WO2017061267A1 - 高効率乾式再処理用電解槽および電解法 - Google Patents

高効率乾式再処理用電解槽および電解法 Download PDF

Info

Publication number
WO2017061267A1
WO2017061267A1 PCT/JP2016/077666 JP2016077666W WO2017061267A1 WO 2017061267 A1 WO2017061267 A1 WO 2017061267A1 JP 2016077666 W JP2016077666 W JP 2016077666W WO 2017061267 A1 WO2017061267 A1 WO 2017061267A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeder
anode
anode electrode
fuel rod
metal fuel
Prior art date
Application number
PCT/JP2016/077666
Other languages
English (en)
French (fr)
Inventor
修生 澄田
勲 上野
健彦 横峯
Original Assignee
株式会社クリア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリア filed Critical 株式会社クリア
Priority to EP16853421.2A priority Critical patent/EP3300082B1/en
Priority to CN201680029317.5A priority patent/CN108885913B/zh
Priority to JP2017544441A priority patent/JP6788899B2/ja
Priority to US15/740,994 priority patent/US10400343B2/en
Publication of WO2017061267A1 publication Critical patent/WO2017061267A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/46Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a structure of a crucible for anode electrolysis using a high-temperature molten salt and an electrolysis apparatus including the same for dry reprocessing spent metal fuel containing uranium (U) and / or plutonium (Pu), and
  • the present invention relates to an electrolysis method using the same.
  • the present invention relates to a method for enabling radioactive waste volume reduction by accelerating the decay rate of radioactive elements discharged in the dry reprocessing process.
  • the reprocessing process for recovering U237, U233, etc. from spent nuclear fuel rods is a wet reprocessing called PUREX method using an aqueous solution based on tributyl phosphate (TBP), nitric acid, etc., and a molten salt electrolysis method
  • TBP tributyl phosphate
  • nitric acid nitric acid
  • molten salt electrolysis method It is roughly divided into dry reprocessing using Conventionally, spent oxide fuel rods have been processed by wet reprocessing. In wet reprocessing, it is first necessary to dissolve the oxide fuel, and for this reason, strongly acidic nitric acid has been used.
  • wet reprocessing facility is still not operating in Japan.
  • large costs are required to operate the wet reprocessing facility.
  • the dry reprocessing method is small-scale and can be reduced in cost, and critical management is easy.
  • This dry reprocessing method was developed for metal fuels, and is a process that mainly extracts U and Pu from U-Pu-Zr ternary alloy fuel rods.
  • neutron energy is high in the fast reactor, and it is not necessary to purify the fuel with high purity. Therefore, dry reprocessing with a low purity of the recovered material is easy to apply.
  • the fuel assembly (bundle of fuel pins) taken out from the fast reactor is decomposed in the “assembly disassembly process”. Subsequently, these fuel pins are sheared to a length of about several centimeters in a “fuel element shearing process”.
  • the spent fuel chip thus obtained is dissolved in a lithium chloride-potassium chloride (LiCl-KCl) molten salt in the next "electrolytic refining process”, and the actinide element is applied to the solid cathode or liquid cadmium (Cd) cathode. Separate and recover from fission products.
  • LiCl-KCl lithium chloride-potassium chloride
  • Solvents such as molten salts and liquid metal cadmium are attached to the actinoid elements recovered here. For this reason, these deposits are separated by distillation at a high temperature in the “cathode recovery product treatment step”.
  • the actinoid metal thus obtained is melted and cast into a rod-shaped fuel alloy in a high-temperature “injection molding process” by adding zirconium (Zr) or U so as to have a target concentration.
  • This fuel rod becomes a new fuel pin by being sealed in a stainless steel cladding tube in the “fuel element sealing step”, and further bundled in the assembly in the “assembly assembly step” and reloaded into the fast reactor.
  • FIG. 1 is a conceptual diagram of a dry reprocessing system. Referring to this, the chopped metal fuel is put into a stainless steel cage anode structure, and the metal fuel is dissolved in an anode (anode) according to the following formula in a LiCl—KCl salt melted at about 500 ° C. Let Therefore, it is necessary to use a material that can withstand high-temperature molten salt in the crucible.
  • the Argonne National Laboratory which developed dry reprocessing, uses a graphite crucible coated with yttria (Y 2 O 3 ), but it has also been proposed to develop a material that is more heat and corrosion resistant. .
  • Y 2 O 3 yttria
  • FIG. 2 shows a schematic cross-sectional view of an example of a conventional dry reprocessing electrolysis apparatus.
  • an anode electrode feeder (anode) 30, a cathode electrode feeder (cathode) 40, and a liquid Cd electrode feeder 50 are installed in the crucible 10, and the molten salt 20 of LiCl—KCl is placed in the crucible. Then, argon gas is injected into the space above, and a lid 12 is attached to the crucible to create an argon gas atmosphere.
  • the anode pole power supply body is provided with a metallic molten salt for housing the metal fuel pin and a porous rod 33 through which the anode-dissolved metal ions can pass.
  • the cathode 41 at the tip of the rod-shaped cathode electrode feeder 40 is integrated.
  • a plurality of cathode electrode feeders may be disposed around the anode electrode feeder in order to reduce overvoltage of the cathode electrode and improve electrolytic refining efficiency.
  • a Cd electrode feeder 50 that is a liquid metal at a high temperature is provided. This power feeder is immersed in and electrically connected to the liquid metal Cd 62 in the liquid metal Cd tank 60.
  • a coil is provided on the outer periphery of the crucible and heated using an electromagnetic induction phenomenon.
  • Non-patent Document 2 shows the positional relationship of redox potentials of these metals / metal ions according to P. Soucek et al. (Non-patent Document 2). As shown in FIG. 3, the oxidation-reduction potential depends on the electrode material, but in the case of electrolytic refining, it is advantageous that the change in oxidation-reduction potential is larger, and therefore W or Al is desirable.
  • the metal reduction potentials of many other MA elements, alkali metals, alkaline earth metals, rare earth elements, etc. are at a lower level. Utilizing such a difference in oxidation-reduction potential, a cathode electrode that can be set to the reduction potential of U and / or Pu and a liquid metal Cd cathode electrode that can be set to the reduction potential of other metal ions are separately installed, U and / or Pu can be separated and refined.
  • a simulated spent metal fuel rod sample was first prepared.
  • an actinide element metal is required, but oxides such as U, Pu, Am, Cm, and Np, which are metal oxides that are difficult to be electrolytically reduced, are reduced by using metal Li to simulate spent metal fuel.
  • a bar sample was prepared. Actinide element oxide and LiCl—KCl were put in a crucible and dissolved in a molten salt at 1000 ° C. After the melting operation, metal Li was further added to the crucible, and reduction treatment was performed at about 1000 ° C. using argon gas as a cover gas. By this process, a simulated spent metal fuel rod sample was produced.
  • anode dissolution rate of metal fuel a. Contact: In the present invention, a metal fuel rod element (fuel pin) chopped into a saddle type anode electrode is put into electrolysis. As the anodic dissolution proceeds, the surface of the metal fuel pin is dissolved, so that there is a high possibility that the contact between the vertical anode and the metal fuel rod will be poor. In order to efficiently dissolve the anode of the metal fuel pin, it is necessary to take measures against this contact failure.
  • b. Potential As mentioned above, anodic dissolution of metals is strongly dependent on the potential.
  • Temperature The higher the temperature, the higher the dissolution rate.
  • d. Flow rate It is necessary to quickly remove the dissolved product from the metal surface.
  • U and Pu metal ions are selectively reduced.
  • U and Pu can be selectively reduced at a potential nobler than the reduction potential of alkali metal AL, alkaline earth metal ALE, or the like. Then, the potential is controlled to a potential suitable for a phenomenon in which U 3+ and Pu 3+ ions dissolved in the anode are reduced to metal on the cathode electrode surface. As a result, alkali metal ions and alkaline earth metal ions are not reduced to metal and are present in an ionic state, so that separation becomes easy.
  • Most of MA and some of U, Pu ions, etc. are absorbed by the liquid metal Cd cathode. d.
  • a rod-shaped main cathode electrode for reducing U and Pu to metal and a liquid metal Cd cathode electrode for collecting the remaining U, Pu, MA and other elements are installed.
  • Insoluble materials fall in the process of anodic dissolution of spent nuclear fuel rods placed in vertical anodes. The falling object is absorbed by the liquid metal Cd.
  • the gap between the anode and the cathode is similar to the coil used in the magnetron sputtering method (Non-patent Document 3).
  • a coil is set in the crucible so that a magnetic field is formed substantially perpendicular to the connecting direction.
  • An object of the present invention is to solve the problems hindering the efficiency of the dry reprocessing method mentioned above and further improve the electrolytic refining efficiency.
  • the electrolytic cell of the present invention for realizing it is A spent metal fuel rod containing an element composed of zirconium (Zr) and uranium (U), U and plutonium (Pu), or Zr, U and Pu is dissolved by anodic electrolysis in a molten salt filled in a crucible. A molten salt electrolytic cell in which U and / or Pu is again reduced and deposited on the cathode electrode surface, and is electrolytically refined.
  • An anode electrode feeder having a mechanism for recovering deterioration of contact resistance between the metal fuel rod and the anode electrode as the anode electrolysis progresses;
  • a cathode electrode feeder coupled to the cathode electrode controlled to a potential in a range where U and / or Pu ions are reduced to metal;
  • a heating mechanism for locally heating the metal fuel rod, and / or an excitation mechanism for bringing the metal fuel rod into an excited state;
  • a solenoid coil or a permanent magnet is disposed between the anode electrode feeder and the cathode electrode feeder so as to improve the separation efficiency of the U and / or Pu ions by a combination of an electric field and a magnetic field.
  • the present invention includes an electrolysis method in which the electrolytic refining efficiency is improved using the above electrolytic cell.
  • the present invention provides a mechanism for recovering the deterioration of contact resistance between the metal fuel rod and the anode electrode as the anode electrolysis progresses, so that the tip portion of the anode electrode feeder inserts the spent metal fuel rod.
  • a saddle type, a press plate for holding the metal fuel rod is disposed inside the vertical anode electrode feeder, and the press plate is automatically pressurized and moved as the anode electrolysis progresses. It may include a mechanism capable of.
  • a vibration may be applied to the contact portion between the anode electrode feeder and the metal fuel rod.
  • the mechanical vibration frequency is preferably 50 to 200 kHz.
  • the heating mechanism or the excitation mechanism may include a mechanism that applies a low frequency electromagnetic field of 1 kHz to 20 MHz to the anode electrode feeder.
  • the electrolytic cell includes a liquid Cd layer electrically connected to a Cd cathode electrode feeder for reducing and adsorbing metals such as minor actinides other than the anode-dissolved U and Pu. It may include providing in the lower part.
  • the electrolytic cell is provided by attaching a rotating device having a horizontal rotating shaft to the outside of the crucible, and stirring the molten salt by periodically swinging the crucible around the rotating shaft, or mechanically.
  • a mechanism for separating and diffusing the molten salt on the surfaces of the anode electrode feeder and the cathode electrode feeder by stirring the molten salt using a vibration mechanism may be included.
  • a pipe for circulating the molten salt in the crucible and further provided with a filter and a circulation pump in the pipe, thereby circulating and stirring the molten salt,
  • the molten salt on the surface of the anode electrode feeder and the cathode electrode feeder may be separated and diffused, and the molten salt may be further purified.
  • an angle of 60 ° to 90 ° with respect to the direction of the electric field applied between the anode electrode feeder and the cathode electrode feeder may be applied using a solenoid coil or a permanent magnet in the direction of forming a circle.
  • a dry reprocessing method that enables radioactive waste volume reduction is provided by accelerating the decay rate of radioactive elements discharged in the dry reprocessing process by applying a low frequency electromagnetic field. Specifically, it includes applying a low frequency electromagnetic field of 100 kHz to 20 MHz to spent metal fuel rods and radioactive metal ions.
  • an AC power source that is full-wave rectified or half-wave rectified is used as an electrolytic current for anode electrolysis, and 10 ⁇ is applied to the surface layer of the anode electrode feeder and the cathode electrode feeder.
  • An electric field containing an AC electric field component of 5 to 10 7 V / cm may be applied.
  • the ⁇ decay rate and / or the ⁇ decay rate may be accelerated by irradiating the anode electrode feeder and / or the cathode electrode feeder with laser light as an excitation mechanism.
  • the radioactive waste volume can be reduced by reducing the radioactive element concentration or by accelerating the ⁇ decay rate.
  • the conceptual diagram of a dry-type reprocessing system It is typical sectional drawing of the electrolytic device for dry reprocessing by a prior art. This is the redox potential of the transuranium element. A cyclic voltammogram of LiCl—KCl—PuCl 3 —UCl 3 is shown. It is a schematic sectional drawing of the crucible for electrolytic refining which improved the metal fuel rod contact efficiency by the Example of this invention. This is a change in potential of the metal fuel during electrolytic refining under the condition where there is no pressure spring. This is a change in potential of metal fuel during electrolytic refining when a pressure spring is used.
  • FIG. 6 is a schematic cross-sectional view of a crucible structure capable of heating an anode feeder according to still another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a method for locally heating a metal bar pin according to still another embodiment of the present invention. It is a graph which shows the relationship between the amount of anode dissolution of a metal fuel rod, and temperature.
  • FIG. 6 is a schematic cross-sectional view of a crucible structure suitable for improving the separation efficiency of U and Pu ions using a magnetic field generated by a solenoid coil according to another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a method for locally heating a metal bar pin according to still another embodiment of the present invention. It is a graph which shows the relationship between the amount of anode dissolution of a metal fuel rod, and temperature.
  • FIG. 6 is a schematic cross-sectional view of a crucible structure suitable for improving the separation efficiency of U and Pu ions using
  • FIG. 6 is a schematic plan view of a crucible structure suitable for improving the separation efficiency of U and Pu ions using a magnetic field generated from a permanent magnet according to another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a crucible structure suitable for improving the separation efficiency of U and Pu ions using a magnetic field generated from a permanent magnet according to another embodiment of the present invention.
  • FIG. 6 is a schematic plan view of a crucible structure suitable for improving the separation efficiency of U and Pu ions using a magnetic field generated from a solenoid coil according to another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a crucible structure for improving separation efficiency using laser light according to still another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a crucible structure for improving separation efficiency using laser light according to still another embodiment of the present invention.
  • the metal fuel rod is placed in the soot so that the shredded metal fuel rod pin 33 housed in the saddle type anode electrode of the basic crucible shown in FIG.
  • the power feeder 30 with the pin retainer plate 32 is inserted.
  • a pressurizing body spring 91 for pressurizing the anode pole feeder 30 with a presser plate is mounted in the anode pole pressurizing body cover 90.
  • the broken metal fuel rod is pressed against the saddle-shaped anode pole (in this embodiment, it is pressed with a force of 10,000 N / m 2 ), and the metal fuel rod becomes poorly contacted as the anode melts. To prevent that.
  • FIG. 6A shows the current flowing through the U metal fuel rod and the potential change associated with the dissolution of the anode when the pressure spring 91 shown in FIG. 5 is not provided.
  • the current density was changed to 0.25, 0.5, and 1.0 A / cm 2
  • the potential of the anode of the metal fuel rod that undergoes anodic reaction and the change of the cathode potential were shown.
  • the cathode potential was small, the anode potential changed greatly and shifted from about ⁇ 1.4 V to about ⁇ 1 V with time.
  • the greater the applied current the greater the potential shift.
  • the potential shifts from about ⁇ 1.3 V to the noble direction the anodic dissolution reaction decreases. This large potential shift means a reduction in electrolytic refining efficiency.
  • FIGS. 6A and 6B when the electrolysis current is made constant, the potential of the anode of the metal fuel rod shifts in the noble direction with the electrolysis time. This indicates that the anode electrode surface is rapidly changing to the oxidizing material layer.
  • the first embodiment is shown in FIG. 7A.
  • the rotation shaft 70 is attached to the side wall of the crucible so that the crucible can swing.
  • FIG. 7B Another example is shown in FIG. 7B.
  • a mechanical vibration mechanism 39 is added to the joint portion of the saddle-shaped anode electrode 31, the fuel pin pressing plate 32 and the anode electrode feeder 30. Thereby, mechanical vibration is given to the fuel pin 33 which melts the anode, and the contact resistance between the saddle-shaped anode electrode 31 and the fuel pin is reduced.
  • FIG. 7C Another example is shown in FIG. 7C.
  • the fuel pin 33 is brought into close contact with the saddle-shaped anode electrode 31 by using the fuel pin pressing plate 32 and the fuel pin pressing plate spring 91 shown in FIG. 7A.
  • a mechanical vibration mechanism 39 is added to the joint portion of the saddle-shaped anode electrode 31, the fuel pin presser plate 32, and the anode electrode feeder 30. The contact resistance can be further reduced by the effect of both the spring and the vibration.
  • ultrasonic vibration As another example of mechanical vibration, application of ultrasonic vibration is effective. For example, it is effective to irradiate ultrasonic waves of 10 kHz to 200 kHz with an output of 1 W / cm 2 or more. In addition to ultrasonic waves, mechanical vibrations of 50 Hz to 10 kHz can also be used.
  • FIG. 9 shows another embodiment in which the molten salt in the crucible can be stirred.
  • a mechanism capable of circulating the molten salt is incorporated.
  • a molten salt circulation pipe 21 is attached to the crucible body, and a filter 22 and a circulation pump 23 are further attached to the pipe.
  • the molten salt can be stirred, and the electrolytic refining efficiency can be improved as in the second embodiment.
  • FIG. 10A shows an example of a crucible equipped with a heating mechanism for increasing the anode dissolution rate by raising the temperature of the metal fuel rod.
  • the entire crucible is induction-heated using a coil 81 installed outside the crucible, and the molten salt temperature is set to about 500 ° C.
  • the metal fuel rod to be anodic melted is locally heated to raise the temperature and efficiently improve the anodic melt speed.
  • a coil 83 is installed in a pipe-shaped metallic anode electrode feeder 30, a high frequency is applied to the coil to heat the anode electrode feeder 30, and the metal fuel rod 33 is heated to conduct heat. Is heated locally.
  • the pipe-shaped power feeder is stainless steel, has a total length of 30 cm, a diameter of 10 cm ⁇ , and a thickness of 1 cm.
  • a coil was installed in a cavity having an inner diameter of 8 cm.
  • the heating was set to 100 ° C. with a target of 600 ° C., and the rate of temperature increase was 10 ° C./min.
  • the power required under these conditions is calculated to be 900 W, but the actual power required for heating and heating the metal fuel rods is estimated to be 2.5 times this in consideration of loss and the like.
  • a high frequency power of 2.2 kW is actually required.
  • the frequency of the applied electromagnetic wave was 50 to 10 kHz.
  • the temperature of the metal fuel rod was raised stepwise, and the change in the amount of dissolved anode was measured.
  • the result is shown in FIG.
  • the amount of anodic dissolution increased obviously.
  • a solenoid coil is installed inside the anode feeder, an AC wave electromagnetic field is applied, and induction heating is performed locally to raise the temperature of the metal fuel rod, confirming that a large dissolution amount increase effect can be obtained. did it.
  • the metal fuel pin when the metal fuel pin is anodicly melted, it is effective to obtain a temperature rise effect even if the anodic melted portion is directly and locally heated.
  • it is necessary to consider the relationship between the high frequency and the current penetration depth.
  • Current penetration depth depends on temperature and material. In the present invention, a molten salt environment of about 500 ° C. is assumed. Considering the current penetration depth of several ⁇ m to several mm at this temperature, the frequency range is preferably 1 kHz to 20 MHz (high frequency region) and the output is preferably 100 W or more.
  • the local heating method also has an advantage that the heating temperature of the entire crucible can be reduced and the reprocessing cost can be reduced.
  • Examples 1 to 3 a method of separating U and Pu ions from other metal ions by controlling the potentials of two types of cathode electrodes was adopted. Separately from this method, a separation method using a magnetic field is shown below (see Patent Document 1). Specifically, as shown in FIG. 12, a separation solenoid coil 82 for improving separation efficiency is installed in the crucible 10 around the anode pole 31, the metal fuel pin 33 placed in the cage, and the cathode poles 40 and 41. To do.
  • M / Z e (Br) 2 / 2E (M: mass, Z: number of ionic charges, e: charge of electrons, Br: magnetic flux density, E: electric field)
  • H nI / 2 (H: central magnetic field of coil, n: number of turns of coil, I: current)
  • H central magnetic field of coil
  • n number of turns of coil
  • I current
  • B ⁇ H ( ⁇ : permeability)
  • the separation efficiency depends on the number of turns of the coil and the current. For example, when the number of turns is 100 and the current value is 50 A, the central magnetic field H of the coil is 0.25 T (Tesla).
  • U and Pu ions are targeted, and by comparing the characteristics of the ions, the magnetic field required in the present invention is 0.01 T or more, but in order to achieve effective efficiency, it is 10 times. Application of a magnetic field of 0.25 T or more is desirable.
  • FIGS. 13A and 13B Another embodiment in which a magnetic field is applied is shown in FIGS. 13A and 13B.
  • permanent magnets 85 and 86 are arranged around the saddle-shaped anode pole 31 and the cathode pole 41.
  • the direction of the magnetic field is arranged so as to be perpendicular to the arrangement direction of the anode and cathode.
  • anodic-dissolved actinide element metal ions such as U 3+ and Pu 3+ ions can be separated and distributed in the axial direction of the cathode electrode.
  • a permanent magnet is installed in a molten salt at 500 ° C., a Curie point of 500 ° C. or higher is required.
  • Examples of such permanent magnets having a high Curie point include samarium-based (Sm) permanent magnets (SmCo 5 magnets), alnico alloys (Al—Ni—Co), Nd 2 Fe 14 B magnets, and the like. Further, these permanent magnets have an advantage that the saturation magnetism is 1T or more. Thus, even when a permanent magnet is used, it is possible to expect the same separation efficiency as in the fifth embodiment.
  • Sm samarium-based
  • Al—Ni—Co alnico alloys
  • Nd 2 Fe 14 B magnets and the like.
  • these permanent magnets have an advantage that the saturation magnetism is 1T or more. Thus, even when a permanent magnet is used, it is possible to expect the same separation efficiency as in the fifth embodiment.
  • FIG. 13C A structure for improving the separation efficiency by a magnetic field using a solenoid coil is shown in FIG. 13C.
  • four cathode electrodes 41 and cathode electrode feeders 40 are installed on concentric circles.
  • Four solenoid coils 42 are installed between the cathode 41 and the saddle-shaped anode 31. The relationship between the solenoid coil and the magnetic field is the same as the condition described in the fifth embodiment.
  • the decay of radioactive elements is roughly divided into ⁇ decay and ⁇ decay. Generally, after ⁇ decay, excess energy is released and ⁇ decay occurs. In terms of ⁇ decay, there are an allowable transition type and a forbidden transition type in terms of quantum theory. Regarding the half-life, which is the lifetime of ⁇ decay, the half-life is shorter for the allowable transition type and longer for the forbidden transition type. The radioactivity of ⁇ decay with this long half-life is a big problem as an environmental measure. Reiss considers this in a quantum theory, and reports that the beta decay half-life is shortened by using the perturbation theory for the Hamiltonian indicating the decay process and entering an item regarding the allowable transition (Non-patent Document 5). ).
  • the beta decay half-life may be shortened by applying a strong electromagnetic field of 200 kHz to 4.4 MHz.
  • ⁇ decay can be accelerated.
  • a solenoid coil 82 is used to apply an electromagnetic field to the cathode electrode on which metal ions are reduced and adsorbed, and U, Pu and other radioactive elements adsorbed on the liquid Cd cathode electrode. It becomes possible to do. This can be expected to shorten the ⁇ decay half-life.
  • Embodiment 7 Another embodiment of the ⁇ decay acceleration method described in Embodiment 7 will be described below.
  • Example 4 when electrolysis is performed, a strong electric field of 10 5 to 10 7 V / cm is applied to the number of reaction surface layers of 10 electrodes.
  • it is significant from the viewpoint of accelerating the decay rate to study alternating current in addition to simple direct current application during electrolysis.
  • AC electrolysis is not desirable in that respect because the redox reaction takes place almost simultaneously.
  • electromagnetic wave application and electrolysis can be performed simultaneously. In Example 7, 200 kHz to 4.4 MHz is effective.
  • Non-patent Document 6 there is a method of using a high voltage using a direct current or a low frequency fluctuation current of 50 or 60 Hz. In general, when a high voltage is applied, a discharge is generated, so there is a limit to the voltage application. When applying a high voltage, a vacuum is often applied.
  • the electrolytic current is set to 0.41 A / cm 2 or less in the molten salt, and a full-wave rectified current having a frequency of 50 Hz or more is applied.
  • the electric field is directly applied to the electrode surface layer, and as described in Example 4, a high electric field of 10 5 to 10 7 V / cm is applied to the surface layer.
  • the low frequency high electric field for radioactive elements in the surface layer results in an accelerated decay rate.
  • the frequency of the low-frequency electromagnetic field is 100 kHz to 20 MHz, and the alternating electromagnetic field is applied so that the anode potential is in the range of ⁇ 2 to 1 V (V: Ag / AgCl).
  • V: Ag / AgCl Ag / AgCl
  • This embodiment is a crucible using laser light and is shown in FIGS. 14A and 14B.
  • a mechanism for irradiating a laser beam and further purifying and stirring the melt is incorporated.
  • a hollow anode electrode power supply 35 is used in the crucible 10
  • a Pyrex (registered trademark) or quartz fuel pin presser plate 37 is used to transmit laser light.
  • a fuel pin 33 is inserted into the saddle-shaped anode electrode 31, and laser light is irradiated to the fuel pin from a laser light source 36.
  • a melt circulation pipe 21 is provided for the purpose of stirring and purifying the molten salt 20, and a molten salt filter 22 and a circulation pump 23 are attached to the pipe.
  • a laser beam can be irradiated to the cathode electrode in addition to the anode electrode.
  • a laser beam can be directly irradiated to bring U and Pu adsorbed on the cathode electrode by metal reduction into an excited state. ing.
  • a carbon dioxide gas laser, a YAG laser, a solar light laser and the like capable of emitting a large output are suitable.
  • A. V. Have reported on the acceleration phenomenon of U decay rate such as U and acceleration of ⁇ decay rate of Pb (212) and Tl (208) by using a high power laser such as YAG laser (Non-patent Document 7). ).
  • the electric field of the laser photon generates a solid plasma state in the radioactive element metal fine particles, and plasmons are generated. At this time, the energy density of the laser beam needs to be 10 12 to 10 13 W / cm 2 .
  • the energy is amplified 10 4 to 10 6 times.
  • the intensity of the laser light is amplified to 10 16 to 10 18 W / cm 2 . It is predicted that the ⁇ decay rate and / or the ⁇ decay rate are accelerated under such a strong energy state.
  • Non-patent Document 8 In the process of electrolytic refining spent nuclear fuel pins in the present invention, in the process of melting the surface layer of the metal fuel pins to be put into the vertical anode, selectively along the structure of the metal crystal (grain boundaries, etc.) It has been reported to dissolve (Non-patent Document 8). This means that a partly undissolved colloidal metal fine particle may be released. Conversely, selective reduction deposition also occurs on the entire surface on the cathode electrode side. These phenomena indicate that there is a high possibility that unstable colloidal fine particles are formed in the electrode surface layer. When the metal structure is observed microscopically, it becomes a lump of crystal grains. Of course, there are many transitions inside the crystal grains. When the metal is anodicly melted, the melting starts first from a weak spot.
  • This weak point is a grain boundary and a transition part. If crystal grain boundaries and transitions are selectively dissolved, the remaining crystal grains are more likely to fall off.
  • the size of the crystal grains depends on the processing method and is widely distributed from the nm order to 10 ⁇ m. In the present invention, since the fuel pin is injection-molded, the growth of crystal grains was suppressed, and crystal grains of the order of ⁇ m or less were observed (Non-patent Document 9). As described above, if high-power laser light is irradiated in a state where metal colloids are formed on the anode and cathode surfaces, an effect of shortening the ⁇ decay half-life can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Uおよび/またはPuを含有した使用済金属燃料を乾式再処理する際、高温溶融塩をアノード電解する効率を低下させる要因を解決する。使用済金属燃料棒を、ルツボ中に充填した溶融塩中でアノード電解により溶解し、カソード極表面にUおよび/またはPuを再度還元析出させて電解精錬する溶融塩電解槽は、アノード電解の進行に伴う金属燃料棒とアノード極の接触抵抗の劣化を回復させる機構を備えたアノード極給電体と、Uおよび/またはPuイオンが金属に還元される範囲の電位に制御されたカソード極給電体と、金属燃料棒を局所的に加熱するための加熱機構、および/または局所的に励起状態にするための励起機構と、アノード極給電体とカソード極給電体の間に、電場と磁場の組み合わせにより、Uおよび/またはPuイオンの分離効率を向上させるように配置されたソレノイドコイルまたは永久磁石とを含み、これを用いてアノード電解を行う。

Description

高効率乾式再処理用電解槽および電解法
 本発明は、ウラン(U)およびまたはプルトニウム(Pu)を含有した使用済金属燃料を乾式再処理するための、高温溶融塩を用いたアノード電解用ルツボの構造とそれを備えた電解装置、およびそれを用いた電解方法に関する。さらに本発明は、乾式再処理過程で排出される放射元素の崩壊速度を加速して、放射性廃棄物減容を可能とする方法に関する。
 使用済核燃料棒をからU237、U233等を回収する再処理工程は、リン酸トリブチル(TBP)、硝酸等をベースにした水溶液を用いたPUREX法と称される湿式再処理と、溶融塩電解法を使用した乾式再処理に大別される。従来、酸化物使用済燃料棒は湿式再処理法で処理されてきた。湿式再処理では、まず酸化物燃料を溶解させることが必要で、そのために強酸性の硝酸が使用されてきた。しかしその結果、処理プロセス機器に対しての腐食等の障害が大きいため、日本においては依然湿式再処理施設が稼働していない。さらに、湿式再処理施設を稼働させるためには大きなコストが必要となる。
 これに対して乾式再処理法は、小規模であるため低コスト化が可能で、かつ臨界管理が容易である。この乾式再処理法は金属燃料を対象に開発され、主にU-Pu-Zrの3元合金燃料棒からU、Puを抽出する工程である。また、高速炉では中性子のエネルギーが高く、燃料を高純度に精製する必要がないため、回収物の純度が低い乾式再処理が適用しやすい。
 現在考えられている乾式再処理プロセスでは、まず、高速炉から取り出した燃料集合体(燃料ピンの束)を「集合体解体工程」で分解する。続いてこれらの燃料ピンを、「燃料要素せん断工程」で数cm程度の長さに短くせん断する。こうして得られた使用済燃料のチップは、次の「電解精製工程」において、塩化リチウム-塩化カリウム(LiCl-KCl)溶融塩中で溶解し、固体陰極あるいは液体カドミウム(Cd)陰極でアクチノイド元素を核分裂生成物から分離して回収する。ここで回収したアクチノイド元素には、溶融塩や液体金属カドミウムといった溶媒が付着している。このため「陰極回収物処理工程」においてこれらの付着物を高温で蒸留分離する。こうして得られたアクチノイド金属は、目的の濃度になるようにジルコニウム(Zr)やUを加えて、高温の「射出成型工程」で棒状の燃料合金に溶融・鋳造する。この燃料棒は「燃料要素封入工程」でステンレス製の被覆管に封入することにより新燃料ピンとなり、さらに「集合体組立工程」で集合体に束ねて高速炉に再装荷する。
国際特許出願2012/102092A1
Dry (non-aqueous) Processing of Used Nuclear Fuel, Terry Todd, Idaho National Laboratory, Panel on "Exploring the Options for Used Nuclear Fuel in Light of U. S. and International Decisions", Waste Management, 2012, February 27, 2012 Asian Nuclear Prospects 2010, "Pyrochemical Reprocessing of Spent Fuel by Electrochemical Techniques Using Solid Aluminium Cathodes", P. Soucek, R. Malmbeck, C. Nourry, and J.-P. Glatz, European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces, Ruggero Bosco, Jeroen Van Den Beucken, Sander Leeuwenburgh and John Jansen, Coatings, 2012, 2(3), 95-119 Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes, Hainan Wang and Laurent Pilon*, the JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115, 16711-16719 Final Report "ACCELERATED BETA DECAY for DISPOSAL OF FISSION, FRAGMENT WASTES", Principal Investigator: Howard R. Reiss, Physics Department, American University, Washington, DC 20016-8058, Grant No. DE-FGO%96ERl2195, March 6, 2000 Nuclear Half-life Modification Technology, GDR GREEN NEWSLETTER 001, Submitted by Larry Geer for GDR, "Radioactivity Deactivation at High Temperature in an Applied DC Voltage Field Demonstrated in 1964 Full story on GDR.org", Larry Geer & Cecil Baumgartner, 2014/10/15 "Accelerated alpha-decay of 232U isotope achieved by exposure of its aqueous solution with gold nanoparticles to laser radiation", A.V. Simakin, G.A. Shafeev, Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Street, Moscow 119991, Russian Federation "Correlation Between Microstructure and Corrosion Behavior of Two 90Cu10Ni Alloy Tubes", Ma Aili, Jiang Shengli, Zheng Yugui, Yao Zhiming, Ke Wei, Xia Shuang, Acta Metallurgica Sinica (English Letters), 2014, 27(4), 730-738 "POSTIRRADIATION EXAMINATION OF U-Pu-Zr FUEL ELEMENTS IRRADIATED IN EBR-I 1 TO 4.5 ATOMIC PERCENT BURNUP", W. F. Murphy, W. N. Beck, F. L. Brown, B. J. Koprowski, and L. A. Neimark ARGONNE NATIONAL LABORATORY, 9700 South Cass Avenue, Argonne, Illinois 60439
 乾式再処理システムにおいて最も重要な要素は「電解精製技術」である(非特許文献1)。図1は、乾式再処理システムの概念図を示したものである。これを参照すると、細断された金属燃料をステンレス製籠型のアノード極構造物に入れ、金属燃料を、約500℃で溶融したLiCl-KCl塩中で、以下の式に従ってアノード(陽極)溶解させる。従って、ルツボには高温の溶融塩に耐える材料を用いることが必要である。乾式再処理を開発したアルゴンヌ国立研究所(ANL)ではイットリア(Y)をコーティングした黒鉛ルツボを用いているが、これよりさらに耐熱および耐食性のある材料を開発することも提案されている。また高溶融塩液体を生成するためには、ルツボ自体に誘導加熱可能な材質を選択することが望まれる。この場合、黒鉛ルツボの内面には、耐食性のある酸化物あるいはセラミックをコーティングすることが必要になる。
 図2は従来の乾式再処理の電解装置の一例の模式的断面図を示す。この電解装置において、ルツボ10の中にはアノード極給電体(陽極)30、カソード極給電体(陰極)40、液体Cd電極給電体50が設置され、ルツボ内にLiCl‐KClの溶融塩20を入れ、その上の空間にアルゴンガス注入し、アルゴンガス雰囲気を造るためにルツボに蓋12を取り付ける。アノード極給電体には、金属燃料ピンを収納する金属性溶融塩およびアノード溶解した金属イオンが通過可能な多孔性の籠33が取り付けられている。棒状のカソード極給電体40の先端部分のカソード極41は一体化させている。カソード極給電体は、カソード極の過電圧を低減し電解精錬効率を向上させるために、アノード極給電体の周囲に複数個配置してもよい。さらに、高温で液体金属であるCd電極給電体50を設ける。この給電体は、液体金属Cd槽60の中の液体金属Cd62中に浸されて電気的に接続されている。さらにルツボに入れたLiCl-KCl塩を500℃に加熱溶融するためにルツボの外周にコイルを設け、電磁誘導現象を利用して加熱する。アノード極籠31に金属燃料要素(燃料ピン)33を入れてアノード分極すると、Uおよび/またはPuは以下の式のようにアノード溶解する。
式1
  U → U3++ 3e( e:電子)
式2
  Pu → Pu3++ 3e
 溶解したU3+および/またはPu3+イオンはカソード極表面で金属に還元される。このように金属の酸化還元反応は重要である。しかし、U、Puに比較して酸化還元電位が貴の電位にあって還元されにくい核分裂生成物(FP)のうち、アルカリ金属(AL)、希土類元素(RE)、アルカリ土類金属(ALE)はイオンとして存在する可能性が高い。一方、一部のU、Puと残されたマイナーアクチノイド元素(MA)は、金属カドニウム(Cd)50に析出する。これらの還元反応において重要な因子は、U、Pu、MA等の酸化還元電位の位置である。図3はP. Soucek等による、これらの金属/金属イオンの酸化還元電位の位置関係である(非特許文献2)。図3に示すように、酸化還元電位は電極材料に依存するが、電解精錬の場合、酸化還元電位の変化が大きい方が有利であり、従ってWまたはAlが望ましい。
 U3+/Uおよび/またはPu3+/Puの還元電位に比較して、その他の多くのMA元素、アルカリ金属、アルカリ土類金属、希土類元素等の金属還元電位はより卑な電位にある。このような酸化還元電位の違いを利用し、Uおよび/またはPuの還元電位に設定可能なカソード極と、その他の金属イオンの還元電位に設定可能な液体金属Cdカソード極を分離設置して、Uおよび/またはPuを分離し精錬することが可能となる。
 次にサイクリックボルタモグラムの測定について説明する。そのために、まず模擬使用済金属燃料棒サンプルを作製した。それにはアクチノイド元素金属が必要となるが、電解還元が困難な金属酸化物であるU、Pu、Am、Cm、Np等の酸化物は、金属Liを用いて還元することによって模擬使用済金属燃料棒サンプルを作製した。アクチノド元素酸化物とLiCl-KClをルツボに入れ、1000℃の溶融塩に溶解させた。溶解操作後に、さらにルツボに金属Liを添加し、カバーガスとしてアルゴンガスを用いて約1000℃で還元処理を行った。この処理により、模擬使用済金属燃料棒サンプルを製作した。
 この模擬燃料棒を約500℃のLiCl-KCl溶融塩の中で、Ag/AgCl参照電極を基準としてサイクリックボルタモグラムを測定した。その結果を図4に示す。図4から分かるように、U{U(0)}は約-1.3Vで、Pu{Pu(0)}は約-1.6Vで最もアノード溶解する傾向にある。換言すると、この電位から外れるとアノード溶解速度は低下する。従って、金属燃料棒の電位をアノード溶解領域に維持することが重要である。
 以上の事項を考慮すると、使用済み核燃料を効率良く処理するには、以下の点を改良することが必要になる。
1.金属燃料のアノード溶解速度の向上
a.接触: 本発明では、籠型アノード電極の中に細断した金属燃料棒要素(燃料ピン)を入れて電解している。アノード溶解が進むと、金属燃料ピン表面が溶解するので、籠型アノード極と金属燃料棒と接触が不良になる可能性が高くなる。金属燃料ピンを効率的にアノード溶解させるためには、この接触不良対策をすることが必要となる。
b.電位: 前述の通り、金属のアノード溶解は電位に強く依存する。
c.温度: 高温になるほど、溶解速度は大きくなる。
d.流速: 溶解生成物を金属表面から素早く除去することが必要となる。
2.溶解したU、Pu金属イオンの選別
a. UおよびPuが選択的還元されるカソード極の設置。
b. アルカリ金属AL、アルカリ土類金属ALE等の還元電位より貴な電位で選択的にUおよびPuが還元可能なようにする。そして、アノード溶解したU3+、Pu3+イオンがカソード極表面で金属に還元される現象に適した電位に制御する。この結果、アルカリ金属イオン、アルカリ土類金属イオンは金属に還元されず、イオンの状態で存在するので分離が容易となる。
c. 大部分のMAおよび一部のU、Puイオン等は、液体金属Cdカソード極に吸収されるようにする。
d. U、Puを金属還元する棒状の主カソード極と、残りのU、Pu、MAその他の元素を収集する液体金属Cdカソード極の2種類のカソード極を設置する。
e. 籠型アノード電極に入れた使用済核燃料棒をアノード溶解する過程で、不溶解性の物質が落下する。この落下物を液体金属Cdに吸収されるようにする。
f. U、Puイオンと他のMA、アルカリ元素、アルカリ土類金属イオンの分離効率を向上させるために、マグネトロンスパッタリング法において用いられるコイル(非特許文献3)と同様に、アノード極とカソード極間を結ぶ方向に対して略垂直に磁場が形成されように、ルツボの中にコイルを設定する。
3.金属イオンから金属への還元
a. Puイオン等が液体金属Cdと以下の式に基づき反応し、液体金属Cdにデンドライト状の結晶が成長することが報告されている。
式3
 Pu3+ + 3e + 6Cd → PuCd
このデンドライトの形成は電解精錬効率を低下させるので、液体金属Cdを攪拌するなどして、デンドライトの形成をなるべく防止することが望ましい。
 本発明の目的は、上に挙げた乾式再処理法の効率化を阻害する問題点を解決して、電解精錬効率をさらに向上させることにある。それを実現するための本発明の電解槽は、
 ジルコニウム(Zr)とウラン(U)、Uとプルトニウム(Pu)、またはZrとUおよびPuからなる元素を含有した使用済金属燃料棒を、ルツボ中に充填した溶融塩中でアノード電解により溶解し、カソード極表面にUおよび/またはPuを再度還元析出させて電解精錬する溶融塩電解槽であって、前記電解槽は、
 前記アノード電解の進行に伴う前記金属燃料棒と前記アノード極の接触抵抗の劣化を回復させる機構を備えたアノード極給電体と、
 Uおよび/またはPuイオンが金属に還元される範囲の電位に制御された前記カソード極に結合されたカソード極給電体と、
 前記金属燃料棒を局所的に加熱するための加熱機構、および/または局所的に励起状態にするための励起機構と、
 前記アノード極給電体と前記カソード極給電体の間に、電場と磁場の組み合わせにより、前記Uおよび/またはPuイオンの分離効率を向上させるように配置されたソレノイドコイルまたは永久磁石とを含む。
 さらに本発明は、上記電解槽を用いて電解精錬効率を向上させた電解法も含む。
 本発明は、上記アノード電解の進行に伴う前記金属燃料棒と前記アノード極の接触抵抗の劣化を回復させる機構として、前記アノード極給電体の先端部分が、前記使用済金属燃料棒を入れるために籠型であり、前記金属燃料棒を押さえるための押え板を前記籠型アノード極給電体の内部に配置し、前記アノード電解の進行に伴って前記押え板を自動的に加圧して移動させることが可能な機構を含んでもよい。さらに、金属燃料棒と前記アノード極との接触抵抗を低減するために、アノード極給電体と金属燃料棒との接触部に振動を印加しても良い。機械的振動周波数としては50~200kHzが望ましい。
 さらに、上記加熱機構または励起機構が、前記アノード極給電体に1kHz~20MHzの低周波電磁場を印加する機構であることを含んでもよい。
 さらに、上記電解槽は、前記アノード溶解したU、Pu以外のマイナーアクチノイド等の金属を還元吸着するための、Cdカソード極給電体に電気的に接続された液体Cd層を前記アノード極給電体の下部に備えることを含んでもよい。
 さらに、上記電解槽は、水平回転軸を有する回転装置を前記ルツボの外側に取付け、前記回転軸を中心に前記ルツボを周期的に揺動させて前記溶融塩を攪拌することにより、または機械的振動機構を用いて前記溶融塩を攪拌させることにより、前記アノード極給電体および前記カソード極給電体の表面の溶融塩を分離・拡散させる機構を含んでもよい。
 また、上記溶融塩の攪拌の別の方法として、前記ルツボに前記溶融塩を循環させるための配管と、さらに該配管にフィルターおよび循環ポンプとを備え、これにより前記溶融塩を循環・攪拌し、前記アノード極給電体および前記カソード極給電体の表面の溶融塩を分離・拡散させ、さらに前記溶融塩を浄化するようにしてもよい。
 さらに本発明では、Uおよび/またはPuイオンの分離効率を向上させるために、前記アノード極給電体と前記カソード極給電体の間に印加された電場の方向に対して60°~90°の角度をなす方向に、ソレノイドコイルまたは永久磁石を用いて磁場を印加してもよい。
 さらに、低周波電磁場を印加することにより乾式再処理過程で排出される放射元素の崩壊速度が加速することにより、放射性廃棄物減容を可能とする乾式再処理法も提供する。具体的には、使用済金属燃料棒および放射性金属イオンに100kHzから20MHzの低周波電磁場を印加することを含む。
 さらに本発明では、β崩壊速度を加速するために、アノード電解の電解電流として全波整流または半波整流化した交流電源を用い、前記アノード極給電体と前記カソード極給電体の表面層に10~10V/cmの交流電場成分を含む電場を印加するように構成してもよい。
 さらに、前記アノード極給電体および/または前記カソード極給電体に励起機構としてレーザー光を照射することにより、α崩壊速度および/またはβ崩壊速度を加速してもよい。
 本発明により、小型で電解精錬効率の高い、使用済金属燃料を乾式再処理するための高温溶融塩電解ルツボとそれを用いた電解装置、および電解方法を提供することが可能となる。さらに本発明の別の実施例により、放射性元素濃度の低減、あるいはβ崩壊速度を加速して放射性廃棄物減容が可能となる。
乾式再処理システムの概念図。 従来技術による乾式再処理用電解装置の模式的断面図である。 超ウラン元素の酸化還元電位である。 LiCl-KCl-PuCl-UClのサイクリックボルタモグラムを示す。 本発明の実施例による、金属燃料棒接触効率を向上させた電解精錬用ルツボの概略断面図である。 加圧バネがない条件下での電解精錬時における金属燃料の電位変化である。 加圧バネを利用した場合の電解精錬時における金属燃料の電位変化である。 本発明の別の実施例による、動揺機構を付加したルツボ構造体の模式的断面図である。 本発明の別の実施例による、機械的振動を発生する振動機構を付加したルツボ構造体の模式的断面図である。 本発明の別の実施例による、機械的振動を発生する振動機構等を付加したルツボ構造体の模式的断面図である。 アノード溶解速度に対するルツボの揺動による効果を示すグラフである。 本発明のまた別の実施例による、溶融塩循環ライン設けたルツボ構造体の模式的断面図である。 本発明のまた別の実施例による、アノード給電体を加熱することが可能なルツボ構造の模式的断面図である。 本発明のまた別の実施例による、金属棒ピンの局所的加熱方法を示す模式的断面図である。 金属燃料棒のアノード溶解量と温度の関係を示すグラフである。 本発明のまた別の実施例による、ソレノイドコイルにより発生した磁場を利用した、UおよびPuイオンの分離効率向上に適したルツボ構造の模式的断面図である 本発明のまた別の実施例による、永久磁石から発生した磁場を利用した、UおよびPuイオンの分離効率向上に適したルツボ構造の模式的平面図である。 本発明のまた別の実施例による、永久磁石から発生した磁場を利用した、UおよびPuイオンの分離効率向上に適したルツボ構造の模式的断面図である。 本発明のまた別の実施例による、ソレノイドコイルから発生した磁場を利用した、UおよびPuイオンの分離効率向上に適したルツボ構造の模式的平面図である。 本発明のまた別の実施例による、レーザー光を利用した分離効率向上のためのルツボ構造の模式的断面図である。 本発明のまた別の実施例による、レーザー光を利用した分離効率向上のためのルツボ構造の模式的断面図である。
 以下の実施例で本発明の内容およびその効果に関して説明する。
 まず、籠型アノード極と細断した金属燃料棒ピンとの間の接触抵抗を良好に維持する方法に関して説明する。
 図5に示すように、図2に示した基本型ルツボの籠型アノード極に収納した細断金属燃料棒ピン33を、籠型アノード極31に密着させるように、籠の中に金属燃料棒ピン押え板32がついた給電体30を入れる。この細断金属燃料棒を籠型アノード極に押しつけるために、押え板付きアノード極給電体30を加圧するための加圧体バネ91をアノード極加圧体カバー90の中に装着する。このバネ力により、断金属燃料棒は籠型アノード極に押しつけられ(本実施例では、10,000N/mの力で押しつけている)、金属燃料棒がアノード溶解進行に伴い接触不良になることを防止する。
 図5に示す加圧バネ91がない場合の、U金属燃料棒に流れた電流と、アノード溶解に伴う電位変化を図6Aに示す。電流密度を0.25、0.5、1.0A/cmと変化させた場合の、アノード反応する金属燃料棒アノードの電位、およびカソード電位の変化示した。カソード電位の変化は小さいのに対してアノード電位は大きく変化し、時間と共に約-1.4Vから約-1Vにシフトした。印加電流が大きい程、電位のシフトは大きかった。前述の通り、電位が約-1.3Vから貴の方向にシフトすると、アノード溶解反応が低下する。このように電位が大きくシフトすることは、電解精錬効率の低下を意味する
 これに対して、図5に示すようなバネ構造体を使用して、金属燃料棒と籠型アノード極との接触を低く保った場合は、図6Bに示すようにアノード電位の変化は小さくなった。この結果は、バネ構造体によりアノード極と金属燃料棒との間の接触を低く保つことにより、精錬効率を向上させることが可能であることを示す。
 図6A、6Bに結果を示したように、電解電流を一定にした時、金属燃料棒アノード極の電位は電解時間と共に貴の方向にシフトしている。このことはアノード極表面が酸化性物質層に急速に変化していることを示している。電解効率を向上させるためには、アノード電極表面からこの酸化性物質を素早く分離する機構を電解槽に組み込むことが必要となる。そこで分離効率を上げるために、ルツボ内の溶融塩を攪拌可能なようにした。その第1の実施例を図7Aに示す。本実施例では、ルツボを揺動可能とするために回転軸70をルツボの側壁に取り付ける。この回転軸を中心にルツボを揺動運動させ、この揺動運動により籠型アノード電極内の金属燃料棒表面付近の溶融塩を動揺させることにより、表面の電解生成物の分離・拡散を促進する。金属燃料アノード溶解に対する回転(往復)速度の効果を図8に示す。この揺動運動によりアノード溶解速度を向上させることが可能となる。さらに、前述したとおり液体金属Cd中には電解精錬効率を低下させるPuCdのデンドライトが形成される可能性が高い。液体金属Cdを揺動させると、このデントライトが壊される。このように、回転軸を用いたルツボの揺動運動は、電解精錬効率の向上に有効である。
 別の実施例を図7Bに示す。本実施例では、籠型アノード極31、燃料ピン押え板32とアノード極給電体30の接合部に機械的振動機構39を付加する。これによりアノード溶解する燃料ピン33に機械的振動を与えて、籠型アノード極31と燃料ピンの間の接触抵抗を低減する。
 また別の実施例を図7Cに示す。本実施例では、図7Aに示した燃料ピン押え板32と燃料ピン押さえ板バネ91を用いて、燃料ピン33を籠型アノード極31に密着させる。さらに図7Bと同様に籠型アノード極31、燃料ピン押え板32とアノード極給電体30の接合部に機械的振動機構39を付加する。この様なバネと振動両方の効果により接触抵抗をさらに低減することができる。
 機械的振動の別の例として、超音波振動の印加が有効である。例えば、10kHzから200kHzの超音波を1W/cm以上の出力で照射することが有効である。超音波以外に50Hzから10kHzの機械的振動を用いることも可能である。
 ルツボ内の溶融塩を攪拌可能にする別の実施例を図9に示す。本実施例のルツボ構造では、溶融塩を循環できる機構が組み込んである。ルツボ本体に溶融塩循環配管21を取り付け、この配管にさらにフィルター22と循環ポンプ23を取り付ける。循環ポンプで溶融塩を循環させることにより溶融塩を攪拌することが可能となり、実施例2と同様に電解精錬効率の向上を図ることができる。
 次に、金属燃料棒の昇温によりアノード溶解速度を上昇させるための加熱機構を備えたルツボの実施例を図10Aに示す。ルツボ全体をルツボの外側に設置したコイル81を用いて誘導加熱し、溶融塩温度を約500℃にする。これに加えて、アノード溶解させる金属燃料棒を局所的に加熱して温度を上げ、効率的にアノード溶解速度を向上させる。図10Aに示すように、パイプ状の金属性アノード極給電体30の中にコイル83を設置し、このコイルに高周波を印加してアノード極給電体30を加熱し、熱伝導で金属燃料棒33を局所的に加熱する。ここでパイプ状給電体はステンレス鋼で、全長30cm、直径10cmΦで厚さを1cmとした。その内径8cmの空洞の中にコイルを設置した。温度はまず600℃を目標に100℃昇温する加熱を設定し、さらに昇温速度を10℃/minとした。この条件下で必要となる電力を試算すると900Wとなるが、金属燃料棒の昇温加熱に必要な実際の電力量はロス等を考慮してこの2.5倍と見込んだ。10℃/min、600秒の昇温加熱条件を考慮して、現実的には2.2kWの高周波電力が必要となる。印加する電磁波の周波数は50~10kHzとした。
 このように、段階的に金属燃料棒の温度を上げてアノード溶解量の変化を測定した。その結果を図11に示す。燃料ピンの温度を上げることによりアノード溶解量は明らかに増大した。このようにアノード給電体の内部にソレノイドコイルを設置して、交流波電磁場を印加して局所的に誘導加熱して金属燃料棒を昇温すると、大きな溶解量の上昇効果が得られることが確認できた。
 さらに別の実施例として、図10Bに示すように、金属燃料ピンをアノード溶解する場合、アノード溶解している箇所を直接局所的に誘導加熱しても昇温効果を得るために有効である。表面を局所的に誘導加熱するためには、高周波の周波数と電流浸透深さの関係を考慮することが必要である。電流進入深さは温度、材質に依存する。本発明では約500℃の溶融塩環境を前提としている。この温度で数μm~数mmの電流浸透深さを考慮すると、周波数の範囲としては1kHz~20MHz(高周波領域)の範囲で、かつ出力としては100W以上の範囲が望ましい。局所的な加熱方法は、ルツボ全体の加熱温度を低減して、再処理コストを低減することが可能となる利点もある。
 さらに、アノード極である燃料ピンをアノード溶解する時、燃料ピンの溶解表面に1~2Vの電位差が印加される。例えば、水の電解の場合、約10Åに大部分の電位が印可されると考えられている(非特許文献4)。本発明の電解反応もこの反応機構と類似していると想定する。また乾式再処理ではK、Li、Clを用いており、これらのイオンとHOの大きさを比較すると、乾式再処理槽における電気二重層の厚さは水電解の場合と比較して数倍と考えられる。従って、乾式再処理の場合、イオン半径等を考慮して電気二重層の厚さを数倍程度と想定すると、電場の強さは10~10V/cmとなる。
 実施例1から3において2種類のカソード極の電位を制御することにより、U、Puイオンとこれら以外の金属イオンを分離する方法を採用した。この方法とは別に、磁場を利用した分離方法を以下に示す(特許文献1参照)。具体的には図12に示すように、ルツボ10の内部にアノード極籠31、および籠に入れた金属燃料ピン33、カソード極40、41の周囲に、分離効率向上用コイルソレノイドコイル82を設置する。このように電解電場の方向に略直角(60°~90°)に磁場方向を配置することにより、金属燃料からアノード溶解したU3+、Pu3+、および不純物金属イオンが磁場により次式に従って、カソード電極軸方向に分布するようにできる。
式4
 M/Z=e(Br)/2E (M:質量、Z:イオン電荷数、e:電子の電荷、Br:磁束密度、E:電場)
式5
 H=nI/2(H:コイルの中心磁場、n:コイルの巻き数、I:電流)
この式からわかるように、金属イオンがカソード極40、41に到着する位置はM/Zの値に依存する。この現象を利用して、電解精錬の分離効率を向上させることができる。分離効率は磁場の強さに依存するが、B=μH(μ:透磁率)の関係に基づき、分離効率はコイルの巻き数と電流に依存する。例えば、巻き数を100、電流値を50Aとしたときのコイルの中心磁場Hは0.25T(テスラ)となる。本発明では、UおよびPuイオンを対象にしており、イオンの特性を比較することにより、本発明で必要となる磁場は0.01T以上となるが、有効な効率を達成するためには10倍以上の0.25T以上の磁場の印加が望ましい。
 磁場を応用した別の実施例を図13A、13Bに示す。この実施例では、籠型アノード極31とカソード極41の周囲に、永久磁石85および86を配置する。磁場の方向は、アノード極とカソード極の配置方向に直角になるように配置する。この配置にすることにより、アノード溶解したU3+、Pu3+イオン等のアクチノイド元素金属イオンを、カソード極の軸方向に分離分布させることができる。この実施例では、500℃の溶融塩中に永久磁石を設置するので、500℃以上のキュリー点が要求される。このような高キュリー点を有する永久磁石としては、サマリウム系(Sm)永久磁石(SmCo磁石)の他、アルニコ合金(Al-Ni-Co)、NdFe14B磁石等がある。さらに、これらの永久磁石は飽和磁気が1T以上となる優位点がある。このように、永久磁石を用いても、実施例5と同様な分離効率を期待することが可能となる。
 また、上記永久磁石の代わりにソレノイドコイルを用いて磁場形成をすることも可能である。ソレノイドコイルを用いた磁場により分離効率を向上させる構造を図13Cに示す。この構造では、分離効率をさらに向上させるために、カソード極41およびカソード極給電体40を同心円上に4体設置する。これらのカソード極41と籠型アノード極31の間にソレノイドコイル42を4体設置する。ソレノイドコイルと磁場との関係は、実施例5で記載した条件と同様である。
 放射性元素の崩壊はα崩壊とβ崩壊に大別される。一般的にβ崩壊後に、過剰なエネルギーを解放してγ崩壊する。β崩壊には量子論的に許容遷移型と禁止遷移型があり、β崩壊の寿命である半減期に関して、許容遷移型の場合半減期は短くなり、禁止遷移型の場合半減期は長くなる。この長半減期のβ崩壊の放射能が環境対策として大きな問題となる。Reissはこれについて量子論的に考察し、崩壊過程を示すハミルトニアンに摂動論を利用して、許容遷移に関する項目を入れることによりβ崩壊半減期が短くなることを報告している(非特許文献5)。具体的には、200kHzから4.4MHzの強電磁場の印加によりβ崩壊半減期が短くなる可能性を報告している。本発明のルツボを用いて、β崩壊を加速することができる。図12に示す構造のルツボにおいて、金属イオンが還元吸着したカソード極、および液体Cdカソード電極に吸着したU、Puおよび他の放射性元素に、ソレノイドコイル82を用いてこれらの放射性元素に電磁場を印加することが可能となる。これによってβ崩壊半減期を短くする効果が期待できる。
 実施例7で説明したβ崩壊加速方法の別の実施例を次に示す。実施例4で説明したように、電解を行うと電極の反応表面層数10Åに10~10V/cmの強い電場が印加される。実施例7で説明したように、電解時に単純な直流の通電に加えて交流を検討することは崩壊速度加速の観点から意味深い。ただし、交流電解は酸化還元反応が略同時に起こるので、その点では望ましくない。しかし、全波整流または半波整流すれば、電磁波印加と電解を同時に実施することが可能となる。実施例7では、200kHz~4.4MHzが有効であるが、直接的に電場を印加する場合、直流でも、高温下で、UまたはPuが含まれるセラミック状核燃料の放射性元素濃度の低減効果をもたらすことが観測される場合があることが報告されている。放射性元素濃度の低減はα又はβ崩壊速度加速現象を意味する。この他に、直流電流または50、60Hzの低周波変動電流を用いて高電圧を利用する方法もある(非特許文献6)。一般に高電圧を印加すると、放電が発生するので電圧印加には限界がある。高電圧を印加する場合は真空にする場合が多い。例えば、この報告では真空下で3000Vを直流または50~60Hzの交流を印加することが提案されている。電圧を印加する場合、巨視的な距離を前提に高電圧を印加する場合は3000V以上の高電圧が必要となる。物理的に考察すると、原子又は原子核に対する効果であることを考えると、単なる電圧ではなく電場に意味がある。溶融塩における電解の場合、放電は電極表面層を形成する原子が対象となる。しかし、水中の電解の場合は水分子の放電が先行する問題がある。この実施例では、例えば、溶融塩中で電解電流を0.41A/cm以下として、周波数50Hz以上の全波整電流を通電する。この場合、電場は電極表面層に直接印加され、実施例4で説明したように10~10V/cmの高電場が表面層に印加される。実質的に、表面層の放射性元素に対する低周波高電場は崩壊速度の加速をもたらす。低周波電磁場の周波数は100kHz~20MHzとし、さらにアノード極電位が-2から1V(V:Ag/AgCl)の範囲になるように交流電磁場を印加する。このように低周波電解は、高電場印加方法として有効である。この実施例で示す様に、局所的な加熱とβ崩壊速度加速の両者を目的にする場合、低周波電磁場の周波数は1kHz~20MHzに拡大することが望ましい。
 次に、レーザー光を利用した分離効率の向上方法、およびβ崩壊速度の加速方法の実施例について説明する。本実施例はレーザー光を利用したルツボであり、図14A、14Bに示す。図14Aでは、レーザー光を照射し、さらに溶融液を浄化・攪拌する機構を組み込んでいる。具体的には、ルツボ10の中に中空のアノード極給電体35を用い、レーザー光を通すためにパイレックス(登録商標)または石英製の燃料ピン押え板37を使用する。籠型アノード極31の中に燃料ピン33を入れ、燃料ピンにはレーザー光源36からレーザー光を照射する。このレーザー光照射により燃料ピン33が局所的に加熱され、アノード極の溶解効率が向上する。アノード熔解効率を上げるために燃料ピン押え板37を下方に押す目的で、燃料ピン押えバネ91と燃料ピン押えバネ固定ケース90を設置する。また、溶融塩20を攪拌・浄化する目的で溶融液循環配管21を設け、その配管には溶融塩フィルター22と循環ポンプ23を取り付ける。
 図14Bに示す別の実施例のルツボ構造では、アノード極に加えてカソード極にもレーザー光を照射可能な構造になっている。カソード給電体40の周りに石英ガラス製カソード・レーザー光誘導管42を設けることにより、金属還元によりカソード極に吸着したU、Puを励起状態にするために直接レーザー光が照射可能な構造となっている。
 図14Aおよび14Bのルツボ構造で用いるレーザーは、大出力の発光が可能な炭酸ガスレーザー、YAGレーザー、太陽光レーザー等が適している。A.V.SimakinらはYAGレーザー等の大出力レーザーを用いることにより、U等のα崩壊速度の加速現象およびPb(212)、Tl(208)のβ崩壊速度の加速に関して報告している(非特許文献7)。レーザー光フォトンの電場が、放射性元素金属微粒子に固体プラズマ状態を発生させ、プラズモン等が生成される。このときのレーザー光のエネルギー密度は1012~1013W/cmが必要である。さらに、プラズモン等が生成された金属微粒子にレーザー光を照射すると、エネルギー的に10~10倍増幅される。この結果、レーザー光の強度は1016~1018W/cmに増幅される。このような強いエネルギー状態下で、α崩壊速度および/又はβ崩壊速度が加速すると予測されている。
 本発明における使用済み核燃料ピンを電解精錬するとき、籠型アノードに入れる金属燃料ピンの表面層が溶解する過程において、金属結晶の構造(結晶粒界等)に沿って選択的に、部分的に溶解することが報告されている(非特許文献8)。このことは、一部未溶解のコロイド状の金属微粒子が放出される可能性を意味する。逆に、カソード極側表面全面においても選択的な還元析出が起こる。これらの現象は、電極表面層において金属コロイド状の不安定な微粒子が形成される可能性が高いことを示す。金属組織を微視的に観察すると、結晶粒の固まりとなっている。勿論この結晶粒の内部にも転移が多く存在する。金属をアノード溶解するとき、まず弱い箇所から溶解が開始する。この弱い点が結晶粒界、および転移の部分である。結晶粒界、転移が選択的に溶解すると、残った結晶粒が脱落する可能性が高くなる。結晶粒の寸法は加工方法に依存し、nmオーダーから10μmまで幅広く分布する。本発明では燃料ピンを射出成形しているので結晶粒の成長が抑制され、μm以下のオーダーの結晶粒が観測された(非特許文献9)。以上のようにアノード極およびカソード極表面に金属コロイドが形成される状態で高出力のレーザー光を照射すれば、β崩壊半減期を短くする効果が期待できる。
 上記記載は実施例についてなされたが、本発明はそれに限定されず、本発明の精神と添付の請求の範囲の範囲内で種々の変更、および修正をすることができることは当業者に明らかである。
 1 電解槽
 10 ルツボ
 12 ルツボカバー
 13 溶融塩ドレイン配管
 14 溶融塩ドレイン配管バルブ
 20 溶融塩
 21 溶融塩循環配管
 22 溶融塩フィルター
 23 循環ポンプ
 30 アノード極給電体
 31 籠型アノード極
 32 燃料ピン押え板
 33 燃料ピン
 35 中空アノード極給電体
 36 レーザー
 37 透明燃料ピン押え板
 39 機械的振動機構
 40 カソード極給電体
 41 カソード極
 42 ソレノイドコイル
 50 Cdカソード極給電体
 60 液体Cdカソード槽
 61 液体Cdドレイン配管
 62 液体Cd
 63 液体Cdドレイン配管バルブ
 70 回転軸
 81 ルツボ誘導加熱コイル
 82 分離効率向上ソレノイドコイル
 83 アノード極局所誘導加熱コイル
 85 永久磁石N極
 86 永久磁石S極
 90 燃料ピン押さえバネ固定ケース
 91 燃料ピン押さえバネ

Claims (26)

  1.  ジルコニウム(Zr)とウラン(U)、Uとプルトニウム(Pu)、またはZrとUおよびPuからなる元素を含有した使用済金属燃料棒を、ルツボ中に充填した溶融塩中でアノード電解により溶解し、カソード極表面にUおよび/またはPuを再度還元析出させて電解精錬する溶融塩電解槽であって、前記電解槽は、
     前記アノード電解の進行に伴う前記金属燃料棒と前記アノード極の接触抵抗の劣化を回復させる機構を備えたアノード極給電体と、
     Uおよび/またはPuイオンが金属に還元される範囲の電位に制御された前記カソード極に結合されたカソード極給電体と、
     前記金属燃料棒を局所的に加熱するための加熱機構、および/または局所的に励起状態にするための励起機構と、
     前記アノード極給電体と前記カソード極給電体の間に、電場と磁場の組み合わせにより、前記Uおよび/またはPuイオンの分離効率を向上させるように配置されたソレノイドコイルまたは永久磁石と、
     を含む前記電解槽。
  2.  前記アノード極給電体の先端部分が、前記使用済金属燃料棒を入れるために籠型に構成され、前記金属燃料棒を押さえるための押え板が前記籠型アノード極給電体の内部に配置され、前記アノード電解の進行に伴って前記押え板を自動的に加圧して移動させることが可能な機構をさらに備え、これにより前記金属燃料棒と前記アノード極給電体間の接触抵抗の劣化を回復させるように構成された、請求項1に記載の電解槽。
  3.  前記アノード極給電体の先端部分が、前記使用済金属燃料棒を入れるために籠型に構成され、前記金属燃料棒を押さえるための押え板が前記籠型アノード極給電体の内部に配置され、前記籠型アノード極給電体と前記押え板の接合部に、50Hzから200kHzの機械的振動を発生する機構がさらに配置され、前記押え板の前記機械的振動により前記金属燃料棒と前記アノード極給電体間の接触抵抗の劣化を回復させるように構成された、請求項1に記載の電解槽。
  4.  前記加熱機構または前記励起機構が、前記アノード極給電体に1kHz~20MHzの低周波電磁場を印加する機構である、請求項1または2に記載の電解槽。
  5.  前記アノード溶解したU、Pu以外のマイナーアクチノイド等の金属を還元吸着するための液体Cd層を前記アノード極給電体の下部に備え、前記液体Cd層を電気的に接続させたCdカソード極給電体をさらに備えた、請求項1~4のいずれか1項に記載の電解槽。
  6.  前記カソード極の過電圧を低減し、電解精錬効率を向上させるために、前記アノード極給電体の周囲に複数のカソード極給電体を配置した、請求項1~5のいずれか1項に記載の電解槽。
  7.  水平回転軸を有する回転装置を前記ルツボの外側に設け、前記回転軸を中心に前記ルツボを周期的に揺動させて前記溶融塩を攪拌することにより、前記アノード極給電体および前記カソード極給電体の表面の溶融塩を分離・拡散させるように構成された、請求項1~6のいずれか1項に記載の電解槽。
  8.  前記ルツボに前記溶融塩を循環させるための配管と、さらに該配管にフィルターおよび循環ポンプとを備え、これにより前記溶融塩を循環・攪拌し、前記アノード極給電体および前記カソード極給電体の表面の溶融塩を分離・拡散させ、さらに前記溶融塩を浄化するように構成された、請求項1~7のいずれか1項に記載の電解槽。
  9.  前記アノード極給電体と前記カソード極給電体の間に印加された電場の方向に対して60°~90°の角度をなす方向に、前記ソレノイドコイルまたは前記永久磁石を用いて磁場を印加して、前記Uおよび/またはPuイオンの分離効率を向上させるように構成された、請求項1~8のいずれか1項に記載の電解槽。
  10.  前記使用済金属燃料棒および放射性金属イオンに100kHz~20MHzの低周波電磁場を印加することにより、放射性元素濃度を低減させる請求項1~9のいずれか1項に記載の電解槽。
  11.  前記アノード電解の電解電流として全波整流または半波整流化した交流電源を用い、前記アノード極給電体と前記カソード極給電体の表面層に10~10V/cmの交流成分を有する電場を印加してβ崩壊速度を加速するように構成された、請求項1~9のいずれか1項に記載の電解槽。
  12.  前記アノード極給電体および/または前記カソード極給電体に前記励起機構としてレーザー光を照射してα崩壊速度および/またはβ崩壊速度を加速するように構成された、請求項1~9のいずれか1項に記載の電解槽。
  13.  前記レーザーが出力1012W/cm以上のYAGレーザーまたは太陽光レーザーである、請求項12に記載の電解槽。
  14.  ジルコニウム(Zr)とウラン(U)、Uとプルトニウム(Pu)、またはZrとUおよびPuからなる元素を含有した使用済金属燃料棒を、ルツボ中に充填した溶融塩中でアノード電解により溶解し、カソード極表面にUおよび/またはPuを再度還元析出させて電解精錬する電解法において、
     前記アノード電解を行う際に、前記アノード電解の進行に伴う前記金属燃料棒と前記アノード極の接触抵抗の劣化を回復させる機構を備えたアノード極給電体を用いることと、
     前記カソード極に結合されたカソード極給電体を、Uおよび/またはPuイオンが金属に還元される範囲の電位に制御することと、
     加熱機構により前記金属燃料棒を局所的に加熱すること、および/または励起機構により局所的に励起状態にすることと、
     前記アノード極給電体と前記カソード極給電体の間に、電場と磁場の組み合わせにより、前記Uおよび/またはPuイオンの分離効率を向上させるようにソレノイドコイルまたは永久磁石を配置することと、
     を含む、電解精錬効率を向上させた前記電解法。
  15.  前記アノード極給電体の先端部分を、前記使用済金属燃料棒を入れるために籠型に構成し、前記金属燃料棒を押さえるための押え板を前記籠型アノード極給電体の内部に配置し、前記アノード電解の進行に伴い、前記押え板を自動的に加圧して移動させることにより、前記金属燃料棒と前記アノード極間の接触抵抗の劣化を回復させる、請求項14に記載の電解法。
  16.  前記アノード極給電体の先端部分を、前記使用済金属燃料棒を入れるために籠型に構成し、前記金属燃料棒を押さえるための押え板を前記籠型アノード極給電体の内部に配置し、前記籠型アノード極給電体と前記押え板の接合部に、50Hzから200kHzの機械的振動を発生する機構をさらに配置し、前記押え板の前記機械的振動により前記金属燃料棒と前記アノード極給電体間の接触抵抗の劣化を回復させる、請求項14に記載の電解法。
  17.  前記アノード極給電体に、1kHz~20MHz以下の低周波電磁場を印加して前記金属燃料棒を局所的に加熱する、請求項14~16に記載の電解法。
  18.  前記アノード極給電体の下部に配置され、Cdカソード極給電体に電気的に接続された液体Cd層で、アノード溶解したU、Pu以外のマイナーアクチノイド等の金属を還元吸着する、請求項14~17のいずれか1項に記載の電解法。
  19.  前記アノード極給電体の周囲に複数のカソード極給電体を配置することによりカソード極の過電圧を低減し、電解精錬効率を向上させる請求項14~18のいずれか1項に記載の電解法。
  20.  前記ルツボの外側に取付けられた水平回転軸を有する回転装置により、前記回転軸を中心に前記ルツボを周期的に揺動させて前記溶融塩を攪拌することにより、前記アノード極給電体および前記カソード極給電体の表面の溶融塩を分離・拡散させる、請求項14~19のいずれか1項に記載の電解法。
  21.  前記ルツボに設けられた配管、および該配管に設けられたフィルターおよび循環ポンプにより前記溶融塩を循環・攪拌し、前記アノード極給電体および前記カソード極給電体の表面の溶融塩を分離・拡散させ、さらに前記溶融塩を浄化する、請求項14~20のいずれか1項に記載の電解法。
  22.  前記アノード極給電体と前記カソード極給電体の間に印加された電場に対して60°~90°をなす角度の方向に、ソレノイドコイルまたは永久磁石を用いて磁場を印加することにより金属イオン分離効率を向上させる、請求項14~21のいずれか1項に記載の電解法。
  23.  前記使用済金属燃料棒および放射性金属イオンに100kHz~20MHzの低周波電磁場を印加することにより、放射性元素濃度を低減させる請求項14~22のいずれか1項に記載の電解法。
  24.  請求項14~22のいずれか1項に記載の電解法において、電解電流として全波整流または半波整流化した交流電源を用い、前記アノード極給電体と前記カソード極給電体の表面層に10~10V/cmの交流成分を有する電場を印加することによりβ崩壊速度を加速する方法。
  25.  請求項14~22のいずれか1項に記載の電解法において、前記アノード極給電体および/または前記カソード極給電体に前記励起機構としてレーザー光を照射することにより、α崩壊速度および/またはβ崩壊速度を加速する方法。
  26.  前記レーザー光に出力1012W/cm以上のYAGレーザーまたは太陽光レーザーを用いる、請求項25に記載の方法。
PCT/JP2016/077666 2015-10-05 2016-09-20 高効率乾式再処理用電解槽および電解法 WO2017061267A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16853421.2A EP3300082B1 (en) 2015-10-05 2016-09-20 Electrolytic tank and electrolytic method for high-efficiency dry reprocessing
CN201680029317.5A CN108885913B (zh) 2015-10-05 2016-09-20 一种高效率干式再处理用电解槽和电解方法
JP2017544441A JP6788899B2 (ja) 2015-10-05 2016-09-20 高効率乾式再処理用電解槽および電解法
US15/740,994 US10400343B2 (en) 2015-10-05 2016-09-20 Electrolytic tank and electrolytic method for high-efficiency dry reprocessing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-197856 2015-10-05
JP2015197856 2015-10-05

Publications (1)

Publication Number Publication Date
WO2017061267A1 true WO2017061267A1 (ja) 2017-04-13

Family

ID=58487543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077666 WO2017061267A1 (ja) 2015-10-05 2016-09-20 高効率乾式再処理用電解槽および電解法

Country Status (5)

Country Link
US (1) US10400343B2 (ja)
EP (1) EP3300082B1 (ja)
JP (1) JP6788899B2 (ja)
CN (1) CN108885913B (ja)
WO (1) WO2017061267A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039047A (ja) * 2017-08-25 2019-03-14 株式会社東芝 Zr含有混合物の電解回収方法及びZr含有混合物の電解回収装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110904470B (zh) * 2019-11-22 2022-05-31 西北矿冶研究院 一种电解装置
CN112481659B (zh) * 2020-11-26 2022-03-08 江西理工大学 一种非接触强化电解槽内电解质运动的装置及方法
US11798698B2 (en) * 2020-12-04 2023-10-24 Austin Lo Heavy ion plasma energy reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324189A (ja) * 1993-05-12 1994-11-25 Central Res Inst Of Electric Power Ind 溶融塩電解精製法
JPH1164576A (ja) * 1997-08-14 1999-03-05 Toshiba Corp 使用済窒化物燃料のリサイクル方法
JP2000056075A (ja) * 1998-07-31 2000-02-25 Toshiba Corp 使用済み酸化物燃料のリサイクル方法
US6689260B1 (en) * 2001-08-29 2004-02-10 The United States Of America As Represented By The United States Department Of Energy Nuclear fuel electrorefiner
JP2008266662A (ja) * 2007-04-16 2008-11-06 Toshiba Corp 溶融塩電解精製装置及び溶融塩電解精製方法
JP2013170290A (ja) * 2012-02-20 2013-09-02 Toshiba Corp 溶融塩電解装置および溶融塩電解方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1199748B (de) * 1963-05-15 1965-09-02 Kernforschung Mit Beschraenkte Verfahren zum Aufarbeiten von bestrahlten Kernbrennstoffen
US4880506A (en) * 1987-11-05 1989-11-14 The United States Of America As Represented By The Department Of Energy Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels
US5009752A (en) * 1989-08-25 1991-04-23 The United States Of America As Represented By The United States Department Of Energy Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution
JPH03271390A (ja) * 1990-03-19 1991-12-03 Central Res Inst Of Electric Power Ind 溶融塩電解還元法による活性金属の彩取方法
JPH04319699A (ja) * 1991-04-19 1992-11-10 Toshiba Corp 溶融塩電解精製装置
JPH05188186A (ja) * 1992-01-14 1993-07-30 Toshiba Corp 使用済核燃料からの劣化ウランの分離回収方法
JP3199937B2 (ja) 1993-12-16 2001-08-20 株式会社東芝 溶融塩電解精製装置
EP0728852A1 (en) * 1995-02-27 1996-08-28 Yamaha Hatsudoki Kabushiki Kaisha Plating device and device for supplying pellets to said plating device
JPH0933688A (ja) * 1995-07-18 1997-02-07 Mitsubishi Materials Corp ウラン酸化物の回収方法
JPH11118982A (ja) * 1997-10-17 1999-04-30 Toshiba Corp 使用済み原子炉燃料の処理方法
JP3597741B2 (ja) * 1999-11-15 2004-12-08 核燃料サイクル開発機構 溶融塩電解用処理装置および電解処理方法
JP2003112042A (ja) * 2001-10-03 2003-04-15 Ebara Jitsugyo Co Ltd 電気化学装置および電気化学プロセス
JP2007016293A (ja) * 2005-07-08 2007-01-25 Kyoto Univ 懸濁電解による金属の製造方法
FR2978060B1 (fr) * 2011-07-21 2016-02-12 Commissariat Energie Atomique Procede et dispositif de mise en contact sans melange et a haute temperature de deux liquides non miscibles avec chauffage et brassage par induction
CN103668320A (zh) * 2013-11-18 2014-03-26 广西南宁市蓝天电极材料有限公司 一种电解锰的导电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324189A (ja) * 1993-05-12 1994-11-25 Central Res Inst Of Electric Power Ind 溶融塩電解精製法
JPH1164576A (ja) * 1997-08-14 1999-03-05 Toshiba Corp 使用済窒化物燃料のリサイクル方法
JP2000056075A (ja) * 1998-07-31 2000-02-25 Toshiba Corp 使用済み酸化物燃料のリサイクル方法
US6689260B1 (en) * 2001-08-29 2004-02-10 The United States Of America As Represented By The United States Department Of Energy Nuclear fuel electrorefiner
JP2008266662A (ja) * 2007-04-16 2008-11-06 Toshiba Corp 溶融塩電解精製装置及び溶融塩電解精製方法
JP2013170290A (ja) * 2012-02-20 2013-09-02 Toshiba Corp 溶融塩電解装置および溶融塩電解方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A .V.SIMAKIN ET AL.: "Accelerated alpha- decay of 232 U isotope achieved by exposure of its aqueous solution with gold nanoparticles to laser radiation", PHYSICS OF WAVE PHENOMENA, vol. 21, no. 1, January 2013 (2013-01-01), pages 31 - 37, XP055374434, Retrieved from the Internet <URL:https://arxiv.org/ftp/arxiv/papers/1112/1112.6276.pdf> [retrieved on 20161129] *
HOWARD R.REISS: "Final Report :Accelerated beta decay for disposal of fission fragment wastes", 6 March 2000 (2000-03-06), pages 1 - 24, XP055374426, Retrieved from the Internet <URL:http://www.osti.gov/scitech/servlets/purl/807793> [retrieved on 20161129] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039047A (ja) * 2017-08-25 2019-03-14 株式会社東芝 Zr含有混合物の電解回収方法及びZr含有混合物の電解回収装置

Also Published As

Publication number Publication date
CN108885913B (zh) 2021-12-17
JPWO2017061267A1 (ja) 2018-07-26
EP3300082A1 (en) 2018-03-28
JP6788899B2 (ja) 2020-11-25
US20180202057A1 (en) 2018-07-19
CN108885913A (zh) 2018-11-23
EP3300082A4 (en) 2019-01-02
US10400343B2 (en) 2019-09-03
EP3300082B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2017061267A1 (ja) 高効率乾式再処理用電解槽および電解法
US7638026B1 (en) Uranium dioxide electrolysis
CA3110330C (en) Electrochemical separation mechanism in a molten salt reactor
Souček et al. Exhaustive electrolysis for recovery of actinides from molten LiCl–KCl using solid aluminium cathodes
Glatz et al. Development of pyrochemical separation processes for recovery of actinides from spent nuclear fuel in molten LiCl-KCl
Bagri et al. Optimization of UCl3 and MgCl2 separation from molten LiCl-KCl eutectic salt via galvanic drawdown with sacrificial Gd anode
CN105102688A (zh) 锕系元素从离子溶液的室温电沉积
Grebennikova et al. Electrochemical decontamination of irradiated nuclear graphite from corrosion and fission products using molten salt
Souček et al. Pyrochemical processes for recovery of actinides from spent nuclear fuels
CN105862082A (zh) LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法
Ogawa et al. Dissolution and formation of nuclear materials in molten media
JP3519557B2 (ja) 使用済み燃料の再処理方法
Souček et al. Electrorefining of irradiated experimental metallic fuel at high lanthanides concentration in the LiCl–KCl electrolyte
US20130087464A1 (en) Room temperature electrodeposition of actinides from ionic solutions
Zhang et al. Separation of SmCl3 from SmCl3-DyCl3 system by electrolysis in KCl-LiCl-MgCl2 molten salts
Stevenson Development of a novel electrochemical pyroprocessing methodology for spent nuclear fuels
Laplace et al. Electrodeposition of uranium and transuranics metals (Pu) on solid cathode
JP2004028808A (ja) 使用済み燃料の再処理方法
RU2713733C1 (ru) Способ дезактивации графитовых радиоактивных отходов
Simpson et al. Basis for a minimalistic salt treatment approach for pyroprocessing commercial nuclear fuel
JP2023037458A (ja) 電解還元装置および電解還元方法
WO2023171524A1 (ja) 発電方法及び発電システム
EP3859050A1 (en) Electrolysis devices using ionizing radiation and related methods
Lee et al. Application of a modified electrochemical system for surface decontamination of radioactive metal waste
WO2013168118A2 (en) Method for the conditioning of waste arising from the decommissioning of nuclear plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544441

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016853421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15740994

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE