WO2017068946A1 - R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石 - Google Patents

R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石 Download PDF

Info

Publication number
WO2017068946A1
WO2017068946A1 PCT/JP2016/079250 JP2016079250W WO2017068946A1 WO 2017068946 A1 WO2017068946 A1 WO 2017068946A1 JP 2016079250 W JP2016079250 W JP 2016079250W WO 2017068946 A1 WO2017068946 A1 WO 2017068946A1
Authority
WO
WIPO (PCT)
Prior art keywords
rtb
magnet
based sintered
sintered magnet
powder
Prior art date
Application number
PCT/JP2016/079250
Other languages
English (en)
French (fr)
Inventor
三野 修嗣
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201680061177.XA priority Critical patent/CN108140481B/zh
Priority to JP2017546481A priority patent/JP6794993B2/ja
Publication of WO2017068946A1 publication Critical patent/WO2017068946A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to an RTB-based sintered magnet (R is a rare earth element, T is Fe or Fe and Co) having an R 2 T 14 B type compound as a main phase, and a method for producing the same.
  • An RTB-based sintered magnet mainly composed of an R 2 T 14 B-type compound is known as the most powerful magnet among permanent magnets, such as a voice coil motor (VCM) of a hard disk drive, It is used for various motors such as motors for hybrid vehicles and home appliances.
  • VCM voice coil motor
  • H cJ the intrinsic coercive force H cJ
  • H cJ the intrinsic coercive force
  • an RTB-based sintered magnet improves H cJ when a part of R in the main phase is replaced with a heavy rare earth element RH (Dy, Tb).
  • RH heavy rare earth element
  • Patent Documents 1 to 4 disclose RH oxides or RH fluorides and various metals M or M alloys. Is mixed with the RTB-based sintered magnet to efficiently diffuse RH and M into the RTB-based sintered magnet. A method for increasing H cJ of a B-based sintered magnet is disclosed.
  • Patent Document 1 discloses using a mixed powder of a powder containing M (where M is one or more selected from Al, Cu, and Zn) and an RH fluoride powder.
  • Patent Document 2 discloses RTMAH that becomes a liquid phase at a heat treatment temperature (where M is one or more selected from Al, Cu, Zn, In, Si, P, etc., A is boron or carbon, H Is used, and it is disclosed that a mixed powder of the alloy powder and a powder such as RH fluoride may be used.
  • Patent Document 3 and Patent Document 4 powder of an RM alloy (where R is a rare earth element, M is one or more selected from Al, Si, C, P, Ti, etc.) or an M1M2 alloy (M1 and M2) Is a mixed powder of RH oxide with one or more powders selected from Al, Si, C, P, Ti, etc., and partially heats RH oxide by RM alloy or M1M2 alloy during heat treatment It is disclosed that it is possible to introduce a larger amount of R into the magnet.
  • R is a rare earth element
  • M is one or more selected from Al, Si, C, P, Ti, etc.
  • M1M2 alloy M1 and M2 alloy
  • Patent Document 5 discloses that heat treatment is performed in a state where a powder containing R fluoride is present on the surface of an RTB-based sintered magnet. According to Patent Document 5, the fluorine contained in the powder is absorbed into the magnet together with R, thereby significantly increasing the supply from the powder of R and the diffusion at the crystal grain boundaries of the magnet. Further, in the drawings of the examples, it is indicated that fluorine-containing compounds exceeding 6% in area ratio (according to image analysis of the present inventor) are present in the magnet after the heat treatment.
  • Patent Documents 1 to 4 are notable in that a larger amount of RH can be diffused into the magnet.
  • RH present on the magnet surface cannot be effectively linked to improvement of H cJ , and there is room for improvement.
  • Patent Document 3 uses a mixed powder of RM alloy and RH oxide, but as far as the examples are concerned, the improvement of H cJ due to diffusion of the RM alloy itself is large, and the effect of using RH oxide is slight. Therefore, it seems that the reduction effect of the RH oxide by the RM alloy is not so much exhibited.
  • the method described in Patent Document 5 is an excellent method in that the diffusion effect of R is enhanced by fluorine.
  • fluorine itself is by no means preferable for the magnetic properties of the magnet, and if there is a method for enhancing the diffusion effect without containing fluorine inside the magnet, it can be said that it is more preferable.
  • the present invention has been made in view of the above circumstances, and by reducing the amount of RH present on the magnet surface and effectively diffusing RH inside the magnet without diffusing fluorine almost inside the magnet.
  • Another object of the present invention is to provide a method for producing an RTB -based sintered magnet having high H cJ and improved corrosion resistance, and an RTB -based sintered magnet produced by the method.
  • the manufacturing method of the RTB-based sintered magnet of the present disclosure includes, in one aspect, a step of preparing an RTB-based sintered magnet, and an RLM on the surface of the RTB-based sintered magnet.
  • a powder of an alloy (RL is Nd and / or Pr, M is one or more selected from Cu, Fe, Ga, Co, and Ni) and a powder of RH fluoride (RH is Dy and / or Tb).
  • the heat treatment is performed at a temperature lower than the sintering temperature of the RTB-based sintered magnet, and the surface of the RTB-based sintered magnet after the heat treatment is ground in the depth direction by 400 ⁇ m or less.
  • the RLM alloy includes 50 atomic% or more of RL, and the melting point of the RLM alloy is equal to or lower than the temperature of the heat treatment, and the heat treatment includes the powder of the RLM alloy and the powder of the RH fluoride.
  • RLM alloy: RH fluoride 96: 4-50 It carried out in the presence on the surface of the R-T-B based sintered magnet in a mass ratio of 50.
  • grinding is performed to 200 ⁇ m or less in the depth direction.
  • the mass of the RH element contained in the RH fluoride powder on the surface of the RTB-based sintered magnet is 0.03 to 0.35 mg per 1 mm 2 of the surface. .
  • the RLM alloy powder and the RH fluoride powder are mixed on the surface of the RTB-based sintered magnet.
  • RH oxide powder is substantially absent on the surface of the RTB-based sintered magnet.
  • the RTB-based sintered magnet of the present disclosure has, in one embodiment, R 2 Fe 14 B type compound crystal grains mainly containing a light rare earth element RL (at least one of Nd and Pr) as a main rare earth element R.
  • the area ratio of the oxide particles in the surface layer region is 95% or less of the area ratio in the cross section of the oxide particles in the central region. is there.
  • the area ratio of the oxide particles in the surface layer region is 75% or less of the area ratio in the cross section of the oxide particles in the central region. is there.
  • the area ratio of the fluorine-containing compound in the surface layer region from the magnet surface to a depth of 100 ⁇ m is 1% or less.
  • the RLM alloy can reduce RH fluoride and diffuse RH into the RTB-based sintered magnet, so that almost no fluorine is diffused inside the magnet.
  • H cJ can be improved to be equal to or higher than that of the prior art with a smaller amount of RH than that of the prior art.
  • the surface region close to the magnet surface is modified with the diffusion heat treatment, and an RTB-based sintered magnet having excellent corrosion resistance can be obtained.
  • X-ray diffraction data of diffusion agent TbF 3
  • X of diffusion aid Nd 70 Cu 30
  • FIG. 2 is a perspective view schematically showing a state in which a remaining coating layer 200 composed of RLM alloy powder and RH fluoride powder is in contact with the upper and lower surfaces of an RTB-based sintered magnet 100.
  • FIG. 2 is a perspective view schematically showing a state in which a remaining coating layer 201 exists on the upper and lower surfaces of an RTB-based sintered magnet 100 after diffusion heat treatment has been performed.
  • FIG. 2 is a perspective view schematically showing an RTB-based sintered magnet 100 with a coating layer removed.
  • FIG. 2B is a perspective view showing a state in which the RTB-based sintered magnet 100 is cut into two at the center along the broken line in FIG. 2C and a cross section (cut surface) 100C at the center is exposed.
  • 2 is a cross-sectional view schematically showing a cross section 100C of an RTB-based sintered magnet 100 before grinding.
  • FIG. 3 is a cross-sectional view schematically showing a cross section 100C of the RTB-based sintered magnet 100 after grinding of 100 ⁇ m.
  • FIG. 2 is a cross-sectional view schematically showing a cross section 100C of an RTB-based sintered magnet 100 after grinding of 400 ⁇ m.
  • FIG. 3B It is a figure which shows the cross-sectional SEM image of the part corresponded to the area
  • 7 is a graph showing the relationship between the amount of magnet depletion after the pressure cooker (PCT) test for the samples S1 to S6 of the example and the PCT test time. 6 is a graph showing the relationship between the amount of magnet wear and the amount of grinding after performing a PCT test on samples S1 to S6 of an example. It is a figure which shows the cross-sectional SEM image of the part corresponded to the area
  • PCT pressure cooker
  • an RLM alloy (RL is Nd and / or Pr, M is Cu, Fe, Ga, Co, Heat treatment at a temperature lower than the sintering temperature of the RTB-based sintered magnet in the presence of RH fluoride (RH is Dy and / or Tb) powder and at least one selected from Ni) including.
  • the RLM alloy contains 50 atomic% or more of RL, and its melting point is lower than the temperature of the heat treatment.
  • the surface of the RTB-based sintered magnet after the heat treatment is ground in the depth direction by 400 ⁇ m or less.
  • the present inventor presents an RH compound on the surface of an RTB -based sintered magnet together with a diffusion aid that reduces the RH compound during heat treatment. It was considered that the heat treatment method was effective.
  • an RLM alloy having a specific RL and M combination (RLM alloy) having an RL of 50 atomic% or more and a melting point of not more than the heat treatment temperature is present on the magnet surface. It has been found that the reducing ability of the RH compound is excellent.
  • RH fluoride is the most effective as the RH compound, and even if RH fluoride is used as the RH compound, the RTB-based sintered magnet It was found that almost no fluorine diffuses inside.
  • the RTB-based sintered magnet obtained by the above heat treatment contains almost no fluorine inside, and in a region close to the surface of the RTB-based sintered magnet.
  • the content ratio (concentration) of oxide particles (which may contain oxycarbides) decreases compared to the magnet center, and the surface of the RTB-based sintered magnet after heat treatment is 400 ⁇ m or less in the depth direction. The phenomenon that the corrosion resistance of the ground magnet was improved was found, and the present invention was completed.
  • a substance containing RH is referred to as a “diffusion agent”, and a substance that reduces the RH of the diffusing agent to a state where it can diffuse is referred to as a “diffusion aid”.
  • RTB-based sintered magnet base material First, in the present invention, an RTB-based sintered magnet base material to be diffused of heavy rare earth element RH is prepared.
  • an RTB-based sintered magnet that is a target of diffusion of the heavy rare earth element RH may be strictly referred to as an RTB-based sintered magnet base material.
  • the term “RTB system sintered magnet” includes such “RTB system sintered magnet base material”.
  • a known material can be used, for example, having the following composition.
  • Rare earth element R 12 to 17 atomic% B (a part of B (boron) may be substituted with C (carbon)): 5 to 8 atomic%
  • Additive element M ′ selected from the group consisting of Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one kind): 0 to 2 atomic% T (which is a transition metal element mainly containing Fe and may contain Co) and inevitable impurities: the balance
  • the rare earth element R is mainly composed of at least one kind selected from light rare earth elements RL (Nd, Pr) Element), but may contain heavy rare earth elements. In addition, when a heavy rare earth element is contained, it is preferable that at least one of Dy and Tb is included.
  • the RTB-based sintered magnet base material having the above composition is manufactured by an arbitrary manufacturing method.
  • the manufactured RTB-based sintered magnet base material includes a main phase (R 2 T 14 B-type compound) and a grain boundary phase located between the main phases.
  • the surface of the RTB-based sintered magnet base material is ground after the diffusion heat treatment, but before the diffusion heat treatment, a process such as cutting or grinding can be performed by machining.
  • RL a light rare earth element having a high effect of reducing RH fluoride is suitable. Further, RL is also sometimes M also has the effect of diffused into the magnet to improve the H cJ, tends to reduce the spread easily B r to the main phase crystal grains inside the element should be avoided. From the viewpoint that this RH fluoride is highly effective and difficult to diffuse into the main phase crystal grains, RL is Nd and / or Pr, M is one or more selected from Cu, Fe, Ga, Co, and Ni. To do. Among them, it is preferable to use an Nd—Cu alloy or an Nd—Fe alloy because the ability to reduce RH fluoride by Nd is effectively exhibited.
  • the RLM alloy uses an alloy containing RL at 50 atomic% or more and having a melting point equal to or lower than the heat treatment temperature. Such an RLM alloy efficiently reduces RH fluoride during heat treatment, and RH reduced at a higher rate diffuses into the RTB-based sintered magnet so that it can be efficiently used even in a small amount. HcJ of the system sintered magnet can be improved.
  • the particle size of the RLM alloy powder is preferably 500 ⁇ m or less.
  • RH fluoride As the diffusing agent, powder of RH fluoride (RH is Dy and / or Tb) is used. According to the study of the present inventor, the effect of improving H cJ when the above-described diffusion aid is present on the surface of the RTB -based sintered magnet base material and heat-treated is higher than that of the RH oxide. It was found that fluoride was larger.
  • the particle size of the RH fluoride powder is preferably 100 ⁇ m or less.
  • the RH fluoride in the present invention may contain RH oxyfluoride, which is an intermediate substance in the production process of RH fluoride.
  • any method may be used in which the RLM alloy powder and the RH fluoride powder are present on the surface of the RTB-based sintered magnet base material.
  • the RTB-based sintered magnet base material is dipped and pulled up, and the RLM alloy powder and the RH fluoride powder are mixed with a binder or a solvent to prepare a slurry.
  • Examples include a method of applying this slurry to the surface of an RTB-based sintered magnet base material.
  • the binder and the solvent may be any ones that can be removed from the surface of the RTB-based sintered magnet by thermal decomposition or evaporation at a temperature lower than the melting point of the diffusion aid in the subsequent heating process. It is not particularly limited.
  • the binder include polyvinyl alcohol and ethyl cellulose.
  • the RLM alloy powder and the RH fluoride powder may be present on the surface of the RTB-based sintered magnet base material in a mixed state, or may be present separately.
  • the RLM alloy When a slurry prepared by mixing RLM alloy powder and RH fluoride powder with a binder or solvent is applied to the surface of the RTB-based sintered magnet base material and allowed to stand, the RLM alloy having a large specific gravity
  • the powder may preferentially settle and separate into two layers, an RLM alloy powder layer and an RH fluoride layer. This is convenient because the RLM alloy reduces the RH fluoride, diffuses only RH inside the magnet and does not diffuse fluorine.
  • the melting point of the RLM alloy is lower than the heat treatment temperature, the RLM alloy melts during the heat treatment, and the reduced RH on the surface of the RTB-based sintered magnet has the RTB It becomes easy to diffuse inside the sintered magnet.
  • the surface of the RTB-based sintered magnet base material is pickled. It is not necessary to perform special cleaning processing such as. Of course, it does not exclude performing such a cleaning process. Even if the surface of the RLM alloy powder particles is somewhat oxidized, the effect of reducing the RH fluoride is hardly affected.
  • the present invention does not necessarily exclude the presence of powder (third powder) other than the RLM alloy and RH fluoride powder on the surface of the RTB-based sintered magnet base material, Care must be taken not to inhibit diffusion of RH in the RH fluoride into the RTB-based sintered magnet.
  • the mass ratio of the “RLM alloy and RH fluoride” powder to the entire powder existing on the surface of the RTB-based sintered magnet base material is desirably 70% or more.
  • the RH oxide powder is substantially absent on the surface of the RTB-based sintered magnet base material.
  • substantially absent means that the content of RH oxide in the powder present on the surface of the RTB-based sintered magnet base material is less than the content of inevitable impurities, specifically, It means that it is 1 mass% or less.
  • the amount of RH element in the powder present on the surface of the RTB-based sintered magnet base material is preferably 0.03 to 0.35 mg per 1 mm 2 of the magnet surface, and 0.05 to 0.25 mg. More preferably.
  • the heat treatment is performed in a state where the RLM alloy powder and the RH fluoride powder are present on the surface of the RTB-based sintered magnet base material.
  • the atmosphere for the heat treatment is preferably a vacuum or an inert gas atmosphere.
  • the heat treatment temperature is not higher than the sintering temperature of the RTB-based sintered magnet (specifically, for example, 1000 ° C. or lower) and higher than the melting point of the RLM alloy.
  • the heat treatment time is, for example, 10 minutes to 72 hours. Further, after the heat treatment, a heat treatment may be further performed at 400 to 700 ° C. for 10 minutes to 72 hours as necessary.
  • the concentration of heavy rare earth element decreases from the magnet surface toward the magnet center. This is because there is a gradient in the concentration of heavy rare earth elements introduced into the magnet by grain boundary diffusion from the outside of the RTB-based sintered magnet. Further, as described later, it was confirmed that oxygen in the surface layer region near the magnet surface was consumed during the diffusion reaction, and the amount of oxygen contained in the surface layer region was reduced.
  • the region where the oxygen content is reduced that is, the region where the oxygen content is reduced compared to the center of the magnet is from the magnet surface (diffusion surface in contact with the mixed powder) to a depth of about 400 to 500 ⁇ m. It is an area.
  • the step of grinding the surface of the RTB-based sintered magnet after the diffusion heat treatment in the depth direction is 400 ⁇ m or less.
  • the grinding amount is more than 0 ⁇ m, for example, 5 ⁇ m or more, typically 10 ⁇ m or more, preferably 50 ⁇ m or more. When the grinding amount is 200 ⁇ m or less, more excellent corrosion resistance is exhibited. Grinding can be performed using, for example, a known machine tool or apparatus such as a surface grinder. On the surface of the magnet after such grinding and in the vicinity thereof, there is a region modified so as to reduce the oxygen amount (oxide amount), and it is considered that the corrosion resistance of the magnet is improved.
  • Oxides are more stable for elements constituting magnets, such as rare earths and iron, and those skilled in the art usually think that corrosion resistance decreases as the amount of oxides decreases. The result that the amount of oxide is reduced and the corrosion resistance is improved as in the present invention is completely unpredictable by those skilled in the art.
  • the oxygen amount changes with a gradient from the magnet surface in the depth direction
  • quantitative evaluation is performed by observation of the cross section of the magnet with a scanning electron microscope.
  • a layer of an RLM alloy powder and an RH fluoride powder which has been altered by the diffusion heat treatment, remains before the heat treatment.
  • such a layer is referred to as a “residual coating layer” for the sake of convenience in this specification.
  • the layer includes a wide variety of residue that is not applied but is dispersed. This remaining coating layer can be removed, for example, by grinding.
  • the removal of the remaining coating layer by grinding is performed by grinding the surface of the magnet after the diffusion heat treatment on which the remaining coating layer exists to the original size of the RTB-based sintered magnet base material.
  • the thickness of the remaining coating layer may vary depending on the amount of powder present before the heat treatment.
  • the grinding amount of 400 ⁇ m or less in the present invention means a further grinding amount from the size of the magnet base material after the remaining coating layer is removed.
  • the removal of the remaining coating layer and the grinding of 400 ⁇ m or less may be performed at once.
  • the RTB-based rare earth sintered magnet thus obtained has, as a main phase, R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (Nd and / or Pr) as a main rare earth element R. , Containing a heavy rare earth element RH (Dy and / or Tb). And the density
  • the area ratio of the particles is characterized in that the thickness in the depth direction at the magnet central part is lower than the area ratio of the oxide particles in the central region of 100 ⁇ m.
  • the area ratio of the oxide particles in the surface layer region is 95% or less of the area ratio in the cross section of the oxide particles in the central region.
  • the area ratio of the oxide particles in the surface layer region is 75% or less of the area ratio of the oxide particles in the central region in the cross section.
  • the area ratio of the oxide particles in the “surface region from the magnet surface to a depth of 100 ⁇ m” is determined as follows.
  • Scanning electron micrograph (cross-sectional SEM image) including a rectangular region having a width of 100 ⁇ m in the depth direction from the magnet surface in a cross section perpendicular to the magnet surface (processed surface) after completion of the grinding process after diffusion heat treatment Image.
  • the length in the horizontal direction of the rectangular area is arbitrary, but may preferably be set to a size greater than the width in the depth direction.
  • An area ratio (ratio) of a region occupied by oxide particles (rare earth oxide and / or oxycarbide) in the rectangular region to the rectangular region is calculated.
  • the area ratio of the oxide particles thus determined substantially corresponds to the oxygen concentration.
  • the area ratio of the oxide particles in the “central region” is determined as follows. That is, a scanning electron micrograph including a rectangular region having a width of 100 ⁇ m in the depth direction located in the center of the magnet in a cross section perpendicular to the magnet surface (processed surface) after completion of the grinding process after diffusion heat treatment ( A cross-sectional SEM image) is taken. Using the same method as the method performed for the surface layer region, the area ratio of the region occupied by the oxide particles in the rectangular region is calculated.
  • FIG. 1 is a graph showing an analysis result by an X-ray diffraction method for a diffusing agent and a diffusion aid before heat treatment and a mixed powder after heat treatment.
  • FIG. 1 shows, in order from the top, X-ray diffraction data of a diffusing agent (TbF 3 ), a mixture powder of a diffusion aid (Nd 70 Cu 30 ) and a diffusing agent heat treated at 900 ° C. for 4 hours in an Ar atmosphere of 100 Pa.
  • the main diffraction peak of the diffusing agent is a TbF 3 peak
  • the main diffraction peak of the diffusion aid is a peak of Nd and NdCu.
  • the diffusion aid (Nd 70 Cu 30 ) in the mixed powder generates Nd or NdF 3 in a state that is easily combined with oxygen as a result of the reduction reaction that occurs during the heat treatment. Therefore, when heat treatment is performed in a state where such a mixed powder is in contact with the surface of the magnet base material, Tb contained in TbF 3 in the mixed powder is not only diffused inside the magnet but also caused by a reduction reaction. Nd or NdF 3 is considered to bind to surrounding oxygen. That is, when heat treatment (diffusion heat treatment) is performed in a state where such mixed powder is in contact with the surface of the magnet base material, it is observed that oxygen (oxide particles) is reduced in the surface layer region of the magnet. Along with this, the corrosion resistance of the magnet was improved.
  • FIG. 2A is a perspective view schematically showing an example of a state in which the coating layer 200 of the mixed powder composed of the RLM alloy powder and the RH fluoride powder is in contact with the upper and lower surfaces of the RTB-based sintered magnet 100.
  • FIG. The diffusion heat treatment can be performed in such a state.
  • XYZ coordinates including orthogonal X, Y, and Z axes are shown.
  • a mixed powder coating layer 200 may also be provided on the side surface of the RTB-based sintered magnet 100.
  • FIG. 2B schematically shows a state where the remaining coating layer 201 exists on the upper and lower surfaces of the RTB-based sintered magnet 100 after the diffusion heat treatment.
  • FIG. 2C schematically shows the RTB-based sintered magnet 100 with the remaining coating layer 202 removed.
  • FIG. 2D shows an RTB-based sintered magnet along the broken line in FIG. 2C in order to evaluate the concentration distribution in the depth direction (Z-axis direction) of the oxide in the RTB-based sintered magnet 100.
  • a state in which 100 is cut into two at the center and a cross section (cut surface) 100C is exposed is shown.
  • FIG. 3A, 3B, and 3C are cross-sectional views schematically showing a cross section 100C of the RTB-based sintered magnet 100 in FIG. 2D.
  • FIG. 3A shows three rectangular regions A, B, and C having different depths from the pre-grinding magnet surface 120 of the RTB-based sintered magnet 100.
  • the rectangular region C is included in a central region 180 located at the center of the RTB-based sintered magnet 100.
  • FIG. 3B schematically shows a cross-section 100C of the RTB-based sintered magnet 100 in a state in which only about 100 ⁇ m is ground from the pre-grinding magnet surface 120 in the depth direction (Z-axis direction).
  • the surface 140 of the RTB-based sintered magnet 100 after grinding is 100 ⁇ m deep from the surface (interface between the remaining coating layer and the magnet) 120 of the RTB-based sintered magnet 100 immediately after the diffusion heat treatment. It was only located inside the magnet.
  • the region A in this example is included in the surface layer region 160 from the surface 140 of the RTB-based sintered magnet 100 to a depth of 100 ⁇ m.
  • FIG. 3C schematically shows a cross section 100C of the RTB-based sintered magnet 100 in a state where the surface is ground by about 400 ⁇ m in the depth direction from the pre-grinding magnet surface 120.
  • the surface 140 of the RTB-based sintered magnet 100 after grinding is 400 ⁇ m deep from the surface (interface between the remaining coating layer and the magnet) 120 of the RTB-based sintered magnet 100 immediately after the diffusion heat treatment. It was only located inside the magnet.
  • the region B in this example is included in the surface layer region 160 from the surface 140 of the RTB-based sintered magnet 100 after grinding to a depth of 100 ⁇ m.
  • 3B and 3C show an example in which grinding is performed from the surface 120 located on the upper surface side of the RTB-based sintered magnet 100, but the grinding is performed from the surface located on the lower surface side. Is the same. Grinding can be performed on each surface where diffusion occurs in contact with the mixed powder composed of the RLM alloy powder and the RH fluoride powder.
  • the “depth direction” is a direction perpendicular to the surface of interest (diffusion surface).
  • FIG. 4A, FIG. 4B, and FIG. 4C are diagrams showing cross-sectional SEM-EDX mappings of portions corresponding to region A in FIG. 3B, region B in FIG. 3C, and region C, respectively.
  • Element mapping of oxygen (O), fluorine (F), iron (Fe), neodymium (Nd), terbium (Tb), and copper (Cu) is shown, respectively.
  • the RTB-based sintered magnet of the present invention contains almost no fluorine inside the magnet.
  • the fact that it contains almost no fluorine means that, in a cross section perpendicular to the magnet surface, the area ratio of the fluorine-containing compound in the surface layer region from the magnet surface to a depth of 100 ⁇ m is 1% or less. To do.
  • the Tb concentration decreases along the depth direction from the magnet surface.
  • oxide particles were observed in the regions B and C. These are considered to be rare earth oxides because they coincide with the portion where Nd is strongly detected in Nd mapping.
  • the term “particle” does not limit the shape and size of the object to a specific one.
  • the amount (density or concentration or area) of oxide particles observed in region B was less than the amount of oxide particles (density or concentration or area) observed in region C.
  • FIG. 4A in the region A, the above oxide particles were hardly observed.
  • the oxygen detected at the top in the oxygen mapping in FIGS. 4A and 4B is contained in the resin used to prepare the sample for analysis.
  • FIG. 4D shows an RTB-based sintered body prepared by applying a slurry prepared by mixing TbF 3 powder with a binder or a solvent to the surface of an RTB-based sintered magnet base material and heat-treating it. It is a figure which shows the cross-sectional SEM-EDX mapping of the part corresponded to the area
  • fluorine is detected in the surface layer region 160 after grinding of 100 ⁇ m in a magnet that is heat-treated by applying a slurry containing TbF 3 without containing an RLM alloy powder. Further detailed analysis confirmed that rare earth fluoride and / or oxyfluoride was present in the portion where fluorine was detected. In the magnet of Patent Document 5, it can be seen from the diffusion agent TbF 3 that both Tb and fluorine are diffused in the magnet. Furthermore, the area ratio of the rare earth fluoride or oxyfluoride in the surface layer region having a depth of 100 ⁇ m to the depth of 100 ⁇ m from the magnet surface by image analysis similar to the case of obtaining the area ratio of the oxide particles shown below.
  • FIG. 5 is a diagram showing a cross-sectional SEM image of a portion corresponding to the region C shown in FIG. 3A.
  • the portion with relatively low brightness (dark portion) is the main phase
  • the portion with relatively high brightness (bright portion) is the grain boundary phase.
  • FIG. 5 also shows an enlarged photograph of a part located at the lower right of the cross-sectional SEM image.
  • the average atomic number is an average atomic number in the case of a compound composed of two or more elements, and is calculated in consideration of weighting according to the mass concentration of each element.
  • the portion described as “oxide particles” is a compound in which oxygen is bonded to a rare earth element (Nd in this example) from the same mapping analysis of oxygen and Nd as in FIGS. 4A to 4C. .
  • a cross-sectional SEM image is converted into a main phase (R—Fe—B phase), a grain boundary phase (R-rich phase), oxide particles (RO and / or R—). C ⁇ O), and the area ratio of each region can be calculated.
  • Such image processing and area ratio calculation can be performed using, for example, Scandium (manufactured by OLYMPUS) as image processing software.
  • FIG. 6A and 6B are diagrams showing cross-sectional SEM images of portions corresponding to region A (FIG. 3B) and region B (FIG. 3C), respectively.
  • the magnification and the size of the field of view are the same as those in the cross-sectional SEM image of FIG.
  • minute uneven portions existing on the ground surface may be excluded from the fields A and B.
  • the region of the extreme surface including such irregularities is about 10 ⁇ m or less in thickness.
  • the position of the region A (FIG. 3B) and the region B (FIG. 3C) to be subjected to image processing is shifted from the pole surface by about 10 ⁇ m to the inside of the magnet, thereby Even if the unevenness is removed from the field of view, there is no substantial difference in the calculated area ratio value.
  • the cross-sectional SEM images shown in FIG. 5, FIG. 6A and FIG. 6B have a wide field of view in which the width in the depth direction (size in the Z-axis direction) is about 180 ⁇ m. For this reason, the cross-sectional SEM image includes a portion extending outside the “surface layer region” and the “center region” having a width in the depth direction (Z-axis direction size) of 100 ⁇ m. In calculating the area ratio by image processing, it is preferable to appropriately select a region so that the target region does not deviate from the “surface layer region” or “center region”.
  • the concentration of the oxide particles changes gently along the depth direction, if the field size of the cross-sectional SEM image used for the calculation is 200 ⁇ m or less, the field of view is the “surface layer region” or “center region”. Even if it is wider, there is almost no influence on the evaluation of the area ratio of the oxide particles.
  • the area ratio of the oxide particles in the central region and the surface layer region having a width in the depth direction of 100 ⁇ m was obtained from the cross-sectional SEM images shown in FIGS.
  • the area ratio of the oxide particles was 0.5%, 1.8%, and 2.4%. That is, in a magnet having a grinding amount of about 100 ⁇ m, the area ratio of oxide particles in the surface layer region is 0.5%, and in a magnet having a grinding amount of about 400 ⁇ m, the area ratio of oxide particles in the surface layer region is 1.8%. %. Both are smaller than the area ratio (2.4%) of the oxide particles in the central region.
  • the area ratio (0.5%) of oxide particles in the surface layer region is 75% or less of the area ratio (2.4%) of oxide particles in the central region. Is within the range. Further, in a magnet having a grinding amount of about 400 ⁇ m, the area ratio (1.8%) of the oxide particles in the surface region is within 95% or less of the area ratio (2.4%) of the oxide particles in the central region. It is.
  • the oxide particles When a cross section was observed in the same manner as described above for a magnet that was not subjected to diffusion heat treatment, the oxide particles showed an area ratio similar to the area ratio in the magnet central area in any region.
  • oxide particles exist at a density similar to that of the central region, but in the magnet subjected to the diffusion heat treatment, the oxide particles in the surface layer region It was found that the density or concentration decreased compared to the central region. It is highly possible that the rare earth oxide present in the surface layer region has been reduced by the diffusion heat treatment. The effect of the reduction is weakened as it proceeds from the magnet surface in the depth direction, and is hardly seen in the magnet central region.
  • the “oxide particles” may be partially or entirely oxycarbide particles.
  • a diffusion aid having a composition of Nd 70 Cu 30 (atomic%) (melting point: 520 ° C .: value shown in RLM binary phase diagram) was prepared.
  • the diffusion aid was pulverized with a coffee mill to obtain a particle size of 150 ⁇ m or less.
  • the obtained diffusion aid powder and TbF 3 powder having a particle size of 20 ⁇ m or less were mixed at 60:40 to obtain a mixed powder.
  • This mixed powder was mixed with ethyl cellulose, a silane coupling agent and a solvent to obtain a slurry.
  • the amount of RH per 1 mm 2 of the surface of the RTB system sintered magnet (diffusion surface) is measured on this slurry on the upper and lower surfaces of 32.3 mm ⁇ 36.5 mm of the RTB system sintered magnet base material. It apply
  • the Mo plate on which this RTB-based sintered magnet base material was placed was placed in a processing container and covered. This lid does not prevent the gas from entering or leaving the container. This was housed in a heat treatment furnace, and heat treatment was performed in an Ar atmosphere of 100 Pa at 400 ° C. for 2 hours and 900 ° C. for 8 hours. The heat treatment was carried out under the above conditions after the temperature was raised while evacuating from room temperature and the atmospheric pressure and temperature reached the above conditions. Thereafter, the temperature was lowered to room temperature, and then the Mo plate was taken out to collect the RTB-based sintered magnet. The recovered RTB-based sintered magnet was returned to the processing vessel and accommodated again in a heat treatment furnace, and heat treatment was performed at 490 ° C.
  • the surface of the obtained RTB-based sintered magnet is machined by the values in Table 1 in the thickness direction (Z direction) and 200 ⁇ m in the directions perpendicular to the thickness direction (X and Y directions), respectively.
  • samples S1 to S6 having a dimension in the thickness direction of M (mm) were obtained.
  • the grinding amount in Table 1 is a value that does not include the remaining coating layer existing on the surface of the RTB-based sintered magnet after the heat treatment, and the remaining coating layer is the surface of the RTB-based sintered magnet surface. It was removed simultaneously with grinding (S1 was grinding and removing only the remaining coating layer).
  • FIG. 7 is a graph showing the relationship between the amount of magnet wear after the PCT test and the test time.
  • FIG. 8 is a graph showing the relationship between the amount of magnet wear after the test and the amount of grinding (the thickness of the magnet region removed by grinding).
  • the sample having the same grinding amount as the sample S1 was cut into two at the center to expose the cross section, and the oxide depth direction (for each measurement position shown in Table 2 ( The concentration distribution in the Z-axis direction) was evaluated.
  • the evaluation method is the same as the method described with reference to FIGS. 5, 6A, and 6B. The results are shown in Table 2.
  • the range where the depth of the measurement position in Table 2 is 0 to 100 ⁇ m corresponds to the surface layer region (thickness of 100 ⁇ m) of the sample S1 with zero grinding.
  • the range of 100 to 200 ⁇ m is the surface layer region (thickness 100 ⁇ m) of sample S3
  • the range of 200 to 300 ⁇ m is the surface layer region of sample S4 (thickness 100 ⁇ m)
  • the range of 300 to 400 ⁇ m is the surface layer region (thickness) of sample S5.
  • the range of 400 to 500 ⁇ m corresponds to the surface layer region (thickness 100 ⁇ m) of sample S6.
  • the vicinity of the magnet surface after grinding that is, the surface layer region (magnet).
  • the content ratio of the oxide particles in the region having a thickness of 100 ⁇ m from the surface to a depth of 100 ⁇ m is lower than the content ratio of the oxide particles in the central region of the magnet.
  • the area ratio of the oxide particles in the “surface layer region” in contact with the magnet surface that appears by grinding is 95% or less of the area ratio in the cross section of the oxide particles in the central region in a cross section perpendicular to the magnet surface.
  • the corrosion resistance is improved when the ratio is 75% or less, the improvement of the corrosion resistance is large when the ratio is 75% or less, and the improvement of the corrosion resistance is remarkable when the ratio is 50% or less.
  • the obtained RTB-based sintered magnet base material was heat-treated in the same manner as in Experimental Example 1.
  • the RTB sintered magnet after the heat treatment was ground by 100 ⁇ m (value not including the thickness of the remaining coating layer after the heat treatment) in the thickness direction from the upper surface and the lower surface.
  • the side surfaces of the RTB-based sintered magnet after the heat treatment were each ground by 200 ⁇ m in the direction perpendicular to the thickness direction (X and Y directions).
  • Samples 1 to 20 (Examples) having a thickness dimension of 2.90 mm were obtained.
  • the magnetic properties of Samples 1 to 20 were measured by the same method as in Experimental Example 1. The results are shown in Table 4.
  • each of Samples 1 to 20 was subjected to a PCT test under the same conditions as in Experimental Example 1.
  • the amount of wear of the magnet after the PCT test was evaluated, the amount of wear was lower than 1.2 ⁇ 10 ⁇ 4 g / cm 2 in all the magnets.
  • cross-sectional SEM observation is performed in the regions A, B, and C shown in FIG. 3A, and oxide particles are obtained in the same manner as described with reference to FIGS. 5, 6A, and 6B.
  • the area ratio of was measured. In all the samples, the area ratio of the oxide particles in the surface area of the magnet was 95% or less of the area ratio of the oxide particles in the central area.
  • FIGS. 9A and 9B show a portion of the region A of the sample 25
  • FIG. 9B shows a portion of the region C of the sample 25.
  • the magnification and the size of the field of view are the same as the cross-sectional SEM images of FIGS. 5, 6A, and 6B. Similar cross-sectional SEM images were obtained for the samples of other comparative examples.
  • the area ratio of the oxide particles was measured by the same method as described with reference to FIGS. 5, 6A and 6B. The results are shown in Table 5. In all the samples of the comparative examples, the area ratio of the oxide particles in the surface layer region of the magnet exceeded the area ratio of the oxide particles in the central region.
  • An RTB-based sintered magnet obtained by heat treatment in the state where RH fluoride is present on the surface of the magnet base material together with an RLM alloy having a mass ratio of 50% or more contains almost fluorine in the magnet. Not done. However, as in the method described in Patent Document 5, RH fluoride is present on the surface of the magnet base material without causing an RLM alloy having a mass ratio of 50% or more to exist on the surface of the magnet base material.
  • the RTB-based sintered magnet subjected to heat treatment contains a large amount of fluorine in the magnet.
  • the oxide particles in the magnet surface layer portion are the oxide particles in the magnet central portion. There was nothing less than that.
  • the fact that the oxide particles in the surface layer region are less than the oxide particles in the central region provides excellent corrosion resistance and does not contain fluoride inside the magnet. It is the feature.
  • the method for producing an RTB-based sintered magnet according to the present invention can provide an RTB -based sintered magnet excellent in corrosion resistance and having improved HcJ with less heavy rare earth element RH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

R-T-B系焼結磁石100を用意する工程と、R-T-B系焼結磁石100の表面120にRLM合金(RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末とRHフッ化物(RHはDyおよび/またはTb)の粉末とを存在させた状態において、R-T-B系焼結磁石100の焼結温度以下で熱処理を行う工程と、熱処理後のR-T-B系焼結磁石の表面120を深さ方向に400μm以下研削する工程とを含む。RLM合金はRLを50原子%以上含み、かつ、RLM合金の融点は前記熱処理の温度以下である。熱処理は、RLM合金の粉末とRHフッ化物の粉末とが、RLM合金:RHフッ化物=96:4~50:50の質量比率でR-T-B系焼結磁石の表面に存在する状態で行われる。

Description

R-T-B系焼結磁石の製造方法およびR-T-B系焼結磁石
 本発明は、R214B型化合物を主相として有するR-T-B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)及びその製造方法に関する。
 R214B型化合物を主相とするR-T-B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。
 R-T-B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」と表記する)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。
 R-T-B系焼結磁石は、主相中のRの一部を重希土類元素RH(Dy、Tb)で置換すると、HcJが向上することが知られている。高温で高いHcJを得るためには、R-T-B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R-T-B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度Br(以下、単に「Br」と表記する)が低下してしまうという問題がある。また、重希土類元素RHは希少資源であるため、その使用量を削減することが求められている。
 そこで、近年、Brを低下させないように、より少ない重希土類元素RHによってR-T-B系焼結磁石のHcJを向上させることが検討されている。例えば、重希土類元素RHを効果的にR-T-B系焼結磁石に供給し拡散させる方法として、特許文献1~4にRH酸化物またはRHフッ化物と、各種金属MまたはMの合金との混合粉末をR-T-B系焼結磁石の表面に存在させた状態で熱処理することによって、RHやMを効率よくR-T-B系焼結磁石に拡散させて、R-T-B系焼結磁石のHcJを高める方法が開示されている。
 特許文献1には、M(ここでMはAl、Cu、Znから選ばれる1種又は2種以上)を含有する粉末とRHフッ化物の粉末の混合粉末を用いることが開示されている。また、特許文献2には、熱処理温度で液相となるRTMAH(ここでMはAl、Cu、Zn、In、Si、Pなどから選ばれる1種または2種以上、Aはホウ素または炭素、Hは水素)からなる合金の粉末を用いることが開示されており、この合金の粉末とRHフッ化物などの粉末との混合粉末でも良いと開示されている。
 特許文献3、特許文献4では、RM合金(ここでRは希土類元素、MはAl、Si、C、P、Tiなどから選ばれる1種または2種以上)の粉末またはM1M2合金(M1およびM2はAl、Si、C、P、Tiなどから選ばれる1種または2種以上)の粉末と、RH酸化物との混合粉末を用いることによって熱処理時にRM合金やM1M2合金によりRH酸化物を部分的に還元し、より多量のRを磁石内に導入することが可能であると開示されている。
 なお、特許文献5には、Rのフッ化物を含有する粉末をR-T-B系焼結磁石の表面に存在させた状態で熱処理を施すことが開示されている。特許文献5によれば、当該粉末に含まれるフッ素がRと共に磁石内に吸収されることによりRの粉末からの供給と磁石の結晶粒界における拡散を著しく高める。また、その実施例の図面において、熱処理後の磁石内に面積割合で6%を超える(本発明者の画像解析による)フッ素含有化合物が存在していることが示されている。
特開2007-287874号公報 特開2007-287875号公報 特開2012-248827号公報 特開2012-248828号公報 国際公開第2006/043348号
 特許文献1~4に記載の方法は、より多量のRHを磁石内に拡散させることができるという点で注目に値する。しかしながら、これらの方法によれば、磁石表面に存在させたRHを有効にHcJの向上に結びつけることができず、改良の余地がある。特に特許文献3では、RM合金とRH酸化物の混合粉末を用いているが、その実施例を見る限り、RM合金の拡散によるHcJの向上自体が大きく、RH酸化物を用いた効果はわずかであり、RM合金によるRH酸化物の還元効果はあまり発揮されていないと思われる。また、特許文献5に記載の方法は、フッ素によってRの拡散効果を高めるという点で優れた方法である。しかしながら、フッ素自体は磁石の磁気特性に対して決して好ましいとは言えず、磁石内部にフッ素を含有させずに拡散効果を高める方法があれば、そのほうが好ましいと言える。
 本発明は上記事情に鑑みてなされたものであり、磁石表面に存在させるRHの量を少なくし、かつフッ素を磁石内部にほとんど拡散させることなく、RHを効果的に磁石内部に拡散させることによって、高いHcJと向上した耐食性を有するR-T-B系焼結磁石を製造する方法、および当該方法で製造されるR-T-B系焼結磁石を提供することである。
 本開示のR-T-B系焼結磁石の製造方法は、ある態様において、R-T-B系焼結磁石を用意する工程と、前記R-T-B系焼結磁石の表面にRLM合金(RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末と、RHフッ化物(RHはDyおよび/またはTb)の粉末とを存在させた状態において、前記R-T-B系焼結磁石の焼結温度以下で熱処理を行う工程と、熱処理後の前記R-T-B系焼結磁石の表面を深さ方向に400μm以下研削する工程とを含み、前記RLM合金はRLを50原子%以上含み、かつ、前記RLM合金の融点は前記熱処理の温度以下であり、前記熱処理は、前記RLM合金の粉末と前記RHフッ化物の粉末とが、RLM合金:RHフッ化物=96:4~50:50の質量比率で前記R-T-B系焼結磁石の表面に存在する状態で行われる。
 ある実施形態では、前記R-T-B系焼結磁石の前記表面を研削する工程において、深さ方向に200μm以下研削する。
 ある実施形態では、前記R-T-B系焼結磁石の表面において、前記RHフッ化物の粉末に含まれるRH元素の質量は、前記表面の1mm2あたりで0.03~0.35mgである。
 ある実施形態では、前記R-T-B系焼結磁石の表面において、前記RLM合金の粉末と前記RHフッ化物の粉末とは混合された状態にある。
 ある実施形態では、前記R-T-B系焼結磁石の表面において、RH酸化物の粉末は実質的に存在していない。
 本開示のR-T-B系焼結磁石は、ある態様において、軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有し、重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有するR-T-B系希土類焼結磁石であって、前記重希土類元素の濃度は、磁石表面から磁石中心部に向かって低下し、前記磁石表面に対して垂直な断面において、前記磁石表面から100μmの深さまでの表層領域における酸化物粒子の面積割合は、前記磁石中心部における深さ方向の厚さが100μmの中央領域における酸化物粒子の面積割合よりも低く、フッ素が内部に拡散していない。
 ある実施形態において、前記磁石表面に対して垂直な断面において、前記表層領域中の前記酸化物粒子の面積割合は、前記中央領域中の前記酸化物粒子の前記断面における面積割合の95%以下である。
 ある実施形態において、前記磁石表面に対して垂直な断面において、前記表層領域中の前記酸化物粒子の面積割合は、前記中央領域中の前記酸化物粒子の前記断面における面積割合の75%以下である。
 ある実施形態において、前記磁石表面から100μmの深さまでの表層領域におけるフッ素含有化合物の面積割合は1%以下である。
 本発明の実施形態によれば、RLM合金がRHフッ化物を還元してRHをR-T-B系焼結磁石内部に拡散させることができるので、磁石内部にフッ素をほとんど拡散させることなく、従来技術よりも少ないRH量で従来技術と同等以上にHcJを向上させることができる。また、拡散熱処理に伴って磁石表面に近い表層領域が改質され、耐食性に優れたR-T-B系焼結磁石が得られる。
上から順に、拡散剤(TbF3)のX線回折データ、拡散助剤と拡散剤の混合粉末を900℃で4時間熱処理したもののX線回折データ、拡散助剤(Nd70Cu30)のX線回折データを示すグラフである。 RLM合金の粉末とRHフッ化物の粉末とから構成される残存塗布層200がR-T-B系焼結磁石100の上面および下面に接触した状態を模式的に示す斜視図である。 拡散熱処理が行われた後において、R-T-B系焼結磁石100の上面および下面に残存塗布層201が存在している状態を模式的に示す斜視図である。 塗布層が除去された状態のR-T-B系焼結磁石100を模式的に示す斜視図である。 図2Cの破線に沿ってR-T-B系焼結磁石100を中央で2つに切断し、中央部の断面(切断面)100Cを露出させた状態を示す斜視図である。 研削前におけるR-T-B系焼結磁石100の断面100Cを模式的に示す断面図である。 100μmの研削後におけるR-T-B系焼結磁石100の断面100Cを模式的に示す断面図である。 400μmの研削後におけるR-T-B系焼結磁石100の断面100Cを模式的に示す断面図である。 図3Bの領域Aに相当する部分の断面SEM-EDXマッピングを示す図である。 図3Cの領域Bに相当する部分の断面SEM-EDXマッピングを示す図である。 図3Cの領域Cに相当する部分の断面SEM-EDXマッピングを示す図である。 比較例について、領域Aに相当する部分の断面SEM-EDXマッピングを示す図である。 領域C(図3A)に相当する部分の断面SEM像を示す図である。 領域A(図3B)に相当する部分の断面SEM像を示す図である。 領域B(図3C)に相当する部分の断面SEM像を示す図である。 実施例のサンプルS1~S6についてプレッシャークッカー(PCT)試験を行った後の磁石の減耗量とPCT試験時間との関係を示すグラフである。 実施例のサンプルS1~S6についてPCT試験を行った後の磁石の減耗量と研削量との関係を示すグラフである。 比較例について、領域Aに相当する部分の断面SEM像を示す図である。 比較例について、領域Cに相当する部分の断面SEM像を示す図である。 比較例で用いた装置の構成を示す図である。 比較例で用いた装置の構成を示す図である。
 本発明のR-T-B系焼結磁石の製造方法は、R-T-B系焼結磁石の表面にRLM合金(RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末と、RHフッ化物(RHはDyおよび/またはTb)の粉末を存在させた状態でR-T-B系焼結磁石の焼結温度以下で熱処理する工程を含む。RLM合金はRLを50原子%以上含み、その融点が前記熱処理の温度以下である。上記の熱処理は、RLM合金の粉末とRHフッ化物の粉末を、RLM合金:RHフッ化物=96:4~50:50の質量比率でR-T-B系焼結磁石の表面に存在させて行う。また、前記熱処理(拡散熱処理)後におけるR-T-B系焼結磁石の表面を深さ方向に400μm以下研削する。
 本発明者は、より少ないRHを有効に利用してHcJを向上させる方法として、R-T-B系焼結磁石表面にRH化合物を、熱処理中にRH化合物を還元する拡散助剤とともに存在させて熱処理する方法が有効であると考えた。本発明者の検討の結果、特定のRLとMの組み合わせの合金(RLM合金)であって、RLを50原子%以上含みその融点が熱処理温度以下であるRLM合金が、磁石表面に存在させたRH化合物の還元能力に優れていることを見出した。また、このようなRLM合金とともに熱処理する方法においては、RH化合物としてRHフッ化物が最も効果が高いこと、および、RH化合物としてRHフッ化物を採用しても、R-T-B系焼結磁石内部にほとんどフッ素が拡散しないことを見出した。
 更に、上記の熱処理(拡散熱処理)によって得られたR-T-B系焼結磁石は、内部にフッ素をほとんど含有せず、また、R-T-B系焼結磁石の表面に近い領域における酸化物粒子(酸炭化物を含んでいてもよい)の含有比率(濃度)が磁石中心部に比べて減少し、熱処理後のR-T-B系焼結磁石の表面を深さ方向に400μm以下研削した磁石は耐食性が向上しているという現象を見出して、本発明を完成するに至った。
 なお、本明細書において、RHを含有する物質を「拡散剤」、拡散剤のRHを還元して拡散し得る状態にする物質を「拡散助剤」と称する。
 以下、本発明の好ましい実施形態について詳細に説明する。
 [R-T-B系焼結磁石母材]
 まず、本発明では、重希土類元素RHの拡散の対象とするR-T-B系焼結磁石母材を準備する。なお、本明細書では、わかりやすさのため、重希土類元素RHの拡散の対象とするR-T-B系焼結磁石をR-T-B系焼結磁石母材と厳密に称することがあるが、「R-T-B系焼結磁石」の用語はそのような「R-T-B系焼結磁石母材」を含むものとする。このR-T-B系焼結磁石母材は公知のものが使用でき、例えば以下の組成を有する。
 希土類元素R:12~17原子%
 B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):5~8原子%
 添加元素M´(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0~2原子%
 T(Feを主とする遷移金属元素であって、Coを含んでもよい)および不可避不純物:残部
 ここで、希土類元素Rは、主として軽希土類元素RL(Nd、Prから選択される少なくとも1種の元素)であるが、重希土類元素を含有していてもよい。なお、重希土類元素を含有する場合は、DyおよびTbの少なくとも一方を含むことが好ましい。
 上記組成のR-T-B系焼結磁石母材は、任意の製造方法によって製造される。製造されたR-T-B系焼結磁石母材は、主相(R214B型化合物)と、主相間に位置する粒界相とを含む。後述するように、R-T-B系焼結磁石母材の表面は、拡散熱処理の後に研削されるが、拡散熱処理を行う前に機械加工によって切断加工または研削などの処理がなされ得る。
 [拡散助剤]
 拡散助剤としては、RLM合金の粉末を用いる。RLとしてはRHフッ化物を還元する効果の高い軽希土類元素が適している。また、RLもMも磁石中に拡散してHcJを向上させる効果を持つ場合があるが、主相結晶粒内部にまで拡散しやすくBrを低下させやすい元素は避けるべきである。このRHフッ化物を還元する効果が高く、主相結晶粒内部に拡散しにくいという観点から、RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上とする。中でもNd-Cu合金やNd-Fe合金を用いると、NdによるRHフッ化物の還元能力が効果的に発揮されるので好ましい。また、RLM合金はRLを50原子%以上含み、かつ、その融点が熱処理温度以下の合金を用いる。このようなRLM合金は、熱処理時にRHフッ化物を効率よく還元し、より高い割合で還元されたRHがR-T-B系焼結磁石中に拡散して少量でも効率よくR-T-B系焼結磁石のHcJを向上させることができる。RLM合金の粉末の粒度は500μm以下が好ましい。
 [拡散剤]
 拡散剤としては、RHフッ化物(RHはDyおよび/又はTb)の粉末を用いる。本発明者の検討によれば、上記のような拡散助剤をR-T-B系焼結磁石母材の表面にともに存在させて熱処理した場合のHcJ向上効果はRH酸化物よりもRHフッ化物の方が大きいことがわかった。RHフッ化物の粉末の粒度は100μm以下が好ましい。なお、本発明におけるRHフッ化物には、RHフッ化物の製造工程における中間物質であるRH酸フッ化物が含まれていてもよい。
 [拡散熱処理]
 RLM合金の粉末とRHフッ化物の粉末とをR-T-B系焼結磁石母材の表面に存在させる方法はどのようなものであってもよい。例えば、RLM合金の粉末とRHフッ化物の粉末をR-T-B系焼結磁石母材の表面に散布する方法や、RLM合金の粉末とRHフッ化物の粉末とを純水や有機溶剤などの溶媒に分散させ、これにR-T-B系焼結磁石母材を浸漬して引き上げる方法、RLM合金の粉末とRHフッ化物の粉末とをバインダーや溶媒と混合してスラリーを作製し、このスラリーをR-T-B系焼結磁石母材の表面に塗布する方法、等が挙げられる。バインダーや溶媒は、その後の熱処理の昇温過程において、拡散助剤の融点以下の温度で熱分解や蒸発などでR-T-B系焼結磁石の表面から除去されるものであればよく、特に限定されるものではない。バインダーの例としては、ポリビニルアルコールやエチルセルロースなどがあげられる。またRLM合金の粉末とRHフッ化物の粉末は、それらを混合した状態でR-T-B系焼結磁石母材の表面に存在させてもよいし、別々に存在させてもよい。RLM合金の粉末とRHフッ化物の粉末とをバインダーや溶媒と混合して作製したスラリーをR-T-B系焼結磁石母材の表面に塗布して静置すると、比重の大きなRLM合金の粉末が優先して沈降し、RLM合金粉末層とRHフッ化物層の2層に分離することがある。このことは、RLM合金がRHフッ化物を還元して、磁石内部にRHのみを拡散させフッ素を拡散させないために都合がよい。なお、本発明の方法においては、RLM合金はその融点が熱処理温度以下であるため熱処理の際に溶融し、R-T-B系焼結磁石の表面は還元されたRHがR-T-B系焼結磁石内部に拡散しやすい状態になる。したがって、RLM合金の粉末とRHフッ化物の粉末とをR-T-B系焼結磁石母材の表面に存在させる前にR-T-B系焼結磁石母材の表面に対して酸洗などの特段の清浄化処理を行う必要はない。もちろん、そのような清浄化処理を行うことを排除するものではない。また、RLM合金粉末粒子の表面が多少酸化されていてもRHフッ化物を還元する効果にほとんど影響はない。
 粉末状態にあるRLM合金およびRHフッ化物のR-T-B系焼結磁石母材の表面における存在比率(熱処理前)は、質量比率でRLM合金:RHフッ化物=96:4~50:50とする。存在比率はRLM合金:RHフッ化物=95:5~60:40であることがより好ましい。本発明は、RLM合金およびRHフッ化物の粉末以外の粉末(第三の粉末)がR-T-B系焼結磁石母材の表面に存在することを必ずしも排除しないが、第三の粉末がRHフッ化物中のRHをR-T-B系焼結磁石の内部に拡散することを阻害しないように留意する必要がある。R-T-B系焼結磁石母材の表面に存在する粉末の全体に占める「RLM合金およびRHフッ化物」の粉末の質量比率は、70%以上であることが望ましい。ある態様では、R-T-B系焼結磁石母材の表面において、RH酸化物の粉末は実質的に存在していない。
 なお、ここで「実質的に存在しない」とは、R-T-B系焼結磁石母材の表面に存在する粉末におけるRH酸化物の含有量が不可避不純物の含有量以下、具体的には、1質量%以下であることを意味する。
 本発明によれば、少ない量のRHで、効率的にR-T-B系焼結磁石のHcJを向上させることが可能である。R-T-B系焼結磁石母材の表面に存在させる粉末中のRH元素の量は、磁石表面1mm2あたり0.03~0.35mgであることが好ましく、0.05~0.25mgであることが更に好ましい。
 RLM合金の粉末とRHフッ化物の粉末とをR-T-B系焼結磁石母材の表面に存在させた状態で熱処理を行う。なお、熱処理の開始後、RLM合金の粉末は溶融するため、RLM合金が熱処理中に常に「粉末」の状態を維持する必要はない。熱処理の雰囲気は真空または不活性ガス雰囲気が好ましい。熱処理温度はR-T-B系焼結磁石の焼結温度以下(具体的には例えば1000℃以下)であり、かつ、RLM合金の融点よりも高い温度である。熱処理時間は例えば10分~72時間である。また前記熱処理の後必要に応じてさらに400~700℃で10分~72時間の熱処理を行ってもよい。
 拡散熱処理後のR-T-B系焼結磁石において、重希土類元素の濃度は、磁石表面から磁石中心部に向かって低下している。これは、R-T-B系焼結磁石の外部から粒界拡散によって磁石内部に導入された重希土類元素の濃度に勾配が生じているためである。また、後述するように、磁石表面に近い表層領域の酸素が拡散反応時に消費され、表層領域における含有酸素量の低下していることが確認された。含有酸素量が低下している領域、すなわち、含有酸素量が磁石中央に比べて減少している領域は、磁石表面(混合粉末に接触していた拡散面)から400~500μm程度の深さまでの領域である。
 [拡散熱処理後の研削]
 本発明の好ましい実施形態では、拡散熱処理後のR-T-B系焼結磁石の表面を深さ方向に400μm以下研削する工程を行う。研削量は0μm超、例えば5μm以上、典型的には10μm以上、好ましくは50μm以上である。研削量が200μm以下のとき、より優れた耐食性が発揮される。研削は、例えば、平面研削盤などの公知の工作機械または装置を用いて行うことができる。このような研削を行った後の磁石表面およびその近傍では、酸素量(酸化物量)が低減するように改質された領域が存在し、磁石の耐食性が向上していると考えられる。希土類や鉄など磁石を構成している元素は酸化物の方が安定であり、通常、当業者は酸化物量が減少すると耐食性が低下すると考える。本発明のように酸化物量が低減して耐食性が向上するという結果は、当業者が全く予想し得ないものである。
 酸素量(酸化物量)は、後述するように、磁石表面から深さ方向に勾配をもって変化しているため、磁石断面の走査型電子顕微鏡観察によって定量的な評価を行う。なお、拡散熱処理後のR-T-B系焼結磁石表面には、熱処理前にはRLM合金の粉末とRHフッ化物の粉末の層であり拡散熱処理によって変質した層が残存している。このような層を、本明細書では、便宜上、「残存塗布層」と呼ぶが、塗布でなく散布した層が変質した残存物を広く含むものとする。この残存塗布層は例えば研削によって除去され得る。残存塗布層の研削による除去は、拡散熱処理後の磁石の残存塗布層が存在する面を元々のR-T-B系焼結磁石母材の寸法まで研削することによってなされる。残存塗布層の厚さは熱処理前に存在させた粉末の量などによって異なり得る。本発明における400μm以下の研削量は、前記残存塗布層を除去した後の、磁石母材寸法からのさらなる研削量を意味する。残存塗布層の除去と前記400μm以下の研削は一度に行ってもよい。
 こうして得られたR-T-B系希土類焼結磁石は、軽希土類元素RL(Ndおよび/またはPr)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有し、重希土類元素RH(Dyおよび/またはTb)を含有する。そして、重希土類元素の濃度は、磁石表面から磁石中心部に向かって低下している。また、磁石表面に対して垂直な断面において、前記磁石表面から100μmの深さまでの表層領域におけるフッ素含有化合物の面積割合は1%以下であり、磁石表面から100μmの深さまでの表層領域における酸化物粒子の面積割合は、磁石中心部における深さ方向の厚さが100μmの中央領域における酸化物粒子の面積割合よりも低いという特徴を備えている。好ましい実施形態では、磁石表面に対して垂直な断面において、前記表層領域中の酸化物粒子の面積割合は、前記中央領域中の酸化物粒子の前記断面における面積割合の95%以下である。更に好ましい実施形態では、磁石表面に対して垂直な断面において、前記表層領域中の酸化物粒子の面積割合は、前記中央領域中の酸化物粒子の前記断面における面積割合の75%以下である。
 なお、磁石表面に対して垂直な断面において、「磁石表面から100μmの深さまでの表層領域」における酸化物粒子の面積割合は、以下のようにして決定される。
 拡散熱処理後の研削工程が完了した後の磁石表面(加工表面)に垂直な断面において、当該磁石表面から深さ方向に100μmの幅を持つ矩形領域を含む走査型電子顕微鏡写真(断面SEM像)を撮像する。前記矩形領域の水平方向長さは、任意であるが、好適には深さ方向の幅以上の大きさに設定され得る。前記矩形領域のうち、酸化物粒子(希土類の酸化物および/または酸炭化物)が占める領域の矩形領域に対する面積比率(割合)を算出する。このようにして求められる酸化物粒子の面積割合は、実質的に酸素濃度に対応している。
 同様に、磁石表面に対して垂直な断面において、「中央領域」における酸化物粒子の面積割合は、以下のようにして決定される。すなわち、拡散熱処理後の研削工程が完了した後の磁石表面(加工表面)に垂直な断面において、磁石中央部に位置する深さ方向に100μmの幅を持つ矩形領域を含む走査型電子顕微鏡写真(断面SEM像)を撮像する。表層領域について行った方法と同じ方法を用い、この矩形領域のうち、酸化物粒子が占める領域の面積割合を算出する。
 以下、本開示によるR-T-B系希土類焼結磁石における酸化物粒子の分布と耐食性との関係をより詳しく説明する。
 図1は 熱処理前の拡散剤と拡散助剤、および熱処理後の混合粉末に対し、X線回折法による解析結果を示すグラフである。図1は上から順に、拡散剤(TbF3)のX線回折データ、拡散助剤(Nd70Cu30)と拡散剤の混合粉末を100PaのAr雰囲気中900℃で4時間熱処理したもののX線回折データ、拡散助剤のX線回折データである。拡散剤のメイン回折ピークはTbF3のピークであり、拡散助剤のメイン回折ピークはNdおよびNdCuのピークである。これに対して、混合粉末を熱処理したもののX線回折データではTbF3とNdCuの回折ピークは消失し、NdF3の回折ピークがメイン回折ピークとして発現している。また、混合粉末を熱処理したもののX線回折データでは、NdOFのピークも存在する。すなわち、熱処理により、Nd70Cu30がTbF3を還元し、Ndがフッ素および酸素と結びついていることがわかる。なお、上記の熱処理は、拡散剤と拡散助剤との混合粉末に対して行われたものであり、熱処理時の混合粉末は磁石表面に接触していない。Ndと結びついた酸素は、熱処理雰囲気中に微量に存在していたものであると推測される。また、上記の熱処理では還元されたTbは混合粉末中に残っていると推測されるが、混合粉末を熱処理したもののX線回折データには、Tbのピークがマイナーピークとして発現していることを確認している。
 上記の結果から、混合粉末中の拡散助剤(Nd70Cu30)は、熱処理中に生じる還元反応の結果、酸素と結びつきやすい状態のNdまたはNdF3を生じさせると考えられる。したがって、このような混合粉末を磁石母材の表面に接触させた状態で熱処理を行うと、混合粉末中のTbF3に含まれていたTbが磁石内部に拡散するだけではなく、還元反応によって生じたNdまたはNdF3が周辺の酸素と結合すると考えられる。すなわち、このような混合粉末を磁石母材の表面に接触させた状態で熱処理(拡散熱処理)を行うと、磁石の表層領域中で酸素(酸化物粒子)の減少していることが観察され、それに伴って磁石の耐食性が向上した。
 図2Aは、RLM合金粉末とRHフッ化物粉末とから構成される混合粉末の塗布層200がR-T-B系焼結磁石100の上面および下面に接触した状態の一例を模式的に示す斜視図である。拡散熱処理は、このような状態で行われ得る。図には、参考のため、直交するX軸、Y軸およびZ軸からなるXYZ座標が示されている。この例には示されていないが、R-T-B系焼結磁石100の側面にも混合粉末の塗布層200が設けられていてもよい。
 拡散熱処理の結果、R-T-B系焼結磁石100の表面における塗布層200から内部に向かってRH(Dyおよび/またはTb)が拡散する。拡散熱処理後のR-T-B系焼結磁石の表面には、熱処理によってRLM合金の粉末およびRHフッ化物の粉末の層から変質した層(残存塗布層)が残存している。この残存塗布層は研削によって除去される。図2Bは拡散熱処理が行われた後において、R-T-B系焼結磁石100の上面および下面に残存塗布層201が存在している状態を模式的に示している。図2Cは、残存塗布層202が除去された状態のR-T-B系焼結磁石100を模式的に示している。
 図2Dは、R-T-B系焼結磁石100における酸化物の深さ方向(Z軸方向)における濃度分布を評価するため、図2Cの破線に沿ってR-T-B系焼結磁石100を中央で2つに切断し、断面(切断面)100Cを露出させた状態を示している。
 図3A、図3B、および図3Cは、いずれも、図2DにおけるR-T-B系焼結磁石100の断面100Cを模式的に示す断面図である。図3Aには、R-T-B系焼結磁石100の研削前磁石表面120からの深さが異なる3つの矩形領域A、B、Cが示されている。矩形領域Cは、R-T-B系焼結磁石100の中央に位置する中央領域180内に含まれている。
 図3Bは、研削前磁石表面120から深さ方向(Z軸方向)に100μm程度だけ研削した状態におけるR-T-B系焼結磁石100の断面100Cを模式的に示している。研削後におけるR-T-B系焼結磁石100の表面140は、拡散熱処理直後においてはR-T-B系焼結磁石100の表面(残存塗布層と磁石との界面)120から深さ100μmだけ磁石内部側に位置していた。この例における領域Aは、R-T-B系焼結磁石100の表面140から深さ100μmまでの表層領域160に含まれている。
 図3Cは、研削前磁石表面120から深さ方向に400μm程度だけ研削した状態におけるR-T-B系焼結磁石100の断面100Cを模式的に示している。研削後におけるR-T-B系焼結磁石100の表面140は、拡散熱処理直後においてはR-T-B系焼結磁石100の表面(残存塗布層と磁石との界面)120から深さ400μmだけ磁石内部側に位置していた。この例における領域Bは、研削後におけるR-T-B系焼結磁石100の表面140から深さ100μmまでの表層領域160に含まれている。
 図3Bおよび図3Cでは、R-T-B系焼結磁石100の上面側に位置する表面120から研削が行われる例を記載しているが、研削は下面側に位置する表面から行われても同様である。RLM合金粉末とRHフッ化物粉末とから構成される混合粉末と接触して拡散が生じた各面に対して研削が行われ得る。「深さ方向」とは、着目する表面(拡散面)に対して垂直な方向である。
 図4A、図4B、および図4Cは、それぞれ、図3Bの領域A、図3Cの領域B、および領域Cに相当する部分の断面SEM-EDXマッピングを示す図である。それぞれ、酸素(O)、フッ素(F)、鉄(Fe)、ネオジム(Nd)、テルビウム(Tb)、および銅(Cu)の元素マッピングを示している。
 図4Aからわかるように、100μm研削後の表層領域160ではTbが結晶粒界に網目状に検出され、フッ素は検出されなかった(フッ素の含有量は検出レベル以下)。拡散剤のTbF3からは、Tbのみが磁石中に拡散し、フッ素は拡散していないことがわかる。このように、本発明のR-T-B系焼結磁石は磁石内部にフッ素をほとんど含有していない。本発明においては、フッ素をほとんど含有しないということを、磁石表面に対して垂直な断面において、前記磁石表面から100μmの深さまでの表層領域におけるフッ素含有化合物の面積割合が1%以下である、とする。また、図4Bおよび図4Cからわかるように、磁石表面から深さ方向に沿ってTb濃度は減少している。
 また、図4Bおよび図4Cからわかるように、領域Bおよび領域Cでは、酸化物粒子が観察された。これらは、NdのマッピングにおいてNdが強く検出されている部分と一致しているため、希土類酸化物であると考えられる。なお、「粒子」の用語は、対象物の形状および大きさを特定のものに限定しない。領域Bで観察される酸化物粒子の量(密度または濃度、あるいは面積)は、領域Cで観察される酸化物粒子の量(密度または濃度、あるいは面積)よりも少なかった。一方、図4Aからわかるように、領域Aでは、上記のような酸化物粒子はほとんど観察されなかった。なお、図4Aおよび図4Bの酸素のマッピングにおいて最上部に検出されている酸素は、分析用のサンプルを調製するために用いた樹脂中に含まれるものである。
 図4Dは、TbF3の粉末をバインダーや溶媒と混合して作製したスラリーをR-T-B系焼結磁石母材の表面に塗布して熱処理することによって作製したR-T-B系焼結磁石(特許文献5に開示されている磁石に相当する比較例の磁石)における、図3Bの領域Aに相当する部分の断面SEM-EDXマッピングを示す図である。
 図4Dからわかるように、RLM合金の粉末を含まずにTbF3を含むスラリーを塗布して熱処理した磁石における100μm研削後の表層領域160では、フッ素が検出されている。さらに詳細な解析によると、フッ素が検出された部分には、希土類フッ化物および/または酸フッ化物が存在していることが確認された。特許文献5相当の磁石では、拡散剤のTbF3からは、Tbとフッ素の両方が磁石中に拡散していることがわかる。更に、下記に示す酸化物粒子の面積割合を求める場合と同様の画像解析によって、磁石表面から100μmの深さから深さ方向の幅が100μmの表層領域の希土類フッ化物または酸フッ化物の面積割合を求めたところ、7.0%であった。なお、RLM合金ではなくM金属、具体的には、Al粉末やCu粉末などをTbF3粉末と混合した粉末に対しても同様に塗布、熱処理する実験も行ったが、TbF3の粉末だけの場合と同様に磁石の表層領域からフッ素が検出された。
 図5は、図3Aに示される領域Cに相当する部分の断面SEM像を示す図である。明度が相対的に低い部分(暗い部分)は主相であり、明度が相対的に高い部分(明るい部分)は、粒界相である。図5には、断面SEM像の右下に位置する一部を拡大した写真の図も示している。この拡大した写真の図に明瞭に示されるように、粒界相中には、明度が異なる2種類の領域が存在している。走査型電子顕微鏡によると、このような明度の差異は、組成物の平均原子番号の差異によって生じる。平均原子番号とは、2種類以上の元素からなる化合物の場合の平均的な原子番号であり、それぞれの元素の質量濃度に応じた重みづけを考慮して計算される。「酸化物粒子」と記載された部分は、別途行った図4A~Cと同様の酸素およびNdのマッピング分析から、希土類元素(この例ではNd)に酸素が結合した化合物であることがわかった。明度の違いに基づいて画像処理を行うことにより、断面SEM像を主相(R-Fe-B相)、粒界相(R-リッチ相)、酸化物粒子(R-Oおよび/またはR-C-O)のそれぞれの領域に分けることができ、かつ、各領域の面積割合を算出することができる。このような画像処理および面積割合の計算は、例えば画像処理ソフトとしてScandium(OLYMPUS社製)を使用して行うことができる。
 図6Aおよび図6Bは、それぞれ、領域A(図3B)および領域B(図3C)に相当する部分の断面SEM像を示す図である。倍率および視野の大きさは、図5の断面SEM像と同様である。画像処理用の図を作製する際、面積割合の算出精度および再現性を高めるため、研削表面に存在する微小な凹凸部分を領域A、Bの視野から排除しても良い。そのような凹凸を含む極表面の領域は厚さ10μm程度またはそれ以下である。酸化物粒子の面積割合を算出する際、画像処理の対象とする領域A(図3B)および領域B(図3C)の位置を極表面から10μm程度だけ磁石内部側にシフトさせ、それによって極表面の凹凸を視野から排除しても、算出される面積割合の値に実質的な差異は生じない。
 図5、図6Aおよび図6Bに示される断面SEM像は、深さ方向の幅(Z軸方向のサイズ)が180μm程度の広い視野を有している。このため、上記の断面SEM像は、深さ方向の幅(Z軸方向のサイズ)が100μmの「表層領域」および「中央領域」の外側に拡がる部分を含んでいる。画像処理による面積比率の計算に際しては、対象領域を「表層領域」または「中央領域」から外れないように適切に領域選択を行うことが好ましい。ただし、酸化物粒子の濃度が深さ方向に沿って緩やかに変化している場合、計算に用いる断面SEM像の視野のサイズ200μm以下であれば、その視野が「表層領域」または「中央領域」よりも広くても、酸化物粒子の面積割合を評価するうえで影響はほとんどない。
 図5、図6Aおよび図6Bに示される断面SEM像から上記の画像処理ソフトを用いて深さ方向の幅が100μmの中央領域および表層領域の酸化物粒子の面積割合を求めたところ、領域A、領域Bおよび領域Cのそれぞれにおいて、酸化物粒子の面積割合は、0.5%、1.8%、および2.4%であった。すなわち、研削量が100μm程度の磁石では、表層領域における酸化物粒子の面積割合は0.5%であり、研削量が400μm程度の磁石では、表層領域における酸化物粒子の面積割合は1.8%である。いずれも、中央領域における酸化物粒子の面積割合(2.4%)よりも小さい。具体的には、研削量が100μm程度の磁石では、表層領域における酸化物粒子の面積割合(0.5%)が、中央領域における酸化物粒子の面積割合(2.4%)の75%以下の範囲内である。また、研削量が400μm程度の磁石では、表層領域における酸化物粒子の面積割合(1.8%)が、中央領域における酸化物粒子の面積割合(2.4%)の95%以下の範囲内である。
 拡散熱処理を行っていない磁石に対して上記と同様に断面観察を行ったところ、いずれの領域においても、酸化物粒子は上記磁石中央領域における面積割合と同程度の面積割合を示した。
 以上のことから、拡散熱処理を行っていない磁石の表層領域では、中央領域と同程度の密度で酸化物粒子が存在しているが、拡散熱処理を行った磁石では、表層領域における酸化物粒子の密度または濃度が中央領域に比べて減少することがわかった。拡散熱処理により、表層領域に存在していた希土類酸化物が還元された可能性が高い。その還元の効果は、磁石表面から深さ方向に進むにつれて弱まり、磁石中央領域ではほとんど見られない。なお、「酸化物粒子」は、一部または全部が酸炭化物粒子であってもよい。
 これらの結果は、以下の実施例に示す耐食性試験の結果とも一致している。本発明のR-T-B系焼結磁石においては、磁石表層部分が拡散熱処理によって還元されたことにより、表層部分の耐食性が向上していると考えられる。
 [実験例1]
 まず、公知の方法で、組成比Nd=13.4、B=5.8、Al=0.5、Cu=0.1、Co=1.1、残部=Fe(原子%)のR-T-B系焼結磁石を作製した。これを機械加工することにより、3.1mm×32.3mm×36.5mmのR-T-B系焼結磁石母材を得た。得られたR-T-B系焼結磁石母材の磁気特性をB-Hトレーサーによって測定したところ、HcJは1029kA/m、Brは1.45Tであった。なお、R-T-B系焼結磁石母材は、磁石中央部から3.1×7×7mmの試験片を機械加工によって切り出し、測定した。また、別途R-T-B系焼結磁石母材の不純物量をガス分析装置によって測定したところ、酸素が810ppm、窒素が370ppm、炭素が870ppmであった。
 次に組成がNd70Cu30(原子%)(融点520℃:RLMの二元系状態図で示される値)の拡散助剤を用意した。拡散助剤は超急冷法によって作製した合金薄帯をコーヒーミルで粉砕し、粒度150μm以下とした。得られた拡散助剤の粉末と粒度20μm以下のTbF3粉末を60:40で混合し、混合粉末を得た。この混合粉末とエチルセルロース、シランカップリング剤および溶媒を混合してスラリーを得た。このスラリーを、R-T-B系焼結磁石母材の32.3mm×36.5mmの上下2面に、R-T-B系焼結磁石表面(拡散面)1mm2あたりのRH量が0.1mg/mm2となるように塗布し、乾燥した。
 このR-T-B系焼結磁石母材を配置したMo板を処理容器に収容して蓋をした。この蓋は容器内外のガスの出入りを妨げるものではない。これを熱処理炉に収容し、100PaのAr雰囲気中、400℃で2時間および900℃で8時間の熱処理を行った。熱処理は、室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからMo板を取り出してR-T-B系焼結磁石を回収した。回収したR-T-B系焼結磁石を処理容器に戻して再び熱処理炉に収容し、10Pa以下の真空中、490℃で3時間の熱処理を行った。この熱処理も室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからR-T-B系焼結磁石を回収した。
 得られたR-T-B系焼結磁石の表面をそれぞれ厚さ方向(Z方向)に表1の値ずつ、厚さ方向に垂直な方向(X、Y方向)はそれぞれ200μmずつ機械加工によって研磨除去し、厚さ方向の寸法がM(mm)のサンプルS1~S6を得た。なお、表1の研削量は熱処理後のR-T-B系焼結磁石表面上に存在する残存塗布層を含まない値であり、残存塗布層はR-T-B系焼結磁石表面の研削と同時に除去した(S1は残存塗布層のみを研削除去)。またサンプルS1~S6と同じ研削量のサンプルの磁石中央部からそれぞれM×7×7mmの試験片を機械加工によって切り出し、磁気特性をB-Hトレーサーによって測定し、HcJとBrを求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 サンプルS1~S6について、エタノール中で超音波洗浄を行った後、温度125℃、相対湿度85%、12時間で3サイクルのプレッシャークッカー(PCT)試験を行った。図7は、PCT試験後の磁石の減耗量と試験時間との関係を示すグラフである。図8は、試験後の磁石の減耗量と研削量(研削によって除去される磁石領域の厚さ)との関係を示すグラフである。
 図7および図8からわかるように、研削量が0(ゼロ)、50μm、100μm、200μm、300μm、400μmのとき、すなわち、研削量が400μm以下のとき、拡散熱処理を行っていない磁石素材に比べて、耐食性が向上している。特に研削量が50μm~200μmのとき、耐食性の向上が著しい。
 次に、サンプルS1と同じ研削量のサンプルについて、図2Dに示すように中央で2つに切断して断面を露出させた状態とし、表2に示す測定位置毎に酸化物の深さ方向(Z軸方向)の濃度分布を評価した。評価方法は上述の図5、図6Aおよび図6Bを参照しながら説明した方法と同様である。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2における測定位置の深さが0~100μmの範囲は、研削量がゼロのサンプルS1の表層領域(厚さ100μm)に相当する。同様に、100~200μmの範囲はサンプルS3の表層領域(厚さ100μm)、200~300μmの範囲はサンプルS4の表層領域(厚さ100μm)、300~400μmの範囲はサンプルS5の表層領域(厚さ100μm)、400~500μmの範囲はサンプルS6の表層領域(厚さ100μm)にそれぞれ相当する。
 以上のことからわかるように、拡散熱処理後のR-T-B系焼結磁石の磁石表面(拡散面)から400μm以下の研削を行った場合、研削後の磁石表面近傍、すなわち表層領域(磁石表面から100μm深さまでの、厚さが100μmの領域)における酸化物粒子の含有割合は、磁石の中央領域における酸化物粒子の含有割合に比べて低下している。このことは、拡散熱処理が行われた後の磁石表面(研削前の磁石表面)から深さ400μmの領域では、拡散熱処理に生じる反応によって酸素濃度が低下する現象が進行し、研削後に磁石表面として露出する部分で耐食性が向上したと考えられる。
 研削によって現れた磁石表面に接する「表層領域」中の酸化物粒子の面積割合が、磁石表面に対して垂直な断面において、中央領域中の前記酸化物粒子の前記断面における面積割合の95%以下である場合に耐食性の向上が観察され、75%以下である場合に耐食性の向上が大きく、50%以下である場合に耐食性の向上が顕著である。
 [実験例2]
 実験例1と同じR-T-B系焼結磁石母材(3.1mm×32.3mm×36.5mm、HcJ=1029、Br=1.45)を用い、塗布する混合粉末および塗布条件を変更して実験例2を行った。具体的には、表3に示す拡散助剤および拡散剤を表3に示す混合質量比で混合したスラリーを用い、表3に示す塗布量でR-T-B系焼結磁石母材の上下面に塗布した。この点以外の条件は、実験例1と同様である。
 得られたR-T-B系焼結磁石母材に対して実験例1と同様に熱処理を行った。熱処理後のR-T-B系焼結磁石の上面および下面の各表面から厚さ方向にそれぞれ100μm(熱処理後の残存塗布層の厚さを含まない値)ずつ研削を行った。また、熱処理後のR-T-B系焼結磁石の側面に対しては厚さ方向に垂直な方向(X、Y方向)に、それぞれ200μmずつ研削を行った。その結果、厚さ方向の寸法が2.90mmのサンプル1~20(実施例)を得た。サンプル1~20の磁気特性を実験例1と同様の方法で測定した。結果を表4に示す。
 また、サンプル1~20のそれぞれについて、実験例1と同じ条件でPCT試験を行った。PCT試験後の磁石の減耗量を評価したところ、全ての磁石において、減耗量が1.2×10-4g/cm2を下回っていた。さらに、サンプル1~20のそれぞれについて、図3Aに示す領域A、B、Cで断面SEM観察を行い、図5、図6Aおよび図6Bを参照しながら説明した方法と同様の方法で酸化物粒子の面積割合を測定した。すべてのサンプルにおいて、磁石の表層領域における酸化物粒子の面積割合は中央領域における酸化物粒子の面積割合の95%以下であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 [実験例3]
 以下の方法でサンプル21~29(比較例)を作製した。
 (1)蒸着拡散法によりRHを拡散した磁石
 公知の方法で作製したR-T-B系焼結磁石母材と純度99.9%のDy板を、図10に示す構成を有する処理容器に配置した。処理容器はMoから形成されていた。R-T-B系焼結磁石母材とDy板との間隔は5~9mm程度に設定した。この処理容器を真空熱処理炉において加熱し、900℃×3時間と500℃×1時間の熱処理を行った。得られた磁石をサンプル21とする。
 (2)回転接触拡散法によりRHを拡散した磁石1
 公知の方法で作製したR-T-B系焼結磁石母材に対し、図11に示す装置を用いて熱処理を行った。筒の容積は128000mm3であった。ロール急冷法で作製して粉砕し、篩で3mm以下に粒度調整した50gのDy60Fe40(質量比)合金片と、50gのR-T-B系焼結磁石母材を投入して、筒を回転させながら850℃×5時間と500℃×1時間の熱処理を行った。得られた磁石をサンプル22とする。
 (3)回転接触拡散法によりRHを拡散した磁石2
 合金片をTb60Fe40(質量比)合金片とし、熱処理条件を900℃×6時間と500℃×3時間とした以外は(2)と同様にして拡散熱処理を行った。得られた磁石をサンプル23とする。
 (4)RH酸化物を用いた塗布法によりRHを拡散した磁石
 公知の方法で作製したR-T-B系焼結磁石母材の上下面に対し、拡散剤であるTb47をエチルセルロース、シランカップリング剤および溶媒と混合したスラリーを塗布した。この表面にTb47が存在する状態のR-T-B系焼結磁石母材に対して実験例1と同様に熱処理を行った。得られた磁石をサンプル24とする。
 (5)RLM合金とRH酸化物を用いた塗布法によりRHを拡散した磁石
 公知の方法で作製したR-T-B系焼結磁石母材に対し、実験例1の拡散助剤と同じ拡散助剤と、拡散剤として機能するTb47とを質量比60:40で混合して混合粉末を得た。この混合粉末と、エチルセルロース、シランカップリング剤および溶媒とを混合したスラリーを、R-T-B系焼結磁石母材の上下面に塗布した。この塗布後のR-T-B系焼結磁石母材に対して実験例1と同様に熱処理を行った。得られた磁石をサンプル25とする。
 (6)RH水素化物を用いた塗布法によりRHを拡散した磁石
 拡散剤としてDyH2を用いたこと以外は(4)と同様にして熱処理を行った。得られた磁石をサンプル26とする。
 (7)RH合金を用いた塗布法によりRHを拡散した磁石
 拡散剤としてDy60Fe40合金を用いたこと以外は(4)と同様にして熱処理を行った。得られた磁石をサンプル27とする。
 (8)M金属とRH酸化物を用いた塗布法によりRHを拡散した磁石
 拡散助剤としてCuを用い、拡散助剤と拡散剤の混合質量比を50:50としたこと以外は(5)と同様にして熱処理を行った。得られた磁石をサンプル28とする。
 (9)スパッタ法によりRH膜を拡散した磁石
 公知の方法で作製したR-T-B系焼結磁石母材に対し、Tb金属をターゲットとするスパッタ装置によって磁石母材の表面に20μmのTb膜を形成した。Tb膜が表面に形成された磁石に対し、900℃×1時間の熱処理を行った。得られた磁石をサンプル29とする。
 サンプル23~29のそれぞれについて、図3Aに示す領域A(磁石の表層部分)、C(磁石の中央部分)で断面SEM観察を行った。典型例としてサンプル25の結果を図9Aおよび図9Bに示す。図9Aはサンプル25の領域Aの部分、図9Bはサンプル25の領域Cの部分を示している。倍率および視野の大きさは、図5、図6Aおよび図6Bの断面SEM像と同様である。他の比較例のサンプルでも、同様の断面SEM像が得られた。
 更に、図5、図6Aおよび図6Bを参照しながら説明した方法と同様の方法で酸化物粒子の面積割合を測定した。結果を表5に示す。比較例のすべてのサンプルにおいて、磁石の表層領域における酸化物粒子の面積割合は中央領域における酸化物粒子の面積割合を上回っていた。
Figure JPOXMLDOC01-appb-T000005
  [考察]
 以上の実験例により、以下のことが確認された。
 質量比率で50%以上のRLM合金と共にRHフッ化物を磁石母材の表面に存在させた状態で熱処理を行って得られたR-T-B系焼結磁石は、磁石中にフッ素をほとんど含有していない。しかし、特許文献5に記載されている方法のように、質量比率で50%以上のRLM合金を磁石母材の表面に存在させることなくRHフッ化物を磁石母材の表面に存在させた状態で熱処理を行ったR-T-B系焼結磁石は、磁石中に多くのフッ素を含有している。
 また、フッ化物を用いない多くの公知の拡散方法によって作製された磁石の酸化物粒子の面積割合について調べたが、本発明のように磁石表層部分の酸化物粒子が磁石中央部分の酸化物粒子よりも少なくなっているものは全くなかった。
 従って、表層領域の酸化物粒子が中央領域の酸化物粒子よりも少ないことで耐食性に優れ、かつ、磁石内部にフッ化物を含まないことは、本発明のR-T-B系焼結磁石独自の特徴である。
 本発明によるR-T-B系焼結磁石の製造方法は、より少ない重希土類元素RHによってHcJを向上させた耐食性に優れるR-T-B系焼結磁石を提供し得る。

Claims (9)

  1.  R-T-B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)を用意する工程と、
     前記R-T-B系焼結磁石の表面にRLM合金(RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末と、RHフッ化物(RHはDyおよび/またはTb)の粉末とを存在させた状態において、前記R-T-B系焼結磁石の焼結温度以下で熱処理を行う工程と、
     熱処理後の前記R-T-B系焼結磁石の前記表面を深さ方向に400μm以下研削する工程と、
    を含み、
     前記RLM合金はRLを50原子%以上含み、かつ、前記RLM合金の融点は前記熱処理の温度以下であり、
     前記熱処理は、前記RLM合金の粉末と前記RHフッ化物の粉末とが、RLM合金:RHフッ化物=96:4~50:50の質量比率で前記R-T-B系焼結磁石の前記表面に存在する状態で行われる、R-T-B系焼結磁石の製造方法。
  2.  前記R-T-B系焼結磁石の前記表面を研削する工程において、深さ方向に200μm以下研削する、請求項1に記載のR-T-B系焼結磁石の製造方法。
  3.  前記R-T-B系焼結磁石の前記表面において、前記RHフッ化物の粉末に含まれるRH元素の質量は、前記表面の1mm2あたりで0.03~0.35mgである請求項1または2に記載のR-T-B系焼結磁石の製造方法。
  4.  前記R-T-B系焼結磁石の前記表面において、前記RLM合金の粉末と前記RHフッ化物の粉末とは混合された状態にある、請求項1から3のいずれかに記載のR-T-B系焼結磁石の製造方法。
  5.  前記R-T-B系焼結磁石の前記表面において、RH酸化物の粉末は実質的に存在していない請求項1から4のいずれかに記載のR-T-B系焼結磁石の製造方法。
  6.  軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有し、重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有するR-T-B系希土類焼結磁石であって、
     前記重希土類元素の濃度は、磁石表面から磁石中心部に向かって低下し、
     前記磁石表面に対して垂直な断面において、前記磁石表面から100μmの深さまでの表層領域における酸化物粒子の面積割合は、前記磁石中心部における深さ方向の厚さが100μmの中央領域における酸化物粒子の面積割合よりも低く、
     フッ素が内部に拡散していない、R-T-B系焼結磁石。
  7.  前記磁石表面に対して垂直な断面において、前記表層領域中の前記酸化物粒子の面積割合は、前記中央領域中の前記酸化物粒子の前記断面における面積割合の95%以下である、請求項6に記載のR-T-B系焼結磁石。
  8.  前記磁石表面に対して垂直な断面において、前記表層領域中の前記酸化物粒子の面積割合は、前記中央領域中の前記酸化物粒子の前記断面における面積割合の75%以下である、請求項6に記載のR-T-B系焼結磁石。
  9.  前記磁石表面に対して垂直な断面において、前記磁石表面から100μmの深さまでの表層領域におけるフッ素含有化合物の面積割合は1%以下である、請求項6に記載のR-T-B系焼結磁石。
PCT/JP2016/079250 2015-10-19 2016-10-03 R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石 WO2017068946A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680061177.XA CN108140481B (zh) 2015-10-19 2016-10-03 R-t-b系烧结磁体的制造方法和r-t-b系烧结磁体
JP2017546481A JP6794993B2 (ja) 2015-10-19 2016-10-03 R−t−b系焼結磁石の製造方法およびr−t−b系焼結磁石

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-205709 2015-10-19
JP2015205709 2015-10-19

Publications (1)

Publication Number Publication Date
WO2017068946A1 true WO2017068946A1 (ja) 2017-04-27

Family

ID=58557420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079250 WO2017068946A1 (ja) 2015-10-19 2016-10-03 R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石

Country Status (3)

Country Link
JP (1) JP6794993B2 (ja)
CN (1) CN108140481B (ja)
WO (1) WO2017068946A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161811A (ja) * 2019-03-22 2020-10-01 Tdk株式会社 R−t−b系永久磁石
JP2020161812A (ja) * 2019-03-22 2020-10-01 Tdk株式会社 R−t−b系永久磁石

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075709A1 (ja) * 2006-12-21 2008-06-26 Ulvac, Inc. 永久磁石及び永久磁石の製造方法
JP2012234971A (ja) * 2011-05-02 2012-11-29 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
JP2014063998A (ja) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2014130888A (ja) * 2012-12-28 2014-07-10 Hitachi Metals Ltd R−t−b系焼結磁石およびその製造方法
JP5884957B1 (ja) * 2014-04-25 2016-03-15 日立金属株式会社 R−t−b系焼結磁石の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5760400B2 (ja) * 2010-11-17 2015-08-12 日立金属株式会社 R−Fe−B系焼結磁石の製造方法
JP5999106B2 (ja) * 2012-01-19 2016-09-28 日立金属株式会社 R−t−b系焼結磁石の製造方法
TWI556270B (zh) * 2012-04-11 2016-11-01 信越化學工業股份有限公司 稀土燒結磁體及製造方法
JP6201446B2 (ja) * 2012-06-22 2017-09-27 Tdk株式会社 焼結磁石
CN103839670B (zh) * 2014-03-18 2016-05-11 安徽大地熊新材料股份有限公司 一种制备高矫顽力的烧结钕铁硼永磁体的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075709A1 (ja) * 2006-12-21 2008-06-26 Ulvac, Inc. 永久磁石及び永久磁石の製造方法
JP2012234971A (ja) * 2011-05-02 2012-11-29 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
JP2014063998A (ja) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd 希土類永久磁石の製造方法
JP2014130888A (ja) * 2012-12-28 2014-07-10 Hitachi Metals Ltd R−t−b系焼結磁石およびその製造方法
JP5884957B1 (ja) * 2014-04-25 2016-03-15 日立金属株式会社 R−t−b系焼結磁石の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161811A (ja) * 2019-03-22 2020-10-01 Tdk株式会社 R−t−b系永久磁石
JP2020161812A (ja) * 2019-03-22 2020-10-01 Tdk株式会社 R−t−b系永久磁石
JP7424126B2 (ja) 2019-03-22 2024-01-30 Tdk株式会社 R-t-b系永久磁石
JP7447573B2 (ja) 2019-03-22 2024-03-12 Tdk株式会社 R-t-b系永久磁石

Also Published As

Publication number Publication date
CN108140481B (zh) 2020-07-28
JPWO2017068946A1 (ja) 2018-08-02
JP6794993B2 (ja) 2020-12-02
CN108140481A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
JP5884957B1 (ja) R−t−b系焼結磁石の製造方法
JP6488976B2 (ja) R−t−b系焼結磁石
RU2377681C2 (ru) Редкоземельный постоянный магнит
JP6414597B2 (ja) R−t−b系焼結磁石の製造方法
JP4702549B2 (ja) 希土類永久磁石
JP6391915B2 (ja) Nd−Fe−B系磁石の粒界改質方法
JP6414598B2 (ja) R−t−b系焼結磁石の製造方法
JP6503960B2 (ja) R−t−b系焼結磁石の製造方法
JP5209349B2 (ja) NdFeB焼結磁石の製造方法
JP6717230B2 (ja) R−t−b系焼結磁石の製造方法
JP6604381B2 (ja) 希土類系焼結磁石の製造方法
JP5643355B2 (ja) NdFeB焼結磁石の製造方法
WO2014148356A1 (ja) RFeB系焼結磁石製造方法及びRFeB系焼結磁石
WO2017068946A1 (ja) R-t-b系焼結磁石の製造方法およびr-t-b系焼結磁石
JP2019075426A (ja) R−t−b系焼結磁石及びその製造方法
JP6508447B1 (ja) R−t−b系焼結磁石の製造方法
JP6717231B2 (ja) R−t−b系焼結磁石の製造方法
JP2023052675A (ja) R-t-b系焼結磁石
JP6414592B2 (ja) R−t−b系焼結磁石の製造方法
JP7251053B2 (ja) RFeB系磁石及びRFeB系磁石の製造方法
JP2023046258A (ja) R-t-b系焼結磁石の製造方法
JP2021057565A (ja) R−t−b系焼結磁石
JP2022147794A (ja) R-t-b系焼結磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857262

Country of ref document: EP

Kind code of ref document: A1