WO2017068866A1 - 液状レゾール型フェノール樹脂、液状レゾール型フェノール樹脂の製造方法、および物品 - Google Patents

液状レゾール型フェノール樹脂、液状レゾール型フェノール樹脂の製造方法、および物品 Download PDF

Info

Publication number
WO2017068866A1
WO2017068866A1 PCT/JP2016/075439 JP2016075439W WO2017068866A1 WO 2017068866 A1 WO2017068866 A1 WO 2017068866A1 JP 2016075439 W JP2016075439 W JP 2016075439W WO 2017068866 A1 WO2017068866 A1 WO 2017068866A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
resol type
liquid resol
parts
resin
Prior art date
Application number
PCT/JP2016/075439
Other languages
English (en)
French (fr)
Inventor
裕司 鈴木
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP16857184.2A priority Critical patent/EP3323842A1/en
Priority to CN201680052150.4A priority patent/CN108026226A/zh
Priority to US15/753,830 priority patent/US20190010416A1/en
Publication of WO2017068866A1 publication Critical patent/WO2017068866A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C09D161/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder

Definitions

  • the present invention relates to a liquid resol type phenol resin, a method for producing a liquid resol type phenol resin, and an article.
  • This application claims priority based on Japanese Patent Application No. 2015-207255 for which it applied to Japan on October 21, 2015, and uses the content here.
  • Phenol resins which are thermosetting resins, are widely used mainly as binders to bond materials that are the base materials of molded products, and have excellent mechanical properties, electrical properties, and adhesive properties. Used in. In particular, in recent years, the amount of friction materials using phenolic resin as a binder is increasing in automobiles, railway vehicles, and the like.
  • a liquid resol type phenol resin is generally used for a friction material used in an automatic transmission such as an automatic vehicle, which is called a wet paper friction material.
  • the required characteristics of the phenolic resin for wet paper friction materials are increasing year by year, and the demand for improving the flexibility of the phenolic resin has been increasing particularly for the purpose of improving the frictional characteristics.
  • a cured product of a general phenol resin is excellent in mechanical properties, it has a property of being hard and brittle and cannot be said to be excellent in flexibility.
  • Patent Document 1 an attempt to improve flexibility using a drying oil or the like as a modifier in a reaction when synthesizing a phenol resin has been studied (for example, Patent Document 1).
  • a dry oil-modified phenolic resin is characterized by high flexibility as compared with an unmodified phenolic resin since a flexible aliphatic hydrocarbon group is introduced.
  • the dry oil-modified phenol resin described in Patent Document 1 has the disadvantage that not all the aliphatic hydrocarbon groups are bonded to the phenol structural unit, and the effect of improving flexibility is not sufficient.
  • the reaction point of the phenol resin is decreased, and thus there is a disadvantage that curability is lowered.
  • a phenol resin in which a linear unsaturated hydrocarbon group having 10 or more carbon atoms is bonded to at least one meta position of all phenol structural units is obtained. It was found to be effective (for example, Patent Document 2). However, it is generally known that the flexibility and durability of the phenolic resin for friction material are in a trade-off relationship. Although the phenol resin described in Patent Document 2 also has improved flexibility, durability is sacrificed. Therefore, there is room for improvement from the viewpoint of improving both the flexibility and durability of the phenol resin for friction material.
  • the present invention has been made in view of the above circumstances, and is excellent in terms of curability, which is a characteristic of a phenol resin, and is a liquid resol type capable of obtaining a wet paper friction material having excellent flexibility and durability.
  • An object of the present invention is to provide an article having a cured product of a phenol resin, a production method thereof, and a composition containing the phenol resin.
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom or —CH 2 OH
  • R 4 represents a linear unsaturated hydrocarbon group having 10 or more carbon atoms
  • * represents a bond.
  • the hydrogen atom bonded to the benzene ring having a phenolic hydroxyl group may be substituted with a substituent.
  • R 4 ′ represents a linear unsaturated hydrocarbon group having 10 or more carbon atoms.
  • the hydrogen atom bonded to the benzene ring having a phenolic hydroxyl group may be substituted with a substituent.
  • a liquid resol-type phenolic resin that is excellent in terms of curability, which is a characteristic of a phenolic resin, and can obtain a wet paper friction material that is further excellent in flexibility and durability, a manufacturing method thereof, and An article having a cured product of the composition containing the same can be provided.
  • liquid resol type phenolic resin the production method thereof, and the article according to the present embodiment will be described in detail.
  • the liquid resol type phenol resin according to this embodiment includes a partial structure represented by the following general formula (P-1).
  • P-1 a partial structure represented by the following general formula
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom or —CH 2 OH
  • R 4 represents a linear unsaturated hydrocarbon group having 10 or more carbon atoms
  • * represents a bond.
  • the hydrogen atom bonded to the benzene ring having a phenolic hydroxyl group may be substituted with a substituent.
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom or —CH 2 OH. From the viewpoint of improving the curability of the liquid resol type phenol resin, it is preferable that at least one of R 1 , R 2 and R 3 is a methylol group (—CH 2 OH).
  • R 4 represents a linear unsaturated hydrocarbon group having 10 or more carbon atoms. R 4 is preferably a linear unsaturated hydrocarbon group having 10 to 20 carbon atoms, more preferably a linear unsaturated hydrocarbon group having 12 to 20 carbon atoms, and a linear unsaturated hydrocarbon group having 12 to 18 carbon atoms. More preferred are groups.
  • the substituent that replaces the hydrogen atom bonded to the benzene ring having a phenolic hydroxyl group is not particularly limited, and examples thereof include an acetyl group and a methyl group.
  • the structure other than the partial structure represented by the general formula (P-1) is not particularly limited, and for example, a structural unit represented by the following general formula (P-2) And at least one selected from the group consisting of a structural unit represented by the following general formula (P-3) and a structural unit represented by the following general formula (P-4).
  • R 1 is the same as defined above.
  • phenols (A1) in which a linear unsaturated hydrocarbon group having 10 or more carbon atoms is bonded to at least one meta position are present in the presence of an acid catalyst.
  • a second step of reacting the aldehyde (C) with a base catalyst under the condition of a base catalyst is
  • an acid catalyst was supplied to a carbon-carbon multiple bond of a linear unsaturated hydrocarbon group having 10 or more carbon atoms in phenols (A1).
  • Proton (H + ) is added to form a carbocation.
  • a substitution reaction occurs between the generated carbocation and the benzene ring in the other phenol (A1) molecule, and the phenol compound (B) is generated.
  • a substitution reaction occurs with a benzene ring in another phenol (A1) molecule also for a linear unsaturated hydrocarbon group having 10 or more carbon atoms bonded to the other phenol (A1) molecule. It is thought that.
  • the liquid resol type phenol resin according to the present embodiment is reacted by reacting the phenolic compound (B) thus produced, the phenol (A2), and the aldehyde (C) under a basic catalyst. Obtainable.
  • phenols (A1) in which a linear unsaturated hydrocarbon group having 10 or more carbon atoms is bonded to at least one meta position are reacted in the presence of an acid catalyst to produce a phenol compound (B )
  • the phenols (A1) are not particularly limited, but preferably include a compound represented by the following general formula (A1-1).
  • R 4 ′ represents a linear unsaturated hydrocarbon group having 10 or more carbon atoms.
  • the hydrogen atom bonded to the benzene ring having a phenolic hydroxyl group may be substituted with a substituent.
  • R 4 ′ represents a straight-chain unsaturated hydrocarbon group having 10 or more carbon atoms, and is the same as described for R 4 in the general formula (P-1). Further, the substituent for substituting a hydrogen atom bonded to a benzene ring having a phenolic hydroxyl group is the same as described above.
  • phenols (A1) include 3-dodecenylphenol, 3-tridecenylphenol, 3-pentadecenylphenol, 5-tridecenylresorcinol, and 5-pentadecenylresorcinol.
  • Cardanol which is a phenol having a straight chain unsaturated hydrocarbon group having 15 carbon atoms in the meta position, a cardol having a straight chain unsaturated hydrocarbon group having 15 carbon atoms and a hydroxyl group in the meta position, and a straight chain having 15 carbon atoms in the meta position.
  • Examples include a chain unsaturated hydrocarbon group, a hydroxyl group, and 2-methylcardol, which is a phenol having a methyl group in the ortho position.
  • the phenol (A1) is preferably at least one phenol selected from the group consisting of cardanol, cardol, and 2-methylcardol.
  • the acid catalyst used in the first step is not particularly limited, and examples thereof include organic acids such as acetic acid and oxalic acid, mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid, diethyl sulfuric acid, paratoluenesulfonic acid, and paraphenolsulfonic acid. Can be mentioned. Of these, sulfuric acid and paratoluenesulfonic acid are preferable from the viewpoint of adding protons (H + ) to the carbon-carbon multiple bond of a linear unsaturated hydrocarbon group having 10 or more carbon atoms in the phenol (A1).
  • the phenolic compound (B) obtained in the first step contains at least a partial structure represented by the following general formula (B-1).
  • Aldehydes (C) are not particularly limited, and examples include formaldehyde, acetaldehyde, butyraldehyde, propionaldehyde, terephthalaldehyde, benzaldehyde, paraformaldehyde, acrolein and the like.
  • the use is not limited to one type, and these aldehydes can be used alone or in combination of two or more.
  • the basic catalyst used in the second step is not particularly limited, and examples thereof include alkali metal hydroxides such as sodium hydroxide, lithium hydroxide and potassium hydroxide, amines such as aqueous ammonia and triethylamine, calcium, magnesium, Examples thereof include oxides and hydroxides of alkaline earth metals such as barium, sodium carbonate, zinc acetate, and zinc oxide. These may be used alone or in combination of two or more.
  • the usage-amount of a basic catalyst is not specifically limited, What is necessary is just to be 1 to 50 mass parts with respect to 1000 mass parts of phenols (A1) or phenolic compounds (B).
  • the ratio of the phenolic compound (B) to the total of the phenolic compound (B) and the phenolic (A2) (hereinafter sometimes referred to as “modification rate”) is 10 to 75 mol% in terms of mole. It is preferably 15 to 60 mol%, more preferably 20 to 55 mol%.
  • the modification rate is within the above range, it is preferable from the viewpoint of compatibility between flexibility and durability of the liquid resol type phenol resin. Specifically, when the modification rate is not less than the lower limit of the above range, excellent durability can be obtained while achieving sufficient flexibility. Moreover, when the modification rate is not more than the upper limit of the above range, excellent flexibility can be obtained while achieving sufficient durability. Accordingly, when both the flexibility and durability of the liquid resol type phenolic resin are required and the durability performance is required, the modification rate is lowered within the above range, and when the flexibility is required, the above range. The denaturation rate may be increased.
  • the article of this embodiment has a base material and a cured product of the composition containing the liquid resol type phenol resin of this embodiment.
  • the article of the present embodiment can be obtained, for example, by mixing a liquid resol type phenol resin with an organic solvent, impregnating or coating the base material, and baking and curing it.
  • the organic solvent is not particularly limited, for example, alcohol organic solvents such as methanol, ethanol, isopropanol, butanol, ketone organic solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, aromatic hydrocarbon solvents such as toluene, ethylbenzene, and the like. These mixtures are mentioned.
  • the base material which used fibers such as a natural fiber, a metal fiber, carbon fiber, a chemical fiber, individually or 2 types or more is mentioned.
  • the article of this embodiment is preferably a wet paper friction material.
  • the liquid resol type phenol resin of the present embodiment in a wet paper friction material.
  • a method for producing a wet paper friction material containing the liquid resol type phenol resin include, for example, a liquid resol type phenol resin, a metal fiber, a carbon fiber and a chemical fiber, a friction modifier such as cashew dust, diatomaceous earth, etc.
  • a method of impregnating a paper base material filled with baked and cured By carrying out like this, the wet paper friction material which concerns on this embodiment can be obtained.
  • the wet paper friction material obtained using the liquid resol type phenol resin of this embodiment is excellent in terms of heat resistance and curability, which are characteristics of the phenol resin, and further excellent in flexibility.
  • Example 1 To a reactor equipped with a stirrer, a reflux condenser and a thermometer, 1000 parts of cardanol and 15 parts of paratoluenesulfonic acid were added, heated to 140 ° C., and allowed to react with stirring for 1 hour. After adding 5 parts of triethylamine to this and neutralizing, 300 parts of phenol, 535 parts of 37% formalin aqueous solution (molar ratio 1.0 with respect to the total of cardanol reactant and phenol), and 12 parts of 50% sodium hydroxide aqueous solution were added. The mixture was heated to 90 ° C. and reacted with stirring for 2 hours.
  • Example 2 In the same manner as in Example 1 except that 130 parts of cardanol, 2 parts of paratoluenesulfonic acid, 1170 parts of phenol, and 1050 parts of 37% formalin aqueous solution were used, 2400 parts of liquid resol type phenol resin 2 having a nonvolatile content of 45% was obtained.
  • Example 3 2300 parts of liquid resol type phenol resin 3 having a nonvolatile content of 46% was obtained in the same manner as in Example 1 except that 390 parts of cardanol, 6 parts of paratoluenesulfonic acid, 910 parts of phenol, and 900 parts of 37% formalin aqueous solution were used.
  • Example 4 2200 parts of liquid resol type phenol resin 4 having a nonvolatile content of 45% was obtained in the same manner as in Example 1 except that 650 parts of cardanol, 10 parts of paratoluenesulfonic acid, 6500 parts of phenol, and 740 parts of 37% formalin aqueous solution were used.
  • Example 5 2000 parts of liquid resol type phenol resin 5 having a nonvolatile content of 45% was obtained in the same manner as in Example 1 except that 1170 parts of cardanol, 18 parts of paratoluenesulfonic acid, 130 parts of phenol, and 430 parts of 37% formalin aqueous solution were used.
  • Example 6 The liquid resol type phenol resin 6 having a non-volatile content of 45% was changed to 2000 in the same manner as in Example 1 except that 1240 parts of cardanol, 19 parts of paratoluenesulfonic acid, 60 parts of phenol, and 390 parts of 37% formalin aqueous solution were used. I got a part.
  • Impregnated paper was prepared using the liquid resol type phenolic resins 1 to 6, 1 ′, 2 ′, 4 ′ to 7 ′ obtained in the examples and comparative examples.
  • a commercially available filter paper 120 mm ⁇ 10 mm ⁇ thickness 1 mm was used as the substrate.
  • Liquid resol type phenol resins 1 to 6, 1 ', 2', 4 'to 7' obtained in Examples and Comparative Examples were diluted with acetone to impregnate the above filter paper in a solution having a resin concentration of 30%. Then, it was dried and cured in an oven at 190 ° C. for 30 minutes to obtain a test piece.
  • Test item Tensile elongation at break: The obtained test piece was measured according to JIS P8113. The unit is%. The measurement conditions were as follows. The test piece prepared by the above method was used at a test speed of 1 mm / min under normal temperature and normal pressure using a precision universal testing machine AG-IS 5 kN (manufactured by Shimadzu Corporation). It can be determined that the higher the tensile elongation at break, the higher the flexibility of the cured product.
  • the obtained test piece was measured on an M scale according to JIS Z 2245. It can be judged that the higher the hardness value, the higher the durability of the cured product.
  • the cured products of the liquid resol type phenol resins 1 to 6 obtained in Examples 1 to 6 have high hardness because of their high hardness values, and their curability is low due to their low acetone solubility. It was confirmed that the material was excellent in flexibility and the tensile elongation at break was large. In particular, it was confirmed that the liquid resol-type phenol resins 1, 3, 4, and 5 obtained in Examples 1, 3, 4, and 5 were more preferable from the viewpoints of both flexibility and durability. In fact, when wet paper friction materials were produced using the liquid resol type phenol resins 1 to 6 of Examples 1 to 6, wet paper friction materials having excellent flexibility could be obtained.
  • the liquid resol type phenol resin 1 'of Comparative Example 1 is an unmodified liquid resol type phenol resin obtained from phenol and formaldehyde.
  • the liquid resol type phenolic resin 1 ′ of Comparative Example 1 was confirmed to be inferior in flexibility as compared with the liquid resol type phenolic resins 1 to 6 of Examples 1 to 6, although the durability and curability were high.
  • the phenol resin 2 'of Comparative Example 2 is a liquid resol type phenol obtained using cardanol.
  • the liquid resol type phenol 2 'of Comparative Example 2 was confirmed to be inferior in flexibility and curability as compared with the liquid resol type phenol resins 1 to 6 of Examples 1 to 6, although the durability was high.
  • the reason why the liquid resol type phenol 2 'of Comparative Example 2 is inferior in flexibility is presumed to be due to its low cardanol modification rate.
  • Comparative Example 3 the amount of cardanol was increased as compared with Comparative Example 2, but the evaluation test could not be performed because the reaction product gelled.
  • the reason why the resin of Comparative Example 3 was gelled is presumed that the molecular weight of the resin increased rapidly due to the inability of OH groups to the double bond of cardanol.
  • the liquid resol type phenol resin 4 'of Comparative Example 4 is a liquid resol type phenol resin modified with tung oil which is a drying oil.
  • the phenol resin 4 'of Comparative Example 4 was confirmed to be inferior in durability and curability as compared with the liquid resol type phenol resins 1 to 6 of Examples 1 to 6, although having high flexibility.
  • the liquid resol type phenol resin 5 'of Comparative Example 5 is a liquid resol type phenol obtained from a phenol compound (B) and an aldehyde (C).
  • the liquid resol type phenolic resin 5 ′ of Comparative Example 5 was confirmed to be less durable than the liquid resol type phenolic resins 1 to 6 of Examples 1 to 6 although it was high in flexibility and curability.
  • Comparative Example 6 for the purpose of increasing the durability of the liquid resol type phenol resin 5 ′ of Comparative Example 5, the liquid resol type phenol resin 1 ′ of Comparative Example 1 is mixed to obtain a liquid resol type phenol resin 6 ′. It was. The liquid resol type phenolic resin 6 ′ of Comparative Example 6 was confirmed to have low durability compared with the liquid resol type phenolic resins 1 to 6 of Examples 1 to 6, although the flexibility and curability were high. The reason why the results are not significantly different from those of Comparative Example 5 is presumed to be that the liquid resol type phenol resin 5 'and the liquid resol type phenol resin 1' are not co-condensed.
  • Comparative Example 7 in order to improve the durability of the liquid resol type phenolic resin 5 ′ of Comparative Example 5, the amount of aldehydes (C) was increased in order to improve the crosslinking density, and the liquid resol type phenolic resin 7 'I got.
  • the liquid resol type phenolic resin 7 ′ of Comparative Example 7 has improved durability and curability despite a slight decrease in flexibility compared with the liquid resol type phenolic resin 5 ′ of Comparative Example 5. Not confirmed.
  • liquid resol type phenolic resins 1 to 6 obtained in Examples 1 to 6 can achieve both flexibility and curability.
  • the liquid resol-type phenol resins 1, 3, 4, and 5 obtained in Examples 1, 3, 4, and 5 were more preferable from the viewpoints of both flexibility and durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

下記一般式(P-1)で表される部分構造を含む液状レゾール型フェノール樹脂[式中、R、R及びRは各々独立して水素原子または-CHOHを表し、Rは炭素数10以上の直鎖不飽和炭化水素基を表し、*は結合手を表す。]。

Description

液状レゾール型フェノール樹脂、液状レゾール型フェノール樹脂の製造方法、および物品
 本発明は、液状レゾール型フェノール樹脂、液状レゾール型フェノール樹脂の製造方法、および物品に関する。
 本願は、2015年10月21日に日本に出願された、特願2015-207255号に基づき優先権主張し、その内容をここに援用する。
 熱硬化性樹脂であるフェノール樹脂は、主に成形品の基材となる材料同士を結合させるバインダーとして広く用いられ、優れた機械的特性や電気的特性、接着性を有することから、様々な分野で使用されている。特に、近年、自動車、鉄道車両などにおいてフェノール樹脂をバインダーとして使用した摩擦材の使用量が増加している。
 その中でも湿式ペーパー摩擦材と呼ばれる、オートマチック車等の自動変速機等において使用される摩擦材には、一般的に液状レゾール型フェノール樹脂が用いられる。その湿式ペーパー摩擦材用フェノール樹脂に対する要求特性は年々高まっており、特に摩擦特性の向上を目的として、フェノール樹脂の柔軟性向上への要求が高まってきている。しかしながら、一般的なフェノール樹脂の硬化物は、機械的特性に優れる反面、堅くてもろいという性質をもち、柔軟性に優れているとは言えない。
 そこで、上記問題を解決する方法として、フェノール樹脂を合成する際の反応において、変性剤として乾性油等を用いて柔軟性を改善する試みが検討されている(例えば、特許文献1。)。このような乾性油変性フェノール樹脂は、柔軟な脂肪族炭化水素基が導入されているため、未変性のフェノール樹脂と比較して柔軟性が高い特徴がある。
 ところが、特許文献1に記載の乾性油変性フェノール樹脂では、脂肪族炭化水素基がフェノール構造単位にすべて結合している訳ではなく、柔軟性向上効果が十分でないという不都合があった。また、フェノール構造単位中の架橋点に脂肪族炭化水素基が結合した場合、フェノール樹脂の反応点が減少するため、硬化性が低下するという不都合があった。
 また、近年の車両の燃費向上や摩擦材にかかる負荷の向上に対応すべく、さらなる摩擦特性の向上が求められている。このため、摩擦材用フェノール樹脂には、柔軟性を向上することが要求されている。
 上記問題を解決するために本発明者が検討した結果、すべてのフェノール構造単位の少なくとも1つ以上のメタ位に、炭素数10以上の直鎖不飽和炭化水素基が結合しているフェノール樹脂が有効であることを見出した(例えば、特許文献2。)。しかし、一般的に、摩擦材用フェノール樹脂の柔軟性と耐久性とはトレードオフの関係にあることが知られている。特許文献2に記載のフェノール樹脂も、柔軟性が向上しているものの、耐久性が犠牲となっている。従って、摩擦材用フェノール樹脂の柔軟性及び耐久性の両方を向上させる観点から、改善の余地があった。
特開平9-59599号公報 国際公開第2013/179660号
 本発明は上記事情に鑑みてなされたものであり、フェノール樹脂の特性である硬化性という観点において優れており、さらに柔軟性と耐久性に優れた湿式ペーパー摩擦材を得ることのできる液状レゾール型フェノール樹脂、その製造方法、及びそれを含有する組成物の硬化物を有する物品、を提供することを目的とする。
 本発明は以下の態様を有する。
(1)下記一般式(P-1)で表される部分構造を含む液状レゾール型フェノール樹脂。
Figure JPOXMLDOC01-appb-C000003
[式中、R、R及びRは各々独立して水素原子または-CHOHを表し、Rは炭素数10以上の直鎖不飽和炭化水素基を表し、*は結合手を表す。ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。]
(2)前記(1)に記載の液状レゾール型フェノール樹脂の製造方法であって、少なくとも1つ以上のメタ位に炭素数10以上の直鎖不飽和炭化水素基が結合しているフェノール類(A1)を、酸触媒存在下反応させてフェノール類化合物(B)を得る第1工程と、前記フェノール類化合物(B)と、前記フェノール類(A1)以外のフェノール類(A2)(ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。)と、アルデヒド類(C)と、を塩基触媒下で反応させる第2工程と、を含む液状レゾール型フェノール樹脂の製造方法。
(3)前記フェノール類(A1)が、下記一般式(A1-1)で表される化合物を含む(2)に記載の製造方法。
Figure JPOXMLDOC01-appb-C000004
[式中、R’は炭素数10以上の直鎖不飽和炭化水素基を表す。ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。]
(4)前記フェノール類(A1)が、カルダノール、カルドール、2-メチルカルドールの中からなる群より選択される少なくとも一つ以上のフェノール類である、(3)に記載の製造方法。
(5)基材と、(1)に記載の液状レゾール型フェノール樹脂を含有する組成物の硬化物と、を有する物品。
(6)湿式ペーパー摩擦材である(5)に記載の物品。
 本発明によれば、フェノール樹脂の特性である硬化性という観点において優れており、さらに柔軟性と耐久性に優れた湿式ペーパー摩擦材を得ることのできる液状レゾール型フェノール樹脂、その製造方法、及びそれを含有する組成物の硬化物を有する物品、を提供することができる。
 以下に、本実施形態に係る液状レゾール型フェノール樹脂、その製造方法、および物品について詳細に説明する。
 <液状レゾール型フェノール樹脂>
 本実施形態に係る液状レゾール型フェノール樹脂は、下記一般式(P-1)で表される部分構造を含む。下記部分構造を含むことにより、フェノール樹脂の特性である硬化性という観点において優れており、かつ柔軟性と耐久性に優れた湿式ペーパー摩擦材を得るために好適な液状レゾール型フェノール樹脂を得ることができる。
Figure JPOXMLDOC01-appb-C000005
[式中、R、R及びRは各々独立して水素原子または-CHOHを表し、Rは炭素数10以上の直鎖不飽和炭化水素基を表し、*は結合手を表す。ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。]
 前記一般式(P-1)中、R、R及びRは各々独立して水素原子または-CHOHを表す。液状レゾール型フェノール樹脂の硬化性向上の観点から、R、R及びRの少なくとも1つがメチロール基(-CHOH)であることが好ましい。
 前記一般式(P-1)中、Rは炭素数10以上の直鎖不飽和炭化水素基を表す。Rとしては、炭素数10~20の直鎖不飽和炭化水素基が好ましく、炭素数12~20の直鎖不飽和炭化水素基がより好ましく、炭素数12~18の直鎖不飽和炭化水素基がさらに好ましい。直鎖不飽和炭化水素基の炭素数が上記範囲の上限値以下である場合、液状レゾール型フェノール樹脂を基材に含浸する際に有機溶剤で希釈しやすくなる。一方、直鎖不飽和炭化水素基の炭素数が上記下限値以上である場合、液状レゾール型フェノール樹脂の柔軟性が向上しやすくなる。
 フェノール性水酸基を有するベンゼン環に結合する水素原子を置換する置換基としては、特に限定されないが、たとえば、アセチル基、メチル基等が挙げられる。
 本実施形態に係る液状レゾール型フェノール樹脂において、前記一般式(P-1)で表される部分構造以外の構造は特に限定されず、例えば下記一般式(P-2)で表される構造単位、下記一般式(P-3)で表される構造単位、下記一般式(P-4)で表される構造単位からなる群より選ばれる少なくとも1種を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000006
[式中、Rは前記と同様である。]
Figure JPOXMLDOC01-appb-C000007
[式中、R、R、R及び*は前記と同様である。]
Figure JPOXMLDOC01-appb-C000008
[式中、R、R、R及び*は前記と同様である。]
 <液状レゾール型フェノール樹脂の製造方法>
 本実施形態に係る液状レゾール型フェノール樹脂の製造方法は、少なくとも1つ以上のメタ位に炭素数10以上の直鎖不飽和炭化水素基が結合しているフェノール類(A1)を、酸触媒存在下反応させてフェノール類化合物(B)を得る第1工程と、前記フェノール類化合物(B)と、前記フェノール類(A1)以外のフェノール類(A2)(ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。)と、アルデヒド類(C)と、を塩基触媒下で反応させる第2工程と、を含む。
 本実施形態に係る液状レゾール型フェノール樹脂の製造方法においては、まず、フェノール類(A1)における炭素数10以上の直鎖不飽和炭化水素基の炭素-炭素多重結合に、酸触媒から供給されたプロトン(H)が付加してカルボカチオンが生成する。次に、生成したカルボカチオンと、その他のフェノール類(A1)分子におけるベンゼン環との間で置換反応が生じ、フェノール類化合物(B)は生成しているものと考えられる。なお、上記その他のフェノール類(A1)分子に結合している炭素数10以上の直鎖不飽和炭化水素基についても、別のフェノール類(A1)分子におけるベンゼン環との間で置換反応が生じているものと考えられる。このようにして生成したフェノール類化合物(B)と、フェノール類(A2)と、アルデヒド類(C)と、を塩基性触媒下で反応させることにより、本実施形態に係る液状レゾール型フェノール樹脂を得ることができる。
 [第一工程]
 第一工程においては、少なくとも1つ以上のメタ位に炭素数10以上の直鎖不飽和炭化水素基が結合しているフェノール類(A1)を、酸触媒存在下反応させてフェノール類化合物(B)を得る。
 フェノール類(A1)は特に限定されないが、下記一般式(A1-1)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
[式中、R’は炭素数10以上の直鎖不飽和炭化水素基を表す。ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。]
 R’は炭素数10以上の直鎖不飽和炭化水素基を表し、前記一般式(P-1)におけるRの説明と同様である。また、フェノール性水酸基を有するベンゼン環に結合する水素原子を置換する置換基についても、前記の説明と同様である。
 フェノール類(A1)としては、具体的には、3-ドデセニルフェノール、3-トリデセニルフェノール、3-ペンタデセニルフェノール、5-トリデセニルレゾルシノール、5-ペンタデセニルレゾルシノール、メタ位に炭素数15の直鎖不飽和炭化水素基を有するフェノールであるカルダノール、メタ位に炭素数15の直鎖不飽和炭化水素基及び水酸基を有するカルドール、メタ位に炭素数15の直鎖不飽和炭化水素基及び水酸基、オルソ位にメチル基を有するフェノールである2-メチルカルドール等が挙げられる。中でも、コスト面から、フェノール類(A1)が、カルダノール、カルドール、2-メチルカルドールの中からなる群より選択される少なくとも一つ以上のフェノール類であることが好ましい。
 第1工程において用いる酸触媒は、特に限定されないが、例えば、酢酸、シュウ酸などの有機酸や塩酸、硫酸、リン酸などの鉱物酸、ジエチル硫酸、パラトルエンスルホン酸、パラフェノールスルホン酸などが挙げられる。中でも、フェノール類(A1)における炭素数10以上の直鎖不飽和炭化水素基の炭素-炭素多重結合にプロトン(H)が付加させる観点から、硫酸、パラトルエンスルホン酸が好ましい。
 第一工程で得られるフェノール類化合物(B)は、少なくとも下記一般式(B-1)で表される部分構造を含む。
Figure JPOXMLDOC01-appb-C000010
[式中、R、*は前記と同様である。]
 [第二工程]
 第二工程においては、前記フェノール類化合物(B)と前記フェノール類(A1)以外のフェノール類(A2)(ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。)と、アルデヒド類(C)と、を塩基触媒下で反応させ、前記一般式(P-1)で表される部分構造を含む液状レゾール型フェノール樹脂を得る。
 フェノール類(A2)は、フェノールであって、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。ただし、フェノール類(A2)が置換フェノールである場合、フェノール類(A1)は含まれない。フェノール類(A2)としては、無置換のフェノールが好ましい。
 アルデヒド類(C)は、特に限定されないが、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、プロピオンアルデヒド、テレフタルアルデヒド、ベンズアルデヒド、パラホルムアルデヒド、アクロレインなどを挙げることができる。使用は1種類に限定されるものでは無く、これらのアルデヒド類を単独又は2種以上を組み合わせて使用することができる。また、これらアルデヒド類の発生源となる物質あるいはこれらのアルデヒド類の溶液を使用することが可能である。通常は、ホルムアルデヒド水溶液を使用することがコストの面から好ましい。
 第二工程で用いる塩基性触媒は、特に限定されないが、例えば、水酸化ナトリウム、水酸化リチウム、水酸化カリウムなどのアルカリ金属の水酸化物、アンモニア水、トリエチルアミンなどのアミン類、カルシウム、マグネシウム、バリウムなどアルカリ土類金属の酸化物及び水酸化物、炭酸ナトリウム、酢酸亜鉛、酸化亜鉛等の物質が挙げられる。これらは、単独で使用しても、2種類以上を併用してもよい。また、塩基性触媒の使用量は、特に限定されないが、フェノール類(A1)またはフェノール類化合物(B)1000質量部に対して、1質量部以上50質量部以下とすればよい。
 第二工程において、反応物のモル比は、[アルデヒド類(C)]/[フェノール類化合物(B)+フェノール類(A2)]=0.5~2.0が好ましく、0.8~1.5がより好ましい。反応時のモル比を上記範囲とすることで、反応せずに残存するアルデヒド類(C)を低減させることができるとともに、十分な硬化性を有したフェノール樹脂を得ることができる。
 また、フェノール類化合物(B)の、フェノール類化合物(B)とフェノール類(A2)との合計に対する比率(以下、「変性率」という場合がある。)は、モル換算で10~75モル%が好ましく、15~60モル%がより好ましく、20~55モル%がさらに好ましい。変性率が上記範囲である場合、液状レゾール型フェノール樹脂の柔軟性及び耐久性の両立の観点から好ましい。具体的には、変性率が上記範囲の下限値以上であることにより、十分な柔軟性を達成しつつ優れた耐久性が得られる。また、変性率が上記範囲の上限値以下であることにより、十分な耐久性を達成しつつ優れた柔軟性が得られる。従って、液状レゾール型フェノール樹脂の柔軟性及び耐久性を両立しつつ、より耐久性の性能が求められる場合には上記範囲内で変性率を低くし、より柔軟性が求められる場合には上記範囲内で変性率を高くすればよい。
<物品>
 本実施形態の物品は、基材と、本実施形態の液状レゾール型フェノール樹脂を含有する組成物の硬化物と、を有する。
 本実施形態の物品は、例えば液状レゾール型フェノール樹脂を有機溶剤と混合し、基材に含浸または塗布し、これを焼成・硬化することにより得られる。
 有機溶媒は、特に限定されないが、例えば、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール系有機溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系有機溶剤、トルエン、エチルベンゼンなどの芳香族炭化水素溶媒及びこれらの混合物が挙げられる。
 基材としては、特に限定されないが、たとえば、天然繊維、金属繊維、炭素繊維、化学繊維などの繊維類を単独又は2種以上使用した基材が挙げられる。
 本実施形態の物品は、湿式ペーパー摩擦材であることが好ましい。この場合、本実施形態の液状レゾール型フェノール樹脂を、湿式ペーパー摩擦材に含ませて用いることが好ましい。上記液状レゾール型フェノール樹脂を含ませた湿式ペーパー摩擦材を製造する方法としては、たとえば、液状レゾール型フェノール樹脂を、金属繊維や炭素繊維及び化学繊維と、カシューダストなどの摩擦調整剤、珪藻土などを充填した紙基材へ含浸し、これを焼成・硬化する方法がある。こうすることで、本実施形態に係る湿式ペーパー摩擦材を得ることができる。
 本実施形態の液状レゾール型フェノール樹脂を用いて得られた湿式ペーパー摩擦材は、フェノール樹脂の特性である耐熱性や硬化性という観点において優れており、さらに柔軟性に優れる。
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、実施例及び比較例に記載されている「部」は「重量部」、「%」は「重量%」を示す。
<液状レゾール型フェノール樹脂の製造>
(実施例1)
 撹拌装置、還流冷却器および温度計を備えた反応装置に、カルダノール1000部、パラトルエンスルホン酸15部を添加し、140℃に加熱昇温させ1時間撹拌しながら反応させた。これにトリエチルアミン5部を加えて中和した後、フェノール300部、37%ホルマリン水溶液535部(カルダノール反応物及びフェノールの合計に対するモル比1.0)、50%水酸化ナトリウム水溶液12部を添加し、90℃に加熱昇温させて2時間撹拌しながら反応させた。その後、91kPaの減圧化で脱水を行いながら、系内の温度が65℃に達したところでトルエン280部、メタノール630部を加えて溶解、冷却した。こうすることで、不揮発分45%の液状レゾール型フェノール樹脂1を2100部得た。
(実施例2)
 カルダノール130部、パラトルエンスルホン酸2部、フェノール1170部、37%ホルマリン水溶液1050部に変更した以外は実施例1と同様にして不揮発分45%の液状レゾール型フェノール樹脂2を2400部得た。
(実施例3)
 カルダノール390部、パラトルエンスルホン酸6部、フェノール910部、37%ホルマリン水溶液900部に変更した以外は実施例1と同様にして不揮発分46%の液状レゾール型フェノール樹脂3を2300部得た。
(実施例4)
 カルダノール650部、パラトルエンスルホン酸10部、フェノール6500部、37%ホルマリン水溶液740部に変更した以外は実施例1と同様にして不揮発分45%の液状レゾール型フェノール樹脂4を2200部得た。
(実施例5)
 カルダノール1170部、パラトルエンスルホン酸18部、フェノール130部、37%ホルマリン水溶液430部に変更した以外は実施例1と同様にして不揮発分45%の液状レゾール型フェノール樹脂5を2000部得た。
(実施例6)
 実施例4のカルダノール1240部、パラトルエンスルホン酸19部、フェノール60部、37%ホルマリン水溶液390部に変更した以外は実施例1と同様にして不揮発分45%の液状レゾール型フェノール樹脂6を2000部得た。
(比較例1)
 撹拌装置、還流冷却器及び温度計を備えた反応装置に、フェノール1000部、37%ホルマリン水溶液740部(フェノールとのモル比=1.0)、50%水酸化ナトリウム水溶液20部を添加し、100℃で30分間撹拌しながら反応させた。その後91kPaの減圧下で脱水を行いながら、系内の温度が65℃に達したところでメタノール1000部を加えて溶解・冷却した。こうすることで、不揮発分45%の液状レゾール型フェノール樹脂1’を2100部得た。
(比較例2)
 撹拌装置、還流冷却器および温度計を備えた反応装置に、カルダノール100部、フェノール900部、37%ホルマリン水溶液810部、50%水酸化ナトリウム水溶液20部を添加し、100℃に加熱昇温させ、1時間撹拌しながら反応させた。その後、91kPaの減圧化で脱水を行いながら、系内の温度が65℃に達したところでメタノール730部を加えて溶解、冷却した。こうすることで、不揮発分50%の液状レゾール型フェノール樹脂2’を1900部得た。
(比較例3)
 撹拌装置、還流冷却器および温度計を備えた反応装置に、カルダノールを500部、フェノール500部、37%ホルマリン水溶液を570部を添加し、100℃に加熱昇温させ、撹拌しながら反応させたところ、反応液の粘度が急激に上昇し、有機溶媒に不要なゲル化物を得た。
(比較例4)
 撹拌装置、還流冷却器及び温度計を備えた反応装置に、フェノール1000部、桐油540部、パラトルエンスルホン酸1部を添加し、60℃に加熱昇温させ30分間撹拌しながら反応させた。これに、37%ホルマリン水溶液770部(フェノールとのモル比=1.2)、トリエタノールアミン1部、25%アンモニア水溶液20部を添加し、100℃で2時間撹拌しながら反応させた。その後68cmHgの減圧下で脱水を行いながら、系内の温度が70℃に達したところでトルエン280部、メタノール670部を加えて溶解・冷却した。こうすることで、不揮発分45%の液状レゾール型フェノール樹脂4’を2100部得た。
(比較例5)
 撹拌装置、還流冷却器及び温度計を備えた反応装置に、カルダノール1000部、パラトルエンスルホン酸15部を添加し、140℃に加熱昇温させ1時間撹拌しながら反応させた。これに、37%ホルマリン水溶液180部(カルダノール反応物とのモル比=0.8)、トリエチルアミン5部、50%水酸化ナトリウム水溶液10部を添加し、60℃で2時間撹拌しながら反応させた。その後、91kPaの減圧下で脱水を行いながら、系内の温度が65℃に達したところでトルエン280部、メタノール670部を加えて溶解・冷却した。こうすることで、不揮発分45%の液状レゾール型フェノール樹脂5’を2100部得た。
(比較例6)
 比較例1ので得られた樹脂1’を460部と、比較例5で得られた樹脂5’を1540部とを混合(重量比23:77)し、液状レゾール型フェノール樹脂6’を2000部得た。
(比較例7)
 比較例5の37%ホルマリン水溶液を280部(カルダノール反応物とのモル比=1.2)に変更した以外は比較例5と同様にして液状レゾール型フェノール樹脂7’を2130部得た。
<液状レゾール型フェノール樹脂の評価>
 実施例および比較例で得られた液状レゾール型フェノール樹脂1~6、1’、2’、4’~7’を用いて、含浸紙を作製した。基材には市販の濾紙(120mm×10mm×厚さ1mm)を使用した。
 実施例及び比較例で得られた液状レゾール型フェノール樹脂1~6、1’、2’、4’~7’をアセトンで希釈して、樹脂濃度を30%にした溶液中に上記濾紙を含浸し、その後、190℃のオーブンで30分間乾燥、硬化し、試験片を得た。
(評価項目)
引張り破断伸び:得られた試験片について、JIS P 8113に準じて測定した。なお、単位は、%である。測定条件は、上記方法で作製した試験片を、精密万能試験機AG-IS 5kN(島津製作所社製)を用いて、常温常圧下、1mm/minの試験速度で実施した。
 引張り破断伸びの数値が高いほど、硬化物の柔軟性が高いと判断することができる。
硬度:得られた試験片について、JIS Z 2245に従い、Mスケールで測定した。
 硬度の数値が高いほど、硬化物の耐久性が高いと判断することができる。
硬化物のアセトンへの溶解分:実施例及び比較例で得られた液状レゾール型フェノール樹脂1~6、1’、2’、4’~7’を190℃で30分間硬化させた後、ビーズミルで粉砕し、ふるい分けし149μm通過、63μm上残分を試料とした。ソックスレーフラスコにガラスビーズを20粒程度入れ、200mlのアセトンを入れた。抽出管に円筒濾紙を入れて、濾紙の中に秤量した試料約3g入れ、コンデンサーを取り付けて湯煎の状態になるように固定して還流させながら、試料をアセトンに6時間浸した後、アセトンを真空乾燥機で乾燥させ、残った重量よりアセトン抽出率を計算した。なお、アセトン溶解分が少ないほど硬化が進行していると判断することができる。
 上記評価項目に関する評価結果を、以下の表1に示す。また、変性率(モル%)も表1に併記する。
Figure JPOXMLDOC01-appb-T000011
 表1の結果から、実施例1~6で得られた液状レゾール型フェノール樹脂1~6の硬化物は、硬度の数値が高いことから耐久性が高いこと、アセトン溶解分が少ないことから硬化性に優れたものであること、引張り破断伸びが大きいことから柔軟性に優れたものであることが確認された。特に、実施例1,3,4,5で得られた液状レゾール型フェノール樹脂1,3,4,5は、柔軟性及び耐久性の両立の観点からより好ましいことが確認された。
 また、実際に、実施例1~6の液状レゾール型フェノール樹脂1~6を用いて湿式ペーパー摩擦材を製造した場合、柔軟性に優れた湿式ペーパー摩擦材を得ることができた。
 比較例1の液状レゾール型フェノール樹脂1’は、フェノール、ホルムアルデヒドから得られた未変性の液状レゾール型フェノール樹脂である。比較例1の液状レゾール型フェノール樹脂1’は、耐久性および硬化性が高いものの、実施例1~6の液状レゾール型フェノール樹脂1~6と比較して柔軟性に劣ることが確認された。
 比較例2のフェノール樹脂2’は、カルダノールを用いて得られた液状レゾール型フェノールである。比較例2の液状レゾール型フェノール2’は、耐久性が高いものの、実施例1~6の液状レゾール型フェノール樹脂1~6と比較して柔軟性および硬化性に劣ることが確認された。比較例2の液状レゾール型フェノール2’が柔軟性に劣る理由は、カルダノール変性率が低いためと推測される。
 比較例3では、比較例2よりカルダノールの量を増加したが、反応物がゲル化したため、評価試験を行うことが出来なかった。比較例3の樹脂がゲル化した理由は、カルダノールが有する二重結合に、OH基が不可して急激に樹脂の分子量が増加したためと推測される。
 比較例4の液状レゾール型フェノール樹脂4’は、乾性油である桐油で変性された液状レゾール型フェノール樹脂である。比較例4のフェノール樹脂4’は、柔軟性は高いものの、実施例1~6の液状レゾール型フェノール樹脂1~6と比較して耐久性及び硬化性に劣ることが確認された。
 比較例5の液状レゾール型フェノール樹脂5’は、フェノール類化合物(B)とアルデヒド類(C)とから得られた液状レゾール型フェノールである。比較例5の液状レゾール型フェノール樹脂5’は、柔軟性と硬化性は高いものの、実施例1~6の液状レゾール型フェノール樹脂1~6と比較して耐久性が低いことが確認された。
 比較例6では、比較例5の液状レゾール型フェノール樹脂5’の耐久性を上げることを目的として、比較例1の液状レゾール型フェノール樹脂1’を混合して液状レゾール型フェノール樹脂6’を得た。比較例6の液状レゾール型フェノール樹脂6’は、柔軟性と硬化性は高いものの、実施例1~6の液状レゾール型フェノール樹脂1~6と比較して耐久性が低いことが確認された。比較例5と結果が大きく変わらない理由は、液状レゾール型フェノール樹脂5’と液状レゾール型フェノール樹脂1’とがそれぞれ共縮合していないためであると推測される。
 比較例7では、比較例5の液状レゾール型フェノール樹脂5’の耐久性を上げることを目的として、架橋密度を向上するためにアルデヒド類(C)の量を増加し、液状レゾール型フェノール樹脂7’を得た。しかしながら、比較例7の液状レゾール型フェノール樹脂7’は、比較例5の液状レゾール型フェノール樹脂5’と比べて柔軟性がわずかに低下するにもかかわらず、耐久性及び硬化性が向上していないことが確認された。
 以上の結果より、実施例1~6で得られた液状レゾール型フェノール樹脂1~6は、柔軟性と硬化性を両立できることが確認された。特に、実施例1,3,4,5で得られた液状レゾール型フェノール樹脂1,3,4,5は、柔軟性及び耐久性の両立の観点からより好ましいことが確認された。
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。

Claims (6)

  1.  下記一般式(P-1)で表される部分構造を含む液状レゾール型フェノール樹脂。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R、R及びRは各々独立して水素原子または-CHOHを表し、Rは炭素数10以上の直鎖不飽和炭化水素基を表し、*は結合手を表す。ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。]
  2.  請求項1に記載の液状レゾール型フェノール樹脂の製造方法であって、
     少なくとも1つ以上のメタ位に炭素数10以上の直鎖不飽和炭化水素基が結合しているフェノール類(A1)を、酸触媒存在下反応させてフェノール類化合物(B)を得る第1工程と、
     前記フェノール類化合物(B)と、前記フェノール類(A1)以外のフェノール類(A2)(ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。)と、アルデヒド類(C)と、を塩基触媒下で反応させる第2工程と、
     を含む液状レゾール型フェノール樹脂の製造方法。
  3.  前記フェノール類(A1)が、下記一般式(A1-1)で表される化合物を含む請求項2に記載の液状レゾール型フェノール樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R’は炭素数10以上の直鎖不飽和炭化水素基を表す。ただし、フェノール性水酸基を有するベンゼン環に結合する水素原子は置換基により置換されてもよい。]
  4.  前記フェノール類(A1)が、カルダノール、カルドール、2-メチルカルドールの中からなる群より選択される少なくとも一つ以上のフェノール類である、請求項3に記載の液状レゾール型フェノール樹脂の製造方法。
  5.  基材と、
     請求項1に記載の液状レゾール型フェノール樹脂を含有する組成物の硬化物と、
     を有する物品。
  6.  湿式ペーパー摩擦材である請求項5に記載の物品。
PCT/JP2016/075439 2015-10-21 2016-08-31 液状レゾール型フェノール樹脂、液状レゾール型フェノール樹脂の製造方法、および物品 WO2017068866A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16857184.2A EP3323842A1 (en) 2015-10-21 2016-08-31 Liquid phenolic resol resin, method for preparing liquid phenolic resol resin, and article
CN201680052150.4A CN108026226A (zh) 2015-10-21 2016-08-31 液态甲阶型酚醛树脂、液态甲阶型酚醛树脂的制造方法以及物品
US15/753,830 US20190010416A1 (en) 2015-10-21 2016-08-31 Liquid phenolic resol resin, method for preparing liquid phenolic resol resin, and article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-207255 2015-10-21
JP2015207255A JP6390581B2 (ja) 2015-10-21 2015-10-21 液状レゾール型フェノール樹脂の製造方法、および湿式ペーパー摩擦材の製造方法

Publications (1)

Publication Number Publication Date
WO2017068866A1 true WO2017068866A1 (ja) 2017-04-27

Family

ID=58556918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075439 WO2017068866A1 (ja) 2015-10-21 2016-08-31 液状レゾール型フェノール樹脂、液状レゾール型フェノール樹脂の製造方法、および物品

Country Status (5)

Country Link
US (1) US20190010416A1 (ja)
EP (1) EP3323842A1 (ja)
JP (1) JP6390581B2 (ja)
CN (1) CN108026226A (ja)
WO (1) WO2017068866A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150708A1 (ja) * 2017-02-15 2018-08-23 住友ベークライト株式会社 バイオマス誘導体の製造方法、バイオマス変性フェノール樹脂の製造方法、バイオマス変性フェノール樹脂組成物の製造方法およびバイオマス変性フェノール樹脂
CN108752857A (zh) * 2018-05-29 2018-11-06 安徽凯沃科技有限公司 一种酚醛基保温装饰板及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6476527B2 (ja) * 2015-12-10 2019-03-06 群栄化学工業株式会社 液状多価ヒドロキシ樹脂、その製造方法、エポキシ樹脂用硬化剤、エポキシ樹脂組成物、その硬化物およびエポキシ樹脂
CN114599757B (zh) * 2019-11-01 2022-09-13 住友电木株式会社 湿式摩擦材料用粘接剂组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996117A (ja) * 1982-11-24 1984-06-02 Gunei Kagaku Kogyo Kk フエノ−ル系樹脂組成物
JPH0592504A (ja) * 1991-09-30 1993-04-16 Sumitomo Bakelite Co Ltd フエノール樹脂積層板の製造法
WO2013179660A1 (ja) * 2012-05-31 2013-12-05 住友ベークライト株式会社 液状レゾール型フェノール樹脂および湿式ペーパー摩擦材
WO2014041890A1 (ja) * 2012-09-13 2014-03-20 Dicグラフィックス株式会社 ロジン変性フェノール樹脂、インキ用ワニス組成物及び印刷インキ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100519610C (zh) * 2007-07-25 2009-07-29 山东圣泉化工股份有限公司 一种腰果油改性酚醛树脂的制备方法
CN101591418B (zh) * 2009-02-25 2011-04-13 福建利豪电子科技股份有限公司 一种改性酚醛树脂的制备方法
JP5682928B2 (ja) * 2011-10-07 2015-03-11 日本化薬株式会社 フェノール樹脂、エポキシ樹脂及びその硬化物
JP5915331B2 (ja) * 2012-03-30 2016-05-11 住友ベークライト株式会社 バイオマス変性フェノール樹脂の製造方法、バイオマス変性フェノール樹脂、バイオマス変性フェノール樹脂組成物及びバイオマス変性フェノール樹脂硬化物
JP2014185231A (ja) * 2013-03-22 2014-10-02 Sumitomo Bakelite Co Ltd ゴム組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996117A (ja) * 1982-11-24 1984-06-02 Gunei Kagaku Kogyo Kk フエノ−ル系樹脂組成物
JPH0592504A (ja) * 1991-09-30 1993-04-16 Sumitomo Bakelite Co Ltd フエノール樹脂積層板の製造法
WO2013179660A1 (ja) * 2012-05-31 2013-12-05 住友ベークライト株式会社 液状レゾール型フェノール樹脂および湿式ペーパー摩擦材
WO2014041890A1 (ja) * 2012-09-13 2014-03-20 Dicグラフィックス株式会社 ロジン変性フェノール樹脂、インキ用ワニス組成物及び印刷インキ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150708A1 (ja) * 2017-02-15 2018-08-23 住友ベークライト株式会社 バイオマス誘導体の製造方法、バイオマス変性フェノール樹脂の製造方法、バイオマス変性フェノール樹脂組成物の製造方法およびバイオマス変性フェノール樹脂
CN108752857A (zh) * 2018-05-29 2018-11-06 安徽凯沃科技有限公司 一种酚醛基保温装饰板及其制备方法
CN108752857B (zh) * 2018-05-29 2020-12-11 安徽凯沃科技有限公司 一种酚醛基保温装饰板及其制备方法

Also Published As

Publication number Publication date
EP3323842A1 (en) 2018-05-23
JP6390581B2 (ja) 2018-09-19
CN108026226A (zh) 2018-05-11
JP2017078127A (ja) 2017-04-27
US20190010416A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
JP6390581B2 (ja) 液状レゾール型フェノール樹脂の製造方法、および湿式ペーパー摩擦材の製造方法
JP5775306B2 (ja) 改質フェノール樹脂
JP6044820B2 (ja) 接着剤組成物及び湿式摩擦板
WO2016159218A1 (ja) レゾール型変性フェノール樹脂組成物、その製造方法および接着剤
JP6225900B2 (ja) 液状レゾール型フェノール樹脂の製造方法および湿式ペーパー摩擦材の製造方法
US10259902B2 (en) Resol phenolic resin for friction material, method for producing the same, adhesive for friction material, and wet friction plate
RU2447057C2 (ru) Гидрокси-ароматическое соединение, способ его получения и применение соединения
JP2014208769A (ja) 湿式摩擦材用樹脂組成物、湿式摩擦材用フェノール樹脂及び湿式摩擦材
WO2018030162A1 (ja) 摩擦材用樹脂組成物及び湿式ペーパー摩擦材
JP4595751B2 (ja) ビフェニルアラルキル変性フェノール樹脂及びその製造方法、これを含むエポキシ樹脂成形材料。
JP2010116440A (ja) 湿式ペーパー摩擦材
JP7035516B2 (ja) フェノール類変性キシレン樹脂及びその製造方法
JP4661087B2 (ja) 固形レゾール型フェノール樹脂の製造方法
JP2008214498A (ja) アルデヒド基含有フェノール系樹脂組成物、これを含有するフェノール樹脂組成物及び成形材料
RU2569310C1 (ru) Соолигофенолформальдегидные новолаки, способы их получения (варианты) и сшитые сополимеры на их основе
JP2006083318A (ja) フェノール樹脂組成物とその製造方法
JP7211850B2 (ja) 湿式摩擦材用フェノール樹脂、フェノール樹脂組成物および湿式摩擦材
PL225883B1 (pl) Sposób otrzymywania żywicy fenolowo-formaldehydowej do produkcji papierów filtracyjnych
JP2024017315A (ja) 樹脂組成物、接着剤、および塗料
JP2006089656A (ja) ウェッター用液状フェノール樹脂組成物
JP2024014036A (ja) 樹脂組成物、接着剤、および塗料
JP2024016502A (ja) レゾール型フェノール樹脂水溶液、液状組成物、および硬化物
JP2016188333A (ja) 液状フェノール樹脂組成物及び湿式摩擦材
PL223017B1 (pl) Sposób wytwarzania kompozycji wiążącej do produkcji papierów filtracyjnych
JPS61283318A (ja) フイルタ−の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE