WO2017069010A1 - 圧力弁及び電解コンデンサ - Google Patents

圧力弁及び電解コンデンサ Download PDF

Info

Publication number
WO2017069010A1
WO2017069010A1 PCT/JP2016/080022 JP2016080022W WO2017069010A1 WO 2017069010 A1 WO2017069010 A1 WO 2017069010A1 JP 2016080022 W JP2016080022 W JP 2016080022W WO 2017069010 A1 WO2017069010 A1 WO 2017069010A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
slit
pressure valve
shape
pressure
Prior art date
Application number
PCT/JP2016/080022
Other languages
English (en)
French (fr)
Inventor
満 米田
孝也 酒井
健太 川西
和也 山中
Original Assignee
ニチコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチコン株式会社 filed Critical ニチコン株式会社
Priority to EP16857325.1A priority Critical patent/EP3367403B1/en
Priority to JP2017546502A priority patent/JP6547000B2/ja
Priority to US15/769,415 priority patent/US10586656B2/en
Priority to KR1020187010236A priority patent/KR102094880B1/ko
Publication of WO2017069010A1 publication Critical patent/WO2017069010A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a pressure valve for an electrolytic capacitor and an electrolytic capacitor provided with the pressure valve.
  • Patent Document 1 As an electrolytic capacitor or an electric double layer capacitor, one having a case in which a capacitor element is accommodated, a sealing body that seals the case, and a pressure valve that closes a through hole formed in the sealing body is known ( Patent Document 1).
  • a pressure valve 810 having a flat portion 811 as shown in FIG. 11A or a pressure valve 910 having a flat portion 911 as shown in FIG. 11B is used.
  • ⁇ Capacitor element housed in the case is impregnated with electrolyte.
  • the capacitor element When the internal pressure of the case reaches a certain value, the capacitor element is at a high temperature, and the electrolytic solution is evaporated in the case.
  • the pressure valve 810 or 910 Once the pressure valve 810 or 910 is ruptured in this state, the electrolyte is evaporated from the ruptured pressure valve together with the gas to the outside of the case, so that the capacitance of the capacitor is reduced and the loss is increased. As a result, there is a problem that the capacitor is subject to wear failure and the life of the capacitor is shortened.
  • An object of the present invention is to provide a pressure valve and an electrolytic capacitor that can improve the life of the capacitor by avoiding the burst of the pressure valve.
  • the present invention is a pressure valve disposed on a sealing body for sealing a case containing a capacitor element so that a proximal end is located inside the case and a distal end is located outside the case.
  • a slit having a tapered region is formed, and a slit that can be changed between a closed state and an open state by elastic deformation is formed at the top of the tapered region, and when the case internal pressure is less than a certain value, the slit While the closed state is maintained, the slit changes state to the open state when the internal pressure of the case reaches a certain value, so that the inside of the case communicates with the outside of the case to reduce the internal pressure of the case.
  • It is a pressure valve that opens.
  • the tapered region has a tapered shape
  • a force to restore the closed state by elastic deformation acts on the slit that has been opened. Can be made. Therefore, when the internal pressure of the case reaches a certain value, the slit changes to the open state, so that the internal pressure of the case can be released.
  • the internal pressure of the case becomes less than a certain value, the slit is closed by the tightening force. The state can be maintained. As a result, the case internal pressure that has reached a certain value can be released without rupturing the pressure valve, and the life of the capacitor can be improved.
  • check valve action since only the outflow from the inside of the case to the outside can be permitted and the inflow from the outside of the case to the inside (hereinafter referred to as “check valve action”) can be exerted, It is possible to prevent contamination from entering (contamination).
  • the tapered region is preferably formed in a truncated cone shape or a polygonal truncated cone shape. Since the above-described tightening force is increased by the shape, the check valve action can be obtained more effectively.
  • the tapered shape has a length in a first direction orthogonal to an axial direction connecting the distal end and the base end at a top portion of the tapered region in a second direction orthogonal to the axial direction and the first direction.
  • the slit has a planar shape that is longer than the length, and the slit extends in a direction intersecting the first direction.
  • the tapered shape is a shape in which the thickness in the first direction is constant without depending on the height in the axial direction, and the thickness in the second direction becomes smaller as it approaches the tip. Good. This can more effectively prevent the slit length from becoming longer.
  • the slit may extend in the second direction. This can more effectively prevent the slit length from becoming longer.
  • the slit is formed in a straight line in a plan view.
  • the tightening force is increased by making the slit linear. Thereby, the check valve action can be obtained more effectively.
  • the slit is preferably formed in a taper shape in the thickness direction of the top portion.
  • a valve main body at least partially disposed in a through hole formed in the sealing body, and a housing connected to a proximal end of the valve main body and having a diameter larger than the through hole.
  • the tapered region is preferably formed at the tip of the valve body.
  • the capacitor of the present invention includes the above-described pressure valve, a sealing body in which the pressure valve is disposed, a case sealed by the sealing body, and a capacitor element housed in the case.
  • the above-described pressure valve can prevent the electrolyte impregnated in the capacitor element from being released excessively to the outside of the case, so that the lifetime of the capacitor can be prevented from being reduced. Moreover, since the periphery of the slit of the pressure valve functions as a check valve, contamination in the case can be suppressed. Further, the failure of the pressure valve does not occur and the life of the capacitor can be improved.
  • the rupture of the pressure valve can be avoided. Thereby, the lifetime of the capacitor can be improved.
  • FIG. 1 is a plan view of an electrolytic capacitor according to a first embodiment of the present invention.
  • 1B is a partial cross-sectional view taken along line IB-IB in FIG. 1A showing the overall configuration of the electrolytic capacitor according to the first embodiment of the present invention. It is a disassembled perspective view of the capacitor
  • FIG. 4B is a cross-sectional view of the pressure valve along line IVb-IVb shown in FIG. 4A. It is a top view of the pressure valve seen from the V direction of Drawing 4A showing the state where a slit was closed.
  • the electrolytic capacitor 1 includes a capacitor element 2, a case 3a, a sealing body 3b, a bottom plate 4, a sleeve 5, a fixing member 6, terminals 7a and 7b, and a pressure valve 10.
  • the case 3a accommodates the capacitor element 2, and a sealing body 3b is fitted in the opening.
  • the sealing body 3b seals the case 3a.
  • the case 3a is made of metal (aluminum or the like), and the sealing body 3b is made of an insulating material (modified phenol resin or the like).
  • a packing 3x made of an elastic material (rubber or the like) is disposed on the upper peripheral edge of the sealing body 3b.
  • the packing 3x has a function of preventing gas in the case 3a from leaking from the gap between the sealing body 3b and the case 3a.
  • the upper end of the case 3a is crimped and fixed to the packing 3x.
  • the bottom plate 4 is a circular film made of an insulating material (such as flame retardant polyester) and is disposed so as to overlap the bottom surface of the bottom of the case 3a.
  • the sleeve 5 is a substantially cylindrical member made of an insulating material (polyolefin or the like), and covers the side peripheral surface of the case 3a, the lower peripheral edge of the bottom plate 4, and the upper peripheral edge of the case 3a.
  • the bottom plate 4 is sandwiched and fixed between the lower portion of the sleeve 5 and the bottom of the case 3a.
  • the fixing material 6 fixes the capacitor element 2 in the case 3a and is made of a thermoplastic resin (polypropylene or the like).
  • the terminals 7a and 7b and the pressure valve 10 are disposed on the sealing body 3b.
  • the terminals 7a and 7b are spaced apart from each other at positions that are point-symmetric with respect to the center of the sealing body 3b when viewed from the thickness direction of the sealing body 3b.
  • the terminals 7a and 7b are made of metal (aluminum or the like), the cathode terminal 7a is connected to the cathode lead 2a of the capacitor element 2, and the anode terminal 7b is connected to the anode lead 2b of the capacitor element 2 (see FIG. 2). As shown in FIG.
  • the sealing body 3b has an inside and an outside of the case 3a between the center (center between the terminal 7a and the terminal 7b) and the outer edge when viewed from the thickness direction of the sealing body 3b.
  • a communicating through hole 30 is formed.
  • the pressure valve 10 is disposed so as to close the through hole 30, and is fixed to the sealing body 3b by a lock washer (not shown) disposed on the upper surface thereof.
  • the pressure valve 10 has a function of releasing the gas in the case 3a.
  • the pressure valve 10 is made of, for example, non-diene rubber such as IIR or EPDM, silicone rubber or fluorine rubber, or diene rubber such as CR.
  • the capacitor element 2 is formed by winding an anode foil 2y and a cathode foil 2x, to which a cathode lead 2a and an anode lead 2b are respectively attached, via a separator (craft paper or the like) 2z made of an insulating material.
  • the outer periphery of the body is fixed with an element stopper tape 2t (see FIG. 1B), and then the wound body is impregnated with the driving electrolyte.
  • the anode foil 2x and the cathode foil 2y are obtained by roughening the surface of an aluminum foil, and the anode foil 2x is obtained by further forming an anodized film on the surface.
  • the pressure valve 10 is disposed on the sealing body so that the distal end is located outside the case 3 a and the proximal end is located inside the case 3 a.
  • the pressure valve 10 has a valve body 11 extending in the vertical direction and a housing 12 connected to the proximal end of the valve body 11.
  • the vertical direction is a direction (axial direction) connecting the distal end and the proximal end of the pressure valve 10, and this is also the axial direction of the through hole 30.
  • the valve body 11 is arranged in the through hole 30 up to a height of about 3/5 from the base end.
  • the housing 12 has a diameter larger than the diameter of the through hole 30, and is disposed below the wall 3b1 surrounding the through hole 30 in the sealing body 3b.
  • the valve main body 11 has a cylindrical tube region 21 extending upward from the base end, and a tapered region 22 formed above the tube region 21.
  • the tapered region 22 is formed at the tip of the valve body 11.
  • the cylinder region 21 is a region having a constant diameter.
  • the tapered region 22 tapers in the front-rear direction in FIG. 4A (corresponding to the “second direction” of the present invention and in a direction perpendicular to the extending direction of a slit 23 described later) as it approaches the tip of the valve body 11 ( That is, it is formed so that the thickness in the front-rear direction becomes smaller as it goes upward.
  • the width of the tapered region 22 is constant (that is, the thickness in the left-right direction is any position in the up-down direction) The same).
  • An elongated top portion 22t is formed at the uppermost position of the tapered region 22.
  • the top portion 22t has a substantially rectangular planar shape whose length in the left-right direction is longer than the length in the front-rear direction.
  • a straight slit 23 that is long in the left-right direction is formed on the top 22t.
  • the slit 23 is formed so that the width in the left-right direction is constant in the thickness direction (vertical direction) of the top portion 22t (that is, the width in the left-right direction is the same at any position in the vertical direction). Yes.
  • the slit 23 can be changed between a closed state and an open state. By opening the slit 23, the internal space of the pressure valve 10 communicates with the outside.
  • the pressure valve 10 is a hollow member having an open lower end.
  • the slit 23 is opened as shown in FIG. 5B, the interior of the case 3a communicates with the outside, and the internal pressure of the case 3a is released. Thereby, the gas in case 3a is emitted.
  • the internal pressure of the case 3a reaches a constant value
  • the conventional pressure valve 810 shown in FIG. 11A it corresponds to when the flat portion 811 bursts.
  • the conventional pressure valve 910 shown in FIG. 11B this corresponds to a case where the flat portion 911 is ruptured.
  • the internal pressure of the case 3a reaches a constant value, for example, in the following cases.
  • an anodic oxide film is formed on the cathode foil by reverse voltage
  • the anodic oxide film of the anode foil is damaged by overvoltage, overcurrent, etc., and the damaged film is repaired by the electrolyte and hydrogen gas is generated. Is the time.
  • the capacitor element generates heat, so that the temperature in the case rises and the electrolytic solution evaporates.
  • the opening of the slit 23 is much smaller than the opening formed by rupture of the conventional pressure valve shown in FIGS. 11A and 11B. For this reason, even if the electrolytic solution is evaporated in the case 3 a when the slit 23 is opened, the electrolytic solution in the case 3 a is hardly discharged from the slit 23.
  • the slit 23 is closed.
  • the pressure valve 10 has a tapered shape in which the thickness in the front-rear direction becomes smaller as it goes upward, so that the slits are opened in the front region 31 and the rear region 32 that face each other in the front-rear direction across the slit 23. This is because a tightening force acts on 23 (see FIG. 4A).
  • the tapered region 22 is formed in the pressure valve 10, and the slit 23 is formed in the top portion 22 t of the tapered region 22.
  • the slit 23 changes to the open state only when the internal pressure of the case 3a reaches a constant value, so that the internal pressure of the case 3a can be released, while when the internal pressure of the case 3a becomes less than a predetermined value.
  • the slit 23 can be closed by the tightening force, and the state can be maintained.
  • the internal pressure of the case 3a that has reached a certain value can be released without rupturing the pressure valve 10, and the life of the electrolytic capacitor 1 can be improved. Furthermore, since only the outflow of gas or the like from the inside of the case 3a to the outside is permitted and the action (check valve action) for preventing the inflow from the outside to the inside of the case 3a can be exhibited, the inside of the case 3a It is possible to prevent contamination from entering (contamination).
  • the slit 23 is formed in a straight line in the plan view of the pressure valve 10, the force of the front region 31 and the rear region 32 sandwiching the slit 23 in the front-rear direction approaches the mutual region ( Tension force) is easy to act. Therefore, the check valve action can be obtained more effectively.
  • the pressure valve 10 when the pressure valve 10 is arranged in the sealing body 3 b, at least a part of the valve main body 11 is arranged in the through hole 30, and the housing 12 is arranged below the wall portion 3 b 1 surrounding the through hole 30.
  • the casing 12 is caught by the wall 3b1, so that the pressure valve 10 is released from the sealing body 3b. Can be suppressed.
  • FIGS. 6A and 6B differs from the first embodiment in the tapered shape and the slit direction.
  • symbol is used and the description is abbreviate
  • the pressure valve 110 is disposed on the sealing body so that the distal end is located outside the case 3a and the proximal end is located inside the case 3a.
  • the pressure valve 110 has a valve main body 111 extending in the vertical direction and a housing 112 connected to the proximal end of the valve main body 111, similarly to the pressure valve 10 of the first embodiment. Similar to the pressure valve 10 shown in FIG. 4A, the valve main body 111 has a cylindrical tube region extending upward from the base end, and a tapered region 102 formed above the tube region.
  • the taper region 102 tapers in the front-rear direction in FIG. 6A (in a direction parallel to the extending direction of a slit 103 described later) (that is, the thickness in the front-rear direction becomes smaller toward the upper side). ) It is formed to have a tapered shape. In the left-right direction (the direction orthogonal to the extending direction of the slit 103), the width of the tapered region 102 is constant (that is, the thickness in the left-right direction is the same at any position in the up-down direction).
  • top portion 102t is formed at the uppermost position of the tapered region 102. Similar to the top portion 22t according to the first embodiment, the top portion 102t has a substantially rectangular planar shape in which the length in the left-right direction is longer than the length in the front-rear direction. The top portion 102t of the present embodiment is formed wider in the front-rear direction than the top portion 22t according to the first embodiment.
  • a linear slit 103 that is long in the front-rear direction is formed at the top 102t.
  • the slit 103 can be changed between a closed state and an open state.
  • the internal space of the pressure valve 110 communicates with the outside.
  • the slit 103 opens as shown in FIG. 6B, the inside and the outside of the case 3a communicate with each other, and the internal pressure of the case 3a is released. Thereby, the gas in case 3a is emitted.
  • the slit 103 is closed. From this state, when the internal pressure of the gas in the case 3a reaches a certain value again, the slit 103 is opened and the gas in the case 3a is released. Thereafter, when the internal pressure in the case 3a falls below a certain value, the slit 103 is closed. In this way, the opening and closing of the slit 103 are repeated.
  • region 22 is elongate in the left-right direction, and the slit 23 is extended in the left-right direction. Therefore, if the internal pressure in the case 3a is repeatedly increased suddenly, when the slit 23 is opened, the pressure valve 10 may tear in the extending direction of the slit 23 in the vicinity of both ends of the slit 23 and the slit length may be increased. There is. When the slit length becomes long, the pressure resistance, that is, the valve operating pressure tends to decrease.
  • the planar shape of the top part 102t of the tapered region 102 is elongated in the left-right direction, and the slit 103 extends in the front-rear direction. Therefore, when the slit 103 is opened, it is possible to effectively prevent the pressure valve 110 from tearing in the extending direction of the slit 103 in the vicinity of both ends of the slit 103 and increasing the slit length. Therefore, even if the internal pressure in the case 3a is repeatedly increased rapidly, the breakdown voltage is unlikely to decrease.
  • the tapered shape of the tapered region 102 is such that the thickness in the left-right direction is constant regardless of the height in the vertical direction, that is, the axial direction, and the thickness in the front-rear direction becomes smaller as it approaches the tip. It has become.
  • the force that suppresses the pressure valve 110 from tearing in the extending direction of the slit 103 near the both ends of the slit 103 acts more, so that the slit length can be further effectively increased. Can be prevented.
  • the slit 103 extends in the front-rear direction, that is, in the direction orthogonal to the longitudinal direction (left-right direction) of the elongated top portion 102t, so that when the slit 103 is opened, in the vicinity of both ends of the slit 103. Since the force which suppresses that the pressure valve 110 tears in the extension direction of the slit 103 acts more, it can prevent more effectively that a slit length becomes long.
  • the tapered shape of the tapered region 102 may not be the shape as in the present embodiment as long as the planar shape of the top portion 102t is formed to be elongated in one direction.
  • the extending direction of the slit 103 is preferably orthogonal to the one direction, but may not be orthogonal as long as it intersects the one direction.
  • the slit 123 is formed in the top part 22t of the taper area
  • the slit 123 is formed in a tapered shape having a wider width in the left-right direction.
  • the width of the upper end of the slit 123 is the same as the width of the slit 23 of the first embodiment.
  • the slit 123 opens and the gas in the case 3a is released from the slit 123. Even when the slit 123 is opened, the electrolyte is hardly discharged from the slit 123. Further, since the internal pressure of the case 3a that has reached a certain value can be released without rupturing the pressure valve, the life of the electrolytic capacitor can be improved. The life reduction of the electrolytic capacitor 1 can be suppressed. When the gas falls below a certain value, the slit 123 closes and functions as a check valve.
  • the slit 123 is formed in a tapered shape that changes in the thickness direction of the top portion 22t, the strength of the structure is ensured and the tightening force is increased. Thereby, the check valve action can be obtained more effectively.
  • the fourth embodiment differs from the first embodiment in the shape of the pressure valve.
  • symbol is used and the description is abbreviate
  • the pressure valve 210 includes a valve body 211 disposed in the through hole 230 of the sealing body 203 b and a housing 212 connected to the proximal end of the valve body 211.
  • the housing 212 has a diameter larger than the diameter of the through hole 230 and is disposed below the wall portion 203b1 surrounding the through hole 230 in the sealing body 203b.
  • the valve body 211 has a substantially cylindrical tube region 221 and a truncated cone-shaped tapered region 222 disposed above the tube region 221.
  • the tapered region 222 has a tapered shape whose diameter decreases as it approaches the tip of the valve body 211.
  • two large diameter portions 221a and 221b having a larger diameter than other portions are formed in the cylinder region 221. Since the diameters of the large diameter portions 221a and 221b are slightly larger than the diameter of the through hole 230 shown in FIG. 8, when the valve body 211 is disposed in the through hole 230, the large diameter portions 221a and 221b cause the cylindrical region 221 and the sealing body 203b to Is sealed (see FIG. 8).
  • the top portion 222t of the tapered region 222 has a circular shape as shown in FIG. 9A.
  • a short straight slit 223 extending in the left-right direction is formed in the top portion 222t.
  • the top 222t is thick.
  • the width in the left-right direction of the slit 223 is constant in the thickness direction (vertical direction) of the top portion 222t (that is, the width in the left-right direction is the same at any position in the vertical direction).
  • the pressure valve 210 is a hollow member having an open lower end. By opening the slit 223, the internal space of the pressure valve 210 communicates with the outside.
  • the slit 223 When the internal pressure of the case 3a shown in FIG. 1B is less than a certain value, the slit 223 is closed (see FIGS. 9A and 9B). When the internal pressure of the case 3a reaches a certain value, the slit 223 opens and the gas in the case 3a is released. When the gas in the case 3a falls below a certain value, the slit 223 is closed. Thus, the opening and closing of the slit 223 are repeated. As a result, the internal pressure of the case 3a that has reached a certain value can be released without rupturing the pressure valve 210, and the life of the electrolytic capacitor can be improved.
  • the slit 223 opens and the gas in the case 3a is released from the slit 223.
  • the slit 223 is closed, so that the electrolyte is hardly discharged from the slit 223. For this reason, the lifetime reduction of an electrolytic capacitor can be suppressed.
  • the slit 223 closes and functions as a check valve.
  • the tapered region 222 has a truncated cone shape, a force is applied to the region around the slit 223 toward the center of the top 222t at the top 222t, and this force concentrates on the slit 223 and attempts to close the slit 223. . Therefore, the function as a check valve can be obtained more effectively.
  • the slit 223 is short, a force in which the area around the slit 223 is directed toward the center of the top 222t is likely to act.
  • the thickness of the top portion 222t is large, the tightening force becomes larger than when the thickness of the top portion 222t is thin. As a result, the function as a check valve can be obtained more effectively.
  • the pressure valve of the third embodiment shown in FIG. 7 was used.
  • the cylinder region has a height of 10 mm and a diameter of 4 mm
  • the tapered region has a height of 5 mm
  • the slit has a horizontal width of 0.5 mm at the upper end and 0.3 mm at the lower end.
  • the disk-shaped pressure valve (diameter 8 mm) shown in FIG. 11A was used.
  • the diameter of the cylindrical through hole formed in the sealing body is 4 mm.
  • electrolytic capacitors having a diameter of 76.2 mm, a height of 90 mm, a rated voltage of 400 V, and a capacitance of 4700 ⁇ F (5,000 hours guaranteed product) ) was used.
  • the electrolytic capacitor was left to apply a rated voltage (400 V) at an ambient temperature of 105 ° C., and a reliability test was performed.
  • Table 1 shows the parameters before the test to be left (initial) and after the test was left for 8000 hours.
  • valve body 11 of the first embodiment has the cylinder region 21, but may be configured without the cylinder region 21.
  • valve body 111 of the second embodiment also has a cylinder region
  • the valve body 211 of the third embodiment also has a cylinder region
  • the valve body 311 of the fourth embodiment also has a cylinder region 321.
  • these valve bodies may be configured so as not to have a cylindrical region.
  • the tapered region 222 has a truncated cone shape, but the tapered region 222 may have a polygonal truncated cone shape, for example, a triangular frustum shape, a quadrangular frustum shape, or a pentagonal frustum shape.
  • the slits 23, 103, 123, and 223 are linear in the left-right direction, but the shape of the slit can be changed.
  • the slit may be corrugated.
  • the width in the left-right direction of the slit 223 is constant in the thickness direction of the top portion 222t, but the width in the left-right direction of the slit 223 may be tapered in the thickness direction of the top portion 222t. .
  • the width in the left-right direction of the slit 103 may change in the thickness direction with respect to the top portion 102.
  • the top 222t of the tapered region 222 is thick, but the top 222t is not limited to such a configuration.
  • a thin portion 401 is formed at the center of the top portion 322t of the tapered region 322, a thick portion 402 thicker than the thin portion 401 is formed around the thin portion 401, and a slit 323 is formed in the thin portion 401. It may be formed.
  • the pressure valve of the present invention may be used for an electric double layer capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

コンデンサ素子を収容するケースを封止する封口体に、基端がケースの内部に位置し、先端がケースの外部に位置するように配置される圧力弁である。圧力弁は、先細り形状となった先細り領域を有する。前記先細り領域の頂部には、弾性変形することにより閉口状態と開口状態とに状態変化可能なスリットが形成されている。ケース内圧が一定値未満ではスリットが閉口状態を維持する。ケース内圧が一定値に達したときにスリットが前記開口状態に状態変化することでケースの内部と外部とを連通させケース内圧を開放する。

Description

圧力弁及び電解コンデンサ
 本発明は、電解コンデンサ用の圧力弁(pressure valve)及び当該圧力弁を備えた電解コンデンサ(electrolytic capacitor)に関する。
 電解コンデンサや電気二重層コンデンサとして、コンデンサ素子が収容されたケースと、ケースを封止する封口体と、封口体に形成された貫通孔を塞ぐ圧力弁とを備えたものが知られている(特許文献1参照)。圧力弁には、図11Aに示すような、平坦部811を有する圧力弁810、または、図11Bに示すような、平坦部911を有する圧力弁910が用いられている。
 ケースの内圧が一定値に達すると、平坦部811、911が破裂することにより、ケース内のガスが放出される。
特開2005-93941号公報
 ケースに収容されたコンデンサ素子には、電解液が含浸されている。ケースの内圧が一定値に達する頃には、コンデンサ素子が高温となっており、電解液がケース内にて蒸散している。この状態で圧力弁810又は910が一旦破裂すると、破裂した圧力弁からガスとともに電解液がケースの外部に蒸散し、コンデンサの静電容量が減少するとともに損失が増加してしまう。その結果、コンデンサは摩耗故障に至り、コンデンサの寿命が短くなるという問題がある。
 本発明の目的は、圧力弁の破裂を回避することにより、コンデンサの寿命の向上を図ることができる圧力弁及び電解コンデンサを提供することである。
 本発明は、コンデンサ素子を収容するケースを封止する封口体に、基端が前記ケースの内部に位置し、先端が前記ケースの外部に位置するように配置される圧力弁であって、先細り形状となった先細り領域を有し、前記先細り領域の頂部に、弾性変形することにより閉口状態と開口状態とに状態変化可能なスリットが形成されており、前記ケース内圧が一定値未満では前記スリットが前記閉口状態を維持する一方、前記ケース内圧が一定値に達したときに前記スリットが前記開口状態に状態変化することで、前記ケースの内部と前記ケースの外部とを連通させ前記ケース内圧を開放する圧力弁である。
 上記構成によれば、先細り形状となった先細り領域を有しているので、開口状態となったスリットに対して弾性変形により閉口状態に復元しようとする力(以下「緊迫力」という)を作用させることができる。そのため、ケース内圧が一定値に達したときのみスリットが開口状態に状態変化することで、ケース内圧を開放することができる一方、ケース内圧が一定値未満となったときには緊迫力によりスリットを閉口状態としてその状態を維持することができる。その結果、圧力弁を破裂させることなく、一定値に達したケース内圧を開放することができ、コンデンサの寿命の向上を図ることができる。さらに、ケースの内部から外部への流出のみを許可し、ケースの外部から内部への流入を防止する作用(以下「逆止弁作用」という)を発揮させることができることから、ケースの内部への汚染物の侵入(コンタミネーション)を防止することができる。
 また、上記構成において、前記先細り領域は、円錐台状又は多角錐台状に形成されていることが好ましい。上記形状により、上記した緊迫力が大きくなるため、逆止弁作用がより効果的に得られる。
 前記先細り形状は、前記先細り領域の前記頂部において、前記先端と前記基端とを結ぶ軸方向と直交する第1方向の長さが、前記軸方向及び前記第1方向と直交する第2方向の長さよりも長くなる平面形状を有するような形状であり、前記スリットが、前記第1方向と交差する方向に延在していることが好ましい。これにより、ケース内圧を開放する際にスリット両端付近において圧力弁がスリットの延在方向に裂けてスリット長が長くなることを効果的に防止できる。そのため、スリット長が長くなることによる圧力弁の耐圧低下を抑制することができる。
 このとき、前記先細り形状は、前記第1方向の厚さが前記軸方向の高さに依存せず一定で且つ前記第2方向の厚さが前記先端に近づくほど小さくなるような形状であってよい。これによって、スリット長が長くなることをさらに効果的に防止できる。
 また、このとき、前記スリットが、前記第2方向に延在していてよい。これによって、スリット長が長くなることをさらに効果的に防止できる。
 また、上記構成において、平面視において、前記スリットは直線状に形成されていることが好ましい。スリットを直線状にすることにより、緊迫力が大きくなる。これにより逆止弁作用がより効果的に得られる。
 さらに、上記構成において、前記スリットは、前記頂部の厚み方向にテーパ状に形成されていることが好ましい。スリットの入口及び出口のうち一方を狭くし、他方を広くすることにより、構造の強度が確保され、緊迫力が大きくなり、逆止弁としての機能がより効果的に得られる。
 また、上記構成において、少なくとも一部が前記封口体に形成された貫通孔内に配置される弁本体と、前記弁本体の基端に接続され、前記貫通孔より径が大きい鍔体とを備え、前記弁本体の先端に前記先細り領域が形成されていることが好ましい。
 上記構成では、圧力弁を封口体に配置したとき、弁本体は貫通孔に配置され、鍔体は貫通孔を包囲する壁の下方に配置される。このため、ケース内のガス量が増加し、圧力弁がケースの外部に向けて押圧されても、鍔体が壁に引っ掛かるため、圧力弁が封口体から外れることを抑止できる。
 また、本発明のコンデンサは、上述した圧力弁と、前記圧力弁が配置された封口体と、封口体によって封止されたケースと、ケースに収容されたコンデンサ素子とを備えている。
 上述した圧力弁により、コンデンサ素子に含浸された電解液がケースの外部に過剰に放出されることを抑止できるため、コンデンサの寿命低下を抑止できる。また、圧力弁のスリット周辺が逆止弁として機能するため、ケース内のコンタミネーションを抑止できる。さらに、圧力弁の破裂による故障が生じず、コンデンサの寿命の向上を図ることができる。
 本発明によると、圧力弁の破裂を回避することができる。これによりコンデンサの寿命の向上を図ることができる。
本発明の第1実施形態に係る電解コンデンサの平面図である。 本発明の第1実施形態に係る電解コンデンサの全体構成を示す図1AのIB-IB線に沿った部分断面図である。 図1A及び図1Bに示すコンデンサ素子の分解斜視図である。 正面からみた圧力弁周辺の拡大図である。 圧力弁の斜視図である。 図4Aに示すIVb- IVb線に沿った圧力弁の断面図である。 スリットが閉じた状態を示す、図4AのV方向から視た圧力弁の平面図である。 スリットが開いた状態を示す、図4AのV方向から視た圧力弁の平面図である。 本発明の第2実施形態に係る電解コンデンサにおける圧力弁のスリットが閉じた状態での平面図である。 図6Aに示す圧力弁のスリットが開いた状態での平面図である。 本発明の第3実施形態に係る電解コンデンサにおける圧力弁の断面図である。 本発明の第4実施形態に係る電解コンデンサにおける圧力弁周辺の正面からみた拡大図である。 本発明の第4実施形態に係る電解コンデンサにおける圧力弁の斜視図である。 図9Aに示すIXb‐IXbに沿った圧力弁の断面図である。 本発明の第4実施形態の変形例に係る電解コンデンサにおける圧力弁の断面図である。 従来の圧力弁の断面図である。 従来の他の圧力弁の断面図である。
 以下、本発明の好適な実施形態について、図面を参照しつつ説明する。ここでは、本発明の第1実施形態である電解コンデンサについて、図面を参照しつつ以下に説明する。
〔第1実施形態〕
 電解コンデンサ1は、図1A及び図1Bに示すように、コンデンサ素子2、ケース3a、封口体3b、底板4、スリーブ5、固定材6、端子7a、7b、および圧力弁10を含む。
 ケース3aは、コンデンサ素子2を収容するものであり、開口部に封口体3bが嵌合されている。封口体3bは、ケース3aを封止している。ケース3aは金属(アルミニウム等)からなり、封口体3bは絶縁材料(変性フェノール樹脂等)からなる。封口体3bの上部周縁には、弾性材料(ゴム等)からなるパッキン3xが配置されている。パッキン3xは、封口体3bとケース3aとの隙間からケース3a内のガスが漏出するのを防止する機能を有する。ケース3aの上端は、パッキン3xに加締固定されている。
 底板4は、絶縁材料(難燃性ポリエステル等)からなる円形のフィルムであり、ケース3aの底部下面に重なるように配置されている。スリーブ5は、絶縁材料(ポリオレフィン等)からなる略円筒状の部材であり、ケース3aの側部周面、底板4の下部周縁、およびケース3aの上部周縁を覆っている。スリーブ5の下部は、ケース3aの底部との間に底板4を狭持し、固定している。
 固定材6は、コンデンサ素子2をケース3a内に固定するものであり、熱可塑性樹脂(ポリプロピレン等)からなる。
 端子7a、7bおよび圧力弁10は、封口体3bに配置されている。端子7a、7bは、封口体3bの厚み方向から見て、封口体3bの中心に関して点対称となる位置に、互いに離隔して配置されている。端子7a、7bは金属(アルミニウム等)からなり、陰極端子7aはコンデンサ素子2の陰極リード2a、陽極端子7bはコンデンサ素子2の陽極リード2bとそれぞれ接続されている(図2参照)。
 封口体3bには、図1Bに示すように、封口体3bの厚み方向から見たときの中心(端子7a-端子7b間の中央)と外縁との間に、ケース3aの内部と外部とを連通する貫通孔30が形成されている。圧力弁10は、当該貫通孔30を塞ぐように配置されており、その上面に配置されたロックワッシャ(図示せず)によって、封口体3bに固定されている。圧力弁10は、ケース3a内のガスを放出する機能を有する。圧力弁10は、例えば、IIRやEPDM、シリコーンゴムやフッ素ゴムなどの非ジエン系ゴムや、CRなどのジエン系ゴムなどによって形成されている。
 次に、図2を参照し、コンデンサ素子2の構成について詳細に説明する。
 コンデンサ素子2は、陰極リード2aおよび陽極リード2bがそれぞれ取り付けられた陽極箔2yおよび陰極箔2xを、絶縁材料からなるセパレータ(クラフト紙等)2zを介して巻回し、これにより形成された巻回体の外周を素子止めテープ2tで固定し(図1B参照)、その後、巻回体を駆動用電解液に含浸させることにより、形成されている。陽極箔2xおよび陰極箔2yはアルミニウム箔の表面を粗面化したものであり、陽極箔2xはさらに当該表面に陽極酸化皮膜を形成したものである。
 続いて、圧力弁の構成について、図3及び図4を参照しつつ詳細に説明する。
 圧力弁10は、図3に示すように、先端がケース3aの外部に位置し、基端がケース3aの内部に位置するように封口体に配置されている。
 圧力弁10は、上下方向に延在した弁本体11と、弁本体11の基端に接続された鍔体12とを有している。ここで、上下方向とは圧力弁10の先端と基端とを結ぶ方向(軸方向)であり、これは貫通孔30の軸方向でもある。弁本体11は、基端から3/5程度の高さまでが貫通孔30内に配置されている。鍔体12は貫通孔30の直径より大きな直径を有し、封口体3bにおいて貫通孔30を包囲する壁部3b1の下方に配置されている。
 弁本体11は、図4Aに示すように、基端から上方に延在した筒状の筒領域21と、筒領域21の上方に形成された先細り領域22とを有している。先細り領域22は、弁本体11の先端に形成されている。
 筒領域21は、径が一定の領域である。先細り領域22は、弁本体11の先端に近付くにつれて、図4A中の前後方向(本発明の「第2方向」に相当し、後述するスリット23の延在方向に直交する方向)に先細る(すなわち、前後方向の厚さが上方ほど小さくなる)ように形成されている。なお、左右方向(本発明の「第1方向」に相当し、前記スリット23の延在方向)については、先細り領域22の幅が一定(すなわち、左右方向の厚さが上下方向のどの位置でも同じ)である。
 先細り領域22の最上位置には、細長形状の頂部22tが形成されている。頂部22tは、左右方向の長さが前後方向の長さよりも長いほぼ矩形の平面形状を有している。頂部22tには、左右方向に長い直線状のスリット23が形成されている。スリット23は、図4Bに示すように、左右方向の幅が頂部22tの厚み方向(上下方向)に一定(すなわち、左右方向の幅が上下方向のどの位置でも同じ)になるように形成されている。スリット23の周囲が弾性変形することにより、スリット23は閉口状態と開口状態とに変化可能である。スリット23が開口することにより、圧力弁10の内部空間と外部とが連通する。
 圧力弁10は、図4Bに示すように、下端が開口した中空の部材である。
 続いて、図5A及び図5Bを参照しつつ、スリット23の開閉動作について説明する。
 図1Bにおいてケース3aの内圧が一定値未満では、図5Aに示すように、スリット23の閉口状態が維持される。
 ケース3aの内圧が一定値に達すると、図5Bに示すようにスリット23が開口し、ケース3aの内部と外部とが連通し、ケース3aの内圧が開放される。これにより、ケース3a内のガスが放出される。ここで、ケース3aの内圧が一定値に達するときとは、図11Aに示す従来の圧力弁810を用いた場合、平坦部811が破裂するときに相当する。また、図11Bに示す従来の圧力弁910を用いた場合、平坦部911が破裂するときに相当する。ケース3aの内圧が一定値に達するのは、例えば、以下の場合である。すなわち、逆電圧によって陰極箔に陽極酸化皮膜が形成されるとき、過電圧及び過電流などによって陽極箔の陽極酸化皮膜が損傷し、電解液によって損傷した皮膜の修復が行われて水素ガスが発生するときである。上記皮膜の形成や修復中は、コンデンサ素子が発熱するのでケース内の温度が上昇し、電解液が蒸散する。
 スリット23の開口は、従来の図11A及び図11Bに示す圧力弁が破裂して形成される開口よりはるかに小さい。このため、スリット23の開口時にケース3a内に電解液が蒸散していても、ケース3a内の電解液はスリット23から殆ど放出されない。
 その後、ケース3aの内圧が一定値未満になると、スリット23が閉じる。これは、圧力弁10が前後方向の厚さが上方ほど小さくなる先細り形状になっていることで、スリット23を挟んで前後方向に対向した前領域31と後領域32において開口状態となったスリット23に対して、緊迫力が作用するためである(図4A参照)。
 この状態から、ケース3a内のガスの内圧が再び一定値に達すると、スリット23が開き、ケース3a内のガスが放出される。その後、ケース3a内の内圧が一定値を下回ると、スリット23が閉じる。このようにスリット23の開口と閉口が繰り返される。
 以上に述べたように、本実施形態の圧力弁10を備えた電解コンデンサ1では、圧力弁10に先細り領域22を形成し、先細り領域22の頂部22tにスリット23を形成している。これにより、スリット23の周囲が弾性変形することにより開口状態となったスリット23に対して緊迫力を作用させることができる。そのため、ケース3aの内圧が一定値に達したときのみスリット23が開口状態に状態変化することで、ケース3aの内圧を開放することができる一方、ケース3aの内圧が一定値未満となったときには緊迫力によりスリット23を閉口状態としてその状態を維持することができる。その結果、圧力弁10を破裂させることなく、一定値に達したケース3aの内圧を開放することができ、電解コンデンサ1の寿命の向上を図ることができる。さらに、ケース3aの内部から外部へのガス等の流出のみを許可し、ケース3aの外部から内部への流入を防止する作用(逆止弁作用)を発揮させることができることから、ケース3aの内部への汚染物の侵入(コンタミネーション)を防止することができる。
 また、圧力弁10の平面視において、スリット23が直線状に形成されているため、スリット23を前後方向に挟んだ前領域31と後領域32とが互いの領域に近付こうとする力(緊迫力)が作用しやすい。したがって、逆止弁作用がより効果的に得られる。
 また、圧力弁10を封口体3bに配置したとき、弁本体11の少なくとも一部は貫通孔30内に配置され、鍔体12は貫通孔30を包囲する壁部3b1の下方に配置される。これにより、ケース3aの内圧が一定値に達し、圧力弁10がケース3aの外部に向かって押圧されても、鍔体12が壁部3b1に引っ掛かるため、圧力弁10が封口体3bから外れることを抑止できる。
〔第2実施形態〕
 次に、本発明の第2実施形態について、図6A及び図6Bを参照しつつ説明する。第2実施形態において第1実施形態と異なる点は、先細り形状とスリットの方向である。なお、上述した第1実施形態と同一の構成については同一の符号を用い、その説明を適宜省略する。
 本実施形態に係る圧力弁110は、先端がケース3aの外部に位置し、基端がケース3aの内部に位置するように封口体に配置されている。
 圧力弁110は、第1実施形態の圧力弁10と同様に、上下方向に延在した弁本体111と、弁本体111の基端に接続された鍔体112とを有している。弁本体111は、図4Aに示す圧力弁10と同様に、基端から上方に延在した筒状の筒領域と、筒領域の上方に形成された先細り領域102とを有している。
 先細り領域102は、弁本体111の先端に近付くにつれて、図6A中の前後方向(後述するスリット103の延在方向と平行な方向)に先細る(すなわち、前後方向の厚さが上方ほど小さくなる)先細り形状を有するように形成されている。なお、左右方向(スリット103の延在方向と直交する方向)については、先細り領域102の幅が一定(すなわち、左右方向の厚さが上下方向のどの位置でも同じ)である。
 先細り領域102の最上位置には、細長形状の頂部102tが形成されている。頂部102tは、第1実施形態に係る頂部22tと同じく、左右方向の長さが前後方向の長さよりも長いほぼ矩形の平面形状を有している。本実施形態の頂部102tは、第1実施形態に係る頂部22tよりも前後方向に幅広に形成されている。
 頂部102tには、前後方向に長い直線状のスリット103が形成されている。スリット103の周囲が弾性変形することにより、スリット103は閉口状態と開口状態とに変化可能である。スリット103が開口することにより、圧力弁110の内部空間と外部とが連通する。
 続いて、スリット103の開閉動作について説明する。
 ケース3aの内圧が一定値未満では、図6Aに示すように、スリット103の閉口状態が維持される。
 ケース3aの内圧が一定値に達すると、図6Bに示すようにスリット103が開口し、ケース3aの内部と外部とが連通し、ケース3aの内圧が開放される。これにより、ケース3a内のガスが放出される。
 その後、ケース3aの内圧が一定値未満になると、スリット103が閉じる。この状態から、ケース3a内のガスの内圧が再び一定値に達すると、スリット103が開き、ケース3a内のガスが放出される。その後、ケース3a内の内圧が一定値を下回ると、スリット103が閉じる。このようにスリット103の開口と閉口が繰り返される。
 ところで、第1実施形態では、先細り領域22の頂部22tの平面形状が左右方向に細長く、スリット23は左右方向に延在している。そのため、ケース3a内の内圧が急激に上昇することを繰り返すと、スリット23が開口した際に、スリット23の両端付近において圧力弁10がスリット23の延在方向に裂けてスリット長が長くなるおそれがある。スリット長が長くなると、耐圧すなわち弁作動圧が低下しやすい。これに対して、本実施形態では、先細り領域102の頂部102tの平面形状が左右方向に細長く、スリット103は前後方向に延在している。そのため、スリット103が開口した際に、スリット103の両端付近において圧力弁110がスリット103の延在方向に裂けてスリット長が長くなることを効果的に防止することができる。したがって、ケース3a内の内圧が急激に上昇することを繰り返しても、耐圧が低下しにくい。
 本実施形態において、先細り領域102の先細り形状は、左右方向の厚さが上下方向すなわち軸方向の高さに依存せず一定で且つ前後方向の厚さが前記先端に近づくほど小さくなるような形状となっている。これによって、スリット103が開口した際にスリット103の両端付近において圧力弁110がスリット103の延在方向に裂けるのを抑制する力がより大きく働くので、スリット長が長くなることをさらに効果的に防止できる。
 さらに、本実施形態では、スリット103が、前後方向、つまり細長い頂部102tの長手方向(左右方向)と直交する方向に延在しているので、スリット103が開口した際にスリット103の両端付近において圧力弁110がスリット103の延在方向に裂けるのを抑制する力がより大きく働くので、スリット長が長くなることをさらに効果的に防止できる。
 なお、先細り領域102の先細り形状は、頂部102tの平面形状が一方向に細長くなるように形成されていれば、本実施形態のような形状でなくてもよい。また、スリット103の延在方向は当該一方向と直交していることが好ましいが、当該一方向と交差していれば直交していなくてもよい。
〔第3実施形態〕
 次に、本発明の第3実施形態について、図7を参照しつつ説明する。第3実施形態において第1実施形態及び第2実施形態と異なる点は、スリットの形状である。なお、上述した第1実施形態と同一の構成については同一の符号を用い、その説明を適宜省略する。
 スリット123は、先細り領域22の頂部22tに、左右方向に直線状に形成されている。スリット123は、左右方向の幅が上方ほど広いテーパ状に形成されている。スリット123の上端の幅は、第1実施形態のスリット23の幅と同じ幅である。
 上記構成により、第3実施形態でも、第1実施形態と同様に、ケース3aの内圧が一定値に達すると、スリット123が開き、スリット123からケース3a内のガスが放出される。スリット123が開いても、スリット123から電解液が殆ど放出されない。また、圧力弁を破裂させることなく、一定値に達したケース3aの内圧を開放することができるため、電解コンデンサの寿命の向上を図ることができる。電解コンデンサ1の寿命低下を抑止できる。また、ガスが一定値を下回ると、スリット123が閉じ、逆止弁として機能する。
 また、スリット123が頂部22tの厚み方向に変化するテーパ状に形成されているため、構造の強度が確保され、緊迫力が大きくなる。これにより逆止弁作用がより効果的に得られる。
〔第4実施形態〕
 次に、本発明の第4実施形態について、図8及び図9を参照しつつ説明する。第4実施形態において第1実施形態と異なる点は、圧力弁の形状である。なお、上述した第1実施形態と同一の構成については同一の符号を用い、その説明を適宜省略する。
 圧力弁210は、図8に示すように、封口体203bの貫通孔230に配置された弁本体211と、弁本体211の基端に接続された鍔体212とを有している。鍔体212は貫通孔230の直径より大きな直径を有し、封口体203bにおいて貫通孔230を包囲する壁部203b1の下方に配置されている。
 弁本体211は、図9Aに示すように、略円筒状の筒領域221と、筒領域221の上方に配置された円錐台状の先細り領域222とを有している。先細り領域222は、弁本体211の先端に近付くにつれて径が小さくなった先細り形状となっている。
 筒領域221には、径が他の部分よりも大きい2つの大径部221a、221bが形成されている。大径部221a、221bの径は、図8に示す貫通孔230の径よりやや大きいため、弁本体211を貫通孔230に配置すると、大径部221a、221bにより筒領域221と封口体203bとの間が密封される(図8参照)。
 先細り領域222の頂部222tは、図9Aに示すように、円形状である。頂部222tには、左右方向に延在した短い直線状のスリット223が形成されている。図9Bに示すように、頂部222tは厚みが厚い。スリット223の左右方向の幅は、頂部222tの厚み方向(上下方向)に一定(すなわち、左右方向の幅が上下方向のどの位置でも同じ)である。
 圧力弁210は、下端が開口した中空の部材である。スリット223が開くことにより、圧力弁210の内部空間と外部とが連通する。
 図1Bに示すケース3aの内圧が一定値未満では、スリット223が閉じている(図9A及び図9B参照)。ケース3aの内圧が一定値に達すると、スリット223が開き、ケース3a内のガスが放出される。ケース3a内のガスが一定値を下回ると、スリット223が閉じる。このように、スリット223の開口と閉口が繰り返される。その結果、圧力弁210を破裂させることなく、一定値に達したケース3aの内圧を開放することができ、電解コンデンサの寿命の向上を図ることができる。
 上記構成により、第4実施形態でも、第1実施形態と同様に、ケース3aの内圧が一定値に達すると、スリット223が開き、スリット223からケース3a内のガスが放出される。ケース3aの内圧が一定値を下回るとスリット223が閉じることにより、スリット223から電解液が殆ど放出されない。このため、電解コンデンサの寿命低下を抑止できる。また、ケース3aの内圧が一定値を下回ると、スリット223が閉じ、逆止弁として機能する。
 また、先細り領域222が円錐台状であるため、頂部222tでは、スリット223周囲の領域が頂部222tの中心に向かう力が作用し、この力がスリット223に集中し、スリット223を閉じようとする。したがって、逆止弁としての機能がより効果的に得られる。
 また、スリット223が短いため、スリット223周囲の領域が頂部222tの中心に向かう力が作用しやすい。また、頂部222tの厚みが厚いため、頂部222tの厚みが薄い場合に比べて緊迫力が大きくなる。これらにより、逆止弁としての機能がより効果的に得られる。
 以下、実施例により、本発明をさらに具体的に説明する。
 実施例のNo.1~No.3では、図7に示す第3実施形態の圧力弁を用いた。圧力弁において、筒領域の高さ10mm及び直径4mm、先細り領域の高さ5mm、スリットの左右方向幅が上端において0.5mmで下端において0.3mmである。
 従来例のNo.4~No.6では、図11Aに示す円板状の圧力弁(直径8mm)を用いた。
 封口体に形成された円筒状の貫通孔の直径は4mmである。
 実施例のNo.1~No.3および従来例のNo.4~No.6では、直径76.2mm、高さ90mm、定格電圧400V、及び、静電容量4700μFの電解コンデンサ(5000時間保証品)を用いた。当該電解コンデンサを周囲温度105℃で定格電圧(400V)を印加放置し、信頼性試験を行った。放置する試験前(初期)と8000時間放置した後とにおける、各パラメータを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1の「外観」は、目視により判断した。実施例のNo.1~No.3では、8000時間が経過しても圧力弁が破裂せず、電解コンデンサに故障などの問題が生じなかった。また、8000時間を経過しても静電容量Cap、損失角の正接tanδ、及び漏れ電流LCがあまり変化していなかった。
 これは、ケースの内圧が一定値に達すると、スリットからガスは放出されたが、電解液は殆ど放出されなかったためであると考えられる。また、8000時間を経過しても圧力弁を継続して使用できた。
 一方、従来例のNo.4~No.6では、8000時間経過時点で、静電容量Capが半分程度に低下するとともに損失角の正接tanδが10倍近く上昇し、圧力弁が破裂しており、電解コンデンサが故障した。これは、圧力弁に形成された破裂孔から電解液が放出されたためであると考えられる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
 例えば、第1実施形態の弁本体11は筒領域21を有しているが、筒領域21を有さない構成でもよい。また、第2実施形態の弁本体111も筒領域を有し、第3実施形態の弁本体211も筒領域21を有し、第4実施形態の弁本体311も筒領域321を有しているが、これらの弁本体も筒領域を有さない構成としてもよい。
 さらに、上述した第4実施形態では、先細り領域222が円錐台状であるが、先細り領域222が多角錐台状、例えば、三角錘台状、四角錐台状、五角錘台状でもよい。
 また、上述した第1~第4実施形態では、スリット23、103、123、223が左右方向に直線状であるが、スリットの形状は変更可能である。例えば、スリットが波形でもよい。
 また、上述した第4実施形態では、スリット223の左右方向の幅が頂部222tの厚み方向に一定であるが、スリット223の左右方向の幅が頂部222tの厚み方向にテーパ状であってもよい。これにより、構造の強度が確保されるため、逆止弁としての機能がより効果的に得られる。同様に、第2実施形態においてもスリット103の左右方向の幅が頂部102との厚み方向に変化していてもよい。
 また、上述した第4実施形態では、先細り領域222の頂部222tの厚みが厚いが、頂部222tはこのような構成に限られない。例えば、図10に示すように、先細り領域322の頂部322tの中央部に薄肉部401が形成され、その周囲に薄肉部401より厚みが厚い厚肉部402が形成され、スリット323が薄肉部401に形成されていてもよい。
 本発明の実施形態として電解コンデンサについて説明したが、本発明の圧力弁を電気二重層コンデンサに用いてもよい。
 

Claims (9)

  1.  コンデンサ素子を収容するケースを封止する封口体に、基端が前記ケースの内部に位置し、先端が前記ケースの外部に位置するように配置される圧力弁であって、
     先細り形状となった先細り領域を有し、
     前記先細り領域の頂部に、弾性変形することにより閉口状態と開口状態とに状態変化可能なスリットが形成されており、
     前記ケース内圧が一定値未満では前記スリットが前記閉口状態を維持する一方、
     前記ケース内圧が一定値に達したときに前記スリットが前記開口状態に状態変化することで前記ケースの内部と前記ケースの外部とを連通させ前記ケース内圧を開放する圧力弁。
  2.  前記先細り領域が、円錐台状又は多角錐台状に形成されている請求項1に記載の圧力弁。
  3.  前記先細り形状は、前記先細り領域の前記頂部において、前記先端と前記基端とを結ぶ軸方向と直交する第1方向の長さが、前記軸方向及び前記第1方向と直交する第2方向の長さよりも長くなる平面形状を有するような形状であり、
     前記スリットが、前記第1方向と交差する方向に延在している請求項1に記載の圧力弁。
  4.  前記先細り形状は、前記第1方向の厚さが前記軸方向の高さに依存せず一定で且つ前記第2方向の厚さが前記先端に近づくほど小さくなるような形状である請求項3に記載の圧力弁。
  5.  前記スリットが、前記第2方向に延在している請求項3又は4に記載の圧力弁。
  6.  平面視において、前記スリットは直線状に形成されている請求項1~5のいずれか1項に記載の圧力弁。
  7.  前記スリットが、前記頂部の厚み方向にテーパ状に形成されている請求項1~6のいずれか1項に記載の圧力弁。
  8.  少なくとも一部が前記封口体に形成された貫通孔内に配置される弁本体と、前記弁本体の基端に接続され、前記貫通孔より径が大きい鍔体とを備え、
     前記弁本体の先端に前記先細り領域が形成されている請求項1~7のいずれか1項に記載の圧力弁。
  9.  請求項1~8のいずれか1項に記載の圧力弁と、
     前記圧力弁が配置された封口体と、
     前記封口体によって封止されたケースと、
     前記ケースに収容されたコンデンサ素子とを備えている電解コンデンサ。
     
PCT/JP2016/080022 2015-10-21 2016-10-07 圧力弁及び電解コンデンサ WO2017069010A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16857325.1A EP3367403B1 (en) 2015-10-21 2016-10-07 Pressure valve and electrolytic capacitor
JP2017546502A JP6547000B2 (ja) 2015-10-21 2016-10-07 圧力弁及び電解コンデンサ
US15/769,415 US10586656B2 (en) 2015-10-21 2016-10-07 Pressure valve and electrolytic capacitor
KR1020187010236A KR102094880B1 (ko) 2015-10-21 2016-10-07 압력 밸브 및 전해 컨덴서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-207205 2015-10-21
JP2015207205 2015-10-21

Publications (1)

Publication Number Publication Date
WO2017069010A1 true WO2017069010A1 (ja) 2017-04-27

Family

ID=58557454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080022 WO2017069010A1 (ja) 2015-10-21 2016-10-07 圧力弁及び電解コンデンサ

Country Status (8)

Country Link
US (1) US10586656B2 (ja)
EP (1) EP3367403B1 (ja)
JP (1) JP6547000B2 (ja)
KR (1) KR102094880B1 (ja)
CN (1) CN107026022B (ja)
HU (1) HUE059260T2 (ja)
TW (1) TWI687950B (ja)
WO (1) WO2017069010A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952661B2 (en) * 2017-06-14 2021-03-23 International Business Machines Corporation Analysis of cognitive status through object interaction
CN213393710U (zh) * 2020-07-14 2021-06-08 东莞东阳光科研发有限公司 泄压阀及具有其的电解电容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412647U (ja) * 1977-06-29 1979-01-26
JPS5993062U (ja) * 1982-12-16 1984-06-23 株式会社日本コインコ 電池を内蔵した電動器具の安全装置
JP2004071725A (ja) * 2002-08-05 2004-03-04 Meidensha Corp 電気化学素子の放圧弁構造
WO2007069538A1 (ja) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. コンデンサ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR706854A (fr) * 1930-12-02 1931-06-30 Pile Hydra Bouchon-valve pour accumulateurs électriques
DE1947469A1 (de) 1969-08-29 1971-03-04 Armin Graf Akkumulator
JPS5412647Y1 (ja) * 1970-03-18 1979-06-02
US4139904A (en) 1977-06-30 1979-02-13 International Business Machines Corporation Bubble lattice files with selected access channel positioning
DE2804583C2 (de) * 1978-02-03 1985-04-04 Varta Batterie Ag, 3000 Hannover Akkumulator mit wässrigem Elektrolyten und einem Rekombinationskatalysator
ZA834112B (en) 1982-06-09 1984-03-28 Pfizer Triazole antifungal agents
JP2004190803A (ja) * 2002-12-12 2004-07-08 Kokoku Intech Co Ltd 圧力開放弁ホルダ、および圧力開放弁ホルダを備えたキャパシタ
JP2005093941A (ja) * 2003-09-19 2005-04-07 Nichicon Corp 電解コンデンサ
EP1547646B1 (en) 2003-12-22 2008-10-08 Medical Ventures, LLC Pressure actuated two-way valve for infusion catheters
JP4613729B2 (ja) * 2005-07-26 2011-01-19 パナソニック株式会社 コンデンサ
JP4613733B2 (ja) * 2005-07-26 2011-01-19 パナソニック株式会社 コンデンサ
CN101313378A (zh) 2005-12-13 2008-11-26 松下电器产业株式会社 电容器
CN2934815Y (zh) * 2006-06-09 2007-08-15 奇鋐科技股份有限公司 具有泄压隙缝的泄压阀结构
US8276616B2 (en) * 2009-03-20 2012-10-02 Xylem Ip Holdings Llc High pressure duckbill valve and insert
JP4759075B2 (ja) * 2009-06-04 2011-08-31 トヨタ自動車株式会社 密閉型電池及び該密閉型電池を備える車両
KR102017357B1 (ko) * 2011-11-17 2019-09-02 닛뽄 케미콘 가부시끼가이샤 콘덴서 및 그 제조 방법
CN206271560U (zh) * 2015-10-21 2017-06-20 尼吉康株式会社 压力阀和电解电容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412647U (ja) * 1977-06-29 1979-01-26
JPS5993062U (ja) * 1982-12-16 1984-06-23 株式会社日本コインコ 電池を内蔵した電動器具の安全装置
JP2004071725A (ja) * 2002-08-05 2004-03-04 Meidensha Corp 電気化学素子の放圧弁構造
WO2007069538A1 (ja) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. コンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367403A4 *

Also Published As

Publication number Publication date
TW201715543A (zh) 2017-05-01
CN107026022B (zh) 2020-08-18
EP3367403B1 (en) 2022-05-11
CN107026022A (zh) 2017-08-08
EP3367403A1 (en) 2018-08-29
KR20180068978A (ko) 2018-06-22
US10586656B2 (en) 2020-03-10
KR102094880B1 (ko) 2020-03-30
TWI687950B (zh) 2020-03-11
HUE059260T2 (hu) 2022-11-28
EP3367403A4 (en) 2019-06-12
JPWO2017069010A1 (ja) 2018-07-26
JP6547000B2 (ja) 2019-07-17
US20180323013A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6016478B2 (ja) 電解コンデンサ用の圧力弁、および、これを用いた電解コンデンサ
US8717740B2 (en) Electrolytic capacitor
WO2017069010A1 (ja) 圧力弁及び電解コンデンサ
WO2013099686A1 (ja) コンデンサ
JP2008109074A (ja) 電解コンデンサ
JP2005116955A (ja) コンデンサ
JP6757698B2 (ja) 圧力弁及び電解コンデンサ
CN206271560U (zh) 压力阀和电解电容器
JP5181454B2 (ja) コンデンサ
JP6660700B2 (ja) 封口体及び電解コンデンサ
JP6191015B2 (ja) 電解コンデンサ
JP5697076B2 (ja) 電解コンデンサの製造方法
US20240170227A1 (en) Power storage device
JP2017084974A (ja) 封口体及び電解コンデンサ
JP2003031447A (ja) 電解コンデンサ
JP6971339B2 (ja) 封口体及び電解コンデンサ
WO2022070595A1 (ja) コンデンサおよびその製造方法
WO2022091862A1 (ja) 蓄電デバイスおよび蓄電デバイスの製造方法
JP4404725B2 (ja) 保安装置付アルミニウム電解コンデンサ
JPH03139817A (ja) 電解コンデンサ
JPH0433322A (ja) アルミ電解コンデンサ
JPH04233714A (ja) アルミ電解コンデンサ
JP2009245995A (ja) コンデンサ
JP2015088504A (ja) コンデンサ
JP2010272566A (ja) 電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857325

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017546502

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010236

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15769415

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016857325

Country of ref document: EP