WO2017073052A1 - ロボットシステムの監視装置 - Google Patents
ロボットシステムの監視装置 Download PDFInfo
- Publication number
- WO2017073052A1 WO2017073052A1 PCT/JP2016/004694 JP2016004694W WO2017073052A1 WO 2017073052 A1 WO2017073052 A1 WO 2017073052A1 JP 2016004694 W JP2016004694 W JP 2016004694W WO 2017073052 A1 WO2017073052 A1 WO 2017073052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- external force
- robot
- current
- torque
- value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1674—Programme controls characterised by safety, monitoring, diagnostic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/06—Safety devices
- B25J19/063—Safety devices working only upon contact with an outside object
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/085—Force or torque sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/06—Safety devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
- B25J9/12—Programme-controlled manipulators characterised by positioning means for manipulator elements electric
- B25J9/126—Rotary actuators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1633—Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0052—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to impact
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/22—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
- G01L5/226—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37285—Load, current taken by motor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37624—Detect collision, blocking by measuring change of velocity or torque
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39353—Joint space observer
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41372—Force estimator using disturbance estimator observer
Definitions
- the present invention relates to a monitoring device for a robot system.
- Patent Documents 6 and 7 various techniques have been developed for monitoring a robot operation and detecting a collision with high accuracy (see Patent Documents 6 and 7).
- the control device described in Patent Document 7 calculates a motor current necessary for driving the motor by performing inverse dynamics calculation from the detected motor rotation angle and the input load weight and center of gravity of the robot arm. calculate. Then, the difference between the calculated motor current value and the detected current value detected from the motor is calculated as a disturbance current value generated by the collision, and the collision is detected based on the disturbance current value.
- an object of the present invention is to provide a monitoring device for a robot system that can detect a collision at the time of robot operation with high accuracy.
- a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control device that controls the servo motors that drive the joint axes.
- a current sensor for detecting a current value flowing through each servo motor, and a current torque conversion for converting a current value flowing through each servo motor detected by the current sensor into a torque value.
- a differential torque calculation unit Calculating a differential torque between the torque value converted by the current torque converter and the estimated value of the drive torque, a drive torque estimator for estimating at least a part of the drive torque required for driving each servo motor
- a differential torque calculation unit an external force conversion unit that converts the differential torque calculated by the differential torque calculation unit into an external force of the robot, and the external force conversion unit Generating a stop signal of the robot based on the converted value of the external force, and a stop signal generating unit supplies to the controller so.
- the current value flowing in the motor that drives each joint axis of the robot is detected, the detected current value is converted into a torque value, and the converted torque value is converted into the external force of the robot. Since the external force acting on the robot is directly calculated, it is possible to detect the collision during the robot operation with high accuracy. Further, since the stop signal is generated based on the value of the external force, the administrator can easily set the threshold value and the like.
- a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control apparatus that controls the servo motors that drive the joint axes.
- a current sensor that detects a current value that flows through each servo motor, and a current value that flows through each servo motor detected by the current sensor is a detected value of the external force of the robot.
- a current external force conversion unit that converts the drive torque into a torque
- a drive torque estimation unit that estimates at least a part of the drive torque required to drive each servo motor
- a torque that converts the estimated value of the drive torque into an estimated value of the external force of the robot
- the external force conversion unit converts the external force of the robot into the external force by calculating the difference between the detected value of the external force of the robot and the estimated value of the external force of the robot. It comprises a force converter unit, and generates the stop signal of the robot based on the value of the converted external force in the force converter unit, and the stop signal generating unit and supplies it to the control device.
- a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control apparatus that controls the servo motors that drive the joint axes.
- a monitoring device for a robot system comprising: a current sensor that detects a current value that flows through each servo motor; a current estimation unit that estimates a current value that flows through each servo motor; and a detection current that flows through each servo motor.
- a difference current calculation unit that calculates a difference current between the current value and the estimated current value
- an external force conversion unit that converts the difference current calculated by the difference current calculation unit into an external force of the robot
- the external force conversion unit A stop signal generation unit that generates a stop signal for the robot based on the value of the external force and supplies the generated stop signal to the control device.
- a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control apparatus that controls the servo motors that drive the joint axes.
- a current sensor for detecting a current value flowing through each servo motor, and a current value flowing through each servo motor detected by the current sensor into a detected torque value.
- a first current torque converter a current estimator for estimating a current value flowing through each servo motor, and a second current for converting the estimated current value flowing through each servo motor estimated by the current estimator into an estimated torque value
- a torque converter a differential torque calculator that calculates a differential torque between the detected value of the torque and the estimated value of the torque, and a differential torque calculated by the differential torque calculator.
- An external force conversion unit that converts the external force into an external force of the robot, and a stop signal generation unit that generates a stop signal of the robot based on the value of the external force converted by the external force conversion unit and supplies the stop signal to the control device And comprising.
- a monitoring apparatus for a robot system includes a robot including one or more joint axes, a servo motor that drives the joint axes, and a control apparatus that controls the servo motors that drive the joint axes.
- a monitoring device for a robot system comprising: a current sensor that detects a current value flowing through each servo motor; a current estimation unit that estimates a current value flowing through each servo motor; and the current sensor
- a first current external force conversion unit that converts a current value flowing through each servo motor into a detection value of an external force of the robot; and an estimated current value flowing through each servo motor estimated by the current estimation unit is an estimated value of the external force of the robot
- a second current external force conversion unit that converts the external force of the robot, and an external force of the robot by calculating a difference between a detected value of the external force of the robot and an estimated value of the external force of the robot It comprises a force converter for converting, to generate a stop signal for the robot based on the converted value of the external force in the force converter unit, and the stop signal generating unit and supplies it to the control device.
- the stop signal generation unit may generate a stop signal for the robot when the value of the external force converted by the external force conversion unit exceeds a preset first threshold value.
- the administrator must estimate the external force acting on the robot from the current value, and the setting is complicated. According to the above configuration, since it is determined whether or not the value of the external force acting on the robot exceeds a preset threshold value, the administrator can easily set the threshold value. Thereby, for example, an external force value such as 100 N can be directly set as the threshold value.
- the apparatus further includes a low pass filter that uses the value of the external force converted by the torque external force conversion unit as an input value, and the stop signal generation unit is configured to output an output value of the low pass filter that exceeds a preset second threshold value.
- a stop signal for the robot may be generated.
- the low-pass filter can suppress the noise component and appropriately perform the collision determination without excessively reacting to a change in external force that instantaneously acts on the robot.
- the conversion from the torque to the external force of the robot or the conversion from the current to the external force of the robot is performed using a predetermined point of the robot (for example, the tip of the robot) as an action point of the external force. It may be calculated using a Jacobian matrix.
- the present invention it is possible to provide a monitoring apparatus for a robot system that can detect a collision during robot operation with high accuracy.
- FIG. 1 is a block diagram showing an overall configuration of a robot system in which a monitoring device according to a first embodiment of the present invention is mounted.
- FIG. 2 is a block diagram showing the configuration of the monitoring apparatus of FIG.
- FIG. 3 is a flowchart showing the flow of processing of the control device.
- FIG. 4 is a flowchart illustrating a processing flow of the monitoring apparatus.
- FIG. 5 is a block diagram showing the configuration of the monitoring apparatus according to the second embodiment of the present invention.
- FIG. 6 is a block diagram showing the configuration of the monitoring apparatus according to the third embodiment of the present invention.
- FIG. 7 is a block diagram showing the configuration of the monitoring apparatus according to the fourth embodiment of the present invention.
- FIG. 8 is a block diagram showing the configuration of the monitoring apparatus according to the fifth embodiment of the present invention.
- FIG. 1 is a block diagram showing an overall configuration of a robot system in which a monitoring device according to a first embodiment of the present invention is mounted.
- the robot system 1 includes a robot 2, a control device 3, and a monitoring device 4.
- the robot system 1 is for a robot 2 and an operator to work together in the same work space.
- the robot system 1 of this embodiment includes a monitoring device 4 for the robot 2 in order to improve the safety of the worker.
- the robot 2 includes one or more joint axes and a servo motor that drives the joint axes.
- the robot 2 includes six joint axes J1 to J6 and six servo motors M1 to M6 that drive the joint axes.
- the robot 2 is a so-called 6-axis articulated robot.
- Each of the servo motors M1 to M6 includes a current sensor 5 that detects a current for driving the motor, a brake (not shown) that brakes the rotation of the servo motors M1 to M6, and a rotation angle position of the servo motors M1 to M6.
- a position sensor such as an encoder for detecting the above is provided.
- the rotational angle position of the motor is the position of the angle of the joint axes J1 to J6 in the joint coordinate system of the servo motors M1 to M6 (hereinafter also referred to as the joint axis angular position).
- the control device 3 is connected to the robot 2 via cables L1 to L6 (shown in bold).
- the cables L1 to L6 are power lines for supplying power to the servomotors M1 to M6 and brakes of the joint axes J1 to J6, and sensors from position sensors (not shown) attached to the servomotors M1 to M6.
- a signal line or the like for receiving a signal is included.
- the control device 3 is configured to control the servo motors M1 to M6 that drive the joint axes J1 to J6 based on the position command value.
- the control device 3 is connected to the monitoring device 4 via a communication cable (not shown).
- the communication cable is a serial communication cable such as RS422, for example.
- the control device 3 supplies a monitoring signal to the monitoring device 4 via a communication cable, and has a stop function for stopping the operation of the robot 2 when a stop signal is received from the monitoring device 4.
- the control device 3 is a robot controller including an arithmetic processor 6, a servo amplifier 7, a memory, an input / output interface, a communication interface, and the like.
- the arithmetic processor 6 includes a current command value generation unit 61 and a drive torque estimation unit 62.
- the current command value generation unit 61 and the drive torque estimation unit 62 are functional blocks that are realized by executing a predetermined program in the arithmetic processor 6.
- the current command value generation unit 61 calculates a current command value based on a predetermined position command value and the joint axis angle position from the position sensor, and outputs the current command value to the servo amplifier 7.
- the servo amplifier 7 is provided corresponding to the servomotors M1 to M6, generates a current based on a given current command value, and supplies the current generated via the cables L1 to L6 to the servomotors M1 to M6. That is, each servo amplifier 7 is an amplifier that generates drive currents for the servomotors M1 to M6 in accordance with the current command value.
- the control device 3 is configured to control the positions of the servo motors M1 to M6 provided on the joint axes J1 to J6 based on the position command values.
- the drive torque estimation unit 62 estimates the drive torque required to drive the servomotors M1 to M6 of the joint axes J1 to J6 of the robot 2 from the joint axis angular position calculated by the position sensor.
- the drive torque estimating unit 62 calculates gravity torque, inertial force torque, and frictional force torque, and calculates the estimated value of the drive torque by adding them.
- the gravitational torque is a torque for overcoming the weight of each link and maintaining the posture.
- the inertia force torque is a torque required to overcome the inertia of the link.
- the frictional force torque is a torque necessary to overcome the friction of the reduction gear.
- the estimated drive torque value is transmitted from the control device 3 to the monitoring device 4 as a monitoring signal together with the sensor current value detected by the current sensor 5.
- the monitoring device 4 is configured to detect a collision by monitoring the operation of the robot 2 in the robot system 1.
- the monitoring device 4 receives a monitoring signal (sensor current value, estimated driving torque value) of the robot 2 from the control device 3 and supplies a stop signal to the control device 3 when a collision is detected.
- the monitoring device 4 is provided independently from the control device 3 in order to improve the safety of the worker who works with the robot 2.
- the control device 3 and the monitoring device 4 are accommodated in one housing.
- the monitoring device 4 includes a current torque converter 41, a differential torque calculator 42, an external force converter 43, and a stop signal generator 44.
- the monitoring device 4 is a computer including one or more processors, a memory, an input / output interface, a communication interface, and the like.
- the monitoring device 4 has a configuration in which the administrator can adjust the threshold value for collision detection to an arbitrary value.
- Each unit (41 to 44) is a functional block realized by executing a predetermined program in the processor.
- the current torque converter 41 converts the sensor current value flowing through each servo motor M1 to M6 detected by the current sensor 5 into a torque value.
- the sensor current value detected by the current sensor 5 is transmitted as a monitoring signal from the control device 3 to the monitoring device 4 via the communication cable and input to the current torque conversion unit 41.
- the current torque converter 41 converts the input sensor current value into a torque value, and outputs this to the differential torque calculator 42.
- the difference torque calculation unit 42 calculates the difference between the torque value converted by the current torque conversion unit 41 and the estimated value of the drive torque as the difference torque.
- the drive torque estimation value is transmitted as a monitoring signal from the control device 3 to the monitoring device 4 via the communication cable and input to the differential torque calculation unit 42.
- the control device 3 includes the drive torque estimation unit 62, but the monitoring device 4 may include the drive torque estimation unit 62.
- the differential torque calculator 42 includes an adder / subtractor 51 in the present embodiment.
- the adder / subtractor 51 subtracts the drive torque estimation value input from the drive torque estimation unit 62 from the torque value of each of the servo motors M1 to M6 input from the current torque conversion unit 41 to calculate a differential torque. Output to the external force converter 43.
- the external force conversion unit 43 converts the differential torque value calculated by the differential torque calculation unit 42 into the external force of the robot 2 and outputs this to the stop signal generation unit 44.
- the stop signal generation unit 44 generates a stop signal for the robot 2 based on the external force scalar value converted by the external force conversion unit 43, and supplies this to the control device 3.
- the stop signal generation unit 44 includes a first collision determination unit 52, a low-pass filter 53, and a second collision determination unit 54.
- the first collision determination unit 52 determines whether or not the external force value
- a first stop signal is generated and output to the control device 3.
- the first threshold f th1 is set to 100 N in the present embodiment.
- , which is to be compared with the first threshold f th1 is a scalar value of the external force f d .
- Low pass filter 53 as an input value a value f d of the converted external force by an external force conversion unit 43, performs a filtering operation, and is configured to output it to the second collision determination unit 54.
- the second collision determination unit 54 determines whether more than a second threshold value f th2 which the output value of the low-pass filter 53 is set in advance, the second stop signal of the robot 2 when exceeding the second threshold value f th2 Is generated and output to the control device 3.
- the second threshold f th2 is set to 80 N in the present embodiment.
- the output value of the low-pass filter 53 that is a comparison target with the second threshold f th2 is also a scalar value.
- the control device 3 calculates a current command value based on a predetermined position command value and joint axis angle position information from the position sensor.
- the servo amplifier 7 generates a current based on the current command value, and supplies the current generated via the cables L1 to L6 to the servo motors M1 to M6.
- the joint axis angles of the joint axes J1 to J6 are displaced, and the position of the hand of the robot 2 moves to the target position. In this way, the control device 3 controls the positions of the servo motors M1 to M6 provided on the joint axes J1 to J6 based on the position command values.
- the control device 3 first generates a monitoring signal necessary for monitoring the operation of the robot 2 (step S31 in FIG. 3). As the monitoring signal, the control device 3 detects the sensor current value by the current sensor 5 and estimates the drive torque estimation value by the drive torque estimation unit 62 (see FIG. 1). The drive torque estimating unit 62 calculates the drive shaft speed by taking, for example, a time difference from the joint shaft angular position calculated by the position sensor. Then, the friction coefficient stored in advance in the memory is read, and the frictional force torque corresponding to Coulomb friction, viscous friction, etc.
- the drive torque estimation unit 62 calculates a joint angular velocity from the joint axis angular position calculated by the position sensor. Then, the joint angular acceleration is calculated from the calculated joint angular velocity.
- the link parameter stored in advance in the memory is read, and the moment of inertia of each link is calculated from the link parameter and the joint axis angular position calculated by the position sensor. Inertial force torque is calculated from the calculated joint angular acceleration and the inertia moment of each link.
- the drive torque estimating unit 62 reads the link parameter stored in advance in the memory, calculates the gravity acting on each link from the joint axis angular position calculated by the position sensor using the link parameter, and compensates for this gravity. Calculate gravity torque.
- the drive torque estimation unit 62 adds the frictional force torque, the inertial force torque, and the gravity torque to calculate an estimated value of the drive torque.
- the control device 3 transmits the monitoring signal generated in step S1 to the monitoring device 4 every predetermined period (step S32 in FIG. 3).
- the monitoring signal includes a sensor current value flowing through each servo motor M1 to M6 detected by the current sensor 5 and a drive necessary for driving each servomotor M1 to M6 calculated by the drive torque estimating unit 62.
- a torque estimate is included.
- the monitoring device 4 receives a monitoring signal transmitted from the control device 3 every predetermined period (step S41 in FIG. 4).
- the current torque converter 41 converts the sensor current value flowing through each of the servo motors M1 to M6 detected by the current sensor 5 into a torque value (step S42 in FIG. 4). ).
- the current torque converter 41 converts the input sensor current value into a torque value, and outputs this to the differential torque calculator 42.
- the differential torque calculator 42 calculates the difference between the torque value converted by the current torque converter 41 and the estimated value of the drive torque as a differential torque (step S43 in FIG. 4).
- the adder / subtractor 51 subtracts the drive torque estimation value input from the drive torque estimation unit 62 from the torque value of each of the servo motors M1 to M6 input from the current torque conversion unit 41 to calculate a differential torque. It outputs to the external force conversion part 43 (refer FIG. 2).
- the external force conversion unit 43 converts the differential torque value calculated by the differential torque calculation unit 42 into the external force of the robot 2 (step S44 in FIG. 4).
- J is a Jacobian matrix, which is a matrix expressing a minute displacement relationship between the coordinate system of the robot and the joint coordinate system.
- Equation (2) the relationship of Equation (2) is established between the error ⁇ x and the joint angle difference ⁇ .
- ⁇ x J ⁇ (2)
- the external force conversion unit 43 converts the differential torque ⁇ d to the external force f d of the robot 2 by multiplying the differential torque ⁇ d by the inverse matrix J T of the Jacobian matrix J as shown in the equation (1), and converts this to the stop signal.
- the data is output to the generation unit 44.
- an external force when it is assumed that the external force f d of the formula (1) acting at the tip of the robot 2.
- an external force f d is a point act other than the tip of the robot 2 may be coordinate transformation to an external force in the actual operating point of the external force f d.
- the stop signal generation unit 44 detects whether or not the robot 2 has collided based on the value of the external force converted by the external force conversion unit 43 (step S45 in FIG. 4). Specifically, the first collision determination unit 52 in FIG. 2 determines whether or not the external force value
- , which is to be compared with the first threshold f th1 is a scalar value of the external force f d .
- the second collision determination unit 54 of FIG. 2 also, when the output value of the low pass filter 53 determines whether or not exceeded the second threshold value f th2 which is set in advance, exceeds a second threshold value f th2 A second stop signal for the robot 2 is generated and output to the control device 3 (step S46 in FIG. 4).
- the output value of the low-pass filter 53 that is a comparison target with the second threshold f th2 is also a scalar value.
- the first threshold value f th1 (100N) and the second threshold value f th2 (80N) are set to arbitrary values in advance by the administrator. If the threshold value at the time of collision determination is a current value, the administrator must estimate the external force acting on the robot 2 from the current value, and the setting is complicated, but the value of the external force acting on the robot exceeds a preset threshold value. Therefore, the administrator can easily set the threshold value. For example, an external force value such as 100 N can be directly set as the threshold value.
- the control device 3 stops the operation of the robot 2 when receiving a stop signal from the monitoring device 4 (YES in step S33 of FIG. 3).
- the stop mode of the robot 2 is arbitrary.
- the power may be stopped immediately (so-called emergency stop), the power may be interrupted and decelerated to stop (so-called deceleration stop), or the power may be decelerated without shutting off the power. May be stopped (so-called pause).
- the monitoring device 4 detects the current value flowing through the motor that drives each joint axis of the robot 2, converts the detected current value into a torque value, and converts the converted torque value into the robot's value. Convert to external force. That is, since the calculated external force f d acting on the robot 2 directly, it is possible to detect the collision during the robot operation with high accuracy. In the control device 3, the robot 2 can be safely stopped.
- the drive torque estimating unit 62 calculates gravity torque, inertial force torque, and frictional force torque, and calculates the estimated value of the drive torque by adding them. At least one of torque, inertial force torque, and frictional force torque may be an estimated value of the drive torque.
- FIG. 5 is a block diagram showing the configuration of the monitoring apparatus according to the second embodiment of the present invention.
- the monitoring device 4A includes a current external force conversion unit 45 that converts a current value flowing through each servo motor detected by the current sensor 5 into a detection value of the external force of the robot 2, and an estimated value of the drive torque.
- a torque external force conversion unit 46 for converting the estimated value of the external force of the robot 2 and the external force conversion unit 43 calculates the difference between the detected value of the external force of the robot 2 and the estimated value of the external force of the robot 2, thereby The point which converts into external force differs from 1st Embodiment (refer FIG. 2).
- the conversion from the current i to the external force f of the robot 2 by the current external force conversion unit 45 uses the Jacobian matrix J with a predetermined point of the robot (for example, the tip of the robot 2) as the action point of the external force (3 ).
- the conversion from the torque ⁇ to the external force f of the robot 2 by the torque external force conversion unit 46 is calculated by using a Jacobian matrix J with an external force acting point at a predetermined point of the robot (for example, the tip of the robot 2) (formula (1 )reference).
- the stop signal generation unit 44 generates a first stop signal and a second stop signal for the robot based on the value of the external force converted by the external force conversion unit 43 (adder / subtractor 55), and supplies this to the control device 3.
- FIG. 6 is a block diagram showing the configuration of the monitoring apparatus according to the third embodiment of the present invention.
- the control device 3 includes a current estimation unit 63 that estimates a current value flowing through each servo motor, and the monitoring device 4B detects a detected current value flowing through each servo motor detected by the current sensor 5;
- a differential current calculation unit 47 that calculates a differential current from an estimated current value flowing through each servo motor is provided, and the external force conversion unit 43 uses the differential current calculated by the differential current calculation unit 47 (adder / subtractor 56) as an external force of the robot 2. This is different from the first embodiment (see FIG. 2).
- the stop signal generation unit 44 generates a first stop signal and a second stop signal for the robot 2 based on the value of the external force converted by the external force conversion unit 43, and supplies this to the control device 3.
- FIG. 7 is a block diagram showing the configuration of the monitoring apparatus according to the fourth embodiment of the present invention.
- the control device 3 includes a current estimation unit 63 that estimates the current value flowing through each servo motor, and the monitoring device 4 ⁇ / b> C converts the current value flowing through each servo motor detected by the current sensor 5 into a torque value.
- This embodiment is different from the first embodiment (see FIG. 2) in that it includes a current torque converter 41A that converts a detected value into a detected value and a current torque converter 41B that converts an estimated current value flowing through each servo motor into an estimated torque value.
- the conversion from the torque ⁇ by the external force conversion unit 43 to the external force f of the robot 2 is calculated using a Jacobian matrix having a predetermined point of the robot (for example, the tip of the robot 2) as an action point of the external force (formula (1)). reference).
- FIG. 8 is a block diagram showing the configuration of the monitoring apparatus according to the fifth embodiment of the present invention.
- the control device 3 includes a current estimation unit 63 that estimates the current value flowing through each servo motor, and the monitoring device 4 ⁇ / b> D determines the current value flowing through each servo motor detected by the current sensor 5 of the robot 2.
- a current external force conversion unit 45A for converting the detection value of the external force into a detected value of the external force; and a current external force conversion unit 45B for converting the estimated current value flowing through each servo motor estimated by the current estimation unit 63 into the estimated value of the external force of the robot 2.
- the external force conversion unit 43 is different from the first embodiment (see FIG. 2) in that the external force conversion unit 43 calculates the difference between the detected value of the external force of the robot and the estimated value of the external force of the robot to convert the external force to the robot.
- the conversion from the current i to the external force f of the robot 2 by the current external force conversion units 45A and 45B is calculated using a Jacobian matrix J with a predetermined point of the robot (for example, the tip of the robot 2) as an action point of the external force. (See Equation (3)).
- the estimated value of the current flowing through each servo motor estimated by the current estimating unit 63 in FIGS. 6 to 8 is obtained from a predetermined position command value and a position sensor in the current command value generating unit 61 of the control device 3.
- the current command value calculated based on the joint axis angular position may be calculated, or may be calculated by other known methods. Further, the current estimation unit 63 may be included in the monitoring devices 4B to 4D.
- the monitoring apparatus 4 of the said embodiment was provided separately from the control apparatus 3, you may be contained in the control apparatus 3.
- the arithmetic processor 6 of the control device 3 may be configured such that the function blocks of the respective units (41 to 44) of the monitoring device 4 are executed.
- the monitoring device 4 includes the first collision determination unit 52 that uses the external force value for the direct collision determination, and the second collision determination unit 54 that uses the external force value that has passed through the low-pass filter 53 for the collision determination.
- the present invention is not limited to this, and only either the first collision determination unit 52 or the second collision determination unit 54 may be provided.
- the collision determination may be performed by comparing the amount of change in the external force value with a predetermined threshold. Thereby, it is possible to detect a sudden change in the external force acting on the robot.
- the robot 2 is a 6-axis articulated robot.
- the robot 2 is not limited to this as long as it has one or more axes. Further, a double-arm robot having two arms may be used.
- the present invention is applicable to monitoring of articulated robots.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
Abstract
Description
図1は、本発明の第1実施形態に係る監視装置が実装されたロボットシステムの全体構成を示すブロックダイアグラムである。図1に示すように、ロボットシステム1は、ロボット2と、制御装置3と、監視装置4を備える。ロボットシステム1は、ロボット2と作業者が同じ作業空間内で共同して作業を行うためのものである。このため、本実施形態のロボットシステム1は、作業者の安全性を向上させるためにロボット2の監視装置4を備える。
次に、監視装置4の具体的な構成について図2のブロックダイアグラムを用いて説明する。図2に示すように、監視装置4は、電流トルク変換部41と、差分トルク演算部42と、外力変換部43と、停止信号生成部44を備える。ここで監視装置4は、1以上のプロセッサ、メモリ、入出力インタフェース、通信インタフェース等を備えたコンピュータである。ここで監視装置4は、管理者により、衝突検知の際の閾値を任意の値に調整可能な構成を備える。各部(41~44)は、プロセッサにおいて、所定のプログラムが実行されることによって、実現される機能ブロックである。
次に、以上のような構成のロボットシステム1におけるロボット2の動作について図1を用いて説明する。
次に、ロボットシステム1におけるロボット2の動作監視について図3及び図4のフローチャートも参照しつつ説明する。図3に示すように、まず、制御装置3は、ロボット2の動作を監視するために必要な監視信号を生成する(図3のステップS31)。制御装置3は、監視信号として、電流センサ5によりセンサ電流値を検出するとともに、駆動トルク推定部62により駆動トルク推定値を推定する(図1参照)。駆動トルク推定部62は、位置センサにより算出された関節軸角度位置から例えば時間差分を取ることにより駆動軸速度を算出する。そして、予めメモリに記憶された摩擦係数を読み出して、算出された駆動軸速度と摩擦係数からクーロン摩擦、粘性摩擦等に相当する摩擦力トルクを算出する。駆動トルク推定部62は、位置センサにより算出された関節軸角度位置から関節角速度を算出する。そして、算出された関節角速度から関節角加速度を算出する。予めメモリに記憶されたリンクパラメータを読み出し、リンクパラメータ及び位置センサにより算出された関節軸角度位置から各リンクの慣性モーメントを算出する。算出された関節角加速度、及び各リンクの慣性モーメントから慣性力トルクを算出する。駆動トルク推定部62は、予めメモリに記憶されたリンクパラメータを読み出し、リンクパラメータを用いて、位置センサにより算出された関節軸角度位置から各リンクに作用する重力を算出し、この重力を補償する重力トルクを算出する。駆動トルク推定部62は、摩擦力トルク、慣性力トルク及び重力トルクを加算して駆動トルクの推定値を算出する。
fd=(JT)-1τd・・・(1)
Δx=JΔθ・・・・・・(2)
f=(JT)-1Xi・・・(3)
τ=Xi・・・(4)
尚、上記実施形態では、監視装置4は、外力の値を直接衝突判定に用いる第1衝突判定部52と、ローパスフィルタ53を通過させた外力の値を衝突判定に用いる第2衝突判定部54の双方を備えたが、これに限られるものではなく、第1衝突判定部52、又は、第2衝突判定部54のいずれかのみを備えてもよい。
2 ロボット
3 制御装置
4,4A~4D 監視装置
5 電流センサ
6 演算処理器
7 サーボアンプ
41,41A,41B 電流トルク変換部
42 差分トルク演算部
43 外力変換部
44 停止信号生成部
45,45A,45B 電流外力変換部
46 トルク外力変換部
47 差分電流演算部
51 加減算器(トルク)
52 第1衝突判定部
53 ローパスフィルタ
54 第2衝突判定部
55 加減算器(外力)
56 加減算器(電流)
61 電流値生成部
62 駆動トルク推定部
63 電流推定部
J1~J6 関節軸
M1~M6 サーボモータ
L1~L6 電源ライン
Claims (8)
- 1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
各サーボモータに流れる電流値を検出する電流センサと、
前記電流センサで検出された各サーボモータを流れる電流値をトルク値に変換する電流トルク変換部と、
各サーボモータの駆動に必要な駆動トルクの少なくとも一部を推定する駆動トルク推定部と、
前記電流トルク変換部で変換されたトルク値と前記駆動トルクの推定値との差分トルクを演算する差分トルク演算部と、
前記差分トルク演算部で演算された前記差分トルクを前記ロボットの外力に変換する外力変換部と、
前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
を備えるロボットシステムの監視装置。 - 1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
各サーボモータに流れる電流値を検出する電流センサと、
前記電流センサで検出された各サーボモータを流れる電流値を前記ロボットの外力の検出値に変換する電流外力変換部と、
各サーボモータの駆動に必要な駆動トルクの少なくとも一部を推定する駆動トルク推定部と、
前記駆動トルクの推定値を前記ロボットの外力の推定値に変換するトルク外力変換部と、
前記ロボットの外力の検出値と前記ロボットの外力の推定値との差分を演算することにより前記ロボットの外力に変換する外力変換部と、
前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
を備えるロボットシステムの監視装置。 - 1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
各サーボモータに流れる電流値を検出する電流センサと、
各サーボモータを流れる電流値を推定する電流推定部と、
各サーボモータを流れる検出電流値と推定電流値との差分電流を演算する差分電流演算部と、
前記差分電流演算部で算出された差分電流を前記ロボットの外力に変換する外力変換部と、
前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
を備えるロボットシステムの監視装置。 - 1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
各サーボモータに流れる電流値を検出する電流センサと、
前記電流センサで検出された各サーボモータを流れる電流値をトルクの検出値に変換する第1電流トルク変換部と、
各サーボモータを流れる電流値を推定する電流推定部と、
前記電流推定部で推定された各サーボモータを流れる推定電流値をトルクの推定値に変換する第2電流トルク変換部と、
前記トルクの検出値と前記トルクの推定値との差分トルクを演算する差分トルク演算部と、
前記差分トルク演算部で算出された差分トルクを前記ロボットの外力に変換する外力変換部と、
前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
を備えるロボットシステムの監視装置。 - 1以上の関節軸と、その関節軸を駆動させるサーボモータを備えたロボットと、前記各関節軸を駆動するサーボモータを制御する制御装置と、を備えたロボットシステムの監視装置であって、
各サーボモータに流れる電流値を検出する電流センサと、
各サーボモータを流れる電流値を推定する電流推定部と、
前記電流センサで検出された各サーボモータを流れる電流値を前記ロボットの外力の検出値に変換する第1電流外力変換部と、
前記電流推定部で推定された各サーボモータを流れる推定電流値を前記ロボットの外力の推定値に変換する第2電流外力変換部と、
前記ロボットの外力の検出値と前記ロボットの外力の推定値との差分を演算することにより前記ロボットの外力に変換する外力変換部と、
前記外力変換部で変換された前記外力の値に基づいて前記ロボットの停止信号を生成し、これを前記制御装置に供給する停止信号生成部と、
を備えるロボットシステムの監視装置。 - 前記停止信号生成部は、前記外力変換部で変換された前記外力の値が予め設定された第1閾値を超えたときに前記ロボットの停止信号を生成する、請求項1乃至5のいずれか一項に記載のロボットシステムの監視装置。
- 前記トルク外力変換部で変換された前記外力の値を入力値とするローパスフィルタを更に備え、
前記停止信号生成部は、前記ローパスフィルタの出力値が予め設定された第2閾値を超えたときに前記ロボットの停止信号を生成する、請求項1乃至6のいずれか一項に記載のロボットシステムの監視装置。 - トルクから前記ロボットの外力への変換、又は、電流から前記ロボットの外力への変換は、前記ロボットの所定の点を外力の作用点としたヤコビ行列を用いて演算される、請求項1乃至7のいずれか一項に記載のロボットシステムの監視装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16859290.5A EP3369536B1 (en) | 2015-10-30 | 2016-10-25 | Monitoring device for robot system |
CN201680062558.XA CN108136604A (zh) | 2015-10-30 | 2016-10-25 | 机器人系统的监视装置 |
US15/772,160 US10730191B2 (en) | 2015-10-30 | 2016-10-25 | Monitoring device of robot system |
KR1020187013728A KR20180067652A (ko) | 2015-10-30 | 2016-10-25 | 로봇시스템의 감시장치 |
JP2017547617A JP6924146B2 (ja) | 2015-10-30 | 2016-10-25 | ロボットシステムの監視装置 |
TW105135031A TWI621004B (zh) | 2015-10-30 | 2016-10-28 | Robot system monitoring device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-213711 | 2015-10-30 | ||
JP2015213711 | 2015-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017073052A1 true WO2017073052A1 (ja) | 2017-05-04 |
Family
ID=58630095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004694 WO2017073052A1 (ja) | 2015-10-30 | 2016-10-25 | ロボットシステムの監視装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10730191B2 (ja) |
EP (1) | EP3369536B1 (ja) |
JP (1) | JP6924146B2 (ja) |
KR (1) | KR20180067652A (ja) |
CN (1) | CN108136604A (ja) |
TW (1) | TWI621004B (ja) |
WO (1) | WO2017073052A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020015100A (ja) * | 2018-07-23 | 2020-01-30 | セイコーエプソン株式会社 | ロボット、制御装置および制御方法 |
JP2020069624A (ja) * | 2018-11-02 | 2020-05-07 | ファナック株式会社 | ロボット装置 |
KR20200071744A (ko) * | 2017-10-10 | 2020-06-19 | 아우리스 헬스, 인코포레이티드 | 수술 로봇 암에 가해지는 바람직하지 않은 힘의 감지 |
JP2020521645A (ja) * | 2017-05-29 | 2020-07-27 | フランカ エミカ ゲーエムベーハーFRANKA EMIKA GmbH | ロボットによる衝突処理 |
JP2020192652A (ja) * | 2019-05-29 | 2020-12-03 | ファナック株式会社 | ロボットシステム |
EP3683022A4 (en) * | 2017-09-12 | 2021-06-16 | Hanwha Co., Ltd. | DEVICE AND PROCEDURE FOR CONTROLLING A COOPERATIVE ROBOT |
JP2022020739A (ja) * | 2017-12-06 | 2022-02-01 | 日本電産株式会社 | デバイスid設定装置及び設定方法 |
WO2022123616A1 (ja) * | 2020-12-07 | 2022-06-16 | 株式会社ソニー・インタラクティブエンタテインメント | 情報処理装置、情報処理方法およびプログラム |
WO2024172486A1 (ko) * | 2023-02-14 | 2024-08-22 | 주식회사 민트로봇 | 안전 제어 시스템 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11691293B2 (en) * | 2018-08-31 | 2023-07-04 | Fanuc Corporation | Robot |
CN109202873A (zh) * | 2018-11-22 | 2019-01-15 | 北京秘塔网络科技有限公司 | 一种柔性协作机械臂及其控制方法 |
KR102149008B1 (ko) * | 2018-12-13 | 2020-08-31 | (주)미래컴퍼니 | 수술용 로봇의 충돌을 완화시키는 방법 및 시스템 |
CN110355786A (zh) * | 2019-06-21 | 2019-10-22 | 珠海格力电器股份有限公司 | 一种机器人撞击检测方法及机器人 |
JP7169561B2 (ja) * | 2019-07-18 | 2022-11-11 | 株式会社安川電機 | ロボットシステム、ロボットの制御方法、サーボシステム |
JP7348772B2 (ja) * | 2019-08-21 | 2023-09-21 | 住友重機械工業株式会社 | ロボット |
JP2022076197A (ja) * | 2020-11-09 | 2022-05-19 | 日本電産サンキョー株式会社 | 産業用ロボットの制御装置 |
TWI764377B (zh) * | 2020-11-16 | 2022-05-11 | 達明機器人股份有限公司 | 機器人安全補償重量的系統及方法 |
CN113319853B (zh) * | 2021-06-18 | 2022-11-22 | 广东智源机器人科技有限公司 | 机器人控制方法、装置、电子设备以及机器人系统 |
CN114964593A (zh) * | 2022-06-21 | 2022-08-30 | 郑州安杰莱智能科技有限公司 | 电流力矩的转换方法、装置及康复机器人 |
CN116494251A (zh) * | 2023-06-26 | 2023-07-28 | 佛山隆深机器人有限公司 | 机器人紧急制动方法、装置、设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002283276A (ja) * | 2001-03-21 | 2002-10-03 | Daihen Corp | 多関節ロボットにおける衝突検出・停止制御法 |
JP2003025272A (ja) * | 2001-05-08 | 2003-01-29 | Mitsubishi Electric Corp | ロボット制御装置 |
JP2006123012A (ja) * | 2004-10-26 | 2006-05-18 | Matsushita Electric Ind Co Ltd | ロボットの制御方法 |
JP2014042984A (ja) * | 2013-12-11 | 2014-03-13 | Denso Wave Inc | ロボットシステム |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230107A (ja) * | 1988-03-10 | 1989-09-13 | Fanuc Ltd | サーボモータにより駆動される被駆動体の衝突検出方法 |
JP3070498B2 (ja) | 1996-12-03 | 2000-07-31 | 松下電器産業株式会社 | ロボットの制御装置 |
JPH1142576A (ja) | 1997-07-28 | 1999-02-16 | Matsushita Electric Ind Co Ltd | ロボットの制御方法および装置 |
JP3436087B2 (ja) | 1997-07-28 | 2003-08-11 | 松下電器産業株式会社 | ロボットの制御方法および装置 |
JPH1142578A (ja) | 1997-07-28 | 1999-02-16 | Matsushita Electric Ind Co Ltd | ロボットの制御方法および装置 |
JPH1142577A (ja) | 1997-07-28 | 1999-02-16 | Matsushita Electric Ind Co Ltd | ロボットの制御方法および装置 |
US6243624B1 (en) * | 1999-03-19 | 2001-06-05 | Northwestern University | Non-Linear muscle-like compliant controller |
JP3459973B2 (ja) * | 1999-10-22 | 2003-10-27 | 川崎重工業株式会社 | 駆動制御方法および駆動制御装置 |
JP3808321B2 (ja) * | 2001-04-16 | 2006-08-09 | ファナック株式会社 | ロボット制御装置 |
US7386364B2 (en) * | 2002-03-15 | 2008-06-10 | Sony Corporation | Operation control device for leg-type mobile robot and operation control method, and robot device |
US7664569B2 (en) * | 2002-10-10 | 2010-02-16 | Sony Corporation | Robot device operation control device and operation control method |
US7212886B2 (en) * | 2002-12-12 | 2007-05-01 | Kabushiki Kaisha Yaskawa Denki | Robot control apparatus and method |
SE0301531L (sv) * | 2003-05-22 | 2004-11-23 | Abb Ab | A Control method for a robot |
JP4305340B2 (ja) | 2004-09-08 | 2009-07-29 | パナソニック株式会社 | ロボットに取り付けられた負荷の質量と重心位置の算出方法 |
US7298108B2 (en) * | 2004-11-29 | 2007-11-20 | Smc Kabushiki Kaisha | Control system for electric actuator |
DE102005015317B4 (de) * | 2005-04-01 | 2007-02-01 | Siemens Ag | Verfahren und Steuereinrichtung zur gezielten Reaktion bei einem Kontakt zwischen einem Maschinenelement einer Maschine mit einem Gegenstand |
JP4595727B2 (ja) * | 2005-07-22 | 2010-12-08 | ソニー株式会社 | 外力推定システム及び外力推定方法、並びにコンピュータ・プログラム |
ES2681523T3 (es) * | 2006-03-17 | 2018-09-13 | Irobot Corporation | Robot para el cuidado del césped |
US8924021B2 (en) * | 2006-04-27 | 2014-12-30 | Honda Motor Co., Ltd. | Control of robots from human motion descriptors |
JP2008290228A (ja) * | 2007-04-24 | 2008-12-04 | Fanuc Ltd | 嵌合装置 |
DE102007063099A1 (de) * | 2007-12-28 | 2009-07-02 | Kuka Roboter Gmbh | Roboter und Verfahren zum Überwachen der Momente an einem solchen |
WO2009098855A1 (ja) * | 2008-02-06 | 2009-08-13 | Panasonic Corporation | ロボット、ロボットの制御装置及び制御方法、並びに、ロボットの制御装置の制御プログラム |
KR101262277B1 (ko) | 2008-04-30 | 2013-05-08 | 현대중공업 주식회사 | 로봇의 충돌검지 방법 |
WO2009142006A1 (ja) * | 2008-05-21 | 2009-11-26 | パナソニック株式会社 | ロボットの異常判定方法 |
JP2010069585A (ja) * | 2008-09-19 | 2010-04-02 | Yaskawa Electric Corp | 衝突検出装置及び方法並びにロボット制御装置 |
JP5242342B2 (ja) * | 2008-10-31 | 2013-07-24 | 株式会社東芝 | ロボット制御装置 |
JP5177008B2 (ja) * | 2009-02-20 | 2013-04-03 | 株式会社安川電機 | ロボットの制御装置およびロボット |
EP2411189B1 (en) | 2009-03-27 | 2020-08-05 | Abb Ag | Intrinsically safe small robot and method for controlling this robot |
JP5219956B2 (ja) * | 2009-07-23 | 2013-06-26 | 本田技研工業株式会社 | 移動体の制御装置 |
US8369992B2 (en) * | 2009-09-22 | 2013-02-05 | GM Global Technology Operations LLC | Embedded diagnostic, prognostic, and health management system and method for a humanoid robot |
JP5941083B2 (ja) | 2014-03-12 | 2016-06-29 | ファナック株式会社 | 外部環境との接触を検知するロボット制御装置 |
CN104985598B (zh) * | 2015-06-24 | 2016-11-23 | 南京埃斯顿机器人工程有限公司 | 一种工业机器人碰撞检测方法 |
-
2016
- 2016-10-25 KR KR1020187013728A patent/KR20180067652A/ko not_active IP Right Cessation
- 2016-10-25 WO PCT/JP2016/004694 patent/WO2017073052A1/ja active Application Filing
- 2016-10-25 EP EP16859290.5A patent/EP3369536B1/en active Active
- 2016-10-25 US US15/772,160 patent/US10730191B2/en active Active
- 2016-10-25 JP JP2017547617A patent/JP6924146B2/ja active Active
- 2016-10-25 CN CN201680062558.XA patent/CN108136604A/zh active Pending
- 2016-10-28 TW TW105135031A patent/TWI621004B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002283276A (ja) * | 2001-03-21 | 2002-10-03 | Daihen Corp | 多関節ロボットにおける衝突検出・停止制御法 |
JP2003025272A (ja) * | 2001-05-08 | 2003-01-29 | Mitsubishi Electric Corp | ロボット制御装置 |
JP2006123012A (ja) * | 2004-10-26 | 2006-05-18 | Matsushita Electric Ind Co Ltd | ロボットの制御方法 |
JP2014042984A (ja) * | 2013-12-11 | 2014-03-13 | Denso Wave Inc | ロボットシステム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3369536A4 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020521645A (ja) * | 2017-05-29 | 2020-07-27 | フランカ エミカ ゲーエムベーハーFRANKA EMIKA GmbH | ロボットによる衝突処理 |
JP7015068B2 (ja) | 2017-05-29 | 2022-02-02 | フランカ エーミカ ゲーエムベーハー | ロボットによる衝突処理 |
EP3683022A4 (en) * | 2017-09-12 | 2021-06-16 | Hanwha Co., Ltd. | DEVICE AND PROCEDURE FOR CONTROLLING A COOPERATIVE ROBOT |
US11534918B2 (en) | 2017-09-12 | 2022-12-27 | Hanwha Co., Ltd. | Device and method for controlling cooperative robot |
US11796410B2 (en) | 2017-10-10 | 2023-10-24 | Auris Health, Inc. | Robotic manipulator force determination |
KR20200071744A (ko) * | 2017-10-10 | 2020-06-19 | 아우리스 헬스, 인코포레이티드 | 수술 로봇 암에 가해지는 바람직하지 않은 힘의 감지 |
KR102567085B1 (ko) * | 2017-10-10 | 2023-08-17 | 아우리스 헬스, 인코포레이티드 | 수술 로봇 암에 가해지는 바람직하지 않은 힘의 감지 |
JP2020536754A (ja) * | 2017-10-10 | 2020-12-17 | オーリス ヘルス インコーポレイテッド | 手術ロボットアームに対する不適切な力の検出 |
JP7139421B2 (ja) | 2017-10-10 | 2022-09-20 | オーリス ヘルス インコーポレイテッド | 手術ロボットアームに対する不適切な力の検出 |
JP2022020739A (ja) * | 2017-12-06 | 2022-02-01 | 日本電産株式会社 | デバイスid設定装置及び設定方法 |
JP2020015100A (ja) * | 2018-07-23 | 2020-01-30 | セイコーエプソン株式会社 | ロボット、制御装置および制御方法 |
JP7180165B2 (ja) | 2018-07-23 | 2022-11-30 | セイコーエプソン株式会社 | ロボット、制御装置および制御方法 |
JP7181055B2 (ja) | 2018-11-02 | 2022-11-30 | ファナック株式会社 | ロボット装置 |
JP2020069624A (ja) * | 2018-11-02 | 2020-05-07 | ファナック株式会社 | ロボット装置 |
JP7290472B2 (ja) | 2019-05-29 | 2023-06-13 | ファナック株式会社 | ロボットシステム |
JP2020192652A (ja) * | 2019-05-29 | 2020-12-03 | ファナック株式会社 | ロボットシステム |
WO2022123616A1 (ja) * | 2020-12-07 | 2022-06-16 | 株式会社ソニー・インタラクティブエンタテインメント | 情報処理装置、情報処理方法およびプログラム |
WO2024172486A1 (ko) * | 2023-02-14 | 2024-08-22 | 주식회사 민트로봇 | 안전 제어 시스템 |
Also Published As
Publication number | Publication date |
---|---|
US20180311836A1 (en) | 2018-11-01 |
JPWO2017073052A1 (ja) | 2018-08-16 |
KR20180067652A (ko) | 2018-06-20 |
EP3369536A1 (en) | 2018-09-05 |
EP3369536B1 (en) | 2024-08-28 |
EP3369536A4 (en) | 2019-07-10 |
CN108136604A (zh) | 2018-06-08 |
TWI621004B (zh) | 2018-04-11 |
JP6924146B2 (ja) | 2021-08-25 |
US10730191B2 (en) | 2020-08-04 |
TW201723711A (zh) | 2017-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017073052A1 (ja) | ロボットシステムの監視装置 | |
US10442080B2 (en) | Monitoring device of robot system | |
JP4294646B2 (ja) | ロボットアームの制御方法および制御装置 | |
EP3498433A1 (en) | Dynamical safety trajectories in a robotic system | |
JP2009184095A (ja) | 部品保護機能を備えたロボット制御装置及びロボット制御方法 | |
JPWO2017047009A1 (ja) | ロボットの衝突検出方法 | |
JP2019181611A (ja) | ロボットの制御装置 | |
JP5371882B2 (ja) | 力制御装置 | |
JP3286842B2 (ja) | ロボットの柔軟制御装置 | |
CN111070203B (zh) | 控制系统、控制方法和控制程序 | |
JP2013169609A (ja) | ロボットの衝突検出方法 | |
JP2004364396A (ja) | モータの制御装置および制御方法 | |
JP5904445B2 (ja) | ロボット用制御装置 | |
JP2017226045A (ja) | ロボット、制御装置およびロボットシステム | |
JP2017077600A (ja) | マニピュレータ装置 | |
JP2017019057A (ja) | ロボット制御装置、ロボットおよびロボットシステム | |
JP2017019058A (ja) | ロボット制御装置、ロボットおよびロボットシステム | |
US12064881B2 (en) | Robot controlling device | |
JP2000099105A (ja) | 負荷機械の制御方法 | |
JPH1142577A (ja) | ロボットの制御方法および装置 | |
JP5849455B2 (ja) | ロボット | |
JP2024041086A (ja) | ロボット制御装置及びロボット制御方法 | |
JPWO2007066804A1 (ja) | ノイズ診断装置、及び故障自己診断機能を有する検出システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16859290 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017547617 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15772160 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187013728 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016859290 Country of ref document: EP |