refer FIG. 2).
  • the external force conversion unit 43 converts the differential torque value calculated by the differential torque calculation unit 42 into the external force of the robot 2 (step S44 in FIG. 4).
  • J is a Jacobian matrix, which is a matrix expressing a minute displacement relationship between the coordinate system of the robot and the joint coordinate system.
  • Equation (2) the relationship of Equation (2) is established between the error ⁇ x and the joint angle difference ⁇ .
  • ⁇ x J ⁇ (2)
  • the external force conversion unit 43 converts the differential torque ⁇ d to the external force f d of the robot 2 by multiplying the differential torque ⁇ d by the inverse matrix J T of the Jacobian matrix J as shown in the equation (1), and converts this to the stop signal.
  • the data is output to the generation unit 44.
  • an external force when it is assumed that the external force f d of the formula (1) acting at the tip of the robot 2.
  • an external force f d is a point act other than the tip of the robot 2 may be coordinate transformation to an external force in the actual operating point of the external force f d.
  • the stop signal generation unit 44 detects whether or not the robot 2 has collided based on the value of the external force converted by the external force conversion unit 43 (step S45 in FIG. 4). Specifically, the first collision determination unit 52 in FIG. 2 determines whether or not the external force value
  • , which is to be compared with the first threshold f th1 is a scalar value of the external force f d .
  • the second collision determination unit 54 of FIG. 2 also, when the output value of the low pass filter 53 determines whether or not exceeded the second threshold value f th2 which is set in advance, exceeds a second threshold value f th2 A second stop signal for the robot 2 is generated and output to the control device 3 (step S46 in FIG. 4).
  • the output value of the low-pass filter 53 that is a comparison target with the second threshold f th2 is also a scalar value.
  • the first threshold value f th1 (100N) and the second threshold value f th2 (80N) are set to arbitrary values in advance by the administrator. If the threshold value at the time of collision determination is a current value, the administrator must estimate the external force acting on the robot 2 from the current value, and the setting is complicated, but the value of the external force acting on the robot exceeds a preset threshold value. Therefore, the administrator can easily set the threshold value. For example, an external force value such as 100 N can be directly set as the threshold value.
  • the control device 3 stops the operation of the robot 2 when receiving a stop signal from the monitoring device 4 (YES in step S33 of FIG. 3).
  • the stop mode of the robot 2 is arbitrary.
  • the power may be stopped immediately (so-called emergency stop), the power may be interrupted and decelerated to stop (so-called deceleration stop), or the power may be decelerated without shutting off the power. May be stopped (so-called pause).
  • the monitoring device 4 detects the current value flowing through the motor that drives each joint axis of the robot 2, converts the detected current value into a torque value, and converts the converted torque value into the robot's value. Convert to external force. That is, since the calculated external force f d acting on the robot 2 directly, it is possible to detect the collision during the robot operation with high accuracy. In the control device 3, the robot 2 can be safely stopped.
  • the drive torque estimating unit 62 calculates gravity torque, inertial force torque, and frictional force torque, and calculates the estimated value of the drive torque by adding them. At least one of torque, inertial force torque, and frictional force torque may be an estimated value of the drive torque.
  • FIG. 5 is a block diagram showing the configuration of the monitoring apparatus according to the second embodiment of the present invention.
  • the monitoring device 4A includes a current external force conversion unit 45 that converts a current value flowing through each servo motor detected by the current sensor 5 into a detection value of the external force of the robot 2, and an estimated value of the drive torque.
  • a torque external force conversion unit 46 for converting the estimated value of the external force of the robot 2 and the external force conversion unit 43 calculates the difference between the detected value of the external force of the robot 2 and the estimated value of the external force of the robot 2, thereby The point which converts into external force differs from 1st Embodiment (refer FIG. 2).
  • the conversion from the current i to the external force f of the robot 2 by the current external force conversion unit 45 uses the Jacobian matrix J with a predetermined point of the robot (for example, the tip of the robot 2) as the action point of the external force (3 ).
  • the conversion from the torque ⁇ to the external force f of the robot 2 by the torque external force conversion unit 46 is calculated by using a Jacobian matrix J with an external force acting point at a predetermined point of the robot (for example, the tip of the robot 2) (formula (1 )reference).
  • the stop signal generation unit 44 generates a first stop signal and a second stop signal for the robot based on the value of the external force converted by the external force conversion unit 43 (adder / subtractor 55), and supplies this to the control device 3.
  • FIG. 6 is a block diagram showing the configuration of the monitoring apparatus according to the third embodiment of the present invention.
  • the control device 3 includes a current estimation unit 63 that estimates a current value flowing through each servo motor, and the monitoring device 4B detects a detected current value flowing through each servo motor detected by the current sensor 5;
  • a differential current calculation unit 47 that calculates a differential current from an estimated current value flowing through each servo motor is provided, and the external force conversion unit 43 uses the differential current calculated by the differential current calculation unit 47 (adder / subtractor 56) as an external force of the robot 2. This is different from the first embodiment (see FIG. 2).
  • the stop signal generation unit 44 generates a first stop signal and a second stop signal for the robot 2 based on the value of the external force converted by the external force conversion unit 43, and supplies this to the control device 3.
  • FIG. 7 is a block diagram showing the configuration of the monitoring apparatus according to the fourth embodiment of the present invention.
  • the control device 3 includes a current estimation unit 63 that estimates the current value flowing through each servo motor, and the monitoring device 4 ⁇ / b> C converts the current value flowing through each servo motor detected by the current sensor 5 into a torque value.
  • This embodiment is different from the first embodiment (see FIG. 2) in that it includes a current torque converter 41A that converts a detected value into a detected value and a current torque converter 41B that converts an estimated current value flowing through each servo motor into an estimated torque value.
  • the conversion from the torque ⁇ by the external force conversion unit 43 to the external force f of the robot 2 is calculated using a Jacobian matrix having a predetermined point of the robot (for example, the tip of the robot 2) as an action point of the external force (formula (1)). reference).
  • FIG. 8 is a block diagram showing the configuration of the monitoring apparatus according to the fifth embodiment of the present invention.
  • the control device 3 includes a current estimation unit 63 that estimates the current value flowing through each servo motor, and the monitoring device 4 ⁇ / b> D determines the current value flowing through each servo motor detected by the current sensor 5 of the robot 2.
  • a current external force conversion unit 45A for converting the detection value of the external force into a detected value of the external force; and a current external force conversion unit 45B for converting the estimated current value flowing through each servo motor estimated by the current estimation unit 63 into the estimated value of the external force of the robot 2.
  • the external force conversion unit 43 is different from the first embodiment (see FIG. 2) in that the external force conversion unit 43 calculates the difference between the detected value of the external force of the robot and the estimated value of the external force of the robot to convert the external force to the robot.
  • the conversion from the current i to the external force f of the robot 2 by the current external force conversion units 45A and 45B is calculated using a Jacobian matrix J with a predetermined point of the robot (for example, the tip of the robot 2) as an action point of the external force. (See Equation (3)).
  • the estimated value of the current flowing through each servo motor estimated by the current estimating unit 63 in FIGS. 6 to 8 is obtained from a predetermined position command value and a position sensor in the current command value generating unit 61 of the control device 3.
  • the current command value calculated based on the joint axis angular position may be calculated, or may be calculated by other known methods. Further, the current estimation unit 63 may be included in the monitoring devices 4B to 4D.
  • the monitoring apparatus 4 of the said embodiment was provided separately from the control apparatus 3, you may be contained in the control apparatus 3.
  • the arithmetic processor 6 of the control device 3 may be configured such that the function blocks of the respective units (41 to 44) of the monitoring device 4 are executed.
  • the monitoring device 4 includes the first collision determination unit 52 that uses the external force value for the direct collision determination, and the second collision determination unit 54 that uses the external force value that has passed through the low-pass filter 53 for the collision determination.
  • the present invention is not limited to this, and only either the first collision determination unit 52 or the second collision determination unit 54 may be provided.
  • the collision determination may be performed by comparing the amount of change in the external force value with a predetermined threshold. Thereby, it is possible to detect a sudden change in the external force acting on the robot.
  • the robot 2 is a 6-axis articulated robot.
  • the robot 2 is not limited to this as long as it has one or more axes. Further, a double-arm robot having two arms may be used.
  • the present invention is applicable to monitoring of articulated robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置が提供される。ロボットシステムの監視装置は、各サーボモータに流れる電流値を検出する電流センサと、電流センサで検出された各サーボモータを流れる電流値をトルク値に変換する電流トルク変換部と、各サーボモータの駆動に必要な駆動トルクの少なくとも一部を推定する駆動トルク推定部と、電流トルク変換部で変換されたトルク値と駆動トルクの推定値との差分トルクを演算する差分トルク演算部と、差分トルク演算部で演算された前記差分トルクをロボットの外力に変換するトルク外力変換部と、トルク外力変換部で変換された外力の値に基づいてロボットの停止信号を生成し、これを制御装置に供給する停止信号生成部と、を備える。

Description

ロボットシステムの監視装置
 本発明は、ロボットシステムの監視装置に関する。
 従来、力センサを用いないで、ロボットに外力が加わったときに、外力に追従するようにロボットを制御する制御装置が知られている(特許文献1~特許文献5を参照)。この制御装置は、ロボットの関節軸を駆動するモータに流れる電流値とモータの回転速度を検出して、ロボットにかかった外乱トルクを算出し、外乱トルクに応じて位置指令値を変更する。
 近年では、生産性向上の観点から、ロボットと作業者が同じ作業空間内で共同して作業を行うことが提案されている。そのため、安全性の観点から、ロボットの動作を監視して、衝突を高精度に検出するための様々な技術が開発されている(特許文献6、特許文献7を参照)。例えば特許文献7に記載された制御装置は、検出されたモータ回転角と入力されたロボットアームの負荷の重量及び重心位置から、逆動力学演算を行うことにより、モータ駆動に必要なモータ電流を計算する。そして、このモータ電流計算値とモータから検出される電流検出値との差を、衝突により発生する外乱電流値として計算し、この外乱電流値に基づいて衝突を検出する。
特開平10-156771号公報 特開平11-042575号公報 特開平11-042576号公報 特開平11-042577号公報 特開平11-042578号公報 特開2006-075931号公報 特開2006-123012号公報
 しかし、特許文献7のような従来の構成では、ロボットの関節軸を駆動するモータの電流値に基づいて衝突を検出するため、衝突を高精度に検出するものではなかった。
 そこで本発明は、ロボット運転時の衝突を高精度に検出可能なロボットシステムの監視装置を提供することを目的とする。
 本発明の一態様に係るロボットシステムの監視装置は、1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、各サーボモータに流れる電流値を検出する電流センサと、前記電流センサで検出された各サーボモータを流れる電流値をトルク値に変換する電流トルク変換部と、各サーボモータの駆動に必要な駆動トルクの少なくとも一部を推定する駆動トルク推定部と、前記電流トルク変換部で変換されたトルク値と前記駆動トルクの推定値との差分トルクを演算する差分トルク演算部と、前記差分トルク演算部で演算された前記差分トルクを前記ロボットの外力に変換する外力変換部と、前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、を備える。
 上記構成によれば、ロボットの各関節軸を駆動するモータに流れる電流値を検出し、検出した電流値をトルク値に変換し、変換したトルク値をロボットの外力に変換する。ロボットに働く外力を直接算出するので、ロボット運転時の衝突を高精度に検出することができる。また、外力の値に基づいて停止信号を生成するので管理者は閾値等の設定が容易である。
 本発明のその他の態様に係るロボットシステムの監視装置は、1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、各サーボモータに流れる電流値を検出する電流センサと、前記電流センサで検出された各サーボモータを流れる電流値を前記ロボットの外力の検出値に変換する電流外力変換部と、各サーボモータの駆動に必要な駆動トルクの少なくとも一部を推定する駆動トルク推定部と、前記駆動トルクの推定値を前記ロボットの外力の推定値に変換するトルク外力変換部と、前記ロボットの外力の検出値と前記ロボットの外力の推定値との差分を演算することにより前記ロボットの外力に変換する外力変換部と、前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、を備える。
 本発明のその他の態様に係るロボットシステムの監視装置は、1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、各サーボモータに流れる電流値を検出する電流センサと、各サーボモータを流れる電流値を推定する電流推定部と、各サーボモータを流れる検出電流値と推定電流値との差分電流を演算する差分電流演算部と、前記差分電流演算部で算出された差分電流を前記ロボットの外力に変換する外力変換部と、前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、を備える。
 本発明のその他の態様に係るロボットシステムの監視装置は、1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、各サーボモータに流れる電流値を検出する電流センサと、前記電流センサで検出された各サーボモータを流れる電流値をトルクの検出値に変換する第1電流トルク変換部と、各サーボモータを流れる電流値を推定する電流推定部と、前記電流推定部で推定された各サーボモータを流れる推定電流値をトルクの推定値に変換する第2電流トルク変換部と、前記トルクの検出値と前記トルクの推定値との差分トルクを演算する差分トルク演算部と、前記差分トルク演算部で算出された差分トルクを前記ロボットの外力に変換する外力変換部と、前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、を備える。
 本発明のその他の態様に係るロボットシステムの監視装置は、1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、各サーボモータに流れる電流値を検出する電流センサと、各サーボモータを流れる電流値を推定する電流推定部と、前記電流センサで検出された各サーボモータを流れる電流値を前記ロボットの外力の検出値に変換する第1電流外力変換部と、前記電流推定部で推定された各サーボモータを流れる推定電流値を前記ロボットの外力の推定値に変換する第2電流外力変換部と、前記ロボットの外力の検出値と前記ロボットの外力の推定値との差分を演算することにより前記ロボットの外力に変換する外力変換部と、前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、を備える。
 前記停止信号生成部は、前記外力変換部で変換された前記外力の値が予め設定された第1閾値を超えたときに前記ロボットの停止信号を生成してもよい。
 衝突判断の際の閾値が電流値であると、管理者は電流値からロボットに働く外力を見積もらねばならず設定が煩雑である。上記構成によれば、ロボットに働く外力の値が、予め設定した閾値を超えたか否かを判定するので、管理者は閾値設定が容易である。これにより、例えば100Nというような外力値を直接閾値として設定することができる。
 前記トルク外力変換部で変換された前記外力の値を入力値とするローパスフィルタを更に備え、前記停止信号生成部は、前記ローパスフィルタの出力値が予め設定された第2閾値を超えたときに前記ロボットの停止信号を生成してもよい。
 上記構成によれば、ローパスフィルタによって、ロボットに瞬間的に作用する外力の変化に過剰に反応することなく、ノイズ成分を抑制し好適に衝突判定を行うことができる。
 上記ロボットシステムの監視装置では、トルクから前記ロボットの外力への変換、又は、電流から前記ロボットの外力への変換は、前記ロボットの所定の点(例えばロボットの先端)を外力の作用点としたヤコビ行列を用いて演算されてもよい。
 本発明によれば、ロボット運転時の衝突を高精度に検出可能なロボットシステムの監視装置を提供することができる。
図1は、本発明の第1実施形態に係る監視装置が実装されたロボットシステムの全体構成を示すブロックダイアグラムである。 図2は、図1の監視装置の構成を示すブロックダイアグラムである。 図3は、制御装置の処理の流れを示すフローチャートである。 図4は、監視装置の処理の流れを示すフローチャートである。 図5は、本発明の第2実施形態に係る監視装置の構成を示すブロックダイアグラムである。 図6は、本発明の第3実施形態に係る監視装置の構成を示すブロックダイアグラムである。 図7は、本発明の第4実施形態に係る監視装置の構成を示すブロックダイアグラムである。 図8は、本発明の第5実施形態に係る監視装置の構成を示すブロックダイアグラムである。
 本発明の実施の形態について、図面を参照しつつ説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。
 [ロボットシステム]
 図1は、本発明の第1実施形態に係る監視装置が実装されたロボットシステムの全体構成を示すブロックダイアグラムである。図1に示すように、ロボットシステム1は、ロボット2と、制御装置3と、監視装置4を備える。ロボットシステム1は、ロボット2と作業者が同じ作業空間内で共同して作業を行うためのものである。このため、本実施形態のロボットシステム1は、作業者の安全性を向上させるためにロボット2の監視装置4を備える。
 ロボット2は、1以上の関節軸と、その関節軸を駆動させるサーボモータを備える。ロボット2は、本実施形態では、6つの関節軸J1~J6と、それらの関節軸を駆動させる6つのサーボモータM1~M6備える。ロボット2は、いわゆる6軸多関節ロボットである。各サーボモータM1~M6にはモータを駆動する電流を検出する電流センサ5、サーボモータM1~M6の回転を制動するブレーキ(図示せず)、及び、サーボモータM1~M6のモータの回転角度位置を検出するエンコーダ等の位置センサ(図示せず)がそれぞれ設けられる。ここでモータの回転角度位置とは、サーボモータM1~M6の関節座標系における関節軸J1~J6の角度の位置である(以下では、関節軸角度位置ともいう)。
 制御装置3は、ロボット2とケーブルL1~L6(太字で図示)を介して接続される。ここでケーブルL1~L6は関節軸J1~J6のサーボモータM1~M6やブレーキ等に電源を供給するための電源ライン、サーボモータM1~M6に取り付けられた位置センサ(図示せず)からのセンサ信号を受信するための信号ライン等が含まれる。制御装置3は、位置指令値に基づいて各関節軸J1~J6を駆動するサーボモータM1~M6を制御するように構成される。
 また、制御装置3は監視装置4と通信ケーブル(図示しない)を介して接続される。ここで通信ケーブルは、例えばRS422等のシリアル通信用のケーブルである。制御装置3は、通信ケーブルを介して、監視装置4に監視信号を供給するとともに、監視装置4から停止信号を受信したときにはロボット2の動作を停止させる停止機能を備える。
 制御装置3は、演算処理器6、サーボアンプ7、メモリ、入出力インタフェース、通信インタフェース等を備えたロボットコントローラである。演算処理器6は、電流指令値生成部61と、駆動トルク推定部62を備える。電流指令値生成部61及び駆動トルク推定部62は、演算処理器6において、所定のプログラムが実行されることによって、実現される機能ブロックである。電流指令値生成部61は、予め定められた位置指令値と位置センサからの関節軸角度位置に基づいて電流指令値を演算し、サーボアンプ7に出力する。サーボアンプ7は、サーボモータM1~M6に対応して設けられ、与えられる電流指令値に基づいて電流を発生し、ケーブルL1~L6を介して発生した電流をサーボモータM1~M6に供給する。つまり、各サーボアンプ7は電流指令値に応じてサーボモータM1~M6の駆動電流を発生する増幅器である。このように制御装置3は、位置指令値に基づいて各関節軸J1~J6に設けられたサーボモータM1~M6を位置制御するように構成される。
 駆動トルク推定部62は、位置センサにより算出された関節軸角度位置から、ロボット2の関節軸J1~J6のサーボモータM1~M6を駆動するのに必要な駆動トルクを推定する。駆動トルク推定部62は、本実施形態では、重力トルク、慣性力トルク、及び摩擦力トルクをそれぞれ算出し、これらを加算することにより、駆動トルクの推定値を算出する。ここで重力トルクは各リンクの重量分に打ち勝って姿勢を維持するためのトルクである。慣性力トルクはリンクの慣性分に打ち勝つために必要なトルクである。摩擦力トルクは減速機の摩擦分に打ち勝つために必要なトルクである。この駆動トルク推定値は、電流センサ5で検出されたセンサ電流値とともに、監視信号として制御装置3から監視装置4に送信される。
 監視装置4は、ロボットシステム1においてロボット2の動作を監視して衝突を検出するように構成される。監視装置4は、制御装置3からロボット2の監視信号(センサ電流値、駆動トルク推定値)を受信し、衝突を検出した場合には、制御装置3に停止信号を供給する。監視装置4は、ロボット2とともに作業を行う作業者の安全性を向上させるために、制御装置3から独立して設けられる。例えば制御装置3と監視装置4は一つの筐体の中に収容される。
 [監視装置]
 次に、監視装置4の具体的な構成について図2のブロックダイアグラムを用いて説明する。図2に示すように、監視装置4は、電流トルク変換部41と、差分トルク演算部42と、外力変換部43と、停止信号生成部44を備える。ここで監視装置4は、1以上のプロセッサ、メモリ、入出力インタフェース、通信インタフェース等を備えたコンピュータである。ここで監視装置4は、管理者により、衝突検知の際の閾値を任意の値に調整可能な構成を備える。各部(41~44)は、プロセッサにおいて、所定のプログラムが実行されることによって、実現される機能ブロックである。
 電流トルク変換部41は、電流センサ5で検出された各サーボモータM1~M6を流れるセンサ電流値をトルク値に変換する。電流センサ5で検出されたセンサ電流値は監視信号として、通信ケーブルを介して制御装置3から監視装置4に送信され、電流トルク変換部41に入力される。電流トルク変換部41は、入力されたセンサ電流値をトルク値に変換し、これを差分トルク演算部42に出力する。
 差分トルク演算部42は、電流トルク変換部41で変換されたトルク値と駆動トルクの推定値との差を差分トルクとして演算する。ここで駆動トルク推定値は、駆動トルク推定部62で演算された後に、監視信号として、通信ケーブルを介して制御装置3から監視装置4に送信され、差分トルク演算部42に入力される。尚、本実施形態では、制御装置3が駆動トルク推定部62を備えたが、監視装置4が駆動トルク推定部62を備えてもよい。差分トルク演算部42は、本実施形態では、加減算器51を備える。加減算器51は、電流トルク変換部41から入力される各サーボモータM1~M6のトルク値から、駆動トルク推定部62から入力される駆動トルク推定値を減算して差分トルクを算出し、これを外力変換部43に出力する。
 外力変換部43は、差分トルク演算部42で演算された差分トルク値をロボット2の外力に変換し、これを停止信号生成部44に出力する。
 停止信号生成部44は、外力変換部43で変換された外力のスカラ値に基づいてロボット2の停止信号を生成し、これを制御装置3に供給する。停止信号生成部44は、本実施形態では、第1衝突判定部52と、ローパスフィルタ53と、第2衝突判定部54、を備える。
 第1衝突判定部52は、外力変換部43から入力された外力の値|f|が予め設定された第1閾値fth1を超えたか否かを判定し、第1閾値fth1を超えたときにロボット2が衝突したとして第1停止信号を生成し、これを制御装置3に出力するように構成されている。ここで第1閾値fth1は、本実施形態では100Nに設定される。第1閾値fth1との比較対象である外力の値|f|は外力fのスカラ値である。
 ローパスフィルタ53は、外力変換部43で変換された外力の値fを入力値として、フィルタ演算を施し、これを第2衝突判定部54に出力するように構成されている。
 第2衝突判定部54は、ローパスフィルタ53の出力値が予め設定された第2閾値fth2を超えたか否かを判定し、第2閾値fth2を超えたときにロボット2の第2停止信号を生成し、これを制御装置3に出力するように構成されている。ここで第2閾値fth2は、本実施形態では80Nに設定される。第2閾値fth2との比較対象であるローパスフィルタ53の出力値もスカラ値である。
 [ロボットの動作]
 次に、以上のような構成のロボットシステム1におけるロボット2の動作について図1を用いて説明する。
 制御装置3は、予め定められた位置指令値と位置センサからの関節軸角度位置情報に基づいて電流指令値を演算する。サーボアンプ7は、電流指令値に基づいて電流を発生し、ケーブルL1~L6を介して発生した電流をサーボモータM1~M6に供給する。サーボモータM1~M6に電流が流れると、各関節軸J1~J6の関節軸角度が変位してロボット2の手先の位置が目的の位置へ移動する。このように制御装置3は、位置指令値に基づいて各関節軸J1~J6に設けられたサーボモータM1~M6を位置制御する。
 [ロボットの監視]
 次に、ロボットシステム1におけるロボット2の動作監視について図3及び図4のフローチャートも参照しつつ説明する。図3に示すように、まず、制御装置3は、ロボット2の動作を監視するために必要な監視信号を生成する(図3のステップS31)。制御装置3は、監視信号として、電流センサ5によりセンサ電流値を検出するとともに、駆動トルク推定部62により駆動トルク推定値を推定する(図1参照)。駆動トルク推定部62は、位置センサにより算出された関節軸角度位置から例えば時間差分を取ることにより駆動軸速度を算出する。そして、予めメモリに記憶された摩擦係数を読み出して、算出された駆動軸速度と摩擦係数からクーロン摩擦、粘性摩擦等に相当する摩擦力トルクを算出する。駆動トルク推定部62は、位置センサにより算出された関節軸角度位置から関節角速度を算出する。そして、算出された関節角速度から関節角加速度を算出する。予めメモリに記憶されたリンクパラメータを読み出し、リンクパラメータ及び位置センサにより算出された関節軸角度位置から各リンクの慣性モーメントを算出する。算出された関節角加速度、及び各リンクの慣性モーメントから慣性力トルクを算出する。駆動トルク推定部62は、予めメモリに記憶されたリンクパラメータを読み出し、リンクパラメータを用いて、位置センサにより算出された関節軸角度位置から各リンクに作用する重力を算出し、この重力を補償する重力トルクを算出する。駆動トルク推定部62は、摩擦力トルク、慣性力トルク及び重力トルクを加算して駆動トルクの推定値を算出する。
 次に、制御装置3は、ステップS1で生成した監視信号を所定期間ごとに監視装置4に送信する(図3のステップS32)。ここで監視信号には、電流センサ5で検出された各サーボモータM1~M6を流れるセンサ電流値と、駆動トルク推定部62で演算された各サーボモータM1~M6を駆動するのに必要な駆動トルク推定値が含まれる。
 一方、監視装置4は、図4に示すように、制御装置3から所定期間ごとに送信される監視信号を受信する(図4のステップS41)。
 監視装置4は、監視信号を受信したときは、電流トルク変換部41により、電流センサ5で検出された各サーボモータM1~M6を流れるセンサ電流値をトルク値に変換する(図4のステップS42)。電流トルク変換部41は、入力されたセンサ電流値をトルク値に変換し、これを差分トルク演算部42に出力する。
 次に、差分トルク演算部42は、電流トルク変換部41で変換されたトルク値と駆動トルクの推定値との差を差分トルクとして演算する(図4のステップS43)。加減算器51は、電流トルク変換部41から入力される各サーボモータM1~M6のトルク値から、駆動トルク推定部62から入力される駆動トルク推定値を減算して差分トルクを算出し、これを外力変換部43に出力する(図2参照)。
 次に、外力変換部43は、差分トルク演算部42で演算された差分トルク値をロボット2の外力に変換する(図4のステップS44)。ここでは外力変換部43は、差分トルク演算部42から入力された差分トルクτからロボット2の先端に働く外力fを、仮想仕事の原理によって次式(1)のように求める。
      f=(J-1τ・・・(1)
 ここでJはヤコビ行列であり、ロボットの座標系と関節座標系との間の微小変位関係を表現した行列である。ヤコビ行列Jについて、誤差Δxと関節角差分Δθには式(2)の関係が成立している。
      Δx=JΔθ・・・・・・(2)
 このように外力変換部43は、式(1)のように差分トルクτにヤコビ行列Jの転置行列Jの逆行列を乗じることによりロボット2の外力fに変換し、これを停止信号生成部44に出力する。ここで、式(1)の外力fはロボット2の先端で作用していると想定したときの外力である。外力fがロボット2の先端以外を作用点としている場合は、外力fを実際の作用点での外力に座標変換してもよい。
 次に、停止信号生成部44は、外力変換部43で変換された外力の値に基づいてロボット2が衝突したか否かを検出する(図4のステップS45)。具体的には、図2の第1衝突判定部52が、外力変換部43から入力された外力の値|f|が予め設定された第1閾値fth1を超えたか否かを判定し、第1閾値fth1を超えたときにロボット2が衝突したとして第1停止信号を生成し、これを制御装置3に出力する(図4のステップS46)。第1閾値fth1との比較対象である外力の値|f|は外力fのスカラ値である。本実施形態では、図2の第2衝突判定部54も、ローパスフィルタ53の出力値が予め設定された第2閾値fth2を超えたか否かを判定し、第2閾値fth2を超えたときにロボット2の第2停止信号を生成し、これを制御装置3に出力する(図4のステップS46)。第2閾値fth2との比較対象であるローパスフィルタ53の出力値もスカラ値である。ローパスフィルタ53によって、ロボット2に瞬間的に作用する外力の値fの変化に過剰に反応することなく、ノイズ成分を抑制し好適に衝突判定を行うことができる。
 ここで第1閾値fth1(100N)及び第2閾値fth2(80N)は、管理者により、予め任意の値に設定される。衝突判断の際の閾値が電流値であると、管理者は電流値からロボット2に働く外力を見積もらねばならず設定が煩雑であるが、ロボットに働く外力の値が、予め設定した閾値を超えたか否かを判定するので、管理者は閾値設定が容易である。例えば100Nというような外力値を直接閾値として設定することができる。
 一方、制御装置3は、図3に示すように、監視装置4から停止信号を受信したとき(図3のステップS33でYES)にはロボット2の動作を停止させる。ここでロボット2の停止態様は任意である。例えば動力を遮断することにより即座に停止させてもよいし(いわゆる非常停止)、動力を遮断し且つ減速して停止させてもよいし(いわゆる減速停止)、動力を遮断することなく、減速して停止させてもよい(いわゆる一時停止)。
 従って、本実施形態によれば、監視装置4において、ロボット2の各関節軸を駆動するモータに流れる電流値を検出し、検出した電流値をトルク値に変換し、変換したトルク値をロボットの外力に変換する。つまり、ロボット2に働く外力fを直接算出するので、ロボット運転時の衝突を高精度に検出することができる。制御装置3において、ロボット2を安全に停止することができる。
 尚、本実施形態では、駆動トルク推定部62は、重力トルク、慣性力トルク、及び摩擦力トルクをそれぞれ算出し、これらを加算することにより、駆動トルクの推定値を算出したが、これらの重力トルク、慣性力トルク、及び摩擦力トルクのうちの少なくとも一つを駆動トルクの推定値としてもよい。
 以下、本発明の第2乃至第5実施形態について説明する。以下では、第1実施形態と共通する構成の説明は省略し、相違する構成を中心に説明する。
 図5は、本発明の第2実施形態に係る監視装置の構成を示すブロックダイアグラムである。図5に示すように、監視装置4Aは、電流センサ5で検出された各サーボモータを流れる電流値をロボット2の外力の検出値に変換する電流外力変換部45と、駆動トルクの推定値をロボット2の外力の推定値に変換するトルク外力変換部46とを備え、外力変換部43がロボット2の外力の検出値とロボット2の外力の推定値との差分を演算することによりロボット2の外力に変換する点が第1実施形態(図2参照)と異なる。
 尚、電流外力変換部45による電流iからロボット2の外力fへの変換は、ロボットの所定の点(例えばロボット2の先端)を外力の作用点としたヤコビ行列Jを用いて次式(3)のように演算される。ここでXは電流iからトルクτへの変換を表している。
      f=(J-1Xi・・・(3)
 トルク外力変換部46によるトルクτからロボット2の外力fへの変換はロボットの所定の点(例えばロボット2の先端)を外力の作用点としたヤコビ行列Jを用いて演算される(式(1)参照)。
 停止信号生成部44は、外力変換部43(加減算器55)で変換された外力の値に基づいてロボットの第1停止信号及び第2停止信号を生成し、これを制御装置3に供給する。
 図6は、本発明の第3実施形態に係る監視装置の構成を示すブロックダイアグラムである。図6に示すように、制御装置3が各サーボモータを流れる電流値を推定する電流推定部63を備え、監視装置4Bが、電流センサ5で検出された各サーボモータを流れる検出電流値と、各サーボモータを流れる推定電流値との差分電流を演算する差分電流演算部47を備え、外力変換部43が、差分電流演算部47(加減算器56)で算出された差分電流をロボット2の外力に変換する点が第1実施形態(図2参照)と異なる。
 尚、外力変換部43による電流iからロボット2の外力fへの変換は、ロボットの所定の点(例えばロボット2の先端)を外力の作用点としたヤコビ行列Jを用いて上記式(3)のように演算される。停止信号生成部44は、外力変換部43で変換された外力の値に基づいてロボット2の第1停止信号及び第2停止信号を生成し、これを制御装置3に供給する。
 図7は、本発明の第4実施形態に係る監視装置の構成を示すブロックダイアグラムである。図7に示すように、制御装置3が各サーボモータを流れる電流値を推定する電流推定部63を備え、監視装置4Cが、電流センサ5で検出された各サーボモータを流れる電流値をトルクの検出値に変換する電流トルク変換部41Aと、各サーボモータを流れる推定電流値をトルクの推定値に変換する電流トルク変換部41Bを備える点が第1実施形態(図2参照)と異なる。
 尚、電流トルク変換部41A,41Bによる電流iからトルクτへの変換は次式(4)で演算される。ここでXは電流iからトルクτへの変換を表している。
      τ=Xi・・・(4)
外力変換部43によるトルクτからロボット2の外力fへの変換は、ロボットの所定の点(例えばロボット2の先端)を外力の作用点としたヤコビ行列を用いて演算される(式(1)参照)。
 図8は、本発明の第5実施形態に係る監視装置の構成を示すブロックダイアグラムである。図8に示すように、制御装置3が各サーボモータを流れる電流値を推定する電流推定部63を備え、監視装置4Dが電流センサ5で検出された各サーボモータを流れる電流値をロボット2の外力の検出値に変換する電流外力変換部45Aと、電流推定部63で推定された各サーボモータを流れる推定電流値をロボット2の外力の推定値に変換する電流外力変換部45Bと、を備え、外力変換部43がロボットの外力の検出値とロボットの外力の推定値との差分を演算することによりロボットの外力に変換する点が第1実施形態(図2参照)と異なる。
 尚、電流外力変換部45A及び45Bによる電流iからロボット2の外力fへの変換は、ロボットの所定の点(例えばロボット2の先端)を外力の作用点としたヤコビ行列Jを用いて演算される(式(3)参照)。
 尚、図6~図8の電流推定部63で推定される各サーボモータを流れる電流の推定値は、制御装置3の電流指令値生成部61において、予め定められた位置指令値と位置センサからの関節軸角度位置に基づいて演算された電流指令値でもよいし、その他の公知の方法により、演算されてもよい。また、電流推定部63は、監視装置4B~4Dに含まれてもよい。
 尚、上記実施形態の監視装置4は制御装置3と別々に設けたが、制御装置3に含まれていてもよい。例えば制御装置3の演算処理器6において、監視装置4の各部(41~44)の機能ブロックが実行されるように構成されていてもよい。
 以上の第2乃至第5実施形態の監視装置4A~4Dの構成は第1実施形態の監視装置4の構成と実質的に等価であるので、第1実施形態な効果を奏することができる。
 [その他の実施形態]
 尚、上記実施形態では、監視装置4は、外力の値を直接衝突判定に用いる第1衝突判定部52と、ローパスフィルタ53を通過させた外力の値を衝突判定に用いる第2衝突判定部54の双方を備えたが、これに限られるものではなく、第1衝突判定部52、又は、第2衝突判定部54のいずれかのみを備えてもよい。
 また、外力の値の変化量を所定の閾値と比較して衝突判定を行ってもよい。これにより、ロボットに働く外力の急激な変動を検知することができる。
 尚、上記実施形態では、ロボット2は、6軸多関節ロボットであったが、1軸以上であれば、これに限られない。また、2つのアームを備えた双腕ロボットでもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び機能の双方又は一方の詳細を実質的に変更できる。
 本発明は、多関節ロボットの監視に適用可能である。
1 ロボットシステム
2 ロボット
3 制御装置
4,4A~4D 監視装置
5 電流センサ
6 演算処理器
7 サーボアンプ
41,41A,41B 電流トルク変換部
42 差分トルク演算部
43 外力変換部
44 停止信号生成部
45,45A,45B 電流外力変換部
46 トルク外力変換部
47 差分電流演算部
51 加減算器(トルク)
52 第1衝突判定部
53 ローパスフィルタ
54 第2衝突判定部
55 加減算器(外力)
56 加減算器(電流)
61 電流値生成部
62 駆動トルク推定部
63 電流推定部
J1~J6 関節軸
M1~M6 サーボモータ
L1~L6 電源ライン

Claims (8)

  1.  1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
     各サーボモータに流れる電流値を検出する電流センサと、
     前記電流センサで検出された各サーボモータを流れる電流値をトルク値に変換する電流トルク変換部と、
     各サーボモータの駆動に必要な駆動トルクの少なくとも一部を推定する駆動トルク推定部と、
     前記電流トルク変換部で変換されたトルク値と前記駆動トルクの推定値との差分トルクを演算する差分トルク演算部と、
     前記差分トルク演算部で演算された前記差分トルクを前記ロボットの外力に変換する外力変換部と、
     前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
    を備えるロボットシステムの監視装置。
  2.  1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
     各サーボモータに流れる電流値を検出する電流センサと、
     前記電流センサで検出された各サーボモータを流れる電流値を前記ロボットの外力の検出値に変換する電流外力変換部と、
     各サーボモータの駆動に必要な駆動トルクの少なくとも一部を推定する駆動トルク推定部と、
     前記駆動トルクの推定値を前記ロボットの外力の推定値に変換するトルク外力変換部と、
     前記ロボットの外力の検出値と前記ロボットの外力の推定値との差分を演算することにより前記ロボットの外力に変換する外力変換部と、
     前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
    を備えるロボットシステムの監視装置。
  3.  1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
     各サーボモータに流れる電流値を検出する電流センサと、
     各サーボモータを流れる電流値を推定する電流推定部と、
     各サーボモータを流れる検出電流値と推定電流値との差分電流を演算する差分電流演算部と、
     前記差分電流演算部で算出された差分電流を前記ロボットの外力に変換する外力変換部と、
     前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
    を備えるロボットシステムの監視装置。
  4.  1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
     各サーボモータに流れる電流値を検出する電流センサと、
     前記電流センサで検出された各サーボモータを流れる電流値をトルクの検出値に変換する第1電流トルク変換部と、
     各サーボモータを流れる電流値を推定する電流推定部と、
     前記電流推定部で推定された各サーボモータを流れる推定電流値をトルクの推定値に変換する第2電流トルク変換部と、
     前記トルクの検出値と前記トルクの推定値との差分トルクを演算する差分トルク演算部と、
     前記差分トルク演算部で算出された差分トルクを前記ロボットの外力に変換する外力変換部と、
     前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
    を備えるロボットシステムの監視装置。
  5.  1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
     各サーボモータに流れる電流値を検出する電流センサと、
     各サーボモータを流れる電流値を推定する電流推定部と、
     前記電流センサで検出された各サーボモータを流れる電流値を前記ロボットの外力の検出値に変換する第1電流外力変換部と、
     前記電流推定部で推定された各サーボモータを流れる推定電流値を前記ロボットの外力の推定値に変換する第2電流外力変換部と、
     前記ロボットの外力の検出値と前記ロボットの外力の推定値との差分を演算することにより前記ロボットの外力に変換する外力変換部と、
     前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
    を備えるロボットシステムの監視装置。
  6.  前記停止信号生成部は、前記外力変換部で変換された前記外力の値が予め設定された第1閾値を超えたときに前記ロボットの停止信号を生成する、請求項1乃至5のいずれか一項に記載のロボットシステムの監視装置。
  7.  前記トルク外力変換部で変換された前記外力の値を入力値とするローパスフィルタを更に備え、
     前記停止信号生成部は、前記ローパスフィルタの出力値が予め設定された第2閾値を超えたときに前記ロボットの停止信号を生成する、請求項1乃至6のいずれか一項に記載のロボットシステムの監視装置。
  8.  トルクから前記ロボットの外力への変換、又は、電流から前記ロボットの外力への変換は、前記ロボットの所定の点を外力の作用点としたヤコビ行列を用いて演算される、請求項1乃至7のいずれか一項に記載のロボットシステムの監視装置。
     
                                       
PCT/JP2016/004694 2015-10-30 2016-10-25 ロボットシステムの監視装置 WO2017073052A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16859290.5A EP3369536B1 (en) 2015-10-30 2016-10-25 Monitoring device for robot system
CN201680062558.XA CN108136604A (zh) 2015-10-30 2016-10-25 机器人系统的监视装置
US15/772,160 US10730191B2 (en) 2015-10-30 2016-10-25 Monitoring device of robot system
KR1020187013728A KR20180067652A (ko) 2015-10-30 2016-10-25 로봇시스템의 감시장치
JP2017547617A JP6924146B2 (ja) 2015-10-30 2016-10-25 ロボットシステムの監視装置
TW105135031A TWI621004B (zh) 2015-10-30 2016-10-28 Robot system monitoring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-213711 2015-10-30
JP2015213711 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017073052A1 true WO2017073052A1 (ja) 2017-05-04

Family

ID=58630095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004694 WO2017073052A1 (ja) 2015-10-30 2016-10-25 ロボットシステムの監視装置

Country Status (7)

Country Link
US (1) US10730191B2 (ja)
EP (1) EP3369536B1 (ja)
JP (1) JP6924146B2 (ja)
KR (1) KR20180067652A (ja)
CN (1) CN108136604A (ja)
TW (1) TWI621004B (ja)
WO (1) WO2017073052A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020015100A (ja) * 2018-07-23 2020-01-30 セイコーエプソン株式会社 ロボット、制御装置および制御方法
JP2020069624A (ja) * 2018-11-02 2020-05-07 ファナック株式会社 ロボット装置
KR20200071744A (ko) * 2017-10-10 2020-06-19 아우리스 헬스, 인코포레이티드 수술 로봇 암에 가해지는 바람직하지 않은 힘의 감지
JP2020521645A (ja) * 2017-05-29 2020-07-27 フランカ エミカ ゲーエムベーハーFRANKA EMIKA GmbH ロボットによる衝突処理
JP2020192652A (ja) * 2019-05-29 2020-12-03 ファナック株式会社 ロボットシステム
EP3683022A4 (en) * 2017-09-12 2021-06-16 Hanwha Co., Ltd. DEVICE AND PROCEDURE FOR CONTROLLING A COOPERATIVE ROBOT
JP2022020739A (ja) * 2017-12-06 2022-02-01 日本電産株式会社 デバイスid設定装置及び設定方法
WO2022123616A1 (ja) * 2020-12-07 2022-06-16 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置、情報処理方法およびプログラム
WO2024172486A1 (ko) * 2023-02-14 2024-08-22 주식회사 민트로봇 안전 제어 시스템

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11691293B2 (en) * 2018-08-31 2023-07-04 Fanuc Corporation Robot
CN109202873A (zh) * 2018-11-22 2019-01-15 北京秘塔网络科技有限公司 一种柔性协作机械臂及其控制方法
KR102149008B1 (ko) * 2018-12-13 2020-08-31 (주)미래컴퍼니 수술용 로봇의 충돌을 완화시키는 방법 및 시스템
CN110355786A (zh) * 2019-06-21 2019-10-22 珠海格力电器股份有限公司 一种机器人撞击检测方法及机器人
JP7169561B2 (ja) * 2019-07-18 2022-11-11 株式会社安川電機 ロボットシステム、ロボットの制御方法、サーボシステム
JP7348772B2 (ja) * 2019-08-21 2023-09-21 住友重機械工業株式会社 ロボット
JP2022076197A (ja) * 2020-11-09 2022-05-19 日本電産サンキョー株式会社 産業用ロボットの制御装置
TWI764377B (zh) * 2020-11-16 2022-05-11 達明機器人股份有限公司 機器人安全補償重量的系統及方法
CN113319853B (zh) * 2021-06-18 2022-11-22 广东智源机器人科技有限公司 机器人控制方法、装置、电子设备以及机器人系统
CN114964593A (zh) * 2022-06-21 2022-08-30 郑州安杰莱智能科技有限公司 电流力矩的转换方法、装置及康复机器人
CN116494251A (zh) * 2023-06-26 2023-07-28 佛山隆深机器人有限公司 机器人紧急制动方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283276A (ja) * 2001-03-21 2002-10-03 Daihen Corp 多関節ロボットにおける衝突検出・停止制御法
JP2003025272A (ja) * 2001-05-08 2003-01-29 Mitsubishi Electric Corp ロボット制御装置
JP2006123012A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd ロボットの制御方法
JP2014042984A (ja) * 2013-12-11 2014-03-13 Denso Wave Inc ロボットシステム

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230107A (ja) * 1988-03-10 1989-09-13 Fanuc Ltd サーボモータにより駆動される被駆動体の衝突検出方法
JP3070498B2 (ja) 1996-12-03 2000-07-31 松下電器産業株式会社 ロボットの制御装置
JPH1142576A (ja) 1997-07-28 1999-02-16 Matsushita Electric Ind Co Ltd ロボットの制御方法および装置
JP3436087B2 (ja) 1997-07-28 2003-08-11 松下電器産業株式会社 ロボットの制御方法および装置
JPH1142578A (ja) 1997-07-28 1999-02-16 Matsushita Electric Ind Co Ltd ロボットの制御方法および装置
JPH1142577A (ja) 1997-07-28 1999-02-16 Matsushita Electric Ind Co Ltd ロボットの制御方法および装置
US6243624B1 (en) * 1999-03-19 2001-06-05 Northwestern University Non-Linear muscle-like compliant controller
JP3459973B2 (ja) * 1999-10-22 2003-10-27 川崎重工業株式会社 駆動制御方法および駆動制御装置
JP3808321B2 (ja) * 2001-04-16 2006-08-09 ファナック株式会社 ロボット制御装置
US7386364B2 (en) * 2002-03-15 2008-06-10 Sony Corporation Operation control device for leg-type mobile robot and operation control method, and robot device
US7664569B2 (en) * 2002-10-10 2010-02-16 Sony Corporation Robot device operation control device and operation control method
US7212886B2 (en) * 2002-12-12 2007-05-01 Kabushiki Kaisha Yaskawa Denki Robot control apparatus and method
SE0301531L (sv) * 2003-05-22 2004-11-23 Abb Ab A Control method for a robot
JP4305340B2 (ja) 2004-09-08 2009-07-29 パナソニック株式会社 ロボットに取り付けられた負荷の質量と重心位置の算出方法
US7298108B2 (en) * 2004-11-29 2007-11-20 Smc Kabushiki Kaisha Control system for electric actuator
DE102005015317B4 (de) * 2005-04-01 2007-02-01 Siemens Ag Verfahren und Steuereinrichtung zur gezielten Reaktion bei einem Kontakt zwischen einem Maschinenelement einer Maschine mit einem Gegenstand
JP4595727B2 (ja) * 2005-07-22 2010-12-08 ソニー株式会社 外力推定システム及び外力推定方法、並びにコンピュータ・プログラム
ES2681523T3 (es) * 2006-03-17 2018-09-13 Irobot Corporation Robot para el cuidado del césped
US8924021B2 (en) * 2006-04-27 2014-12-30 Honda Motor Co., Ltd. Control of robots from human motion descriptors
JP2008290228A (ja) * 2007-04-24 2008-12-04 Fanuc Ltd 嵌合装置
DE102007063099A1 (de) * 2007-12-28 2009-07-02 Kuka Roboter Gmbh Roboter und Verfahren zum Überwachen der Momente an einem solchen
WO2009098855A1 (ja) * 2008-02-06 2009-08-13 Panasonic Corporation ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム
KR101262277B1 (ko) 2008-04-30 2013-05-08 현대중공업 주식회사 로봇의 충돌검지 방법
WO2009142006A1 (ja) * 2008-05-21 2009-11-26 パナソニック株式会社 ロボットの異常判定方法
JP2010069585A (ja) * 2008-09-19 2010-04-02 Yaskawa Electric Corp 衝突検出装置及び方法並びにロボット制御装置
JP5242342B2 (ja) * 2008-10-31 2013-07-24 株式会社東芝 ロボット制御装置
JP5177008B2 (ja) * 2009-02-20 2013-04-03 株式会社安川電機 ロボットの制御装置およびロボット
EP2411189B1 (en) 2009-03-27 2020-08-05 Abb Ag Intrinsically safe small robot and method for controlling this robot
JP5219956B2 (ja) * 2009-07-23 2013-06-26 本田技研工業株式会社 移動体の制御装置
US8369992B2 (en) * 2009-09-22 2013-02-05 GM Global Technology Operations LLC Embedded diagnostic, prognostic, and health management system and method for a humanoid robot
JP5941083B2 (ja) 2014-03-12 2016-06-29 ファナック株式会社 外部環境との接触を検知するロボット制御装置
CN104985598B (zh) * 2015-06-24 2016-11-23 南京埃斯顿机器人工程有限公司 一种工业机器人碰撞检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283276A (ja) * 2001-03-21 2002-10-03 Daihen Corp 多関節ロボットにおける衝突検出・停止制御法
JP2003025272A (ja) * 2001-05-08 2003-01-29 Mitsubishi Electric Corp ロボット制御装置
JP2006123012A (ja) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd ロボットの制御方法
JP2014042984A (ja) * 2013-12-11 2014-03-13 Denso Wave Inc ロボットシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3369536A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020521645A (ja) * 2017-05-29 2020-07-27 フランカ エミカ ゲーエムベーハーFRANKA EMIKA GmbH ロボットによる衝突処理
JP7015068B2 (ja) 2017-05-29 2022-02-02 フランカ エーミカ ゲーエムベーハー ロボットによる衝突処理
EP3683022A4 (en) * 2017-09-12 2021-06-16 Hanwha Co., Ltd. DEVICE AND PROCEDURE FOR CONTROLLING A COOPERATIVE ROBOT
US11534918B2 (en) 2017-09-12 2022-12-27 Hanwha Co., Ltd. Device and method for controlling cooperative robot
US11796410B2 (en) 2017-10-10 2023-10-24 Auris Health, Inc. Robotic manipulator force determination
KR20200071744A (ko) * 2017-10-10 2020-06-19 아우리스 헬스, 인코포레이티드 수술 로봇 암에 가해지는 바람직하지 않은 힘의 감지
KR102567085B1 (ko) * 2017-10-10 2023-08-17 아우리스 헬스, 인코포레이티드 수술 로봇 암에 가해지는 바람직하지 않은 힘의 감지
JP2020536754A (ja) * 2017-10-10 2020-12-17 オーリス ヘルス インコーポレイテッド 手術ロボットアームに対する不適切な力の検出
JP7139421B2 (ja) 2017-10-10 2022-09-20 オーリス ヘルス インコーポレイテッド 手術ロボットアームに対する不適切な力の検出
JP2022020739A (ja) * 2017-12-06 2022-02-01 日本電産株式会社 デバイスid設定装置及び設定方法
JP2020015100A (ja) * 2018-07-23 2020-01-30 セイコーエプソン株式会社 ロボット、制御装置および制御方法
JP7180165B2 (ja) 2018-07-23 2022-11-30 セイコーエプソン株式会社 ロボット、制御装置および制御方法
JP7181055B2 (ja) 2018-11-02 2022-11-30 ファナック株式会社 ロボット装置
JP2020069624A (ja) * 2018-11-02 2020-05-07 ファナック株式会社 ロボット装置
JP7290472B2 (ja) 2019-05-29 2023-06-13 ファナック株式会社 ロボットシステム
JP2020192652A (ja) * 2019-05-29 2020-12-03 ファナック株式会社 ロボットシステム
WO2022123616A1 (ja) * 2020-12-07 2022-06-16 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置、情報処理方法およびプログラム
WO2024172486A1 (ko) * 2023-02-14 2024-08-22 주식회사 민트로봇 안전 제어 시스템

Also Published As

Publication number Publication date
US20180311836A1 (en) 2018-11-01
JPWO2017073052A1 (ja) 2018-08-16
KR20180067652A (ko) 2018-06-20
EP3369536A1 (en) 2018-09-05
EP3369536B1 (en) 2024-08-28
EP3369536A4 (en) 2019-07-10
CN108136604A (zh) 2018-06-08
TWI621004B (zh) 2018-04-11
JP6924146B2 (ja) 2021-08-25
US10730191B2 (en) 2020-08-04
TW201723711A (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
WO2017073052A1 (ja) ロボットシステムの監視装置
US10442080B2 (en) Monitoring device of robot system
JP4294646B2 (ja) ロボットアームの制御方法および制御装置
EP3498433A1 (en) Dynamical safety trajectories in a robotic system
JP2009184095A (ja) 部品保護機能を備えたロボット制御装置及びロボット制御方法
JPWO2017047009A1 (ja) ロボットの衝突検出方法
JP2019181611A (ja) ロボットの制御装置
JP5371882B2 (ja) 力制御装置
JP3286842B2 (ja) ロボットの柔軟制御装置
CN111070203B (zh) 控制系统、控制方法和控制程序
JP2013169609A (ja) ロボットの衝突検出方法
JP2004364396A (ja) モータの制御装置および制御方法
JP5904445B2 (ja) ロボット用制御装置
JP2017226045A (ja) ロボット、制御装置およびロボットシステム
JP2017077600A (ja) マニピュレータ装置
JP2017019057A (ja) ロボット制御装置、ロボットおよびロボットシステム
JP2017019058A (ja) ロボット制御装置、ロボットおよびロボットシステム
US12064881B2 (en) Robot controlling device
JP2000099105A (ja) 負荷機械の制御方法
JPH1142577A (ja) ロボットの制御方法および装置
JP5849455B2 (ja) ロボット
JP2024041086A (ja) ロボット制御装置及びロボット制御方法
JPWO2007066804A1 (ja) ノイズ診断装置、及び故障自己診断機能を有する検出システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547617

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15772160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013728

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016859290

Country of ref document: EP