CN105862082A - LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法 - Google Patents

LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法 Download PDF

Info

Publication number
CN105862082A
CN105862082A CN201510028601.8A CN201510028601A CN105862082A CN 105862082 A CN105862082 A CN 105862082A CN 201510028601 A CN201510028601 A CN 201510028601A CN 105862082 A CN105862082 A CN 105862082A
Authority
CN
China
Prior art keywords
licl
kcl
molten salt
coreduction
salt system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510028601.8A
Other languages
English (en)
Inventor
唐双凌
王泸
石伟群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201510028601.8A priority Critical patent/CN105862082A/zh
Publication of CN105862082A publication Critical patent/CN105862082A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

本发明公开了一种LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法。包括以下步骤:(1)将Nd离子和Zn离子共同溶解在LiCl-KCl熔盐体系中;(2)采用恒电位电解的方法,实现稀土元素Nd的提取。本发明使用共还原的方法提取Nd的过程中,采用循环伏安,开路计时电位以及恒电位电解等电化学技术。使用的LiCl-KCl熔盐体系熔点低,制备方法简单,辐照稳定性好。使用的Zn元素便宜易得,且与Nd容易发生去极化作用生成Nd-Zn合金。

Description

LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法
技术领域
本发明涉及乏燃料后处理领域的一种电解精炼技术,具体为在LiCl-KCl熔盐体系中通过Nd离子和Zn离子发生共还原作用提取Nd的方法。
背景技术
先进乏燃料循环流程中,最主要的一步就是将乏燃料中的稀土元素进行分离和提取。稀土元素(镧系)具有很强的金属活性,采用一般的方法很难将稀土元素提取出来。而且,它和锕系元素的化学物理性质非常类似,很难将它们有效的分离。更为重要的是稀土元素具有很大的中子截面,在核燃料堆中稀土元素的增加会大大的降低燃料的使用效率。因此,在乏燃料后处理流程中最主要的一步就是实现镧系和锕系元素的分离和有效的提取。
当今世界主要的乏燃料后处理流程中分为水法和干法流程,在水法流程中主要是将乏燃料氧化物溶解后采用TBP作为萃取剂进行萃取,最后通过高温热处理的方法实现U,Pu等的回收和利用。但是在水法后处理流程中存在着一些不足:(1)将乏燃料首先溶解,而水是常见的中子慢化剂,当溶液的浓度升高时会发生临街事故。(2)采用的萃取剂TBP抗辐照性不强,在高辐照条件下会自然分解。相对于水法后处理流程,干法后处理流程是在非水介质中实现镧系和锕系元素的分离和提取过程。现在的常见干法后处理流程主要包括:氟化挥发法,电解精炼法和电化学沉积法。在这三种方法中电解精炼法是最常用的方法。电解精炼过程是将乏燃料作为阳极材料,将U沉积在不锈钢阴极表面,将稀土以及超铀元素沉积在液态镉阴极上。最后对富集的U进行进一步的精炼,实现U的循环利用。在电解精炼流程中采用高温熔盐体系作为电解质。在常见的电解质中,LiCl-KCl熔盐体系具有较低的熔点,中子截面小以及辐照稳定性好等优点。因此,在电解精炼流程中通常采用采用LiCl-KCl熔盐作为溶剂。
Nd是裂片元素中含量最高的元素,实现Nd在熔盐体系中的提取具有重要意义。文献1(Gibilaro M,Massot L,Chamelot P,et al.Study of neodymium extraction in moltenfluorides by electrochemical co-reduction with aluminium.Journal of Nuclear Materials,2008,382(1):39-45.)在LiF-CaF2熔盐体系中采用钕-铝共还原的方法在W电极上提取Nd。通过采用不同的恒电解电位得到了不同的钕-铝合金。由于LiF-CaF2熔盐体系的熔点高,这也使得要实现Nd的提取必须在一个比较高的实验温度(860℃)。而且,LiF-CaF2熔盐体系在高温下具有很强的腐蚀性,这也导致了电极和实验设备的腐蚀严重。此外,提取的效率还有待提高。
文献2(Vandarkuzhali S,Chandra M,Ghosh S,et al.Investigation on theelectrochemical behavior of neodymium chloride at W,Al and Cd electrodes in moltenLiCl-KCl eutectic[J].Electrochimica Acta,2014,145:86-98.)在LiCl-KCl熔盐体系中在铝(Al)和液态镉(Cd)电极上提取Nd。通过采用不同的恒电解电位得到了不同的Nd-Al和Nd-Cd合金。但是,由于金属Nd在Al电极和液态Cd电极上的扩散速率慢,使得提取Nd的效率低,进而大大增加了提取的时间。
综述所述,寻找一种提取时间短,提取效率高,同时提取成本低的更为简单有效的方法是亟待解决的问题。
发明内容
本发明的目的在于提供一种在LiCl-KCl熔盐体系中通过Nd离子和Zn离子共还原作用提取Nd的方法。
本发明的原理:
Nd具有很强的化学活性,从离子态还原为金属态时需要较大的还原电位。因此,在进行电化学提取的过程中需要在较高的恒电位条件下进行。然而,在高电压电解条件下电解时LiCl-KCl熔盐体系会分解,导致熔盐体系遭到破坏,影响熔盐的循环使用。因此,在熔盐体系中提取Nd时要选取较小的电解电压。经研究表明,Nd离子和Zn离子发生共还原作用使得Nd离子的还原电位显著降低。因此,在LiCl-KCl熔盐体系中采用钕-锌共还原的方法可以在较低的温度条件下(450℃)实现Nd的提取。同时显著的提高提取的效率,进而减少提取的时间,节约成本。
实现本发明的技术解决方案为:
一种在LiCl-KCl熔盐体系中通过Nd离子和Zn离子共还原作用提取Nd的方法,包括如下步骤:
第一步、惰性氛围下,将干燥后的LiCl、KCl混合盐熔融;
第二步、将融化的LiCl-KCl体系预电解除去体系里面的杂质;
第三步、在KCl-LiCl熔盐体系中加入NdCl3和ZnCl2粉末,搅拌使之充分溶解;
第四步、采用电化学方法得到Nd离子和Zn离子的共还原电位;
第五步、以共还原电位为电解电位,采用恒电位电解法提取KCl-LiCl熔盐体系中的Nd。
其中,第一步中所述LiCl和KCl的摩尔比为41:59。
第三步中所述的NdCl3粉末占KCl-LiCl熔盐体系质量的1-5%,ZnCl2粉末占KCl-LiCl熔盐体系质量的1-8%。
第四步中所述的电化学方法包括循环伏安法、方波伏安法或开路计时电位法。
第五步中所述的电解温度为400-550℃,电解时间1.5-3.5小时。
本发明和现有技术相比,其显著优点为:(1)与氟熔盐体系相比,氯盐体系的原材料便宜易得,体系的熔点低,大大的降低了实验温度。(2)Nd离子和Zn离子的共还原作用使得Nd的还原电位明显正移,大大的降低了Nd离子在熔盐体系中的析出电位。(3)恒电位电解的时间短,效率高,能够很好的实现Nd在熔盐体系中的提取。
附图说明
图1本发明实施例1Nd离子和Zn离子在LiCl-KCl熔盐体系的循环伏安图。
图2本发明实施例1Nd离子和Zn离子在LiCl-KCl熔盐体系的方波伏安图。
图3本发明实施例1Nd离子和Zn离子在LiCl-KCl熔盐体系的开路计时电位图。
图4本发明实施例6Nd离子和Zn离子在LiCl-KCl熔盐体系中恒电位电解的XRD图。
图5本发明实施例10Nd离子和Zn离子在LiCl-KCl熔盐体系中恒电位电解的XRD图。
具体实施方式
下面结合具体的实施案例对本发明做进一步详细描述。
实施例1:步骤1、制备LiCl和KCl的摩尔比为41:59熔盐体系。在刚玉坩埚中分别加入44.0g的无水LiCl和56.0g的无水KCl,将LiCl和KCl均匀混合后置于200℃的马弗炉中干燥≥24小时。将干燥好的LiCl-KCl混合盐放入高温热炉中,升温到500℃将LiCl-KCl混合盐融化。在升温的过程中在盐中通入高纯氩气搅拌≥2小时。
步骤2、制备LiCl-KCl-NdCl3(1.0wt.%)-ZnCl2(1.0wt.%)混合熔盐体系。在LiCl-KCl中加入质量比为1.0%的无水NdCl3粉末,通入高纯氩气搅拌≥0.5小时使之充分溶解于熔盐中。加入质量比为1.0%的无水ZnCl2粉末,通入高纯氩气搅拌≥2小时。最后得到LiCl-KCl-NdCl3(1.0wt.%)-ZnCl2(1.0wt.%)的均匀混合熔盐体系。
图1为本发明Nd离子和Zn离子在LiCl-KCl熔盐体系的循环伏安图。Nd离子和Zn离子的共还原作用使Nd的析出电位向正向移动。Nd离子和Zn离子发生共还原作用可以生成不同的Nd-Zn合金。
图2为本发明Nd离子和Zn离子在LiCl-KCl熔盐体系的开路计时电位图。Nd离子和Zn离子的共还原作用可以生成5种Nd-Zn合金,不同Nd-Zn合金的两相平衡电位分别为-1.21,-1.58,-1.77,-1.80和-1.94V。
图3为本发明Nd离子和Zn离子在LiCl-KCl熔盐体系的方波伏安图。Nd离子和Zn离子的共还原作用可以生成多种不同的Nd-Zn合金。
实施例2:制备LiCl-KCl-NdCl3(2.0wt.%)-ZnCl2(4.0wt.%)混合熔盐体系。在LiCl-KCl中加入质量比为2.0%的无水NdCl3粉末,通入高纯氩气搅拌≥0.5小时使之充分溶解于熔盐中。加入质量比为4.0%的无水ZnCl2粉末,通入高纯氩气搅拌≥2小时。最后得到LiCl-KCl-NdCl3(2.0wt.%)-ZnCl2(4.0wt.%)的均匀混合熔盐体系。
实施例3:制备LiCl-KCl-NdCl3(2.0wt.%)-ZnCl2(6.0wt.%)混合熔盐体系。在LiCl-KCl中加入质量比为2.0%的无水NdCl3粉末,通入高纯氩气搅拌≥0.5小时使之充分溶解于熔盐中。加入质量比为6.0%的无水ZnCl2粉末,通入高纯氩气搅拌≥2小时。最后得到LiCl-KCl-NdCl3(2.0wt.%)-ZnCl2(6.0wt.%)的均匀混合熔盐体系。
实施例4:制备LiCl-KCl-NdCl3(3.0wt.%)-ZnCl2(6.0wt.%)混合熔盐体系。在LiCl-KCl中加入质量比为3.0%的无水NdCl3粉末,通入高纯氩气搅拌≥0.5小时使之充分溶解于熔盐中。加入质量比为6.0%的无水ZnCl2粉末,通入高纯氩气搅拌≥2小时。最后得到LiCl-KCl-NdCl3(3.0wt.%)-ZnCl2(6.0wt.%)的均匀混合熔盐体系。
实施例5:制备LiCl-KCl-NdCl3(5.0wt.%)-ZnCl2(8.0wt.%)混合熔盐体系。在LiCl-KCl中加入质量比为5.0%的无水NdCl3粉末,通入高纯氩气搅拌≥0.5小时使之充分溶解于熔盐中。加入质量比为8.0%的无水ZnCl2粉末,通入高纯氩气搅拌≥2小时。最后得到LiCl-KCl-NdCl3(5.0wt.%)-ZnCl2(8.0wt.%)的均匀混合熔盐体系。
实施例6:在实施例1的LiCl-KCl-NdCl3-ZnCl2熔盐体系中,在W电极上采用-1.45V的恒电位电解2小时。图4为本发明Nd离子和Zn离子在LiCl-KCl熔盐体系中恒电位电解的XRD图。从图中可以看出电解得到NdZn11合金。
实施例7:在实施例2的LiCl-KCl-NdCl3-ZnCl2熔盐体系中,在W电极上采用-1.45V的恒电位电解3小时得到NdZn11合金。
实施例8:在实施例3的LiCl-KCl-NdCl3-ZnCl2熔盐体系中,在W电极上采用-1.4V的恒电位电解3小时得到Nd2Zn17和NdZn11合金。
实施例9:在实施例4的LiCl-KCl-NdCl3-ZnCl2熔盐体系中,在W电极上采用-1.4V的恒电位电解3小时得到NdZn11合金。
实施例10:在实施例5的LiCl-KCl-NdCl3-ZnCl2熔盐体系中,在W电极上采用-1.4V的恒电位电解3小时。图5为本发明Nd离子和Zn离子在LiCl-KCl熔盐体系中恒电位电解的XRD图。从图中可以看出电解得到Nd2Zn17和NdZn11合金。

Claims (5)

1.一种LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法,其特征在于,包括如下步骤:
第一步、惰性氛围下,将干燥后的LiCl、KCl混合盐熔融;
第二步、将融化的LiCl-KCl体系预电解除去体系里面的杂质;
第三步、在KCl-LiCl熔盐体系中加入NdCl3和ZnCl2粉末,搅拌使之充分溶解;
第四步、采用电化学方法得到Nd离子和Zn离子的共还原电位;
第五步、以共还原电位为电解电位,采用恒电位电解法提取KCl-LiCl熔盐体系中的Nd。
2.如权利要求1所述LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法,其特征在于,第一步中所述的LiCl和KCl的摩尔比为41:59。
3.如权利要求1所述LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法,其特征在于,第三步中所述的NdCl3粉末占KCl-LiCl熔盐体系质量的1-5%,ZnCl2粉末占KCl-LiCl熔盐体系质量的1-8%。
4.如权利要求1所述LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法,其特征在于,第四步中所述的电化学方法包括循环伏安法、方波伏安法或开路计时电位法。
5.如权利要求1所述LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法,其特征在于,第五步中所述的电解温度为400-550℃,电解时间1.5-3.5小时。
CN201510028601.8A 2015-01-20 2015-01-20 LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法 Pending CN105862082A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510028601.8A CN105862082A (zh) 2015-01-20 2015-01-20 LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510028601.8A CN105862082A (zh) 2015-01-20 2015-01-20 LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法

Publications (1)

Publication Number Publication Date
CN105862082A true CN105862082A (zh) 2016-08-17

Family

ID=56622994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510028601.8A Pending CN105862082A (zh) 2015-01-20 2015-01-20 LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法

Country Status (1)

Country Link
CN (1) CN105862082A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498445A (zh) * 2016-10-31 2017-03-15 中国工程物理研究院材料研究所 一种含UCl3的高纯氯化物熔盐体系的制备方法、其熔盐体系及应用
CN108364703A (zh) * 2018-01-23 2018-08-03 中国科学院高能物理研究所 氯化铵在二氧化铀与镧系元素氧化物分离中的应用
CN108802159A (zh) * 2018-05-25 2018-11-13 哈尔滨工程大学 一种电化学方法实时监测熔盐去除稀土离子的方法
CN113235137A (zh) * 2021-05-27 2021-08-10 东北石油大学 一种液态Mg-Zn阴极熔盐电解提取稀土元素的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287119A (ja) * 2008-05-01 2009-12-10 National Institute Of Advanced Industrial & Technology 希土類金属の回収方法
CN101914706A (zh) * 2010-07-23 2010-12-15 哈尔滨工程大学 锌铝钕合金及其熔盐电解制备方法
CN102046820A (zh) * 2008-03-26 2011-05-04 财团法人生产技术研究奖励会 稀土元素的回收方法及回收装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046820A (zh) * 2008-03-26 2011-05-04 财团法人生产技术研究奖励会 稀土元素的回收方法及回收装置
JP2009287119A (ja) * 2008-05-01 2009-12-10 National Institute Of Advanced Industrial & Technology 希土類金属の回収方法
CN101914706A (zh) * 2010-07-23 2010-12-15 哈尔滨工程大学 锌铝钕合金及其熔盐电解制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石晓微: ""熔盐电解法制备锌钕、锌铝钕合金及电化学机理研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498445A (zh) * 2016-10-31 2017-03-15 中国工程物理研究院材料研究所 一种含UCl3的高纯氯化物熔盐体系的制备方法、其熔盐体系及应用
CN106498445B (zh) * 2016-10-31 2019-02-26 中国工程物理研究院材料研究所 一种含UCl3的高纯氯化物熔盐体系的制备方法、其熔盐体系及应用
CN108364703A (zh) * 2018-01-23 2018-08-03 中国科学院高能物理研究所 氯化铵在二氧化铀与镧系元素氧化物分离中的应用
CN108364703B (zh) * 2018-01-23 2019-09-17 中国科学院高能物理研究所 氯化铵在二氧化铀与镧系元素氧化物分离中的应用
CN108802159A (zh) * 2018-05-25 2018-11-13 哈尔滨工程大学 一种电化学方法实时监测熔盐去除稀土离子的方法
CN113235137A (zh) * 2021-05-27 2021-08-10 东北石油大学 一种液态Mg-Zn阴极熔盐电解提取稀土元素的方法
CN113235137B (zh) * 2021-05-27 2022-03-22 东北石油大学 一种液态Mg-Zn阴极熔盐电解提取稀土元素的方法

Similar Documents

Publication Publication Date Title
Liu et al. Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm-Zn alloys
Liu et al. Direct separation of uranium from lanthanides (La, Nd, Ce, Sm) in oxide mixture in LiCl-KCl eutectic melt
US8506786B2 (en) Method for recovery of residual actinide elements from chloride molten salt
Han et al. Progress in preparation of rare earth metals and alloys by electrodeposition in molten salts
Zhang et al. Electrochemical extraction of cerium and formation of Al-Ce alloy from CeO 2 assisted by AlCl 3 in LiCl-KCl melts
Souček et al. Exhaustive electrolysis for recovery of actinides from molten LiCl–KCl using solid aluminium cathodes
CN105862082A (zh) LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法
US9562297B2 (en) Galvanic cell for processing of used nuclear fuel
CN112391653B (zh) 一种氯化物熔盐体系中将稀土氧化物还原为稀土金属单质的方法
CN102382994B (zh) 一种放射性68Ge溶液的制备方法
CN105102688A (zh) 锕系元素从离子溶液的室温电沉积
Sakamura et al. Electrowinning of U-Pu onto inert solid cathode in LiCl-KCl eutectic melts containing UCl3 and PuCl3
CN108034965A (zh) 从二氧化铀与镧系元素氧化物的混合物中分离铀的方法
Wang et al. Separation of lanthanides erbium and ytterbium on indium electrodes by modulated potential selective extraction in molten salts and a thermodynamic and kinetic analysis of the process
Zheng et al. Electrochemical extraction of ytterbium from LiCl–KCl-YbCl3-ZnCl2 melt by forming Zn–Yb alloys
US10731265B2 (en) Spent fuel dry-process reprocessing method for directly obtaining zirconium alloy nuclear fuel
Li et al. Electrochemical properties and extraction of Dy on liquid Sn electrode in LiCl–KCl molten salt
Han et al. Anodic dissolution behavior of Zr‐Dy alloy in LiCl‐KCl molten salt
CN109161934A (zh) 分离钕铁硼合金废料中稀土元素并直接制备稀土金属的方法
Liu et al. Electrochemical behavior and electrowinning of palladium in nitric acid media
Zhang et al. Separation of SmCl3 from SmCl3-DyCl3 system by electrolysis in KCl-LiCl-MgCl2 molten salts
CN101994133B (zh) 用于氧化物乏燃料干法后处理的熔盐体系
Никитин et al. POSSIBILIITY OF URANIUM EXTRACTION FROM SPENT NUCLEAR FUEL IN FUSED ELECTROLITES CONTAINING RARE ELEMENTS
JP6234160B2 (ja) 希土類金属の製造方法
CN102691077A (zh) 一种从稀土中提取镨的工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160817