CN101994133B - 用于氧化物乏燃料干法后处理的熔盐体系 - Google Patents

用于氧化物乏燃料干法后处理的熔盐体系 Download PDF

Info

Publication number
CN101994133B
CN101994133B CN201010555951A CN201010555951A CN101994133B CN 101994133 B CN101994133 B CN 101994133B CN 201010555951 A CN201010555951 A CN 201010555951A CN 201010555951 A CN201010555951 A CN 201010555951A CN 101994133 B CN101994133 B CN 101994133B
Authority
CN
China
Prior art keywords
molten salt
spent fuel
fused salt
salt system
oxide compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010555951A
Other languages
English (en)
Other versions
CN101994133A (zh
Inventor
欧阳应根
王长水
刘利生
常尚文
常利
何虎
郭建华
李瑞雪
高巍
高繁星
叶国安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201010555951A priority Critical patent/CN101994133B/zh
Publication of CN101994133A publication Critical patent/CN101994133A/zh
Application granted granted Critical
Publication of CN101994133B publication Critical patent/CN101994133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

本发明公开了一种用于氧化物乏燃料干法后处理的熔盐体系。该熔盐体系以四氟化铀为熔盐主体,添加占熔盐总质量0.1~10%的五氟化铀或四氟化铀的过氟化混合物。它是既能将氧化物乏燃料熔解在熔盐中,又可避免熔盐中的强络阴离子对设备材料严重腐蚀的熔盐体系。

Description

用于氧化物乏燃料干法后处理的熔盐体系
技术领域
本发明属于辐照后的燃料组件经非水溶液再处理流程的技术领域,具体涉及一种用于氧化物乏燃料干法后处理的熔盐体系。
背景技术
干法后处理技术是由美国的ANL和俄罗斯的RIAR、RICT发展起来的。俄罗斯以几千克的氧化物乏燃料进行干法电解后处理,证明该技术在原理上是可行的。美国进行金属乏燃料的干法电解后处理实验室放大实验也已取得成功。目前,熔盐过程是研究最为活跃的四种干法后处理技术之一。其原理是用含对铀、钚有强络合性能的络阴离子盐,如Cl-、F-、SO4 2-等,熔融后,使乏燃料熔解在该熔盐种,处理的元件以氧化物元件为主要对象。
为使乏燃料在熔盐中达到一定的熔解度,目前,国际上采用两种方法转型氧化物乏燃料:氯化或还原。氯化是通过反应(1)将氧化物乏燃料转化为金属氯化物。
MOx+HCl→MCly    (1)
还原则是通过反应(2)将氧化物还原为金属。
MOx+Li(Ca)→M+Li2O(CaO)    (2)
目标都是要将氧化物燃料转化为可熔解在熔盐中化合物,又要避免使用对设备材料有强腐蚀作用的熔盐体系。
金属氧化物乏燃料,尤其是MOX乏燃料的干法后处理过程中,氧化物乏燃料在熔盐中熔解和熔盐对设备材料的腐蚀间存在难以调和的矛盾。增加熔盐中强配合作用的络阴离子,如F-,熔盐中可以获得氧化物乏燃料的较大熔解度,使以熔盐为基础的后处理过程得以实现,但熔盐中强配合作用的络阴离子浓度的增加,又使设备材料腐蚀加剧,使设备材料不能满足熔盐体系后处理过程的要求。在2001年出版的中国核科技报告《干法后处理技术典型流程综述》(CNIC-01638/38)一文中,欧阳应根综述了多种熔盐过程所采用的熔盐体系,其中比较典型的是美国阿贡实验室提出的金属锂还原氧化物电解精炼流程,在LiCl熔盐中先将乏燃料氧化物还原成相应的金属,然后再进行电解精炼回收铀钚。但是氯化物熔盐的溶解能力较低,溶解UO2比较困难。俄罗斯人将MOX粉末中的铀、钚氧化物在熔盐中直接氯化氧化到六价熔解,然后使铀钚在有Cl2+O2气氛的阴极还原电沉积为铀钚混合氧化物。MOX的氯化氧化熔解过程取决于熔盐组成与熔盐工作温度。该流程最早使用的是LiCl+KCl熔盐体系,工作温度500℃左右。为提高熔盐工作温度,现改为含NaCl、CsCl的熔盐体系。使用NaCl(熔点800℃)主要是为了提高熔盐的工作温度,使用CsCl是为了提高六价钚的生成百分比。实验发现,CsCl的添加可以大大提高钚的熔解度和熔解速度。尽管如此,钚的收率仍然难以达到满意指标。
发明内容
(一)发明目的
针对目前干法后处理技术熔盐体系所存在的问题,本发明旨在提供一种既能将氧化物乏燃料熔解在熔盐中,又可避免熔盐中的强络阴离子对设备材料严重腐蚀的熔盐体系。
(二)技术方案
一种用于氧化物乏燃料干法后处理的熔盐体系,该体系以四氟化铀为熔盐主体,添加占熔盐总质量0.1~10%的五氟化铀或四氟化铀的过氟化混合物。
作为一种优化方案,在熔盐体系运行的过程中,加入占熔盐总质量0.1~3%的LiF。
(三)发明效果
本发明使用四氟化铀熔盐体系,熔融时熔盐中铀在阴极沉积后释放出氟离子,与金属氧化物(如UO2)发生反应(3)而使氧化物熔入熔盐中:
Figure BSA00000356768000021
反应(3)产生的MOF2中的金属在阴极沉积后,又释放出F-,使熔盐体系中的F-在熔解-沉积过程中循环,从而使金属氧化物在熔盐电解过程中转化为金属。反应(3)产生在电解过程的阳极以氧气方式释出。此过程中,熔盐体系中因反应(3)产生的F-被氧化物优先结合,使体系的F-浓度保持足够低,不至于对设备材料造成严重腐蚀。使熔盐干法后处理氧化物到金属过程可以直接实现,而不需要氧化物转型,或预还原等步骤。添加五氟化铀或四氟化铀的过氟化混合物可以改善熔盐体系温度和熔解特性。
具体实施方式
下面通过实施例,对本发明所提供的技术方案作进一步阐述。
实施例1
采用UF4,添加LiF和UF5,以改善熔盐体系的温度和熔解特性,以UO2为原料,直接电解沉积出金属铀。
具体操作过程是:
1)配制合适的熔盐。取UF4和UF5各128g和0.13g。
2)控制温度600~650℃,使熔盐在坩埚中熔化。
3)添加3.84g LiF。
4)加入6.60g UO2
5)当盐熔化时,用不锈钢条搅拌熔体,然后取上层清液,以分析UO2的溶解度。取样完成后,进行CV扫描,根据CV扫描所得的信息进行恒电位沉积。结果表明,恒电位沉积在不锈钢阴极上得到枝状沉积物。
实施例2
采用UF4,添加UF4的过氟化混合物和LiF,以UO2为原料,直接电解沉积出金属铀。
具体操作过程是:
1)配制合适的熔盐。取UF4和UF4的过氟化混合物各100g和5g。
2)控制温度650~700℃,使熔盐在坩埚中熔化。
3)添加1.58g LiF。
4)加入5.33g UO2
5)当盐熔化时,用不锈钢条搅拌熔体,然后取上层清液,以分析UO2的溶解度。取样完成后,进行CV扫描,根据CV扫描所得的信息进行恒电位沉积。结果表明,恒电位沉积在不锈钢阴极上得到枝状沉积物。
实施例3
采用UF4,添加LiF和UF5,以UO2为原料,直接电解沉积出金属铀。
具体操作过程是:
1)配制合适的熔盐。取UF4和UF5各80g和8g。
2)控制温度600~650℃,使熔盐在坩埚中熔化。
3)添加0.09g LiF。
4)加入4.84g UO2
5)当盐熔化时,用不锈钢条搅拌熔体,然后取上层清液,以分析UO2的溶解度。取样完成后,进行CV扫描,根据CV扫描所得的信息进行恒电位沉积。结果表明,恒电位沉积在不锈钢阴极上得到枝状沉积物。
显然本领域的技术人员可以对本发明进行各种修改和变型而不脱离本发明的精神和范围。这样,假若本发明的这些修改和变型属于本发明权利要求其等同技术的范围内,则本发明也意图包含这些修改和变型。

Claims (3)

1.一种用于氧化物乏燃料干法后处理的熔盐体系,该体系以四氟化铀为熔盐主体,添加占熔盐总质量0.1~10%的五氟化铀,或添加占熔盐总质量0.1~10%的四氟化铀的过氟化混合物。
2.根据权利要求1所述的用于氧化物乏燃料干法后处理的熔盐体系,其特征在于:在熔盐体系运行的过程中,加入占熔盐总质量0.1~3%的LiF。
3.根据权利要求1所述的用于氧化物乏燃料干法后处理的熔盐体系,其特征在于:熔盐熔化的温度控制600~700℃。
CN201010555951A 2010-11-24 2010-11-24 用于氧化物乏燃料干法后处理的熔盐体系 Active CN101994133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010555951A CN101994133B (zh) 2010-11-24 2010-11-24 用于氧化物乏燃料干法后处理的熔盐体系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010555951A CN101994133B (zh) 2010-11-24 2010-11-24 用于氧化物乏燃料干法后处理的熔盐体系

Publications (2)

Publication Number Publication Date
CN101994133A CN101994133A (zh) 2011-03-30
CN101994133B true CN101994133B (zh) 2012-10-17

Family

ID=43784870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010555951A Active CN101994133B (zh) 2010-11-24 2010-11-24 用于氧化物乏燃料干法后处理的熔盐体系

Country Status (1)

Country Link
CN (1) CN101994133B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132953B (zh) * 2015-07-24 2017-11-21 中国原子能科学研究院 一种用于直接获得锆合金燃料的乏燃料干法后处理方法
CN109637682B (zh) * 2018-11-05 2020-09-04 中国科学院上海应用物理研究所 一种熔盐堆燃料重构的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297174A (en) * 1979-03-09 1981-10-27 Agip Nucleare, S.P.A. Pyroelectrochemical process for reprocessing irradiated nuclear fuels
US5096545A (en) * 1991-05-21 1992-03-17 The United States Of America As Represented By The United States Department Of Energy Plutonium recovery from spent reactor fuel by uranium displacement
CN1083547A (zh) * 1992-06-29 1994-03-09 皮奇尼铀公司 选择性电解氟化铀基合金或其金属混合物的方法
CN1639803A (zh) * 2002-02-28 2005-07-13 不列颠核燃料有限公司 生产金属的电化学电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379648A (en) * 1966-12-07 1968-04-23 Atomic Energy Commission Usa Separation of trivalent 4f rare earths from molten fluoride compositions with uf3
US4005178A (en) * 1975-07-10 1977-01-25 The United States Of America As Represented By The United States Energy Research And Development Administration Method for converting UF5 to UF4 in a molten fluoride salt
US4552588A (en) * 1983-06-09 1985-11-12 Elliott Guy R B Magnesium reduction of uranium fluoride in molten salts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297174A (en) * 1979-03-09 1981-10-27 Agip Nucleare, S.P.A. Pyroelectrochemical process for reprocessing irradiated nuclear fuels
US5096545A (en) * 1991-05-21 1992-03-17 The United States Of America As Represented By The United States Department Of Energy Plutonium recovery from spent reactor fuel by uranium displacement
CN1083547A (zh) * 1992-06-29 1994-03-09 皮奇尼铀公司 选择性电解氟化铀基合金或其金属混合物的方法
CN1639803A (zh) * 2002-02-28 2005-07-13 不列颠核燃料有限公司 生产金属的电化学电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘学刚."乏燃料干法后处理技术研究进展".《核化学与放射化学》.2009,第31卷35-44.
欧阳应根."干法后处理技术典型流程综述".《中国核科技报告》.2001,367-381.

Also Published As

Publication number Publication date
CN101994133A (zh) 2011-03-30

Similar Documents

Publication Publication Date Title
Han et al. Progress in preparation of rare earth metals and alloys by electrodeposition in molten salts
US9562297B2 (en) Galvanic cell for processing of used nuclear fuel
Sakamura Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO2 in LiCl salt bath
CN108138343B (zh) 利用电解还原和电解精炼工序的金属精炼方法
CN102703929B (zh) 一种钛铁矿直接还原制取Ti-Fe合金的方法
CN101994132B (zh) 基于氧化物乏燃料干法后处理的熔盐体系
EP1481401B1 (en) Electrochemical cell for metal production
CN101994133B (zh) 用于氧化物乏燃料干法后处理的熔盐体系
Thudum et al. Molten salt electrolysis of neodymium: electrolyte selection and deposition mechanism
Guo et al. Molten salt electrolysis of spent nickel-based superalloys with liquid cathode for the selective separation of nickel
US10731265B2 (en) Spent fuel dry-process reprocessing method for directly obtaining zirconium alloy nuclear fuel
CN105862082A (zh) LiCl-KCl熔盐体系中钕-锌共还原提取Nd的方法
EP1393324B1 (en) Actinide production
JP5594671B2 (ja) 溶融塩中の酸塩化物及び酸化物並びにこれら化合物イオンの塩化処理方法
KR20020077352A (ko) 악티나이드 생성방법
US3982928A (en) Separation of uranium from (Th,U)O2 solid solutions
JP5017069B2 (ja) 使用済燃料の再処理方法
EP1570114B1 (en) Separation of metals
CN113684504A (zh) 一种用于乏燃料干法后处理的电解精炼废熔盐处理方法
Garcia-Diaz et al. Electrochemical fluorination for processing of used nuclear fuel
CN116265618A (zh) 一种处理含铀物料的熔盐电解方法
Campbell-Kelly et al. Electrorefining of Cerium in LiCl-KCl Molten Salts
Zhang et al. Innovative approach for efficient extraction of Nd from electrorefining waste salt into nuclear waste forms
Deferm Development of a hydrometallurgical route for the production of high-purity indium
Chiotti et al. Separation of uranium from (Th, U) O 2 solid solutions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant