WO2022091862A1 - 蓄電デバイスおよび蓄電デバイスの製造方法 - Google Patents

蓄電デバイスおよび蓄電デバイスの製造方法 Download PDF

Info

Publication number
WO2022091862A1
WO2022091862A1 PCT/JP2021/038560 JP2021038560W WO2022091862A1 WO 2022091862 A1 WO2022091862 A1 WO 2022091862A1 JP 2021038560 W JP2021038560 W JP 2021038560W WO 2022091862 A1 WO2022091862 A1 WO 2022091862A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
case
storage device
pressing portion
sealing body
Prior art date
Application number
PCT/JP2021/038560
Other languages
English (en)
French (fr)
Inventor
利崇 小林
詠子 石井
秀樹 島本
良太 森岡
宏樹 林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/250,179 priority Critical patent/US20230395330A1/en
Priority to JP2022559031A priority patent/JPWO2022091862A1/ja
Priority to CN202180073604.7A priority patent/CN116508124A/zh
Publication of WO2022091862A1 publication Critical patent/WO2022091862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a power storage device and a method for manufacturing the power storage device.
  • a power storage device (specifically, an electrolytic capacitor) including a power storage element, a case for accommodating the power storage element in the shape of a bottomed cylinder, and a sealing body for sealing the opening of the case is known (for example, a patent).
  • Document 1 a throttle portion for compressing the sealing body is formed in the vicinity of the opening in the case, and a hole or a slit is provided in a portion having the smallest diameter of the throttle portion. This hole or slit functions as an explosion-proof mechanism that allows the gas inside the case to escape when the internal pressure of the case rises.
  • the part with the smallest diameter of the throttle portion is the most important part for the function of compressing the sealing body, that is, the function of ensuring the airtightness of the power storage device.
  • Patent Document 1 since a hole or a slit is provided in the relevant portion, the airtightness of the power storage device may be impaired.
  • the sealing body may pop out and an electric short circuit may occur when the internal pressure of the case rises. Under such circumstances, one of the objects of the present disclosure is to provide a power storage device having an explosion-proof mechanism having high operation reliability and not impairing airtightness.
  • the power storage device includes a power storage element, a bottomed tubular case that houses the power storage element and has an opening at one end, and a sealing body that seals the opening, and the case is the case.
  • a first pressing portion that presses the side surface of the sealing body and protrudes inside the case, and a degassing portion provided on one end side of the most protruding apex of the first pressing portion.
  • a power storage device equipped with an explosion-proof mechanism having high operation reliability and not impairing airtightness can be obtained.
  • FIG. 6 is a cross-sectional view schematically showing an example of a power storage device according to the first embodiment of the present disclosure, and is a cross-sectional view passing through a through hole. It is an enlarged sectional view which shows the main part of the power storage device of Embodiment 1 when the internal pressure of a case is increased.
  • FIG. 6 is a cross-sectional view schematically showing an example of a power storage device according to a second embodiment of the present disclosure, and is a cross-sectional view passing through a slit. It is an enlarged sectional view which shows the main part of the power storage device of Embodiment 2 when the internal pressure of a case is increased.
  • FIG. 6 is a cross-sectional view schematically showing an example of a power storage device according to the first embodiment of the present disclosure, and is a cross-sectional view passing through a through hole. It is an enlarged sectional view which shows the main part of the power storage device of Embodiment 1 when the internal pressure of a case is increased
  • FIG. 6 is a cross-sectional view schematically showing an example of a power storage device according to a third embodiment of the present disclosure, and is a cross-sectional view passing through a through hole. It is a side view which shows typically the case of the power storage device of Embodiment 3.
  • FIG. 3 is an enlarged cross-sectional view showing a main part of the power storage device according to the third embodiment when the internal pressure of the case increases. It is an enlarged sectional view for demonstrating the drilling process of the manufacturing method of the power storage device of Embodiment 3.
  • the power storage device includes a power storage element, a bottomed tubular case that houses the power storage element and has an opening at one end, and a sealing body that seals the opening.
  • the case In the vicinity of the opening, the case has a first pressing portion that presses the side surface of the sealing body and protrudes inside the case, and a degassing portion provided on one end side of the most protruding apex of the first pressing portion. Be prepared.
  • the degassing portion has, for example, a through hole or a slit.
  • a protrusion protruding inside the case may be formed on the peripheral edge of the through hole.
  • the power storage device according to the present disclosure has, for example, the following power storage devices A, B, and C, but is not particularly limited.
  • power storage device A The power storage device according to an embodiment of the present disclosure (hereinafter, power storage device A) includes a power storage element, a case, and a sealing body. In the following, they will be described.
  • the storage element includes an electrode, an electrolytic solution, and the like.
  • the power storage element when the power storage device A is an electrolytic capacitor, the power storage element includes a wound body.
  • the winder is formed by winding a pair of electrodes via a separator, both of which may be polar electrodes, or one of which is an anode and the other of which is a cathode. May be good.
  • the power storage element when the power storage device A is a secondary battery or a lithium ion capacitor, the power storage element includes a group of electrodes.
  • the electrode group is formed by winding the positive electrode and the negative electrode via a separator.
  • the storage element may further include an electrolytic solution or a liquid component.
  • the case is in the shape of a bottomed cylinder, has an opening at one end, and houses a power storage element.
  • the case may be made of a metal including, for example, aluminum, iron, nickel and the like.
  • the shape of the case is not particularly limited, but may be, for example, a bottomed cylinder.
  • the sealing body seals the opening of the case.
  • the sealing body is composed of an elastic material (for example, a material containing an elastic resin).
  • the shape of the sealing body may correspond to the shape of the case. For example, when the case has a bottomed cylindrical shape, the sealing body may have a disk shape, and when the case has a bottomed square cylinder shape, the sealing body may have a square plate shape.
  • a rubber component is desirable as the elastic resin.
  • the rubber component butyl rubber (IIR), nitrile rubber (NBR), ethylene propylene rubber, ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), isoprene rubber (IR), hyperon rubber, silicone rubber, fluororubber, etc. are used. It can be used alone or as a blend. Of these, butyl rubber, ethylene propylene rubber, fluororubber, etc. are desirable.
  • the elastic material may contain a filler, carbon black, a processing aid, a cross-linking aid and the like as optional components.
  • the case has a first pressing portion and a second pressing portion in the vicinity of the opening, and a through hole (gas venting portion) is formed between the first pressing portion and the second pressing portion. ..
  • the first pressing portion presses the side surface of the sealing body and protrudes inside the casing.
  • the inner diameter at the most protruding apex of the first pressing portion may be smaller than the outer diameter of the sealing body in the state where no load is applied.
  • the first pressing portion may be formed, for example, by grooving to reduce the diameter of a part of the opening.
  • the second pressing portion is arranged on one end side of the case, that is, on the opening side of the first pressing portion, and presses the edge of the sealing body toward the inside of the case.
  • the second pressing portion may be formed, for example, by curling a part of the opening on the end end side.
  • the through hole is provided on one end side of the case, that is, on the opening side of the most protruding apex of the first pressing portion.
  • the through hole may communicate inside and outside the case when the force acting on the first pressing portion from the sealing body becomes less than a predetermined value due to the increase in the internal pressure of the case.
  • the through hole may be provided only on the one end side of the case with respect to the apex of the first pressing portion. Only one through hole may be provided, or a plurality of through holes may be provided.
  • the sealing body expands toward the outside of the case in the axial direction of the case.
  • the region of the sealing body in contact with the first pressing portion is displaced in the direction away from the first pressing portion, and thus the force acting on the first pressing portion from the sealing body (with respect to compression).
  • Elastic repulsive force weakens.
  • the acting force is weakened to a value below a predetermined value, the gas in the case passes between the sealing body and the first pressing portion. When this gas escapes from the inside of the case to the outside of the case through the through hole, the internal pressure of the power storage device A is reduced and safety is ensured.
  • the through hole of the power storage device A of the present disclosure is provided not at the apex of the first pressing portion but at one end side of the case, that is, on the opening side of the apex. There is. That is, no through hole is provided at the apex of the first pressing portion, which is an important part for ensuring the airtightness of the power storage device. Therefore, the airtightness of the power storage device A is not substantially impaired by the through hole.
  • a power storage device A having a highly reliable operation and an explosion-proof mechanism that does not impair airtightness can be obtained. Further, according to one embodiment of the present disclosure, by operating the explosion-proof mechanism, it is possible to prevent an unexpected burst of the power storage device A in which the sealing body or the like is scattered.
  • the through hole may be arranged closer to the upper surface of the sealing body than the midpoint between the upper surface of the sealing body and the most protruding apex of the first pressing portion in the axial direction of the case. According to this configuration, the through hole is located sufficiently away from the apex of the first pressing portion. That is, there is no through hole at the apex of the first pressing portion and its vicinity. Therefore, the airtightness of the power storage device A can be further prevented from being impaired.
  • the through hole may be circular or oval. According to this configuration, when the internal pressure of the case rises, stress is prevented from being locally concentrated at the edge of the through hole. Therefore, damage to the case starting from the through hole is unlikely to occur.
  • the through hole may be polygonal. According to this configuration, since the through hole is formed by a polygonal needle or the like, the formation of the through hole becomes easy. Examples of polygons include, but are not limited to, triangles and quadrilaterals.
  • power storage device B The power storage device according to another embodiment of the present disclosure (hereinafter, power storage device B) includes a power storage element, a case, and a sealing body. In the following, they will be described.
  • the power storage element may be the same as the power storage element of the power storage device A.
  • the case may be the same as the case of the power storage device A.
  • the sealing body may be the same as the sealing body of the power storage device A.
  • the opening of the case has a first pressing portion and a slit (gas venting portion).
  • the first pressing portion presses the side surface of the sealing body in the vicinity of the opening and protrudes inside the case.
  • the inner diameter at the most protruding apex of the first pressing portion may be smaller than the outer diameter of the sealing body in the state where no load is applied.
  • the first pressing portion may be formed, for example, by grooving to reduce the diameter of a part of the opening.
  • the slit is provided on one end side of the case, that is, on the opening side of the most protruding apex of the first pressing portion.
  • the slit may communicate inside and outside the case when the force acting on the first pressing portion from the sealing body becomes less than a predetermined value due to the increase in the internal pressure of the case.
  • the slit may be provided only on the one end side of the case with respect to the apex of the first pressing portion. Only one slit may be provided, or a plurality of slits may be provided.
  • the sealing body expands toward the outside of the case in the axial direction of the case.
  • the region of the sealing body in contact with the first pressing portion is displaced in the direction away from the first pressing portion, and thus the force acting on the first pressing portion from the sealing body (with respect to compression).
  • Elastic repulsive force weakens.
  • the acting force is weakened to a value below a predetermined value, the gas in the case passes between the sealing body and the first pressing portion. When this gas escapes from the inside of the case to the outside of the case through the slit, the internal pressure of the power storage device B is reduced and safety is ensured.
  • the slit of the power storage device B of the present disclosure is provided not at the apex of the first pressing portion but at one end side of the case, that is, on the opening side of the apex. .. That is, no slit is provided at the apex of the first pressing portion, which is an important part for ensuring the airtightness of the power storage device. Therefore, the airtightness of the power storage device B is not substantially impaired by the slit.
  • a power storage device B having a highly reliable operation and an explosion-proof mechanism that does not impair airtightness can be obtained. Further, according to another embodiment of the present disclosure, by operating the explosion-proof mechanism, it is possible to prevent an unexpected burst of the power storage device B such that the sealing body or the like is scattered.
  • the slit may not be arranged at the apex of the first pressing portion.
  • the slit may not be arranged in the first pressing portion.
  • the sealing body may be made of an elastic body containing rubber as a main component.
  • the rubber may constitute 50% by mass or more of the elastic body.
  • the case may further include a second pressing portion that presses the upper surface of the sealing body in the vicinity of the opening.
  • the slit may extend to one end of the case. Thereby, the slit can be easily formed.
  • the tip of the slit may be located closer to the end face of the sealing body than the midpoint between the end face (upper surface) facing the outside of the case of the sealing body and the apex of the first pressing portion in the axial direction of the case. .. According to this configuration, the tip of the slit is located sufficiently away from the apex of the first pressing portion. That is, there is no slit in and near the apex of the first pressing portion. Therefore, the airtightness of the power storage device B can be further prevented from being impaired.
  • power storage device C The power storage device according to still another embodiment of the present disclosure (hereinafter, power storage device C) includes a power storage element, a case, and a sealing body. In the following, they will be described.
  • the power storage element may be the same as the power storage element of the power storage device A.
  • the case may be the same as the case of the power storage device A.
  • the sealing body may be the same as the sealing body of the power storage device A.
  • the case has a first pressing portion and a second pressing portion in the vicinity of the opening, and a through hole (gas venting portion) is formed between the first pressing portion and the second pressing portion. ..
  • the first pressing portion presses the side surface of the sealing body and protrudes inside the case.
  • the inner diameter at the most protruding apex of the first pressing portion may be smaller than the outer diameter of the sealing body in the state where no load is applied.
  • the first pressing portion may be formed, for example, by grooving to reduce the diameter of a part of the opening.
  • the second pressing portion is arranged on one end side of the case, that is, on the opening side of the first pressing portion, and presses the edge of the sealing body toward the inside of the case.
  • the second pressing portion may be formed, for example, by curling a part of the opening on the end end side.
  • the through hole is provided on one end side of the case, that is, on the opening side of the most protruding apex of the first pressing portion.
  • the through hole may communicate inside and outside the case when the force acting on the first pressing portion from the sealing body becomes less than a predetermined value due to the increase in the internal pressure of the case.
  • the through hole may be provided only on the one end side of the case with respect to the apex of the first pressing portion. Only one through hole may be provided, or a plurality of through holes may be provided.
  • the sealing body expands toward the outside of the case in the axial direction of the case.
  • the region of the sealing body in contact with the first pressing portion is displaced in the direction away from the first pressing portion, and thus the force acting on the first pressing portion from the sealing body (with respect to compression).
  • Elastic repulsive force weakens.
  • the acting force is weakened to a value below a predetermined value, the gas in the case passes between the sealing body and the first pressing portion. When this gas escapes from the inside of the case to the outside of the case through the through hole, the internal pressure of the power storage device C is reduced and safety is ensured.
  • the through hole of the power storage device C of the present disclosure is provided not at the apex of the first pressing portion but at one end side of the case, that is, on the opening side of the apex. There is. That is, no through hole is provided at the apex of the first pressing portion, which is an important part for ensuring the airtightness of the power storage device. Therefore, the airtightness of the power storage device C is not substantially impaired by the through hole.
  • a protrusion protruding inside the case is formed at the peripheral edge of the through hole.
  • the presence of this protrusion prevents the through-hole from being blocked by the sealing body. That is, even if the sealing body is deformed and approaches the through hole, the protrusion abuts on the side surface of the sealing body to prevent the through hole from being completely closed.
  • the tip of the protrusion is not continuous over the entire circumference of the through hole. As a result, even when the sealing body is in contact with the protrusion, communication inside and outside the case is ensured through the through hole.
  • the through hole may be a polygon (triangle, quadrangle, etc.), and the protrusion may be formed along each side of the polygon.
  • the length of the protrusion may be, for example, 30% or more of the maximum diameter of the through hole.
  • the method for manufacturing the power storage device C according to the present disclosure includes a storage step, a sealing preparation step, a sealing completion step, and a drilling step. In the following, they will be described.
  • the accommodating step and the sealing preparation step may be performed at the same time.
  • the storage element is stored in the case.
  • the power storage device C is an electrolytic capacitor
  • the wound body included in the power storage element is housed in the case so that its axial direction substantially coincides with the axial direction of the case.
  • the sealing body In the sealing preparation process, the sealing body is placed in the opening of the case.
  • the sealing body may be arranged so as to be in contact with the inner surface of the case, or may be arranged so as not to be in contact with the inner surface of the case.
  • the first pressing portion and the second pressing portion are formed, thereby sealing the opening of the case.
  • the first pressing portion may be formed, for example, by grooving to reduce the diameter of a part of the opening.
  • the second pressing portion may be formed, for example, by curling a part of the opening.
  • the first pressing portion and the second pressing portion may be formed in the order described thereof, or may be formed substantially at the same time. Alternatively, the formation of the second pressing portion may be started from the middle of the formation of the first pressing portion.
  • the through hole may be formed by piercing the case with the tip of a sharp tool (for example, a needle).
  • the tip of this tool may have a polygonal pyramid shape. Since the tip of the tool has a polygonal pyramid shape (triangular pyramid shape, quadrangular pyramid shape, etc.), protrusions can be stably formed.
  • the present disclosure it is possible to obtain a power storage device C having a high operational reliability and an explosion-proof mechanism that does not impair airtightness, and a method for manufacturing the same. Further, according to the present disclosure, by operating the explosion-proof mechanism, it is possible to prevent an unexpected burst of the power storage device C such that the sealing body or the like is scattered.
  • the power storage device 10 of the present embodiment is configured as an electrolytic capacitor, and includes a power storage element 11, a case 20, and a sealing body 30.
  • the power storage element 11 includes a winding body.
  • the wound body is formed by winding an anode foil and a cathode foil via a separator.
  • One end of the lead tabs 12A and 12B is connected to the anode foil and the cathode foil, respectively.
  • the winding body is configured by involving the lead tabs 12A and 12B.
  • Lead wires 13A and 13B are connected to the other ends of the lead tabs 12A and 12B, respectively.
  • the case 20 has a bottomed cylinder shape, has an opening 21 at one end, and accommodates a power storage element 11.
  • the case 20 of the present embodiment is made of aluminum, but is not limited thereto.
  • the case 20 of the present embodiment has a bottomed cylindrical shape, but is not limited thereto.
  • the axial length of the case 20 may be, for example, 60 to 80 mm in a state before forming the first pressing portion 22 and the second pressing portion 23 described later.
  • the outer diameter of the case 20 may be, for example, 16 to 20 mm.
  • the sealing body 30 seals the opening 21 of the case 20.
  • the sealing body 30 of the present embodiment has a disk shape, but is not limited thereto.
  • the thickness of the sealing body 30 (the length of the case 20 in the axial direction) may be, for example, 3 to 7 mm.
  • the sealing body 30 may be made of an elastic body containing rubber as a main component. The rubber may constitute 50% by mass or more of the elastic body.
  • the opening 21 of the case 20 has a first pressing portion 22 and a second pressing portion 23 in the vicinity of the opening 21, and a through hole is provided between the second pressing portion 23 and the first pressing portion 22. 24 is formed.
  • the through hole 24 is an example of a degassing portion.
  • the first pressing portion 22 presses the side surface of the sealing body 30 and protrudes inside the case 20.
  • the inner diameter of the apex 22a of the first pressing portion 22 is smaller than the outer diameter of the sealing body 30 in the state where no load is applied.
  • the first pressing portion 22 of the present embodiment is formed by grooving to reduce the diameter of a part of the opening 21, but is not limited thereto.
  • the second pressing portion 23 is arranged on one end side (that is, the opening side) of the case 20 with respect to the first pressing portion 22, and presses the edge portion of the sealing body 30. In other words, the second pressing portion 23 presses the upper surface 30a of the sealing body 30 in the vicinity of the opening 21.
  • the second pressing portion 23 of the present embodiment is formed by curling a part of the opening portion 21, but is not limited to this.
  • the through hole 24 is provided on one end side (that is, the opening side) of the case 20 with respect to the apex 22a of the first pressing portion 22. That is, the through hole 24 is not arranged at the apex 22a of the first pressing portion 22.
  • the through hole 24 is located in the sealing body 30 rather than the intermediate point MP between the end surface (upper surface) 30a of the sealing body 30 facing outward in the axial direction of the case 20 and the apex 22a of the first pressing portion 22. It is arranged near the end face 30a.
  • the portion of the opening 21 on the opening side of the apex 22a of the first pressing portion 22 does not have to partially come into contact with the sealing body 30.
  • the through hole 24 of the present embodiment has a circular shape, but is not limited thereto.
  • the through hole 24 may have a polygonal shape.
  • the distance from one end of the case 20 before forming the second pressing portion 23 to the center of the through hole 24 is the case 20 before forming the second pressing portion 23.
  • the distance from one end of the first pressing portion 22 to the apex 22a of the first pressing portion 22 may be D, for example, 0.25 ⁇ D to 0.9 ⁇ D.
  • the distance D of the present embodiment may be, for example, 2 to 8 mm.
  • the diameter of the through hole 24 may be, for example, 0.5 to 2 mm.
  • the through hole 24 communicates the inside and outside of the case 20 when the force acting on the first pressing portion 22 from the sealing body 30 becomes less than a predetermined value due to the increase in the internal pressure of the case 20. On the other hand, the through hole 24 does not allow communication between the inside and outside of the case 20 when the acting force is equal to or more than a predetermined value.
  • the sealing body 30 expands toward the outside of the case 20 in the axial direction of the case 20.
  • the region of the sealing body 30 that is in contact with the first pressing portion 22 is displaced in the direction away from the first pressing portion 22 (that is, inside in the radial direction), and thus the sealing body 30.
  • the force acting on the first pressing portion 22 is weakened.
  • the acting force is weakened to a value below a predetermined value, the gas in the case 20 passes between the sealing body 30 and the first pressing portion 22.
  • the safety of the power storage device 10 is ensured by the gas escaping from the inside of the case 20 to the outside of the case 20 through the through hole 24.
  • the power storage device 10 of the present embodiment is configured as an electrolytic capacitor, and includes a power storage element 11, a case 20, and a sealing body 30.
  • the power storage element 11 may be the same as that of the first embodiment.
  • Case 20 may be the same as that of the first embodiment.
  • the sealing body 30 may be the same as that of the first embodiment.
  • the opening 21 of the case 20 has a first pressing portion 22, a second pressing portion 23, and a slit 26.
  • the slit 26 is an example of a degassing portion.
  • the first pressing portion 22 presses the side surface of the sealing body 30 in the vicinity of the opening 21 and protrudes inside the case 20.
  • the inner diameter of the apex 22a of the first pressing portion 22 is smaller than the outer diameter of the sealing body 30 in the state where no load is applied.
  • the first pressing portion 22 of the present embodiment is formed by grooving to reduce the diameter of a part of the opening 21, but is not limited thereto.
  • the second pressing portion 23 is arranged on one end side (that is, the opening side) of the case 20 with respect to the first pressing portion 22, and presses the edge portion of the sealing body 30. In other words, the second pressing portion 23 presses the upper surface 30a of the sealing body 30 in the vicinity of the opening 21.
  • the second pressing portion 23 of the present embodiment is formed by curling a part of the opening portion 21, but is not limited to this.
  • the slit 26 is provided on one end side (that is, the opening side) of the case 20 with respect to the apex 22a of the first pressing portion 22. That is, the slit 26 is not arranged at the apex 22a of the first pressing portion 22.
  • the slit 26 is formed from one end of the case 20 to a predetermined position between one end of the case 20 and the apex 22a of the first pressing portion 22.
  • the tip of the slit 26 is closer to the sealing body 30 than the intermediate point MP between the end surface (upper surface) 30a of the sealing body 30 facing the outside of the case 20 and the apex 22a of the first pressing portion 22 in the axial direction of the case 20. It is located near the end face 30a of.
  • the portion of the opening 21 on the opening side of the apex 22a of the first pressing portion 22 does not have to partially come into contact with the sealing body 30. That is, there may be a gap between the inner surface of the opening 21 and the side surface of the sealing body 30 on the opening side of the apex 22a of the first pressing portion 22.
  • the length of the slit 26 (the length in the direction parallel to the axial direction of the case 20) is the distance from one end of the case 20 before forming the second pressing portion 23 to the apex 22a of the first pressing portion 22 as D.
  • D the distance from one end of the case 20 before forming the second pressing portion 23 to the apex 22a of the first pressing portion 22 as D.
  • D the distance from one end of the case 20 before forming the second pressing portion 23 to the apex 22a of the first pressing portion 22 as D.
  • D may be 0.25 ⁇ D to 0.9 ⁇ D.
  • the distance D of the present embodiment may be, for example, 2 to 8 mm.
  • the width of the slit 26 (the length in the circumferential direction of the case 20) may be, for example, 0.2 to 0.5 mm.
  • the slit 26 communicates the inside and outside of the case 20 when the force acting on the first pressing portion 22 from the sealing body 30 becomes less than a predetermined value due to the increase in the internal pressure of the case 20. On the other hand, the slit 26 does not allow the inside and outside of the case 20 to communicate with each other when the acting force is equal to or higher than a predetermined value.
  • the sealing body 30 expands toward the outside of the case 20 in the axial direction of the case 20.
  • the region of the sealing body 30 that is in contact with the first pressing portion 22 is displaced in the direction away from the first pressing portion 22 (that is, inside in the radial direction), and thus the sealing body 30.
  • the force acting on the first pressing portion 22 is weakened.
  • the gas in the case 20 passes between the sealing body 30 and the first pressing portion 22. The gas escapes from the inside of the case 20 to the outside of the case 20 through the slit 26, so that the safety of the power storage device 10 is ensured.
  • the power storage device 10 of the present embodiment is configured as an electrolytic capacitor, and includes a power storage element 11, a case 20, and a sealing body 30.
  • the power storage element 11 may be the same as that of the first embodiment.
  • Case 20 may be the same as that of the first embodiment.
  • the sealing body 30 may be the same as that of the first embodiment.
  • the opening 21 of the case 20 has a first pressing portion 22 and a second pressing portion 23 in the vicinity of the opening 21, and a through hole is provided between the second pressing portion 23 and the first pressing portion 22. 24 is formed.
  • the through hole 24 is an example of a degassing portion.
  • the first pressing portion 22 presses the side surface of the sealing body 30 and protrudes inside the case 20.
  • the inner diameter of the apex 22a of the first pressing portion 22 is smaller than the outer diameter of the sealing body 30 in the state where no load is applied.
  • the first pressing portion 22 of the present embodiment is formed by grooving to reduce the diameter of a part of the opening 21, but is not limited thereto.
  • the second pressing portion 23 is arranged on one end side (that is, the opening side) of the case 20 with respect to the first pressing portion 22, and presses the edge portion of the sealing body 30. In other words, the second pressing portion 23 presses the upper surface 30a of the sealing body 30 in the vicinity of the opening 21.
  • the second pressing portion 23 of the present embodiment is formed by curling a part of the opening portion 21, but is not limited to this.
  • the through hole 24 is provided on one end side (that is, the opening side) of the case 20 with respect to the apex 22a of the first pressing portion 22. That is, the through hole 24 is not arranged at the apex 22a of the first pressing portion 22.
  • the portion of the opening 21 on the opening side of the apex 22a of the first pressing portion 22 does not have to partially come into contact with the sealing body 30. That is, there may be a gap between the inner surface of the opening 21 and the side surface of the sealing body 30 on the opening side of the apex 22a of the first pressing portion 22.
  • the through hole 24 of the present embodiment has a quadrangular shape, but is not limited thereto.
  • the through hole 24 may have a circular shape or a polygonal shape other than the rectangular shape.
  • the distance from one end of the case 20 before forming the second pressing portion 23 to the center of the through hole 24 is the case 20 before forming the second pressing portion 23.
  • the distance from one end of the first pressing portion 22 to the apex 22a of the first pressing portion 22 may be D, for example, 0.25 ⁇ D to 0.9 ⁇ D.
  • the distance D of the present embodiment may be, for example, 2 to 8 mm.
  • the diameter of the through hole 24 (diameter of the circumscribed circle of the through hole 24) may be, for example, 0.5 to 2 mm.
  • the through hole 24 communicates the inside and outside of the case 20 when the force acting on the first pressing portion 22 from the sealing body 30 becomes less than a predetermined value due to the increase in the internal pressure of the case 20. On the other hand, the through hole 24 does not allow communication between the inside and outside of the case 20 when the acting force is equal to or more than a predetermined value.
  • the sealing body 30 expands toward the outside of the case 20 in the axial direction of the case 20.
  • the region of the sealing body 30 that is in contact with the first pressing portion 22 is displaced in the direction away from the first pressing portion 22 (that is, inside in the radial direction), and thus the sealing body 30.
  • the force acting on the first pressing portion 22 is weakened.
  • the acting force is weakened to a value below a predetermined value, the gas in the case 20 passes between the sealing body 30 and the first pressing portion 22.
  • the safety of the power storage device 10 is ensured by the gas escaping from the inside of the case 20 to the outside of the case 20 through the through hole 24.
  • a protrusion 25 protruding inward of the case 20 is formed on the peripheral edge of the through hole 24.
  • four triangular protrusions 25 are formed along each side of the square through hole 24.
  • the width of each protrusion 25 becomes narrower from the base end to the tip end. Therefore, the tip of the protrusion 25 is not continuous over the entire circumference of the through hole 24.
  • Each protrusion 25 may be formed at the same time when the through hole 24 is formed in the case 20.
  • the presence of the protrusion 25 prevents the through hole 24 from being blocked by the sealing body 30. That is, even if the sealing body 30 is deformed and approaches the through hole 24, the protrusion 25 abuts on the side surface of the sealing body 30 to prevent the through hole 24 from being completely closed (for example, FIG. 7).
  • the manufacturing method of the above-mentioned power storage device 10 includes a storage step, a sealing preparation step, a sealing completion step, and a drilling step.
  • the electricity storage element 11 is accommodated in the case 20.
  • the power storage device 10 is an electrolytic capacitor
  • the wound body included in the power storage element 11 is housed in the case 20 so that its axial direction substantially coincides with the axial direction of the case 20.
  • the sealing body 30 is arranged in the opening 21 of the case 20.
  • the sealing body 30 may be arranged so as to be in contact with the inner surface of the case 20, or may be arranged so as not to be in contact with the inner surface of the case 20.
  • the first pressing portion 22 and the second pressing portion 23 are formed.
  • the first pressing portion 22 is formed by grooving to reduce the diameter of a part of the opening 21.
  • the second pressing portion 23 is formed by curling a part of the opening 21.
  • the formation of the first pressing portion 22 is started, and the formation of the second pressing portion 23 is started in the middle of the formation. As a result, the opening 21 of the case 20 is sealed.
  • the drilling process is executed after the sealing completion process.
  • a through hole 24 and a protrusion 25 are formed between the first pressing portion 22 and the second pressing portion 23 in the case 20.
  • the case 20 is pierced by the tip of the needle 40 to form the through hole 24.
  • the tip of the needle 40 has a quadrangular pyramid shape.
  • the needle 40 is an example of a sharp tool.
  • the operating pressure of the explosion-proof mechanism is the internal pressure of the case 20 when the inside and outside of the case 20 communicate with each other through the through hole 24 when the internal pressure of the case 20 increases.
  • the power storage device 10 of Examples 1 to 5 corresponds to the first embodiment.
  • Example 1 The outer diameter of the aluminum case 20 is 18 mm, the axial length of the case 20 before forming the first pressing portion 22 and the second pressing portion 23 is 70 mm, and the case before forming the second pressing portion 23.
  • the distance from one end of 20 to the apex 22a of the first pressing portion 22 was set to 4.5 mm.
  • the thickness of the butyl rubber sealing body 30 was 5 mm, and the outer diameter of the sealing body 30 before compression was 17.1 mm.
  • the diameter of the through hole 24 is 1 mm, and the distance from one end of the case 20 before forming the second pressing portion 23 to the center of the through hole 24 (hereinafter, simply referred to as “distance to the through hole 24”) is 1. It was set to 1 mm.
  • the working pressure of the explosion-proof mechanism was 2.06 MPa.
  • Example 2 >> The distance to the through hole 24 was 1.73 mm, and the other configurations were the same as in Example 1.
  • the working pressure of the explosion-proof mechanism was 2.07 MPa.
  • Example 3 The distance to the through hole 24 was set to 2.22 mm, and the other configurations were the same as in Example 1.
  • the working pressure of the explosion-proof mechanism was 2.04 MPa.
  • Example 4 >> The distance to the through hole 24 was set to 2.59 mm, and the other configurations were the same as in Example 1.
  • the working pressure of the explosion-proof mechanism was 2.04 MPa.
  • Example 5 >> The distance to the through hole 24 was 3.33 mm, and the other configurations were the same as in Example 1.
  • the working pressure of the explosion-proof mechanism was 2.06 MPa.
  • Comparative Example 1 >> The distance to the through hole 24 was set to 4.26 mm, and the other configurations were the same as in Example 1. That is, a part of the through hole 24 is located on the other end side of the case 20 with respect to the apex 22a of the first pressing portion 22.
  • the working pressure of the explosion-proof mechanism was 1.12 MPa.
  • Examples 1 to 5 As described above, a difference of about twice in the operating pressure of the explosion-proof mechanism was observed between Examples 1 to 5 and Comparative Example 1. Further, in Examples 1 to 5, the working pressure of the explosion-proof mechanism was substantially constant. As long as the desired operation can be obtained, it is preferable that the working pressure of the explosion-proof mechanism is high, and it can be said that the superiority of Examples 1 to 5 is shown.
  • the relationship between the length of the slit 26 and the operating pressure of the explosion-proof mechanism was measured.
  • the operating pressure of the explosion-proof mechanism is the internal pressure of the case 20 when the inside and outside of the case 20 communicate with each other through the slit 26 when the internal pressure of the case 20 increases.
  • the power storage device 10 of Examples 6 to 9 corresponds to the second embodiment.
  • Example 6 The outer diameter of the aluminum case 20 is 18 mm, the axial length of the case 20 before forming the first pressing portion 22 and the second pressing portion 23 is 70 mm, and the case before forming the second pressing portion 23.
  • the distance from one end of 20 to the apex 22a of the first pressing portion 22 was set to 4.5 mm.
  • the thickness of the butyl rubber sealing body 30 was 5 mm, and the outer diameter of the sealing body 30 before compression was 17.1 mm.
  • the width of the slit 26 was 0.3 mm, and the length of the slit 26 was 1 mm.
  • the working pressure of the explosion-proof mechanism was 1.98 MPa.
  • Example 7 >> The length of the slit 26 was set to 2 mm, and the other configurations were the same as those in the sixth embodiment.
  • the working pressure of the explosion-proof mechanism was 1.87 MPa.
  • Example 8 >> The length of the slit 26 was set to 3 mm, and the other configurations were the same as those in the sixth embodiment.
  • the working pressure of the explosion-proof mechanism was 1.66 MPa.
  • Example 9 >> The length of the slit 26 was set to 4 mm, and the other configurations were the same as those in the sixth embodiment.
  • the working pressure of the explosion-proof mechanism was 1.58 MPa.
  • Comparative Example 2 >> The length of the slit 26 was set to 5 mm, and the other configurations were the same as those in the sixth embodiment.
  • the working pressure of the explosion-proof mechanism was 0.15 MPa.
  • the present disclosure can be used for a power storage device and a method for manufacturing the power storage device.
  • Power storage device 11 Power storage element 12A, 12B: Lead tab 13A, 13B: Lead wire 20: Case 21: Opening 22: First pressing part 22a: Apex 23: Second pressing part 24: Through hole (gas venting part) 25: Protrusion 26: Slit (gas vent) 30: Sealing body 30a: End face (upper surface) 40: Needle (tool) MP: Midpoint

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

開示される蓄電デバイスは、蓄電要素11と、蓄電要素11を収容し、一端に開口部21を有する有底筒形状のケース20と、開口部21を封止する封口体30と、を具備する。ケース20は、開口部21近傍において、封口体30の側面を押圧してケース20の内側に突出した第1押圧部22と、第1押圧部22の最も突出した頂点22aよりもケース20の一端側に設けられたガス抜き部24,26と、を備える。これにより、動作信頼性が高くて気密性を損なわない防爆機構を備えた蓄電デバイスを提供できる。

Description

蓄電デバイスおよび蓄電デバイスの製造方法
 本開示は、蓄電デバイスおよび蓄電デバイスの製造方法に関する。
 従来、蓄電要素と、有底筒形状で蓄電要素を収容するケースと、ケースの開口を封口する封口体とを備える蓄電デバイス(具体的には、電解コンデンサ)が知られている(例えば、特許文献1)。特許文献1の蓄電デバイスは、ケースにおける開口付近に、封口体を圧縮する絞り部が形成されていて、当該絞り部の最も小径となる箇所に孔またはスリットが設けられている。この孔またはスリットが、ケースの内圧が上昇したときにケース内のガスを逃がす防爆機構として機能する。
実公昭59-40767号公報
 しかしながら、絞り部の最も小径となる箇所は、封口体を圧縮する機能、すなわち、蓄電デバイスの気密性を確保する機能に対して最も重要となる箇所である。特許文献1では、当該箇所に孔またはスリットを設けるため、蓄電デバイスの気密性が損なわれてしまうおそれがある。一方、何らかの防爆機構を設けなければ、ケース内圧が上昇した場合に、封口体が飛び出して電気ショートが生じるおそれがある。このような状況において、本開示は、動作信頼性が高くて気密性を損なわない防爆機構を備えた蓄電デバイスを提供することを目的の1つとする。
 本開示に係る一局面は、蓄電デバイスに関する。当該蓄電デバイスは、蓄電要素と、前記蓄電要素を収容し、一端に開口部を有する有底筒形状のケースと、前記開口部を封止する封口体と、を具備し、前記ケースは、前記開口部近傍において、前記封口体の側面を押圧して前記ケースの内側に突出した第1押圧部と、前記第1押圧部の最も突出した頂点よりも前記一端側に設けられたガス抜き部と、を備える。
 本開示によれば、動作信頼性が高くて気密性を損なわない防爆機構を備えた蓄電デバイスが得られる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本願の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の実施形態1に係る蓄電デバイスの一例を模式的に示す断面図であって、貫通孔を通る断面におけるものである。 ケースの内圧が高まったときの実施形態1の蓄電デバイスの要部を示す拡大断面図である。 本開示の実施形態2に係る蓄電デバイスの一例を模式的に示す断面図であって、スリットを通る断面におけるものである。 ケースの内圧が高まったときの実施形態2の蓄電デバイスの要部を示す拡大断面図である。 本開示の実施形態3に係る蓄電デバイスの一例を模式的に示す断面図であって、貫通孔を通る断面におけるものである。 実施形態3の蓄電デバイスのケースを模式的に示す側面図である。 ケースの内圧が高まったときの実施形態3の蓄電デバイスの要部を示す拡大断面図である。 実施形態3の蓄電デバイスの製造方法の穿孔工程について説明するための拡大断面図である。
 本開示に係る蓄電デバイスおよび蓄電デバイスの製造方法の実施形態について例を挙げて以下に説明する。しかしながら、本開示は以下に説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。
 本開示に係る蓄電デバイスは、蓄電要素と、蓄電要素を収容し、一端に開口部を有する有底筒形状のケースと、開口部を封止する封口体とを具備する。ケースは、開口部近傍において、封口体の側面を押圧してケースの内側に突出した第1押圧部と、第1押圧部の最も突出した頂点よりも一端側に設けられたガス抜き部とを備える。ガス抜き部は、例えば、貫通孔もしくはスリットを有する。貫通孔の周縁部には、ケースの内側に突出した突起が形成されていてもよい。本開示に係る蓄電デバイスは、例えば、以下の蓄電デバイスA、B、およびCのような構成を有するが、特に限定されない。
 (蓄電デバイスA)
 本開示の一実施形態に係る蓄電デバイス(以下、蓄電デバイスA)は、蓄電要素と、ケースと、封口体とを備える。以下では、それらについて説明する。
 (蓄電要素)
 蓄電要素は、電極、電解液などを含む。例えば、蓄電デバイスAが電解コンデンサである場合、蓄電要素は捲回体を含む。捲回体は、一対の電極を、セパレータを介して捲回することで形成される、一対の電極は、いずれも分極性電極であってもよく、または一方が陽極で他方が陰極であってもよい。例えば、蓄電デバイスAが二次電池やリチウムイオンキャパシタである場合、蓄電要素は電極群を含む。電極群は、正極と負極とをセパレータを介して捲回することで形成される。蓄電要素は、さらに電解液または液状成分を含み得る。
 (ケース)
 ケースは、有底筒形状で一端に開口部を有し、かつ蓄電要素を収容する。ケースは、例えば、アルミニウム、鉄、ニッケルなどを含む金属で構成されてもよい。ケースの形状は特に限定されないが、例えば、有底円筒状であってもよい。
 (封口体)
 封口体は、ケースの開口部を封止する。封口体は、弾性材(例えば、弾性樹脂を含む材料)で構成される。封口体の形状は、ケースの形状に対応するものであってもよい。例えば、ケースが有底円筒状である場合、封口体は円板状であってもよいし、ケースが有底角筒状である場合、封口体は角板状であってもよい。
 弾性樹脂としては、ゴム成分が望ましい。ゴム成分としては、ブチルゴム(IIR)、ニトリルゴム(NBR)、エチレンプロピレンゴム、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、イソプレンゴム(IR)、ハイパロンゴム、シリコーンゴム、フッ素ゴムなどを単独あるいはブレンドで用いることができる。中でもブチルゴム、エチレンプロピレンゴム、フッ素ゴムなどが望ましい。弾性材は、弾性樹脂に加え、任意成分として、充填剤、カーボンブラック、加工助剤、架橋助剤などを含んでもよい。
 上記ケースは、開口部近傍において、第1押圧部と、第2押圧部とを有し、かつ第1押圧部と第2押圧部との間に貫通孔(ガス抜き部)が形成されている。
 第1押圧部は、封口体の側面を押圧してケーシングの内側に突出する。第1押圧部の最も突出した頂点における内径は、負荷が印加されていない状態の封口体の外径よりも小さくてもよい。第1押圧部は、例えば、開口部の一部を縮径する溝入れ加工により形成されてもよい。
 第2押圧部は、第1押圧部よりもケースの一端側、すなわち開口側に配置され、封口体の縁部をケースの内方に向かって押さえる。第2押圧部は、例えば、開口部の最端部側の一部をカール加工することで形成されてもよい。
 貫通孔は、第1押圧部の最も突出した頂点よりもケースの一端側、すなわち開口側に設けられる。貫通孔は、ケースの内圧が高まることで封口体から第1押圧部に作用する力が所定値を下回った場合に、ケースの内外を連通させてもよい。貫通孔は、第1押圧部の頂点よりもケースの上記一端側のみに設けられてもよい。貫通孔は、1つのみ設けられてもよいし、または複数設けられてもよい。
 ここで、ケースの内圧が高まると、封口体はケースの軸方向においてケース外へ向かって膨張する。この軸方向の膨張が生じるとき、封口体のうち第1押圧部に接触している領域が第1押圧部から離れる方向に変位し、よって封口体から第1押圧部に作用する力(圧縮に対する弾性的な反発力)が弱まる。当該作用力が所定値を下回るまで弱まると、封口体と第1押圧部との間をケース内のガスが通過する。このガスが貫通孔を介してケース内からケース外へ逃げることで、蓄電デバイスAの内圧が減少し、安全性が確保される。
 本開示の蓄電デバイスAの貫通孔は、特許文献1の蓄電デバイスの孔またはスリットと違って、第1押圧部の頂点ではなく、当該頂点よりもケースの一端側、すなわち開口側に設けられている。つまり、蓄電デバイスの気密性を確保する上で重要な箇所である第1押圧部の頂点には貫通孔が設けられていない。このため、貫通孔によって蓄電デバイスAの気密性が損なわれることが実質的にない。
 以上のように、本開示の一実施形態によれば、動作信頼性が高くて気密性を損なわない防爆機構を備えた蓄電デバイスAが得られる。また、本開示の一実施形態によれば、防爆機構が動作することで、封口体などが飛散するような蓄電デバイスAの想定外の破裂を阻止することができる。
 貫通孔は、ケースの軸方向において、封口体の上面と第1押圧部の最も突出した頂点との間の中間点よりも、封口体の上面寄りに配置されていてもよい。この構成によると、貫通孔が、第1押圧部の頂点から十分に離れて位置することになる。つまり、第1押圧部の頂点とその近傍に貫通孔が存在しない。したがって、蓄電デバイスAの気密性をより一層損なわれにくくすることができる。
 貫通孔は、円形または楕円形であってもよい。この構成によると、ケースの内圧が上昇した際に、貫通孔の縁部において局所的に応力が集中することが回避される。よって、貫通孔を起点としたケースの損傷が生じにくい。
 貫通孔は、多角形であってもよい。この構成によると、多角形の針などで貫通孔を形成することになるので、貫通孔の形成が容易になる。多角形の例としては、三角形や四角形が挙げられるが、これらに限られるものではない。
 (蓄電デバイスB)
  本開示の別の一実施形態に係る蓄電デバイス(以下、蓄電デバイスB)は、蓄電要素と、ケースと、封口体とを備える。以下では、それらについて説明する。
 (蓄電要素)
 蓄電要素は、蓄電デバイスAの蓄電要素と同様であってもよい。
 (ケース)
 ケースは、蓄電デバイスAのケースと同様であってもよい。
 (封口体)
 封口体は、蓄電デバイスAの封口体と同様であってもよい。
 上記ケースの開口部は、第1押圧部と、スリット(ガス抜き部)とを有する。
 第1押圧部は、開口部近傍において、封口体の側面を押圧すると共に、ケースの内側に突出する。第1押圧部の最も突出した頂点における内径は、負荷が印加されていない状態の封口体の外径よりも小さくてもよい。第1押圧部は、例えば、開口部の一部を縮径する溝入れ加工により形成されてもよい。
 スリットは、第1押圧部の最も突出した頂点よりもケースの一端側、すなわち開口側に設けられる。スリットは、ケースの内圧が高まることで封口体から第1押圧部に作用する力が所定値を下回った場合に、ケースの内外を連通させてもよい。スリットは、第1押圧部の頂点よりもケースの上記一端側のみに設けられてもよい。スリットは、1つのみ設けられてもよいし、または複数設けられてもよい。
 ここで、ケースの内圧が高まると、封口体はケースの軸方向においてケース外へ向かって膨張する。この軸方向の膨張が生じるとき、封口体のうち第1押圧部に接触している領域が第1押圧部から離れる方向に変位し、よって封口体から第1押圧部に作用する力(圧縮に対する弾性的な反発力)が弱まる。当該作用力が所定値を下回るまで弱まると、封口体と第1押圧部との間をケース内のガスが通過する。このガスがスリットを介してケース内からケース外へ逃げることで、蓄電デバイスBの内圧が減少し、安全性が確保される。
 本開示の蓄電デバイスBのスリットは、特許文献1の蓄電デバイスの孔またはスリットと違って、第1押圧部の頂点ではなく、当該頂点よりもケースの一端側、すなわち開口側に設けられている。つまり、蓄電デバイスの気密性を確保する上で重要な箇所である第1押圧部の頂点にはスリットが設けられていない。このため、スリットによって蓄電デバイスBの気密性が損なわれることが実質的にない。
 以上のように、本開示の別の一実施形態によれば、動作信頼性が高くて気密性を損なわない防爆機構を備えた蓄電デバイスBが得られる。また、本開示の別の一実施形態によれば、防爆機構が動作することで、封口体などが飛散するような蓄電デバイスBの想定外の破裂を阻止することができる。
 スリットは、第1押圧部の頂点には配されていなくてもよい。スリットは、第1押圧部には配されていなくてもよい。
 封口体は、ゴムを主成分とした弾性体からなってもよい。ゴムは、弾性体の50質量%以上を構成してもよい。
 ケースは、開口部近傍において、封口体の上面を押圧する第2押圧部をさらに備えてもよい。これにより、蓄電デバイスBの気密性をより一層高めることができる。
 スリットは、ケースの一端まで延びていてもよい。これにより、当該スリットを容易に形成することができる。
 スリットの先端は、ケースの軸方向において、封口体のケースの外側を向く端面(上面)と第1押圧部の頂点との間の中間点よりも、封口体の端面寄りに位置してもよい。この構成によると、スリットの先端が、第1押圧部の頂点から十分に離れて位置することになる。つまり、第1押圧部の頂点とその近傍にスリットが存在しない。したがって、蓄電デバイスBの気密性をより一層損なわれにくくすることができる。
 (蓄電デバイスC)
 本開示のさらに別の一実施形態に係る蓄電デバイス(以下、蓄電デバイスC)は、蓄電要素と、ケースと、封口体とを備える。以下では、それらについて説明する。
 (蓄電要素)
 蓄電要素は、蓄電デバイスAの蓄電要素と同様であってもよい。
 (ケース)
 ケースは、蓄電デバイスAのケースと同様であってもよい。
 (封口体)
 封口体は、蓄電デバイスAの封口体と同様であってもよい。
 上記ケースは、開口部近傍において、第1押圧部と、第2押圧部とを有し、かつ第1押圧部と第2押圧部との間に貫通孔(ガス抜き部)が形成されている。
 第1押圧部は、封口体の側面を押圧してケースの内側に突出する。第1押圧部の最も突出した頂点における内径は、負荷が印加されていない状態の封口体の外径よりも小さくてもよい。第1押圧部は、例えば、開口部の一部を縮径する溝入れ加工により形成されてもよい。
 第2押圧部は、第1押圧部よりもケースの一端側、すなわち開口側に配置され、封口体の縁部をケースの内方に向かって押さえる。第2押圧部は、例えば、開口部の最端部側の一部をカール加工することで形成されてもよい。
 貫通孔は、第1押圧部の最も突出した頂点よりもケースの一端側、すなわち開口側に設けられる。貫通孔は、ケースの内圧が高まることで封口体から第1押圧部に作用する力が所定値を下回った場合に、ケースの内外を連通させてもよい。貫通孔は、第1押圧部の頂点よりもケースの上記一端側のみに設けられてもよい。貫通孔は、1つのみ設けられてもよいし、または複数設けられてもよい。
 ここで、ケースの内圧が高まると、封口体はケースの軸方向においてケース外へ向かって膨張する。この軸方向の膨張が生じるとき、封口体のうち第1押圧部に接触している領域が第1押圧部から離れる方向に変位し、よって封口体から第1押圧部に作用する力(圧縮に対する弾性的な反発力)が弱まる。当該作用力が所定値を下回るまで弱まると、封口体と第1押圧部との間をケース内のガスが通過する。このガスが貫通孔を介してケース内からケース外へ逃げることで、蓄電デバイスCの内圧が減少し、安全性が確保される。
 本開示の蓄電デバイスCの貫通孔は、特許文献1の蓄電デバイスの孔またはスリットと違って、第1押圧部の頂点ではなく、当該頂点よりもケースの一端側、すなわち開口側に設けられている。つまり、蓄電デバイスの気密性を確保する上で重要な箇所である第1押圧部の頂点には貫通孔が設けられていない。このため、貫通孔によって蓄電デバイスCの気密性が損なわれることが実質的にない。
 さらに、本開示の蓄電デバイスCは、貫通孔の周縁部に、ケースの内側に突出した突起が形成されている。この突起が存在することで、封口体によって貫通孔が塞がれることが阻止される。すなわち、封口体が変形して貫通孔に近づいても、突起が封口体の側面に当接することで、当該貫通孔が完全に塞がれることが阻止される。なお、突起の突端は、貫通孔の全周にわたって連続してはいない。これにより、封口体が突起に当接した状態でも、貫通孔を介したケース内外の連通が確保される。なお、貫通孔は、多角形(三角形、四角形など)であってもよく、突起は、当該多角形の各辺に沿って形成されていてもよい。突起の長さは、貫通孔の最大径の例えば30%以上であってもよい。
 (蓄電デバイスCの製造方法)
 本開示に係る蓄電デバイスCの製造方法は、収容工程と、封口準備工程と、封口完了工程と、穿孔工程とを備える。以下では、それらについて説明する。収容工程と封口準備工程は、同時に行ってもよい。
 収容工程では、ケースに蓄電要素を収容する。例えば、蓄電デバイスCが電解コンデンサである場合、蓄電要素が含む捲回体を、その軸方向がケースの軸方向と実質的に一致するように当該ケースに収容する。
 封口準備工程では、ケースの開口部に封口体を配置する。封口体は、ケース内面と接触するように配置されてもよいし、ケース内面と接触しないように配置されてもよい。
 封口完了工程では、第1押圧部および第2押圧部を形成し、これによりケースの開口部を封止する。第1押圧部は、例えば、開口部の一部を縮径する溝入れ加工により形成してもよい。第2押圧部は、例えば、開口部の一部をカール加工することで形成してもよい。第1押圧部および第2押圧部は、この記載順に形成してもよいし、実質的に同時に形成してもよい。あるいは、第1押圧部の形成途中から第2押圧部の形成を開始してもよい。
 穿孔工程では、封口完了工程の後、ケースにおける第1押圧部と第2押圧部との間に、貫通孔および突起を形成する。穿孔工程では、貫通孔を、ケースを尖った工具(例えば、針)の先端部で刺すことで形成してもよい。この工具の先端部は、多角錐状であってもよい。工具の先端部が多角錐状(三角錐状、四角錐状など)であることで、安定的に突起を形成することができる。
 以上のように、本開示によれば、動作信頼性が高くて気密性を損なわない防爆機構を備えた蓄電デバイスCおよびその製造方法が得られる。また、本開示によれば、防爆機構が動作することで、封口体などが飛散するような蓄電デバイスCの想定外の破裂を阻止することができる。
 以下では、本開示に係る蓄電デバイスおよび蓄電デバイスの製造方法の一例について、図面を参照して具体的に説明する。以下で説明する一例の蓄電デバイスおよび蓄電デバイスの製造方法の構成要素および工程には、上述した構成要素および工程を適用できる。以下で説明する一例の蓄電デバイスおよび蓄電デバイスの製造方法の構成要素および工程は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。以下で説明する一例の蓄電デバイスおよび蓄電デバイスの製造方法の構成要素および工程のうち、本開示に係る蓄電デバイスおよび蓄電デバイスの製造方法に必須ではない構成要素および工程は省略してもよい。なお、以下で示す図は模式的なものであり、実際の部材の形状や数を正確に反映するものではない。
 《実施形態1》
 本開示の実施形態1について説明する。図1に示すように、本実施形態の蓄電デバイス10は、電解コンデンサとして構成されていて、蓄電要素11と、ケース20と、封口体30とを備える。
 蓄電要素11は、捲回体を備える。捲回体は、陽極箔と陰極箔とをセパレータを介して捲回することで形成されている。陽極箔と陰極箔には、それぞれリードタブ12Aおよび12Bの一方の端部が接続されている。捲回体は、リードタブ12Aおよび12Bを巻き込みながら構成される。リードタブ12Aおよび12Bの他方の端部には、リード線13Aおよび13Bがそれぞれ接続されている。
 ケース20は、有底筒形状で一端に開口部21を有し、かつ蓄電要素11を収容する。本実施形態のケース20は、アルミニウムで構成されるが、これに限定されるものではない。本実施形態のケース20は、有底円筒状になっているが、これに限定されるものではない。ケース20の軸方向長さは、後述の第1押圧部22および第2押圧部23を形成する前の状態において、例えば、60~80mmであってもよい。ケース20の外径は、例えば、16~20mmであってもよい。
 封口体30は、ケース20の開口部21を封止する。本実施形態の封口体30は、円板状になっているが、これに限定されるものではない。封口体30の厚み(ケース20の軸方向における長さ)は、例えば、3~7mmであってもよい。封口体30は、ゴムを主成分とした弾性体からなってもよい。ゴムは、弾性体の50質量%以上を構成してもよい。
 上記ケース20の開口部21は、開口部21近傍において、第1押圧部22と、第2押圧部23とを有し、かつ第2押圧部23と第1押圧部22との間に貫通孔24が形成されている。貫通孔24は、ガス抜き部の一例である。
 第1押圧部22は、封口体30の側面を押圧してケース20の内側に突出する。第1押圧部22の頂点22aにおける内径は、負荷が印加されていない状態の封口体30の外径よりも小さい。本実施形態の第1押圧部22は、開口部21の一部を縮径する溝入れ加工により形成されるが、これに限定されるものではない。
 第2押圧部23は、第1押圧部22よりもケース20の一端側(すなわち、開口側)に配置され、封口体30の縁部を押さえる。換言すると、第2押圧部23は、開口部21近傍において、封口体30の上面30aを押圧する。本実施形態の第2押圧部23は、開口部21の一部をカール加工することで形成されるが、これに限定されるものではない。
 貫通孔24は、第1押圧部22の頂点22aよりもケース20の一端側(すなわち、開口側)に設けられる。つまり、貫通孔24は、第1押圧部22の頂点22aには配されていない。貫通孔24は、ケース20の軸方向において、封口体30のケース20の外側を向く端面(上面)30aと第1押圧部22の頂点22aとの間の中間点MPよりも、封口体30の端面30a寄りに配置されている。開口部21の第1押圧部22の頂点22aよりも開口側の部分は、部分的に封口体30と接触しなくてもよい。すなわち、第1押圧部22の頂点22aよりも開口側において、開口部21の内面と封口体30の側面との間には空隙が存在してもよい。本実施形態の貫通孔24は、円形状になっているが、これに限定されるものではない。例えば、貫通孔24は、多角形状になっていてもよい。
 第2押圧部23を形成する前のケース20の一端から貫通孔24の中心までの距離(ケース20の軸方向と平行な方向における距離)は、第2押圧部23を形成する前のケース20の一端から第1押圧部22の頂点22aまでの距離をDとして、例えば、0.25×D~0.9×Dであってもよい。本実施形態の当該距離Dは、例えば、2~8mmであってもよい。貫通孔24の直径は、例えば、0.5~2mmであってもよい。
 貫通孔24は、ケース20の内圧が高まることで封口体30から第1押圧部22に作用する力が所定値を下回った場合に、ケース20の内外を連通させる。一方、貫通孔24は、当該作用力が所定値以上である場合、ケース20の内外を連通させない。
 ここで、図2に示すように、ケース20の内圧が高まると、封口体30はケース20の軸方向においてケース20外へ向かって膨張する。この軸方向の膨張が生じるとき、封口体30のうち第1押圧部22に接触している領域が第1押圧部22から離れる方向(すなわち、径方向の内側)に変位し、よって封口体30から第1押圧部22に作用する力(圧縮に対する弾性的な反発力)が弱まる。当該作用力が所定値を下回るまで弱まると、封口体30と第1押圧部22との間をケース20内のガスが通過する。このガスが貫通孔24を介してケース20内からケース20外へ逃げることで、蓄電デバイス10の安全性が確保される。
 《実施形態2》
 本開示の実施形態2について説明する。図3に示すように、本実施形態の蓄電デバイス10は、電解コンデンサとして構成されていて、蓄電要素11と、ケース20と、封口体30とを備える。
 蓄電要素11は、上記実施形態1と同様であってもよい。
 ケース20は、上記実施形態1と同様であってもよい。
 封口体30は、上記実施形態1と同様であってもよい。
 上記ケース20の開口部21は、第1押圧部22と、第2押圧部23と、スリット26とを有する。スリット26は、ガス抜き部の一例である。
 第1押圧部22は、開口部21近傍において、封口体30の側面を押圧すると共に、ケース20の内側に突出する。第1押圧部22の頂点22aにおける内径は、負荷が印加されていない状態の封口体30の外径よりも小さい。本実施形態の第1押圧部22は、開口部21の一部を縮径する溝入れ加工により形成されるが、これに限定されるものではない。
 第2押圧部23は、第1押圧部22よりもケース20の一端側(すなわち、開口側)に配置され、封口体30の縁部を押さえる。換言すると、第2押圧部23は、開口部21近傍において、封口体30の上面30aを押圧する。本実施形態の第2押圧部23は、開口部21の一部をカール加工することで形成されるが、これに限定されるものではない。
 スリット26は、第1押圧部22の頂点22aよりもケース20の一端側(すなわち、開口側)に設けられる。つまり、スリット26は、第1押圧部22の頂点22aには配されていない。スリット26は、ケース20の一端から、ケース20の一端と第1押圧部22の頂点22aとの間の所定位置まで形成されている。スリット26の先端は、ケース20の軸方向において、封口体30のケース20の外側を向く端面(上面)30aと第1押圧部22の頂点22aとの間の中間点MPよりも、封口体30の端面30a寄りに位置している。開口部21の第1押圧部22の頂点22aよりも開口側の部分は、部分的に封口体30と接触しなくてもよい。すなわち、第1押圧部22の頂点22aよりも開口側において、開口部21の内面と封口体30の側面との間には空隙が存在してもよい。
 スリット26の長さ(ケース20の軸方向と平行な方向における長さ)は、第2押圧部23を形成する前のケース20の一端から第1押圧部22の頂点22aまでの距離をDとして、例えば、0.25×D~0.9×Dであってもよい。本実施形態の当該距離Dは、例えば、2~8mmであってもよい。スリット26の幅(ケース20の周方向における長さ)は、例えば、0.2~0.5mmであってもよい。
 スリット26は、ケース20の内圧が高まることで封口体30から第1押圧部22に作用する力が所定値を下回った場合に、ケース20の内外を連通させる。一方、スリット26は、当該作用力が所定値以上である場合、ケース20の内外を連通させない。
 ここで、図4に示すように、ケース20の内圧が高まると、封口体30はケース20の軸方向においてケース20外へ向かって膨張する。この軸方向の膨張が生じるとき、封口体30のうち第1押圧部22に接触している領域が第1押圧部22から離れる方向(すなわち、径方向の内側)に変位し、よって封口体30から第1押圧部22に作用する力(圧縮に対する弾性的な反発力)が弱まる。当該作用力が所定値を下回るまで弱まると、封口体30と第1押圧部22との間をケース20内のガスが通過する。このガスがスリット26を介してケース20内からケース20外へ逃げることで、蓄電デバイス10の安全性が確保される。
 《実施形態3》
 本開示の実施形態3について説明する。図5および図6に示すように、本実施形態の蓄電デバイス10は、電解コンデンサとして構成されていて、蓄電要素11と、ケース20と、封口体30とを備える。
 蓄電要素11は、上記実施形態1と同様であってもよい。
 ケース20は、上記実施形態1と同様であってもよい。
 封口体30は、上記実施形態1と同様であってもよい。
 上記ケース20の開口部21は、開口部21近傍において、第1押圧部22と、第2押圧部23とを有し、かつ第2押圧部23と第1押圧部22との間に貫通孔24が形成されている。貫通孔24は、ガス抜き部の一例である。
 第1押圧部22は、封口体30の側面を押圧してケース20の内側に突出する。第1押圧部22の頂点22aにおける内径は、負荷が印加されていない状態の封口体30の外径よりも小さい。本実施形態の第1押圧部22は、開口部21の一部を縮径する溝入れ加工により形成されるが、これに限定されるものではない。
 第2押圧部23は、第1押圧部22よりもケース20の一端側(すなわち、開口側)に配置され、封口体30の縁部を押さえる。換言すると、第2押圧部23は、開口部21近傍において、封口体30の上面30aを押圧する。本実施形態の第2押圧部23は、開口部21の一部をカール加工することで形成されるが、これに限定されるものではない。
 貫通孔24は、第1押圧部22の頂点22aよりもケース20の一端側(すなわち、開口側)に設けられる。つまり、貫通孔24は、第1押圧部22の頂点22aには配されていない。開口部21の第1押圧部22の頂点22aよりも開口側の部分は、部分的に封口体30と接触しなくてもよい。すなわち、第1押圧部22の頂点22aよりも開口側において、開口部21の内面と封口体30の側面との間には空隙が存在してもよい。本実施形態の貫通孔24は、四角形状になっているが、これに限定されるものではない。例えば、貫通孔24は、円形状になっていてもよいし、四角形状以外の多角形状になっていてもよい。
 第2押圧部23を形成する前のケース20の一端から貫通孔24の中心までの距離(ケース20の軸方向と平行な方向における距離)は、第2押圧部23を形成する前のケース20の一端から第1押圧部22の頂点22aまでの距離をDとして、例えば、0.25×D~0.9×Dであってもよい。本実施形態の当該距離Dは、例えば、2~8mmであってもよい。貫通孔24の直径(貫通孔24の外接円の直径)は、例えば、0.5~2mmであってもよい。
 貫通孔24は、ケース20の内圧が高まることで封口体30から第1押圧部22に作用する力が所定値を下回った場合に、ケース20の内外を連通させる。一方、貫通孔24は、当該作用力が所定値以上である場合、ケース20の内外を連通させない。
 ここで、図7に示すように、ケース20の内圧が高まると、封口体30はケース20の軸方向においてケース20外へ向かって膨張する。この軸方向の膨張が生じるとき、封口体30のうち第1押圧部22に接触している領域が第1押圧部22から離れる方向(すなわち、径方向の内側)に変位し、よって封口体30から第1押圧部22に作用する力(圧縮に対する弾性的な反発力)が弱まる。当該作用力が所定値を下回るまで弱まると、封口体30と第1押圧部22との間をケース20内のガスが通過する。このガスが貫通孔24を介してケース20内からケース20外へ逃げることで、蓄電デバイス10の安全性が確保される。
 図5および図6に示すように、蓄電デバイス10は、貫通孔24の周縁部に、ケース20の内側に突出した突起25が形成されている。本実施形態では、三角形状の突起25が、四角形状の貫通孔24の各辺に沿って4つ形成されている。各突起25は、基端から突端に向かうにつれて幅が狭くなっている。このため、突起25の突端は、貫通孔24の全周にわたって連続してはいない。各突起25は、ケース20に貫通孔24を形成する際に併せて形成されてもよい。
 上記の突起25が存在することで、封口体30によって貫通孔24が塞がれることが阻止される。すなわち、封口体30が変形して貫通孔24に近づいても、突起25が封口体30の側面に当接することで、当該貫通孔24が完全に塞がれることが阻止される(例えば、図7を参照)。
 (蓄電デバイスの製造方法)
 上記の蓄電デバイス10の製造方法について説明する。当該製造方法は、収容工程と、封口準備工程と、封口完了工程と、穿孔工程とを備える。
 収容工程では、ケース20に蓄電要素11を収容する。本実施形態では、蓄電デバイス10が電解コンデンサであるため、蓄電要素11が含む捲回体を、その軸方向がケース20の軸方向と実質的に一致するように当該ケース20に収容する。
 封口準備工程では、ケース20の開口部21に封口体30を配置する。封口体30は、ケース20の内面と接触するように配置されてもよいし、ケース20の内面と接触しないように配置されてもよい。
 封口完了工程では、第1押圧部22および第2押圧部23を形成する。第1押圧部22は、開口部21の一部を縮径する溝入れ加工によって形成する。第2押圧部23は、開口部21の一部をカール加工することで形成する。本実施形態では、第1押圧部22の形成から開始し、その形成途中で第2押圧部23の形成を開始する。以上により、ケース20の開口部21が封止される。
 穿孔工程は、封口完了工程の後に実行される。穿孔工程では、ケース20における第1押圧部22と第2押圧部23との間に、貫通孔24および突起25を形成する。本実施形態の穿孔工程では、図8に示すように、ケース20を針40の先端部で刺すことで貫通孔24を形成する。この針40の先端部は、四角錐状になっている。針40は、尖った工具の一例である。
 以下に示す実施例1~5および比較例1の蓄電デバイス10について、貫通孔24の位置と防爆機構の作動圧との関係を測定した。ここで、防爆機構の作動圧とは、ケース20の内圧が上昇していった際に、貫通孔24を介してケース20の内外が連通するときのケース20の内圧のことである。なお、実施例1~5の蓄電デバイス10は、上記実施形態1に対応する。
 《実施例1》
 アルミニウム製のケース20の外径を18mmとし、第1押圧部22および第2押圧部23を形成する前のケース20の軸方向長さを70mmとし、第2押圧部23を形成する前のケース20の一端から第1押圧部22の頂点22aまでの距離を4.5mmとした。ブチルゴム製の封口体30の厚みを5mmとし、圧縮前の封口体30の外径を17.1mmとした。貫通孔24の直径を1mmとし、第2押圧部23を形成する前のケース20の一端から貫通孔24の中心までの距離(以下、単に「貫通孔24までの距離」という。)を1.1mmとした。防爆機構の作動圧は、2.06MPaであった。
 《実施例2》
 貫通孔24までの距離を1.73mmとし、それ以外の構成は実施例1と同じくした。防爆機構の作動圧は、2.07MPaであった。
 《実施例3》
 貫通孔24までの距離を2.22mmとし、それ以外の構成は実施例1と同じくした。防爆機構の作動圧は、2.04MPaであった。
 《実施例4》
 貫通孔24までの距離を2.59mmとし、それ以外の構成は実施例1と同じくした。防爆機構の作動圧は、2.04MPaであった。
 《実施例5》
 貫通孔24までの距離を3.33mmとし、それ以外の構成は実施例1と同じくした。防爆機構の作動圧は、2.06MPaであった。
 《比較例1》
 貫通孔24までの距離を4.26mmとし、それ以外の構成は実施例1と同じくした。つまり、貫通孔24の一部が、第1押圧部22の頂点22aよりもケース20の他端側に位置するようにした。防爆機構の作動圧は、1.12MPaであった。
 以上のように、実施例1~5と比較例1との間で、防爆機構の作動圧に2倍程度の差が見られた。また、実施例1~5において、防爆機構の作動圧は実質的に一定であった。所望の動作が得られる限り、防爆機構の作動圧は高い方が好ましく、実施例1~5の優位性が示されたと言える。
 さらに、以下に示す実施例6~9および比較例2の蓄電デバイス10について、スリット26の長さと防爆機構の作動圧との関係を測定した。ここで、防爆機構の作動圧とは、ケース20の内圧が上昇していった際に、スリット26を介してケース20の内外が連通するときのケース20の内圧のことである。なお、実施例6~9の蓄電デバイス10は、上記実施形態2に対応する。
 《実施例6》
 アルミニウム製のケース20の外径を18mmとし、第1押圧部22および第2押圧部23を形成する前のケース20の軸方向長さを70mmとし、第2押圧部23を形成する前のケース20の一端から第1押圧部22の頂点22aまでの距離を4.5mmとした。ブチルゴム製の封口体30の厚みを5mmとし、圧縮前の封口体30の外径を17.1mmとした。スリット26の幅を0.3mmとし、スリット26の長さを1mmとした。防爆機構の作動圧は、1.98MPaであった。
 《実施例7》
 スリット26の長さを2mmとし、それ以外の構成は実施例6と同じくした。防爆機構の作動圧は、1.87MPaであった。
 《実施例8》
 スリット26の長さを3mmとし、それ以外の構成は実施例6と同じくした。防爆機構の作動圧は、1.66MPaであった。
 《実施例9》
 スリット26の長さを4mmとし、それ以外の構成は実施例6と同じくした。防爆機構の作動圧は、1.58MPaであった。
 《比較例2》
 スリット26の長さを5mmとし、それ以外の構成は実施例6と同じくした。防爆機構の作動圧は、0.15MPaであった。
 以上のように、実施例6~9と比較例2との間で、防爆機構の作動圧に1オーダー程度の差が見られた。所望の動作が得られる限り、防爆機構の作動圧は高い方が好ましく、実施例6~9の優位性が示されたと言える。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示は、蓄電デバイスおよび蓄電デバイスの製造方法に利用できる。
10:蓄電デバイス
 11:蓄電要素
 12A,12B:リードタブ
 13A,13B:リード線
 20:ケース
  21:開口部
   22:第1押圧部
    22a:頂点
   23:第2押圧部
   24:貫通孔(ガス抜き部)
   25:突起
   26:スリット(ガス抜き部)
 30:封口体
  30a:端面(上面)
40:針(工具)
MP:中間点
 

Claims (19)

  1.  蓄電要素と、
     前記蓄電要素を収容し、一端に開口部を有する有底筒形状のケースと、
     前記開口部を封止する封口体と、を具備し、
     前記ケースは、
      前記開口部近傍において、前記封口体の側面を押圧して前記ケースの内側に突出した第1押圧部と、
      前記第1押圧部の最も突出した頂点よりも前記一端側に設けられたガス抜き部と、を備える、蓄電デバイス。
  2.  前記ガス抜き部は、貫通孔を有する、請求項1に記載の蓄電デバイス。
  3.  前記貫通孔は、前記ケースの軸方向において、前記封口体の上面と前記第1押圧部の最も突出した頂点との間の中間点よりも、前記封口体の前記上面寄りに配置されている、請求項2に記載の蓄電デバイス。
  4.  前記貫通孔は、円形または楕円形である、請求項2または3に記載の蓄電デバイス。
  5.  前記貫通孔は、多角形である、請求項2または3に記載の蓄電デバイス。
  6.  前記ケースは、前記開口部近傍において、前記封口体の上面を押圧した第2押圧部をさらに有する、請求項1~5のいずれか1項に記載の蓄電デバイス。
  7.  前記ガス抜き部は、前記ケースにおける前記第1押圧部と前記第2押圧部との間に設けられる、請求項6に記載の蓄電デバイス。
  8.  前記ガス抜き部は、スリットを有する、請求項1に記載の蓄電デバイス。
  9.  前記スリットは、前記頂点には配されていない、請求項8に記載の蓄電デバイス。
  10.  前記封口体は、ゴムを主成分とした弾性体からなる、請求項8または9に記載の蓄電デバイス。
  11.  前記ケースは、前記開口部近傍において、前記封口体の上面を押圧する第2押圧部をさらに備える、請求項8~10のいずれか1項に記載の蓄電デバイス。
  12.  前記スリットは、前記ケースの前記一端まで延びている、請求項8~11のいずれか1項に記載の蓄電デバイス。
  13.  前記ガス抜き部は、貫通孔を有し、
     前記貫通孔の周縁部に、前記ケースの内側に突出した突起が形成されている、請求項1に記載の蓄電デバイス。
  14.  前記貫通孔は、多角形であり、
     前記突起は、前記多角形の各辺に沿って形成されている、請求項13に記載の蓄電デバイス。
  15.  前記ケースは、前記開口部近傍において、前記封口体の上面を押圧した第2押圧部をさらに有する、請求項13または14に記載の蓄電デバイス。
  16.  前記ガス抜き部は、前記ケースにおける前記第1押圧部と前記第2押圧部との間に設けられる、請求項15に記載の蓄電デバイス。
  17.  請求項13~16のいずれか1項に記載の蓄電デバイスを製造する方法であって、
     前記貫通孔を、前記ケースを尖った工具の先端部で刺すことで形成する穿孔工程を備える、蓄電デバイスの製造方法。
  18.  前記工具の先端部は、多角錐状である、請求項17に記載の蓄電デバイスの製造方法。
  19.  請求項15または16に記載の蓄電デバイスを製造する方法であって、
     前記ケースに前記蓄電要素を収容する収容工程と、
     前記開口部に前記封口体を配置する封口準備工程と、
     前記第1押圧部および前記第2押圧部を形成する封口完了工程と、
     前記封口完了工程の後、前記ケースにおける前記第1押圧部と前記第2押圧部との間に、前記貫通孔および前記突起を形成する穿孔工程と、
    を備える、蓄電デバイスの製造方法。
     
PCT/JP2021/038560 2020-10-30 2021-10-19 蓄電デバイスおよび蓄電デバイスの製造方法 WO2022091862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/250,179 US20230395330A1 (en) 2020-10-30 2021-10-19 Power storage device, and method for manufacturing power storage device
JP2022559031A JPWO2022091862A1 (ja) 2020-10-30 2021-10-19
CN202180073604.7A CN116508124A (zh) 2020-10-30 2021-10-19 蓄电设备以及蓄电设备的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020182005 2020-10-30
JP2020-182005 2020-10-30
JP2020-193869 2020-11-20
JP2020193869 2020-11-20
JP2021-011259 2021-01-27
JP2021011259 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022091862A1 true WO2022091862A1 (ja) 2022-05-05

Family

ID=81383749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038560 WO2022091862A1 (ja) 2020-10-30 2021-10-19 蓄電デバイスおよび蓄電デバイスの製造方法

Country Status (3)

Country Link
US (1) US20230395330A1 (ja)
JP (1) JPWO2022091862A1 (ja)
WO (1) WO2022091862A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104651U (ja) * 1987-12-29 1989-07-14
JPH07122466A (ja) * 1993-10-22 1995-05-12 Taiyo Kagaku Kogyo Kk 電解コンデンサ
JP2005520344A (ja) * 2002-03-13 2005-07-07 エプコス アクチエンゲゼルシャフト コップ形ケーシング及びケーシングを有するコンデンサ
JP2007165521A (ja) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd コンデンサ
JP2007189184A (ja) * 2005-12-13 2007-07-26 Matsushita Electric Ind Co Ltd コンデンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104651U (ja) * 1987-12-29 1989-07-14
JPH07122466A (ja) * 1993-10-22 1995-05-12 Taiyo Kagaku Kogyo Kk 電解コンデンサ
JP2005520344A (ja) * 2002-03-13 2005-07-07 エプコス アクチエンゲゼルシャフト コップ形ケーシング及びケーシングを有するコンデンサ
JP2007165521A (ja) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd コンデンサ
JP2007189184A (ja) * 2005-12-13 2007-07-26 Matsushita Electric Ind Co Ltd コンデンサ

Also Published As

Publication number Publication date
JPWO2022091862A1 (ja) 2022-05-05
US20230395330A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2020137372A1 (ja) 密閉電池
KR101611946B1 (ko) 커패시터
KR20150027734A (ko) 전해 콘덴서용 압력 밸브 및 이를 이용한 전해 콘덴서
TWI640024B (zh) Electronic parts
WO2009145017A1 (ja) 円筒電池およびその製造方法
WO2022091862A1 (ja) 蓄電デバイスおよび蓄電デバイスの製造方法
JP4080131B2 (ja) マンガン乾電池
JP2019125725A (ja) コンデンサ
WO2023100768A1 (ja) 蓄電装置
WO2022163210A1 (ja) 蓄電デバイス
JP4958428B2 (ja) アルカリ乾電池
WO2021187045A1 (ja) 円筒形電池
EP4131545A1 (en) Cylindrical battery
JP3176572B2 (ja) アルカリ電池
CN116508124A (zh) 蓄电设备以及蓄电设备的制造方法
JP6910234B2 (ja) 電子部品
CN115968514A (zh) 衬垫以及圆筒形电池
JP2008108603A (ja) 筒形アルカリ電池
JP5697076B2 (ja) 電解コンデンサの製造方法
JP7500270B2 (ja) 電子部品
WO2024004892A1 (ja) 蓄電デバイス
JP6202337B2 (ja) 蓄電素子、および、その製造方法
WO2023167010A1 (ja) 円筒形電池
KR20010045556A (ko) 전지용 캡어셈블리
WO2014068929A1 (ja) 電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559031

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180073604.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885981

Country of ref document: EP

Kind code of ref document: A1