WO2017064777A1 - 部品実装装置 - Google Patents

部品実装装置 Download PDF

Info

Publication number
WO2017064777A1
WO2017064777A1 PCT/JP2015/079085 JP2015079085W WO2017064777A1 WO 2017064777 A1 WO2017064777 A1 WO 2017064777A1 JP 2015079085 W JP2015079085 W JP 2015079085W WO 2017064777 A1 WO2017064777 A1 WO 2017064777A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mounting
unit
bonding material
solder
Prior art date
Application number
PCT/JP2015/079085
Other languages
English (en)
French (fr)
Inventor
和志 高間
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2015/079085 priority Critical patent/WO2017064777A1/ja
Priority to DE112015006789.2T priority patent/DE112015006789T5/de
Priority to US15/759,476 priority patent/US11134597B2/en
Priority to CN201580083291.8A priority patent/CN108029240B/zh
Priority to JP2017545041A priority patent/JP6534448B2/ja
Publication of WO2017064777A1 publication Critical patent/WO2017064777A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0452Mounting machines or lines comprising a plurality of tools for guiding different components to the same mounting place
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • H05K13/0465Surface mounting by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/082Integration of non-optical monitoring devices, i.e. using non-optical inspection means, e.g. electrical means, mechanical means or X-rays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/083Quality monitoring using results from monitoring devices, e.g. feedback loops

Definitions

  • the present invention relates to a component mounting apparatus, and more particularly to a component mounting apparatus for mounting a component on a bonding material disposed on a substrate.
  • Patent Document 1 a component mounting apparatus for mounting a component on a bonding material arranged on a substrate is known (see, for example, Patent Document 1).
  • Patent Document 1 discloses a suction nozzle that sucks a component and mounts (mounts) the component on a reflow solder (joining material) disposed on a printed circuit board, a component suction step, and a component mounting step.
  • a surface mounter (component mounting apparatus) including an imaging apparatus that performs at least one imaging for the above process is disclosed.
  • This surface mounter is configured to be able to display image data as an imaging result when there is a component mounting failure.
  • the surface mounter is configured so that the user can confirm whether a component mounting failure has occurred in any of the component adsorption step and the component mounting step.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to reduce the burden on the user for investigating the cause of the component mounting failure.
  • a component mounting apparatus is provided.
  • a component mounting apparatus includes a mounting unit that mounts a component on a bonding material disposed on a substrate, a measurement unit that measures a state of the bonding material after the mounting operation of the component by at least the mounting unit, And a control unit that confirms the state of the bonding material based on a measurement result by the measurement unit when a component mounting failure occurs.
  • the control unit as described above is provided.
  • the state of the bonding material such as solder
  • the control unit can automatically check the state of the bonding material to be checked when a component mounting failure occurs, even if it is not a skilled user (operator), investigate the cause of the component mounting failure. Can be easily performed.
  • control unit is preferably configured to estimate the cause of the component mounting failure based on the state of the bonding material.
  • control unit is configured to notify information regarding the cause of the estimated component mounting failure. If comprised in this way, even if it is not an expert user, based on the information regarding the cause of the mounting defect of the notified component, the cause of the mounting defect of the component can be easily investigated.
  • the control unit confirms whether or not the bonding material is deformed after the mounting operation of the component by the mounting unit as the state of the bonding material.
  • Information regarding the cause of the mounting failure of each component when there is deformation of the material and when there is no deformation of the bonding material is notified. If configured in this way, in any case where there is deformation of the bonding material such as solder and when there is no deformation of the bonding material, based on the information about the cause of the mounting failure of the notified component, The cause of component mounting failure can be easily investigated.
  • the control unit measures the thickness of the component, the measurement result of the warp of the board, and the foreign matter on the mounting unit. Based on at least one of the measurement result of the presence or absence of adhesion and the measurement result of the degree of dryness of the bonding material, the cause of component mounting failure is estimated and the cause of component mounting failure It is configured to notify information about.
  • substrate, the measurement result of the presence or absence of the adhesion of the foreign material to a mounting part, and the measurement result of the dryness of a joining material can be used to estimate the cause of component mounting failure in more detail. As a result, it is possible to more easily investigate the cause of the component mounting failure based on the cause of the component mounting failure estimated in more detail.
  • the measurement unit preferably includes a height measurement unit for measuring the height of the bonding material, and the control unit measures the height of the bonding material by the height measurement unit. Based on the result, the height information of the bonding material is acquired, and the state of the bonding material is confirmed based on the acquired height information of the bonding material.
  • the bonding material is deformed and the height of the bonding material changes, while the component does not reach the bonding material and the mounting failure occurs.
  • it is considered that the height of the bonding material does not change because the bonding material is not deformed. Therefore, as described above, if the configuration is such that the state of the bonding material is confirmed based on the height information of the bonding material, the state of the bonding material can be easily and accurately confirmed when a component mounting failure occurs. can do.
  • the height measuring unit is provided to measure the height of the bonding material before the mounting operation of the component by the mounting unit and the height of the bonding material after the mounting operation of the component by the mounting unit.
  • the control unit is configured to check the state of the bonding material based on the change in the height information of the bonding material before and after the component mounting operation by the mounting unit.
  • the measurement unit preferably includes an imaging unit that images a predetermined region including the bonding material, and the imaging unit includes a bonding material before the component mounting operation by the mounting unit. And a predetermined region including the bonding material after the mounting operation of the component by the mounting unit, and the control unit is configured to capture an imaging result of the imaging unit before and after the component mounting operation by the mounting unit. Based on a change, it is comprised so that the state of a joining material may be confirmed. Even if configured in this manner, the change in the imaging result by the imaging unit before and after the mounting operation of the component by the mounting unit is similar to the case of checking the state of the bonding material based on the change in the height information of the bonding material described above.
  • the state of the bonding material can be more easily confirmed.
  • the state of the bonding material can be easily confirmed even with a very small bonding material (a bonding material on which a very small component is mounted) whose state is difficult to check.
  • the control unit captures a captured image of a predetermined area captured by the imaging unit before the mounting operation of the component by the mounting unit and a predetermined area captured by the imaging unit after the mounting operation of the component by the mounting unit.
  • the state of the bonding material is confirmed based on the difference image with the captured image.
  • the control unit is configured to acquire the height information of the bonding material based on the imaging result by the imaging unit, and the control unit Is configured to check the state of the bonding material based on the height information of the bonding material in addition to the difference image. If comprised in this way, not only a difference image but the height information of a joining material will be utilized, and the state of a joining material can be confirmed more accurately.
  • the state of the bonding material is determined based on the height information of the bonding material in addition to the difference image. Even in the case of confirmation, an increase in the number of parts can be suppressed. As a result, the state of the bonding material can be confirmed with higher accuracy while suppressing an increase in the number of parts.
  • the control unit is configured to change the imaging result by the imaging unit before and after the component mounting operation by the mounting unit.
  • the control unit is configured to check whether or not a component mounting failure has occurred, and when the component mounting failure has occurred, the control unit performs imaging by the imaging unit before and after the component mounting operation by the mounting unit. Based on the change of the result, it is comprised so that the state of a joining material may be confirmed.
  • the bonding material preferably includes solder.
  • FIG. 1st Embodiment of the present invention It is a figure showing the whole component mounting device composition by a 1st embodiment of the present invention. It is a block diagram which shows the control structure of the component mounting apparatus by 1st Embodiment of this invention. It is a side view for demonstrating the imaging unit of the component mounting apparatus by 1st Embodiment of this invention. It is a figure for demonstrating the calculation method of the height by the stereo matching of the component mounting apparatus by 1st Embodiment of this invention. It is a top view for demonstrating when the components have reached the solder but the components are not mounted, and when the components have not been mounted without reaching the solder.
  • the component mounting apparatus 100 is an apparatus for mounting a component E (electronic component) such as an IC, a transistor, a capacitor, and a resistor on a substrate P such as a printed board as shown in FIG.
  • a component E electronic component
  • IC integrated circuit
  • transistor transistor
  • capacitor capacitor
  • resistor resistor
  • the component mounting apparatus 100 includes a base 1, a transport unit 2, a head unit 3, a support unit 4, a rail unit 5, a component recognition camera 6, a board recognition camera 7, an imaging unit 8, A control device 9 (see FIG. 2) and a notification unit 10 (see FIG. 2) are provided.
  • the imaging unit 8 is an example of “measurement unit”, “height measurement unit”, and “imaging unit” in the claims.
  • the control device 9 is an example of a “control unit” in the claims.
  • Feeder arrangement portions 12 for arranging a plurality of tape feeders 11 are provided at both ends (Y1 side and Y2 side) of the base 1 in the Y direction.
  • the tape feeder 11 holds a reel (not shown) around which a tape holding a plurality of components E with a predetermined interval is wound.
  • the tape feeder 11 is configured to supply the component E from the tip of the tape feeder 11 by sending a tape that holds the component E by rotating the reel.
  • Each tape feeder 11 is arranged in the feeder arrangement unit 12 in a state where it is electrically connected to the control device 9 through a connector (not shown) provided in the feeder arrangement unit 12. Thereby, each tape feeder 11 is configured to feed the tape from the reel and supply the component E based on the control signal from the control device 9. At this time, each tape feeder 11 is configured to supply the component E according to the mounting operation of the head unit 3.
  • the transport unit 2 has a pair of conveyors 2a.
  • the transport unit 2 has a function of transporting the substrate P in the horizontal direction (X direction) by the pair of conveyors 2a. Specifically, the transport unit 2 loads the substrate P before mounting from a transport path (not shown) on the upstream side (X1 side), transports the loaded substrate P to the mounting work position M, and downstream (X2 And a board P that has been mounted on the transfer path (not shown).
  • the transport unit 2 is configured to hold and fix the substrate P stopped at the mounting work position M by a substrate fixing mechanism (not shown) such as a clamp mechanism.
  • the pair of conveyors 2a of the transport unit 2 is configured to be able to transport the substrate P in the horizontal direction (X direction) while supporting the substrate P from below.
  • the pair of conveyors 2a is configured to be able to adjust the interval in the Y direction. Thereby, according to the magnitude
  • the head unit 3 is configured to mount the component E at the mounting position Pa (see FIG. 3) of the substrate P fixed at the mounting work position M.
  • the head unit 3 includes a ball nut 31, five mounting heads 32, five Z-axis motors 33 (see FIG. 2) provided on the five mounting heads 32, and five mounting heads 32, respectively. And five R-axis motors 34 (see FIG. 2) provided.
  • the mounting head 32 is an example of the “mounting unit” in the claims.
  • the five mounting heads 32 are arranged in a line along the X direction on the lower surface side of the head unit 3.
  • a nozzle 32a (see FIG. 3) is attached to the tip of each of the five mounting heads 32.
  • the mounting head 32 is configured to be able to suck and hold the component E supplied from the tape feeder 11 by a negative pressure generated at the tip of the nozzle 32a by a negative pressure generator (not shown).
  • the mounting head 32 is configured to be movable up and down in the vertical direction (Z direction). Specifically, the mounting head 32 is between a lowered position when the component E is attracted or mounted (mounted) and a raised position when the component E is conveyed or imaged. It can be moved up and down. In the head unit 3, the five mounting heads 32 can be moved up and down for each mounting head 32 by a Z-axis motor 33 provided for each mounting head 32. Further, the five mounting heads 32 are configured to be rotatable around the central axis (Z direction) of the nozzle 32 a for each mounting head 32 by an R-axis motor 34 provided for each mounting head 32.
  • the head unit 3 is configured to be movable in the X direction along the support portion 4.
  • the support portion 4 includes a ball screw shaft 41, an X-axis motor 42 that rotates the ball screw shaft 41, and a guide rail (not shown) that extends in the X direction.
  • the head unit 3 is configured to be movable in the X direction along the support portion 4 together with the ball nut 31 to which the ball screw shaft 41 is engaged (screwed) by rotating the ball screw shaft 41 by the X-axis motor 42. Has been.
  • the support portion 4 is configured to be movable in the Y direction perpendicular to the X direction along a pair of rail portions 5 fixed on the base 1. Specifically, the rail portion 5 rotates a pair of guide rails 51 that support both end portions in the X direction of the support portion 4 so as to be movable in the Y direction, a ball screw shaft 52 that extends in the Y direction, and the ball screw shaft 52. Y axis motor 53 is included.
  • the support portion 4 is provided with a ball nut 43 with which the ball screw shaft 52 is engaged (screwed).
  • the support portion 4 is movable in the Y direction along the pair of rail portions 5 together with the ball nut 43 to which the ball screw shaft 52 is engaged (screwed) by rotating the ball screw shaft 52 by the Y-axis motor 53. It is configured.
  • the head unit 3 is configured to be movable in the horizontal direction (X direction and Y direction) on the base 1. Thereby, the head unit 3 can move above the tape feeder 11, for example, and can adsorb
  • the component recognition camera 6 is configured to image the component E sucked by the mounting head 32 in order to recognize the suction state of the component E prior to the mounting of the component E.
  • the component recognition camera 6 is fixed on the upper surface of the base 1 and is configured to take an image of the component E attracted to the mounting head 32 from below the component E (Z2 direction). This imaging result is acquired by the control device 9.
  • the controller 9 can recognize the suction state of the component E (the rotation posture and the suction position with respect to the mounting head 32) based on the imaging result of the sucked component E.
  • the board recognition camera 7 is configured to take an image of a position recognition mark (fiducial mark) FM attached to the board P prior to mounting the component E.
  • the position recognition mark FM is a mark for recognizing the position of the substrate P.
  • a pair of position recognition marks FM are attached to the lower right position and the upper left position of the substrate P.
  • the imaging result of the position recognition mark FM is acquired by the control device 9. Based on the imaging result of the position recognition mark FM, the control device 9 can recognize the exact position and posture of the substrate P fixed by a substrate fixing mechanism (not shown).
  • the substrate recognition camera 7 is attached to the side portion on the X2 side of the head unit 3, and is configured to be movable together with the head unit 3 on the base 1 in the X direction and the Y direction. Further, the substrate recognition camera 7 moves in the horizontal direction (X direction and Y direction) on the base 1 and images the position recognition mark FM attached to the substrate P from above the substrate P (Z1 direction). It is configured as follows.
  • the imaging unit 8 is configured to be able to image the substrate P as shown in FIGS. 1 and 3. Specifically, the imaging unit 8 is configured to be able to image a predetermined area including the mounting position Pa of the substrate P in order to perform height measurement. Solder So for joining the component E to the board
  • the solder So is an example of the “joining material” in the claims.
  • the imaging unit 8 includes a plurality of height measurement cameras 81 and a plurality of illumination units 82. In the first embodiment, the imaging unit 8 is provided with two height measurement cameras 81 and three illumination units 82 for each mounting head 32.
  • the two height measuring cameras 81 are configured to be able to image a predetermined area including the mounting position Pa of the substrate P from different imaging directions.
  • the upper (Z1 side) height measurement camera 81 has an inclination angle ⁇ H (0 degree ⁇ H ⁇ 90) with respect to a horizontal plane (a plane substantially parallel to the board surface Pb on which the component E is mounted).
  • the predetermined area including the mounting position Pa of the substrate P can be imaged from the imaging direction inclined by (degrees).
  • the lower (Z2 side) height measurement camera 81 has an inclination angle ⁇ L (0 degree ⁇ L ⁇ H) with respect to a horizontal plane (a plane substantially parallel to the board surface Pb on which the component E is mounted).
  • a predetermined region including the mounting position Pa of the substrate P can be imaged from an inclined imaging direction.
  • the imaging unit 8 is configured to be able to image a predetermined region including the mounting position Pa from a plurality of imaging directions inclined with respect to the substrate surface Pb of the substrate P.
  • An imaging result of a predetermined area including the mounting position Pa is acquired by the control device 9.
  • height information such as solder So height information to be described later is acquired by the control device 9 by stereo matching. .
  • a predetermined region including a height information acquisition target such as solder So is substantially simultaneously formed by two height measurement cameras 81 from two imaging directions of an inclination angle ⁇ H and an inclination angle ⁇ L. Imaged. Then, the parallax p (pixel) between the two captured images is obtained by stereo-matching the captured image captured from the imaging direction with the tilt angle ⁇ H and the captured image captured from the imaging direction with the tilt angle ⁇ L. It is done.
  • the camera resolution of the height measurement camera 81 is R ( ⁇ m / pixel)
  • the distance A ( ⁇ m) is obtained by the following equation (1).
  • A p ⁇ R / sin ( ⁇ H ⁇ L) (1)
  • the height information such as the solder So with respect to the reference surface Ps is acquired by the control device 9.
  • any information may be used as long as the information correlates with the height h.
  • the information on the height h shown in FIG. 4 may be used as the height information, or information such as the information on the distance A correlated with the height h and the information on the parallax p may be used as the height information.
  • the method of acquiring height information by stereo matching is not limited to the above example, and any method may be used.
  • the illumination unit 82 is provided in the vicinity of the height measurement camera 81, and is configured to emit light when the height measurement camera 81 captures an image. Moreover, the illumination part 82 has light sources, such as LED (light emitting diode).
  • the imaging unit 8 is attached to the Y2 side of the head unit 3. Thereby, the imaging unit 8 is configured to be movable in the horizontal direction (X direction and Y direction) on the base 1 together with the head unit 3 (mounting head 32).
  • the control device 9 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and is configured to control the operation of the component mounting device 100. ing. Specifically, the control device 9 controls the conveyance unit 2, the X-axis motor 42, the Y-axis motor 53, the Z-axis motor 33, the R-axis motor 34, and the like according to a program stored in advance, and controls the component P on the board P. Is configured to implement.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • control device 9 moves the head unit 3 above the tape feeder 11, generates a negative pressure at the nozzle 32 a of the mounting head 32 by a negative pressure generator (not shown), and is supplied from the tape feeder 11.
  • the component E is configured to be adsorbed to the nozzle 32a.
  • the control device 9 is configured to move the head unit 3 from above the tape feeder 11 to above the substrate P in order to mount the sucked component E on the substrate P. During this movement, the control device 9 is configured to move the head unit 3 so as to pass above the component recognition camera 6 and to cause the component recognition camera 6 to take an image of the component E attracted to each mounting head 32. ing.
  • the control device 9 lowers the head 32 and stops supplying negative pressure to the head 32 at a predetermined timing.
  • the component E adsorbed by is mounted (mounted) on the substrate P.
  • the notification unit 10 includes a display unit, and is configured to notify the user of information related to mounting defects, which will be described later, by displaying information.
  • the component E reaches the solder So but the component E is not mounted.
  • the mounting head 32 that sucks the component E is lowered toward the solder So on the substrate P.
  • the component E attracted by the mounting head 32 reaches the solder So.
  • the solder So in contact with the part E is deformed so as to spread outward by being pushed outward by the volume of the part E.
  • the component E is taken away without being mounted, so that the component E is not mounted.
  • the deformed solder So has a contour extending outward as compared with the original solder So, and a concave portion is formed at a portion where the component E is in contact.
  • control device 9 is configured to check the state of the solder So based on the imaging result of the imaging unit 8 when the component E is not mounted.
  • control device 9 estimates the cause of the non-mounting of the component E based on the state of the solder So, and notifies the information about the cause of the non-mounting of the estimated component E. 10 to notify.
  • control device 9 is configured to check whether the solder So is deformed before and after the mounting operation of the component E by the mounting head 32 as the state of the solder So.
  • the control device 9 is configured to notify the notification unit 10 of information regarding the cause of the non-mounting of the component E in each case where the solder So is deformed and where the solder So is not deformed. .
  • the control device 9 when there is deformation of the solder So, the control device 9 includes “confirmation of foreign matter adhesion of nozzle” and “ The notification unit 10 is configured to notify a notification that prompts “confirmation of solder drying”.
  • control device 9 sends a notification for prompting “confirmation of the component dimensions” and “confirmation of the board fixing state” as information regarding the cause of the non-mounting of the component E. Is configured to be notified.
  • the control device 9 is configured to lower the mounting head 32 before the mounting operation of the component E by the mounting head 32 and to lift the mounting head 32 after the mounting operation of the component E by the mounting head 32.
  • the imaging unit 8 is configured to image a predetermined area including the mounting position Pa (solder So).
  • the control device 9 picks up the imaging result of the imaging unit 8 while the mounting head 32 is being lowered before the mounting operation of the component E by the mounting head 32 and the rising of the mounting head 32 after the mounting operation of the component E by the mounting head 32.
  • the state of the solder So (the presence or absence of deformation of the solder So) is confirmed based on the change in the imaging result with the imaging result of the imaging unit 8.
  • the control device 9 confirms the state of the solder So based on the change in the imaging result before and after the mounting operation of the component E by the mounting head 32 by at least one of the following three means. It is configured as follows.
  • the control device 9 acquires the respective height information of the solder So before and after the mounting operation by stereo matching based on the respective imaging results by the imaging unit 8 before and after the mounting operation of the component E by the mounting head 32. It is configured as follows.
  • the control device 9 is configured to check the state of the solder So based on the change in the height information of the solder So before and after the mounting operation of the component E by the mounting head 32.
  • the control device 9 determines the area of the portion having the height corresponding to the thickness of the solder So in the height information (roughly, the area of the upper surface of the solder So). A change (indicated by hatching) is acquired, and the state of the solder So is confirmed based on the acquired change in area.
  • the control device 9 determines that the area of the portion having the height corresponding to the thickness of the solder So in the height information of the solder So after the mounting operation is the solder in the height information of the solder So before the mounting operation. By determining whether or not the area of the portion having a height corresponding to the thickness of So has become larger, the presence or absence of deformation of the solder So before and after the mounting operation of the component E by the mounting head 32 is confirmed. ing.
  • the area of the portion having the height corresponding to the thickness of the solder So in the height information of the solder So after the mounting operation includes the area of the concave portion of the solder So after the deformation.
  • the control device 9 acquires the respective height information of the solder So before and after the mounting operation by stereo matching based on the respective imaging results by the imaging unit 8 before and after the mounting operation of the component E by the mounting head 32. It is configured as follows.
  • the control device 9 is configured to check the state of the solder So based on the change in the height information of the solder So before and after the mounting operation of the component E by the mounting head 32.
  • the control device 9 acquires a change in the height (the thickness of the solder So) in the vicinity of the solder So in the height information, and at the same time obtains the change in the acquired height. Based on this, it is configured to confirm the state of the solder So.
  • the height in the vicinity of the solder So in the height information of the solder So after the mounting operation is smaller than the height in the vicinity of the solder So in the height information of the solder So before the mounting operation.
  • the deformed solder So is formed with a recessed portion that is slightly recessed compared to the original solder So. For this reason, in the original solder So, the entire solder So has a height h1 (original height), whereas in the deformed solder So, the height h1 portion (the original height portion) and the height Since it has a height h2 portion (concave portion) that is smaller than h1, the height in the vicinity of the solder So is reduced as a whole. By using this change in height, it is possible to confirm whether or not the solder So is deformed before and after the mounting operation of the component E by the mounting head 32.
  • the control device 9 uses a captured image of a predetermined area including the solder So before the mounting operation of the component E by the mounting head 32 and the solder after the mounting operation of the component E by the mounting head 32.
  • a difference image from a captured image of a predetermined area including So is configured to be acquired.
  • the control device 9 is configured to acquire the height information of the solder So after the mounting operation by stereo matching based on the imaging result by the imaging unit 8 after the mounting operation of the component E by the mounting head 32. Yes.
  • the control apparatus 9 is comprised so that the state of the solder So may be confirmed based on the acquired difference image and the height information of the solder So.
  • control device 9 is configured to determine whether or not there is a certain amount of difference change in the difference image before and after the mounting operation based on the acquired difference image. Further, when there is a certain amount of difference change in the difference image before and after the mounting operation, the control device 9 acquires the height corresponding to the thickness of the component E based on the height information of the solder So. Configured to determine whether or not
  • control device 9 determines whether there is a certain amount of difference change in the difference image before and after the mounting operation, and determines whether a height corresponding to the thickness of the component E is acquired.
  • the solder So is deformed before and after the mounting operation of the component E by the mounting head 32 is confirmed.
  • control device 9 confirms whether or not the component E is not mounted based on the change in the imaging result of the imaging unit 8 before and after the mounting operation of the component E by the mounting head 32. It is configured as follows.
  • control device 9 may change the captured image of the component E based on a change in the captured image due to the component E being mounted at the mounting position Pa, a change in height information due to the component E being mounted at the mounting position Pa, or the like. It is configured to check whether unimplemented has occurred.
  • defect cause estimation processing Next, with reference to FIG. 9, the failure cause estimation process of the first embodiment will be described based on a flowchart.
  • the defect cause estimation process is performed by the control device 9.
  • step S1 the component recognition camera 6 images the component E sucked to the mounting head 32, and the suction state of the component E is recognized based on the imaging result. . Thereafter, the head unit 3 is moved from above the component recognition camera 6 to above the substrate P.
  • step S2 When the head unit 3 reaches above the board P, the mounting operation of the component E on the board P is started in step S2.
  • step S3 the mounting head 32 that has sucked the component E is lowered toward the mounting position Pa, and includes the mounting position Pa (solder So) before the mounting operation by the imaging unit 8 while the mounting head 32 is being lowered. A predetermined area is imaged.
  • step S4 the mounting head 32 is raised from the mounting position Pa, and a predetermined area including the mounting position Pa (solder So) after the mounting operation is imaged by the imaging unit 8 while the mounting head 32 is raised.
  • step S5 it is determined whether or not the component E is not mounted based on the change between the imaging result by the imaging unit 8 in step S3 and the imaging result by the imaging unit 8 in step S4.
  • step S5 If it is determined in step S5 that the component E has not been unmounted, the component E has not been mounted, and the failure cause estimation process is terminated.
  • step S5 If it is determined in step S5 that the component E has not been mounted, the process proceeds to step S6.
  • step S6 whether or not there is deformation of the solder So based on the change between the imaging result by the imaging unit 8 in step S3 and the imaging result by the imaging unit 8 in step S4 (whether or not the solder So is deformed). Is judged.
  • step S6 If it is determined in step S6 that there is no deformation of the solder So, the process proceeds to step S7.
  • step S7 a notification prompting “confirmation of component dimensions” and “confirmation of board fixing state” is displayed on the notification unit 10 as information regarding the cause of the unmounted component E, thereby notifying the user. The Thereafter, the defect cause estimation process is terminated.
  • step S6 If it is determined in step S6 that the solder So is deformed, the process proceeds to step S8.
  • step S8 notifications prompting “confirmation of foreign matter adhesion of nozzles” and “confirmation of solder drying” are displayed on the notification unit 10 as information regarding the cause of the non-mounting of the component E, thereby notifying the user. Is done. Thereafter, the defect cause estimation process is terminated.
  • the state of the solder So is confirmed based on the measurement result (imaging result) by the imaging unit 8.
  • a control device 9 is provided.
  • the state of the solder So can be automatically confirmed by the control device 9, so that the mounting of the component E can be performed as compared with the case where the user himself / herself confirms the state of the solder So.
  • the burden on the user for investigating the cause of the failure can be reduced.
  • the state of the solder So to be confirmed when the mounting failure of the component E occurs can be automatically confirmed by the control device 9, the occurrence of the mounting failure of the component E occurs even without being a skilled user (operator). The cause can be easily investigated.
  • the control device 9 is configured to estimate the cause of the mounting failure of the component E based on the state of the solder So. As a result, not only the confirmation of the state of the solder So but also the estimation of the cause of the mounting failure of the component E can be automatically performed by the control device 9, so the user for investigating the cause of the mounting failure of the component E Can be further reduced.
  • control device 9 is configured to notify information regarding the cause of the estimated mounting failure of the component E. Thereby, even if it is not an expert user, the cause of the mounting defect of the component E can be investigated easily based on the notified information regarding the cause of the mounting defect of the component E.
  • the control device 9 is configured to notify information regarding the cause of the mounting failure of each component E when there is no deformation of So. Thereby, in any case where there is deformation of the solder So and there is no deformation of the solder So, the mounting failure of the component E is determined based on the notified information on the cause of the mounting failure of the component E. The cause of occurrence can be easily investigated.
  • the height information of the solder So is acquired based on the measurement result of the height of the solder So by the height imaging unit 8, and the height of the acquired solder So is acquired.
  • the control device 9 is configured to check the state of the solder So.
  • the state of the solder So As shown in FIG. 5, when the component E reaches the solder So, but a mounting failure (not mounted) occurs, the solder So is deformed and the height of the solder So is changed.
  • a mounting failure not mounted
  • the state of the solder So can be easily and accurately determined. It can be confirmed well.
  • the control device 9 is configured to check the state of the solder So based on the change in the height information of the solder So before and after the mounting operation of the component E by the mounting head 32. To do. Thereby, compared with the case where the state of the solder So is confirmed based only on the height information of the solder So after the mounting operation of the component E by the mounting head 32, the solder So before and after the mounting operation of the component E by the mounting head 32 is confirmed. Based on the change in the height information, the state of the solder So can be more easily confirmed. As a result, the state of the solder So can be easily confirmed even with the extremely small solder So (solder So on which the minimal component E is mounted) whose state is difficult to confirm.
  • the control device 9 is configured to check the state of the solder So based on the change in the imaging result by the imaging unit 8 before and after the mounting operation of the component E by the mounting head 32. To do. Also by this, similarly to the case of confirming the state of the solder So based on the change in the height information of the solder So, based on the change in the imaging result by the imaging unit 8 before and after the mounting operation of the component E by the mounting head 32. Thus, the state of the solder So can be more easily confirmed. As a result, the state of the solder So can be easily confirmed even with the extremely small solder So (solder So on which the minimal component E is mounted) whose state is difficult to confirm.
  • a captured image of a predetermined area captured by the imaging unit 8 before the mounting operation of the component E by the mounting head 32 and an imaging after the mounting operation of the component E by the mounting head 32 are taken.
  • the control device 9 is configured to check the state of the solder So based on a difference image from a captured image of a predetermined area captured by the unit 8. Thereby, when there is a change in the state of the solder So, a captured image of a predetermined area imaged by the imaging unit 8 before the mounting operation of the component E by the mounting head 32 and after the mounting operation of the component E by the mounting head 32 are performed.
  • the state of the solder So can be confirmed with high accuracy by using the fact that a difference is generated between the captured image of a predetermined area captured by the imaging unit 8.
  • the control device 9 is configured to acquire the height information of the solder So based on the imaging result of the imaging unit 8. And the control apparatus 9 is comprised so that the state of solder So may be confirmed based on the height information of solder So in addition to a difference image. Thereby, not only the difference image but also the height information of the solder So can be used to check the state of the solder So more accurately. Further, since it is not necessary to provide a height measuring unit separately from the imaging unit 8 in order to acquire the height information of the solder So, the state of the solder So based on the height information of the solder So in addition to the difference image. Also when confirming, increase in the number of parts can be suppressed. As a result, the state of the solder So can be confirmed with higher accuracy while suppressing an increase in the number of parts.
  • the control device 9 is configured as described above.
  • the control device 9 is configured to check the state of the solder So based on the change in the imaging result by the imaging unit 8 before and after the mounting operation of the component E by the mounting head 32. To do. Thereby, compared with the case where the imaging operation for confirmation of the state of solder So is newly performed when the mounting defect of the component E occurs, it can suppress that the imaging operation by the imaging unit 8 becomes complicated. .
  • the component mounting apparatus 200 (see FIG. 1) according to the second embodiment of the present invention includes the control device 109 (see FIG. 2) and a side view camera 140 as shown in FIGS. It differs from the component mounting apparatus 100 of 1 embodiment.
  • the control device 109 is an example of a “control unit” in the claims.
  • symbol is attached
  • a side view camera 140 is provided on the support unit 4 of the component mounting apparatus 200.
  • the side view camera 140 is configured to take an image of the component E sucked by the mounting head 32 from the side in order to recognize the suction state of the component E from the side prior to the mounting of the component E.
  • This imaging result is acquired by the control device 109.
  • the controller 9 can recognize the suction state of the component E and the thickness of the component E based on the imaging result of the component E captured from the side.
  • control device 109 applies the measurement result of the thickness of the component E, the measurement result of the warp of the board P, and the nozzle 32a of the mounting head 32. Based on the measurement result of the presence or absence of foreign matter adhesion and the measurement result of the degree of dryness of the solder So, the cause of the non-mounting of the component E is estimated and the information on the cause of the non-mounting of the component E is notified. Is configured to do.
  • defect cause estimation processing Next, the failure cause estimation processing according to the second embodiment will be described with reference to flowcharts with reference to FIGS.
  • the defect cause estimation process is performed by the control device 109.
  • symbol is attached
  • step S5 the processes of steps S1 to S5 are executed. If it is determined in step S5 that no component E has been mounted, the defect cause estimation process is terminated.
  • step S5 If it is determined in step S5 that the component E has not been mounted, the process proceeds to step S6.
  • step S6 whether or not there is deformation of the solder So based on the change between the imaging result by the imaging unit 8 in step S3 and the imaging result by the imaging unit 8 in step S4 (whether or not the solder So is deformed). Is judged.
  • step S6 If it is determined in step S6 that there is no deformation of the solder So, the process proceeds to step S10.
  • step S10 a first estimation process is performed.
  • step S11 it is determined whether or not there is an abnormality in the thickness of the part E.
  • step S11 based on the imaging result of the side view camera 140, the thickness of the component E attracted to the mounting head 32 (actual thickness of the component E) is acquired. Then, based on a comparison between the preset thickness of the component E (the thickness of the set component E) and the actual thickness of the component E, whether or not there is an abnormality in the thickness of the component E is determined. . That is, if there is a difference between the thickness of the part E on the setting and the thickness of the actual part E, it is determined that there is an abnormality in the thickness of the part E, and the thickness of the part E on the setting and the actual part When the thickness of E is substantially the same, it is determined that there is no abnormality in the thickness of the component E.
  • step S11 If it is determined in step S11 that there is no abnormality in the thickness of the part E, the process proceeds to step S12.
  • step S12 it is determined whether or not there is an abnormality in the warp of the substrate P.
  • step S12 the height information of the substrate surface Pb of the substrate P in the vicinity of the mounting position Pa is acquired based on the imaging result by the imaging unit 8 in step S3 or the imaging result by the imaging unit 8 in step S4. Is done. Whether or not there is an abnormality in the warp of the substrate P based on a comparison between a preset threshold and a warp (down warp) of the substrate P based on the acquired height information of the substrate surface Pb. Is judged. That is, when the warp (lower warp) of the substrate P is larger than the threshold value, it is determined that the warp of the substrate P is abnormal, and when the warp (lower warp) of the substrate P is less than the threshold value. Is determined that there is no abnormality in the warp of the substrate P.
  • step S12 If it is determined in step S12 that there is no abnormality in the warp of the substrate P, the process proceeds to step S13.
  • step S13 since it is considered that there is no abnormality in the thickness of the component E and the warp of the substrate P, in step S13, a notification for prompting “confirmation of components other than the component and the substrate” is given as information on the cause of the non-mounting of the component E. Is notified by the notification unit 10.
  • step S12 If it is determined in step S12 that the substrate P is warped, the process proceeds to step S14.
  • step S14 as information regarding the cause of the unmounting of the component E, Is notified by the notification unit 10. That is, the notification unit 10 gives notification so as to improve the support (fixed) state of the substrate P by the backup pin (not shown).
  • step S11 If it is determined in step S11 that the thickness of the part E is abnormal, the process proceeds to step S15.
  • step S15 it is determined whether or not there is an abnormality in the warp of the substrate P, as in the process of step S12.
  • step S15 If it is determined in step S15 that there is no abnormality in the warp of the substrate P, the process proceeds to step S16.
  • step S16 as information on the cause of the non-mounting of the component E, A notification that prompts “correction” is notified by the notification unit 10. That is, notification is performed by the notification unit 10 so as to correct the dimension (thickness) of the part E on the setting.
  • step S15 If it is determined in step S15 that the substrate P is warped, the process proceeds to step S17.
  • step S17 as the information on the cause of the non-mounting of the part E, “correction of component dimensions” and “board fixing” Is notified by the notification unit 10. Thereafter, as shown in FIG. 11, the failure cause estimation process is terminated.
  • step S6 If it is determined in step S6 that the solder So is deformed, the process proceeds to step S20.
  • step S20 the second estimation process is performed.
  • step S21 it is determined whether or not foreign matter (foreign matter such as adhesive or solder) is attached to the nozzle 32a of the mounting head 32.
  • step S21 first, the mounting head 32 is moved above a component disposal place (not shown) such as a tray, and the operation of removing the component E from the nozzle 32a of the mounting head 32 is performed. Then, after the removal operation of the component E, the component recognition camera 6 causes the nozzle 32a of the mounting head 32 to be imaged from below. Based on the imaging result of the component recognition camera 6, it is determined whether or not there is foreign matter attached to the nozzle 32 a of the mounting head 32.
  • a component disposal place such as a tray
  • step S21 when it is determined that no foreign matter adheres to the nozzle 32a of the mounting head 32, the process proceeds to step S22.
  • step S22 it is determined whether or not the solder So is dry (whether the solder So is dry).
  • step S22 first, for example, a printing time when the solder So is printed on the substrate P is acquired from a printing apparatus (not shown) in the previous process. Then, based on the acquired printing time, it is determined whether or not the solder So is dry. That is, when the time has elapsed from the printing time than the predetermined time, it is determined that the solder So is dry, and when the time is within the predetermined time from the printing time, the solder So does not dry. To be judged.
  • step S22 If it is determined in step S22 that the solder So does not dry, the process proceeds to step S23.
  • step S23 as information on the cause of the unmounting of the component E, “nozzle and solder” A notification that prompts “confirmation other than” is notified by the notification unit 10.
  • step S22 If it is determined in step S22 that the solder So is dry (solder So is dry), the process proceeds to step S24.
  • step S21 If it is determined in step S21 that foreign matter has adhered to the nozzle 32a of the mounting head 32, the process proceeds to step S25.
  • step S25 it is determined whether or not the solder So is dry, as in the process of step S22.
  • step S25 If it is determined in step S25 that the solder So does not dry, the process proceeds to step S26.
  • step S26 as information on the cause of the non-mounting of the component E, “nozzle” A notification that prompts “cleaning” is notified by the notification unit 10.
  • step S25 If it is determined in step S25 that the solder So is dry, the process proceeds to step S27.
  • step S27 as information on the cause of the non-mounting of the component E, “target substrate Notifications for prompting “removal” and “nozzle cleaning” are notified by the notification unit 10. Thereafter, as shown in FIG. 11, the failure cause estimation process is terminated.
  • the control device 109 is configured to notify information on the cause of the mounting failure of the component E.
  • the component E is measured by using the measurement result of the thickness of the component E, the measurement result of the warp of the substrate P, the measurement result of the presence / absence of adhesion of foreign matter to the mounting head 32, and the measurement result of the degree of drying of the solder So.
  • the cause of occurrence of mounting defects can be estimated in more detail. As a result, the cause of the mounting failure of the component E can be more easily investigated based on the cause of the mounting failure of the component E estimated in more detail.
  • the cause of the component mounting failure is estimated, and the user is notified of the information about the cause of the estimated component mounting failure. It is not limited to this. In the present invention, it is not necessary to notify the user of information regarding the cause of the estimated component mounting failure.
  • the cause of the component mounting failure may be estimated, and the control unit may cause the control unit to perform an operation for dealing with the cause of the component mounting failure based on the estimated cause of the component mounting failure.
  • the present invention is not limited to this.
  • the solder state may be confirmed other than the presence or absence of solder deformation before and after the component mounting operation by the mounting head.
  • the degree of solder deformation for example, the rate of solder deformation
  • the imaging unit (imaging unit) is used as the height measuring unit in the claims, but the present invention is not limited to this.
  • a device other than the imaging unit (imaging unit) may be used as the height measuring unit in the claims.
  • a height measuring unit such as a displacement sensor may be used.
  • the state of solder may be confirmed based on the imaging result after the component mounting operation by the mounting head.
  • the solder height information after the mounting operation is acquired, and the acquired height information is compared with the threshold value to obtain the solder state. (Presence or absence of solder deformation) may be confirmed.
  • the area of the portion having the height corresponding to the thickness of the solder in the height information may be compared with the threshold value, and the height and threshold value near the solder in the height information of the solder may be compared. May be compared.
  • the present invention is not limited to this.
  • the state of the solder may be confirmed based on the difference image without using the solder height information.
  • solder is used as the bonding material in the claims, but the present invention is not limited to this. In the present invention, other than solder may be used as the bonding material in the claims.
  • the imaging unit is configured to be able to capture the mounting position from a plurality (two) of imaging directions using a plurality (two) of height measurement cameras.
  • the present invention is not limited to this.
  • the imaging unit may be configured so that the mounting position can be imaged from a plurality of imaging directions by a single height measurement camera.
  • the imaging unit is configured to be able to image the mounting position from the two imaging directions, but the present invention is not limited to this.
  • the imaging unit may be configured so that the mounting position can be imaged from three or more imaging directions.
  • height information may be acquired by stereo matching based on imaging results from three or more imaging directions.
  • the present invention in addition to the state of solder, the measurement result of the thickness of the component, the measurement result of the warpage of the board, the measurement result of the presence or absence of foreign matter adhering to the mounting head, and the degree of dryness of the solder
  • the present invention is not limited to this.
  • the cause of the unmounted component may be estimated based on one of them.
  • the processing of the control device has been described using a flow-driven flow that performs processing in order along the processing flow, but the present invention is not limited to this. Absent.
  • the processing of the control device may be performed by event-driven (event-driven) processing that executes processing in units of events. In this case, it may be performed by a complete event drive type or a combination of event drive and flow drive.
  • Imaging unit Measurement unit, height measurement unit, imaging unit
  • Mounting head Mounting part
  • Control device control unit
  • 100 Component mounting equipment
  • 200 Component mounting equipment
  • E Component P Substrate So Solder (joining material)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

この部品実装装置(100)は、基板(P)に配置された接合材(So)上に部品(E)を実装する実装部(32)と、少なくとも実装部による部品の実装動作後の接合材の状態を計測する計測部(8)と、部品の実装不良が発生した場合に、計測部による計測結果に基づいて、接合材の状態を確認する制御部(9)と、を備える。

Description

部品実装装置
 この発明は、部品実装装置に関し、特に、基板に配置された接合材上に部品を実装する部品実装装置に関する。
 従来、基板に配置された接合材上に部品を実装する部品実装装置が知られている(たとえば、特許文献1参照)。
 上記特許文献1には、部品を吸着して、プリント基板に配置されたリフロー用半田(接合材)上に部品を搭載(実装)する吸着ノズルと、部品の吸着工程および部品の搭載工程のそれぞれの工程について少なくとも1回の撮像を行う撮像装置とを備える表面実装機(部品搭載装置)が開示されている。この表面実装機は、部品の実装不良があった場合に、撮像結果である画像データを表示することが可能に構成されている。これにより、この表面実装機は、部品の吸着工程および部品の搭載工程のいずれの工程で部品の実装不良が発生したかをユーザにより確認可能に構成されている。
特開2008-98411号公報
 しかしながら、上記特許文献1に記載の表面実装機では、部品の実装不良があった場合に、撮像結果である画像データを表示することにより、部品の吸着工程および部品の搭載工程のいずれの工程で部品の実装不良が発生したかをユーザにより確認可能である一方、部品の実装不良の発生原因の調査は、ユーザが行う必要がある。このため、部品の実装不良の発生原因を調査するためのユーザの負担が大きいという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、部品の実装不良の発生原因を調査するためのユーザの負担を軽減することが可能な部品実装装置を提供することである。
 この発明の一の局面による部品実装装置は、基板に配置された接合材上に部品を実装する実装部と、少なくとも実装部による部品の実装動作後の接合材の状態を計測する計測部と、部品の実装不良が発生した場合に、計測部による計測結果に基づいて、接合材の状態を確認する制御部と、を備える。
 この発明の一の局面による部品実装装置では、上記のような制御部を設ける。これにより、部品の実装不良が発生した場合にはんだなどの接合材の状態を制御部により自動で確認することができるので、ユーザが自ら接合材の状態を確認する場合に比べて、部品の実装不良の発生原因を調査するためのユーザの負担を軽減することができる。また、部品の実装不良が発生した場合に確認すべき接合材の状態を制御部により自動で確認することができるので、熟練したユーザ(オペレータ)でなくとも、部品の実装不良の発生原因の調査を容易に行うことができる。
 上記一の局面による部品実装装置において、好ましくは、制御部は、接合材の状態に基づいて、部品の実装不良の発生原因を推定するように構成されている。このように構成すれば、接合材の状態の確認だけでなく、部品の実装不良の発生原因の推定も制御部により自動で行うことができるので、部品の実装不良の発生原因を調査するためのユーザの負担をより軽減することができる。
 この場合、好ましくは、制御部は、推定された部品の実装不良の発生原因に関する情報を通知するように構成されている。このように構成すれば、熟練したユーザでなくとも、通知された部品の実装不良の発生原因に関する情報に基づいて、部品の実装不良の発生原因を容易に調査することができる。
 上記部品の実装不良の発生原因に関する情報を通知する構成において、好ましくは、制御部は、接合材の状態として、実装部による部品の実装動作後の接合材の変形の有無を確認するとともに、接合材の変形が有る場合および接合材の変形が無い場合のそれぞれの部品の実装不良の発生原因に関する情報を通知するように構成されている。このように構成すれば、はんだなどの接合材の変形が有る場合および接合材の変形が無い場合のいずれの場合であっても、通知された部品の実装不良の発生原因に関する情報に基づいて、部品の実装不良の発生原因を容易に調査することができる。
 上記部品の実装不良の発生原因に関する情報を通知する構成において、好ましくは、制御部は、接合材の状態に加えて、部品の厚みの計測結果、基板の反りの計測結果、実装部への異物の付着の有無の計測結果、および接合材の乾きの度合いの計測結果のうちの少なくともいずれか1つにも基づいて、部品の実装不良の発生原因を推定するとともに、部品の実装不良の発生原因に関する情報を通知するように構成されている。このように構成すれば、部品の厚みの計測結果、基板の反りの計測結果、実装部への異物の付着の有無の計測結果、および接合材の乾きの度合いの計測結果のうちの少なくともいずれか1つを利用して、部品の実装不良の発生原因をより詳細に推定することができる。その結果、より詳細に推定された部品の実装不良の発生原因に基づいて、部品の実装不良の発生原因をより容易に調査することができる。
 上記一の局面による部品実装装置において、好ましくは、計測部は、接合材の高さを計測するための高さ計測部を含み、制御部は、高さ計測部による接合材の高さの計測結果に基づいて、接合材の高さ情報を取得するとともに、取得された接合材の高さ情報に基づいて、接合材の状態を確認するように構成されている。ここで、部品がはんだなどの接合材に到達したが実装不良が発生する場合には接合材が変形するため接合材の高さが変化する一方、部品が接合材に到達することなく実装不良が発生する場合には接合材が変形しないため接合材の高さが変化しないと考えられる。したがって、上記のように、接合材の高さ情報に基づいて、接合材の状態を確認するように構成すれば、部品の実装不良が発生した場合に、接合材の状態を容易かつ精度よく確認することができる。
 この場合、好ましくは、高さ計測部は、実装部による部品の実装動作前の接合材の高さと、実装部による部品の実装動作後の接合材の高さとを計測するために設けられており、制御部は、実装部による部品の実装動作前後の接合材の高さ情報の変化に基づいて、接合材の状態を確認するように構成されている。このように構成すれば、実装部による部品の実装動作後の接合材の高さ情報にのみ基づいて接合材の状態を確認する場合に比べて、実装部による部品の実装動作前後の接合材の高さ情報の変化に基づいて、接合材の状態をより容易に確認することができる。その結果、状態を確認し難い極小の接合材(極小の部品が実装される接合材)であっても、接合材の状態を容易に確認することができる。
 上記一の局面による部品実装装置において、好ましくは、計測部は、接合材を含む所定の領域を撮像する撮像部を含み、撮像部は、実装部による部品の実装動作前の接合材を含む所定の領域と、実装部による部品の実装動作後の接合材を含む所定の領域とを撮像するように構成されており、制御部は、実装部による部品の実装動作前後の撮像部による撮像結果の変化に基づいて、接合材の状態を確認するように構成されている。このように構成しても、上記した接合材の高さ情報の変化に基づいて接合材の状態を確認する場合と同様に、実装部による部品の実装動作前後の撮像部による撮像結果の変化に基づいて、接合材の状態をより容易に確認することができる。その結果、状態を確認し難い極小の接合材(極小の部品が実装される接合材)であっても、接合材の状態を容易に確認することができる。
 この場合、好ましくは、制御部は、実装部による部品の実装動作前に撮像部により撮像された所定の領域の撮像画像と、実装部による部品の実装動作後に撮像部により撮像された所定の領域の撮像画像との差画像に基づいて、接合材の状態を確認するように構成されている。このように構成すれば、接合材の状態に変化がある場合に、実装部による部品の実装動作前に撮像部により撮像された所定の領域の撮像画像と、実装部による部品の実装動作後に撮像部により撮像された所定の領域の撮像画像との間に差分が生じることを利用して、精度よく接合材の状態を確認することができる。
 上記差画像に基づいて接合材の状態を確認する構成において、好ましくは、制御部は、撮像部による撮像結果に基づいて、接合材の高さ情報を取得するように構成されており、制御部は、差画像に加えて、接合材の高さ情報にも基づいて、接合材の状態を確認するように構成されている。このように構成すれば、差画像だけでなく、接合材の高さ情報も利用して、より精度よく接合材の状態を確認することができる。また、接合材の高さ情報を取得するために撮像部とは別個に高さ計測部を設ける必要がないので、差画像に加えて接合材の高さ情報にも基づいて接合材の状態を確認する場合にも、部品点数の増加を抑制することができる。これらの結果、部品点数の増加を抑制しながら、より精度よく接合材の状態を確認することができる。
 上記撮像部が実装部による部品の実装動作前後の接合材を含む所定の領域を撮像する構成において、好ましくは、制御部は、実装部による部品の実装動作前後の撮像部による撮像結果の変化に基づいて、部品の実装不良が発生したか否かを確認するように構成されており、制御部は、部品の実装不良が発生した場合に、実装部による部品の実装動作前後の撮像部による撮像結果の変化に基づいて、接合材の状態を確認するように構成されている。このように構成すれば、部品の実装不良が発生した場合に接合材の状態の確認のための撮像動作を新たに行う場合に比べて、撮像部による撮像動作が複雑になることを抑制することができる。
 上記一の局面による部品実装装置において、好ましくは、接合材は、はんだを含む。
 本発明によれば、上記のように、部品の実装不良の発生原因を調査するためのユーザの負担を軽減することが可能な部品実装装置を提供することができる。
本発明の第1実施形態による部品実装装置の全体構成を示す図である。 本発明の第1実施形態による部品実装装置の制御的な構成を示すブロック図である。 本発明の第1実施形態による部品実装装置の撮像ユニットを説明するための側面図である。 本発明の第1実施形態による部品実装装置のステレオマッチングによる高さの算出方法を説明するための図である。 部品がはんだに到達したが部品の未実装が発生した場合、および部品がはんだに到達することなく部品の未実装が発生した場合を説明するための平面図である。 本発明の第1実施形態による部品実装装置の実装動作前後のはんだの面積変化に基づいてはんだの変形の有無を確認する方法を説明するための側面図である。 本発明の第1実施形態による部品実装装置の実装動作前後のはんだの高さ変化に基づいてはんだの変形の有無を確認する方法を説明するための平面図である。 本発明の第1実施形態による部品実装装置の実装動作前後の撮像画像の差画像に基づいてはんだの変形の有無を確認する方法を説明するための図である。 本発明の第1実施形態による部品実装装置の不良原因推定処理を説明するためのフローチャートである。 本発明の第2実施形態による部品実装装置のサイドビューカメラを説明するための図である。 本発明の第2実施形態による部品実装装置の不良原因推定処理を説明するためのフローチャートである。 本発明の第2実施形態による部品実装装置の第1推定処理を説明するためのフローチャートである。 本発明の第2実施形態による部品実装装置の第2推定処理を説明するためのフローチャートである。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 [第1実施形態]
 (部品実装装置の構成)
 図1~図4を参照して、本発明の第1実施形態による部品実装装置100の構成について説明する。
 部品実装装置100は、図1に示すように、IC、トランジスタ、コンデンサおよび抵抗などの部品E(電子部品)を、プリント基板などの基板Pに実装する装置である。
 また、部品実装装置100は、基台1と、搬送部2と、ヘッドユニット3と、支持部4と、レール部5と、部品認識カメラ6と、基板認識カメラ7と、撮像ユニット8と、制御装置9(図2参照)と、通知部10(図2参照)とを備えている。なお、撮像ユニット8は、請求の範囲の「計測部」、「高さ計測部」および「撮像部」の一例である。また、制御装置9は、請求の範囲の「制御部」の一例である。
 基台1のY方向の両側(Y1側およびY2側)の端部には、複数のテープフィーダ11を配置するためのフィーダ配置部12がそれぞれ設けられている。
 テープフィーダ11は、複数の部品Eを所定の間隔を隔てて保持したテープが巻き回されたリール(図示せず)を保持している。テープフィーダ11は、リールを回転させて部品Eを保持するテープを送出することにより、テープフィーダ11の先端から部品Eを供給するように構成されている。
 各テープフィーダ11は、フィーダ配置部12に設けられた図示しないコネクタを介して制御装置9に電気的に接続された状態で、フィーダ配置部12に配置されている。これにより、各テープフィーダ11は、制御装置9からの制御信号に基づいて、リールからテープを送出するとともに、部品Eを供給するように構成されている。この際、各テープフィーダ11は、ヘッドユニット3の実装動作に応じて、部品Eを供給するように構成されている。
 搬送部2は、一対のコンベア2aを有している。搬送部2は、一対のコンベア2aによって、基板Pを水平方向(X方向)に搬送する機能を有している。具体的には、搬送部2は、上流側(X1側)の図示しない搬送路から実装前の基板Pを搬入するとともに、搬入された基板Pを実装作業位置Mまで搬送し、下流側(X2側)の図示しない搬送路に実装が完了した基板Pを搬出する機能を有している。また、搬送部2は、クランプ機構などの図示しない基板固定機構により、実装作業位置Mで停止させた基板Pを保持して固定するように構成されている。
 搬送部2の一対のコンベア2aは、基板Pを下方から支持しながら、水平方向(X方向)に基板Pを搬送することが可能に構成されている。また、一対のコンベア2aは、Y方向の間隔を調整可能に構成されている。これにより、搬入される基板Pの大きさに応じて、一対のコンベア2aのY方向の間隔を調整することが可能である。
 ヘッドユニット3は、実装作業位置Mにおいて固定された基板Pの実装位置Pa(図3参照)に部品Eを実装するように構成されている。ヘッドユニット3は、ボールナット31と、5本の実装ヘッド32と、5本の実装ヘッド32にそれぞれ設けられた5つのZ軸モータ33(図2参照)と、5本の実装ヘッド32にそれぞれ設けられた5つのR軸モータ34(図2参照)とを含んでいる。なお、実装ヘッド32は、請求の範囲の「実装部」の一例である。
 5本の実装ヘッド32は、ヘッドユニット3の下面側にX方向に沿って一列に配置されている。5本の実装ヘッド32の各々の先端には、それぞれ、ノズル32a(図3参照)が取付けられている。実装ヘッド32は、図示しない負圧発生機によりノズル32aの先端部に発生された負圧によって、テープフィーダ11から供給される部品Eを吸着して保持することが可能に構成されている。
 また、実装ヘッド32は、上下方向(Z方向)に昇降可能に構成されている。具体的には、実装ヘッド32は、部品Eの吸着や装着(実装)などを行う際の下降した状態の位置と、部品Eの搬送や撮像などを行う際の上昇した状態の位置との間で昇降可能に構成されている。また、ヘッドユニット3では、5本の実装ヘッド32は、実装ヘッド32毎に設けられたZ軸モータ33により実装ヘッド32毎に昇降可能に構成されている。また、5本の実装ヘッド32は、実装ヘッド32毎に設けられたR軸モータ34により実装ヘッド32毎にノズル32aの中心軸回り(Z方向回り)に回転可能に構成されている。
 また、ヘッドユニット3は、支持部4に沿ってX方向に移動可能に構成されている。具体的には、支持部4は、ボールネジ軸41と、ボールネジ軸41を回転させるX軸モータ42と、X方向に延びる図示しないガイドレールとを含んでいる。ヘッドユニット3は、X軸モータ42によりボールネジ軸41が回転されることにより、ボールネジ軸41が係合(螺合)されるボールナット31とともに、支持部4に沿ってX方向に移動可能に構成されている。
 また、支持部4は、基台1上に固定された一対のレール部5に沿ってX方向と直交するY方向に移動可能に構成されている。具体的には、レール部5は、支持部4のX方向の両端部をY方向に移動可能に支持する一対のガイドレール51と、Y方向に延びるボールネジ軸52と、ボールネジ軸52を回転させるY軸モータ53とを含んでいる。また、支持部4には、ボールネジ軸52が係合(螺合)されるボールナット43が設けられている。支持部4は、Y軸モータ53によりボールネジ軸52が回転されることにより、ボールネジ軸52が係合(螺合)されるボールナット43とともに、一対のレール部5に沿ってY方向に移動可能に構成されている。
 このような構成により、ヘッドユニット3は、基台1上を水平方向(X方向およびY方向)に移動可能に構成されている。これにより、ヘッドユニット3は、たとえばテープフィーダ11の上方に移動して、テープフィーダ11から供給される部品Eを吸着することが可能である。また、ヘッドユニット3は、たとえば実装作業位置Mにおいて固定された基板Pの上方に移動して、吸着された部品Eを基板Pに実装することが可能である。
 部品認識カメラ6は、部品Eの実装に先立って部品Eの吸着状態を認識するために、実装ヘッド32に吸着された部品Eを撮像するように構成されている。部品認識カメラ6は、基台1の上面上に固定されており、実装ヘッド32に吸着された部品Eを、部品Eの下方(Z2方向)から撮像するように構成されている。この撮像結果は、制御装置9により取得される。これにより、吸着された部品Eの撮像結果に基づいて、部品Eの吸着状態(回転姿勢および実装ヘッド32に対する吸着位置)を制御装置9により認識することが可能である。
 基板認識カメラ7は、部品Eの実装に先立って基板Pに付された位置認識マーク(フィデューシャルマーク)FMを撮像するように構成されている。位置認識マークFMは、基板Pの位置を認識するためのマークである。図1に示す基板Pでは、位置認識マークFMは、基板Pの右下の位置および左上の位置に一対付されている。この位置認識マークFMの撮像結果は、制御装置9により取得される。そして、位置認識マークFMの撮像結果に基づいて、図示しない基板固定機構により固定された基板Pの正確な位置および姿勢を制御装置9により認識することが可能である。
 また、基板認識カメラ7は、ヘッドユニット3のX2側の側部に取り付けられており、ヘッドユニット3とともに、基台1上をX方向およびY方向に移動可能に構成されている。また、基板認識カメラ7は、基台1上を水平方向(X方向およびY方向)に移動して、基板Pに付された位置認識マークFMを、基板Pの上方(Z1方向)から撮像するように構成されている。
 撮像ユニット8は、図1および図3に示すように、基板Pを撮像可能に構成されている。具体的には、撮像ユニット8は、高さ計測を行うために、基板Pの実装位置Paを含む所定領域を撮像可能に構成されている。実装位置Paには、部品Eを基板Pに接合するためのはんだSoが配置されている。したがって、撮像ユニット8は、基板Pの実装位置Paを含む所定領域を撮像することにより、はんだSoを含む所定の領域を撮像可能に構成されている。なお、はんだSoは、請求の範囲の「接合材」の一例である。
 撮像ユニット8は、複数の高さ計測用カメラ81と、複数の照明部82とを含んでいる。第1実施形態では、撮像ユニット8には、実装ヘッド32毎に、2つの高さ計測用カメラ81と、3つの照明部82とが設けられている。
 図3に示すように、2つの高さ計測用カメラ81は、互いに異なる撮像方向から、基板Pの実装位置Paを含む所定の領域を撮像可能に構成されている。具体的には、上側(Z1側)の高さ計測用カメラ81は、水平面(部品Eが実装される基板面Pbに略平行な面)に対して、傾き角度θH(0度<θH<90度)だけ傾斜した撮像方向から、基板Pの実装位置Paを含む所定の領域を撮像可能に構成されている。また、下側(Z2側)の高さ計測用カメラ81は、水平面(部品Eが実装される基板面Pbに略平行な面)に対して、傾き角度θL(0度<θL<θH)だけ傾斜した撮像方向から、基板Pの実装位置Paを含む所定の領域を撮像可能に構成されている。
 これにより、撮像ユニット8は、基板Pの基板面Pbに対して傾斜した複数の撮像方向から実装位置Paを含む所定の領域を撮像可能に構成されている。この実装位置Paを含む所定の領域の撮像結果は、制御装置9により取得される。そして、実装位置Paを含む所定の領域の2つの撮像方向からの2つの撮像結果に基づいて、ステレオマッチングにより、後述するはんだSoの高さ情報などの高さ情報が制御装置9により取得される。
 ここで、図4を参照して、ステレオマッチングによる高さ計測方法について説明する。
 図4に示すように、はんだSoなどの高さ情報の取得対象物を含む所定の領域が、2つの高さ計測用カメラ81により、傾き角度θHおよび傾き角度θLの2つの撮像方向から略同時に撮像される。そして、傾き角度θHの撮像方向から撮像された撮像画像と、傾き角度θLの撮像方向から撮像された撮像画像とをステレオマッチングすることにより、2つの撮像画像の間の視差p(pixel)が求められる。ここで、高さ計測用カメラ81のカメラ分解能をR(μm/pixel)とすると、以下の式(1)により、距離A(μm)が求められる。
A=p×R/sin(θH-θL) ・・・(1)
 また、式(1)により求めた距離Aを用いて、以下の式(2)により、基準面Psに対する対象物の高さh(μm)が求められる。
h=A×sin(θL) ・・・(2)
 これにより、基準面Psに対するはんだSoなどの高さ情報が制御装置9により取得される。
 高さ情報としては、高さhに相関する情報であれば、いずれの情報を用いてもよい。たとえば、図4に示す高さhの情報を高さ情報として用いてもよいし、高さhに相関する距離Aの情報や、視差pの情報などの情報を高さ情報として用いてもよい。また、ステレオマッチングによる高さ情報の取得方法は、上記の例に限られず、いずれの方法が用いられてもよい。
 照明部82は、高さ計測用カメラ81の近傍に設けられており、高さ計測用カメラ81による撮像の際に発光するように構成されている。また、照明部82は、LED(発光ダイオード)などの光源を有している。
 また、図1に示すように、撮像ユニット8は、ヘッドユニット3のY2側の側部に取り付けられている。これにより、撮像ユニット8は、ヘッドユニット3(実装ヘッド32)とともに、基台1上を水平方向(X方向およびY方向)に移動可能に構成されている。
 図2に示すように、制御装置9は、CPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Random Access Memory)などを含み、部品実装装置100の動作を制御するように構成されている。具体的には、制御装置9は、搬送部2、X軸モータ42、Y軸モータ53、Z軸モータ33およびR軸モータ34などを予め記憶されたプログラムに従って制御して、基板Pに部品Eの実装を行うように構成されている。
 具体的には、制御装置9は、ヘッドユニット3をテープフィーダ11の上方に移動させるとともに、図示しない負圧発生機により実装ヘッド32のノズル32aに負圧を発生させ、テープフィーダ11から供給される部品Eをノズル32aに吸着させるように構成されている。
 そして、制御装置9は、吸着された部品Eを基板Pに実装するために、ヘッドユニット3をテープフィーダ11の上方から基板Pの上方まで移動させるように構成されている。この移動途中、制御装置9は、ヘッドユニット3を部品認識カメラ6の上方を通過するように移動させるとともに、各実装ヘッド32に吸着された部品Eを部品認識カメラ6により撮像させるように構成されている。
 そして、ヘッドユニット3が基板作業位置Mにおいて固定された基板Pの上方に到達すると、制御装置9は、ヘッド32を下降させるとともに、所定のタイミングでヘッド32への負圧の供給を停止させることによって吸着された部品Eを基板P上に実装(装着)するように構成されている。
 通知部10は、表示部を含み、情報を表示することにより、後述する実装不良に関する情報などをユーザに通知するように構成されている。
 (部品の実装不良)
 ここで、図5を参照して、部品Eの実装不良(部品Eの未実装)について説明する。部品Eの未実装が発生した場合には、部品EがはんだSoに到達したが部品Eの未実装が発生した場合と、部品EがはんだSoに到達することなく部品Eの未実装が発生した場合との2つの場合が考えられる。
 まず、部品EがはんだSoに到達したが部品Eの未実装が発生した場合について説明する。図5の(A1)に示すように、基板Pに配置されたはんだSo上に部品Eを実装するために、部品Eを吸着した実装ヘッド32が基板P上のはんだSoに向けて下降される。そして、図5の(B1)に示すように、実装ヘッド32に吸着された部品EがはんだSoに到達する。この際、部品Eと接触したはんだSoは、部品Eの体積分だけ外側に押しのけられることにより、外側に向けて広がるように変形する。その後、図5の(C1)に示すように、部品Eが実装されることなく持ち帰られることにより、部品Eの未実装が発生する。この場合、変形後のはんだSoは、元のはんだSoに比べて輪郭が外側に広がっているとともに、部品Eが接触した部分に凹部が形成されている。
 次に、部品EがはんだSoに到達することなく部品Eの未実装が発生した場合について説明する。図5の(A2)に示すように、基板Pに配置されたはんだSo上に部品Eを実装するために、部品Eを吸着した実装ヘッド32が基板P上のはんだSoに向けて下降される。そして、図5の(B2)に示すように、実装ヘッド32に吸着された部品EがはんだSoに到達することなく、実装ヘッド32の下降動作が停止する。その後、図5の(C2)に示すように、部品Eが実装されることなく持ち帰られることにより、部品Eの未実装が発生する。この場合、はんだSoは、変形することなく、元のままである。
 したがって、部品Eの実装不良(部品Eの未実装)が発生した場合には、はんだの変形の有無を確認することにより、部品EがはんだSoに到達したが部品Eの未実装が発生したのか、または部品EがはんだSoに到達することなく部品Eの未実装が発生したのかを確認することが可能である。
 (部品の実装不良に関する制御装置の構成)
 <部品の実装不良の発生原因に関する情報の通知>
 ここで、第1実施形態では、制御装置9は、部品Eの未実装が発生した場合には、撮像ユニット8による撮像結果に基づいて、はんだSoの状態を確認するように構成されている。
 また、第1実施形態では、制御装置9は、はんだSoの状態に基づいて、部品Eの未実装の発生原因を推定するとともに、推定された部品Eの未実装の発生原因に関する情報を通知部10により通知するように構成されている。
 具体的には、制御装置9は、はんだSoの状態として、実装ヘッド32による部品Eの実装動作前後におけるはんだSoの変形の有無を確認するように構成されている。また、制御装置9は、はんだSoの変形が有る場合およびはんだSoの変形が無い場合のそれぞれの場合の部品Eの未実装の発生原因に関する情報を通知部10により通知するように構成されている。
 より具体的には、制御装置9は、図9に示すように、はんだSoの変形が有る場合には、部品Eの未実装の発生原因に関する情報として、「ノズルの異物付着の確認」および「はんだ乾きの確認」を促す通知を通知部10により通知するように構成されている。
 はんだSoの変形が有る場合には、上記のように、部品EがはんだSoに到達したが部品Eの未実装が発生したと考えられる。この場合、実装ヘッド32のノズル32aに接着剤やはんだSoなどの異物が付着しているために、部品EがはんだSoに到達したが部品Eの持ち帰りが発生したという部品Eの未実装の発生原因が考えられるとともに、基板P上に配置されたはんだSoが乾いていたために、部品EがはんだSoに到達したが部品Eの持ち帰りが発生したという部品Eの未実装の発生原因が考えられる。このため、はんだSoの変形が有る場合には、部品Eの未実装の発生原因に関する情報として、「ノズルの異物付着の確認」および「はんだ乾きの確認」を促す通知が通知される。
 また、制御装置9は、はんだSoの変形が無い場合には、部品Eの未実装の発生原因に関する情報として、「部品寸法の確認」および「基板固定状態の確認」を促す通知を通知部10により通知するように構成されている。
 はんだSoの変形が無い場合には、上記のように、部品EがはんだSoに到達することなく部品Eの未実装が発生したと考えられる。この場合、予め設定されている部品Eの寸法(厚み)が誤っていたため(実寸法よりも小さく設定されていたため)に、部品EがはんだSoに到達することなく部品Eの持ち帰りが発生したという部品Eの未実装の発生原因が考えられるとともに、実装作業位置Mにおいて基板Pを下方から支持するバックアップピン(図示せず)による基板Pの支持が適切に行われていないために基板Pが下反りして、部品EがはんだSoに到達することなく部品Eの持ち帰りが発生したという部品Eの未実装の発生原因が考えられる。このため、はんだSoの変形が無い場合には、部品Eの未実装の発生原因に関する情報として、「部品寸法の確認」および「基板固定状態の確認」を促す通知が通知される。
 <はんだの変形の有無の確認>
 また、第1実施形態では、制御装置9は、実装ヘッド32による部品Eの実装動作前で実装ヘッド32の下降中と、実装ヘッド32による部品Eの実装動作後で実装ヘッド32の上昇中とに、撮像ユニット8により実装位置Pa(はんだSo)を含む所定の領域を撮像させるように構成されている。
 そして、制御装置9は、実装ヘッド32による部品Eの実装動作前で実装ヘッド32の下降中の撮像ユニット8による撮像結果と、実装ヘッド32による部品Eの実装動作後で実装ヘッド32の上昇中の撮像ユニット8による撮像結果との撮像結果の変化に基づいて、はんだSoの状態(はんだSoの変形の有無)を確認するように構成されている。具体的には、制御装置9は、以下の3つの手段の少なくともいずれか1つの手段により、実装ヘッド32による部品Eの実装動作前後の撮像結果の変化に基づいて、はんだSoの状態を確認するように構成されている。
 まず、撮像ユニット8によるはんだSoの高さ計測結果を用いる手段について説明する。この場合、制御装置9は、実装ヘッド32による部品Eの実装動作前後の撮像ユニット8によるそれぞれの撮像結果に基づいて、ステレオマッチングにより、実装動作前後のはんだSoのそれぞれの高さ情報を取得するように構成されている。そして、制御装置9は、実装ヘッド32による部品Eの実装動作前後のはんだSoの高さ情報の変化に基づいて、はんだSoの状態を確認するように構成されている。
 具体的には、図6に示すように、制御装置9は、高さ情報のうちのはんだSoの厚みに対応する高さを有する部分の面積(概略的には、はんだSoの上面の面積)(ハッチングにより示す)の変化を取得するとともに、取得された面積の変化に基づいて、はんだSoの状態を確認するように構成されている。
 すなわち、制御装置9は、実装動作後のはんだSoの高さ情報のうちのはんだSoの厚みに対応する高さを有する部分の面積が、実装動作前のはんだSoの高さ情報のうちのはんだSoの厚みに対応する高さを有する部分の面積よりも大きくなったか否かを判断することにより、実装ヘッド32による部品Eの実装動作前後のはんだSoの変形の有無を確認するように構成されている。なお、実装動作後のはんだSoの高さ情報のうちのはんだSoの厚みに対応する高さを有する部分の面積には、変形後のはんだSoの凹部の面積も含まれる。
 図5および図6に示すように、はんだSoが変形する場合には、変形後のはんだSoは、元のはんだSoに比べて輪郭が外側に広がっているため、高さ情報のうちのはんだSoの厚みに対応する高さを有する部分の面積が大きくなる。この面積の変化を利用して、実装ヘッド32による部品Eの実装動作前後のはんだSoの変形の有無を確認することが可能である。
 次に、撮像ユニット8によるはんだSoの高さ計測結果を用いる他の手段について説明する。この場合、制御装置9は、実装ヘッド32による部品Eの実装動作前後の撮像ユニット8によるそれぞれの撮像結果に基づいて、ステレオマッチングにより、実装動作前後のはんだSoのそれぞれの高さ情報を取得するように構成されている。そして、制御装置9は、実装ヘッド32による部品Eの実装動作前後のはんだSoの高さ情報の変化に基づいて、はんだSoの状態を確認するように構成されている。
 具体的には、図7に示すように、制御装置9は、高さ情報のうちのはんだSo近傍の高さ(はんだSoの厚み)の変化を取得するとともに、取得された高さの変化に基づいて、はんだSoの状態を確認するように構成されている。
 すなわち、制御装置9は、実装動作後のはんだSoの高さ情報のうちのはんだSo近傍の高さが、実装動作前のはんだSoの高さ情報のうちのはんだSo近傍の高さよりも小さくなったか否かを判断することにより、実装ヘッド32による部品Eの実装動作前後のはんだSoの変形の有無を確認するように構成されている。
 図5および図7に示すように、はんだSoが変形する場合には、変形後のはんだSoには、元のはんだSoに比べてやや凹んだ凹部が形成されている。このため、元のはんだSoでは、はんだSoの全体が高さh1(元の高さ)を有する一方、変形後のはんだSoでは、高さh1の部分(元の高さの部分)と高さh1よりも小さい高さの高さh2の部分(凹部の部分)とを有するため、はんだSo近傍の高さが全体として小さくなる。この高さの変化を利用して、実装ヘッド32による部品Eの実装動作前後のはんだSoの変形の有無を確認することが可能である。
 次に、撮像ユニット8による撮像画像を用いる手段を説明する。この場合、図8に示すように、制御装置9は、実装ヘッド32による部品Eの実装動作前のはんだSoを含む所定の領域の撮像画像と、実装ヘッド32による部品Eの実装動作後のはんだSoを含む所定の領域の撮像画像との差画像を取得するように構成されている。また、制御装置9は、実装ヘッド32による部品Eの実装動作後の撮像ユニット8による撮像結果に基づいて、ステレオマッチングにより、実装動作後のはんだSoの高さ情報を取得するように構成されている。そして、制御装置9は、取得された差画像およびはんだSoの高さ情報に基づいて、はんだSoの状態を確認するように構成されている。
 具体的には、制御装置9は、取得された差画像に基づいて、実装動作の前後で差画像に一定量の差分変化があるか否かを判断するように構成されている。また、制御装置9は、実装動作の前後で差画像に一定量の差分変化がある場合には、はんだSoの高さ情報に基づいて、部品Eの厚みに対応する高さが取得されるか否かを判断するように構成されている
 すなわち、制御装置9は、実装動作の前後で差画像に一定量の差分変化があるか否かを判断し、部品Eの厚みに対応する高さが取得されるか否かを判断することにより、実装ヘッド32による部品Eの実装動作前後のはんだSoの変形の有無を確認するように構成されている。
 図5および図8に示すように、はんだSoが変形する場合には、変形後のはんだSoは、元のはんだSoに比べて輪郭が外側に広がっている。このため、実装動作前後で差画像に一定量の差分変化が生じる。また、部品Eの未実装が発生する場合には、はんだSo上に部品Eが実装されないため、部品Eの厚みに対応する高さが取得されない。これらを利用して、実装ヘッド32による部品Eの実装動作前後のはんだSoの変形の有無を確認することが可能である。なお、これら3つの手段は、単独で用いられてもよいし、組み合わせて用いられてもよい。
 <部品の実装不良の確認>
 また、第1実施形態では、制御装置9は、実装ヘッド32による部品Eの実装動作前後の撮像ユニット8による撮像結果の変化に基づいて、部品Eの未実装が発生したか否かを確認するように構成されている。
 制御装置9は、たとえば、部品Eが実装位置Paに実装されることによる撮像画像の変化や、部品Eが実装位置Paに実装されることによる高さ情報の変化などに基づいて、部品Eの未実装が発生したか否かを確認するように構成されている。
 (不良原因推定処理)
 次に、図9を参照して、第1実施形態の不良原因推定処理についてフローチャートに基づいて説明する。不良原因推定処理は、制御装置9により行われる。
 図9に示すように、まず、ステップS1において、部品認識カメラ6により、実装ヘッド32に吸着された部品Eが撮像されるとともに、この撮像結果に基づいて、部品Eの吸着状態が認識される。その後、ヘッドユニット3が部品認識カメラ6の上方から基板Pの上方まで移動される。
 そして、ヘッドユニット3が基板Pの上方に到達すると、ステップS2において、基板Pへの部品Eの実装動作が開始される。
 そして、ステップS3において、部品Eを吸着した実装ヘッド32が実装位置Paに向けて下降されるとともに、実装ヘッド32の下降中に撮像ユニット8により実装動作前の実装位置Pa(はんだSo)を含む所定領域が撮像される。
 そして、ステップS4において、実装ヘッド32が実装位置Paから上昇されるとともに、実装ヘッド32の上昇中に撮像ユニット8により実装動作後の実装位置Pa(はんだSo)を含む所定領域が撮像される。
 そして、ステップS5において、ステップS3の撮像ユニット8による撮像結果と、ステップS4の撮像ユニット8による撮像結果との変化に基づいて、部品Eの未実装が発生したか否かが判断される。
 ステップS5において、部品Eの未実装が発生していないと判断される場合には、部品Eの実装不良が発生していないため、不良原因推定処理が終了される。
 また、ステップS5において、部品Eの未実装が発生したと判断される場合には、ステップS6に進む。
 そして、ステップS6において、ステップS3の撮像ユニット8による撮像結果と、ステップS4の撮像ユニット8による撮像結果との変化に基づいて、はんだSoの変形が有るか否か(はんだSoの変形の有無)が判断される。
 ステップS6において、はんだSoの変形が無いと判断される場合には、ステップS7に進む。
 そして、ステップS7において、部品Eの未実装の発生原因に関する情報として、「部品寸法の確認」および「基板固定状態の確認」を促す通知が通知部10に表示されることにより、ユーザに通知される。その後、不良原因推定処理が終了される。
 また、ステップS6において、はんだSoの変形が有ると判断される場合には、ステップS8に進む。
 そして、ステップS8において、部品Eの未実装の発生原因に関する情報として、「ノズルの異物付着の確認」および「はんだ乾きの確認」を促す通知が通知部10に表示されることにより、ユーザに通知される。その後、不良原因推定処理が終了される。
 (第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
 第1実施形態では、上記のように、部品Eの実装不良(部品Eの未実装)が発生した場合に、撮像ユニット8による計測結果(撮像結果)に基づいて、はんだSoの状態を確認する制御装置9を設ける。これにより、部品Eの実装不良が発生した場合にはんだSoの状態を制御装置9により自動で確認することができるので、ユーザが自らはんだSoの状態を確認する場合に比べて、部品Eの実装不良の発生原因を調査するためのユーザの負担を軽減することができる。また、部品Eの実装不良が発生した場合に確認すべきはんだSoの状態を制御装置9により自動で確認することができるので、熟練したユーザ(オペレータ)でなくとも、部品Eの実装不良の発生原因の調査を容易に行うことができる。
 また、第1実施形態では、上記のように、はんだSoの状態に基づいて、部品Eの実装不良の発生原因を推定するように制御装置9を構成する。これにより、はんだSoの状態の確認だけでなく、部品Eの実装不良の発生原因の推定も制御装置9により自動で行うことができるので、部品Eの実装不良の発生原因を調査するためのユーザの負担をより軽減することができる。
 また、第1実施形態では、上記のように、推定された部品Eの実装不良の発生原因に関する情報を通知するように制御装置9を構成する。これにより、熟練したユーザでなくとも、通知された部品Eの実装不良の発生原因に関する情報に基づいて、部品Eの実装不良の発生原因を容易に調査することができる。
 また、第1実施形態では、上記のように、はんだSoの状態として、実装ヘッド32による部品Eの実装動作後のはんだSoの変形の有無を確認するとともに、はんだSoの変形が有る場合およびはんだSoの変形が無い場合のそれぞれの部品Eの実装不良の発生原因に関する情報を通知するように制御装置9を構成する。これにより、はんだSoの変形が有る場合およびはんだSoの変形が無い場合のいずれの場合であっても、通知された部品Eの実装不良の発生原因に関する情報に基づいて、部品Eの実装不良の発生原因を容易に調査することができる。
 また、第1実施形態では、上記のように、高さ撮像ユニット8によるはんだSoの高さの計測結果に基づいて、はんだSoの高さ情報を取得するとともに、取得されたはんだSoの高さ情報に基づいて、はんだSoの状態を確認するように制御装置9を構成する。ここで、図5に示すように、部品EがはんだSoに到達したが実装不良(未実装)が発生する場合にははんだSoが変形するためはんだSoの高さが変化する一方、部品EがはんだSoに到達することなく実装不良(未実装)が発生する場合にははんだSoが変形しないためはんだSoの高さが変化しないと考えられる。したがって、上記のように、はんだSoの高さ情報に基づいて、はんだSoの状態を確認するように構成することにより、部品Eの実装不良が発生した場合に、はんだSoの状態を容易かつ精度よく確認することができる。
 また、第1実施形態では、上記のように、実装ヘッド32による部品Eの実装動作前後のはんだSoの高さ情報の変化に基づいて、はんだSoの状態を確認するように制御装置9を構成する。これにより、実装ヘッド32による部品Eの実装動作後のはんだSoの高さ情報にのみ基づいてはんだSoの状態を確認する場合に比べて、実装ヘッド32による部品Eの実装動作前後のはんだSoの高さ情報の変化に基づいて、はんだSoの状態をより容易に確認することができる。その結果、状態を確認し難い極小のはんだSo(極小の部品Eが実装されるはんだSo)であっても、はんだSoの状態を容易に確認することができる。
 また、第1実施形態では、上記のように、実装ヘッド32による部品Eの実装動作前後の撮像ユニット8による撮像結果の変化に基づいて、はんだSoの状態を確認するように制御装置9を構成する。これによっても、上記したはんだSoの高さ情報の変化に基づいてはんだSoの状態を確認する場合と同様に、実装ヘッド32による部品Eの実装動作前後の撮像ユニット8による撮像結果の変化に基づいて、はんだSoの状態をより容易に確認することができる。その結果、状態を確認し難い極小のはんだSo(極小の部品Eが実装されるはんだSo)であっても、はんだSoの状態を容易に確認することができる。
 また、第1実施形態では、上記のように、実装ヘッド32による部品Eの実装動作前に撮像ユニット8により撮像された所定の領域の撮像画像と、実装ヘッド32による部品Eの実装動作後に撮像ユニット8により撮像された所定の領域の撮像画像との差画像に基づいて、はんだSoの状態を確認するように制御装置9を構成する。これにより、はんだSoの状態に変化がある場合に、実装ヘッド32による部品Eの実装動作前に撮像ユニット8により撮像された所定の領域の撮像画像と、実装ヘッド32による部品Eの実装動作後に撮像ユニット8により撮像された所定の領域の撮像画像との間に差分が生じることを利用して、精度よくはんだSoの状態を確認することができる。
 また、第1実施形態では、上記のように、撮像ユニット8による撮像結果に基づいて、はんだSoの高さ情報を取得するように制御装置9を構成する。そして、差画像に加えて、はんだSoの高さ情報にも基づいて、はんだSoの状態を確認するように制御装置9を構成する。これにより、差画像だけでなく、はんだSoの高さ情報も利用して、より精度よくはんだSoの状態を確認することができる。また、はんだSoの高さ情報を取得するために撮像ユニット8とは別個に高さ計測部を設ける必要がないので、差画像に加えてはんだSoの高さ情報にも基づいてはんだSoの状態を確認する場合にも、部品点数の増加を抑制することができる。これらの結果、部品点数の増加を抑制しながら、より精度よくはんだSoの状態を確認することができる。
 また、第1実施形態では、上記のように、実装ヘッド32による部品Eの実装動作前後の撮像ユニット8による撮像結果の変化に基づいて、部品Eの実装不良が発生したか否かを確認するように制御装置9を構成する。そして、部品Eの実装不良が発生した場合に、実装ヘッド32による部品Eの実装動作前後の撮像ユニット8による撮像結果の変化に基づいて、はんだSoの状態を確認するように制御装置9を構成する。これにより、部品Eの実装不良が発生した場合にはんだSoの状態の確認のための撮像動作を新たに行う場合に比べて、撮像ユニット8による撮像動作が複雑になることを抑制することができる。
 [第2実施形態]
 次に、図1~図3および図10~図13を参照して、第2実施形態について説明する。この第2実施形態では、はんだの状態に基づいて部品の実装不良の発生原因を推定した上記第1実施形態の構成に加えて、他の情報にも基づいてより詳細に部品の実装不良の発生原因を推定する例について説明する。
 (部品実装装置の構成)
 本発明の第2実施形態による部品実装装置200(図1参照)は、図2および図10に示すように、制御装置109(図2参照)およびサイドビューカメラ140を備える点、で、上記第1実施形態の部品実装装置100と相違する。なお、制御装置109は、請求の範囲の「制御部」の一例である。また、上記第1実施形態と同一の構成については、同じ符号を付してその説明を省略する。
 (サイドビューカメラの構成)
 部品実装装置200の支持部4には、サイドビューカメラ140が設けられている。サイドビューカメラ140は、部品Eの実装に先立って部品Eの吸着状態を側方から認識するために、実装ヘッド32に吸着された部品Eを側方から撮像するように構成されている。この撮像結果は、制御装置109により取得される。これにより、側方から撮像された部品Eの撮像結果に基づいて、部品Eの吸着状態や部品Eの厚みを制御装置9により認識することが可能である。
 (部品の実装不良に関する制御装置の構成)
 ここで、第2実施形態では、制御装置109は、はんだSo(図3参照)の状態に加えて、部品Eの厚みの計測結果、基板Pの反りの計測結果、実装ヘッド32のノズル32aへの異物の付着の有無の計測結果、およびはんだSoの乾きの度合いの計測結果にも基づいて、部品Eの未実装の発生原因を推定するとともに、部品Eの未実装の発生原因に関する情報を通知するように構成されている。
 (不良原因推定処理)
 次に、図11~図13を参照して、第2実施形態の不良原因推定処理についてフローチャートに基づいて説明する。不良原因推定処理は、制御装置109により行われる。なお、上記第1実施形態の不良原因推定処理と同一の処理については、同じ符号を付して、その説明を省略する。
 図11に示すように、まず、上記第1実施形態と同様に、ステップS1~S5の処理が実行される。そして、ステップS5において、部品Eの未実装が発生していないと判断される場合には、不良原因推定処理が終了される。
 また、ステップS5において、部品Eの未実装が発生したと判断される場合には、ステップS6に進む。
 そして、ステップS6において、ステップS3の撮像ユニット8による撮像結果と、ステップS4の撮像ユニット8による撮像結果との変化に基づいて、はんだSoの変形が有るか否か(はんだSoの変形の有無)が判断される。
 ステップS6において、はんだSoの変形が無いと判断される場合には、ステップS10に進む。
 ステップS10では、第1推定処理が行われる。
 第1推定処理では、図12に示すように、まず、ステップS11において、部品Eの厚みに異常があるか否かが判断される。
 具体的には、ステップS11では、サイドビューカメラ140の撮像結果に基づいて、実装ヘッド32に吸着された部品Eの厚み(実際の部品Eの厚み)が取得される。そして、予め設定されている部品Eの厚み(設定上の部品Eの厚み)と、実際の部品Eの厚みとの比較に基づいて、部品Eの厚みに異常があるか否かが判断される。すなわち、設定上の部品Eの厚みと実際の部品Eの厚みとの間に差がある場合には、部品Eの厚みに異常があると判断され、設定上の部品Eの厚みと実際の部品Eの厚みとが略同じである場合には、部品Eの厚みに異常がないと判断される。
 ステップS11において、部品Eの厚みに異常がないと判断される場合には、ステップS12に進む。
 そして、ステップS12において、基板Pの反りに異常があるか否かが判断される。
 具体的には、ステップS12では、ステップS3の撮像ユニット8による撮像結果、またはステップS4の撮像ユニット8による撮像結果に基づいて、実装位置Pa近傍の基板Pの基板面Pbの高さ情報が取得される。そして、予め設定されているしきい値と、取得された基板面Pbの高さ情報に基づく基板Pの反り(下反り)との比較に基づいて、基板Pの反りに異常があるか否かが判断される。すなわち、基板Pの反り(下反り)がしきい値よりも大きい場合には、基板Pの反りに異常があると判断され、基板Pの反り(下反り)がしきい値以下である場合には、基板Pの反りに異常がないと判断される。
 ステップS12において、基板Pの反りに異常がないと判断される場合には、ステップS13に進む。
 この場合、部品Eの厚みや、基板Pの反りには異常がないと考えられるので、ステップS13では、部品Eの未実装の発生原因に関する情報として、「部品と基板以外の確認」を促す通知が通知部10により通知される。
 また、ステップS12において、基板Pの反りに異常があると判断される場合には、ステップS14に進む。
 この場合、部品Eの厚みに異常がないと考えられる一方、基板Pの反りには異常があると考えられるので、ステップS14では、部品Eの未実装の発生原因に関する情報として、「基板固定」を促す通知が通知部10により通知される。すなわち、バックアップピン(図示せず)による基板Pの支持(固定)状態を改善するように、通知部10により通知が行われる。
 また、ステップS11において、部品Eの厚みに異常があると判断される場合には、ステップS15に進む。
 そして、ステップS15において、ステップS12の処理と同様に、基板Pの反りに異常があるか否かが判断される。
 ステップS15において、基板Pの反りに異常がないと判断される場合には、ステップS16に進む。
 この場合、基板Pの反りに異常がないと考えられる一方、部品Eの厚みには異常があると考えられるので、ステップS16では、部品Eの未実装の発生原因に関する情報として、「部品寸法の修正」を促す通知が通知部10により通知される。すなわち、設定上の部品Eの寸法(厚み)を修正するように、通知部10により通知が行われる。
 また、ステップS15において、基板Pの反りに異常があると判断される場合には、ステップS17に進む。
 この場合、部品Eの厚みおよび基板Pの反りの両方に異常があると考えられるので、ステップS17では、部品Eの未実装の発生原因に関する情報として、「部品寸法の修正」および「基板固定」を促す通知が通知部10により通知される。その後、図11に示すように、不良原因推定処理が終了される。
 また、ステップS6において、はんだSoの変形が有ると判断される場合には、ステップS20に進む。
 ステップS20では、第2推定処理が行われる。
 第2推定処理では、図13に示すように、まず、ステップS21において、実装ヘッド32のノズル32aへの異物(接着剤やはんだなどの異物)の付着があるか否かが判断される。
 具体的には、ステップS21では、まず、実装ヘッド32をトレーなどの部品廃棄場所(図示せず)の上方に移動させるとともに、実装ヘッド32のノズル32aからの部品Eの除去動作が行われる。そして、部品Eの除去動作後に、部品認識カメラ6により、実装ヘッド32のノズル32aを下方から撮像させる。この部品認識カメラ6による撮像結果に基づいて、実装ヘッド32のノズル32aへの異物の付着があるか否かが判断される。
 ステップS21において、実装ヘッド32のノズル32aへの異物の付着がないと判断される場合には、ステップS22に進む。
 そして、ステップS22において、はんだSoに乾きがあるか(はんだSoが乾いているか)否かが判断される。
 具体的には、ステップS22では、まず、たとえば前工程の印刷装置(図示せず)から、はんだSoが基板Pに印刷された印刷時刻を取得する。そして、取得された印刷時刻に基づいて、はんだSoに乾きがあるか否かが判断される。すなわち、印刷時刻から所定の時間よりも時間が経過している場合には、はんだSoに乾きがあると判断され、印刷時刻から所定の時間以内である場合には、はんだSoに乾きがないと判断される。
 ステップS22において、はんだSoに乾きがないと判断される場合には、ステップS23に進む。
 この場合、実装ヘッド32のノズル32aへの異物の付着がなく、かつ、はんだSoの乾きがないと考えられるので、ステップS23では、部品Eの未実装の発生原因に関する情報として、「ノズルとはんだ以外の確認」を促す通知が通知部10により通知される。
 また、ステップS22において、はんだSoに乾きがある(はんだSoが乾いている)と判断される場合には、ステップS24に進む。
 この場合、実装ヘッド32のノズル32aへの異物の付着がないと考えられる一方、はんだSoに乾きがあると考えられるので、ステップS24では、部品Eの未実装の発生原因に関する情報として、「対象基板の除去」を促す通知が通知部10により通知される。
 また、ステップS21において、実装ヘッド32のノズル32aへの異物の付着があると判断される場合には、ステップS25に進む。
 そして、ステップS25において、ステップS22の処理と同様に、はんだSoに乾きがあるか否かが判断される。
 ステップS25において、はんだSoに乾きがないと判断される場合には、ステップS26に進む。
 この場合、はんだSoに乾きがないと考えられる一方、実装ヘッド32のノズル32aへの異物の付着があると考えられるので、ステップS26では、部品Eの未実装の発生原因に関する情報として、「ノズル清掃」を促す通知が通知部10により通知される。
 また、ステップS25において、はんだSoに乾きがあると判断される場合には、ステップS27に進む。
 この場合、実装ヘッド32のノズル32aへの異物の付着があり、かつ、はんだSoに乾きがあると考えられるので、ステップS27では、部品Eの未実装の発生原因に関する情報として、「対象基板の除去」および「ノズル清掃」を促す通知が通知部10により通知される。その後、図11に示すように、不良原因推定処理が終了される。
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
 (第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
 第2実施形態では、上記のように、はんだSoの状態に加えて、部品Eの厚みの計測結果、基板Pの反りの計測結果、実装ヘッド32への異物の付着の有無の計測結果、およびはんだSoの乾きの度合いの計測結果にも基づいて、部品Eの実装不良の発生原因を推定するとともに、部品Eの実装不良の発生原因に関する情報を通知するように制御装置109を構成する。これにより、部品Eの厚みの計測結果、基板Pの反りの計測結果、実装ヘッド32への異物の付着の有無の計測結果、およびはんだSoの乾きの度合いの計測結果を利用して、部品Eの実装不良の発生原因をより詳細に推定することができる。その結果、より詳細に推定された部品Eの実装不良の発生原因に基づいて、部品Eの実装不良の発生原因をより容易に調査することができる。
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 [変形例]
 なお、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内での全ての変更(変形例)が含まれる。
 たとえば、上記第1および第2実施形態では、部品の実装不良の発生原因を推定するとともに、推定された部品の実装不良の発生原因に関する情報をユーザに通知した例を示したが、本発明はこれに限られない。本発明では、推定された部品の実装不良の発生原因に関する情報をユーザに通知しなくともよい。たとえば、部品の実装不良の発生原因を推定するとともに、推定された部品の実装不良の発生原因に基づいて、部品の実装不良の発生原因に対処する動作を制御部により行わせてもよい。
 また、上記第1および第2実施形態では、はんだの状態として、実装ヘッドによる部品の実装動作前後のはんだの変形の有無を確認した例を示したが、本発明はこれに限られない。本発明では、はんだの状態として、実装ヘッドによる部品の実装動作前後のはんだの変形の有無以外を確認してもよい。はんだの状態として、実装ヘッドによる部品の実装動作前後のはんだの変形の程度(たとえば、はんだの変形の割合)を確認してもよい。
 また、上記第1および第2実施形態では、請求の範囲の高さ計測部として、撮像ユニット(撮像部)を用いた例を示したが、本発明はこれに限られない。本発明では、請求の範囲の高さ計測部として、撮像ユニット(撮像部)以外を用いてもよい。たとえば、変位センサなどの高さ計測部を用いてもよい。
 また、上記第1および第2実施形態では、実装ヘッドによる部品の実装動作前後の撮像結果の変化に基づいて、はんだの状態を確認した例を示したが、本発明はこれに限られない。本発明では、実装ヘッドによる部品の実装動作後の撮像結果に基づいて、はんだの状態を確認してもよい。たとえば、実装ヘッドによる部品の実装動作後の撮像結果に基づいて、実装動作後のはんだの高さ情報を取得するとともに、取得された高さ情報としきい値とを比較することにより、はんだの状態(はんだの変形の有無)を確認してもよい。この場合、高さ情報のうちのはんだの厚みに対応する高さを有する部分の面積をしきい値と比較してもよいし、はんだの高さ情報のうちのはんだ近傍の高さとしきい値とを比較してもよい。
 また、上記第1および第2実施形態では、差画像およびはんだの高さ情報に基づいて、はんだの状態を確認した例を示したが、本発明はこれに限られない。本発明では、はんだの高さ情報を用いることなく、差画像に基づいて、はんだの状態を確認してもよい。
 また、上記第1および第2実施形態では、請求の範囲の接合材として、はんだを用いた例を示したが、本発明はこれに限られない。本発明では、請求の範囲の接合材として、はんだ以外を用いてもよい。
 また、上記第1および第2実施形態では、複数(2つ)の高さ計測用カメラにより、実装位置を複数(2つ)の撮像方向から撮像可能に撮像ユニットを構成した例を示したが、本発明はこれに限られない。本発明では、単一の高さ計測用カメラにより、実装位置を複数の撮像方向から撮像可能に撮像ユニットを構成してもよい。
 また、上記第1および第2実施形態では、実装位置を2つの撮像方向から撮像可能に撮像ユニットを構成した例を示したが、本発明はこれに限られない。本発明では、実装位置を3つ以上の撮像方向から撮像可能に撮像ユニットを構成してもよい。この場合、3つ以上の撮像方向からの撮像結果に基づいて、ステレオマッチングにより、高さ情報を取得すればよい。
 また、上記第2実施形態では、はんだの状態に加えて、部品の厚みの計測結果、基板の反りの計測結果、実装ヘッドへの異物の付着の有無の計測結果、およびはんだの乾きの度合いの計測結果にも基づいて、部品の未実装の発生原因を推定する例を示したが、本発明はこれに限られない。本発明では、はんだの状態と、部品の厚みの計測結果、基板の反りの計測結果、実装ヘッドへの異物の付着の有無の計測結果、およびはんだの乾きの度合いの計測結果のうちの少なくともいずれか1つとに基づいて、部品の未実装の発生原因を推定してもよい。
 また、上記第1および第2実施形態では、説明の便宜上、制御装置の処理を処理フローに沿って順番に処理を行うフロー駆動型のフローを用いて説明したが、本発明はこれに限られない。本発明では、制御装置の処理を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。
 8 撮像ユニット(計測部、高さ計測部、撮像部)
 32 実装ヘッド(実装部)
 9、109 制御装置(制御部)
 100、200 部品実装装置
 E 部品
 P 基板
 So はんだ(接合材)

Claims (12)

  1.  基板(P)に配置された接合材(So)上に部品(E)を実装する実装部(32)と、
     少なくとも前記実装部による前記部品の実装動作後の前記接合材の状態を計測する計測部(8)と、
     前記部品の実装不良が発生した場合に、前記計測部による計測結果に基づいて、前記接合材の状態を確認する制御部(9、109)と、を備える、部品実装装置。
  2.  前記制御部は、前記接合材の状態に基づいて、前記部品の実装不良の発生原因を推定するように構成されている、請求項1に記載の部品実装装置。
  3.  前記制御部は、推定された前記部品の実装不良の発生原因に関する情報を通知するように構成されている、請求項2に記載の部品実装装置。
  4.  前記制御部は、前記接合材の状態として、前記実装部による前記部品の実装動作後の前記接合材の変形の有無を確認するとともに、前記接合材の変形が有る場合および前記接合材の変形が無い場合のそれぞれの前記部品の実装不良の発生原因に関する情報を通知するように構成されている、請求項3に記載の部品実装装置。
  5.  前記制御部は、前記接合材の状態に加えて、前記部品の厚みの計測結果、前記基板の反りの計測結果、前記実装部への異物の付着の有無の計測結果、および前記接合材の乾きの度合いの計測結果のうちの少なくともいずれか1つにも基づいて、前記部品の実装不良の発生原因を推定するとともに、前記部品の実装不良の発生原因に関する情報を通知するように構成されている、請求項3に記載の部品実装装置。
  6.  前記計測部は、前記接合材の高さを計測するための高さ計測部(8)を含み、
     前記制御部は、前記高さ計測部による前記接合材の高さの計測結果に基づいて、前記接合材の高さ情報を取得するとともに、取得された前記接合材の高さ情報に基づいて、前記接合材の状態を確認するように構成されている、請求項1に記載の部品実装装置。
  7.  前記高さ計測部は、前記実装部による前記部品の実装動作前の前記接合材の高さと、前記実装部による前記部品の実装動作後の前記接合材の高さとを計測するために設けられており、
     前記制御部は、前記実装部による前記部品の実装動作前後の前記接合材の高さ情報の変化に基づいて、前記接合材の状態を確認するように構成されている、請求項6に記載の部品実装装置。
  8.  前記計測部は、前記接合材を含む所定の領域を撮像する撮像部(8)を含み、
     前記撮像部は、前記実装部による前記部品の実装動作前の前記前記接合材を含む所定の領域と、前記実装部による前記部品の実装動作後の前記前記接合材を含む所定の領域とを撮像するように構成されており、
     前記制御部は、前記実装部による前記部品の実装動作前後の前記撮像部による撮像結果の変化に基づいて、前記接合材の状態を確認するように構成されている、請求項1に記載の部品実装装置。
  9.  前記制御部は、前記実装部による前記部品の実装動作前に前記撮像部により撮像された前記所定の領域の撮像画像と、前記実装部による前記部品の実装動作後に前記撮像部により撮像された前記所定の領域の撮像画像との差画像に基づいて、前記接合材の状態を確認するように構成されている、請求項8に記載の部品実装装置。
  10.  前記制御部は、前記撮像部による撮像結果に基づいて、前記接合材の高さ情報を取得するように構成されており、
     前記制御部は、前記差画像に加えて、前記接合材の高さ情報にも基づいて、前記接合材の状態を確認するように構成されている、請求項9に記載の部品実装装置。
  11.  前記制御部は、前記実装部による前記部品の実装動作前後の前記撮像部による撮像結果の変化に基づいて、前記部品の実装不良が発生したか否かを確認するように構成されており、
     前記制御部は、前記部品の実装不良が発生した場合に、前記実装部による前記部品の実装動作前後の前記撮像部による撮像結果の変化に基づいて、前記接合材の状態を確認するように構成されている、請求項8に記載の部品実装装置。
  12.  前記接合材は、はんだ(So)を含む、請求項1に記載の部品実装装置。
PCT/JP2015/079085 2015-10-14 2015-10-14 部品実装装置 WO2017064777A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/079085 WO2017064777A1 (ja) 2015-10-14 2015-10-14 部品実装装置
DE112015006789.2T DE112015006789T5 (de) 2015-10-14 2015-10-14 Bauteilmontagevorrichtung
US15/759,476 US11134597B2 (en) 2015-10-14 2015-10-14 Component mounting device
CN201580083291.8A CN108029240B (zh) 2015-10-14 2015-10-14 元件安装装置
JP2017545041A JP6534448B2 (ja) 2015-10-14 2015-10-14 部品実装装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079085 WO2017064777A1 (ja) 2015-10-14 2015-10-14 部品実装装置

Publications (1)

Publication Number Publication Date
WO2017064777A1 true WO2017064777A1 (ja) 2017-04-20

Family

ID=58517548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079085 WO2017064777A1 (ja) 2015-10-14 2015-10-14 部品実装装置

Country Status (5)

Country Link
US (1) US11134597B2 (ja)
JP (1) JP6534448B2 (ja)
CN (1) CN108029240B (ja)
DE (1) DE112015006789T5 (ja)
WO (1) WO2017064777A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075475A (ja) * 2017-10-17 2019-05-16 ヤマハ発動機株式会社 部品実装装置
JP7543210B2 (ja) 2021-04-27 2024-09-02 ヤマハ発動機株式会社 表面実装機

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014524A1 (ja) * 2019-07-22 2021-01-28 株式会社Fuji 画像表示装置および画像表示方法
WO2021014615A1 (ja) * 2019-07-24 2021-01-28 株式会社Fuji 実装装置及び実装装置の制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008295A (ja) * 2001-06-25 2003-01-10 Matsushita Electric Ind Co Ltd 電子部品装着方法及びその装置
JP2006339445A (ja) * 2005-06-02 2006-12-14 Omron Corp 基板検査システム
JP2008300526A (ja) * 2007-05-30 2008-12-11 Yamaha Motor Co Ltd 実装ライン、実装基板の検査装置および検査方法
WO2014080525A1 (ja) * 2012-11-26 2014-05-30 富士機械製造株式会社 装着位置ずれ原因究明方法および電子回路部品装着装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3055161B2 (ja) 1990-10-09 2000-06-26 松下電器産業株式会社 半田付状態の外観検査方法
JPH11330798A (ja) * 1998-05-19 1999-11-30 Fuji Mach Mfg Co Ltd 電気部品装着方法およびシステム
JP3887647B2 (ja) * 2003-09-19 2007-02-28 住友ベークライト株式会社 バイオチップ
US7706595B2 (en) 2003-11-07 2010-04-27 Cyberoptics Corporation Pick and place machine with workpiece motion inspection
JP4493421B2 (ja) 2004-06-30 2010-06-30 株式会社リコー プリント回路基板検査装置とプリント回路基板組み立て検査ラインシステムおよびプログラム
US20060075631A1 (en) 2004-10-05 2006-04-13 Case Steven K Pick and place machine with improved component pick up inspection
JP2007033048A (ja) 2005-07-22 2007-02-08 Ricoh Co Ltd はんだ接合判定方法,はんだ検査方法,はんだ検査装置およびはんだ検査用プログラムならびに記録媒体
JP4348343B2 (ja) 2006-02-10 2009-10-21 パナソニック株式会社 部品実装機
JP2008045883A (ja) 2006-08-10 2008-02-28 I-Pulse Co Ltd 検査方法および検査装置
JP2008076215A (ja) 2006-09-21 2008-04-03 I-Pulse Co Ltd 検査装置および検査方法
JP4865492B2 (ja) 2006-10-12 2012-02-01 Juki株式会社 装着部品検査方法
JP4865496B2 (ja) 2006-10-17 2012-02-01 Juki株式会社 撮像装置及び撮像方法
CN101755497B (zh) * 2007-08-28 2012-03-14 松下电器产业株式会社 元件放置设备
JP2012129434A (ja) * 2010-12-17 2012-07-05 Fuji Mach Mfg Co Ltd 対基板作業機
JP5365644B2 (ja) 2011-01-13 2013-12-11 オムロン株式会社 はんだ付け検査方法、およびはんだ付け検査機ならびに基板検査システム
JP5959656B2 (ja) 2012-09-28 2016-08-02 富士機械製造株式会社 生産ライン監視装置
JP6108770B2 (ja) 2012-11-02 2017-04-05 Juki株式会社 電子部品実装装置及び実装部品検査方法
JP5800434B2 (ja) * 2013-01-11 2015-10-28 Ckd株式会社 検査装置の監視システム
JP2014216621A (ja) 2013-04-30 2014-11-17 株式会社日立製作所 基板処理装置および基板処理方法
JP6389651B2 (ja) 2013-09-10 2018-09-12 Juki株式会社 検査方法、実装方法、及び実装装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008295A (ja) * 2001-06-25 2003-01-10 Matsushita Electric Ind Co Ltd 電子部品装着方法及びその装置
JP2006339445A (ja) * 2005-06-02 2006-12-14 Omron Corp 基板検査システム
JP2008300526A (ja) * 2007-05-30 2008-12-11 Yamaha Motor Co Ltd 実装ライン、実装基板の検査装置および検査方法
WO2014080525A1 (ja) * 2012-11-26 2014-05-30 富士機械製造株式会社 装着位置ずれ原因究明方法および電子回路部品装着装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075475A (ja) * 2017-10-17 2019-05-16 ヤマハ発動機株式会社 部品実装装置
JP7543210B2 (ja) 2021-04-27 2024-09-02 ヤマハ発動機株式会社 表面実装機

Also Published As

Publication number Publication date
DE112015006789T5 (de) 2018-04-19
CN108029240A (zh) 2018-05-11
CN108029240B (zh) 2021-04-02
US20180263150A1 (en) 2018-09-13
US11134597B2 (en) 2021-09-28
JP6534448B2 (ja) 2019-06-26
JPWO2017064777A1 (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
JP4587877B2 (ja) 部品実装装置
CN108142000B (zh) 基板作业系统及元件安装装置
CN107926154B (zh) 元件安装装置
WO2017064777A1 (ja) 部品実装装置
JP6411663B2 (ja) 部品実装装置
WO2015087420A1 (ja) 部品実装装置
CN108029236B (zh) 元件安装装置
CN111096102B (zh) 元件安装装置
JP4607679B2 (ja) 電子部品実装装置における吸着ノズルの部品吸着位置確認方法および電子部品実装装置
JP6727768B2 (ja) 基板作業装置
CN110431932B (zh) 元件安装机和吸嘴高度控制方法
JP2009164276A (ja) 部品実装装置における吸着位置補正方法
JP4712766B2 (ja) 部品移載装置
JP2007287838A (ja) 部品移載装置、実装機および部品検査機用部品移載装置
JP7280741B2 (ja) 基板作業装置
JP2009010176A5 (ja)
JP5317857B2 (ja) バックアップピン配置方法及び同配置装置並びに電子部品処理方法及び電子部品装着装置
JP6147185B2 (ja) 基板作業装置
JP6587871B2 (ja) 部品実装装置および部品実装システム
JP7492903B2 (ja) 部品実装装置および部品実装方法
JPWO2019012576A1 (ja) 撮像装置、表面実装機及び検査装置
JP2008218697A (ja) 部品実装装置
KR101541332B1 (ko) 지그 상에 인쇄회로기판을 장착하는 장치
JP2019062123A (ja) 部品実装装置
JPWO2018198196A1 (ja) 検査装置、搭載装置、検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545041

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015006789

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15759476

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15906241

Country of ref document: EP

Kind code of ref document: A1