WO2017063352A1 - 一种适用于选择性激光烧结的脂肪族聚酯粉末及其制备方法 - Google Patents

一种适用于选择性激光烧结的脂肪族聚酯粉末及其制备方法 Download PDF

Info

Publication number
WO2017063352A1
WO2017063352A1 PCT/CN2016/079855 CN2016079855W WO2017063352A1 WO 2017063352 A1 WO2017063352 A1 WO 2017063352A1 CN 2016079855 W CN2016079855 W CN 2016079855W WO 2017063352 A1 WO2017063352 A1 WO 2017063352A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
aliphatic polyester
polyester resin
parts
powder
Prior art date
Application number
PCT/CN2016/079855
Other languages
English (en)
French (fr)
Inventor
刘建叶
初立秋
吕芸
张师军
张丽英
邹浩
董穆
高达利
侴白舸
白弈青
邵静波
徐萌
徐毅辉
陈若石
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to DE112016004673.1T priority Critical patent/DE112016004673B4/de
Priority to JP2018518951A priority patent/JP6836588B2/ja
Publication of WO2017063352A1 publication Critical patent/WO2017063352A1/zh
Priority to US15/953,062 priority patent/US10787546B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/095Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/11Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to the field of polymer processing technology, and in particular to a method for preparing an aliphatic polyester powder and the aliphatic polyester powder obtained thereby and the use thereof for selective laser sintering.
  • SLS Selective Laser Sintering
  • molding materials that can be used in SLS technology, such as polymers, paraffins, metals, ceramics, and composites thereof.
  • the properties and properties of the molding material are an important factor in the successful sintering of the SLS technology, which directly affects the molding speed, precision, physical and chemical properties and overall performance of the molded part.
  • polymer powder raw materials that can be directly applied to SLS technology and successfully manufactured molded articles having small dimensional errors, regular surface irregularities, and low porosity are rarely seen on the market. Therefore, there is an urgent need to develop and improve the types of polymers suitable for SLS technology and their corresponding solid powder materials.
  • a pulverization method such as a cryogenic pulverization method
  • a suitable one SLS powder raw material.
  • a polypropylene powder obtained by cryogenic pulverization is disclosed in CN104031319A.
  • this method requires not only specific equipment, but also the prepared powder raw material particles have a rough surface, an insufficient particle diameter, and an irregular shape, which is disadvantageous for the formation of the sintered compact and affects the properties of the molded body.
  • a precipitation method is also available to prepare a polymer powder raw material such as a polyamide powder.
  • the polyamide is usually dissolved in a suitable solvent, and the material is uniformly distributed in a solvent by stirring and cooled to precipitate a powder precipitate.
  • CN103374223A discloses a precipitated polymer powder based on AABB-type polyamide obtained by reprecipitation of a polyamide obtained by polycondensation of a diamine and a dicarboxylic acid. In the process described in this patent, an alcohol solvent is employed in the reprecipitation process.
  • CN101138651A discloses a method for producing a tissue scaffold which is subjected to selective laser sintering using polymer microspheres, wherein the polymer microspheres are produced by a precipitation method.
  • a polymer material such as polylactic acid and polyhydroxybutyrate is first dissolved in a solvent.
  • poly-L-lactic acid is dissolved in methylene chloride without heating and amorphous poly-DL-lactic acid is dissolved in its good solvent acetone to form a stable The solution does not cause the polylactic acid to crystallize.
  • This patent document does not pay attention to how to specifically select a solvent for dissolving a polymer material.
  • CN103509197A discloses a method for preparing polylactic acid microparticles, which comprises dissolving polylactic acid and a water-soluble polymer with a solvent at 80-140 ° C, and then decomposing the polylactic acid microparticles by means of a precipitating agent.
  • the solvent is selected from the group consisting of high boiling ethers and amide solvents.
  • a first aspect of the present invention provides a method for producing an aliphatic polyester powder.
  • Aliphatic polyester is a high-altitude, high-biodegradability score
  • the sub-materials have good comprehensive properties to meet food contact requirements and green environmental protection requirements. Therefore, the development of aliphatic polyester solid powders for SLS can meet the needs of individualized product applications.
  • the aliphatic polyester powder provided according to the present invention has a suitable size, a suitable bulk density, a uniform particle shape, a uniform particle size distribution, and good powder flowability, and is particularly suitable for selective laser sintering to prepare various moldings. Product.
  • a method for producing an aliphatic polyester resin powder according to the present invention comprising the steps of:
  • organic solvent is selected from a ketone or a cyclic ether solvent and satisfies:
  • the solubility parameter is in the range of 10.0-25.0 MPa 0.5 , preferably 14.5-23.0 MPa 0.5 , more preferably 18.5-20.5 MPa 0.5 , and
  • the boiling point is not higher than 160 ° C under normal pressure, for example, not higher than 150 ° C or 130 ° C or 100 ° C.
  • a second aspect of the invention resides in an aliphatic polyester resin powder obtained by the process of the invention.
  • a third aspect of the invention resides in a method of selective laser sintering.
  • a fourth aspect of the invention resides in the use of the aliphatic polyester resin powder obtained by the method of the invention in a method of producing a three-dimensional object.
  • the An aliphatic polyester resin is generally understood as a general term for a class of polymer materials having an ester group in a polymer main chain and is crystalline, which can be, for example, by direct condensation of an aliphatic dicarboxylic acid with a glycol, and an aliphatic group.
  • a transesterification method of a dicarboxylic acid ester and a glycol, and a ring-opening polymerization of a lactone, etc. are obtained. These methods are known to those skilled in the art.
  • the crystalline aliphatic polyester suitable for use in the present invention may be selected from the group consisting of a C 4 -C 12 aliphatic dicarboxylic acid and a C 2 -C 10 aliphatic diol formed from ⁇ -hydroxy C. a polyester or polycaprolactone formed by a 2- C 6 carboxylic acid; in particular, the aliphatic polyester is selected from the group consisting of crystalline polylactic acid, polyglycolide, polyethyl lactide, and polybutylene succinate At least one of an ester, polybutylene succinate, polybutylene adipate, polybutylene succinate/butylene adipate copolymer, and polycaprolactone.
  • the aliphatic polyester resin is a crystalline polylactic acid.
  • the crystalline polylactic acid resin suitable as the aliphatic polyester of the present invention is in particular a mixture of L-polylactic acid resin or D-polylactic acid resin or any weight ratio of the two, preferably both. A mixture having a fraction of about 1:1.
  • the optical purity of the L-polylactic acid resin and the D-polylactic acid resin is ⁇ 92%, and the melt index is 20-100 g/10 min at 190 ° C and 2.16 kg load. It is preferably 30-80 g/10 min.
  • the polylactic acid resin having an optical purity of ⁇ 92% has a significantly better crystallization ability, and the polylactic acid resin having a melt index within the above range has good fluidity after melting, which is advantageous for the laser sintering process.
  • organic solvent precipitation techniques have been used to separate and purify biochemicals, especially proteins, or to precipitate crystals.
  • resin material powders for selective laser sintering techniques particularly crystalline aliphatic polyester resin powders
  • organic solvent precipitation there have been few reports on the preparation of resin material powders for selective laser sintering techniques, particularly crystalline aliphatic polyester resin powders, by organic solvent precipitation.
  • the selection of an organic solvent for dissolving the aliphatic polyester resin is important, and the selected organic solvent should be the above-mentioned crystalline aliphatic polyester resin at normal temperature and pressure. Poor solvent.
  • the term “poor solvent” shall mean a solvent which does not cause the crystalline aliphatic polyester resin to form a stable solution at room temperature (i.e., no solid precipitates after standing for 10 minutes or more).
  • the organic solvent is selected as a ketone or cyclic ether solvent having a solubility parameter in the range of 10.0-25.0 MPa 0.5 , preferably 14.5-23.0 MPa 0.5 , more preferably 18.5-20.5 MPa 0.5 , and the solvent is selected. It is also a solvent with a low boiling point.
  • the term "low boiling point" means that the solvent has a boiling point of not higher than 160 ° C under normal pressure, such as not higher than 150 ° C or 130 ° C or 100 ° C.
  • the organic solvent is used in an amount of from 600 to 1200 parts by weight, preferably from 800 to 1000 parts by weight, based on 100 parts by weight of the aliphatic polyester resin.
  • the amount of the organic solvent used is within this range, an aliphatic polyester resin powder having a good morphology and dispersibility can be obtained.
  • the organic solvent is selected from a C 3 -C 10 ketone solvent or a C 3 -C 10 cycloether solvent, preferably a C 3 -C 5 ketone solvent or C 3 a cyclic ether solvent of -C 5 , more preferably selected from the group consisting of acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, cyclopentanone, methyl isopropyl ketone, tetrahydrofuran, dioxane and dioxane At least one of the rings.
  • the organic solvent is selected from the group consisting of acetone and/or methyl ethyl ketone.
  • the inventors of the present invention further discovered through extensive experimentation that when an organic solvent such as acetone and/or methyl ketone as described above is used to dissolve the crystalline aliphatic polyester resin and is cooled and precipitated, the crystalline aliphatic polymer can be polymerized.
  • the ester resin is precipitated in a spherical and/or spheroidal shape and has a particle diameter of 25 to 130 ⁇ m.
  • the obtained aliphatic polyester powder resin has a smooth surface, good dispersibility and small size distribution, and is particularly suitable for selective laser sintering technology.
  • the heating temperature depends on the melting point of the individual crystalline aliphatic polyester, for example, the aliphatic polyester resin can advantageously be heated to 60 to 200 ° C, for example, 70 to 190 ° C or 80 to 160 ° C temperature.
  • the crystalline polylactic acid, polyglycolide, and polyethyl lactide may be heated to 100 to 180 ° C, preferably 110 to 150 ° C, more preferably 120 to 140 ° C.
  • the polyethylene succinate and the polybutylene succinate are heated to 70 to 150 ° C, preferably 80 to 120 ° C, more preferably 90 to 110 ° C.
  • the polybutylene adipate, the polybutylene succinate/butylene adipate copolymer and the polycaprolactone are heated to 60 to 120 ° C, preferably 60 to 90. °C, more preferably 60 to 80 °C.
  • the aliphatic polyester resin solution may be maintained at the heating temperature for 30 to 90 minutes for sufficient dissolution. Further, it is also preferred to carry out the heating under an inert gas, preferably nitrogen gas, and the pressure thereof may be 0.1 to 0.5 MPa, preferably 0.2 to 0.3 MPa.
  • the dissolution process of step a) and the reprecipitation process of step b) are advantageously carried out under pressure.
  • the pressure can be formed by the vapor pressure of the solvent in a closed system.
  • a nucleating agent may optionally be added in step a) selected from at least silica, calcium oxide, calcium carbonate, barium sulfate, hydrotalcite, talc, carbon black, kaolin and mica.
  • a nucleating agent is added.
  • the nucleating agent may be used in an amount of 0.01 to 2 parts by weight, preferably 0.05 to 1 part by weight, based on 100 parts by weight of the crystalline aliphatic polyester resin, and preferably 0.1 to 0.5 part by weight.
  • the nucleating agent is particularly preferably silica and/or talc.
  • the average temperature drop rate is from 0.1 ° C/min to 1 ° C/min. Further, it is preferred to cool the aliphatic polyester resin solution to a target temperature and to The target temperature is maintained for 30 to 90 minutes, and the target temperature is preferably 10 to 30 ° C, for example, room temperature (i.e., about 25 ° C).
  • the temperature reduction of the aliphatic polyester resin solution can be carried out at a uniform rate in one step or in a stepwise manner.
  • the aliphatic polyester resin solution is cooled to a target temperature via one or more intermediate temperatures and maintained at the intermediate temperature for 30 to 90 minutes, the intermediate temperature being between 40 and 100 °C, for example, in the range of 50 to 90 °C.
  • the intermediate temperature is preferably 70 to 100 ° C, preferably 80 to 90 ° C; for polyethylene succinate and polybutylene
  • the butylene glycol ester preferably has an intermediate temperature of 50 to 80 ° C, more preferably 60 to 70 ° C.
  • the intermediate temperature refers to the temperature between the heating temperature of step a) and the target temperature of step b).
  • the crystalline polylactic acid resin solution can be lowered from a heating temperature of 130 ° C to 90 ° C and maintained at 90 ° C for 60 minutes; or directly to room temperature.
  • the crystalline polylactic acid resin solution is lowered from the heating temperature to 80 to 90 ° C and maintained at this temperature for 30 to 90 minutes, a better precipitation effect can be obtained.
  • the heating and cooling means of the present invention it is possible to ensure that powder particles having a uniform particle size distribution are obtained, and thus are particularly suitable for selective laser sintering applications.
  • auxiliaries can optionally be added to the solid-liquid mixture.
  • auxiliaries are known in the processing of aliphatic polyester resins, and include, inter alia, powder release agents, antioxidants, antistatic agents, antibacterial agents and/or glass fiber reinforcements.
  • the antioxidant may be selected from the group consisting of antioxidant 1010 and/or antioxidant 168, preferably a combination of the two. Further preferably, the antioxidant is used in an amount of 0.1 to 0.5 parts by weight, preferably 0.2 to 0.4, based on 100 parts by weight of the crystalline aliphatic polyester resin. Quantities.
  • the powder release agent may be a metal soap, that is, an alkali metal or alkaline earth metal based on an alkane monocarboxylic acid or a dimer acid, preferably selected from the group consisting of sodium stearate, potassium stearate, zinc stearate, and calcium stearate. And at least one of lead stearate.
  • the powder release agent may also be a nano-oxide and/or a nano metal salt, preferably selected from at least one of silica, titania, alumina, zinc oxide, zirconium oxide, calcium carbonate and barium sulfate nanoparticles. .
  • the powder release agent is used in an amount of from 0.01 to 10 parts by weight, preferably from 0.1 to 5 parts by weight, based on 100 parts by weight of the crystalline aliphatic polyester resin, preferably from 0.5 to 1 part by weight.
  • a powder release agent prevents the adhesion between the aliphatic polyester resin powder particles and contributes to the improvement of the processability.
  • the powder release agent can also synergize with the antioxidant, and in particular, an aliphatic polyester resin powder which is excellent in dispersibility and fluidity and is suitable for selective laser sintering can be obtained.
  • the antistatic agent is selected from the group consisting of carbon black, graphite, graphene, carbon nanotubes, and at least one of conductive metal powder/fiber and metal oxide, preferably selected from the group consisting of acetylene black, superconducting carbon black, and special carbon black.
  • conductive metal powder/fiber and metal oxide preferably selected from the group consisting of acetylene black, superconducting carbon black, and special carbon black.
  • the antistatic agent may be used in an amount of 0.05 to 15 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.25 to 5 parts by weight per 100 parts by weight of the crystalline aliphatic polyester resin.
  • the antistatic agent can impart excellent antistatic properties to the selective laser sintered aliphatic polyester product, and at the same time reduce the fat and fat between the aliphatic polyester resin powder particles.
  • the electrostatic interaction between the group of polyester resin powder particles and the equipment improves the processability.
  • the powdery antistatic agent can also provide a certain isolation effect to improve the dispersibility and fluidity between the aliphatic polyester resin powder particles.
  • the antibacterial agent is selected from the group consisting of inorganic antibacterial agents such as supported, nano metal and metal oxides, and/or organic hydrazines, quaternary ammonium salts, phenol ethers, pyridines, imidazoles, isothiazolinones and organometallics.
  • inorganic antibacterial agents such as supported, nano metal and metal oxides, and/or organic hydrazines, quaternary ammonium salts, phenol ethers, pyridines, imidazoles, isothiazolinones and organometallics.
  • At least one of the organic antibacterial agents preferably selected from the group consisting of zeolites, zirconium phosphates, calcium phosphates, hydroxyapatite, supported antimicrobial agents such as glass or activated carbon supported silver ions, zinc ions or copper ions, nanogold or nanosilver, At least one of zinc oxide or titanium dioxide and polyhexamethylene sulfonium hydrochloride or polyhexamethylene sulfonium phosphate.
  • the antibacterial agent may be used in an amount of 0.05 to 1.5 parts by weight, preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight, based on 100 parts by weight of the crystalline aliphatic polyester resin.
  • an antibacterial agent can impart excellent antibacterial properties to the selective laser-sintered aliphatic polyester product and improve the hygienic safety of the aliphatic polyester product. Further, when the antibacterial agent is an inorganic powder, the aliphatic polyester resin powder can serve as an auxiliary barrier to improve dispersibility and fluidity.
  • the glass fiber reinforcing agent is a glass fiber having a diameter of 5 to 20 ⁇ m and a length of 100 to 500 ⁇ m. Preferred are alkali-free ultrashort glass fibers having a diameter of 5 to 15 ⁇ m and a length of 100 to 250 ⁇ m.
  • the glass fiber reinforcing agent may be used in an amount of 5 to 60 parts by weight, preferably 5 to 50 parts by weight, more preferably 10 to 50 parts by weight per 100 parts by weight of the crystalline aliphatic polyester resin.
  • the addition of glass fiber can effectively improve the physical and mechanical properties of the aliphatic polyester product. At the same time, due to the high heat shrinkage rate of the aliphatic polyester, the addition of the glass fiber also contributes to the dimensional stability of the aliphatic polyester product.
  • a second aspect of the invention resides in a crystalline aliphatic polyester resin powder obtained by the method of the invention, the particles of which are spherical and/or spheroidal, with a round surface
  • the slip, dispersibility and fluidity are good and the particle size distribution is uniform, and the bulk density is suitable.
  • the aliphatic polyester resin powder provided according to the present invention is particularly suitable for selective laser sintering technology, has high sintering success rate, and has small dimensional error between the obtained sintered product and the predetermined product, less cross-sectional holes, uniform shape and good mechanical properties.
  • a third aspect of the present invention provides a method of selective laser sintering in which a crystalline aliphatic polyester resin powder prepared by the method as described above is used as a raw material of a sintered powder.
  • a selective laser sintering method provided by the present invention, an aliphatic polyester molded article having a regular shape, a smooth surface and good mechanical properties can be prepared.
  • a fourth aspect of the present invention resides in the use of the crystalline aliphatic polyester resin powder obtained by the method of the present invention in a method of producing a three-dimensional object, particularly a method in which a three-dimensional object is produced by selective laser sintering.
  • Example 1 is a scanning electron microscope (SEM) image of a poly-L-lactic acid resin powder provided according to Example 1 of the present invention.
  • Example 2 is a scanning electron microscope (SEM) image of a polylactic acid resin powder provided according to Example 3 of the present invention.
  • Figure 3 is a scanning electron micrograph of a commercially available polyamide 12 powder prepared by reprecipitation for selective laser sintering for comparison with the present invention ( Figures 1 and 2).
  • the particle size and particle size distribution of the obtained aliphatic polyester powder were characterized using a laser particle size analyzer (Mastersizer 2000, Malvern, UK).
  • a polylactic acid resin including 50 parts by weight of L-polylactic acid resin and 50 parts by weight of D-polylactic acid resin, and 1000 parts by weight of acetone were placed in an autoclave. Pass high-purity nitrogen to 0.2MPa; then heat up to 130 ° C, at this temperature for 60 minutes; after the end of the constant temperature, the temperature is reduced to 90 ° C at a rate of 1.0 ° C / min, at this temperature for 60 minutes; continue It was lowered to room temperature at a rate of 1.0 ° C / min.
  • the obtained solid-liquid mixture was added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 0.5 parts by weight of calcium stearate, and then centrifuged and vacuum dried to obtain selective laser sintering.
  • a polylactic acid resin including 50 parts by weight of a L-polylactic acid resin and 50 parts by weight of a D-polylactic acid resin, and 800 parts by weight of 2-pentanone were placed in an autoclave. Passing high-purity nitrogen to 0.3 MPa; then heating to 140 ° C, at this temperature for 30 minutes; after the end of the constant temperature, the cooling water is lowered to 85 ° C at a rate of 1.0 ° C / min, at this temperature for 60 minutes; The rate of 1.0 ° C / min was reduced to 20 ° C and held at 20 ° C for 60 minutes.
  • the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 1 part by weight of zinc stearate, and then the material is centrifuged and vacuum-dried to obtain selectivity.
  • the obtained solid-liquid mixture was added with 0.3 parts by weight of antioxidant 1010 and 0.3 parts by weight of antioxidant 168, and 0.9 parts by weight of nano zinc oxide, and then the material was centrifuged and vacuum dried to obtain a selective laser.
  • the obtained solid-liquid mixture is added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, and 0.8 parts by weight of nano-barium sulfate, and then the material is centrifuged and vacuum-dried to obtain a suitable solution.
  • the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 1 part by weight of zinc stearate, and then the mixture is centrifuged and vacuum-dried to obtain a suitable solution.
  • the aliphatic polyester powder obtained by the method of the present invention has a relatively uniform particle size distribution.
  • an aliphatic polyester powder for selective laser sintering is prepared by the method of the present invention, and good effects are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明提供了一种脂肪族聚酯树脂粉末的制备方法。根据本发明得到的结晶型脂肪族聚酯树脂粉末具有良好的抗氧化性、良好的粉末流动性、大小适中的尺寸、圆滑的表面、适宜的堆密度、合适的分散性和粒径分布。该脂肪族聚酯树脂粉末特别适用于选择性激光烧结方法。

Description

一种适用于选择性激光烧结的脂肪族聚酯粉末及其制备方法 技术领域
本发明涉及聚合物加工技术领域,具体涉及一种脂肪族聚酯粉末的制备方法和由此获得的脂肪族聚酯粉末及其用于选择性激光烧结的用途。
背景技术
选择性激光烧结(Selective Laser Sintering,SLS)技术是一种快速成型技术,是目前增材制造技术中应用最广泛且最具市场前景的技术,近年来呈现出快速发展的趋势。SLS技术是由计算机首先对三维实体进行扫描,然后通过高强度激光照射预先在工作台或零部件上铺上的材料粉末,将其选择性地逐层地熔融烧结,进而实现逐层成型的技术。SLS技术具有高度的设计柔性,能够制造出精确的模型和原型,可以成型具有可靠结构的并可以直接使用的零部件,并且缩短生产周期,简化工艺,因此特别适合于新产品的开发。
理论上,能够用于SLS技术的成型材料种类较为广泛,例如聚合物、石蜡、金属、陶瓷以及它们的复合材料。然而,成型材料的性能、性状是SLS技术烧结成功的一个重要因素,它直接影响成型件的成型速度、精度,以及物理、化学性能及其综合性能。目前,能够直接应用于SLS技术并成功制造出尺寸误差小、表面规整、孔隙率低的模塑品的聚合物粉末原料在市场上鲜见。因此,亟待开发和改善适用于SLS技术的聚合物种类及其相应的固体粉末原料。
现有技术中,通常采用粉碎法、如深冷粉碎法来制备适合于 SLS的粉末原料。例如,在CN104031319A中公开了一种用深冷粉碎法得到的聚丙烯粉末。但是,这种方法不仅需要特定设备,而且制备得到的粉末原料颗粒表面较粗糙、粒径不够均匀、形状不规则,不利于烧结成型体的形成,并影响成型体的性能。
另外,还存在沉淀法来制备聚合物粉末原料,例如聚酰胺粉末。在该方法中,通常将聚酰胺溶解于合适的溶剂中,通过搅拌使物料在溶剂中均匀分布并冷却析出粉末沉淀。例如,CN103374223A公开了一种以AABB-型聚酰胺为基础的沉淀聚合物粉末,其通过对通过二胺和二羧酸的缩聚作用获得的聚酰胺进行再沉淀而获得。在该专利描述的方法中,在再沉淀过程中采用醇类溶剂。
此外,CN101138651A公开了一种采用高分子微球进行选择性激光烧结的组织支架的制造方法,其中采用了沉淀法来制造所述高分子微球。在该制备方法中,首先将例如聚乳酸和聚羟基丁酸酯的高分子材料溶于溶剂中。在更进一步的实施例中,提到了例如在未经加热的情况下将聚-L-乳酸溶于二氯甲烷中和将无定型的聚-DL-乳酸溶解于其良溶剂丙酮中从而形成稳定的溶液而不会导致聚乳酸结晶析出。该专利文献并没有关注如何特定选择溶解高分子材料的溶剂。
CN103509197A中公开了一种聚乳酸微粒的制备方法,其中包括在80-140℃下用溶剂溶解聚乳酸和水溶性聚合物,然后借助沉淀剂将聚乳酸微粒降温析出。所述溶剂选自高沸点的醚类和酰胺类溶剂。
发明概述
本发明的第一个方面在于提供一种脂肪族聚酯粉末的制备方法。脂肪族聚酯是一种使用范围很广且生物降解性能很好的高分 子材料,具有良好的综合性能,可满足食品接触要求以及绿色环保要求,因此开发SLS用的脂肪族聚酯固体粉末,可满足个性化的产品应用需求。根据本发明提供的脂肪族聚酯粉末具有合适的尺寸大小、合适的堆密度、匀称的颗粒外形以及粒径分布均匀、粉末流动性好,其尤其适于选择性激光烧结来制备各种模塑品。
根据本发明的脂肪族聚酯树脂粉末的制备方法,其包括以下步骤:
a)将结晶型脂肪族聚酯树脂加热溶解于有机溶剂中,得到脂肪族聚酯树脂溶液;
b)将脂肪族聚酯树脂溶液降温,使固体沉淀析出,得到固液混合物;
c)任选地向固液混合物中加入助剂并混合;
d)固液分离并干燥,得到适用于选择性激光烧结的脂肪族聚酯树脂粉末;
其中,所述有机溶剂选自酮类或环醚类溶剂并且满足:
(1)溶度参数在10.0-25.0MPa0.5、优选14.5-23.0MPa0.5、更优选18.5-20.5MPa0.5范围内,和
(2)沸点在常压下不高于160℃、例如不高于150℃或130℃或100℃。
本发明的第二个方面在于根据本发明的方法获得的脂肪族聚酯树脂粉末。
本发明的第三个方面在于一种选择性激光烧结的方法。
本发明的第四个方面在于根据本发明的方法获得的脂肪族聚酯树脂粉末在制造三维物体的方法中的用途。
发明详述
在根据本发明的脂肪族聚酯树脂粉末的制备方法中,所述的 脂肪族聚酯树脂一般理解为聚合物主链上含有酯基的一类高分子材料的总称并且其是结晶型的,其可以例如通过脂肪族二羧酸与二元醇的直接缩合、脂肪族二羧酸酯与二元醇的酯交换法以及内酯的开环聚合等方法制得。这些方法对于本领域技术人员而言是已知的。
优选地,适用于本发明的结晶型脂肪族聚酯可以选自由C4-C12的脂肪族二羧酸与C2-C10的脂肪族二元醇形成的聚酯,由α-羟基C2-C6羧酸形成的聚酯或者聚己内酯;特别的,所述脂肪族聚酯选自结晶型聚乳酸、聚乙交酯、聚乙丙交酯、聚丁二酸乙二醇酯、聚丁二酸丁二醇酯、聚己二酸丁二醇酯、聚丁二酸/己二酸丁二醇酯共聚物、聚己内酯中的至少一种。优选地,所述脂肪族聚酯树脂是结晶型聚乳酸。
在一个有利的实施方式中,适合作为本发明的脂肪族聚酯的结晶型聚乳酸树脂特别为左旋聚乳酸树脂或右旋聚乳酸树脂或者其两者的任意重量比的混合物,优选两者重量分数为约1∶1的混合物。此外,根据本发明的一个优选的实施方式,所述左旋聚乳酸树脂和右旋聚乳酸树脂的光学纯度≥92%,熔融指数在190℃,2.16kg载量下测定为20-100g/10min,优选30-80g/10min。光学纯度≥92%的聚乳酸树脂具有明显更好的结晶能力,且熔融指数在上述范围内的聚乳酸树脂在熔融后具有良好的流动性,有利于激光烧结工艺。
尽管有机溶剂沉淀技术已经被用于分离和提纯生化物质,尤其是蛋白质,或者用于析出制备晶体。但是,目前关于采用有机溶剂沉淀法制备用于选择性激光烧结技术的树脂材料粉末、特别是结晶型脂肪族聚酯树脂粉末的报道很少。在根据本发明的方法中,用于溶解脂肪族聚酯树脂的有机溶剂的选择是重要的,所选择的有机溶剂应当在常温常压下是上述结晶型脂肪族聚酯树脂的 不良溶剂。所谓不良溶剂应当指的是这样的溶剂,其不会使得结晶型脂肪族聚酯树脂在室温下形成稳定的溶液(即在静置10分钟以上不会有固体析出)。
具体而言,选择所述有机溶剂为溶度参数在10.0-25.0MPa0.5、优选14.5-23.0MPa0.5、更优选18.5-20.5MPa0.5范围内的酮类或环醚类溶剂,并且选择所述溶剂还是低沸点的溶剂。在本发明范畴内,术语“低沸点”指的是溶剂在常压下具有不高于160℃,如不高于150℃或130℃或100℃的沸点。
优选地,在步骤a)中,以100重量份数的所述脂肪族聚酯树脂计,所述有机溶剂的用量为600~1200重量份数,优选为800~1000重量份数。当有机溶剂的用量为该范围内时,能够获得形貌、分散性较好的脂肪族聚酯树脂粉末。
在一个有利的实施方式中,所述有机溶剂选自C3-C10的酮类溶剂或C3-C10的环醚类溶剂,优选选自C3-C5的酮类溶剂或C3-C5的环醚类溶剂,更优选选自丙酮、丁酮、2-戊酮、3-戊酮、环戊酮、甲基异丙基甲酮、四氢呋喃、二氧六环和二氧戊环中的至少一种。
在一个更优选的实施方式中,所述有机溶剂选自丙酮和/或丁酮。
本发明的发明人进一步通过大量的实验探索发现,当使用如上所述有机溶剂,特别是丙酮和/或丁酮来溶解结晶型脂肪族聚酯树脂并降温析出时,能够使结晶型脂肪族聚酯树脂以球形和/或类球形的性状析出,并且具有25~130μm的粒径。所得的脂肪族聚酯粉末树脂表面圆滑,分散性好,尺寸分布小,特别适用于选择性激光烧结技术。
在根据本发明方法的步骤a)中,加热温度取决于各个结晶型脂肪族聚酯的熔点,例如可以有利地将脂肪族聚酯树脂加热到 60~200℃、例如70~190℃或者80~160℃的温度。在一个具体的实施方式中,可以将结晶型聚乳酸、聚乙交酯和聚乙丙交酯加热至100~180℃、优选110~150℃、更优选120~140℃。在另一个具体的实施方式中,将聚丁二酸乙二醇酯与聚丁二酸丁二醇酯加热至70~150℃、优选80~120℃、更优选90~110℃。在再一个具体的实施方式中,将聚己二酸丁二醇酯、聚丁二酸/己二酸丁二醇酯共聚物与聚己内酯加热至60~120℃、优选为60~90℃、更优选60~80℃。
在一个优选实施方案中,为了充分溶解,可以将脂肪族聚酯树脂溶液在所述加热温度下保持30~90分钟。此外,还优选在惰性气体下进行加热,所述惰性气体优选氮气并且其压力可以为0.1~0.5MPa、优选0.2~0.3MPa。
在根据本发明的方法中,步骤a)的溶解过程和步骤b)的再沉淀过程有利地在压力下进行。压力可以通过一个密闭系统内的溶剂的蒸汽压力形成。
此外,可以任选地在步骤a)中加入成核剂,所述成核剂选自二氧化硅、氧化钙、碳酸钙、硫酸钡、水滑石、滑石粉、炭黑、高岭土和云母的至少一种。当加入这些成核剂时,能够提高脂肪族聚酯树脂的结晶速度,并能提高制得的聚酯粉末的表面光洁度、耐热性和力学性能。特别是在所述的脂肪族聚酯树脂为结晶型聚乳酸树脂的情况下,更优选在所述的脂肪族聚酯树脂为如上所述的左旋聚乳酸树脂和右旋聚乳酸树脂的混合物的情况下,加入成核剂。以100重量份结晶型脂肪族聚酯树脂计,所述成核剂用量可以为0.01~2重量份,优选为0.05~1重量份,优选为0.1~0.5重量份。所述成核剂特别优选是二氧化硅和/或滑石粉。
在步骤b)中,优选地,平均降温速率为0.1℃/min~1℃/min。此外,优选将脂肪族聚酯树脂溶液降温至目标温度并在目 标温度保持30~90分钟,所述目标温度优选为10~30℃,例如室温(即约25℃)。
脂肪族聚酯树脂溶液的降温可以一步匀速进行,也可以分步进行。在步骤b)的一个优选的实施方式中,将脂肪族聚酯树脂溶液经由一个或多个中间温度降温至目标温度并在所述中间温度保持30~90分钟,所述中间温度在40~100℃,例如50~90℃的范围内。例如,对于结晶型聚乳酸、聚乙交酯、聚乙丙交酯,所述中间温度优选为70~100℃、优选为80~90℃;对于聚丁二酸乙二醇酯与聚丁二酸丁二醇酯,所述中间温度优选为50~80℃、更优选为60~70℃。这样能够获得更好的析出效果。在采用两个或更多中间温度时,有利地使得相邻两个中间温度之间的温度差值在10℃以上。容易理解,所述中间温度是指步骤a)的加热温度和步骤b)的目标温度之间的温度。
例如,在一个具体的实施方式中,可以将结晶型聚乳酸树脂溶液从加热温度130℃降至90℃时并且在90℃保持温度60分钟;或者直接降至室温。在另一优选实施方案中,如果结晶型聚乳酸树脂溶液从加热温度降至80~90℃时并且在该温度下保持30~90分钟,则能够获得较好的析出效果。
通过本发明的加热和降温方式,能够保证获得粒径分布均匀的粉末颗粒,因而特别适于选择性激光烧结应用。
此外,在根据本发明方法的步骤c)中,可以任选地向固液混合物中加入一种或多种助剂。这些助剂是脂肪族聚酯树脂加工中已知的,尤其包括粉末隔离剂、抗氧剂、抗静电剂、抗菌剂和/或玻璃纤维增强剂。
所述抗氧剂可以选自抗氧剂1010和/或抗氧剂168,优选其两者的组合。进一步优选地,以100重量份结晶型脂肪族聚酯树脂计,所述抗氧剂用量为0.1~0.5重量份,优选为0.2~0.4重 量份。
所述粉末隔离剂可以为金属皂,即基于链烷一元羧酸或二聚酸的碱金属或碱土金属,优选选自硬脂酸钠、硬脂酸钾、硬脂酸锌、硬脂酸钙和硬脂酸铅中的至少一种。此外,所述粉末隔离剂还可以是纳米氧化物和/或纳米金属盐,优选选自二氧化硅、二氧化钛、氧化铝、氧化锌、氧化锆、碳酸钙和硫酸钡纳米颗粒中的至少一种。
在本发明中,以100重量份结晶型脂肪族聚酯树脂计,粉末隔离剂用量为0.01~10重量份数,优选为0.1~5重量份数,优选为0.5~1重量份数。
采用粉末隔离剂可以防止脂肪族聚酯树脂粉末颗粒之间发生粘结,有助于提高其加工性能。另一方面也可以防止抗氧剂的粘结,使其更均匀的分散在脂肪族聚酯树脂中发挥抗氧化性能。更进一步的,粉末隔离剂还能与抗氧剂协同作用,尤其能够获得分散性和流动性良好、适合于选择性激光烧结的脂肪族聚酯树脂粉末。
所述抗静电剂选自炭黑、石墨、石墨烯、碳纳米管以及导电金属粉末/纤维及金属氧化物中的至少一种,优选选自乙炔炭黑、超导炭黑、特导炭黑、天然石墨、可膨胀石墨、单壁碳纳米管、多壁碳纳米管、含有金、银、铜、铁、铝、镍或不锈钢成分的金属粉末/纤维、合金粉末/纤维、复合粉末/纤维、氧化钛、氧化锌、氧化锡、氧化铟和氧化镉中的至少一种。
本发明中,以100重量份结晶型脂肪族聚酯树脂计,所述抗静电剂的用量可以为0.05~15重量份,优选0.1~10重量份,更优选0.25~5重量份。
采用抗静电剂可以赋予选择性激光烧结的脂肪族聚酯制品优异的抗静电性能,同时降低脂肪族聚酯树脂粉末颗粒之间、脂肪 族聚酯树脂粉末颗粒与设备之间的静电作用,提高其加工性能。更进一步的,粉末状的抗静电剂也可以起到一定的隔离作用,改善脂肪族聚酯树脂粉末颗粒之间的分散性和流动性。
所述抗菌剂选自负载型、纳米金属及金属氧化物等无机抗菌剂和/或有机胍类、季铵盐类、酚醚类、吡啶类、咪唑类、异噻唑啉酮类及有机金属类等有机抗菌剂的至少一种,优选选自沸石、磷酸锆、磷酸钙、羟基磷灰石、诸如玻璃或活性炭负载银离子、锌离子或铜离子的负载型抗菌剂、纳米金或纳米银、氧化锌或二氧化钛以及聚六亚甲基胍盐酸盐或聚六亚甲基胍磷酸盐中的至少一种。
本发明中,以100重量份结晶型脂肪族聚酯树脂计,所述抗菌剂的用量可以为0.05~1.5重量份,优选0.05~1.0重量份,更优选0.1~0.5重量份。
采用抗菌剂可以赋予选择性激光烧结的脂肪族聚酯制品优异的抗菌性能,提高脂肪族聚酯制品的卫生安全性。更进一步的,当抗菌剂为无机粉体时,对脂肪族聚酯树脂粉末可以起到辅助隔离作用,改善分散性和流动性。
所述玻璃纤维增强剂为直径5-20μm,长度100-500μm的玻璃纤维。优选为直径5-15μm,长度100-250μm的无碱超短玻璃纤维。本发明中,以100重量份结晶型脂肪族聚酯树脂计,所述玻璃纤维增强剂的用量可以为5~60重量份,优选5~50重量份,更优选10~50重量份。
玻璃纤维的加入可以有效地提高脂肪族聚酯制品的物理机械性能。同时,由于脂肪族聚酯的热收缩率较大,加入玻璃纤维还对脂肪族聚酯制品的尺寸稳定性有一定的帮助。
本发明的第二个方面在于根据本发明的方法获得的结晶型脂肪族聚酯树脂粉末,所述粉末的颗粒为球形和/或类球形,表面圆 滑、分散性和流动性好且粒径分布均匀,堆密度适宜。优选地,脂肪族聚酯树脂粉末颗粒的粒径大小为25~150μm,并且粒径分布D10=24~64μm、D50=48~95μm、D90=71~128μm。根据本发明提供的该脂肪族聚酯树脂粉末尤其适用于选择性激光烧结技术,烧结成功率高,得到的烧结产品与预定产品尺寸误差小,断面孔洞少,外形匀称并且机械性能好。
此外,本发明的第三个方面在于提供一种选择性激光烧结的方法,其中将通过如上所述的方法制备的结晶型脂肪族聚酯树脂粉末作为烧结粉末原料。通过本发明提供的该选择性激光烧结方法,能够制备得到具有规则外形、表面匀称光滑且机械性能良好的脂肪族聚酯模塑品。
最后,本发明的第四个方面在于根据本发明的方法获得的结晶型脂肪族聚酯树脂粉末在制造三维物体的方法中的用途,特别是其中采用选择性激光烧结来制造三维物体的方法。
附图说明
图1是根据本发明实施例1提供的聚-L-乳酸树脂粉末的扫描电子显微镜(SEM)图。
图2是根据本发明实施例3提供的聚乳酸树脂粉末的扫描电子显微镜(SEM)图。
图3是市售的用于选择性激光烧结的通过再沉淀法制备的聚酰胺12粉末的扫描电子显微镜图,用于与本发明(图1和图2)对比。
具体实施方式
下面将通过具体实施例对本发明做进一步地说明,但应理解,本发明的范围并不限于此。
在下列实施例中,采用激光粒度仪(Mastersizer 2000,英国Malvern公司)表征所获得的脂肪族聚酯粉末的粒径大小和粒径分布。
实施例1
将100重量份的聚-L-乳酸树脂和1000重量份的丙酮置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至120℃,在此温度下恒温30分钟;恒温结束后经冷却水以0.5℃/min的速率降至85℃,恒温60分钟;最后经冷却水降温至室温。得到的固液混合物中加入0.2重量分数的抗氧剂1010和0.2重量分数的抗氧剂168,以及0.6重量分数的纳米碳酸钙后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乳酸树脂粉末。经激光粒度仪测定,本实施例得到的聚乳酸树脂粉末的粒径大小为20~130μm,粒径分布为D10=34μm,D50=61μm,D90=102μm。
实施例2
将100重量份的聚-L-乳酸树脂和1200重量份的丁酮置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至125℃,在此温度下恒温60分钟;恒温结束后经冷却水以0.5℃/min的速率降至90℃,在此温度下恒温60分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量分数的抗氧剂1010和0.15重量分数的抗氧剂168,以及0.8重量分数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乳酸树脂粉末。经激光粒度仪测定,本实施例得到的聚乳酸树脂粉末的粒径大小为45~115μm,粒径分布为D10=60μm,D50=79μm,D90=100μm。
实施例3
将100重量份的聚乳酸树脂,其中包括50重量分数的左旋聚乳酸树脂和50重量分数的右旋聚乳酸树脂,和1000重量份的丙酮置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至130℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至90℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量分数的抗氧剂1010和0.25重量分数的抗氧剂168,以及0.5重量分数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚乳酸树脂粉末。采用激光粒度仪表征所获得的聚乳酸树脂粉末的粒径大小为30~120μm,粒径分布为D10=44μm,D50=76μm,D90=96μm。
实施例4
将100重量份的聚乳酸树脂,其中包括50重量分数的左旋聚乳酸树脂和50重量分数的右旋聚乳酸树脂,和800重量份的2-戊酮置于高压反应釜中。通入高纯氮气至0.3MPa;随后升温至140℃,在此温度下恒温30分钟;恒温结束后经冷却水以1.0℃/min的速率降至85℃,在此温度下恒温60分钟;以1.0℃/min的速率降至20℃,并在20℃保持60分钟。得到的固液混合物中加入0.25重量分数的抗氧剂1010和0.25重量分数的抗氧剂168,以及1重量分数的硬脂酸锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乳酸树脂粉末。经激光粒度仪测定,本实施例得到的聚乳酸树脂粉末的粒径大小为35~130μm,粒径分布为D10=49μm,D50=85μm,D90=111μm。
实施例5
将100重量份的聚乙交酯树脂和1000重量份的二氧六环置于高压反应釜中。通入高纯氮气至0.3MPa;随后升温至180℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至120℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.1重量分数的抗氧剂1010和0.1重量分数的抗氧剂168,以及0.75重量分数的纳米二氧化硅后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙交酯树脂粉末。经激光粒度仪测定,本实施例得到的聚乙交酯树脂粉末的粒径大小为30~90μm,粒径分布为D10=40μm,D50=52μm,D90=81μm。
实施例6
将100重量份的聚乙交酯树脂和800重量份的N,N-二甲基甲酰胺置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至170℃,在此温度下恒温80分钟;恒温结束后经冷却水以1.0℃/min的速率降至120℃,在此温度下恒温70分钟;以1.0℃/min的速率降至20℃,并在20℃保持30分钟。得到的固液混合物中加入0.3重量分数的抗氧剂1010和0.3重量分数的抗氧剂168,以及0.9重量分数的纳米氧化锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙交酯树脂粉末。经激光粒度仪测定,本实施例得到的聚乙交酯树脂粉末的粒径大小为30~100μm,粒径分布为D10=45μm,D50=60μm,D90=86μm。
实施例7
将100重量份的聚乙丙交酯树脂和1200重量份的二氧戊环置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至120℃,在此温度下恒温60分钟;恒温结束后经冷却水以0.5℃/min的速 率降至80℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的纳米硫酸钡后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙丙交酯树脂粉末。经激光粒度仪测定,本实施例得到的聚乙丙交酯树脂粉末的粒径大小为45~150μm,粒径分布为D10=64μm,D50=92μm,D90=128μm。
实施例8
将100重量份的聚丁二酸乙二醇酯树脂和800重量份的N,N-二甲基乙酰胺置于高压反应釜中。通入高纯氮气至0.3MPa;随后升温至110℃,在此温度下恒温30分钟;恒温结束后经冷却水以1.0℃/min的速率降至60℃,在此温度下恒温60分钟;以1.0℃/min的速率降至20℃,并在20℃保持60分钟。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及1重量份数的硬脂酸锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚丁二酸乙二醇酯树脂粉末。经激光粒度仪测定,本实施例得到的聚丁二酸乙二醇酯树脂粉末的粒径大小为45~140μm,粒径分布为D10=59μm,D50=95μm,D90=125μm。
实施例9
将100重量份的、聚丁二酸丁二醇酯树脂和1200重量份的丙酮置于高压反应釜中。通入高纯氮气至0.1MPa;随后升温至100℃,在此温度下恒温120分钟;以0.1℃/min的速率降至室温。得到的固液混合物中加入0.1重量份数的抗氧剂1010和0.1重量份数的抗氧剂168,以及0.75重量份数的纳米二氧化硅后,将物料经 离心分离和真空干燥后得到适用于选择性激光烧结的、聚丁二酸丁二醇酯树脂粉末。经激光粒度仪测定,本实施例得到的、聚丁二酸丁二醇酯树脂粉末的粒径大小为30~94μm,粒径分布为D10=47μm,D50=57μm,D90=78μm。
实施例10
将100重量份的聚己内酯树脂和400重量份的四氢呋喃置于高压反应釜中,通入高纯氮气至0.2MPa;随后升温至70℃,在此温度下恒温60分钟;恒温结束后经冷却水以0.5℃/min的速率降至室温,恒温60分钟。得到的固液混合物中加入0.2重量分数的抗氧剂1010和0.2重量分数的抗氧剂168,以及0.6重量分数的纳米碳酸钙后,最后取出的物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚己内酯树脂粉末。经激光粒度仪测定,本实施例得到的聚己内酯树脂粉末的粒径大小为20~120μm,粒径分布为D10=30μm,D50=65μm,D90=110μm。
实施例11
将100重量份的聚己二酸丁二醇酯树脂和400重量份的环戊酮置于高压反应釜中,通入高纯氮气至0.2MPa;随后升温至70℃,在此温度下恒温60分钟;恒温结束后经冷却水以0.1℃/min的速率降至室温,恒温30分钟。得到的固液混合物中加入0.15重量分数的抗氧剂1010和0.15重量分数的抗氧剂168,以及0.8重量分数的硬脂酸钠后,最后取出的物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚己内酯树脂粉末。经激光粒度仪测定,本实施例得到的聚己内酯树脂粉末的粒径大小为45~140μm,粒径分布为D10=65μm,D50=93μm,D90=122μm。
实施例12
将100重量份的、聚丁二酸/己二酸丁二醇酯共聚物树脂和400重量份的丁酮置于高压反应釜中,通入高纯氮气至0.2MPa;随后升温至70℃,在此温度下恒温60分钟;恒温结束后经冷却水以1℃/min的速率降至室温,恒温90分钟。得到的固液混合物中加入0.15重量分数的抗氧剂1010和0.15重量分数的抗氧剂168,以及0.8重量分数的硬脂酸钠后,最后取出的物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚己内酯树脂粉末。经激光粒度仪测定,本实施例得到的聚己内酯树脂粉末的粒径大小为25~92μm,粒径分布为D10=44μm,D50=55μm,D90=71μm。
对比例1
将100重量份的聚-L-乳酸树脂和1000重量份的氯仿置于高压反应釜中,并且在室温不密闭的情况下放置30分钟,即可使聚乳酸溶解。随后在室温下放置60分钟,最后得到稳定均匀的聚乳酸氯仿溶液,无法得到聚乳酸树脂粉末。
对比例2
将100重量份的聚对苯二甲酸乙二酯树脂和1000重量份的丙酮置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至120℃,在此温度下恒温30分钟;恒温结束后经冷却水以0.5℃/min的速率降至85℃,恒温60分钟;最后经冷却水降温至室温。得到固液混合物,其中固体形状未发生变化,为初始聚对苯二甲酸乙二酯的原料形状,因此无法得到粒径分布均匀且匀称的聚对苯二甲酸乙二酯树脂粉末。
对比例3
将100重量份的聚-L-乳酸树脂和1000重量份的异佛尔酮(沸点210℃,溶度参数18.6MPa0.5)置于高压反应釜中并且在不密闭的情况下加热到120℃,回流使聚-L-乳酸树脂溶解。随后经冷却水以0.5℃/min的速率降至85℃,恒温60分钟;最后经冷却水降温至室温。得到稳定均匀的聚乳酸异佛尔酮溶液,无法得到聚乳酸树脂粉末。
从粒度测定结果来看,根据本发明的方法得到的脂肪族聚酯粉末粒径分布比较均匀。对于脂肪族聚酯树脂材料,通过本发明的方法制备用于选择性激光烧结的脂肪族聚酯粉末,获得了良好的效果。
虽然本发明已作了详细描述,但对本领域技术人员来说,在本发明精神和范围内的修改将是显而易见的。此外,应当理解的是,本发明记载的各方面、不同具体实施方式的各部分、和列举的各种特征可被组合或全部或部分互换。在上述的各个具体实施方式中,那些参考另一个具体实施方式的实施方式可适当地与其它实施方式组合,这是将由本领域技术人员所能理解的。此外,本领域技术人员将会理解,前面的描述仅是示例的方式,并不旨在限制本发明。

Claims (16)

  1. 一种脂肪族聚酯树脂粉末的制备方法,其包括以下步骤:
    a)将结晶型脂肪族聚酯树脂加热溶解于有机溶剂中,得到脂肪族聚酯树脂溶液;
    b)将脂肪族聚酯树脂溶液降温,使固体沉淀析出,得到固液混合物;
    c)任选地向固液混合物中加入助剂并混合;
    d)固液分离并干燥,得到适用于选择性激光烧结的脂肪族聚酯树脂粉末;
    其中,所述有机溶剂选自酮类或环醚类溶剂并且满足:
    (1)溶度参数在10.0-25.0MPa0.5、优选14.5-23.0MPa0.5、更优选18.5-20.5MPa0.5范围内,和
    (2)沸点在常压下不高于160℃、例如不高于150℃或130℃或100℃。
  2. 根据权利要求1所述的方法,其特征在于,所述结晶型脂肪族聚酯选自由C4-C12的脂肪族二羧酸与C2-C10的脂肪族二元醇形成的聚酯、由α-羟基C2-C6羧酸形成的聚酯或者聚己内酯;优选选自结晶型聚乳酸、聚乙交酯、聚乙丙交酯、聚丁二酸乙二醇酯、聚丁二酸丁二醇酯、聚己二酸丁二醇酯、聚丁二酸/己二酸丁二醇酯共聚物、聚己内酯中的至少一种。
  3. 根据权利要求2所述的方法,其特征在于,所述脂肪族聚酯选自结晶型聚乳酸,优选左旋聚乳酸树脂和右旋聚乳酸树脂的任意重量比的混合物,更优选两者重量分数为约1∶1的混合物。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述有机溶剂选自C3-C10的酮类溶剂或C3-C10的环醚类溶剂;优选选自C3-C5的酮类溶剂或C3-C5的环醚类溶剂;更优选选自丙酮、丁 酮、2-戊酮、3-戊酮、环戊酮、甲基异丙基甲酮、四氢呋喃、二氧六环和二氧戊环中的至少一种。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,以100重量份数的所述结晶型脂肪族聚酯树脂计,所述有机溶剂的用量为600~1200重量份数,优选为800~1000重量份数。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,在步骤a)中将结晶型脂肪族聚酯树脂加热到60~200℃、例如70~190℃或者80~160℃的温度;并优选在所述加热温度下保持30~90分钟。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,在步骤b)中以平均降温速率0.1℃/min~1℃/min将结晶型脂肪族聚酯树脂溶液降温至目标温度,并优选在该目标温度下保持30~90分钟,所述目标温度优选为10~30℃。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,在步骤b)中,将结晶型脂肪族聚酯树脂溶液经由一个或多个中间温度降温至目标温度并在所述中间温度保持30~90分钟,所述中间温度在40~100℃或50~90℃范围内。
  9. 根据权利要1至8任一项所述的方法,其特征在于,在步骤a)中加入成核剂,所述成核剂优选自二氧化硅、氧化钙、碳酸钙、硫酸钡、水滑石、滑石粉、炭黑、高岭土和云母的至少一种。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,以100重量份结晶型脂肪族聚酯树脂计,所述成核剂用量为0.01~2重量份,优选0.05~1重量份,更优选0.1~0.5重量份。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,在步骤c)中所述助剂选自抗氧剂、粉末隔离剂、抗静电剂、抗菌剂和/或玻璃纤维增强剂,优选选自抗氧剂和/或粉末隔离剂。
  12. 根据权利要求11所述的方法,其特征在于,所述抗氧剂选自抗氧剂1010和/或抗氧剂168,并且优选以100重量份结晶型脂肪族聚酯树脂计,所述抗氧剂用量为0.1~0.5重量份,优选0.2~0.4重量份。
  13. 根据权利要求11所述的方法,其特征在于,所述粉末隔离剂选自基于链烷一元羧酸或二聚酸的碱金属或碱土金属、纳米氧化物和纳米金属盐中的至少一种,优选选自硬脂酸钠、硬脂酸钾、硬脂酸锌、硬脂酸钙、硬脂酸铅、二氧化硅、二氧化钛、氧化铝、氧化锌、氧化锆、碳酸钙和硫酸钡中的至少一种;并且优选以100重量份结晶型脂肪族聚酯树脂计,所述粉末隔离剂的用量为0.01~10重量份,优选0.1~5重量份,更优选0.5~1重量份。
  14. 根据权利要求1至13任一项所述的方法制备得到的结晶型脂肪族聚酯树脂粉末,所述粉末的颗粒为球形和/或类球形,颗粒的粒径大小为25~150μm,并且粒径分布D10=24~64μm、D50=48~95μm和D90=71~128μm。
  15. 一种选择性激光烧结的方法,其中将根据权利要求1至13任一项所述的方法制备的结晶型脂肪族聚酯树脂粉末作为烧结粉末原料。
  16. 根据权利要求1至13任一项所述的方法制备得到的结晶型脂肪族聚酯树脂粉末在制造三维物体的方法的用途,特别是其中采用选择性激光烧结来制造三维物体的方法。
PCT/CN2016/079855 2015-10-13 2016-04-21 一种适用于选择性激光烧结的脂肪族聚酯粉末及其制备方法 WO2017063352A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016004673.1T DE112016004673B4 (de) 2015-10-13 2016-04-21 Aliphatisches Polyesterharzpulver, dessen Herstellungsverfahren und Verwendung, sowie selektives Lasersinterverfahren
JP2018518951A JP6836588B2 (ja) 2015-10-13 2016-04-21 選択的レーザー焼結に好適な脂肪族ポリエステル樹脂粉末及びその調製方法
US15/953,062 US10787546B2 (en) 2015-10-13 2018-04-13 Aliphatic polyester resin powder suitable for selective laser sintering and its preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510670526.5 2015-10-13
CN201510670526.5A CN106589860B (zh) 2015-10-13 2015-10-13 用于选择性激光烧结的聚乳酸树脂粉末及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/953,062 Continuation-In-Part US10787546B2 (en) 2015-10-13 2018-04-13 Aliphatic polyester resin powder suitable for selective laser sintering and its preparation method

Publications (1)

Publication Number Publication Date
WO2017063352A1 true WO2017063352A1 (zh) 2017-04-20

Family

ID=58517050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079855 WO2017063352A1 (zh) 2015-10-13 2016-04-21 一种适用于选择性激光烧结的脂肪族聚酯粉末及其制备方法

Country Status (5)

Country Link
US (1) US10787546B2 (zh)
JP (1) JP6836588B2 (zh)
CN (1) CN106589860B (zh)
DE (1) DE112016004673B4 (zh)
WO (1) WO2017063352A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3536741A1 (en) * 2018-03-07 2019-09-11 Xerox Corporation Powders for laser sintering
EP3569634A1 (en) * 2018-05-17 2019-11-20 Xerox Corporation Curable unsaturated crystalline polyester powder and methods of making the same
KR20200049832A (ko) * 2017-09-03 2020-05-08 에보니크 오퍼레이션즈 게엠베하 적층 가공을 위한 생체적합성 중합체 분말
US10703859B2 (en) 2018-05-17 2020-07-07 Xerox Corporation Compositions comprising unsaturated crystalline polyester for 3D printing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106566212B (zh) * 2015-10-13 2018-08-17 中国石油化工股份有限公司 用于选择性激光烧结的抗菌聚乳酸树脂粉末及其制备
US10105876B2 (en) * 2015-12-07 2018-10-23 Ut-Battelle, Llc Apparatus for generating and dispensing a powdered release agent
CN111868139B (zh) 2018-03-13 2023-02-21 伊士曼化工公司 用于增材制造应用的构建材料
CN109735071A (zh) * 2018-12-12 2019-05-10 苏州聚复高分子材料有限公司 用于材料挤出式增材制造的复合材料及其制备方法
EP3904097B1 (en) * 2018-12-26 2023-10-25 Mitsubishi Chemical Corporation Powder for powder lamination molding, its manufacturing method and use
CN115006591A (zh) * 2022-06-13 2022-09-06 江西理工大学 一种具有抗菌和骨缺损修复的双功能骨支架的制备方法
CN115678145B (zh) * 2022-09-29 2024-02-27 神华(北京)新材料科技有限公司 高流动性的粉体材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068890A2 (en) * 2000-03-10 2001-09-20 Metabolix, Inc. Method of extracting polyhydroxyalkanoate from a solution
CN1856534A (zh) * 2003-07-25 2006-11-01 德古萨公司 聚合物和包含聚磷酸铵的阻燃剂的粉状组合物,其制备方法和由该粉末制备的模制件
US20130131209A1 (en) * 2010-08-03 2013-05-23 Kureha Corporation Polyglycolic Acid Particle, Production Process of Polyglycolic Acid Particle, and Use Thereof
CN103509198A (zh) * 2012-06-28 2014-01-15 东丽先端材料研究开发(中国)有限公司 一种聚乳酸粒子的制备方法
CN105585720A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 用于选择性激光烧结的聚乳酸树脂粉末及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515700B1 (ko) * 2000-07-17 2005-09-15 미쯔이카가쿠 가부시기가이샤 락트산계 수지조성물 및 그것으로 이루어진 성형체
JP4438395B2 (ja) * 2003-12-12 2010-03-24 東レ株式会社 脂肪族ポリエステル樹脂組成物の成形方法
JP2005226057A (ja) * 2004-02-16 2005-08-25 Asahi Kasei Chemicals Corp 脂肪族ポリエステル系樹脂組成物成形体
JP4038531B2 (ja) * 2004-07-05 2008-01-30 桜宮化学株式会社 金属製缶蓋被覆用塗料、該塗料を塗布した金属製缶蓋およびそれらの製造方法
CN101138651B (zh) * 2007-09-14 2012-04-18 华中科技大学 用高分子微球进行选择性激光烧结的组织支架的制造方法
BRPI0908279A2 (pt) * 2008-03-04 2018-05-29 Mitsui Chemicals Inc resina de poliéster, processo para a produção da resina de poliéster, película e artigo moldado
CN102140246A (zh) * 2010-12-21 2011-08-03 湖南华曙高科技有限责任公司 一种制备选择性激光烧结用尼龙粉末的方法
CN102399371B (zh) * 2011-10-17 2015-11-04 湖南华曙高科技有限责任公司 一种用于选择性激光烧结的聚酰胺粉末制备方法
DE102012205908A1 (de) 2012-04-11 2013-10-17 Evonik Industries Ag Polymerpulver mit angepasstem Schmelzverhalten
CN103509197A (zh) * 2012-06-14 2014-01-15 东丽先端材料研究开发(中国)有限公司 一种聚乳酸微粒的制备方法
CN104031319B (zh) 2014-06-30 2016-08-24 广东银禧科技股份有限公司 选择性激光烧结聚丙烯粉末材料的制备及应用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068890A2 (en) * 2000-03-10 2001-09-20 Metabolix, Inc. Method of extracting polyhydroxyalkanoate from a solution
CN1856534A (zh) * 2003-07-25 2006-11-01 德古萨公司 聚合物和包含聚磷酸铵的阻燃剂的粉状组合物,其制备方法和由该粉末制备的模制件
US20130131209A1 (en) * 2010-08-03 2013-05-23 Kureha Corporation Polyglycolic Acid Particle, Production Process of Polyglycolic Acid Particle, and Use Thereof
CN103509198A (zh) * 2012-06-28 2014-01-15 东丽先端材料研究开发(中国)有限公司 一种聚乳酸粒子的制备方法
CN105585720A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 用于选择性激光烧结的聚乳酸树脂粉末及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200049832A (ko) * 2017-09-03 2020-05-08 에보니크 오퍼레이션즈 게엠베하 적층 가공을 위한 생체적합성 중합체 분말
JP2020532446A (ja) * 2017-09-03 2020-11-12 エボニック オペレーションズ ゲーエムベーハー 付加製造のための生体適合性ポリマー粉末
JP7402393B2 (ja) 2017-09-03 2023-12-21 エボニック オペレーションズ ゲーエムベーハー 付加製造のための生体適合性ポリマー粉末
KR102645701B1 (ko) * 2017-09-03 2024-03-12 에보니크 오퍼레이션즈 게엠베하 적층 가공을 위한 생체적합성 중합체 분말
EP3536741A1 (en) * 2018-03-07 2019-09-11 Xerox Corporation Powders for laser sintering
KR20190109716A (ko) * 2018-03-07 2019-09-26 제록스 코포레이션 레이저 소결용 분말
US10577458B2 (en) 2018-03-07 2020-03-03 Xerox Corporation Powders for laser sintering
KR102448841B1 (ko) 2018-03-07 2022-09-29 제록스 코포레이션 레이저 소결용 분말
EP3569634A1 (en) * 2018-05-17 2019-11-20 Xerox Corporation Curable unsaturated crystalline polyester powder and methods of making the same
US10655025B2 (en) 2018-05-17 2020-05-19 Xerox Corporation Curable unsaturated crystalline polyester powder and methods of making the same
US10703859B2 (en) 2018-05-17 2020-07-07 Xerox Corporation Compositions comprising unsaturated crystalline polyester for 3D printing

Also Published As

Publication number Publication date
CN106589860A (zh) 2017-04-26
DE112016004673T5 (de) 2018-06-21
DE112016004673B4 (de) 2023-02-23
CN106589860B (zh) 2018-10-16
JP6836588B2 (ja) 2021-03-03
US10787546B2 (en) 2020-09-29
JP2018532853A (ja) 2018-11-08
US20180230274A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2017063352A1 (zh) 一种适用于选择性激光烧结的脂肪族聚酯粉末及其制备方法
WO2017063351A1 (zh) 用于选择性激光烧结的聚烯烃树脂粉末及其制备方法
US10479733B2 (en) Powder comprising polymer-coated core particles comprising metals, metal oxides, metal nitrides or semimetal nitrides
KR101795527B1 (ko) Sls-3d 프린터용 pi 복합분말 및 이의 제조방법
WO2019122143A1 (en) A method of making a shaped article comprising printing layers of a polymer composition comprising at least one peek-pemek copolymer
US20180148572A1 (en) Method for the thermal treatment of poly-arylene ether ketone ketone powders suitable for laser sintering
JP2017132076A (ja) 溶融積層型3dプリンタ用光沢性フィラメント
JP2021053887A (ja) 粉末床溶融結合方式による3dプリンター用樹脂粉粒体およびその製造方法、および樹脂粉粒体を用いた三次元造形物の製造方法
WO2018224247A1 (en) Process for preparing particles of polyphenylene sulfide polymer
EP3635036A1 (en) Process for preparing particles of polyphenylene sulfide polymer
EP3986953A1 (en) A method of making a peek-peoek copolymer and copolymer obtained from the method
KR20170132012A (ko) Sls-3d 프린터용 pi 분말 및 이의 제조방법
US20230056630A1 (en) Method of producing polycaprolactone powder by reprecipitation and subsequent use of same in additive manufacturing
JP5199611B2 (ja) ポリエステル組成物
JP2022530398A (ja) ポリ(アリーレンスルフィド)(pas)ポリマーを含む粉末材料(p)及びその付加製造のための使用
KR20230125306A (ko) 낮은 융점을 갖는 pekk-기반 분말, 소결 구성 공정에서의용도 및 상응하는 물체
EP4168489A1 (en) Polymeric material and use thereof
CN117858699A (zh) 通过再沉淀生产聚已酸内酯粉末的方法及其在增材制造中的后续用途
WO2020254096A1 (en) Peek-peodek copolymer and method of making the copolymer
KR100783310B1 (ko) 입자크기분포가 균일하고, 벌크밀도가 높은 레이저 소결용고분자 분말
JP2009149808A (ja) ポリエステル樹脂組成物及びそれを用いた二軸配向フィルム
JP2009280757A (ja) ポリエステル組成物およびそれを用いた二軸配向フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854741

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2018518951

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112016004673

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854741

Country of ref document: EP

Kind code of ref document: A1