WO2017069286A1 - X線装置、データ処理装置及びデータ処理方法 - Google Patents
X線装置、データ処理装置及びデータ処理方法 Download PDFInfo
- Publication number
- WO2017069286A1 WO2017069286A1 PCT/JP2016/081483 JP2016081483W WO2017069286A1 WO 2017069286 A1 WO2017069286 A1 WO 2017069286A1 JP 2016081483 W JP2016081483 W JP 2016081483W WO 2017069286 A1 WO2017069286 A1 WO 2017069286A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ray
- thickness
- correction
- substance
- characteristic
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims description 56
- 238000003672 processing method Methods 0.000 title claims description 8
- 238000012937 correction Methods 0.000 claims abstract description 160
- 239000000126 substance Substances 0.000 claims abstract description 110
- 238000005259 measurement Methods 0.000 claims abstract description 23
- 230000005540 biological transmission Effects 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 58
- 238000004364 calculation method Methods 0.000 claims description 52
- 238000007689 inspection Methods 0.000 claims description 46
- 238000010521 absorption reaction Methods 0.000 claims description 19
- 238000002083 X-ray spectrum Methods 0.000 claims description 10
- 238000012887 quadratic function Methods 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims 2
- 238000003384 imaging method Methods 0.000 abstract description 11
- 239000002994 raw material Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 54
- 238000001514 detection method Methods 0.000 description 29
- 238000010586 diagram Methods 0.000 description 21
- 238000001228 spectrum Methods 0.000 description 19
- 238000012986 modification Methods 0.000 description 18
- 230000004048 modification Effects 0.000 description 18
- 230000008569 process Effects 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 238000013500 data storage Methods 0.000 description 13
- 235000013305 food Nutrition 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 210000005075 mammary gland Anatomy 0.000 description 8
- 238000009607 mammography Methods 0.000 description 8
- 238000013480 data collection Methods 0.000 description 7
- 210000000481 breast Anatomy 0.000 description 6
- 230000009977 dual effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 235000002566 Capsicum Nutrition 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 3
- 240000008384 Capsicum annuum var. annuum Species 0.000 description 3
- 241000758706 Piperaceae Species 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 101150040844 Bin1 gene Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 101150049912 bin3 gene Proteins 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RFVFQQWKPSOBED-PSXMRANNSA-N 1-myristoyl-2-palmitoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCC RFVFQQWKPSOBED-PSXMRANNSA-N 0.000 description 1
- 241001674044 Blattodea Species 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 241000722363 Piper Species 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- -1 mammary gland Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/58—Testing, adjusting or calibrating thereof
- A61B6/582—Calibration
- A61B6/583—Calibration using calibration phantoms
- A61B6/584—Calibration using calibration phantoms determining position of components of the apparatus or device using images of the phantom
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/083—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/083—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
- G01N23/087—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays using polyenergetic X-rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/18—Investigating the presence of flaws defects or foreign matter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/025—Fruits or vegetables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/10—Starch-containing substances, e.g. dough
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/612—Specific applications or type of materials biological material
- G01N2223/6126—Specific applications or type of materials biological material tissue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/618—Specific applications or type of materials food
Definitions
- the present invention relates to an X-ray apparatus that scans an object with X-rays, collects X-ray transmission data, grasps the state of the object based on the collected data, and a data processing apparatus that can be mounted on the X-ray apparatus.
- the present invention relates to an X-ray apparatus using X-rays having a continuous spectrum and a data processing apparatus that can be mounted on the X-ray apparatus.
- the type and / or shape of the content is inspected without opening a bag or mail at an airport or public facility.
- a foreign object for example, a metal piece
- a known object for example, food such as bread
- there is also an inspection request for detecting and specifying the presence and type of the foreign object. is there. That is, there is a potentially high need for identifying the type of object (substance) and / or its shape by X-rays.
- Patent Document 1 Japanese Patent Laid-Open No. 2010-091483: the name of the invention is “foreign matter detection method and apparatus”
- This Patent Document 1 is based on an inspection method called a so-called dual energy method (or subtraction method).
- This inspection method uses the fact that there is a difference in X-ray transmission information when X-rays of two types of energy (that is, two types of X-rays having different wavelengths) pass through a substance. Specifically, it is based on the following processing. First, two types of X-ray images of low energy and high energy are created at the same time, and the difference between the images is taken. Furthermore, a component image of the mixed foreign matter is extracted from the difference image, and the component image is thresholded to detect the foreign matter.
- this Patent Document 1 suggests that a detector capable of detecting the incidence of X-ray photons (photons) in a state where the energy is discriminated can also be used. That is, it is suggested that a conventionally known photon counting type (photon counting type) X-ray irradiation / detection system is used as a means for obtaining two types of X-rays of low energy and high energy at the same time.
- photon counting type photon counting type
- Non-Patent Document 1 the detection method described in Non-Patent Document 1 is also known as an inspection method using the dual energy method. According to this Non-Patent Document 1, even if the inspection object is overlapped on the belt under the basic configuration of the dual energy method described above, the overlap and the foreign matter are not confused. A system capable of detecting foreign matter with higher sensitivity is provided.
- Patent Document 2 A proposal to eliminate such inconvenience is made in Patent Document 2.
- This proposal provides a method for accurately and easily identifying the type of a substance contained in an object using an image obtained from a tomographic apparatus or the like that employs a laminography method. Specifically, using a count value obtained by photon counting by discriminating X-ray energy into a plurality of energy regions, and a subject image reconstructed with the count value, a substance present at a site of interest in the subject is identified. It is a technique to do. According to this method, a reference image is created based on a count value obtained by imaging a substance having a uniform thickness and density, and the pixel value of the subject image is divided for each pixel by the pixel value of the reference image.
- the pixel value of the specimen image is normalized. From this normalized pixel value, a scatter diagram is created in which the axis giving the absorption information is given to one of the two-dimensional axes and the other two-dimensional axis is given X-ray beam hardening information. . Identification information for identifying the type of substance present in the imaging portion of the subject is acquired from this scatter diagram.
- the substance identification method described in Patent Document 2 when the substance identification method described in Patent Document 2 is applied to the oral cavity, X-rays are transmitted through hard tissues such as teeth and jaws.
- the effective energy of each X-ray energy BIN varies depending on the thickness of the object due to the influence of beam hardening.
- the variation due to the thickness becomes more significant. Therefore, the substance identification method described in Patent Document 2 can be effective when at least thickness information can be accurately acquired.
- the thickness is unknown, the influence of beam hardening or the like cannot be ignored, and the identification accuracy can be improved. Was low.
- the present invention eliminates or reduces the influence exerted on the attenuation of X-rays by a physical phenomenon such as beam hardening for each X-ray energy BIN from the count value detected by the photon counting detector.
- An X-ray apparatus that can improve the accuracy and reliability of various processes using this signal, and a data processing apparatus and a data processing method that can be suitably implemented in the X-ray apparatus are provided.
- the object is to estimate and identify the substance, and to perform the foreign object detection, lesion detection, weight estimation, thickness estimation, and the like with high accuracy.
- a beam-like X-ray having a predetermined continuous X-ray spectrum is irradiated to an object, and the object is based on the X-ray transmitted through the object.
- An x-ray apparatus for inspecting an object is provided. This X-ray apparatus detects the X-ray that has passed through the same substance as the object or a substance made of a material that can be considered to be similar to the object with respect to the effective atomic number.
- a photon counting type detector (26 (24)) that counts the number of photons of the X-ray for every two or more X-ray energies BIN and outputs the count value, and the count value output by the detector Based on the X-ray attenuation amount ⁇ t defined by a plurality of different known thicknesses t and the linear attenuation coefficient ⁇ of the substance in the direction in which the X-ray beam bundle passes, for each X-ray energy BIN.
- Characteristic acquisition means (51 (S2)) for acquiring characteristics; The two-dimensional characteristic of the X-ray attenuation amount ⁇ t acquired by the characteristic acquisition means, wherein the thickness t is taken on one axis and the X-ray attenuation amount ⁇ t is taken on the other axis orthogonal to the one axis.
- Correction data calculation means (52 (S3)) for calculating, for each X-ray energy BIN, correction data for replacing the coordinates with a linear target characteristic passing through the origin of the coordinates.
- the effective atomic number is defined as “the average atomic number Zeff of an object when the object is composed of a plurality of substances (materials).
- “Substance” refers to a substance (same kind of substance) having the same composition as the object.
- a material that can be regarded as being similar to an object with respect to an effective atomic number means, for example, according to the knowledge of the present inventors, “an effective atom number within ⁇ 5 of the effective atomic number of the object. It is a material having an atomic number ”, more preferably“ a material having an effective atomic number within a range of ⁇ 2 of the effective atomic number of the object ”.
- a material having an effective atomic number in the range of ⁇ 2 is desirable. These materials are typically provided as phantoms that imitate the object to be imaged in composition.
- the detector includes a plurality of pixels on which the X-rays are incident, detects the X-rays transmitted through the object by each of the plurality of pixels, and the preset 1 It is configured to count the number of photons of the X-ray for every two or more X-ray energies BIN and for each of the pixels, and to output the count value, and the characteristic acquisition unit is configured to output the count output from the detector.
- the X-ray attenuation amount ⁇ t is acquired for each X-ray energy BIN, for each pixel, or for each pixel region including two or more of the pixels, and the correction data
- the calculation means calculates the characteristic of the X-ray attenuation amount ⁇ t acquired by the characteristic acquisition means for each X-ray energy BIN and for each pixel or for each pixel region using the correction data. It may be configured.
- a correction unit may be provided that corrects the count value for each X-ray energy BIN and for each pixel or for each pixel region based on the correction data.
- a processing means for performing data processing for the inspection of the object based on the count value corrected by the correction means may be provided.
- a beam-shaped X-ray having a predetermined continuous X-ray spectrum is irradiated from an X-ray tube to an object, and the X-ray transmitted through the object is detected.
- a data processing apparatus mounted on an X-ray apparatus that counts the number of photons of the X-ray for each of one or more preset X-ray energies BIN and outputs the count value.
- This data processing device is based on the count value, and for each X-ray energy BIN, a substance made of the same substance as the object or a material that can be considered to be similar to the object with respect to an effective atomic number
- Characteristic acquisition means for acquiring characteristics of an X-ray attenuation amount ⁇ t defined by a plurality of different known thicknesses t and the line attenuation coefficient ⁇ in a direction in which the X-ray beam bundle transmits, and the characteristic acquisition
- the characteristic of the X-ray attenuation amount ⁇ t acquired by the means is a linear target passing through the origin of the coordinate in a two-dimensional coordinate in which the horizontal axis is the thickness t and the vertical axis is the X-ray attenuation amount ⁇ t.
- Correction data calculation means for calculating correction data for replacement with characteristics for each X-ray energy BIN.
- a beam-like X-ray having a predetermined continuous X-ray spectrum is irradiated from an X-ray tube to an object, and the X-ray transmitted through the object is detected.
- a data processing method executed by an X-ray apparatus that counts the number of photons of the X-ray for each of one or more preset X-ray energies BIN and outputs the count value.
- a substance that is the same as the object or a substance that is similar to the object with respect to an effective atomic number is used.
- a characteristic of an X-ray attenuation amount ⁇ t defined by a plurality of different known thicknesses t and the linear attenuation coefficient ⁇ in a direction in which the X-ray beam bundle passes is acquired, and the acquired X-ray attenuation amount ⁇ t Correction data for replacing a characteristic with a linear target characteristic passing through the origin of the coordinate in a two-dimensional coordinate having the thickness t on the horizontal axis and the X-ray attenuation ⁇ t on the vertical axis, Calculation is performed for each X-ray energy BIN.
- characteristic acquisition and correction data calculation described above may be performed for each X-ray energy BIN, for each pixel, or for each pixel region including two or more pixels. Further, this characteristic acquisition and correction data calculation can be similarly performed on the detection signal of a detector (or sensor) having one pixel or the detection signal of an X-ray spectrometer. Not only when the X-ray energy BIN is set before collection of the detection signal but also when it can be set after collection.
- the target is irradiated with a beam-like X-ray having a predetermined continuous X-ray spectrum, and the amount of transmitted X-rays is detected by the photon counting type detector for each one or more X-ray energies BIN.
- the number of photons on the line is counted and the count value is detected.
- an X-ray attenuation amount defined by a plurality of different known thicknesses t in the X-ray transmission direction of the same kind of substance as the object and the linear attenuation coefficient ⁇ of the object
- the characteristic of ⁇ t is acquired at the time of X-ray inspection or in advance. Note that, for the characteristic of the X-ray attenuation amount ⁇ t, a substance made of a material that can be regarded as having a linear attenuation coefficient approximate to an object to be inspected may be alternatively employed.
- the acquired characteristic of the X-ray attenuation amount ⁇ t is converted into a linear target characteristic passing through the origin of the coordinate in a two-dimensional coordinate in which the horizontal axis is the thickness t and the vertical axis is the X-ray attenuation amount ⁇ t.
- Correction data for replacement is calculated for each X-ray energy BIN. For example, the count value is corrected for each X-ray energy BIN based on the calculated correction data.
- the correction data for reducing or eliminating the change in average (or effective) X-ray energy generated for each X-ray energy BIN and the variation component thereof is calculated.
- a detection signal that eliminates or reduces the influence exerted on attenuation of X-rays by a physical phenomenon such as beam hardening.
- the accuracy and reliability of various processes using this detection signal can be further improved.
- the X-ray apparatus according to the present invention when the X-ray apparatus according to the present invention is applied to an X-ray foreign substance inspection apparatus, if the detector has two or more pixels, it is possible to search for a material configuration in a wider range of the region of the object. it can. On the other hand, even if the detector is a single pixel or an X-ray spectrometer, it is effective when searching for the properties and material configuration of a substance in a small region where the object is present.
- FIG. 1 is a block diagram illustrating a schematic configuration of an embodiment of an X-ray apparatus according to the present invention.
- FIG. 1 is a diagram for explaining detectors arranged obliquely in an X-ray apparatus according to an embodiment;
- FIG. 3 is a diagram for explaining a state in which a plurality of energy BINs are set in the spectrum of the incidence frequency of X-ray photons,
- FIG. 4 is a block diagram for explaining an outline of correction performed on the data processing apparatus for effects such as beam hardening.
- FIG. 5 is a diagram for explaining the relationship between the incident amount (count) of X-ray photons and the transmission amount (count: count value) for each X-ray energy BIN;
- FIG. 1 is a diagram for explaining detectors arranged obliquely in an X-ray apparatus according to an embodiment
- FIG. 3 is a diagram for explaining a state in which a plurality of energy BINs are set in the spectrum of the incidence frequency of X-ray
- FIG. 6 is a simulation graph illustrating the relationship between the thickness t indicating the influence of beam hardening and the like and the X-ray attenuation amount ⁇ t for each X-ray energy BIN, for aluminum
- FIG. 7 is a graph for explaining creation of correction data for correcting the influence of beam hardening or the like
- FIG. 8 shows a phantom (calibration phantom) that is formed in a step shape with a plurality of known thicknesses and is formed of a known substance or a material imitating the same for acquiring correction data in advance.
- FIG. 8 shows a phantom (calibration phantom) that is formed in a step shape with a plurality of known thicknesses and is formed of a known substance or a material imitating the same for acquiring correction data in advance.
- FIG. 8 shows a phantom (calibration phantom) that is formed in a step shape with a plurality of known thicknesses and is formed of
- FIG. 9 shows a phantom (calibration phantom) that is formed in a step shape with a plurality of known thicknesses and is formed of a known substance or a material imitating the same for acquiring correction data in advance.
- FIG. 10 is a flowchart illustrating an outline of processing from acquisition of correction data to correction and use of measurement data (including the description of the first modification);
- FIG. 11 is a schematic diagram illustrating the concept of a three-dimensional scatter diagram.
- FIG. 12 is a schematic diagram for explaining the concept of an absorption vector length image.
- FIG. 13 is a graph of an X-ray energy spectrum for explaining the second modification,
- FIG. 14 is a partial flowchart for explaining a part of processing executed by the processor according to the second modification.
- FIG. 15 is a graph of an X-ray energy spectrum for explaining the third modification
- FIG. 16 is a graph for explaining creation of correction data for correcting the influence of beam hardening and the like, explaining a fourth modification
- FIG. 17 is a partial flowchart for explaining a part of processing executed by the processor in the fourth modified example
- FIG. 18 is a graph of an X-ray energy spectrum explaining the designation of calculation points, explaining a fifth modification
- FIG. 19 is a partial flowchart for explaining a part of processing executed by the processor in the fifth modification.
- the X-ray apparatus is also functionally integrated with the data processing apparatus according to the present invention.
- FIG. 1 shows an outline of the X-ray apparatus according to the first embodiment.
- This X-ray apparatus is implemented as an apparatus that performs X-ray foreign substance inspection and X-ray mammography. These devices are intended to obtain images such as tomographic images and projection images of the object to be inspected, and in particular, foreign substances that can adhere to or mix in the object (for example, food) (ie, food). It is also intended to identify (estimate and identify) the presence / absence of substances other than the target material: for example, metal pieces such as aluminum, insects such as cockroaches, and / or the types and properties of the foreign substances.
- An apparatus for inspecting the presence or absence of foreign matter is known as an X-ray foreign matter inspection apparatus. Note that the X-ray apparatus according to the present embodiment performs inspection for identifying the type or property (state) of a foreign substance in addition to the presence or absence of the foreign substance, when the foreign substance is found to exist, so-called substance identification. Can also be applied.
- JP 2013-119000 A title of the invention: substance identification apparatus and substance identification method
- published patent publication WO 2014181889 (A1) Application No. PCT / JP2014 / 062631, Title of Invention: SUBSTANCE IDENTIFICATION DEVICE AND SUBSTANCE) IDENTIFICATION METHOD EMPLOYING X-RAY PANORAMIC / CT PHOTOGRAPHING.
- the present inventors have made various proposals (for example, Japanese Patent Application No. 2015-023446, Japanese Patent Application No. 2015-85551, etc.) in order to improve these substance identification techniques.
- FIG. 1 shows an X-ray apparatus 10 having the basic configuration of the various substance identification apparatuses described above (including an X-ray mammography apparatus that grasps breast lesions from the aspect of substance identification).
- the X-ray apparatus 10 has an X-ray generator 23 having an X-ray tube 21 that generates X-rays having a continuous spectrum, and an X-ray tube 21. And a photon counting detector 24 that counts the number of photons of X-rays.
- a driving high voltage for X-ray irradiation is supplied to the X-ray tube 21 from an X-ray high voltage device (not shown).
- An object OB that is an inspection object (or inspection object) is located in a space S (object space) formed between the X-ray tube 21 and the detector 24.
- the object OB is the object itself to be inspected in the case of an X-ray inspection apparatus that grasps the type or property of the substance constituting the object.
- the object OB is, for example, a human breast.
- an object such as a food or industrial product whose material type is known
- the object OB is placed on the conveyor belt 48 and passes through the object space S (see FIG. 2).
- the object OB may be fixed and the pair of the X-ray tube 21 and the detector 24 may be moved around the object OB.
- the focal diameter of the tube focus F of the X-ray tube 21 is, for example, 0.5 mm ⁇ .
- this tube focus F can be regarded as an almost point-like X-ray source.
- X-rays emitted from the X-ray tube 21 are shaped like a cone beam (or fan beam) via a collimator 22.
- FIG. 1 shows a cone beam-shaped X-ray XB having a cone angle ⁇ and a fan angle ⁇ .
- the orthogonal coordinates of the XYZ axes with the direction in which the target OB moves in the object space S, that is, the scan direction as the Z axis direction are set.
- X-rays XB are spread and irradiated in a cone beam shape in the Y-axis direction which is the height direction.
- the cone beam-shaped X-ray beam XB passes through the object OB while being attenuated, and the transmitted X-ray enters the detector 24.
- a pair of the X-ray tube 21 and the detector 24 rotates around a human breast pressed by a compression plate within a predetermined angle range.
- the detector 24 has, for example, a plurality of (for example, 29) two-dimensional modules M (for example, pixels P having a size of 0.2 mm ⁇ 0.2 mm vertically and horizontally 80 ⁇ 20 ⁇ 20). , With a vertically long shape arranged in a column. As a result, the X-ray incident window MD (for example, 20 ⁇ 2348 pixels in terms of the number of pixels) having the vertical direction of about 47 cm ⁇ the horizontal direction of 0.4 cm is formed as the detection layer 24A.
- the X-ray incident window MD for example, 20 ⁇ 2348 pixels in terms of the number of pixels
- the plurality of modules M themselves are arranged in a line, they are configured as a two-dimensional elongated direct conversion type detector 24 having a plurality of pixels P in the horizontal direction in terms of the pixel arrangement.
- it is configured to correct an influence caused by a physical phenomenon such as beam hardening of a measurement value. This correction can be performed for each pixel P, but can also be performed by virtually setting a plurality of pixels P as one region. An area in which the plurality of pixels are virtually set as one area is shown as a pixel area PA in FIG.
- This detector 24 is diagonally below the conveyor belt 48 so that its major axis direction is skewed by a predetermined angle (for example, about 14 degrees) in the scanning direction of the object OB (or a direction perpendicular to the scanning direction). Is arranged.
- the detection layer 24A of each module M is a so-called direct conversion type X-ray detection element that is formed from a semiconductor material such as CdTe or CZT and directly converts X-rays into electrical signals.
- a charged electrode and a collecting electrode are actually attached to the upper and lower surfaces of the detection layer 24A. A high bias voltage is applied between the electrodes.
- the detector 24 considers X-rays to be a set of photons having various energies, and can count the number of these photons by X-ray energy BIN (region). It is configured as a detector of counting type).
- X-ray energy BIN for example, as shown in FIG. 3, three energies BIN: Bin 1 to Bin 3 are set.
- the number of the energy BIN: Bin may be one or plural.
- the area of energy [keV] below the lower threshold TH1 and the area above the upper threshold TH4 are areas that cannot be measured or used.
- the region between the thresholds TH1 to TH4 is divided into one (in this case, the thresholds are only TH1 and TH4) or a plurality of energy BINs.
- threshold values TH2 and TH3 are set as shown in FIG. 3, and three energy BINs are formed.
- a layered data collection circuit 25 is built as an ASIC layer on the lower surface side of the detection layer 24A. Therefore, for each pixel P and for each energy region BIN, the X-ray intensity is detected by the data collection circuit 25 as a count value (cumulative value) of the digital number of photons at regular time intervals.
- the detector 24 and the data collection circuit 25 constitute a detection unit 26.
- an electric pulse signal having a peak value corresponding to the energy value is generated in the pixel P.
- the peak value that is, the energy value of the electric pulse signal is classified into the energy region BIN to which the value belongs, and the count value is increased by one.
- the count value is collected by the data collection circuit 25 as a cumulative value (digital value) every fixed time for each pixel P and for each energy region BIN.
- a digital amount count value is collected from each of 20 ⁇ 2348 pixels, for example, at a frame rate of 6600 fps, and for each energy region BIN. .
- Such a direct conversion detector including its data collection circuit, is well known, and is disclosed in, for example, European Patent Publication No. 2 647 787.
- the detector 24 is not necessarily the direct conversion type detector described above, and a SiPM (also referred to as MPPC) is formed in a micro column scintillator having a diameter of about several tens of ⁇ m, such as a CeLaCl 3 detector. It may be a photon counting detector.
- a SiPM also referred to as MPPC
- MPPC micro column scintillator having a diameter of about several tens of ⁇ m, such as a CeLaCl 3 detector. It may be a photon counting detector.
- the count value of the digital quantity for each pixel and for each energy region BIN which is repeatedly output from the data collection circuit 25 of the detection unit 26 for each fixed frame, is sent as frame data to the subsequent data processing device 12 via the communication line LN. Sent.
- the data processing apparatus 12 may be provided as an apparatus integrated with the X-ray apparatus 10 or an inspection system. Further, when the data processing apparatus 12 is connected to the X-ray apparatus 10 through the communication line LN so as to be communicable as in the present embodiment, it may be always connected online or necessary. It may be possible to communicate only at any time. Furthermore, the data processing device 12 may be provided in a stand-alone format.
- the data processing device 12 is configured by a computer CP as an example.
- the computer CP itself may be a computer having a known calculation function, and includes an interface (I / O) 31 connected to the detection unit 26 via a communication line LN.
- the interface 31 includes, via an internal bus B, a buffer memory 32, a ROM (read-only memory) 33, a RAM (random access memory) 34, a processor 35 having a CPU (central memory processing unit), an image memory 36,
- the input device 37 and the display device 38 are communicably connected to each other via, for example, a signal line.
- the ROM 33 includes a program storage area (functioning as non-transitory computer recording medium) 33A for storing those programs in advance. Furthermore, the ROM 33 also includes first and second data storage areas 33B and 33C (first and second storage means) for storing data for correction of measurement values as calibration, which will be described later.
- the processor 35 reads a necessary program from the program storage area 33A of the ROM 33 into its work area and executes it.
- the processor 35 is a CPU for image processing.
- the buffer memory 32 is used to temporarily store the frame data sent from the detection unit 26.
- the RAM 34 is used for temporarily storing data necessary for the operation when the processor 35 performs the operation.
- the image memory 36 is used for storing various image data and information processed by the processor 35.
- the input device 37 and the display device 38 function as a man-machine interface with the user, and among these, the input device 37 receives input information from the user.
- the display 38 can display an image or the like under the control of the data processor 35.
- continuous-spectrum X-rays can be obtained by accelerating electrons at a high voltage under a vacuum on a target material such as tungsten or molybdenum. That is, compared with the case of obtaining monochromatic X-rays, it can be mounted relatively easily and can be configured at an overwhelmingly low cost.
- the imaging using polychromatic X-rays having continuous energy has a sacrifice in quantification of image quality.
- Beam hardening is a phenomenon in which low energy is more absorbed when continuous X-rays pass through a substance, and as a result, the average (effective) energy shifts to a higher energy side. When this beam hardening occurs, artifacts occur or the pixel values of the reconstructed image are made inaccurate. Beam hardening depends to some extent on the thickness of the material (the thicker the beam, the harder the beam hardening). This beam hardening can be generally summarized as a result of the mutual interference between the molecule (atom) of the object and the X-ray photon being different due to the difference in energy of the X-ray photon.
- this measurement value correction can also correct the measurement value error due to the individual differences in circuit components and circuit boards.
- errors include gain variation, offset variation, linearity variation, charge sharing variation, and the like for each pixel. These variations may hinder high-precision data processing (such as substance identification), but they are also improved.
- the present invention finds that there is an effect of beam hardening or the like due to the magnitude of the X-ray energy even in each energy BIN that has not been noticed so far, and develops a correction method for improving this problem. ⁇ Provided.
- This correction method can be regarded as a kind of calibration if such a physical phenomenon is specific to the substance or device as an object, and therefore the correction data is also called calibration data. Can do.
- an X-ray foreign substance inspection apparatus is generally considered that an object to be inspected (for example, food such as peppers) is a known substance (for example, the main component is moisture).
- the foreign matter to be inspected is also inspected in advance by focusing on, for example, metal (for example, one type or a plurality of types of aluminum, glass, iron, etc.)
- the correction method of the measured value according to the present invention is performed using the correction data by acquiring correction data for each known substance in advance.
- the X-ray apparatus according to the present invention provides a basic configuration for realizing processing necessary for the correction. Therefore, the basic configuration of the X-ray apparatus of the present embodiment can be summarized as follows.
- the basic configuration is such that the data processing device 12 centering on the processing of the processor 35 includes at least a characteristic acquisition unit 51, a correction data calculation unit 52, and software or hardware. Is provided. Further, the data processing device 12 may functionally include a correction unit 53.
- these components 51 to 53 may be functionally realized as software processing by a processor, that is, a computer, or may be created by a hardware circuit that performs pipeline processing.
- the characteristic acquisition unit 51 is based on the same kind of substance as the target object or a material that can be considered to approximate the X-ray linear attenuation coefficient for each X-ray energy BIN.
- a characteristic of the X-ray attenuation amount ⁇ t defined by a plurality of mutually different known thicknesses t and the linear attenuation coefficient ⁇ in the direction in which the X-ray beam bundle passes is obtained.
- the correction data calculation unit 52 uses the thickness t on the horizontal axis (one axis) and the vertical axis (the other orthogonal to one axis) for the characteristic of the X-ray attenuation ⁇ t acquired by the characteristic acquisition unit 51.
- correction data for replacing a linear target characteristic passing through the origin of the coordinates in a two-dimensional coordinate (see FIG. 7 described later) with the X-ray attenuation amount ⁇ t taken as the axis of Is configured to do.
- the correction data can be read from the ROM 33 and used when processing the count value.
- the correction data may be acquired before the inspection, or may be acquired between inspections, during the inspection, or after the inspection. Furthermore, once the acquired correction data is stored, the correction data can be updated and used for each subsequent acquisition.
- the characteristic acquisition and correction data calculation described above may be performed for each X-ray energy BIN, for each pixel P, or for each pixel area PA composed of two or more pixels P. Furthermore, the characteristic acquisition and correction data calculation described above may be performed on a detection signal of an X-ray detector or an X-ray sensor composed of one pixel. Furthermore, the characteristic acquisition and correction data calculation described above may be performed on a signal detected by an X-ray spectrometer (for example, an EMF123 type X-ray spectrometer manufactured by EMF Japan Co., Ltd.).
- an X-ray spectrometer for example, an EMF123 type X-ray spectrometer manufactured by EMF Japan Co., Ltd.
- the correction unit 53 calculates the count value for each X-ray energy BIN (or for each X-ray energy BIN and for each pixel P or the pixel area PA based on the correction data. Configured to compensate).
- a straight line target characteristic passing through the origin on the coordinates
- the linear characteristic exhibiting the slope ⁇ i o becomes a target characteristic equivalent to a monochromatic X-ray. This target characteristic is set for each X-ray energy BIN and for each pixel, for example.
- the multiplication coefficient is data that functions as correction data, and is obtained with a calibration (correction) phantom that is a known material and has a plurality of known thicknesses.
- This phantom is composed of the same material as the object or a material that can be considered similar to the object with respect to the effective atomic number.
- the effective atomic number is defined as “the average atomic number Zeff of an object when the object is composed of a plurality of substances (materials) (for example, Isotope News, 2014, 8). No. 724, “New X-ray Imaging Method for Visualizing Effective Atomic Number Zeff”).
- the “substance that is the same as the object” refers to a substance that is made of a material having the same composition (same type of material).
- a substance made of a material that can be considered to be similar to an object with respect to an effective atomic number means, for example, according to the knowledge of the present inventors, “a range of ⁇ 5 of the effective atomic number of the object.
- the material with the effective atomic number within.
- a material composed of “a material having an effective atomic number within the range of ⁇ 2 of the effective atomic number of the object” is desirable as a material for use. For example, if the effective atomic number of the object is 7.2, the effective atomic number of the material used as the phantom is 7.2 ⁇ 5, preferably 7.2 ⁇ 2.
- the count value of the X-ray photon counted in is shown as a frequency.
- the energy BIN There are absorption and transmission of photons per Bin i in the object, photon of the permeate is detected.
- each energy BIN Bin imaginary average linear attenuation coefficient m 1 of i (m 2, m 3) is a condition that does not depend becomes assumes the thickness t.
- the highest energy BIN Bin 3.
- the characteristics of t are shown.
- the energy BIN a Bin virtual attenuation values when irradiated with monochromatic X-rays corresponding to an intermediate energy of i Calculated m i t (theoretical value).
- Such characteristics showing a virtual attenuation values m i t is to correspond to the time of monochromatic X-ray irradiation, deviates from the straight line characteristic of the coordinate origin passing, in 3-dimensional scatter diagram when the thickness is different same material are mixed, one point Scattering points deviate from a certain range of distribution in the center.
- the source weak coefficient m i to the effective energy of each energy BIN the aforementioned means that the assumption is broken does not change by the thickness t.
- the distribution situation for substance identification (identification, identification, and estimation of the type), which is a preferred example of adopting this correction, cannot be identified or becomes less reliable.
- correction data is determined in advance so that the shifted curve of the virtual attenuation value becomes a straight line (linear target characteristic) passing through the coordinate origin corresponding to a specific monochromatic X-ray irradiation at each energy BIN.
- the correction data is a multiplication coefficient for correcting such a curve so as to be a straight line passing through the coordinate origin.
- This correction data is acquired in advance before actual X-ray inspection and X-ray imaging, and is stored and saved in the ROM 33, that is, the storage means. At the time of scanning for actual inspection or photographing, the correction data is read from the ROM 33, and the count values collected as frame data by the scanning are corrected for each pixel P or each pixel area PA.
- FIG. 7 The vertical and horizontal axes in FIG. 7 are the same as those in FIGS. 6A to 6C, and these figures are representatively shown. It is assumed that the material is made of aluminum (Al).
- This straight line passes through the origin of the two-dimensional coordinates with an inclination m i0 .
- This straight line is obtained by an approximate calculation from a curved curve described later.
- the curved curve is an example of characteristics when a substance formed of aluminum is irradiated with X-rays having a continuous spectrum (polychromatic X-rays) while changing the thickness t in the X-ray transmission direction. Since it is a polychromatic X-ray, as described above, it curves without following a straight line due to the influence of beam hardening or the like.
- the characteristics of the virtual attenuation value m i t at the time of multicolor X-ray irradiation are acquired by using, for example, a phantom having a plurality of different parts with a known thickness t.
- the multiplication correction coefficient C i (t) forms correction data.
- the correction data Ci (t) is obtained from the characteristic of the X-ray attenuation amount ⁇ i m (t) * t with respect to the acquired one or more thicknesses t.
- tmin and tmax are broad values including a lower limit value and an upper limit value of the thickness of the object in the transmission direction of the X-ray beam bundle assumed when the object is inspected.
- the correction data C i (t) calculated for each thickness t is stored in the first data storage area 33B of the ROM 33. Further, approximate data indicating the function form (for example, a quadratic function) obtained in the middle of this calculation is also stored in the second data storage area 33C of the ROM 33.
- the virtual attenuation value ⁇ i m (t) * t shown in FIG. 7 is preliminarily measured for each pixel using various phantoms, and the correction data C i (t ) Is obtained for each pixel.
- FIG. 8 schematically shows, as an example, a pepper phantom FM1 when an X-ray foreign substance inspection is performed to inspect the green pepper as a food for the inclusion of a metal foreign substance such as aluminum.
- a pepper phantom FM1 when an X-ray foreign substance inspection is performed to inspect the green pepper as a food for the inclusion of a metal foreign substance such as aluminum.
- this phantom FM most of the components of peppers are moisture, so water is put in a container with high X-ray permeability, and its partial height, that is, thickness in the X-ray transmission direction.
- This thickness t is set so as to cover the thickness of the green pepper that is actually subjected to the foreign substance inspection.
- a phantom that simulates a foreign substance contained in an object such as food, it is usually smaller than the object.
- an aluminum phantom has a plurality of known thicknesses with extremely thin steps.
- the minimum thickness and the maximum thickness may be small.
- FIG. 9 shows an example of phantom FM2.
- This phantom FM2 is a phantom of a mixture of human muscles and Adipose 70%, and has a configuration in which the thickness is changed in steps of 4 mm from 4 to 40 mm as an example to include the thickness actually assumed at the time of inspection. ing.
- the processor 35 of the data processing device 12 executes the process shown in FIG.
- the processor 35 instructs the operator to place the phantom FM1 (FM2) of the desired material at a predetermined position of the inspection position of the X-ray apparatus 10 (step S1).
- the X-ray apparatus 10 is activated.
- the phantom FM1 is scanned with X-rays and the measured values are collected (step S2).
- the correction data C i (t) is calculated (step S3), and stored in the first data storage area 33B of the ROM 33 (step S4).
- step S5 the processor 35 interactively confirms whether or not the same calculation is performed for another phantom with the operator (step S5), and if so, the process returns to step S1 and the next phantom FM2 (FM1) The above process is repeated.
- the number of phantoms is not limited to two. More phantoms can be used depending on the type and properties of the object or foreign matter to be inspected. Data is prepared. When the previous measurement and correction data calculation by the phantom is finished, the process is finished (step S6: YES). However, if it is determined that the process does not end (step S6: NO), the process of the inspection after S7 is executed.
- the processor 35 interactively prepares for inspection such as selection of an object to be inspected and setting of imaging conditions with an operator (step S7), and activates the X-ray apparatus 10 to perform X-ray scanning (for example, Foreign matter inspection: Step S8).
- the processor 35 reads the correction data C i (t) of the object (for example, food (green pepper)) stored in the first data storage area 33B of the ROM 33 (step S9), and obtained from the measurement value.
- the virtual attenuation value ⁇ i m (t) * t is multiplied by the correction data C i (t) to calculate a linear attenuation value ⁇ i o * t corresponding to a monochromatic X-ray (step S10). That is, the virtual attenuation value ⁇ im (t) * t along the curved curve is corrected without being along a straight line due to the influence of beam hardening or the like.
- This can be regarded as a calibration that comprehensively calibrates after measurement, as if it were known in advance, an error factor peculiar to X-rays such as beam hardening that cannot be grasped by X-ray detection. it can. Note that this correction (calibration) may be executed in units of the pixel area PA.
- the processor 35 interactively processes the measurement value with the operator, and confirms the presence / absence of a foreign substance that may be present on the object to be inspected, identifies the type of the foreign substance, and the like (step) S11).
- identifying a foreign object for example, correction data C i (t) created with an aluminum phantom or a phantom of another substance is used in the same manner as described above.
- the processor 35 presents the processing result of the measured value by, for example, displaying and printing in various modes (step S12). Thereafter, the process is finished.
- the steps S1 and S2 functionally configure the above-described characteristic acquisition unit 51 (corresponding to the characteristic acquisition unit), and the steps S3 and S4 include the above-described correction data calculation unit 52 ( (Corresponding to the correction data calculating means) is functionally configured, and the processing in steps S9 and S9 functionally configures the correcting unit 53 (corresponding to the correcting means) described above.
- the step S11 corresponds to a processing unit
- the step S12 corresponds to a presentation unit.
- three energy BIN because of the use of Bin i, there are three degrees of freedom to line attenuation values m 1 t. For this reason, a three-dimensional vector ( ⁇ 1 t , ⁇ 2 t , ⁇ 3 t) And the length of the three-dimensional linear attenuation vector ( ⁇ 1, ⁇ 2, ⁇ 3 ), that is, the linear attenuation vector length ( ⁇ 1 2 + ⁇ 2 2 + ⁇ 3 2 ) 1/2 Is a normalized three-dimensional vector (hereinafter referred to as a line attenuation vector) with ( ⁇ 1 , ⁇ 2 , ⁇ 3 ) / ( ⁇ 1 2 + ⁇ 2 2 + ⁇ 3 2 ) 1/2 , The component of thickness t disappears from this line attenuation vector.
- This spherical surface that is, the distribution status of the end points of the line attenuation vector in the three-dimensional scatter diagram, is specific to the type of substance constituting the object itself. That is, if the type of substance is different, the distribution position is theoretically different, and thus the type of substance can be identified.
- the vector length in each pixel is t ( ⁇ 1 2 + ⁇ 2 2 + ⁇ 3 2 ) 1/2
- the present inventors call this scalar quantity the absorption vector length (or pseudo absorption value).
- a two-dimensional image can be created using this absorption vector length as a pixel value, and the present inventors call this two-dimensional image an absorption vector length image (or pseudo absorption image).
- An example of this absorption vector length image is shown in FIG.
- the error factor given to the X-ray spectrum such as beam hardening described above is corrected (or calibrated), so that it is drawn in a three-dimensional scatter diagram as compared with the conventional case. It has been confirmed that the ability to visualize materials is remarkably improved, and that the absorption vector length image is proportional to the thickness of each material.
- beam hardening is performed in an X-ray apparatus that scans an object with X-rays having a continuous spectrum while using a detector that counts X-ray photons at each of a plurality of energy BINs.
- the error can be greatly reduced from the measured value including the error caused by the X-ray attenuation such as the heel effect and the circuit factor such as charge sharing.
- the measurement value is corrected as if it had been calibrated from the beginning, and its reliability is increased.
- image reconstruction or object analysis is performed based on the measured values, these processes are more stable and more reliable.
- the identification accuracy is increased.
- the effective energy increases as the thickness increases due to beam hardening.
- the characteristic that one representative monochromatic X-ray is normally assigned to each energy BIN is not obtained.
- the count value from each energy BIN can be corrected so that it behaves as if it is irradiated with a single color X-ray for each energy BIN. Therefore, it is possible to reduce the error factor of the coefficient value due to beam hardening and the like, reduce distortion components, noise, and the like in the inspection image and analysis map as inspection information, and increase the reliability of the inspection information.
- correction data may be created with a material close to a certain main constituent material instead of preparing multiple sets of correction data.
- a mammography mammary mammary gland, fat, malignant mass, calcification, etc. if the correction data is made with materials close to the effective atomic number of the average composition such as mammary gland, fat, etc. It is possible to perform high substance identification.
- Such correction can be applied to an X-ray detector (or X-ray sensor) having one pixel or a system that detects transmitted X-rays of an object using an X-ray spectrometer. It goes without saying that even with such a system, effective substance identification is possible as long as statistically sufficient and highly accurate count information can be obtained.
- the configuration of the present invention can be applied to the detection of the weight and thickness of a substance. That is, in the above-described embodiment, the correction is performed so that the thickness of the substance and the weak X-ray source value are a straight line passing through the origin. From this, when the object is configured with a single type of substance as the center, the weight and thickness of the substance can be accurately calculated if the source weak coefficient is known. Weight measurement using X-rays is partly realized with an X-ray IN-LINE inspection device used in food foreign matter inspection. However, this can only be realized in the field of inspection of an object with a relatively simple composition such as vegetables having a relatively limited application range (thickness and type).
- the photon counting detector has a wide dynamic range (applicable range)
- the X-ray irradiation conditions are adjusted so that the information of each energy BIN does not become zero, the range in which weight measurement with high accuracy can be achieved is dramatic. To spread. Further, it can be said that there is no method for estimating the thickness simply as in the present invention in the current technology.
- the straight line connecting the intersection point and the origin of the X-ray attenuation amount Myuti r may be set as a linear target characteristic.
- This target characteristic may be calculated in advance by the processor 35 or an external processing device and stored in the first data storage area 33B of the ROM 33.
- information on the target characteristic can be read from the first data storage area 33B of the ROM 33 and used for calculation of correction data.
- This second modification also relates to another method for setting the target characteristics, as described above.
- the source weak coefficient calculated from the theoretical value of the effective energy or fixed energy of each X-ray energy Bin is set as a slope, and a straight line passing through the origin is set as a target characteristic.
- FIG. 13 schematically shows an example of the X-ray energy spectrum. In the case of the spectrum in the figure, three energies Bin1 to Bin3 are set as in FIG. In this case, the effective energy Ei can be calculated from the following equation for each energy Bin1 (to Bin3).
- the processor 35 performs processing as shown in FIG. That is, similarly to the above-described embodiment, the processor 35 determines each effective energy Ei in the energy spectrum of the substance (phantom) that imitates the imaging object from the viewpoint of the linear attenuation coefficient (see steps S201 and S202 in FIG. 14). Calculation is performed based on the above-described equation (S203). Further, a value ⁇ (linear attenuation coefficient) obtained by multiplying the mass attenuation coefficient ( ⁇ / ⁇ : ⁇ is a linear attenuation coefficient, ⁇ is a density) and the density ⁇ at each effective energy Ei is calculated, and the value ⁇ is set as a slope. Adopt (step S204).
- the processor 35 sets a straight line having the slope ⁇ and passing through the origin 0 as a target characteristic, and calculates correction data (calibration data) based on the target characteristic (S205, S206). Further, the correction data is stored in the first data storage area 33B of the ROM 33 (S207).
- target characteristics are set for each pixel or for each region composed of a predetermined number of pixels in each X-ray energy Bin, and correction data is calculated. After this calculation, the same processing as step S5 and subsequent steps in FIG. 10 is performed. Also with this, for each X-ray energy Bin, a more accurate target characteristic is set with a smaller amount of calculation, and beam hardening correction can be easily executed.
- a target characteristic may be set by adopting a fixed energy value such as the center position of the energy width instead of the effective energy.
- the third modification relates to a method of changing the thickness increment ⁇ t for acquiring correction data in accordance with the thickness t of the calibration phantom. This is because the beam hardening correction generally needs to be executed with higher accuracy as the thickness t becomes thinner. Therefore, as schematically shown in FIG. 15, the thickness increment ⁇ t is set to a smaller value as the thickness t of the calibration phantom is smaller (for example, ⁇ t1 ⁇ t2).
- the change setting of the thickness increment ⁇ t is executed by the processor 35 in step S3 of FIG. 10 (see step S3A). Thereby, finer correction data (multiplication correction coefficient C i (t): calibration data) according to the thickness t can be acquired.
- the characteristic of the X-ray attenuation amount ⁇ t is approximated by a quadratic function or the like with the whole region of the assumed thickness t of the substance as one section, and this approximate expression shows Correction data for correcting the curve to the target characteristic having the slope ⁇ i0 has been acquired.
- This can be implemented in various ways. For example, as shown in FIG. 16, the thickness of the object is divided into a plurality of sections, for example, a thin section ta, a medium thickness section tb, and a thick section tc, and the above-described approximation formula is calculated for each section. In addition, calculation for correction data calculation can be performed.
- the processor 35 performs function approximation on each of the sections ta, tb, and tc of the X-ray attenuation amount ⁇ t measured from the phantom as shown in FIG. 17 in step S3 of FIG. 10 (step S31). ). Next, the processor 35 calculates correction data for correcting (matching) the curve indicated by the approximate expression to the target characteristic having the slope ⁇ i o for each of the sections ta, tb, and tc (step S32). Finally, the processor 35 combines the correction data for each section and saves them as one correction data in the first data storage area 33B of the ROM 33 (step S33).
- any one or two sections may be selected as the priority correction sections and processed in the same manner as described above.
- the correction data can be acquired more finely over the entire region of the thickness t of the object or a part thereof.
- the third modified example is similar to the method of the second modified example in that a divided section is set. However, the third modified example is different in that the correction data is calculated while shifting the divided section in the direction of the thickness t. To do.
- the curve shown in FIG. 18 conceptually shows the curve of the virtual attenuation value ⁇ i m (t) * t measured using the calibration phantom described in FIG.
- the first (first time) including the origin 0, for example, a curve passing through the three points 0, A, B is approximated by, for example, a quadratic curve, and the first two points of the three points 0, A, B are approximated.
- Correction data for thickness increment ⁇ t (which may be variable or fixed in the thickness direction) subdivided between 0, A or between these two points 0-A is created.
- the calculation target point is moved to the thick side of the thickness t, and a curve passing through the three points A, B, C is approximated by, for example, a quadratic curve, and the three points A, B, C are approximated.
- the first two points A and B or correction data corresponding to the thickness increment ⁇ t obtained by subdividing the two points AB are created.
- the calculation target point is moved to the thick side of the thickness t, and the same process is performed for the three points B, C, and D.
- the same processing is performed after the fourth time.
- the calculation target points A, B, C, D,... I may be set wider as the thickness t increases, or may be set at regular intervals. In the case of a constant interval, the thickness increment ⁇ t may be set larger as the thickness t increases.
- the processor 35 performs the process shown in FIG. 19 as a part of the processes of steps S3 and S4 described above.
- the processor 35 sets a plurality of calculation points 0, A, B, C, D,... Including the origin 0 based on I predetermined information (step S310).
- the processor 35 designates the first three points 0, A, and B including the origin 0 (step S311), and further corrects at the position of the two points 0, A or the thickness increment ⁇ t between them. Operation data is calculated and stored (step S312). Further, the calculation point is shifted by, for example, one point in the direction of the thickness t and the next three points A, B, and C are designated (step S313), and two of these points A or B are between them.
- the correction data is calculated and stored at the position of the thickness increment ⁇ t (step S314). These processes are repeated until all of the predetermined number of calculation points are completed (step S315). When this is finished, the processor 35 reads and combines the correction data calculated in the individual sections and performs smoothing (step S316), and again stores the combined correction data in the first data storage in the ROM 33. Save in the area 33B (step S317).
- the subsequent processing is the same as the processing after step S5 in FIG. 10 described above, for example.
- the correction data can be acquired in the finest manner as described above.
- step S202 functionally configures characteristic acquisition means
- steps S203 to S205 functionally configure correction data calculation means
- step S207 forms part of the storage means.
- steps S31 and S32 functionally constitute a part of the correction data calculation means
- step S33 functionally constitutes a storage means.
- steps S310 to S317 functionally constitute a part of the correction data calculating means. Of these, step S317 corresponds to part of the storage means.
- the present invention is not limited to the configuration of the above-described embodiment and its modifications, and can be implemented in combination with various conventionally known forms without departing from the gist of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Medical Informatics (AREA)
- Food Science & Technology (AREA)
- Toxicology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- High Energy & Nuclear Physics (AREA)
- Medicinal Chemistry (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
前記特性取得手段により取得されたX線減弱量μtの特性を、一方の軸に前記厚さtを採り且つ当該一方の軸と直交する他方の軸に前記X線減弱量μtを採った2次元座標において当該座標の原点を通る直線状の目標特性に置き換えるための補正用データを、前記X線エネルギーBIN毎に演算する補正用データ演算手段(52(S3))と、を備える。
図1~図12を参照して、X線装置(及びデータ処理装置)の第1の実施形態を説明する。
(A1) (出願番号PCT/JP2014/062631、発明の名称:SUBSTANCE IDENTIFICATION DEVICE AND SUBSTANCE
IDENTIFICATION METHOD EMPLOYING X-RAY PANORAMIC/CT PHOTOGRAPHING)等により知られている。更に、本発明者等は、これらの物質同定技術を改善すべく、様々な提案を行っている(例えば、特願2015-023446、特願2015-85551等)。
この検出器24は、搬送ベルト48の下方において、その長軸方向が対象物OBのスキャン方向(又はそのスキャン方向に直交する方向)に所定角(例えば約14度程度)だけスキューするように斜めに配置されている。
ここで、このプロセッサ35において実行される、本発明の特徴に係る、連続スペクトラムを有するX線照射及び光子計数型検出によりX線検出を行うシステムにおける光子計数値の補正処理を説明する。
まず、この計測値の補正の背景を説明する。
本実施形態に係るX線装置の一例としてX線異物検査装置を挙げると、通常、検査対象である対象物(例えばピーマン等の食品)は既知の物質(例えば主成分が水分であると見做せる)であり、その検査したい異物も予め例えば金属(例えば、アルミニウム、ガラス、鉄等の1種類又は複数種類)に絞って検査される。このため、本発明に係る計測値の補正法は、それぞれの既知の物質の補正用データを予め取得しておくことで、その補正用データを使って実施される。本発明に係るX線装置は、その補正に必要な処理を実現するための基本構成を提供する。そのため、本実施形態のX線装置は、その基本構成は以下のように概括することができる。
本発明は、連続スペクトラムを有するX線を対象物に照射し、その透過X線を、例えば複数のエネルギーBIN:Bini(i=1,2,...)に弁別し且つ光子計数型の検出を行って計数値を求めるシステムを前提とする。このシステムにおいて、X線エネルギーBIN毎の入出力から計算されるμt(=-ln(出力カウントCli/入力カウントCoi:i=1,2,...)で計算される)の特性が、対象物のX線透過方向の厚みtに応じて、座標上の原点を通る直線(目標特性)からずれる、つまり単色X線とは異なる特性(これは各X線エネルギーBIN内でのビームハードニングやヒール効果)やピクセル型半導体検出器のチャージシェアリングなどの要素も含まれることに着目する。このずれたX線減弱量μtの曲線が、原点を通り傾き=線減弱係数μio(一定値、tの関数ではない)に合うように、計測されたX線減弱量μtを乗算係数で補正する。この傾きμioを呈する直線状の特性は、単色X線相当の目標特性としになる。この目標特性は、例えばX線エネルギーBIN毎に且つ画素毎に設定される。
Co1=Cl1×e(-m1t)
Co2=Cl2×e(-m2t)
Co3=Cl3×e(-m3t)
で表される。ここで、m1、m2、m3は各エネルギーBIN:Biniにおける仮想平均線減弱係数(即ち、各エネルギーBINの実効エネルギーに対する線減弱係数)であり、tは対象物のX線透過方向のパスの厚さである。ここで、各エネルギーBIN:Biniの仮想平均線減弱係数m1(m2、m3)は厚さtには依存しないという条件が前提になっている。
そこで、上記ずれた仮想減弱値の曲線を、各エネルギーBINにおいて特定の単色X線照射時に相当する、座標原点通過の直線(直線状の目標特性)になるように補正用データを予め決めておく。例えば、この補正用データは、かかる曲線を座標原点通過の直線になるように補正する乗算係数である。
μim(t)*t:
X線エネルギーBINi且つ厚さtで演算される仮想減弱値(ここで、μimは仮想線減弱係数、tは厚さ)、
μio*t:
各X線エネルギーBINiの厚さtにおける単色X線相当の線減弱係数μio(tの関数ではない)、
Ci(t):
線減弱係数μioを厚さtに依存しないように置換するための乗算補正係数、
とすると、乗算補正係数Ci(t)は、
μio*t=Ci(t)*μim(t)
の式から演算される。この乗算補正係数Ci(t)は補正用データを成す。
を最小にする値として演算できる。tmin,tmaxは対象物が検査されるときに想定されるX線の線束の透過方向における当該対象物の厚さの下限値及び上限値を含む広めの値である。
そこで、本実施形態では各種のファントムを使って、図7に示した仮想減弱値μim(t)*tの事前計測が画素毎に実施され、前述したように補正用データCi(t)が画素毎に求められる。
データ処理装置12のプロセッサ35は、一例として、図10に示す処理を実行する。プロセッサ35は、オペレータに所望の物質のファントムFM1(FM2)をX線装置10の検査位置の所定位置に置くようにオペレータに指示し(ステップS1)、この配置が終わるとX線装置10を稼働させてファントムFM1をX線スキャンし、その計測値を収集する(ステップS2)。次いで、前述したように、補正用データCi(t)を演算し(ステップS3)、それをROM33の第1のデータ記憶領域33Bに記憶させて保存する(ステップS4)。
このファントムに依る事前の計測及び補正用データの演算が終わる場合には、処理を終える(ステップS6:YES)。しかし、終了しない場合(ステップS6:NO)の判断の場合には、処理をS7以降の検査の処理を実行する。
なお、上述した処理において、ステップS1、S2の工程が前述した特性取得部51(特性取得手段に相当)を機能的に構成し、ステップS3,S4の工程が前述した補正用データ演算部52(補正用データ演算手段に相当)を機能的に構成し、ステップS9,S9の処理が前述した補正部53(補正手段に相当)を機能的に構成している。さらに、ステップS11の工程は処理手段に相当し、ステップS12の工程は提示手段に相当する。
(μ1t、μ2t、μ3t)
を設定し、3次元の線減弱ベクトル(μ1、μ2、μ3)の長さ、即ち、線減弱ベクトル長
(μ1 2+μ2 2+μ3 2)1/2
を分母とする正規化された3次元ベクトル(以下、線減弱ベクトルと呼ぶ)を
(μ1,μ2,μ3)/(μ1 2+μ2 2+μ3 2)1/2
として演算すると、この線減弱ベクトルから厚みtの成分が消える。互いに直交する3つの軸がm1t、m2t、m3tをそれぞれ表す3次元座標を設定すると、この3次元線減弱ベクトルの始点はその3次元座標の原点に位置し、終点が半径1の例えば球体表面に位置する。この3次元線減弱ベクトルを各画素について演算し、上記3次元座標にマッピングすると、それらの終点はかかる球体表面の所定の一点を中心に、その周辺の一定範囲に分布する、統計誤差を示す点の集合として散布点される。このような散布点を描いた3次元マッピング図を、本発明者等は3次元散布図と呼んでいる。この3次元散布図の例を図11に示す。同図において、参照符号Vrが3次元線減弱ベクトルを示し、参照符号DPが散布点を示す。
t(μ1 2+μ2 2+μ3 2)1/2
で演算でき、本発明者等は、このスカラー量を吸収ベクトル長(又は擬似吸収値)と呼んでいる。この吸収ベクトル長を画素値として2次元画像を作成でき、本発明者等は、この
2次元画像を吸収ベクトル長画像(又は擬似吸収画像)と呼んでいる。この吸収ベクトル長画像の例を図12に示す。
上述した実施形態で説明した補正用データの取得に関して、更に様々な態様で実施できる。
まず、前述した図7において説明した直線状の目標特性について様々な変形例が挙げられる。前述した目標特性の求め方はあくまで一例であり、この直線は自在に設計することができる。
この第2の変形例も、上述と同様に、目標特性の別の設定法に関する。
ここで、X線エネルギーBINそれぞれの実効エネルギーを用いる場合について説明する。図13にX線エネルギースペクトルの一例を模式的に示す。同図のスペクトルの場合、図3と同様に、3つのエネルギーBin1~Bin3が設定されている。この場合、各エネルギーBin1(~Bin3)において実効エネルギーEiを下記式から演算できる。
これは、エネルギー閾値ETHi~実効エネルギーEiの間のフォトンのカウントがエネルギー閾値ETHi~ETHi+1の間のフォトンのカウントの1/2になることを意味している。
第3の変形例は、キャリブレーションファントムが呈する厚さtの大小部分に応じて、補正用データを取得する厚さ刻みΔtを変える手法に関する。これは、ビームハードニング補正は一般に厚さtが薄い方ほど精度良く実行する必要があるからである。このため、図15に模式的に示すように、キャリブレションファントムの厚さtが薄いほど厚さ刻みΔtを小さい値に設定する(例えばΔt1<Δt2)。この厚さ刻みΔtの変更設定は、プロセッサ35により、図10のステップS3の中で実行される(ステップS3A参照)。これにより、厚さtに応じた、より極めの細かい補正用データ(乗算補正係数Ci(t):キャリブレションデータ)を取得できる。
前述した実施形態では、図7に示すように、物質の想定される厚さtの全域を1つの区間として、X線減弱量μtの特性を2次関数等で近似し、この近似式が示す曲線を傾きμi0の目標特性に補正する補正用データを取得していた。これについては更に様々な態様で実施できる。例えば、図16示すように、対象物の厚さを複数の区間、例えば薄い区間ta、中程度の厚さ区間tb、及び厚い区間tcに分けて、それぞれの区間毎に前述した近似式の演算及び補正用データ算出の演算を行なうこともできる。
第3の変形例は、分割区間を設定するという点で第2の変形例の手法と似ているが、この分割区間を厚さtの方向にずらしながら、補正用データを演算する点が相違する。
図14に関し、ステップS202は機能的に特性取得手段を構成し、ステップS203~S205は機能的に補正用データ演算手段を構成し、ステップS207が保存手段の一部を構成している。また、図17において、ステップS31及びS32が機能的に補正用データ演算手段の一部を構成し、ステップS33が機能的に保存手段を構成している。さらに、図19において、ステップS310~S317が機能的に補正用データ演算手段の一部を構成している。このうち、ステップS317が保存手段の一部に相当する。
21 X線管
24 検出器
25 データ収集回路
12 データ処理装置(コンピュータ)
33 ROM
33A プログラム記憶領域
33B 第1のデータ記憶領域(参照データ保存手段の一部にも相当)
33C 第2のデータ記憶領域
35 プロセッサ(処理手段の要部を構成:CPUを搭載)
37 入力器
38 表示器(提示手段の一部に相当)
51 特性取得部(特性取得手段に相当)
52 補正用データ演算部(補正用データ演算手段に相当)
53 補正部(補正手段に相当)
P 画素
PA 画素領域
OB 対象物
FM1、FM2 ファントム
Claims (29)
- 予め決められた連続X線スペクトラムを有するビーム状のX線を対象物に照射し、その対象物を透過してきたX線に基づいて当該対象物を検査するX線装置において、
前記対象物と同一の物質、又は、実効原子番号に関して当該対象物と類似であると見做せる素材からなる物質を透過してきた前記X線を検出し、予め設定した1つ以上のX線エネルギーBIN毎に当該X線の光子数を計数して、その計数値を出力する光子計数型の検出器(26(24))と、
前記検出器が出力した前記計数値に基づき、前記X線エネルギーBIN毎に、前記物質の、前記X線の線束が透過する方向における複数の互いに異なる既知の厚さtと当該線減弱係数μとにより定義されるX線減弱量μtの特性を取得する特性取得手段(51)と、
前記特性取得手段により取得されたX線減弱量μtの特性を、一方の軸に前記厚さtを採り且つ当該一方の軸と直交する他方の軸に前記X線減弱量μtを採った2次元座標において当該座標の原点を通る直線状の目標特性に置き換えるための補正用データを、前記X線エネルギーBIN毎に演算する補正用データ演算手段(52)と、
を備えたことを特徴とするX線装置。 - 前記検出器は、前記X線を入射させる複数の画素を備え、前記対象物を透過してきた前記X線を当該複数の画素夫々により検出し、前記予め設定した1つ以上のX線エネルギーBIN毎に且つ当該画素毎に当該X線の光子数を計数して、その計数値を出力するように構成され、
前記特性取得手段は、前記検出器が出力した前記計数値に基づき、前記X線エネルギーBIN毎に且つ前記画素毎に又は2つ以上の当該画素から成る画素領域毎に、前記X線減弱量μtの特性を取得するように構成され、
前記補正用データ演算手段は前記補正用データを、前記X線エネルギーBIN毎に且つ前記画素毎に又は前記画素領域毎に演算するように構成されている、
ことを特徴とする請求項1に記載のX線装置。 - 前記補正用データに基づき前記計数値を、前記X線エネルギーBIN毎に且つ前記画素毎に又は前記画素領域毎に補正する補正手段(53)を備えたことを特徴とする請求項1又は2に記載のX線装置。
- 前記補正手段により補正された前記計数値に基づき前記対象物の前記検査のためのデータ処理を行う処理手段(S11)を備えたことを特徴とする請求項3に記載のX線装置。
- 前記補正用データ演算手段は、
前記特性取得手段により取得された前記X線減弱量μtの特性を前記厚さtの関数で近似する近似手段(S3(S31))と、
前記関数で近似されたX線減弱量μtの特性を、前記各X線エネルギーBINを代表するX線エネルギーを有する単色X線に相当する前記X線減弱量μtの前記直線状の目標特性に置換するための補正係数を前記補正用データとして演算する補正係数演算手段(S3(S32))を有することを特徴とする請求項1~4の何れか一項に記載のX線装置。 - 前記近似手段は、前記厚さtが成す前記一方の軸を複数の区間に分割し、その複数の区間それぞれにて当該厚さtの関数で前記X線減弱量μtの特性を近似するように構成され、
前記補正係数演算手段は、前記複数の区間それぞれにて前記補正係数を演算するように構成されている、
ことを特徴とする請求項5に記載のX線装置。 - 前記近似手段は、前記厚さtが成す前記一方の軸上で所定数の複数点における前記X線減弱量μtの特性を、当該所定数の複数点の位置をずらしながら、当該厚さtの関数で順次近似するように構成され、
前記補正係数演算手段は、前記近似手段によりなされる前記所定数の複数点の位置の組それぞれにおいて前記補正係数を演算するように構成されている、
ことを特徴とする請求項6に記載のX線装置。 - 前記補正係数演算手段は、前記複数点の位置が設定される毎に、当該複数点の位置のうちの部分的な位置が成す前記厚さtの範囲であって、その前の設定時の当該部分的な位置が成す前記厚さtの範囲に続く当該厚さtの範囲に対する前記補正係数を演算するように構成されていることと特徴とする請求項7に記載のX線装置。
- 前記複数の区間は、前記厚さtが薄い区間ほど厚さtの刻みをより細かく設定していることを特徴とする請求項6~8の何れか一項に記載のX線装置。
- 前記複数の区間のうち、前記厚さtが一番薄い区間は前記2次元座標の原点を始点とすることを特徴とする請求項6~9の何れか一項に記載のX線装置。
- 前記厚さtの関数は、前記厚さtの2次関数であることを特徴とする請求項6~10の何れか一項に記載のX線装置。
- 前記補正係数演算手段により演算された前記補正用データ、及び、前記近似手段により近似された前記関数を示す情報を記憶する記憶手段(33B,33C)を備えたことを特徴とする請求項5に記載のX線装置。
- 前記X線エネルギーBINの数は2つ以上である(BINi:i=1,2,…)ことを特徴とする請求項1~12の何れか一項に記載のX線装置。
- 前記X線エネルギーBINの数は3つである(BINi:i=1,2,3)ことを特徴とする請求項1~12の何れか一項に記載のX線装置。
- 前記補正用データ演算手段は、
前記対象物と同種の前記物質又は近似の前記物質の前記複数の互いに異なる厚さから設定した、当該対象物の代表的な厚さtrと当該代表厚さtrに相当する前記X線減弱量μtrとの交点と前記原点を結ぶ直線を前記直線状の目標特性として設定する目標特性設定手段(S3)を備えたことを特徴とする請求項14に記載のX線装置。 - 前記補正用データ演算手段は、
前記X線エネルギーBINそれぞれの実効エネルギーあるいは固定エネルギーの理論値から計算される線源弱係数を傾きとし且つ前記原点を通る直線を前記直線状の目標特性として設定する目標特性設定手段(S3)を備えたことを特徴とする請求項14記載のX線装置。 - 前記補正手段により補正されたデータを用いて前記対象物の前記X線減弱に関するベクトル情報を画素毎に演算する対象物情報演算手段と、
前記ベクトル情報を提示する提示手段(S12)と、を備え、
前記対象物情報演算手段は、
n個(nは2以上の正の整数)の前記X線エネルギーBINの仮想平均線減弱係数μi(i=1~n)、
X線投影方向で見たときの前記対象物の厚さt、及び、
仮想平均線減弱係数μi(i=1,2,…,n)及び厚さtで定義されるn次元ベクトル(μ1t,μ2t,…,μnt)を定義したときに、
このn次元ベクトルの下記計算によって導出される規格化された線減弱ベクトル
(μ1,μ2,…,μn)/(μ1 2+μ2 2+μn 2)1/2
を前記ベクトル情報として演算するように構成されている
ことを特徴とする請求項12~16の何れか一項のX線装置。 - 前記補正手段により補正されたデータを用いて前記対象物の前記X線減弱に関する吸収ベクトル長を画素毎に演算する対象物情報演算手段と、
前記吸収ベクトル長を提示する提示手段(S12)と、を備え、
前記対象物情報演算手段は、
n個(nは2以上の正の整数)の前記X線エネルギーBINの仮想平均線減弱係数μi(i=1,2,…,n)、
X線投影方向で見たときの前記対象物の厚さt、及び、
仮想平均線減弱係数μi(i=1,2,…,n)及び厚さtで定義されるn次元ベクトル(μ1t,μ2t,…,μnt)を定義したときに、ベクトル長さ
t×(μ1 2+μ2 2+…+μn 2)1/2
を前記吸収ベクトル長として演算するように構成された
ことを特徴とする請求項12~16の何れか一項に記載のX線装置。 - 前記処理手段は、前記補正手段により補正されたデータを用いて前記対象物の前記X線減弱に関するベクトル情報及び吸収ベクトル長を画素毎に有する吸収ベクトル長画像を演算するように構成され、
前記提示手段は、前記ベクトル情報及び吸収ベクトル長を提示するように構成され、
前記対象物情報演算手段は、
n個(nは2以上の整数)の前記X線エネルギーBINの仮想平均線減弱係数μi(i=1、2、…、n)、
X線投影方向で見たときの前記対象物の厚さt、及び、
仮想平均線減弱係数μi(i=1,2,…、n)及び厚さtで定義されるn次元ベクトル(μ1t,μ2t,…μnt)を定義したときに、
このn次元ベクトルの線減弱ベクトル
(μ1,μ2,…,μn)/(μ1 2+μ2 2+…+μn 2)1/2
を前記ベクトル情報として演算し、前記吸収ベクトル長を、ベクトル長さ
t×(μ1 2+μ2 2+…+μn 2)1/2
として演算するように構成されたことを特徴とする請求項12~16の何れか一項に記載のX線装置。 - 前記処理手段は、i)前記対象物或いは当該対象物の一部を成す物質の種類又は性状、ii)当該対象物の外部に付着或いは当該対象物の内部に混入するかもれしれない異物の存在、又はiii)当該異物の種類或いは性状、iv)前記対象物或いは当該対象物の一部を成す物質或いは当該対象物の内部に混入するかもれしれない異物の重量、v)前記対象物或いは当該対象物の一部を成す物質或いは当該対象物の内部に混入するかもれしれない異物の厚み、のうちの少なくとも何れか1つを同定するように構成されていることを特徴とする請求項4~16の何れか一項に記載のX線装置。
- 前記対象物と同種の、又は、前記X線の減弱係数が近似していると見做せる素材からなる物質を用いて作成され、かつ、計測時に前記X線の透過方向において前記複数の既知の厚さを呈するように作成されたファントムを備え、
前記特性取得手段は、
前記ファントムを、検査時に前記対象物を設置する位置に配置した状態で、前記X線による前記照射を行ったときの前記検出器が出力した前記計数値を取得し、この前記計数値に基づき、前記ファントムの前記X線の線束が透過する方向における前記X線減弱量μtの特性を演算するように構成され、
前記補正用データ演算手段は、
前記事前演算手段により演算されたX線減弱量μtの特性から、前記X線減弱量μtの特性を前記直線状の目標特性に補正するための補正用データを演算して参照用データとして事前に保有する参照データ保有手段(33B)を有し、
前記補正手段は、
前記対象物の実際の検査時に、前記参照データ保有手段に保有されている前記補正用データを参照して当該検査時の前記計数値を補正するように構成されている請求項3~20の何れか一項に記載のX線装置。 - 前記物質は、前記線減弱係数に関して前記対象物を模したファントムであって、
前記素材は、前記対象物の実効原子番号の±5の範囲内の実効原子番号を有する素材であることを特徴とする請求項1~21の何れか一項に記載のX線装置。 - 前記素材は、前記対象物の実効原子番号の±2の範囲内の実効原子番号を有する素材であることを特徴とする請求項22に記載のX線装置。
- 予め決められた連続X線スペクトラムを有するビーム状のX線をX線管から対象物に照射し、その対象物を透過したX線を検出し、予め設定した1つ以上のX線エネルギーBIN毎に当該X線の光子数を計数して、その計数値を出力するX線装置に搭載されたデータ処理装置(12)において、
前記計数値に基づき、前記X線エネルギーBIN毎に、前記対象物と同一の物質、又は、実効原子番号に関して当該対象物と類似であると見做せる素材からなる物質の、前記X線の線束が透過する方向における複数の互いに異なる既知の厚さtと当該線減弱係数μとにより定義されるX線減弱量μtの特性を取得する特性取得手段(51)と、
前記特性取得手段により取得されたX線減弱量μtの特性を、一方の軸に前記厚さtを採り且つ当該一方の軸と直交する他方の軸に前記X線減弱量μtを採った2次元座標において当該座標の原点を通る直線状の目標特性に置き換えるための補正用データを、前記X線エネルギーBIN毎に演算する補正用データ演算手段(52)と、
を備えたことを特徴とするデータ処理装置。 - 前記物質は、前記線減弱係数に関して前記対象物を模したファントムであって、
前記素材は、前記対象物の実効原子番号の±5の範囲内の実効原子番号を有する素材であることを特徴とする請求項24に記載データ処理装置。 - 前記素材は、前記対象物の実効原子番号の±2の範囲内の実効原子番号を有する素材であることを特徴とする請求項25に記載のデータ処理装置。
- 予め決められた連続X線スペクトラムを有するビーム状のX線をX線管から対象物に照射し、その対象物を透過したX線を検出し、予め設定した1つ以上のX線エネルギーBIN毎に当該X線の光子数を計数して、その計数値を出力するX線装置で実行されるデータ処理方法において、
前記計数値に基づき、前記X線エネルギーBIN毎に、前記対象物と同一の物質、又は、実効原子番号に関して当該対象物と類似であると見做せる素材からなる物質の、前記X線の線束が透過する方向における複数の互いに異なる既知の厚さtと当該線減弱係数μとにより定義されるX線減弱量μtの特性を取得し、
前記取得されたX線減弱量μtの特性を、一方の軸に前記厚さtを採り且つ当該一方の軸に直交する他方の軸に前記X線減弱量μtを採った2次元座標において当該座標の原点を通る直線状の目標特性に置き換えるための補正用データを、前記X線エネルギーBIN毎に演算する、
ことを特徴とするデータ処理方法。 - 前記物質は、前記線減弱係数に関して前記対象物を模したファントムであって、
前記素材は、前記対象物の実効原子番号の±5の範囲内の実効原子番号を有する素材であることを特徴とする請求項27に記載のデータ処理方法。 - 前記素材は、前記対象物の実効原子番号の±2の範囲内の実効原子番号を有する素材であることを特徴とする請求項28に記載のデータ処理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/740,892 US11009470B2 (en) | 2015-10-23 | 2016-10-24 | X-ray apparatus, data processing apparatus and data processing method |
EP16857598.3A EP3367086B1 (en) | 2015-10-23 | 2016-10-24 | X-ray device, data processing device, and data processing method |
KR1020177031543A KR102075828B1 (ko) | 2015-10-23 | 2016-10-24 | X선 장치, 데이터 처리 장치 및 데이터 처리 방법 |
JP2017545836A JP6590381B2 (ja) | 2015-10-23 | 2016-10-24 | X線装置、データ処理装置及びデータ処理方法 |
CN201680025228.3A CN107533019B (zh) | 2015-10-23 | 2016-10-24 | X射线装置、数据处理装置及数据处理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-209253 | 2015-10-23 | ||
JP2015209253 | 2015-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017069286A1 true WO2017069286A1 (ja) | 2017-04-27 |
Family
ID=58557559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/081483 WO2017069286A1 (ja) | 2015-10-23 | 2016-10-24 | X線装置、データ処理装置及びデータ処理方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11009470B2 (ja) |
EP (1) | EP3367086B1 (ja) |
JP (1) | JP6590381B2 (ja) |
KR (1) | KR102075828B1 (ja) |
CN (1) | CN107533019B (ja) |
WO (1) | WO2017069286A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018235823A1 (ja) * | 2017-06-20 | 2018-12-27 | 株式会社ジョブ | X線装置、x線検査方法、及びデータ処理装置 |
JP2019012011A (ja) * | 2017-06-30 | 2019-01-24 | アンリツインフィビス株式会社 | 物品検査装置およびその校正方法 |
JP2019056699A (ja) * | 2017-09-19 | 2019-04-11 | 住友精密工業株式会社 | ワークのx線測定条件決定方法およびx線測定装置の制御装置 |
WO2019083014A1 (ja) | 2017-10-26 | 2019-05-02 | 株式会社ジョブ | 光子計数型のx線検出データを処理する方法及び装置、並びに、x線装置 |
JPWO2018212217A1 (ja) * | 2017-05-16 | 2020-05-21 | 株式会社ジョブ | X線検査におけるデータ処理装置及びデータ処理方法、並びに、その装置を搭載したx線検査装置 |
CN111521625A (zh) * | 2019-05-03 | 2020-08-11 | 伟博泰有限公司 | 试块 |
JP2020183954A (ja) * | 2019-05-03 | 2020-11-12 | ヴィポテック ゲーエムベーハー | 製品を、特に食料品をx線検査する方法および装置 |
CN114063138A (zh) * | 2021-11-16 | 2022-02-18 | 武汉联影生命科学仪器有限公司 | 扫描成像系统有效能量的测定方法、设备和扫描成像系统 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10451568B2 (en) * | 2014-08-22 | 2019-10-22 | Canon Medical Systems Corporation | Photon counting X-ray CT apparatus |
BR112018074796B1 (pt) * | 2016-05-30 | 2023-03-28 | Southern Innovation International Pty Ltd | Sistema e método de caracterização de material |
WO2020241669A1 (ja) * | 2019-05-27 | 2020-12-03 | ダイヤトレンド株式会社 | X線検出データを処理するデータ処理装置及びデータ処理方法、並びに、その装置又は方法を搭載したx線検査装置 |
CN114270180A (zh) * | 2019-08-22 | 2022-04-01 | 卓缤科技贸易公司 | X射线单元技术模块和自动化应用训练 |
CN110672044A (zh) * | 2019-10-10 | 2020-01-10 | 辽宁工程技术大学 | 基于x光数据的钢丝绳芯输送带剩余厚度计算矫正方法 |
JP7440271B2 (ja) * | 2020-01-10 | 2024-02-28 | 富士フイルムヘルスケア株式会社 | 放射線撮像装置および光子計数型検出器の較正方法 |
CN113359176B (zh) * | 2020-03-06 | 2022-10-04 | 台达电子工业股份有限公司 | X射线照影方法及其系统 |
EP4083614A1 (de) * | 2021-04-29 | 2022-11-02 | Sesotec GmbH | Verfahren zum erfassen der detektionsempfindlichkeit eines röntgengeräts |
CN113796879B (zh) * | 2021-09-27 | 2024-03-08 | 北京万东医疗科技股份有限公司 | 一种球管出射能谱验证方法、装置、电子设备及存储介质 |
CN117347396B (zh) * | 2023-08-18 | 2024-05-03 | 北京声迅电子股份有限公司 | 基于XGBoost模型的物质种类识别方法 |
CN117270024B (zh) * | 2023-11-20 | 2024-02-20 | 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) | 能谱响应函数的校正方法、装置、计算机设备及存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6040941A (ja) * | 1983-08-16 | 1985-03-04 | Toshiba Corp | 断層撮影装置 |
JPH0327046A (ja) * | 1989-06-23 | 1991-02-05 | Konica Corp | 感光性平版印刷版の処理方法及び装置 |
JP2002291729A (ja) * | 2001-03-28 | 2002-10-08 | Fuji Photo Film Co Ltd | ファントム、放射線画像情報生成装置の性能判定方法およびシステム |
JP2006101926A (ja) * | 2004-09-30 | 2006-04-20 | M & C:Kk | 放射線検出装置、放射線画像診断装置、及び放射線画像の生成方法 |
JP2008220653A (ja) * | 2007-03-13 | 2008-09-25 | Toshiba Corp | X線ct装置、被検体外形推定方法、画像再構成方法 |
JP2010082031A (ja) * | 2008-09-30 | 2010-04-15 | Hitachi Ltd | エネルギー情報を用いたx線ct画像再構成法 |
WO2010061810A1 (ja) * | 2008-11-27 | 2010-06-03 | 株式会社 日立メディコ | 放射線撮像装置 |
JP2015184119A (ja) * | 2014-03-24 | 2015-10-22 | 株式会社東芝 | 放射線計測装置、および放射線計測プログラム |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6674835B2 (en) * | 2001-10-12 | 2004-01-06 | General Electric Co. | Methods and apparatus for estimating a material composition of an imaged object |
US7583779B2 (en) * | 2004-11-24 | 2009-09-01 | General Electric Company | System and method for acquisition and reconstruction of contrast-enhanced, artifact-reduced CT images |
US7298812B2 (en) * | 2006-03-31 | 2007-11-20 | General Electric Company | Image-based material decomposition |
JP5297142B2 (ja) | 2008-10-09 | 2013-09-25 | アンリツ産機システム株式会社 | 異物検出方法および装置 |
CN101750621A (zh) * | 2008-12-08 | 2010-06-23 | 皇家飞利浦电子股份有限公司 | 对来自像素化探测器的测量的评估 |
JPWO2012144589A1 (ja) * | 2011-04-21 | 2014-07-28 | 株式会社テレシステムズ | 光子計数型放射線検出器のキャリブレーション装置及びそのキャリブレーション方法 |
WO2013008712A1 (ja) * | 2011-07-12 | 2013-01-17 | 株式会社日立メディコ | X線ct装置、計算装置、x線ct装置用記録媒体およびx線ct装置のメンテナンス方法 |
WO2013024890A1 (ja) * | 2011-08-18 | 2013-02-21 | 株式会社東芝 | 光子計数型のx線コンピュータ断層装置及び散乱線補正方法 |
JP5942099B2 (ja) | 2011-12-08 | 2016-06-29 | タカラテレシステムズ株式会社 | 物質同定装置及び撮像システムの作動方法 |
DE102013204604A1 (de) * | 2013-03-15 | 2014-09-18 | Siemens Aktiengesellschaft | Röntgenaufnahmesystem zur differentiellen Phasenkontrast-Bildgebung eines Untersuchungsobjekts mit Phase-Stepping |
KR101850263B1 (ko) * | 2014-01-23 | 2018-04-18 | 가부시키가이샤 죠부 | X선 검사 장치 및 x선 검사 방법 |
US10451568B2 (en) * | 2014-08-22 | 2019-10-22 | Canon Medical Systems Corporation | Photon counting X-ray CT apparatus |
KR102393294B1 (ko) * | 2014-09-26 | 2022-05-03 | 삼성전자주식회사 | 의료 영상 장치 및 의료 영상 장치의 제어 방법 |
JP6564330B2 (ja) * | 2016-01-22 | 2019-08-21 | 株式会社日立製作所 | フォトンカウンティングct装置 |
US10716527B2 (en) * | 2017-02-17 | 2020-07-21 | Canon Medical Systems Corporation | Combined sinogram- and image-domain material decomposition for spectral computed tomography (CT) |
-
2016
- 2016-10-24 CN CN201680025228.3A patent/CN107533019B/zh active Active
- 2016-10-24 KR KR1020177031543A patent/KR102075828B1/ko active IP Right Grant
- 2016-10-24 EP EP16857598.3A patent/EP3367086B1/en active Active
- 2016-10-24 US US15/740,892 patent/US11009470B2/en active Active
- 2016-10-24 WO PCT/JP2016/081483 patent/WO2017069286A1/ja active Application Filing
- 2016-10-24 JP JP2017545836A patent/JP6590381B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6040941A (ja) * | 1983-08-16 | 1985-03-04 | Toshiba Corp | 断層撮影装置 |
JPH0327046A (ja) * | 1989-06-23 | 1991-02-05 | Konica Corp | 感光性平版印刷版の処理方法及び装置 |
JP2002291729A (ja) * | 2001-03-28 | 2002-10-08 | Fuji Photo Film Co Ltd | ファントム、放射線画像情報生成装置の性能判定方法およびシステム |
JP2006101926A (ja) * | 2004-09-30 | 2006-04-20 | M & C:Kk | 放射線検出装置、放射線画像診断装置、及び放射線画像の生成方法 |
JP2008220653A (ja) * | 2007-03-13 | 2008-09-25 | Toshiba Corp | X線ct装置、被検体外形推定方法、画像再構成方法 |
JP2010082031A (ja) * | 2008-09-30 | 2010-04-15 | Hitachi Ltd | エネルギー情報を用いたx線ct画像再構成法 |
WO2010061810A1 (ja) * | 2008-11-27 | 2010-06-03 | 株式会社 日立メディコ | 放射線撮像装置 |
JP2015184119A (ja) * | 2014-03-24 | 2015-10-22 | 株式会社東芝 | 放射線計測装置、および放射線計測プログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3367086A4 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7161212B2 (ja) | 2017-05-16 | 2022-10-26 | 株式会社ジョブ | X線検査におけるデータ処理装置及びデータ処理方法、並びに、その装置を搭載したx線検査装置 |
JPWO2018212217A1 (ja) * | 2017-05-16 | 2020-05-21 | 株式会社ジョブ | X線検査におけるデータ処理装置及びデータ処理方法、並びに、その装置を搭載したx線検査装置 |
EP3627145A4 (en) * | 2017-05-16 | 2021-01-13 | Job Corporation | DATA PROCESSING DEVICE AND DATA PROCESSING METHOD FOR RADIOLOGICAL EXAMINATION AND RADIOLOGICAL EXAMINATION DEVICE INCLUDING SUCH DEVICE MOUNTED IN IT |
US11331068B2 (en) | 2017-06-20 | 2022-05-17 | Job Corporation | X-ray device, x-ray inspection method, and data processing apparatus |
WO2018235823A1 (ja) * | 2017-06-20 | 2018-12-27 | 株式会社ジョブ | X線装置、x線検査方法、及びデータ処理装置 |
JPWO2018235823A1 (ja) * | 2017-06-20 | 2020-04-23 | 株式会社ジョブ | X線装置、x線検査方法、及びデータ処理装置 |
EP3644048A4 (en) * | 2017-06-20 | 2021-04-07 | Job Corporation | X-RAY DEVICE, X-RAY INSPECTION METHOD, AND DATA PROCESSING DEVICE |
JP7217020B2 (ja) | 2017-06-20 | 2023-02-02 | 株式会社ジョブ | X線装置、x線検査方法、及びデータ処理装置 |
JP2019012011A (ja) * | 2017-06-30 | 2019-01-24 | アンリツインフィビス株式会社 | 物品検査装置およびその校正方法 |
JP2019056699A (ja) * | 2017-09-19 | 2019-04-11 | 住友精密工業株式会社 | ワークのx線測定条件決定方法およびx線測定装置の制御装置 |
KR20200004392A (ko) | 2017-10-26 | 2020-01-13 | 가부시키가이샤 죠부 | 광자 계수형의 x선 검출 데이터를 처리하는 방법 및 장치, 및 x선 장치 |
JPWO2019083014A1 (ja) * | 2017-10-26 | 2020-12-24 | 株式会社ジョブ | 光子計数型のx線検出データを処理する方法及び装置、並びに、x線装置 |
CN110770607B (zh) * | 2017-10-26 | 2024-02-13 | 株式会社蛟簿 | 处理光子计数型x射线检测数据的方法及装置、以及x射线装置 |
JP7197174B2 (ja) | 2017-10-26 | 2022-12-27 | 株式会社ジョブ | 光子計数型のx線検出データを処理する方法及び装置、並びに、x線装置 |
EP3702812A4 (en) * | 2017-10-26 | 2021-07-21 | Job Corporation | METHOD AND DEVICE FOR PROCESSING PHOTONCOUNTING X-RAY DETECTION DATA AND X-RAY DEVICE |
CN110770607A (zh) * | 2017-10-26 | 2020-02-07 | 株式会社蛟簿 | 处理光子计数型x射线检测数据的方法及装置、以及x射线装置 |
WO2019083014A1 (ja) | 2017-10-26 | 2019-05-02 | 株式会社ジョブ | 光子計数型のx線検出データを処理する方法及び装置、並びに、x線装置 |
US11099141B2 (en) | 2017-10-26 | 2021-08-24 | Job Corporation | Method and apparatus for processing photon counting-type X-ray detection data and X-ray apparatus |
US11248907B2 (en) | 2019-05-03 | 2022-02-15 | Wipotec Gmbh | Test block |
JP2020183954A (ja) * | 2019-05-03 | 2020-11-12 | ヴィポテック ゲーエムベーハー | 製品を、特に食料品をx線検査する方法および装置 |
JP7101719B2 (ja) | 2019-05-03 | 2022-07-15 | ヴィポテック ゲーエムベーハー | 製品を、特に食料品をx線検査する方法および装置 |
US11493457B2 (en) | 2019-05-03 | 2022-11-08 | Wipotec Gmbh | Method and device for the X-ray inspection of products, in particular foodstuffs |
JP2020183959A (ja) * | 2019-05-03 | 2020-11-12 | ヴィポテック ゲーエムベーハー | 試験体 |
CN111521625A (zh) * | 2019-05-03 | 2020-08-11 | 伟博泰有限公司 | 试块 |
CN111521625B (zh) * | 2019-05-03 | 2024-01-02 | 伟博泰有限公司 | 试块 |
JP7014849B2 (ja) | 2019-05-03 | 2022-02-01 | ヴィポテック ゲーエムベーハー | 試験体 |
CN114063138A (zh) * | 2021-11-16 | 2022-02-18 | 武汉联影生命科学仪器有限公司 | 扫描成像系统有效能量的测定方法、设备和扫描成像系统 |
CN114063138B (zh) * | 2021-11-16 | 2023-07-25 | 武汉联影生命科学仪器有限公司 | 扫描成像系统有效能量的测定方法、设备和扫描成像系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3367086B1 (en) | 2024-09-11 |
EP3367086A4 (en) | 2019-07-10 |
JP6590381B2 (ja) | 2019-10-16 |
US20180214113A1 (en) | 2018-08-02 |
CN107533019B (zh) | 2020-05-05 |
KR102075828B1 (ko) | 2020-02-10 |
JPWO2017069286A1 (ja) | 2018-08-09 |
KR20170133450A (ko) | 2017-12-05 |
EP3367086A1 (en) | 2018-08-29 |
CN107533019A (zh) | 2018-01-02 |
US11009470B2 (en) | 2021-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6590381B2 (ja) | X線装置、データ処理装置及びデータ処理方法 | |
JP7217020B2 (ja) | X線装置、x線検査方法、及びデータ処理装置 | |
CN110678125B (zh) | 能量鉴别光子计数检测器及其用途 | |
US7738625B2 (en) | X-ray CT apparatus | |
EP2243021B1 (en) | System and method for quantitative imaging of chemical composition to decompose multiple materials | |
CN108135560B (zh) | X射线ct数据处理装置以及搭载其的x射线ct装置 | |
CN110770607B (zh) | 处理光子计数型x射线检测数据的方法及装置、以及x射线装置 | |
EP1943545A2 (en) | Method and apparatus for spectral computed tomography | |
EP3612095B1 (en) | Beam hardening correction in x-ray dark-field imaging | |
JP2020507753A (ja) | 一致を可能にする光子計数検出器 | |
WO2008068044A1 (en) | Method and system for computed tomography using transmission and fluorescence measurements | |
JP2020520451A (ja) | 放射線検出器で使用するための散乱補正技術 | |
US8100584B2 (en) | Voltage measurement in an imaging system | |
Bouwman et al. | An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems | |
REN et al. | X-ray photon counting detectors for preclinical and clinical applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16857598 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177031543 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15740892 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2017545836 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |