WO2017069276A1 - リグノフェノール-セルロース複合体の製造方法 - Google Patents

リグノフェノール-セルロース複合体の製造方法 Download PDF

Info

Publication number
WO2017069276A1
WO2017069276A1 PCT/JP2016/081370 JP2016081370W WO2017069276A1 WO 2017069276 A1 WO2017069276 A1 WO 2017069276A1 JP 2016081370 W JP2016081370 W JP 2016081370W WO 2017069276 A1 WO2017069276 A1 WO 2017069276A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reactor
blade
stirring blade
lignophenol
Prior art date
Application number
PCT/JP2016/081370
Other languages
English (en)
French (fr)
Inventor
舩岡 正光
有希 ▲徳▼永
野田 秀夫
Original Assignee
国立大学法人三重大学
関西化学機械製作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人三重大学, 関西化学機械製作株式会社 filed Critical 国立大学法人三重大学
Publication of WO2017069276A1 publication Critical patent/WO2017069276A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless

Definitions

  • the present invention relates to a method for producing a lignophenol-cellulose complex, and more particularly to a method for producing a lignophenol-cellulose complex, which is simpler and more efficient to produce from plant materials.
  • Lignocellulosic resources represented by plant resources (biomass) or plant materials are composed of cellulose, hemicellulose, and lignin, which form a complex semi-IPN (Semi-IPN) structure in the cell wall, Has been combined. For this reason, the structure cannot be released by a simple solvent treatment or the like, which gives outstanding stability to the lignocellulosic material (woody material).
  • the plant material is subjected to a predetermined treatment, and the plant material is converted into a lignophenol-cellulose composite (LCC; lignocellulose composite; these are called “lignophenol-nanocellulose composite (LNCC)”.
  • LCC lignophenol-nanocellulose composite
  • LP lignophenol derivatives
  • cellulose nanofiber has attracted attention, and it has been confirmed that it functions as a fiber reinforcing material by being mixed with various resin materials.
  • resin materials are hydrophobic, it is generally difficult to uniformly disperse hydrophilic cellulose fibers, and it has been proposed to use various additives together as an improvement measure.
  • JP-A-2-233701 JP-A-9-278904 JP 2001-342353 A JP 2002-105240 A JP 2008-266266 A JP 2011-256380 A International Publication No. 2010/047358
  • An object of the present invention is to provide a method capable of producing a lignophenol-cellulose complex more easily and efficiently from plant material. It is in.
  • the present invention relates to a method for producing a lignophenol-cellulose composite, (A) adding a phenolic material to the plant material to obtain a phenolic sorption material; (B) A reaction liquid is obtained by adding the phenol sorption material and concentrated acid into a reactor equipped with a stirring blade, and a shearing force is applied to the reaction liquid in the reactor to sorb the phenols.
  • the time required for the reaction step (b) is from 25 seconds to 3 minutes.
  • the peripheral speed of the stirring blade in the reaction step (b) is 3.6 ⁇ (m / sec) to 28 ⁇ (m / sec).
  • the concentrated acid is at least one mineral acid selected from the group consisting of concentrated sulfuric acid, concentrated hydrochloric acid, phosphoric acid and concentrated nitric acid.
  • the concentrated acid is 60% or more concentrated sulfuric acid.
  • the reactor comprises a cylindrical reactor body with the cylinder core horizontal.
  • the base end of the stirring blade is fixed around a rotating shaft provided in the reactor body, and the stirring blade extends in a radial direction from the rotating shaft toward the inner peripheral surface of the reactor body.
  • a blade having a comb-tooth shape, and one blade tip and the other blade tip are offset in a staggered arrangement, and the clearance between the blade tip and the inner peripheral surface of the reactor body Is designed to dimension to roll the phenol sorption material contained in the reaction solution.
  • a lignophenol-cellulose complex can be easily and efficiently produced from plant material.
  • the complex obtained by the present invention is a new material that has an increased flow start temperature and is different from the lignophenol, for example, compared to lignophenol that can be produced from plant material, and the time required for its production. Can be greatly shortened.
  • FIG. 2 is a flow diagram illustrating an example of a method for producing a lignophenol-cellulose composite of the present invention. It is sectional drawing of the said reactor for demonstrating an example of the reactor used for the reaction process (b) of this invention.
  • 4 is a graph showing FT-IR spectra of the composite samples obtained in Examples 1 to 3.
  • 6 is a graph showing FT-IR spectra of composite samples obtained in Examples 4 to 6.
  • 6 is a graph showing an FT-IR spectrum of a composite sample obtained in Example 7.
  • 6 is a graph showing an FT-IR spectrum of a composite sample obtained in Example 8.
  • 10 is a graph showing an FT-IR spectrum of the composite sample obtained in Example 9.
  • FIG. 1 is a flow diagram illustrating an example of a method for producing a lignophenol-cellulose composite of the present invention.
  • lignophenol-cellulose complex used in the present specification is a composition derived from a plant material and containing a lignophenol derivative and a cellulose component.
  • a pretreatment step (a) is performed. Specifically, a phenolic material is added to a plant material to produce a phenolic sorption material. .
  • the plant material used in the present invention includes, for example, the plant material itself, powder particles obtained from the plant material, chips, waste materials, scrap materials, thinned wood, and agricultural and forestry waste.
  • woody plants belonging to conifers or broadleaf trees for example, cedar, cypress, hiba, yew, ginkgo, enju, maple, giraffe, cous, chestnut, blackwood, mulberry, zelkova, tochi, oak, tsuga, elm, Hoe, merkaba, pine, bamboo), herbaceous plants (eg, rice, wheat, barley, sunflower, fern, potato, sweet potato, pumpkin, corn (including corn cob), cassava, sugar cane (including bagasse), tomato, Pea, soybean, sugar beet, oil palm).
  • the plant material is preferably sufficiently dried in advance. Further, the plant material is preferably subjected to a degreasing treatment in advance by a method well known to those skilled in the art,
  • the plant material is preferably sized so as to have a predetermined size in order to smoothly perform the reaction in the reaction step (b) with a concentrated acid described later.
  • the size is preferably 20 mesh pass to 200 mesh pass, more preferably 60 mesh pass to 100 mesh pass.
  • the pulverization of the plant material can be performed using means known to those skilled in the art (for example, a crusher, a pulverizer, a powder production machine).
  • phenolic material examples include, for example, at least one substituent selected from a linear or branched C 1 -C 3 alkyl group, a linear or branched C 1 -C 3 alkoxy group, and a hydroxyl group in the ortho position, Examples thereof include phenol derivatives having a meta position and / or a para position.
  • phenolic materials that can be used in the present invention include p-cresol, 2,6-xylenol, 2,4-xylenol, 2-methoxyphenol, 2,6-dimethoxyphenol, catechol, resorcinol, homocatechol, pyrogallol And phloroglucinol, and combinations of two or more thereof.
  • P-Cresol is preferred because the properties of the resulting lignophenol-cellulose complex can be controlled, for example it can provide sufficient hydrophobicity.
  • the amount of the phenolic material added to the plant material in the present invention is not necessarily limited, but is preferably 0.5 to 6 mol times based on the lignin (C 9 ) content contained in the plant material. More preferably, it is 1 to 3 mole times.
  • the time required for stirring is not particularly limited because it varies depending on the amount of plant material used, for example. Further, the stirring is preferably performed at room temperature.
  • reaction solution is prepared by adding the phenol sorption material obtained above and concentrated acid to a reactor equipped with a stirring blade, and a shear force is applied to the reaction solution in the reactor. Is added to cause a reaction between the phenol sorbent and the concentrated acid (reaction step (b) 14 in FIG. 1).
  • FIG. 2 is a cross-sectional view of the reactor for explaining an example of the reactor used in the reaction step (b) of the present invention.
  • a reactor 20 that can be used in the reaction step (b) of the present invention includes a cylindrical reactor body 20A with a horizontal cylinder core, a motor 20D, and a rotating shaft that is rotated by the motor 20D. 20B, a pumping blade 20J and a stirring blade 20C fixed to the rotary shaft 20B, an inlet 20E for the phenol sorption material on one end side of the reactor main body 20A, and the reaction solution on the other end side.
  • a liquid outlet 20G is provided.
  • the base end of the stirring blade 20C is fixed around the rotation shaft 20B.
  • the stirring blade 20C extends in the radial direction from the rotating shaft 20B toward the inner peripheral surface of the reactor main body 20A.
  • the blade tip 20C 'of the stirring blade 20C has a comb-tooth shape, and one blade tip and the other blade tip are displaced in a staggered arrangement. Furthermore, the clearance q between the blade tip 20C 'of the stirring blade 20C and the inner peripheral surface of the reactor main body 20A is designed to have a dimension for rolling the reaction liquid described later.
  • the mixture is stirred by the rotation of the stirring blade 20C, and is prepared to be configured in a mixed state of a liquid and a solid through a hydrolysis reaction between a phenol sorption material and a concentrated acid in the reaction solution.
  • the reaction liquid flows from the right to the left in FIG. 2 through the clearance q between the blade tip 20C ′ of the stirring blade 20C and the inner peripheral surface of the reactor main body 20A. Move in the direction.
  • the phenol sorption material contained in the reaction liquid is given a shearing force by rolling between the blade tip 20C ′ of the stirring blade 20C and the inner peripheral surface of the reactor main body 20A, and further subdivided.
  • a cooling mechanism having a cooling water inlet 20H and a cooling water outlet 20I is provided around the reactor main body 20A.
  • the cooling mechanism introduces cooling water sent from a separately provided chiller unit (not shown) from the cooling water inlet 20H, flows through the cooling mechanism, and flows out from the cooling water outlet 20I. Is adjusted to a temperature of 20 ° C. or higher and lower than 40 ° C.
  • the temperature of the reactor main body 20A at the time of hydrolysis is less than 20 ° C., for example, the viscosity of the reaction liquid containing the phenol sorption material increases; the reaction liquid solidifies; The reaction solution may not move smoothly.
  • the reactor 20 when the phenol sorption material and concentrated acid react, the cellulose component contained in the phenol sorption material swells. Thereby, the viscosity of the reaction liquid increases in the initial stage of stirring. Thereafter, the swollen cellulose component is hydrolyzed by concentrated acid, thereby reducing the viscosity of the reaction solution. Since the reactor 20 has the stirring blade 20C rotated by the motor 20D in the reactor main body 20A, the reaction between the phenol sorbent and the concentrated acid can be promoted, and the initial kneading efficiency can be improved. .
  • the stirred phenol sorbent is hydrolyzed by concentrated acid, while the lignin component in the phenol sorbent is phenolized at the side chain benzyl position and converted to a lignophenol derivative. Is done.
  • the reactor is not necessarily limited to the configuration shown in FIG. It may be another reactor equipped with a stirring blade that can apply a shearing force to the reaction solution.
  • examples of other reactors include a knife mixer, a homogenizer, and a pin mixer.
  • the concentrated acid that can be used in the reaction step (b) of the present invention is, for example, an acid (for example, an inorganic acid) having the ability to swell and hydrolyze the cellulose component contained in the phenol sorption material.
  • concentrated acids include concentrated sulfuric acid, concentrated hydrochloric acid, phosphoric acid and concentrated nitric acid, and combinations thereof.
  • concentrated sulfuric acid for example, one having a concentration of 60% or more, 65% or more, 72% or more can be used.
  • concentrated hydrochloric acid for example, one having a concentration of 38% or more can be used.
  • the amount of concentrated acid used in the reaction step (b) is not necessarily limited, but is preferably 100 mL to 500 mL, more preferably 200 mL to 400 mL, with respect to 100 g of the air-dried plant material contained in the phenol sorption material. If the amount of concentrated acid used is less than 100 mL, the cellulose component contained in the phenol sorption material cannot be sufficiently swollen and / or hydrolyzed, and the yield and quality of the resulting composite are reduced. There is. Even if the amount of concentrated acid used exceeds 500 mL, there is no particular effect on the progress of the reaction in the reaction step (b). Rather, the treatment and recovery of the concentrated acid after the completion of the reaction becomes complicated and the production efficiency decreases. There is a risk of causing.
  • time required for the reaction step (b) refers to the concentrated acid after the added phenol sorbent material and the concentrated acid come into contact with each other to start the reaction.
  • the time until the reaction of the phenol sorbent material is quenched that is, until the addition of water is started in step (c) described later).
  • the “time required for the reaction step (b)” is not necessarily limited to the time until the reaction liquid containing the phenol sorbent and the concentrated acid passes through the reactor 20 shown in FIG.
  • the end point of the time is set to coincide with the start point of water addition described later. .
  • the time required for the reaction step (b) is not necessarily limited because it may vary depending on the size of the reactor used, the magnitude of the shearing force applied to the reaction solution, and the like, but for example, from 5 seconds to 10 minutes. It is preferably 15 seconds to 5 minutes, more preferably 25 seconds to 3 minutes.
  • the time required for the reaction step (b) is less than 5 seconds, the reaction with the concentrated acid of the phenol sorbent material does not progress so much, and the swelling of the cellulose component in the phenol sorbent material becomes insufficient, There is a possibility that the amount of lignin converted to lignophenol is reduced, the cell wall structure constituting the phenol sorption material is not sufficiently released, and physical properties such as the complex of the present invention cannot be obtained.
  • the reaction step (b) is not necessarily limited because it affects conditions such as the magnitude of the shearing force to be applied, but in many cases, the reaction between the phenol sorbent and the concentrated acid proceeds rapidly in the initial stage of the reaction. Lignophenol is produced in the process, and then the concentrated acid tends to gradually hydrolyze the cellulose in the phenolic sorption material. For this reason, it is possible to control the composition ratio of lignophenol and cellulose of the resulting composite by appropriately selecting the time required for the reaction.
  • the blade peripheral speed of the stirring blade in the reactor (or also referred to as blade peripheral speed or blade tip speed) V (m / sec):
  • the term “the number of blades of the stirring blade” used in the present specification represents the total number of threads (that is, the number of blades) of the screw when the stirring blade has a screw structure such as an extrusion screw.
  • the blade peripheral speed of the stirring blade in the present invention is not necessarily limited because it may vary depending on the size of the reactor used, the time required for the reaction step (b), and the like, but it is not limited, for example, 3 ⁇ (m / sec) to 50 ⁇ ( m / sec), preferably 3.6 ⁇ (m / sec) to 28 ⁇ (m / sec). Even if the time required for the reaction step (b) satisfies the above range, if the peripheral speed of the stirring blade is less than 3 ⁇ (m / sec), sufficient shearing force is applied to the reaction liquid in the reactor.
  • the cellulose component in the phenolic sorbent material is insufficiently swollen, the amount of lignin converted to lignophenol is reduced, and the cell wall structure constituting the phenolic sorbent material is sufficient.
  • physical properties such as the composite of the present invention cannot be obtained without being released.
  • the peripheral speed of the stirring blade exceeds 50 ⁇ (m / sec)
  • the shearing force applied to the reaction solution in the reactor becomes too large, the reaction solution generates excessive heat, and temperature control becomes difficult.
  • the reaction between the phenol sorbent material and the concentrated acid in the reaction solution may proceed excessively, and it may be difficult to obtain the desired lignophenol-cellulose composite.
  • the blade diameter and rotation speed of the stirring blade that can achieve the blade peripheral speed of the stirring blade may be arbitrarily determined by those skilled in the art depending on, for example, the size of the reactor to be used (inner diameter, straight cylinder length, etc.). Can be set to a range.
  • the time required for the reaction step (b) and the peripheral speed of the stirring blade in the reaction step (b) are set in the above ranges, respectively, so that they are included in the phenol sorption material.
  • the cellulose component can be moderately hydrolyzed, and for example, a lignophenol-cellulose composite having inherent physical properties can be obtained.
  • reaction solution is then brought into contact with water to quench the reaction (quenching step (c) 16 in FIG. 1).
  • reaction solution coming out from the liquid outlet 20G of the reactor 20 shown in FIG. 2 is added to another tank in which a predetermined amount of water is placed in advance, thereby bringing the reaction solution into contact with water.
  • (Ii) Contact between the reaction solution and water by transferring the reaction solution from the solution outlet 20G of the reactor 20 shown in FIG. 2 to another vessel and adding water to the vessel.
  • a supply port downstream of the inlet 20E of the reactor main body 20A and upstream of the liquid outlet 20G of the reactor main body 20A.
  • reaction solution may be brought into contact with water by adding water into the reactor main body 20A through the supply port.
  • the reaction solution may be brought into contact with water by adding water into the reactor main body 20A through the supply port.
  • Examples of water that can be used in the quenching step (c) include tap water, deionized water, or ion exchange water.
  • the amount of water to be added is not necessarily limited as long as it is necessary and sufficient to stop the progress of the reaction between the phenolic sorbent and the concentrated acid. , Preferably 500 mL to 4000 mL, more preferably 1000 mL to 2000 mL.
  • the reaction solution is brought into contact with water in consideration of safety so that the reaction between the phenol sorbent and the concentrated acid does not proceed excessively and the physical properties of the resulting composite are not impaired. It is preferable to stop the reaction promptly.
  • water may be brought into contact with the reaction solution at room temperature, for example, or it may be cooled by a cooling means known in the art such as a water jacket or the like in order to avoid heat generation or the reaction solution and water in the environment. May be contacted. After the contact between the reaction solution and water, stirring may be performed using means known to those skilled in the art in order to keep the reaction system more uniform.
  • a cooling means known in the art such as a water jacket or the like in order to avoid heat generation or the reaction solution and water in the environment. May be contacted.
  • stirring may be performed using means known to those skilled in the art in order to keep the reaction system more uniform.
  • the quenched reaction solution is then subjected to solid-liquid separation (separation step (d) 18 in FIG. 1).
  • the reaction liquid quenched in the quenching step (c) is separated into a solid component and a liquid component using a separation method known to those skilled in the art (for example, centrifugation, filtration, decantation, and combinations thereof).
  • a separation method known to those skilled in the art (for example, centrifugation, filtration, decantation, and combinations thereof).
  • the separated solid component may be further washed with water or the like and dried as necessary.
  • the lignophenol-cellulose composite (LCC) obtained by the present invention can separate hemicellulose from plant materials through the above steps (a) to (d), and is composed of a lignophenol derivative and a cellulose component. It is a composition.
  • the composite obtained by the production method of the present invention has different physical properties in terms of thermal characteristics such as thermal stability and thermal fluidity compared to conventional LCC and lignophenol derivatives (LP). Can do.
  • the composite obtained by the production method of the present invention is used as an additive such as a fiber reinforcement added in the molding of resin products, taking advantage of the properties of the constituent components of the lignophenol derivative and the cellulose component. Can do.
  • the composite obtained by the present invention is a bioplastic material for use in various hot-press moldings. Can also be used.
  • Example 1 Production of lignophenol-cellulose composite (LCC) (1)
  • LCC lignophenol-cellulose composite
  • a 100 L stainless steel jacketed stirred tank was charged with 10 kg of air-dried cedar wood powder of about 83 mesh pass, about 80 L of acetone was added, and the acetone was further replaced several times for degreasing.
  • 80 L of an acetone solution containing 3 moles of p-cresol based on the lignin (C 9 ) content contained in the cedar wood flour was added and heated for 3 hours with stirring to evaporate and remove the acetone.
  • vacuum was applied to remove residual acetone, and p-cresol was sorbed on cedar wood flour.
  • the mixture was transferred to a stainless steel long vat, and the acetone solvent was completely distilled off while constantly and uniformly stirring in a fume hood to obtain a cresol sorption wood flour.
  • Reactor 20 shown in FIG. 2 (here, the dimensions of reactor 20 used were as follows: inner diameter 108 mm, stirring blade radius 54 mm (ie, blade diameter 108 mm), straight body length 501 mm, The shaft diameter was 30 mm, the distance between the comb teeth at the tip of the blade was 25 mm, and the number of blades of the stirring blade was 4) (obtained above) at a supply rate of 10 g per minute from the inlet 20E of Kansai Chemical Machinery Manufacturing Co., Ltd.
  • the cresol sorption wood flour and 65% concentrated sulfuric acid were added at a feed rate of 40 mL per minute from the concentrated acid inlet 21A, and the stirring blade 20C was rotated at a rotation speed of 1800 rpm.
  • the blade peripheral speed of the stirring blade 20C at this time was 12.96 ⁇ (m / sec). That is, 200 mL of concentrated sulfuric acid per 50 g of cresol sorption wood flour was added to the reactor 20.
  • the liquid outlet 20G of the reactor 20 was connected in advance to one end of a 22.5 cm Teflon (registered trademark) tube, and the other end was immersed in a stainless steel container containing 200 L of deionized water.
  • the reaction solution composed of cresol sorption wood flour and concentrated sulfuric acid passes through the reactor main body 20A through the rotation of the stirring blade 20C over 60 seconds, and then passes through the Teflon (registered trademark) tube for 8 seconds.
  • the reaction was quenched by passing over a second and then contacting the reaction with deionized water. That is, the time from the addition of cresol sorption wood flour and concentrated sulfuric acid to the contact of the reaction solution with deionized water was 68 seconds.
  • the quenched reaction liquid was continuously stirred until 5 minutes passed from the addition of cresol sorption wood flour and concentrated sulfuric acid (reaction start).
  • the quenched reaction solution is transferred to a 1 L centrifuge bottle, centrifuged at 4200 rpm for 15 minutes at 20 ° C., and the pH is shifted to the neutral side by using a pH meter (LAQUAD-71 manufactured by Horiba, Ltd.). After confirming that it was clear, the clear supernatant was removed using a tube pump. Next, 500 mL of deionized water was further added to the remaining precipitate, and after stirring manually, centrifugation was performed under the same conditions as described above. The operation from the centrifugation to removal of the supernatant was repeated a total of 3 times, and finally the mixed solution containing the water-insoluble fraction was quantitatively transferred to a 1 L plastic container.
  • a pH meter LAQUAD-71 manufactured by Horiba, Ltd.
  • the liquid mixture obtained above was transferred to two 500 mL centrifuge bottles, and centrifuged at 4200 rpm for 15 minutes at 20 ° C. using an ultracentrifuge (GRX220 manufactured by Tommy Seiko Co., Ltd.). After removing the clear supernatant and stirring the mixture containing the water-insoluble fraction, 300 mL of deionized water was added to the bottle. After confirming that the pH obtained by this operation is shifted to a more neutral side using a pH meter, manually stir the resulting mixture and again use the ultracentrifuge. In the same manner, centrifugation was performed. The above operation is repeated until the pH of the supernatant becomes 5 or less. Finally, 80 ° C.
  • sample liquid was freeze-dried and pulverized in an agate mortar, and this was put almost uniformly into two petri dishes, and each was dried under reduced pressure on diphosphorus pentoxide for 2 days to obtain a composite sample. .
  • Yield calculation The resulting composite sample was weighed and the yield was calculated. Yield is a percentage based on the weight of the cresol sorption wood flour, a percentage based on the weight of the air-dried wood flour, a percentage based on the weight of the oven-dried wood flour, and a percentage based on the weight of the sample solution. It calculated about each of. The obtained results are shown in Table 1.
  • thermomechanical analysis TMA
  • TMA-SS thermomechanical analyzer
  • stress was applied vertically downward with a quartz needle from the top of the placed aluminum plate (probe pressure: 49 mN) under a nitrogen atmosphere of 150 mL / min.
  • the sample was heated at a rate of 2 ° C./min in the temperature range of 50 ° C. to 300 ° C., and mutation was measured.
  • the flow starting temperature of the composite sample was calculated from the obtained TMA curve.
  • the flow start temperature of the composite sample was 158.50 ° C. (Table 1).
  • the complex sample obtained above contained a peculiar thing to the lignophenol derivative. From this, it can be seen that the complex sample obtained above contains the lignophenol derivative appropriately produced and contained during the production process.
  • Example 2 Production of lignophenol-cellulose composite (LCC) (2)) 2 except that 68% concentrated sulfuric acid was added instead of 65% concentrated sulfuric acid from the concentrated acid inlet 21A of the reactor 20 shown in FIG. Reaction was performed to obtain a composite sample.
  • thermogravimetric analysis TGA
  • the 5% weight reduction temperature of the composite sample calculated from the obtained TGA curve was 213.00 ° C.
  • the 10% weight reduction temperature was 276.20 ° C. (Table 1).
  • thermomechanical analysis TMA
  • the flow start temperature of the composite sample calculated from the obtained TMA curve was 153.10 ° C. (Table 1).
  • FT-IR Fourier transform infrared spectroscopy
  • Example 3 Production of lignophenol-cellulose composite (LCC) (3)
  • 70% concentrated sulfuric acid was added instead of 65% concentrated sulfuric acid from the concentrated acid inlet 21A of the reactor 20 shown in FIG. Reaction was performed to obtain a composite sample.
  • thermogravimetric analysis TGA
  • the 5% weight reduction temperature of the composite sample calculated from the obtained TGA curve was 214.90 ° C, and the 10% weight reduction temperature was 273.90 ° C (Table 1).
  • thermomechanical analysis TMA
  • the flow start temperature of the composite sample calculated from the obtained TMA curve was 147.90 ° C. (Table 1).
  • FT-IR Fourier transform infrared spectroscopy
  • Example 4 Production of lignophenol-cellulose composite (LCC) (4)
  • LCC lignophenol-cellulose composite
  • the reactor 20 shown in FIG. 2 (here, the dimensions of the reactor 20 used were as follows: inner diameter 108 mm, stirring blade radius 54 mm (that is, blade diameter 108 mm), straight body length) 501 mm, shaft diameter 30 mm, distance between comb teeth at the blade tip 25 mm, number of blades of stirring blade 4) (obtained above) at a feed rate of 10 g per minute from the inlet 20E of Kansai Chemical Machinery Manufacturing Co., Ltd.
  • the obtained cresol sorption wood flour and 72% concentrated sulfuric acid were added at a feed rate of 40 mL per minute from the concentrated acid inlet 21A, and the stirring blade 20C was rotated at a rotational speed of 1800 rpm.
  • the blade peripheral speed of the stirring blade 20C at this time was 12.96 ⁇ (m / sec). That is, 200 mL of concentrated sulfuric acid per 50 g of cresol sorption wood flour was added to the reactor 20.
  • the liquid outlet 20G of the reactor 20 was connected in advance to one end of a 22.5 cm Teflon (registered trademark) tube, and the other end was immersed in a stainless steel container containing 200 L of deionized water.
  • the reaction solution composed of cresol sorption wood flour and concentrated sulfuric acid passes through the reactor main body 20A through the rotation of the stirring blade 20C over 60 seconds, and then passes through the Teflon (registered trademark) tube for 8 seconds.
  • the reaction was quenched by passing over a second and then contacting the reaction with deionized water. That is, the time from the addition of cresol sorption wood flour and concentrated sulfuric acid to the contact of the reaction solution with deionized water was 68 seconds.
  • the quenched reaction liquid was continuously stirred until 5 minutes passed from the addition of cresol sorption wood flour and concentrated sulfuric acid (reaction start).
  • the quenched reaction solution is transferred to a 1 L centrifuge bottle, centrifuged at 4200 rpm for 15 minutes at 20 ° C., and the pH is shifted to the neutral side by using a pH meter (LAQUAD-71 manufactured by Horiba, Ltd.). After confirming that it was clear, the clear supernatant was removed using a tube pump. Next, 500 mL of deionized water was further added to the remaining precipitate, and after stirring manually, centrifugation was performed under the same conditions as described above. The operation from the centrifugation to removal of the supernatant was repeated a total of 3 times, and finally the mixed solution containing the water-insoluble fraction was quantitatively transferred to a 1 L plastic container.
  • a pH meter LAQUAD-71 manufactured by Horiba, Ltd.
  • the liquid mixture obtained above was transferred to two 500 mL centrifuge bottles, and centrifuged at 4200 rpm for 15 minutes at 20 ° C. using an ultracentrifuge (GRX220 manufactured by Tommy Seiko Co., Ltd.). After removing the supernatant and stirring the mixture containing the water-insoluble fraction, 300 mL of deionized water was added to the bottle, and the supernatant obtained by this operation was adjusted to a more neutral side using a pH meter. The resulting mixture was manually stirred and centrifuged again using the above ultracentrifuge, and the above operation was repeated until the pH of the supernatant was 5 or less.
  • an ultracentrifuge GRX220 manufactured by Tommy Seiko Co., Ltd.
  • sample liquid was freeze-dried and pulverized in an agate mortar, and this was put almost uniformly into two petri dishes, and each was dried under reduced pressure on diphosphorus pentoxide for 2 days to obtain a composite sample. .
  • thermogravimetric analysis TGA
  • the 5% weight reduction temperature of the composite sample calculated from the obtained TGA curve was 211.70 ° C, and the 10% weight reduction temperature was 262.70 ° C (Table 1).
  • thermomechanical analysis TMA
  • the flow start temperature of the composite sample calculated from the obtained TMA curve was 164.40 ° C. (Table 1).
  • FT-IR Fourier transform infrared spectroscopy
  • Example 5 Production of lignophenol-cellulose composite (LCC) (5)
  • LCC lignophenol-cellulose composite
  • 2 is connected to one end of a 73.0 cm Teflon (registered trademark) tube instead of 22.5 cm, and the other end is made of a stainless steel container containing 200 L of deionized water.
  • the reaction liquid composed of cresol sorption wood flour and concentrated sulfuric acid passes through the reactor main body 20A through the rotation of the stirring blade 20C over 60 seconds, and Teflon (registered trademark)).
  • the sample was passed through the tube for 35 seconds, ie, the time from the addition of cresol sorption wood flour and concentrated sulfuric acid until the reaction solution contacted with deionized water was 95 seconds.
  • a reaction between cresol sorption wood flour and concentrated sulfuric acid was performed to obtain a composite sample.
  • thermogravimetric analysis TGA
  • the 5% weight reduction temperature of the composite sample calculated from the obtained TGA curve was 202.10 ° C, and the 10% weight reduction temperature was 261.30 ° C (Table 1).
  • thermomechanical analysis TMA
  • the flow start temperature of the composite sample calculated from the obtained TMA curve was 159.30 ° C. (Table 1).
  • FT-IR Fourier transform infrared spectroscopy
  • Example 6 Production of lignophenol-cellulose composite (LCC) (6) 2 is connected to one end of a 124.0 cm Teflon (registered trademark) tube instead of 22.5 cm each, and the other end is made of a stainless steel container containing 200 L of deionized water.
  • the reaction liquid composed of cresol sorption wood flour and concentrated sulfuric acid passes through the reactor main body 20A through the rotation of the stirring blade 20C over 60 seconds, and Teflon (registered trademark)).
  • the sample passed through the tube for 63 seconds, that is, the time from the addition of cresol sorption wood flour and concentrated sulfuric acid until the reaction solution contacted with deionized water was 123 seconds.
  • a reaction between cresol sorption wood flour and concentrated sulfuric acid was performed to obtain a composite sample.
  • thermogravimetric analysis TGA
  • the 5% weight reduction temperature of the composite sample calculated from the obtained TGA curve was 212.70 ° C
  • the 10% weight reduction temperature was 264.70 ° C (Table 1).
  • thermomechanical analysis TMA
  • the flow start temperature of the composite sample calculated from the obtained TMA curve was 162.70 ° C. (Table 1).
  • FT-IR Fourier transform infrared spectroscopy
  • a 100 L stainless steel jacketed stirred tank was charged with 10 kg of air-dried cedar wood powder of about 83 mesh pass, about 80 L of acetone was added, and the acetone was further replaced several times for degreasing.
  • 80 L of an acetone solution containing 3 moles of p-cresol based on the lignin (C 9 ) content contained in the cedar wood flour was added and heated for 3 hours with stirring to evaporate and remove the acetone.
  • vacuum was applied to remove residual acetone, and p-cresol was sorbed on cedar wood flour. Thereafter, the mixture was transferred to a stainless steel long vat, and the acetone solvent was completely distilled off while constantly and uniformly stirring in a fume hood to obtain a cresol sorption wood flour.
  • the dimensions of the reactor in the plant resource phase separation system converter were as follows: inner diameter 108 mm, stirring blade radius 54 mm (ie, blade diameter 108 mm), straight body length 501 mm, shaft diameter 30 mm
  • the distance between the comb teeth at the blade tip is 25 mm, and the number of blades of the stirring blade is 4.
  • the rotation speed of the stirring blade was 1800 rpm, and the blade peripheral speed of the stirring blade at this time was 12.96 ⁇ (m / sec).
  • the liquid discharged from the second stirring buffer layer was separated into a lignin layer containing lignophenol and a sulfuric acid layer containing carbohydrate by a centrifuge.
  • the time required from the start of supply of the concentrated sulfuric acid to the separation was 42 minutes and 3 seconds.
  • lignin contained in the lignin layer was extracted and removed with hexane, and lignophenol was recovered from the resulting residue.
  • the composite samples obtained in Examples 1-6 were 20% for both 5% weight loss temperature and 10% weight loss temperature as compared with those obtained in Comparative Example 1. It showed a high value of not less than 30 ° C or not less than 30 ° C. Regarding the flow start temperature, the results of the composite samples obtained in Examples 1 to 6 were higher than those obtained in Comparative Example 1. From this, it can be seen that the composite samples obtained in Examples 1 to 6 are different substances having completely different characteristics from those obtained in Comparative Example 1 (lignophenol).
  • Example 7 Production of lignophenol-cellulose composite (LCC) (7)
  • a stirring tank with a jacket of 100 L made of stainless steel was charged with 5 kg of bagasse powder passed through a sieve having a 1 mm sieve opening, about 40 L of acetone was added, and the acetone was further replaced several times for degreasing.
  • 40 L of an acetone solution containing 3 mol times of p-cresol based on the lignin (C 9 ) content contained in the bagasse powder was added and heated for 3 hours with stirring to evaporate and remove the acetone.
  • vacuum was applied to remove residual acetone, and p-cresol was sorbed on the bagasse powder.
  • it moved to the stainless steel long vat the acetone solvent was distilled off completely, stirring constantly and uniformly in a fume hood, and the cresol sorption material was obtained.
  • the reaction liquid composed of cresol sorption wood flour and concentrated sulfuric acid passes through the reactor main body 20A through the rotation of the stirring blade 20C over 60 seconds, and Teflon (registered trademark)).
  • the sample passed through the tube for 63 seconds, that is, the time from the addition of cresol sorption wood flour and concentrated sulfuric acid until the reaction solution contacted with deionized water was 123 seconds.
  • a reaction between cresol sorption wood flour and concentrated sulfuric acid was performed to obtain a composite sample.
  • the complex sample obtained above was measured by Fourier transform infrared spectroscopy (FT-IR) in the same manner as in Example 1. The obtained results are shown in FIG. According to the spectrum shown in FIG. 5, the complex sample obtained above contained a characteristic of lignophenol derivatives. From this, it can be seen that the complex sample obtained above contains the lignophenol derivative appropriately produced and contained during the production process.
  • FT-IR Fourier transform infrared spectroscopy
  • Example 8 Production of lignophenol-cellulose composite (LCC) (8)
  • a composite sample was obtained.
  • the complex sample obtained above was measured by Fourier transform infrared spectroscopy (FT-IR) in the same manner as in Example 1. The obtained result is shown in FIG. According to the spectrum shown in FIG. 6, the complex sample obtained above contained a peculiar thing to the lignophenol derivative. From this, it can be seen that the complex sample obtained above contains the lignophenol derivative appropriately produced and contained during the production process.
  • FT-IR Fourier transform infrared spectroscopy
  • Example 9 Production of lignophenol-cellulose composite (LCC) (9)
  • Example 7 except that 10 kg of air-dried cedar wood flour of about 83 mesh pass was used instead of bagasse powder to obtain a cresol sorbent material and 62% concentrated sulfuric acid was used instead of 72% concentrated sulfuric acid. In the same manner as above, the cresol sorption material and concentrated sulfuric acid were reacted to obtain a composite sample.
  • the complex sample obtained above was measured by Fourier transform infrared spectroscopy (FT-IR) in the same manner as in Example 1. The obtained result is shown in FIG. According to the spectrum shown in FIG. 8, the complex sample obtained above contained a characteristic of lignophenol derivatives. From this, it can be seen that the complex sample obtained above contains the lignophenol derivative appropriately produced and contained during the production process.
  • FT-IR Fourier transform infrared spectroscopy
  • the composite samples obtained in Examples 7-9 showed visually different colors and aggregate morphology and 5% weight loss temperature compared to that obtained in Comparative Example 1.
  • the 10% weight loss temperature also showed a high value of about 45 ° C to 85 ° C.
  • the results of the composite samples obtained in Examples 7 to 9 were generally higher than those obtained in Comparative Example 1 by 35 ° C to 45 ° C. From this, it can be seen that the composite samples obtained in Examples 7 to 9 are different substances having completely different characteristics from those obtained in Comparative Example 1 (lignophenol).
  • Example 10 Production of lignophenol-cellulose composite (LCC) (10)
  • LCC lignophenol-cellulose composite
  • a portion of the quenched reaction solution is transferred to a 1 L centrifuge bottle, centrifuged at 4200 rpm for 15 minutes at 20 ° C., and the pH is made more neutral using a pH meter (LAQUAD-71 manufactured by Horiba, Ltd.). After confirming the shift, the transparent supernatant was removed using a tube pump. Next, 500 mL of deionized water was further added to the remaining precipitate, and after stirring manually, centrifugation was performed under the same conditions as described above. The operation from the centrifugation to removal of the supernatant was repeated a total of 3 times, and finally the mixed solution containing the water-insoluble fraction was quantitatively transferred to a 1 L plastic container.
  • a pH meter LAQUAD-71 manufactured by Horiba, Ltd.
  • the liquid mixture obtained above was transferred to two 500 mL centrifuge bottles, and centrifuged at 4200 rpm for 15 minutes at 20 ° C. using an ultracentrifuge (GRX220 manufactured by Tommy Seiko Co., Ltd.). After removing the clear supernatant and stirring the mixture containing the water-insoluble fraction, 300 mL of deionized water was added to the bottle. After confirming that the pH obtained by this operation is shifted to a more neutral side using a pH meter, manually stir the resulting mixture and again use the ultracentrifuge. In the same manner, centrifugation was performed. The above operation is repeated until the pH of the supernatant becomes 5 or less. Finally, 80 ° C.
  • sample liquid was freeze-dried and pulverized in an agate mortar, and this was put almost uniformly into two petri dishes, and each was dried under reduced pressure on diphosphorus pentoxide for 2 days to obtain a composite sample. .
  • thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were subjected to yield and moisture content measurement, thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) in the same manner as in Example 1. The obtained results are shown in Table 3.
  • Example 11 Production of lignophenol-cellulose composite (LCC) (11)
  • LCC lignophenol-cellulose composite
  • thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were subjected to yield and moisture content measurement, thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) in the same manner as in Example 1. The obtained results are shown in Table 3.
  • the composite samples obtained in Examples 10 and 11 showed visually different colors and agglomerated morphology, and 5% weight loss temperature compared to that obtained in Comparative Example 1.
  • the 10% weight loss temperature was generally as high as 25 ° C to 55 ° C.
  • the results of the composite samples obtained in Examples 10 and 11 were generally 21 ° C. to 36 ° C. higher than those obtained in Comparative Example 1. From this, it can be seen that the composite samples obtained in Examples 10 and 11 are another substance having completely different characteristics from those obtained in Comparative Example 1 (lignophenol).
  • the composite sample having such characteristics can be used not only in the reactor shown in FIG. 2 that enables continuous supply and reaction of the reaction solution as used in Examples 1 to 9, but also in the examples. It can be seen that reactors under batch conditions such as those used in 10 and 11 can also be produced.
  • a lignophenol-cellulose composite utilizing the characteristics of the lignophenol derivative and the cellulose component can be obtained.
  • the composite obtained by the present invention is useful, for example, as a bioplastic material for use in various hot pressing.
  • Pretreatment process 14 Reaction process 16 Quench process 18 Separation process 20 Reactor 20A Reactor body 20C Stirring blade 20C 'Blade tip 20D Motor 20B Rotating shaft 20J Pumping blade 20E Inlet 20G Liquid outlet 20H Cooling water inlet 20I Cooling water outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

リグノフェノール-セルロース複合体の製造方法を開示する。本発明の方法は、植物材料にフェノール類材料を添加して、フェノール類収着材料を得る工程;撹拌翼を備える反応器内にフェノール類収着材料および濃酸を添加して反応液を得、そして反応器内で反応液に剪断力を付加して該フェノール類収着材料と該濃酸とを反応させる工程;反応液を水と接触させて反応をクエンチする工程;およびクエンチした反応液を固液分離する工程;を包含する。ここで、反応工程(b)に要する時間は5秒間から5分間であり、反応工程(b)において、反応液に付加される剪断力は反応器における撹拌翼の所定の翼周速度で表され、そして撹拌翼の翼周速度は3π(m/秒)から50π(m/秒)である。

Description

リグノフェノール-セルロース複合体の製造方法
 本発明は、リグノフェノール-セルロース複合体の製造方法に関し、より詳細には植物材料からの製造がより簡易かつ効率的であるリグノフェノール-セルロース複合体の製造方法に関する。
 植物資源(biomass)または植物材料に代表されるリグノセルロース系資源は、セルロース、ヘミセルロース、およびリグニンから構成されており、それらは細胞壁中で複雑なセミIPN(Semi-IPN)構造を形成し、高度に複合化されている。このため、単純な溶媒処理等ではその構造を解放することができず、それがリグノセルロース系物質(木質材料)に際立った安定性を付与している。
 これに対し、このような植物材料に所定の処理を施して当該植物材料からリグノフェノール-セルロース複合体(LCC;リグノセルロース複合体;これらは「リグノフェノール-ナノセルロース複合体(LNCC)と呼ばれることがある)やリグノフェノール誘導体(LP)を取り出して、種々の技術分野に応用することが提案されている(特許文献1~7)。しかし、植物材料から、これらのリグノフェノール-セルロース複合体やリグノフェノール誘導体を得るには、より多くの処理工程および処理時間を必要とし、より効率性の高められた技術開発が所望されている。
 また、近年ではセルロースナノファイバー(CNF)が注目されており、各種樹脂材料に混合することにより、繊維補強材として機能することが確認されている。しかし、当該樹脂材料の多くは疎水性であることから、親水性のセルロース繊維を均一分散させることは一般に困難であり、その改善策として様々な添加剤を併用することが提案されている。
 この流れの中で、近年リグニンの疎水性が注目されている。セルロースをリグニンでコーティングしたままパルプ-リグニン複合体を調製することができれば、樹脂材料へのセルロース繊維の分散性の改善が期待できるからである。こうしたパルプ-リグニン複合体の製造は、従来の高収率パルプの製造技術を応用したものがほとんどである。植物材料を単純に機械解繊するものや、加熱下で機械解繊するもの、所定の薬剤処理を施した後に機械解繊するもの等、多様な方法が提案されている。
 しかし、上記パルプ-リグニン複合体にはいくつかの課題が残されている。例えば、植物材料を構成する細胞壁中において、セルロースミクロフィブリルやその集合体(マクロフィブリル)はリグニンで覆われており、リグニンを除去しない限りは、自由膨潤性を得ることが難しいため、繊維質を破壊しない上記機械解繊のような方法では、細胞壁のナノファイバー化は不可能に近い。また、自由膨潤性を得るために、付与するエネルギーレベルを上げると、繊維質のさらなる破断やリグニンの変性を招くこととなり、樹脂材料における高機能なフィラーとしての性能が損なわれるおそれがある。さらに、リグニンは構造が不規則な不安定物質でもあるため、樹脂材料への配合後、様々な副反応を起こすことも考えられる。これにより、リグニン自体が樹脂材料中で経年変化を起こし、複合製品の安定性や信頼性に影響を及ぼすことがある。
 このような点からも、上記パルプ-リグニン複合体に代えて、リグニンをジフェニルメタン(DPM)型構造に変換したリグノフェノールを含むリグノフェノール-セルロース複合体の応用が期待されている。
特開平2-233701号公報 特開平9-278904号公報 特開2001-342353号公報 特開2002-105240号公報 特開2008-266266号公報 特開2011-256380号公報 国際公開第2010/047358号
 本発明は、上記課題の解決を課題とするものであり、その目的とするところは、植物材料から、より簡易かつ効率的にリグノフェノール-セルロース複合体を製造することができる方法を提供することにある。
 本発明は、リグノフェノール-セルロース複合体の製造方法であって、
 (a)植物材料にフェノール類材料を添加して、フェノール類収着材料を得る工程;
 (b)撹拌翼を備える反応器内に該フェノール類収着材料および濃酸を添加して反応液を得、そして該反応器内で該反応液に剪断力を付加して該フェノール類収着材料と該濃酸とを反応させる工程;
 (c)該反応液を水と接触させて反応をクエンチする工程;および
 (d)該クエンチした反応液を固液分離する工程;
 を包含し、
 ここで、
 該反応工程(b)に要する時間が5秒間から5分間であり、
 該反応工程(b)において、以下の式で表される該反応器における該撹拌翼の翼周速度V(m/秒):
Figure JPOXMLDOC01-appb-M000002
(ここで、Diは該撹拌翼の翼直径(m)であり、Niは該撹拌翼の翼数であり、そしてRは回転数(rpm)である)が該反応液に付加される該剪断力の指標として表され、そして
 該反応工程(b)における該撹拌翼の該翼周速度が3π(m/秒)から50π(m/秒)である、方法である。
 1つの実施形態では、上記反応工程(b)に要する時間は25秒間から3分間である。
 1つの実施形態では、上記反応工程(b)における上記撹拌翼の上記翼周速度は3.6π(m/秒)から28π(m/秒)である。
 1つの実施形態では、上記濃酸は、濃硫酸、濃塩酸、燐酸および濃硝酸からなる群から選択される少なくとも1種の鉱酸である。
 1つの実施形態では、上記濃酸は60%以上の濃硫酸である。
 1つの実施形態では、上記反応器は筒芯を水平にする円筒状の反応器本体を備え、
 該反応器本体の一端側に上記フェノール類収着材料の導入口、他端側に上記反応液の液出口を備え、
 上記撹拌翼の基端は、該反応器本体内に設けられた回転軸の周りに固定されており、該撹拌翼が該回転軸から該反応器本体の内周面に向けて放射方向に延び、櫛歯形状の翼先端を有し、かつ1つの翼先端と他の翼先端とが千鳥配列を構成してずれており、そして
 該翼先端と該反応器本体の該内周面とのクリアランスが該反応液に含まれる該フェノール類収着材料を圧延する寸法に設計されている。
 本発明によれば、植物材料からリグノフェノール-セルロース複合体を簡易かつ効率良く製造することができる。本発明により得られた複合体は、植物材料から製造され得るリグノフェノールと比較して、例えば、流動開始温度が上昇しており、当該リグノフェノールとは異なる新素材であり、その製造に要する時間を大幅に短縮することができる。
本発明のリグノフェノール-セルロース複合体の製造方法の一例を説明するフローダイアグラムである。 本発明の反応工程(b)に用いられる反応器の一例を説明するための当該反応器の断面図である。 実施例1~3で得られた複合体サンプルのFT-IRスペクトルを示すグラフである。 実施例4~6で得られた複合体サンプルのFT-IRスペクトルを示すグラフである。 実施例7で得られた複合体サンプルのFT-IRスペクトルを示すグラフである。 実施例8で得られた複合体サンプルのFT-IRスペクトルを示すグラフである。 実施例9で得られた複合体サンプルのFT-IRスペクトルを示すグラフである。
 以下、本発明を、図面を用いて詳述する。
 図1は、本発明のリグノフェノール-セルロース複合体の製造方法の一例を説明するフローダイアグラムである。
 本明細書中に用いられる用語「リグノフェノール-セルロース複合体」は、植物材料に由来する組成物であって、リグノフェノール誘導体およびセルロース成分を含有する組成物である。
 図1の符号12に示すように、本発明では、まず、前処理工程(a)が行われ、具体的には、植物材料にフェノール類材料が添加され、フェノール類収着材料が作製される。
 本発明に用いられる植物材料は、例えば、植物材料そのもの、当該植物材料から得られた粉末粒子、チップ、廃材、端材、間伐材ならびに農産および林産廃棄物を包含する。植物材料としては、針葉樹または広葉樹に属する木本植物(例えば、スギ、ヒノキ、ヒバ、イチイ、イチョウ、エンジュ、カエデ、キリ、クス、クリ、クロガキ、クワ、ケヤキ、トチ、ナラ、ツガ、ニレネズコ、ホウ、マカバ、マツ、タケ)、草本植物(例えば、イネ、コムギ、オオムギ、ヒマワリ、シダ、ジャガイモ、サツマイモ、カボチャ、トウモロコシ(コーンコブを包含する)、キャッサバ、サトウキビ(バガスを包含する)、トマト、エンドウ、ダイズ、テンサイ、アブラヤシ)などが挙げられる。植物材料は、予め充分に乾燥したものであることが好ましい。さらに植物材料は、必要に応じて、予め当業者に周知の方法で脱脂処理が施されていることが好ましい。
 本発明において、植物材料は、後述する濃酸との反応工程(b)における反応を円滑に行うために、予め所定の大きさを有するように整粒されていることが好ましい。植物材料の形態が粉末である場合、その大きさは、好ましくは20メッシュパス~200メッシュパス、より好ましくは60メッシュパス~100メッシュパスである。植物材料の粉末化は、当業者に公知の手段(例えば破砕機、粉砕機、粉体製造機)を用いて行われ得る。
 フェノール類材料としては、例えば、直鎖または分岐鎖のC~Cアルキル基、直鎖または分岐鎖のC~Cアルコキシ基および水酸基から選択される少なくとも1つの置換基をオルト位、メタ位、および/またはパラ位に有するフェノール誘導体が挙げられる。本発明に用いられ得るフェノール類材料の例としては、p-クレゾール、2,6-キシレノール、2,4-キシレノール、2-メトキシフェノール、2,6-ジメトキシフェノール、カテコール、レゾルシノール、ホモカテコール、ピロガロール、およびフロログルシノール、ならびにそれらの2つまたはそれ以上の組合せが挙げられる。得られるリグノフェノール-セルロース複合体の特性を制御することができ、例えば充分な疎水性を提供することができるとの理由から、p-クレゾールが好ましい。
 本発明における上記植物材料へのフェノール類材料の添加量は、必ずしも限定されないが、当該植物材料に含まれるリグニン(C)含量を基準として、好ましくは0.5モル倍量~6モル倍量、より好ましくは1モル倍量~3モル倍量である。
 植物材料にフェノール類材料を添加した後、植物材料へのフェノール類材料の収着を促進するために、充分撹拌を行うことが好ましい。撹拌に要する時間は、例えば、使用する植物材料の量によって変動するため特に限定されない。また、撹拌は好ましくは常温下で行われる。
 このようにして植物材料からフェノール類収着材料が作製される。
 次に、本発明では、撹拌翼を備える反応器内に、上記で得られたフェノール類収着材料および濃酸を添加することにより反応液が調製され、そして反応器内で反応液に剪断力を付加することにより、フェノール類収着材料と濃酸との反応が行われる(図1の反応工程(b)14)。
 図2は、本発明の反応工程(b)に用いられる反応器の一例を説明するための当該反応器の断面図である。
 図2に示すように、本発明の反応工程(b)に用いられ得る反応器20は、筒芯を水平にする円筒状の反応器本体20Aと、モータ20Dと、モータ20Dにより回転する回転軸20Bと、回転軸20Bに固定された圧送用翼20Jおよび撹拌翼20Cとを備え、反応器本体20Aの一端側に上記フェノール類収着材料の導入口20E、および他端側に上記反応液の液出口20Gが設けられている。図2において、撹拌翼20Cの基端は、回転軸20Bの周りに固定されている。撹拌翼20Cは、回転軸20Bから反応器本体20Aの内周面に向けて放射方向に延びている。さらに、撹拌翼20Cの翼先端20C’は、櫛歯形状を有し、かつ1つの翼先端と他の翼先端とが千鳥配列を構成してずれている。またさらに、撹拌翼20Cの翼先端20C’と該反応器本体20Aの内周面とのクリアランスqは後述する反応液を圧延する寸法に設計されている。
 反応器20では、導入口20Eから反応器本体20A内に添加されたフェノール類収着材料と、濃酸注入口21Aから反応器本体20A内に添加された濃酸とから構成される反応液が、撹拌翼20Cの回転によって撹拌され、反応液中のフェノール類収着材料と濃酸との加水分解反応を通じて、液体と固形物との混合状態で構成されるように調製される。反応液は、撹拌翼20Cの回転に伴って、撹拌翼20Cの翼先端20C’と反応器本体20Aの内周面との間のクリアランスqを介して図2の紙面に向かって右方向から左方向に移動する。その際、反応液に含まれる上記フェノール類収着材料は、上記撹拌翼20Cの翼先端20C’と反応器本体20Aの内周面との間で圧延による剪断力が付与され、さらに細分化される。
 図2に示す反応器20では、反応器本体20Aの周囲に、冷却水入口20Hおよび冷却水出口20Iを有する冷却機構が設けられている。冷却機構は、別途設けられているチラーユニット(図示せず)から送出される冷却水を冷却水入口20Hより導入し冷却機構内部に通流させ冷却水出口20Iより流出することによって反応器本体20Aを20℃以上40℃未満の温度となるように温度調節が行われる。ここで、加水分解時の反応器本体20Aの温度が20℃未満では、例えば、フェノール類収着材料を含む反応液の粘度が増大する;当該反応液が固化する;等により、反応器20内の反応液の移動が円滑に行われないおそれがある。加水分解時の反応器本体20Aの温度が40℃以上であると、反応液内のフェノール類収着材料と濃酸との反応が進み過ぎて、所望のリグノフェノール-セルロース複合体を得ることが困難となる場合がある。
 反応器20において、フェノール類収着材料と濃酸とが反応すると、フェノール類収着材料に含まれているセルロース成分が膨潤する。これにより、反応液は撹拌の初期において粘性が増加する。その後、膨潤したセルロース成分は、濃酸によって加水分解され、これにより、反応液の粘性は低下する。反応器20は、反応器本体20Aにモータ20Dで回転される撹拌翼20Cを有しているので、フェノール類収着材料と濃酸との反応を促進し、初期混練効率を向上させることができる。
 これにより、反応器20において、撹拌されたフェノール類収着材料が濃酸により加水分解され、一方、フェノール類収着材料内のリグニン成分が側鎖ベンジル位でフェノール化されてリグノフェノール誘導体に変換される。
 なお、本発明において、反応器は、上記図2の構成に必ずしも限定されない。反応液に剪断力を付加し得る、撹拌翼を備えた他の反応器であってもよい。他の反応器としては、例えば、ナイフミキサー、ホモゲナイザー、ピンミキサーなどが挙げられる。
 本発明の上記反応工程(b)において使用され得る濃酸は、例えば、フェノール類収着材料に含まれるセルロース成分を膨潤させ、かつ加水分解し得る能力を有する酸(例えば、無機酸)である。濃酸の例としては、濃硫酸、濃塩酸、燐酸および濃硝酸、ならびにそれらの組合せが挙げられる。濃硫酸が用いられる場合、例えば、60%以上、65%以上、72%以上の濃度のものが使用され得る。濃塩酸が用いられる場合、例えば、38%以上の濃度のものが使用され得る。
 反応工程(b)における濃酸の使用量は、必ずしも限定されないが、フェノール類収着材料に含まれる気乾植物材料100gに対して、好ましくは100mL~500mL、より好ましくは200mL~400mLである。濃酸の使用量が100mL未満であると、フェノール類収着材料に含まれるセルロース成分を充分に膨潤および/または加水分解することができず、得られる複合体の収率や品質を低下させることがある。濃酸の使用量が500mLを上回っても、反応工程(b)における反応の進行には特に影響がなく、むしろ反応終了後における当該濃酸の処理および回収が煩雑となって、生産効率を低下させるおそれがある。
 本発明では、上記反応工程(b)おける反応時間(すなわち、反応工程(b)に要する時間)と反応液に付加する剪断力とを適宜変動させることにより、得られるリグノフェノール-セルロース複合体の物性を制御することができる。
 ここで、本明細書中に用いられる用語「反応工程(b)に要する時間」とは、それぞれ添加されたフェノール類収着材料および濃酸が互いに接触して反応を開始してから、濃酸によるフェノール類収着材料の反応がクエンチされるまで(すなわち、後述の工程(c)において水の添加が開始されるまで)の時間を言う。この点において、「反応工程(b)に要する時間」とは、必ずしもフェノール類収着材料および濃酸を含む反応液が上記図2に示す反応器20内を通過するまでの時間に限定されない。例えば、反応器20から反応液が排出された後も当該反応が進行している場合もあるため、当該時間の終了時点は、後述の水の添加を開始する時点と一致するように設定される。
 本発明において、反応工程(b)に要する時間は、使用する反応器のサイズや反応液に付与する剪断力の大きさ等によって変動することがあるため必ずしも限定されないが、例えば5秒間から10分間であり、好ましくは15秒間~5分間であり、より好ましくは25秒間~3分間である。反応工程(b)に要する時間が5秒間未満であると、フェノール類収着材料の濃酸による反応が余り進行しておらず、フェノール類収着材料中のセルロース成分の膨潤が不充分となり、リグニンがリグノフェノールに変換する量が少なくなって、フェノール類収着材料を構成する細胞壁構造が充分に解放されず、本発明の複合体のような物性を得ることができないおそれがある。反応工程(b)に要する時間が10分間であると、フェノール類収着材料の濃酸による反応が過度に進行し、フェノール類収着材料内のセルロース成分が過度に加水分解して、得られる複合体中のセルロース成分含量が低下し、所望の物性が得られないおそれがある。
 上記反応工程(b)は、付与する剪断力の大きさ等の条件にも影響するため必ずしも限定されないが、多くの場合、反応初期においてフェノール類収着材料と濃酸との反応が急速に進んでリグノフェノールを生成し、その後も濃酸がフェノール類収着材料内のセルロースを徐々に加水分解する傾向にある。このため、当該反応に要する時間を適宜選択することにより、得られる複合体のリグノフェノールとセルロースとの構成比を制御することが可能である。
 本発明においては、反応器における撹拌翼の翼周速度(あるいは、翼外周速度または翼先端速度とも言う)V(m/秒):
Figure JPOXMLDOC01-appb-M000003
(ここで、Diは該撹拌翼の翼直径(m)であり、Niは該撹拌翼の翼数であり、そしてRは回転数(rpm)である)を反応工程(b)の反応液に付加される剪断力の指標として表すことができる。なお、本明細書中で用いられる用語「撹拌翼の翼数」とは、撹拌翼が押出スクリューのようなスクリュー構造を有する場合は、当該スクリューの全山数(すなわち、刃数)を表す。
 本発明における撹拌翼の翼周速度は、使用する反応器のサイズや上記反応工程(b)に要する時間等によって変動することがあるため必ずしも限定されないが、例えば3π(m/秒)~50π(m/秒)であり、好ましくは3.6π(m/秒)~28π(m/秒)である。たとえ反応工程(b)に要する時間が上記範囲を満たすものであっても、撹拌翼の翼周速度が、3π(m/秒)未満であると、反応器内で反応液に充分な剪断力を付与することができず、フェノール類収着材料中のセルロース成分の膨潤が不充分となり、リグニンがリグノフェノールに変換する量が少なくなって、フェノール類収着材料を構成する細胞壁構造が充分に解放されず、本発明の複合体のような物性を得ることができないおそれがある。撹拌翼の翼周速度が、50π(m/秒)で上回ると、反応器内で反応液に付与される剪断力が大きくなりすぎて、反応液が過剰に発熱して温度制御が困難となり、反応液内のフェノール類収着材料と濃酸との反応が進み過ぎて、所望のリグノフェノール-セルロース複合体を得ることが困難となるおそれがある。
 なお、上記撹拌翼の翼周速度を達成し得る撹拌翼の翼直径および回転速度は、例えば、使用する反応器の大きさ(内径および直胴長さ等)に応じて当業者によってそれぞれ任意の範囲に設定することができる。
 本発明においては、上記反応工程(b)に要する時間および当該反応工程(b)における撹拌翼の翼周速度をそれぞれ上記のような範囲内に設定することにより、フェノール類収着材料に含まれるセルロース成分を適度に加水分解することが可能となり、例えば固有の物性を有するリグノフェノール-セルロース複合体を得ることができる。
 再び図1を参照すると、本発明では、次いで、反応液は水と接触させられ、反応がクエンチされる(図1のクエンチ工程(c)16)。
 このクエンチは、例えば(i)図2に示す反応器20の液出口20Gから出た反応液を、予め所定量の水を配置した別の槽に添加することにより、反応液と水との接触が行われてもよく;(ii)図2に示す反応器20の液出口20Gから出た反応液を別の槽に移して当該槽に水を添加することにより、反応液と水との接触が行われてもよく;あるいは(iii)図2に示す反応器20のうち、反応器本体20Aの導入口20Eの下流側かつ当該反応器本体20Aの液出口20Gの上流側に供給口(図示せず)が設けられ、当該供給口を通じて反応器本体20A内に水を添加することにより、反応液と水との接触が行われてもよい。上記(iii)による反応液と水との接触が行われる場合、反応器本体20A内で供給口よりも下流側に位置する反応液の反応を反応器本体20A内でクエンチすることができ、その結果、液出口20Gからは反応が停止した反応液(クエンチした反応液)を得ることができる。
 クエンチ工程(c)に用いられ得る水の例としては、水道水、脱イオン水、またはイオン交換水が挙げられる。添加される水の量は、上記フェノール類収着材料と濃酸との反応の進行が停止するために必要かつ充分な量であれば必ずしも限定されないが、例えば、使用する濃酸100mLに対して、好ましくは500mL~4000mL、より好ましくは1000mL~2000mLである。本発明においては、上記フェノール類収着材料と濃酸との反応が過度に進行し、得られる複合体の物性を損なうことのないよう、安全性に考慮しながら反応液を水と接触させて、速やかに反応の停止を行うことが好ましい。
 本発明において、水は、例えば常温下で反応液と接触させてもよく、あるいは発熱を避けるためにウォータージャケットなどの当該分野において公知の冷却手段で冷却されたか環境下にて反応液と水とを接触させてもよい。反応液と水との接触後、反応系をより均一に保持するために当業者に公知の手段を用いて撹拌が行われてもよい。
 本発明では、次いで、クエンチした反応液が固液分離される(図1の分離工程(d)18)。
 上記クエンチ工程(c)にてクエンチされた反応液は、当業者に公知の分離方法(例えば、遠心分離、濾過、デカンテーションおよびそれらの組合せ)を用いて、固形成分と液体成分とに分離される。
 分離された固形成分は、必要に応じてさらに水等で洗浄され、乾燥が行われてもよい。
 このようにして、リグノフェノール-セルロース複合体を製造することができる。
 本発明により得られたリグノフェノール-セルロース複合体(LCC)は、上記工程(a)~(d)を経て、植物材料からヘミセルロースを分離することができ、リグノフェノール誘導体およびセルロース成分から構成される組成物である。これにより、本発明の製造方法により得られる複合体は、従来のLCCおよびリグノフェノール誘導体(LP)と比較して、例えば、熱安定性、熱流動性等の熱特性の点で異なる物性を有し得る。
 本発明の製造方法により得られる複合体は、その構成成分であるリグノフェノール誘導体およびセルロース成分の各特性を活かして、例えば、樹脂製品の成形において添加される繊維補強材などの添加剤として用いることができる。あるいは、構成成分であるリグノフェノール誘導体は、DPM型リニア系リグニンセグメントとしての熱流動性に優れる点から、本発明により得られた複合体は、種々の熱圧成形に使用するためのバイオプラスチック材料としても利用することができる。
 以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。
(実施例1:リグノフェノール-セルロース複合体(LCC)の製造(1))
 100Lのステンレス製ジャケット付撹拌タンクに、約83メッシュパスの気乾スギ木粉10kgを仕込み、約80Lのアセトンを添加して、さらに当該アセトンを複数回入れ替えて、脱脂を行った。次いで、当該スギ木粉に含まれるリグニン(C)含量を基準として3モル倍量のp-クレゾールを含有するアセトン溶液80Lを添加し、撹拌しながら3時間加熱してアセトンを蒸発除去した。続いて真空にし、残存アセトンの除去を行ない、スギ木粉にp-クレゾールを収着させた。その後、ステンレス製長バットに移し、ドラフト内で絶えず均一に撹拌しながら、アセトン溶媒を完全に留去して、クレゾール収着木粉を得た。
 図2に示す反応器20(ここで、使用した反応器20の各寸法は以下の通りであった:内径108mm、撹拌翼の翼半径54mm(すなわち、翼直径108mm)、直胴長さ501mm、軸径30mm、翼先端の櫛歯形状間の距離25mm、撹拌翼の翼数4)(関西化学機械製作株式会社製)の導入口20Eから1分間当たり10gの供給速度にて上記で得られたクレゾール収着木粉、および濃酸注入口21Aから1分間当たり40mLの供給速度で65%濃硫酸を添加し、撹拌翼20Cを1800rpmの回転数で回転させた。この際の撹拌翼20Cの翼周速度は12.96π(m/秒)であった。すなわち、50gのクレゾール収着木粉当たり200mLの濃硫酸を反応器20に添加した。
 また、反応器20の液出口20Gを、予めそれぞれ22.5cmのテフロン(登録商標)チューブの一端と接続し、他端を200Lの脱イオン水を含有するステンレス製容器に浸漬した。本実施例において、クレゾール収着木粉および濃硫酸で構成される反応液は、撹拌翼20Cの回転を通じて反応器本体20A内を60秒間かけて通過し、そしてテフロン(登録商標)チューブ内を8秒間かけて通過し、その後、当該反応液を脱イオン水と接触させることにより、その反応をクエンチした。すなわち、クレゾール収着木粉および濃硫酸の添加から反応液が脱イオン水と接触するまでの時間は68秒間であった。また、クエンチした反応液を、クレゾール収着木粉および濃硫酸の添加(反応開始)から5分間が経過するまで撹拌し続けた。
 クエンチした反応液を、1Lの遠心ボトルに移し、20℃にて4200rpmで15分間遠心分離し、pHメーター(株式会社堀場製作所製LAQUAD-71)を用いてpHがより中性側にシフトしていることを確認した後、チューブポンプを用いて透明な上澄みを除去した。次いで、残存した沈殿物にさらに500mLの脱イオン水を添加し、手動で撹拌した後、上記と同様の条件で遠心分離を行った。この遠心分離から上澄みを除去するまでの操作を合計3回繰り返し、最終的に水不溶性画分を含む混合液を一旦1Lのプラスチック製容器に定量的に移した。
 次いで、上記で得られた混合液分を、2本の500mL遠心ボトルに移し、超遠心機(株式会社トミー精工製GRX220)を用いて、20℃にて4200rpmで15分間遠心分離した。透明な上澄みを除去し、水不溶性画分を含む混合液を撹拌した後、300mLの脱イオン水をボトルに添加した。この操作により得られた上済みを、pHメーターを用いてpHがより中性側にシフトしていることを確認した後、得られた混合液を手動で撹拌し、再び上記超遠心機を用いて同様に遠心分離を行った。以上の操作を、上澄みのpHが5以下になるまで繰り返し、最終的に水不溶性成分を含む混合液(100mL)に、80℃の温水(300mL)を添加し、20℃にて4200rpmで15分間遠心分離し、かつ透明な上澄みを除去する操作を2回行って、水不溶性画分を有するサンプル液(100mL)を得た。
 さらに、得られたサンプル液を凍結乾燥させ、メノウ乳鉢で微粉化し、これを略均等に2つのシャーレに入れ、それぞれ五酸化二リン上で2日間減圧乾燥することにより、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、それぞれ以下の評価試験を行った。
(収率の算出)
 得られた複合体サンプルを、秤量し、そして収率を算出した。収率は、上記クレゾール収着木粉の重量に基づく百分率、気乾木粉の重量に基づく百分率、絶乾(oven-dried)木粉の重量に基づく百分率、および上記サンプル液の重量に基づく百分率のそれぞれについて算出した。得られた結果を表1に示す。
(含水率の測定)
 上記で得られた複合体サンプル(気乾サンプル)0.1gを3つの秤量瓶にそれぞれ秤取し、105℃の恒温乾燥器で乾燥した後、質量を測定した。サンプルの質量が恒量となるまでこの操作を続け、最終的な質量を絶乾サンプルの質量とした。気乾サンプルの質量(Q)と、絶乾サンプルの質量(Q)とから、以下の式を用いて各サンプルの含水率(%)を算出し、得られた3つの値の平均値を、複合体サンプル(気乾サンプル)の含水率(%)とした:
Figure JPOXMLDOC01-appb-M000004
 得られた結果を表1に示す。
(熱重量分析:TGA)
 上記で得られた複合体サンプルを105℃の恒温乾燥器で乾燥した後、当該サンプルの約5mgを、直径5mmのアルミニウムパンに入れ、表面を平滑にした。熱重量分析装置(セイコーインスツル株式会社製TG/DTA6200)を用い、300mL/分の窒素雰囲気下にて、50℃~440℃の温度範囲で2℃/分の割合で加熱し、重量変化を測定した。なお、リファレンスにはアルミナを使用した。これにより、得られたTGA曲線に基づく複合体サンプルの5%重量減少温度および10%重量減少温度を算出した。複合体サンプルの5%重量減少温度は213.90℃であり、10%重量減少温度は279.10℃であった(表1)。
(熱機械分析:TMA)
 上記で得られた複合体サンプルを105℃の恒温乾燥器で乾燥した後、当該サンプルの約5mgを、直径5mmのアルミニウムパンに入れ、表面を平滑にして、その複合体サンプルの表面にアルミニウム板を配置した。熱機械分析装置(セイコーインスツル株式会社製TMA-SS)を用い、配置したアルミニウム板の上から石英ニードルで鉛直下向きに応力をかけ(プローブ圧:49mN)、150mL/分の窒素雰囲気下にて、50℃~300℃の温度範囲で2℃/分の割合で加熱し、変異を測定した。得られたTMA曲線から複合体サンプルの流動開始温度を算出した。複合体サンプルの流動開始温度は158.50℃であった(表1)。
(フーリエ変換赤外分光法:FT-IR)
 臭化カリウムをメノウ乳鉢で微粉化し、これに上記で得られた複合体サンプルを混合し、さらに微粉化した。この混合物を成形器に入れ、減圧し、真空状態で約7000kgf/cmの圧力をかけ、ディスクを作製した。リファレンスとして臭化カリウムのみからなるディスクを作製した。フーリエ変換赤外分光分析装置(株式会社島津製作所製FT-IR8400)を用い、波数400cm-1~4000cm-1、積算回数32回および分解能4cm-1の条件下にて測定した。得られた結果を図3に示す。
 図3が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
(実施例2:リグノフェノール-セルロース複合体(LCC)の製造(2))
 図2に示す反応器20の濃酸注入口21Aから、65%濃硫酸の代わりに68%濃硫酸を添加したこと以外は、実施例1と同様にしてクレゾール収着木粉と濃硫酸との反応を行い、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして収率および含水率の算出または測定を行った。得られた結果を表1に示す。
 また上記で得られた複合体サンプルについて、実施例1と同様にして熱重量分析(TGA)を行った。得られたTGA曲線から算出した複合体サンプルの5%重量減少温度は213.00℃であり、10%重量減少温度は276.20℃であった(表1)。
 さらに、上記で得られた複合体サンプルについて、実施例1と同様にして熱機械分析(TMA)を行った。得られたTMA曲線から算出した複合体サンプルの流動開始温度は153.10℃であった(表1)。
 またさらに、上記で得られた複合体サンプルについて、実施例1と同様にしてフーリエ変換赤外分光(FT-IR)の測定を行った。得られた結果を図3に示す。図3が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
(実施例3:リグノフェノール-セルロース複合体(LCC)の製造(3))
 図2に示す反応器20の濃酸注入口21Aから、65%濃硫酸の代わりに70%濃硫酸を添加したこと以外は、実施例1と同様にしてクレゾール収着木粉と濃硫酸との反応を行い、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして収率および含水率の算出または測定を行った。得られた結果を表1に示す。
 また上記で得られた複合体サンプルについて、実施例1と同様にして熱重量分析(TGA)を行った。得られたTGA曲線から算出した複合体サンプルの5%重量減少温度は214.90℃であり、10%重量減少温度は273.90℃であった(表1)。
 さらに、上記で得られた複合体サンプルについて、実施例1と同様にして熱機械分析(TMA)を行った。得られたTMA曲線から算出した複合体サンプルの流動開始温度は147.90℃であった(表1)。
 またさらに、上記で得られた複合体サンプルについて、実施例1と同様にしてフーリエ変換赤外分光(FT-IR)の測定を行った。得られた結果を図3に示す。図3が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
(実施例4:リグノフェノール-セルロース複合体(LCC)の製造(4))
 まず、実施例1と同様にしてクレゾール収着木粉を得た。
 次いで、図2に示す反応器20(ここで、使用した反応器20の各寸法は以下の通りであった:内径108mm、撹拌翼の翼半径54mm(すなわち、翼直径108mm)、直胴長さ501mm、軸径30mm、翼先端の櫛歯形状間の距離25mm、撹拌翼の翼数4)(関西化学機械製作株式会社製)の導入口20Eから1分間当たり10gの供給速度にて上記で得られたクレゾール収着木粉、および濃酸注入口21Aから1分間当たり40mLの供給速度で72%濃硫酸を添加し、撹拌翼20Cを1800rpmの回転数で回転させた。この際の撹拌翼20Cの翼周速度は12.96π(m/秒)であった。すなわち、50gのクレゾール収着木粉当たり200mLの濃硫酸を反応器20に添加した。
 また、反応器20の液出口20Gを、予めそれぞれ22.5cmのテフロン(登録商標)チューブの一端と接続し、他端を200Lの脱イオン水を含有するステンレス製容器に浸漬した。本実施例において、クレゾール収着木粉および濃硫酸で構成される反応液は、撹拌翼20Cの回転を通じて反応器本体20A内を60秒間かけて通過し、そしてテフロン(登録商標)チューブ内を8秒間かけて通過し、その後、当該反応液を脱イオン水と接触させることにより、その反応をクエンチした。すなわち、クレゾール収着木粉および濃硫酸の添加から反応液が脱イオン水と接触するまでの時間は68秒間であった。また、クエンチした反応液を、クレゾール収着木粉および濃硫酸の添加(反応開始)から5分間が経過するまで撹拌し続けた。
 クエンチした反応液を、1Lの遠心ボトルに移し、20℃にて4200rpmで15分間遠心分離し、pHメーター(株式会社堀場製作所製LAQUAD-71)を用いてpHがより中性側にシフトしていることを確認した後、チューブポンプを用いて透明な上澄みを除去した。次いで、残存した沈殿物にさらに500mLの脱イオン水を添加し、手動で撹拌した後、上記と同様の条件で遠心分離を行った。この遠心分離から上澄みを除去するまでの操作を合計3回繰り返し、最終的に水不溶性画分を含む混合液を一旦1Lのプラスチック製容器に定量的に移した。
 次いで、上記で得られた混合液分を、2本の500mL遠心ボトルに移し、超遠心機((株式会社トミー精工製GRX220)を用いて、20℃にて4200rpmで15分間遠心分離した。透明な上澄みを除去し、水不溶性画分を含む混合液を撹拌した後、300mLの脱イオン水をボトルに添加した。この操作により得られた上澄みを、pHメーターを用いてpHがより中性側にシフトしていることを確認した後、得られた混合液を手動で撹拌し、再び上記超遠心機を用いて同様に遠心分離を行った。以上の操作を、上澄みのpHが5以下になるまで繰り返し、最終的に水不溶性成分を含む混合液(100mL)に、80℃の温水(300mL)を添加し、20℃にて4200rpmで15分間遠心分離し、かつ透明な上澄みを除去する操作を2回行って、水不溶性画分を有するサンプル液(100mL)を得た。
 さらに、得られたサンプル液を凍結乾燥させ、メノウ乳鉢で微粉化し、これを略均等に2つのシャーレに入れ、それぞれ五酸化二リン上で2日間減圧乾燥することにより、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして収率および含水率の算出または測定を行った。得られた結果を表1に示す。
 また上記で得られた複合体サンプルについて、実施例1と同様にして熱重量分析(TGA)を行った。得られたTGA曲線から算出した複合体サンプルの5%重量減少温度は211.70℃であり、10%重量減少温度は262.70℃であった(表1)。
 さらに、上記で得られた複合体サンプルについて、実施例1と同様にして熱機械分析(TMA)を行った。得られたTMA曲線から算出した複合体サンプルの流動開始温度は164.40℃であった(表1)。
 またさらに、上記で得られた複合体サンプルについて、実施例1と同様にしてフーリエ変換赤外分光(FT-IR)の測定を行った。得られた結果を図4に示す。図4が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
(実施例5:リグノフェノール-セルロース複合体(LCC)の製造(5))
 図2に示す反応器20の液出口20Gを、それぞれ22.5cmの代わりに73.0cmのテフロン(登録商標)チューブの一端と接続し、他端を200Lの脱イオン水を含有するステンレス製容器に浸漬した(本実施例において、クレゾール収着木粉および濃硫酸で構成される反応液は、撹拌翼20Cの回転を通じて反応器本体20A内を60秒間かけて通過し、そしてテフロン(登録商標)チューブ内を35秒間かけて通過した。すなわち、クレゾール収着木粉および濃硫酸の添加から反応液が脱イオン水と接触するまでの時間は95秒間であった。)こと以外は、実施例4と同様にしてクレゾール収着木粉と濃硫酸との反応を行い、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして収率および含水率の算出または測定を行った。得られた結果を表1に示す。
 また上記で得られた複合体サンプルについて、実施例1と同様にして熱重量分析(TGA)を行った。得られたTGA曲線から算出した複合体サンプルの5%重量減少温度は202.10℃であり、10%重量減少温度は261.30℃であった(表1)。
 さらに、上記で得られた複合体サンプルについて、実施例1と同様にして熱機械分析(TMA)を行った。得られたTMA曲線から算出した複合体サンプルの流動開始温度は159.30℃であった(表1)。
 またさらに、上記で得られた複合体サンプルについて、実施例1と同様にしてフーリエ変換赤外分光(FT-IR)の測定を行った。得られた結果を図4に示す。図4が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
(実施例6:リグノフェノール-セルロース複合体(LCC)の製造(6))
 図2に示す反応器20の液出口20Gを、それぞれ22.5cmの代わりに124.0cmのテフロン(登録商標)チューブの一端と接続し、他端を200Lの脱イオン水を含有するステンレス製容器に浸漬した(本実施例において、クレゾール収着木粉および濃硫酸で構成される反応液は、撹拌翼20Cの回転を通じて反応器本体20A内を60秒間かけて通過し、そしてテフロン(登録商標)チューブ内を63秒間かけて通過した。すなわち、クレゾール収着木粉および濃硫酸の添加から反応液が脱イオン水と接触するまでの時間は123秒間であった。)こと以外は、実施例4と同様にしてクレゾール収着木粉と濃硫酸との反応を行い、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして収率および含水率の算出または測定を行った。得られた結果を表1に示す。
 また上記で得られた複合体サンプルについて、実施例1と同様にして熱重量分析(TGA)を行った。得られたTGA曲線から算出した複合体サンプルの5%重量減少温度は212.70℃であり、10%重量減少温度は264.70℃であった(表1)。
 さらに、上記で得られた複合体サンプルについて、実施例1と同様にして熱機械分析(TMA)を行った。得られたTMA曲線から算出した複合体サンプルの流動開始温度は162.70℃であった(表1)。
 またさらに、上記で得られた複合体サンプルについて、実施例1と同様にしてフーリエ変換赤外分光(FT-IR)の測定を行った。得られた結果を図4に示す。図4が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
(比較例1)
 国際公開第2010/047358号に記載の植物資源相分離系変換装置を用いて、気乾スギ木粉から、リグノフェノールを以下のようにして抽出した。
 100Lのステンレス製ジャケット付撹拌タンクに、約83メッシュパスの気乾スギ木粉10kgを仕込み、約80Lのアセトンを添加して、さらに当該アセトンを複数回入れ替えて、脱脂を行った。次いで、当該スギ木粉に含まれるリグニン(C)含量を基準として3モル倍量のp-クレゾールを含有するアセトン溶液80Lを添加し、撹拌しながら3時間加熱してアセトンを蒸発除去した。続いて真空にし、残存アセトンの除去を行ない、スギ木粉にp-クレゾールを収着させた。その後、ステンレス製長バットに移し、ドラフト内で絶えず均一に撹拌しながら、アセトン溶媒を完全に留去して、クレゾール収着木粉を得た。
 次に、植物資源相分離系変換装置の反応部に72%濃硫酸を40cc/分の流量で供給し、上記で得られたクレゾール収着木粉を10g/分の割合で供給した。当該植物資源相分離系変換装置において、反応部より溶出される処理液を第1の撹拌バッファ槽に導入し、撹拌しながら、第1の撹拌抽出部の下段へ送出した。処理液を第1の撹拌抽出部の最上段より回収し、第2撹拌バッファ槽へ送出した。この際、リグノフェノール抽出用のm,p-クレゾールを20cm/分の割合で供給した。なお、上記植物資源相分離系変換装置における反応器の各寸法は以下の通りであった:内径108mm、撹拌翼の翼半径54mm(すなわち、翼直径108mm)、直胴長さ501mm、軸径30mm、翼先端の櫛歯形状間の距離25mm、撹拌翼の翼数4。撹拌翼の回転数は1800rpmであり、この際の撹拌翼の翼周速度は12.96π(m/秒)であった。
 次いで、第2撹拌バッファ層から排出された液を、遠心分離機によりリグノフェノールを含むリグニン層と炭水化物を含む硫酸層とに分離した。上記濃硫酸の供給開始から当該分離にまで要した時間は、42分3秒であった。その後、リグニン層に含まれるリグニンをヘキサンで抽出除去し、得られた残渣からリグノフェノールを回収した。
 このようにして、気乾スギ木粉から、リグノフェノールで構成されるサンプルを得た。
 次いで、上記実施例1と同様にして、得られたサンプルの物性等を評価した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、実施例1~6で得られた複合体サンプルは、比較例1で得られたものと比較して、5%重量減少温度および10%重量減少温度のいずれについても20℃以上または30℃以上もの高い値を示していた。流動開始温度についても、実施例1~6で得られた複合体サンプルの結果は、比較例1で得られたものの結果を上回るものであった。このことから、実施例1~6で得られた複合体サンプルは、比較例1で得られたもの(リグノフェノール)と比較して、特性が全く異なる別の物質であることがわかる。
(実施例7:リグノフェノール-セルロース複合体(LCC)の製造(7))
 100Lのステンレス製ジャケット付撹拌タンクに、1mmの篩目開きを有する篩にかけたバガス粉末5kgを仕込み、約40Lのアセトンを添加して、さらに当該アセトンを複数回入れ替えて、脱脂を行った。次いで、当該バガス粉末に含まれるリグニン(C)含量を基準として3モル倍量のp-クレゾールを含有するアセトン溶液40Lを添加し、撹拌しながら3時間加熱してアセトンを蒸発除去した。続いて真空にし、残存アセトンの除去を行ない、バガス粉末にp-クレゾールを収着させた。その後、ステンレス製長バットに移し、ドラフト内で絶えず均一に撹拌しながら、アセトン溶媒を完全に留去して、クレゾール収着材料を得た。
 図2に示す反応器20の液出口20Gを、それぞれ22.5cmの代わりに124.0cmのテフロン(登録商標)チューブの一端と接続し、他端を168Lの脱イオン水を含有するステンレス製容器に浸漬した(本実施例において、クレゾール収着木粉および濃硫酸で構成される反応液は、撹拌翼20Cの回転を通じて反応器本体20A内を60秒間かけて通過し、そしてテフロン(登録商標)チューブ内を63秒間かけて通過した。すなわち、クレゾール収着木粉および濃硫酸の添加から反応液が脱イオン水と接触するまでの時間は123秒間であった。)こと以外は、実施例4と同様にしてクレゾール収着木粉と濃硫酸との反応を行い、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして、収率および含水率測定、熱重量分析(TGA)、ならびに熱機械分析(TMA)を行った。得られた結果を表2に示す。
 また、上記で得られた複合体サンプルについて、実施例1と同様にしてフーリエ変換赤外分光(FT-IR)の測定を行った。得られた結果を図5に示す。図5が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
(実施例8:リグノフェノール-セルロース複合体(LCC)の製造(8))
 バガス粉末の代わりに、1mmの篩目開きを有する篩にかけたコーンコブ粉末5kgを用いてクレゾール収着材料を得たこと以外は、実施例7と同様にしてクレゾール収着材料と濃硫酸との反応を行い、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして、収率および含水率測定、熱重量分析(TGA)、ならびに熱機械分析(TMA)を行った。得られた結果を表2に示す。
 また、上記で得られた複合体サンプルについて、実施例1と同様にしてフーリエ変換赤外分光(FT-IR)の測定を行った。得られた結果を図6に示す。図6が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
(実施例9:リグノフェノール-セルロース複合体(LCC)の製造(9))
 バガス粉末の代わりに約83メッシュパスの気乾スギ木粉10kgを用いてクレゾール収着材料を得たこと、および72%濃硫酸の代わりに62%濃硫酸を用いたこと以外は、実施例7と同様にしてクレゾール収着材料と濃硫酸との反応を行い、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして、収率および含水率測定、熱重量分析(TGA)、ならびに熱機械分析(TMA)を行った。得られた結果を表2に示す。
 また、上記で得られた複合体サンプルについて、実施例1と同様にしてフーリエ変換赤外分光(FT-IR)の測定を行った。得られた結果を図8に示す。図8が示すスペクトルによれば、上記で得られた複合体サンプルには、リグノフェノール誘導体特有のものが含まれていた。このことから、上記で得られた複合体サンプルには、その製造工程の間にリグノフェノール誘導体が適切に生成されかつ含有されていることがわかる。
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、実施例7~9で得られた複合体サンプルは、目視上異なる色彩および凝集形態を示し、そして比較例1で得られたものと比較して、5%重量減少温度および10%重量減少温度についても概ね45℃~85℃も高い値を示していた。流動開始温度についても、実施例7~9で得られた複合体サンプルの結果は、比較例1で得られたものの結果を概ね35℃~45℃も上回るものであった。このことから、実施例7~9で得られた複合体サンプルは、比較例1で得られたもの(リグノフェノール)と比較して、特性が全く異なる別の物質であることがわかる。
(実施例10:リグノフェノール-セルロース複合体(LCC)の製造(10))
 1mmの篩目開きを有する篩にかけたバガス粉末を用いて、実施例7と同様にしてクレゾール収着材料を作製した。
 次いで、このクレゾール収着材料25gおよび72%濃硫酸100mLをフラスコに添加し、得られた反応液をホモゲナイザー(内径8mm、撹拌翼の翼直径12mm、撹拌翼の翼数6(内刃);Heidolph社製DIAX900)で3分間撹拌した。この撹拌によるホモゲナイザーの撹拌翼の翼周速度は12(m/秒)であった。撹拌後、フラスコに脱イオン水を添加して反応をクエンチした。さらに、クエンチした反応液を、クレゾール収着材料および濃硫酸の添加(反応開始)から5分間が経過するまで撹拌し続けた。
 クエンチした反応液の一部を、1Lの遠心ボトルに移し、20℃にて4200rpmで15分間遠心分離し、pHメーター(株式会社堀場製作所製LAQUAD-71)を用いてpHがより中性側にシフトしていることを確認した後、チューブポンプを用いて透明な上澄みを除去した。次いで、残存した沈殿物にさらに500mLの脱イオン水を添加し、手動で撹拌した後、上記と同様の条件で遠心分離を行った。この遠心分離から上澄みを除去するまでの操作を合計3回繰り返し、最終的に水不溶性画分を含む混合液を一旦1Lのプラスチック製容器に定量的に移した。
 次いで、上記で得られた混合液分を、2本の500mL遠心ボトルに移し、超遠心機(株式会社トミー精工製GRX220)を用いて、20℃にて4200rpmで15分間遠心分離した。透明な上澄みを除去し、水不溶性画分を含む混合液を撹拌した後、300mLの脱イオン水をボトルに添加した。この操作により得られた上済みを、pHメーターを用いてpHがより中性側にシフトしていることを確認した後、得られた混合液を手動で撹拌し、再び上記超遠心機を用いて同様に遠心分離を行った。以上の操作を、上澄みのpHが5以下になるまで繰り返し、最終的に水不溶性成分を含む混合液(100mL)に、80℃の温水(300mL)を添加し、20℃にて4200rpmで15分間遠心分離し、かつ透明な上澄みを除去する操作を2回行って、水不溶性画分を有するサンプル液(100mL)を得た。
 さらに、得られたサンプル液を凍結乾燥させ、メノウ乳鉢で微粉化し、これを略均等に2つのシャーレに入れ、それぞれ五酸化二リン上で2日間減圧乾燥することにより、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして、収率および含水率測定、熱重量分析(TGA)、ならびに熱機械分析(TMA)を行った。得られた結果を表3に示す。
(実施例11:リグノフェノール-セルロース複合体(LCC)の製造(11))
 バガス粉末の代わりに、1mmの篩目開きを有する篩にかけたコーンコブ粉末5kgを用いてクレゾール収着材料を得たこと以外は、実施例10と同様にしてクレゾール収着材料と濃硫酸との反応を行い、複合体サンプルを得た。
 このようにして得られた複合体サンプルについて、実施例1と同様にして、収率および含水率測定、熱重量分析(TGA)、ならびに熱機械分析(TMA)を行った。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
 表3に示すように、実施例10および11で得られた複合体サンプルは、目視上異なる色彩および凝集形態を示し、そして比較例1で得られたものと比較して、5%重量減少温度および10%重量減少温度についても概ね25℃~55℃も高い値を示していた。流動開始温度についても、実施例10および11で得られた複合体サンプルの結果は、比較例1で得られたものの結果を概ね21℃~36℃も上回るものであった。このことから、実施例10および11で得られた複合体サンプルは、比較例1で得られたもの(リグノフェノール)と比較して特性が全く異なる別の物質であることがわかる。
 さらに、このような特性を有する複合体サンプルが、実施例1~9で使用したような、反応液の連続的な供給および反応を可能とする図2に記載した反応器だけでなく、実施例10および11で使用したようなバッチ条件下での反応器でも製造され得ることがわかる。
 本発明によれば、リグノフェノール誘導体およびセルロース成分の各特性を活かしたリグノフェノール-セルロース複合体を得ることができる。本発明により得られた複合体は、例えば、種々の熱圧成形に使用するためのバイオプラスチック材料として有用である。
 12   前処理工程
 14   反応工程
 16   クエンチ工程
 18   分離工程
 20   反応器
 20A  反応器本体
 20C  撹拌翼
 20C’ 翼先端
 20D  モータ
 20B  回転軸
 20J  圧送用翼
 20E  導入口
 20G  液出口
 20H  冷却水入口
 20I  冷却水出口

Claims (6)

  1.  リグノフェノール-セルロース複合体の製造方法であって、
     (a)植物材料にフェノール類材料を添加して、フェノール類収着材料を得る工程;
     (b)撹拌翼を備える反応器内に該フェノール類収着材料および濃酸を添加して反応液を得、そして該反応器内で該反応液に剪断力を付加して該フェノール類収着材料と該濃酸とを反応させる工程;
     (c)該反応液を水と接触させて反応をクエンチする工程;および
     (d)該クエンチした反応液を固液分離する工程;
     を包含し、
     ここで、
     該反応工程(b)に要する時間が5秒間から5分間であり、
     該反応工程(b)において、以下の式で表される該反応器における該撹拌翼の翼周速度V(m/秒):
    Figure JPOXMLDOC01-appb-M000001
    (ここで、Diは該撹拌翼の翼直径(m)であり、Niは該撹拌翼の翼数であり、そしてRは回転数(rpm)である)が該反応液に付加される該剪断力の指標として表され、そして
     該反応工程(b)における該撹拌翼の該翼周速度が3π(m/秒)から50π(m/秒)である、方法。
  2.  前記反応工程(b)に要する時間が25秒間から3分間である、請求項1に記載の方法。
  3.  前記反応工程(b)における前記撹拌翼の前記翼周速度が3.6π(m/秒)から28π(m/秒)である、請求項1または2に記載の方法。
  4.  前記濃酸が、濃硫酸、濃塩酸、燐酸および濃硝酸からなる群から選択される少なくとも1種の鉱酸である、請求項1から3のいずれかに記載の方法。
  5.  前記濃酸が60%以上の濃硫酸である、請求項1から3のいずれかに記載の方法。
  6.  前記反応器が筒芯を水平にする円筒状の反応器本体を備え、
     該反応器本体の一端側に前記フェノール類収着材料の導入口、他端側に前記反応液の液出口を備え、
     前記撹拌翼の基端が、該反応器本体内に設けられた回転軸の周りに固定されており、該撹拌翼が該回転軸から該反応器本体の内周面に向けて放射方向に延び、櫛歯形状の翼先端を有し、かつ1つの翼先端と他の翼先端とが千鳥配列を構成してずれており、そして
     該翼先端と該反応器本体の該内周面とのクリアランスが該反応液に含まれる該フェノール類収着材料を圧延する寸法に設計されている、請求項1から5のいずれかに記載の方法。
PCT/JP2016/081370 2015-10-23 2016-10-21 リグノフェノール-セルロース複合体の製造方法 WO2017069276A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-209405 2015-10-23
JP2015209405A JP5984100B1 (ja) 2015-10-23 2015-10-23 リグノフェノール−セルロース複合体の製造方法

Publications (1)

Publication Number Publication Date
WO2017069276A1 true WO2017069276A1 (ja) 2017-04-27

Family

ID=56843275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081370 WO2017069276A1 (ja) 2015-10-23 2016-10-21 リグノフェノール-セルロース複合体の製造方法

Country Status (3)

Country Link
JP (1) JP5984100B1 (ja)
TW (1) TWI601765B (ja)
WO (1) WO2017069276A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037726A1 (ja) * 2016-08-22 2018-03-01 関西化学機械製作株式会社 リグノアルコール-セルロース複合体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181863A (ja) * 2001-12-14 2003-07-02 Marutoo:Kk リグノフェノール誘導体と成形材料との複合化
WO2005042586A1 (ja) * 2003-10-31 2005-05-12 Functional Wood Material Research Association リグノフェノール誘導体の製造方法及び装置
JP2006248955A (ja) * 2005-03-10 2006-09-21 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai 酸処理方法及び装置
JP2006306946A (ja) * 2005-04-27 2006-11-09 Mie Prefecture リグノフェノール系複合成形品の製造方法
JP2011042640A (ja) * 2009-08-24 2011-03-03 Japan Science & Technology Agency リグノフェノール誘導体の分子量制御方法
JP5633742B2 (ja) * 2008-10-23 2014-12-03 独立行政法人科学技術振興機構 濃酸処理部、濃酸処理方法、植物資源相分離系変換装置並びに変換方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015687A (ja) * 2003-06-27 2005-01-20 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai リグニンのフェノール誘導体の製造方法
JP2005042586A (ja) * 2003-07-25 2005-02-17 Daihatsu Motor Co Ltd 筒内燃料噴射型内燃機関
JP2006077152A (ja) * 2004-09-10 2006-03-23 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai リグニンのフェノール誘導体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181863A (ja) * 2001-12-14 2003-07-02 Marutoo:Kk リグノフェノール誘導体と成形材料との複合化
WO2005042586A1 (ja) * 2003-10-31 2005-05-12 Functional Wood Material Research Association リグノフェノール誘導体の製造方法及び装置
JP2006248955A (ja) * 2005-03-10 2006-09-21 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai 酸処理方法及び装置
JP2006306946A (ja) * 2005-04-27 2006-11-09 Mie Prefecture リグノフェノール系複合成形品の製造方法
JP5633742B2 (ja) * 2008-10-23 2014-12-03 独立行政法人科学技術振興機構 濃酸処理部、濃酸処理方法、植物資源相分離系変換装置並びに変換方法
JP2011042640A (ja) * 2009-08-24 2011-03-03 Japan Science & Technology Agency リグノフェノール誘導体の分子量制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037726A1 (ja) * 2016-08-22 2018-03-01 関西化学機械製作株式会社 リグノアルコール-セルロース複合体の製造方法

Also Published As

Publication number Publication date
TWI601765B (zh) 2017-10-11
JP2017082051A (ja) 2017-05-18
TW201728632A (zh) 2017-08-16
JP5984100B1 (ja) 2016-09-06

Similar Documents

Publication Publication Date Title
Vázquez et al. Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies
WO2014142289A1 (ja) リグニン分解物の製造方法
JP5301237B2 (ja) 可溶化リグニン、糖類原料および単糖類原料の製造方法
JP5633742B2 (ja) 濃酸処理部、濃酸処理方法、植物資源相分離系変換装置並びに変換方法
Senturk-Ozer et al. Biomass pretreatment strategies via control of rheological behavior of biomass suspensions and reactive twin screw extrusion processing
Li et al. Microwave‐assisted hydrothermal liquefaction of lignin for the preparation of phenolic formaldehyde adhesive
JP2015140403A (ja) セルロースナノファイバー及びその生産方法
Zabelkin et al. Neutrals influence on the water resistance coefficient of phenol-formaldehyde resin modified by wood pyrolysis liquid products
JP5933578B2 (ja) セルロースを酸触媒解重合する方法
Zakaria et al. Lignin extraction from coconut shell using aprotic ionic liquids
JP2006248955A (ja) 酸処理方法及び装置
WO2017069276A1 (ja) リグノフェノール-セルロース複合体の製造方法
JP7245299B2 (ja) 酵素的加水分解のための方法及び装置、液体画分及び固体画分
WO2018037726A1 (ja) リグノアルコール-セルロース複合体の製造方法
JP4941061B2 (ja) フェノール化リグニンの製造方法
US20160024227A1 (en) Method for breaking down lignocellulosic biomass
JP2018104672A (ja) リグニン含有組成物の製造方法
JP2008308530A (ja) 可溶性リグノセルロースの製造方法
Li et al. Butyration of Lignosulfonate with butyric anhydride in the presence of choline chloride
WO2022210140A1 (ja) セルロースナノファイバー及びリグニン又はそれらの複合体を含む組成物並びにリグノセルロース由来材料の製造方法
JP7153568B2 (ja) 酵素加水分解のための方法および装置、液体留分、ならびに固体留分
JP6407215B2 (ja) リグノフェノールの製造方法
JP2024047987A (ja) リグニン由来の有用成分の製造方法
WO2007046726A1 (fr) Procede de transformation de dechets de bois provenant du traitement mecanique de bois
JP6209656B1 (ja) リグノフェノールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857589

Country of ref document: EP

Kind code of ref document: A1